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ABSTRACT 

Historically, treatment professionals, researchers, and policymakers widely regarded substance 

use disorders (SUDs) as acute conditions that patients could “recover” from after a single 

treatment. Recent efforts have redefined recovery as a lifelong, dynamic process that involves 

improvements in multiple domains over time. Thus, recovery capital frameworks and theory 

have gained momentum as a way to operationalize recovery from SUDs. Recovery capital is a 

multifaceted framework with theoretical underpinnings in the social capital literature that 

provides a way of conceptualizing and measuring the complexities of the recovery process. 

While the literature on recovery capital has grown significantly since its conception, the extant 

research has focused on investigating recovery capital at the individual-level and not on how it is 

developed contextually. The current longitudinal study sought to advance understanding of how 

recovery capital is developed using social network analysis while testing network cohesion, 

social exchange, and generalized exchange theories. Stochastic Actor Oriented Modeling was 

conducted on individuals recovering from SUDs (N = 627) residing in 42 recovery homes. 

Findings indicated that while cohesion, social exchanges, and generalized exchanges were 

prevalent across various types of networks, these network-level effects had no influences on 

changes in the individual-level of recovery capital. However, a dyadic-level effect was found, 

indicating that residents’ individual-level recovery capital increased when they were directly 

connected to those rich in recovery capital. Additionally, compared to men, women had slower 

increases in their recovery capital over time. The theoretical and practical implications and 

recommendations for future research are discussed. 

Keywords: Substance use disorders, recovery capital, social networks, stochastic actor 

oriented modeling. 
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OVERVIEW 
 

Substance use disorders (SUDs) are a significant public health concern, affecting an 

estimated 10.8% of adults in the United States (Substance Abuse and Mental Health Services 

Administration [SAMHSA], 2019). These disorders can result in significant impairments to 

physical and mental health, social, employment, housing, and legal difficulties, disability, or 

even death (Baliunas et al., 2010; Degenhardt & Hall, 2012; Fergusson, Horwood, Swain-

Campbell, 2002; Lange & Hillis, 2001; Rehm et al., 2009; Tiffany et al., 2012; Whiteford et al., 

2013). The lack of resources to prevent SUDs and effective recovery support services for those 

living with SUDs has detrimental effects on individuals, families, communities, and society as a 

whole, underscoring the importance of identifying the facilitators of long-term recovery.  

The term recovery has had various conceptualizations over the years. Historically, SUD 

treatment professionals, researchers, and policymakers widely regarded SUDs as acute 

conditions that patients could “recover” from after a single episode of treatment (Dennis & Scott, 

2007). Proponents of this acute care approach defined recovery from SUDs as the reduction of 

substance use or the achievement of abstinence. This definition was inherently problematic given 

that it ignored whether individuals were improving in other life domains. The acute-care 

approach to SUDs impacted the types of treatment protocols implemented for patients and the 

types of research outcomes investigated (Laudet & White, 2008). Additionally, this approach 

impacted public policy, evident in the inadequate funding allocated towards treatment and 

recovery support services, the restrictions in the number of treatment days covered by insurance, 

and the lack of intervention initiatives and long-term systems of care (McLellan et al., 2000).   

In recent decades, a growing body of empirical research has affirmed that SUDs are 

chronic conditions, marked by phases of treatment, recovery, and relapse (Dennis et al., 2007; 
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Dennis, Foss, & Scott, 2007; Dennis, Scott, Funk, & Foss, 2005; Fowler et al., 2007; Paulus et 

al., 2005; Scott, Dennis, & Foss, 2005). Accordingly, recovery from SUDs is now widely 

recognized as a lifelong, dynamic process that can take more than five years before stable 

recovery can be achieved (Betty Ford Institute [BFI] Consensus Panel, 2007; Dennis et al., 2005; 

Scott et al., 2005a; Scott et al., 2005b). As a result, previous pathological models of recovery 

have evolved to a holistic recovery health framework that considers the entirety of a person’s 

well-being and whether they are thriving in different areas (Kelly & Hoeppner, 2015). Reflective 

of this paradigm shift, SAMHSA updated its definition of recovery to “a process of change 

through which individuals improve their health and wellness, live a self-directed life, and strive 

to reach their full potential” (SAMHSA, 2012, pg. 3). Notably, SAMHSA did not include 

abstinence as a necessary component of recovery. Accompanying these recent efforts to promote 

a person-centered conceptualization of recovery, there have been calls for rigorous examinations 

into the processes and mechanisms that help initiate and sustain improvements in multiple 

domains over time (Cleveland et al., 2021; Kelly et al., 2014).   

