Teaching general problem solving does not lead to mathematical skills or knowledge

Citation for published version (APA):

Sweller, J., Clark, R., & Kirschner, P. A. (2010). Teaching general problem solving does not lead to mathematical skills or knowledge. *Notices of the American Mathematical Society*, *57*, 1303-1304. https://www.researchgate.net/publication/254913324_Teaching_general_problemsolving_skills_is_not_a_substitute_for_or_a_viable_addition_to_teaching_mathematics

Document status and date: Published: 01/01/2010

Document Version:

Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy

If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 02 Jul. 2022

Teaching general problem solving does not lead to mathematical skills or knowledge

John Sweller, Richard E. Clark and Paul A. Kirschner

Problem solving is central to mathematics. Yet problem-solving skill is not what it seems. Indeed, the field of problem solving has recently undergone a surge in research interest and insight but many of the results of this research are both counterintuitive and contrary to many widely held views. For example, many educators assume that general problem-solving strategies are not only learnable and teachable but are a critical adjunct to mathematical knowledge. The best known exposition of this view was provided by Pólya (1957). He discussed a range of general problem-solving strategies, such as encouraging mathematics students to think of a related problem and then solve the current problem by analogy, or to think of a simpler problem and then extrapolate to the current problem. The examples Pólya used to demonstrate his problem-solving strategies are fascinating and his influence can probably be sourced, at least in part, to those examples. Nevertheless, in over half a century, no systematic body of evidence demonstrating the effectiveness of any general problem-solving strategies has emerged. It is possible to teach learners to use general strategies such as those suggested by Pólya (Schoenfeld, 1985) but that is insufficient. There is no body of research based on randomised, controlled experiments indicating that such teaching leads to better problem solving.

Recent "reform" curricula both ignore the absence of supporting data and completely misunderstand the role of problem solving in cognition. If, the argument goes, we are not really teaching people mathematics but are teaching them some form of general problem solving then mathematical content can be reduced in importance. According to this argument, we can teach students how to solve problems in general and that will make them good mathematicians able to discover novel solutions irrespective of the content.

We believe this argument ignores all the empirical evidence about mathematics learning. Although some mathematicians, in the absence of adequate instruction, may have learned to solve mathematics problems by discovering solutions without explicit guidance, this approach was never the most effective or efficient way to learn mathematics.

The alternative route to acquiring problem-solving skill in mathematics derives from the work of a Dutch psychologist, De Groot (1946, 1965), investigating the source of skill in chess. Researching why chess masters always defeated weekend players, De Groot managed to find only one difference. He showed masters and weekend players a board configuration from a real game, removed it after five seconds and asked them to reproduce the board. Masters could do so with an accuracy rate of about 70% compared with 30% for weekend players. Chase and Simon (1973) replicated these results and additionally demonstrated that when the experiment was repeated with random configurations rather than realgame configurations, masters and weekend players had equal accuracy (roughly 30%). Masters were superior only for configurations taken from real games.

Chess is a problem-solving game whose rules can be learned in about thirty minutes. Yet it takes at least ten years to become a chess master. What occurs during this period? When studying previous games, chess masters learn to recognise tens of thousands of board configurations and the best moves associated with each configuration (Simon & Gilmartin, 1973). The superiority of chess masters comes not from having acquired clever, sophisticated, general problem-solving strategies but rather from having stored innumerable configurations and the best moves associated with each in long-term memory.

De Groot's results have been replicated in a variety of educationally relevant fields, including mathematics (Sweller & Cooper, 1985). They tell us that long-term memory, a critical component of human cognitive architecture, is not used to store random, isolated facts but rather to store huge complexes of closely integrated information that results in problem-solving skill. That skill is knowledge domain-specific, not domain-general. An experienced problem solver in any domain has constructed and stored huge numbers of schemas in longterm memory that allow problems in that domain to be categorised according to their solution moves. In short, the research suggests that we can teach aspiring mathematicians to be effective problem solvers only by helping them memorise a large store of domain-specific schemas. Mathematical problem-solving skill is acquired through a large number of specific mathematical problem-solving strategies relevant to particular problems. There are no separate, general problem-solving strategies that can be learned.

How do people solve problems that they have not previously encountered? Most employ a version of meansends analysis in which differences between a current problem-state and goal-state are identified and problemsolving operators are found to reduce those differences. There is no evidence that this strategy is teachable or learnable because we use it automatically.