While many organizations have attempted to define recovery (e.g., see BFI, 2007; 

SAMHSA, 2012; World Health Organization [WHO], 2016), there is still no universally 

accepted definition. However, within the SUD literature, recovery capital frameworks and theory 

(Granfield & Cloud, 1999) have gained momentum as a way to operationalize recovery (Parkin, 

2015). Recovery capital (Granfield & Cloud, 1999) is a multifaceted framework with theoretical 

underpinnings in the social capital literature (Bourdieu, 1980; Coleman, 1988; 1994; Bourdieu 

and Wacquant, 1992; Portes, 2000; Putnam, 1993) that provides a way of conceptualizing and 

measuring the complexities of the recovery process. Recovery capital is defined as “the sum total 

of one’s resources [internal and external] that can be brought to bear on the initiation and 
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maintenance of substance use misuse cessation” (Cloud & Granfield, 2008; pg. 1972). While 

several highly related models of recovery capital have been proposed (Cloud & Granfield, 2004; 

2008; Granfield et al., 1999; 2001), according to White and Cloud (2008), recovery capital can 

be best categorized into three domains: (1) personal; (2) social; and (3) community. These will 

be discussed in more detail in later sections. 

Many studies provide support for the utility of the recovery capital framework for 

mapping recovery improvements over time across various domains (Best et al., 2012a; Best et 

al., 2012b; Best et al., 2015; Best, Vanderplasschen, & Nisic, 2020; Boeri, Lamonica, & Harbry, 

2011; Daddow & Broome, 2010; Duffy & Baldwin, 2013; Evans, Li, Buoncristiani, & Hser, 

2014; Groshkova, Best, & White, 2011; Gueta & Addad, 2015; Hillios, 2013; Laudet, Morgen, 

& White, 2006; Laudet, 2013; Laudet et al., 2008; Mawson et al., 2015; Van Melick et al., 2013; 

Zschau et al., 2016). While the body of literature on recovery capital has grown since it was first 

conceptualized, the extant research has focused on investigating recovery capital at the 

individual-level and not on how it is developed contextually. 

Recovery is a dynamic process that can be influenced by both individual and 

social/environmental factors (Cleveland et al., 2021; Granfield & Cloud, 2001; Moos, 2003; 

Vaillant, 1995), and yet, few studies on recovery capital have measured this interaction, leaving 

contextual factors largely unaccounted for (Gonzales, Hernandez, Douglas, & Yu, 2015; Reise, 

Ventura, Nuechterlein, & Kim, 2005; Sterling, Slusher, & Weinstein, 2008; Tucker, Vuchinich, 

& Gladsjo, 1990; Zschau et al., 2016). The disproportionate attention to the individual level is 

surprising given that the recovery capital framework recognizes the importance of social and 

community dynamics (Lyons & Lurigio, 2010). There is a need to incorporate multi-level 

perspectives that help elucidate the contextual factors that influence recovery capital and 
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examine how the interdependencies between individuals and their environments can facilitate or 

hinder its development. Investigations into this area require the utilization of appropriate 

statistical methodology that allows for these interdependencies and dynamics to be modeled.  

Social network analysis provides a robust methodological tool and theoretical foundation 

for understanding the connections between individuals and their most immediate environment: 

their social networks (Valente, 2010; Wasserman & Faust, 1994). Stochastic Actor-Oriented 

Modeling (SAOM) (Snijders, van de Bunt, & Steglich, 2010), a statistical framework for 

dynamic social network modeling, has several methodological strengths that makes it especially 

suited for examining how recovery capital is developed through social relationships. With 

SAOM one could: (1) account for the interdependence between social relationships and 

individual behavior; (2) examine the co-evolution of network structures and recovery capital 

overtime; and (3) identify specific network and relational characteristics that facilitate recovery 

capital. The advantages of using social network analysis to investigate how recovery capital 

within a social context motivates the present work.  

In addition to the aforementioned statistical tools, several network theories provide 

guidance for the types of social network conditions that can result in the greater generation of 

recovery capital. These theories include network cohesion theory (Coleman, 1988), social 

exchange theory (Homans, 1961; Emerson, 1972), and generalized exchange theory (Levi-

Strauss, 1949). While these theories have been applied to the study of social capital (Abbott & 

Freeth, 2008; Adler & Kwon, 2002; Baker & Dutton, 2007; Cook, Cheshire, Rice, & Nakawaga, 

2013; Flap, 2002; Krishna, 2000; Koopman, Matta, Scott, & Conlon, 2015; Gargiulo & Benassi, 

2000; Molm & Collett, 2007; Moody & Paxton, 2009; Paxton, 1999; Sandefur & Laumann, 

1998; Wasko & Faraj, 2005; Wei, Zheng, & Zhang, 2011; Yuan, Gay, & Hembrooke, 2006), no 
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other study, to my knowledge, has used them in the context of recovery capital. The current work 

will argue the usefulness of these three theories applied to recovery capital to support the current 

study’s rationale. 