But domain-specific mathematical problem-solving skills can be taught. How? One simple answer is by emphasising worked examples of problem-solution strategies. A worked example provides problem-solving steps and a solution for students (Van Merriënboer & Kirschner, 2007). There is now a large body of evidence showing that studying worked examples is a more effective and efficient way of learning to solve problems than simply practising problem-solving without reference to worked examples (Paas & van Gog, 2006). Studying worked examples interleaved with practice solving the type of problem described in the example reduces unnecessary working memory load that prevents the transfer of knowledge to long-term memory. The improvement in subsequent problem-solving performance after studying worked examples rather than solving problems is known as the worked example effect (Paas & van Gog).

Whereas a lack of empirical evidence supporting the teaching of general problem-solving strategies in mathematics is telling, there is ample empirical evidence of the validity of the worked-example effect. A large number of randomised controlled experiments demonstrate this effect (e.g. Schwonke et al., 2009; Sweller & Cooper, 1985). For novice mathematics learners, the evidence is overwhelming that studying worked examples rather than solving the equivalent problems facilitates learning. Studying worked examples is a form of direct, explicit instruction that is vital in all curriculum areas, especially areas that many students find difficult and that are critical to modern societies. Mathematics is such a discipline. Minimal instructional guidance in mathematics leads to minimal learning (Kirschner, Sweller & Clark, 2006).

Reformers' zeal to improve mathematics teaching and increase students' mathematical problem-solving is laudable. But instead of continuing to waste time devising "reform" curricula based on faulty ideas, mathematicians and mathematics educators should work together to develop a sound K-12 curriculum that builds students' mathematical knowledge through carefully selected and sequenced worked examples.

References

- W. G. Chase & H. A. Simon, Perception in chess, *Cognitive Psychology* 4 (1973), 55–81.
- A. De Groot, *Thought and Choice in Chess*, Mouton, The Hague, Netherlands, 1965. (Original work published 1946.)
- P. Kirschner, J. Sweller & R. Clark, Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching, *Educational Psychologist* 41 (2006), 75–86.
- F. Paas & T. van Gog, Optimising worked example instruction: Different ways to increase germane cognitive load, *Learning and Instruction* 16 (2006), 87–91.
- G. Pólya, *How to Solve It: A New Aspect of Mathematical Method*, Doubleday, Garden City, NY, 1957.
- A. Schoenfeld, *Mathematical Problem Solving*, Academic Press, New York, 1985.

- R. Schwonke, A. Renkl, C. Kreig, J. Wittwer, V. Aleven & R. Salden, The worked example effect: Not an artifact of lousy control conditions, *Computers in Human Behavior* 25 (2009), 258–266.
- H. Simon & K. Gilmartin, A simulation of memory for chess positions, Cognitive Psychology 5 (1973), 29–46.
- J. Sweller & G. Cooper, The use of worked examples as a substitute for problem solving in learning algebra, *Cognition and Instruction* 2 (1985), 59–89.
- J. J. G. van Merriënboer & P. A. Kirschner, *Ten steps to complex learning*, Mahwah, NJ: Lawrence Erlbaum, 2007.

John Sweller [j.sweller@unsw.edu.au] is an emeritus professor of education at the University of New South Wales and a Fellow of the Academy of Social Sciences in Australia. His research is associated with cognitive load theory. The theory is a contributor to

both research and debate on issues associated with human cognition, its links to evolution by natural selection and the instructional design consequences that follow.

Richard Edward Clark [clark@usc.edu] is a professor of educational psychology, clinical research professor of surgery and Director of the Center for Cognitive Technology at the University of Southern California in Los Angeles. He is the author of over 250

articles and book chapters, as well as three recent books on the design of instruction for complex learning and the use of technology to teach science and mathematics.

Paul A. Kirschner [paul.kirschner@ou.nl] is a professor of educational psychology, Director of the Learning and Cognition Programme at the Centre for Learning Sciences and Technologies, and Director of the Cognitive Education Programme at

the Netherlands Laboratory for Lifelong Learning at the Open University of the Netherlands. He is the author of the highly acclaimed book Ten steps to complex learning and is the current President of the International Society of the Learning Sciences.

This article is adapted from "Teaching General Problem-Solving Skills Is Not a Substitute for, or a Viable Addition to, Teaching Mathematics", which appeared in the November 2010 issue of the *Notices of the American Mathematical Society*. It appeared also in the Winter 2010–2011 issue of *American Educator*, the quarterly journal of the American Federation of Teachers, AFL-CIO. Reprinted with permission.