The current study seeks to advance our understanding of how recovery capital is 

developed within a social environment. Through the use of social network analysis, the research 

presented in this dissertation will elucidate recovery capital trajectories as well as individual-

level characteristics and social mechanisms that impact these trajectories. The current study 

adopts a multi-level perspective in the study of recovery capital, and as such, recovery capital 

will be examined as an individual-level resource as well as a structural-level resource that is 

developed through social relationships. The specific aims of the current study are to: (1) 

investigate the boundary conditions in which network cohesion, social exchange, and generalized 

exchange theories can be reasonably applied and (2) examine how recovery capital co-evolves 

with changes in network structures over time. A sub aim of aim two is to identify the network 

structures that facilitate or hinder recovery capital. In this dissertation, I propose to analyze the 

co-evolution of recovery capital and network characteristics by hypothesizing the underlying 

network dynamics utilizing the aforementioned theories as guiding frameworks.  

The following section begins with a review of the literature on recovery from SUDs. This 

will be followed by a review of the theoretical and empirical research on recovery capital. A 

comprehensive section on social networks that discusses (1) its importance to the study of 

recovery capital, (2) social network theories providing the foundation for the current work, and 

(3) a discussion of the utility of the current study’s methodology for investigating the phenomena 

of interest. Subsequently, a discussion on integrating the theoretical foundations and the 

stochastic-actor oriented model development for the current work will be presented. This will be 
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followed by a section that discusses the specific population/setting of interest. The introduction 

concludes with the study’s rationale.  

LITERATURE REVIEW 

Recovery from Substance Use Disorders  

 SUDs are a chronic health condition with biological, psychological, social, and 

environmental determinants characterized by impairment to one’s functioning due to the 

recurrent use of alcohol and/or drugs (SAMHSA, 2019; United Nations Office of Drugs and 

Crime [UNODC], 2020). According to the American Psychiatric Association’s (APA) (2013) 

Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5), underlying 

symptoms of SUDs include (1) the recurrent use of alcohol and/or drugs despite severe 

impairment to one’s health and failure to meet family, employment, and community obligations, 

(2) an intense desire or urge to engage in the use of the substance that can occur at any time, (3) 

continued risky use of the substances in hazardous conditions, and (4) experiencing the need for 

a greater quantity of the substance to obtain the same effect (tolerance) and the physical and 

mental health symptoms that occur after eliminating or reducing the use of the substance 

(withdrawal). These symptoms can be classified as mild, moderate, or severe (APA, 2013).  

In the U.S, an estimated 20.3 million peopl12 years and older have a SUD (SAMHSA, 

2019). Currently, the U.S is facing an opioid use epidemic in which one person dies every 15 

minutes of a drug overdose (Centers for Disease Control and Prevention, 2016).  According to a 

report by the UNODC, 162 to 324 million people worldwide engage in substance use, of which 

approximately 10% (16 to 39 million) will develop a SUD (UNODC, 2012). Global estimates 

reveal that, overall, only one out of every six people with SUDs receive treatment (UNODC, 
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2020). This proportion is lower in Latin America and Africa, wherein only one out of 11 and one 

out of 18 people access treatment, respectively (UNODC, 2020).  

Inadequate global resources have been put forth to prevent SUDs and promote recovery, 

along with the implementation of harmful policies that continue to criminalize those with SUDs 

(UNODC, 2020). As a consequence, SUDs often intersect with other problems, including 

incarceration, homelessness, unemployment, chronic health problems, mental illness, and 

mortality (Fischer & Breakey, 1991; John et al., 2018; Knopf, 2020; Lennox, Zarkin, & Bray, 

1996; Marmet et al., 2019; Robertson, Zlotnick, & Westerfelt, 1997; Schulte & Hser, 2013; 

Schmidt et al., 2018). Given how society fails to properly address SUDs through multifaceted, 

public health-oriented responses, the overall cost of SUDs is considered to surpass that of many 

other chronic conditions (International Narcotics Board, 2013; World Health Organization, 

2016). Thus, understanding what helps people recover is an important aim.  

 Despite these alarming statistics, recovery from SUDs is possible, albeit difficult. A 

survey found that 10% (23 million) of adults in the U.S reported being in remission from SUDs 

(Office of Alcoholism and Substance Abuse Services, 2012). Studies on treatment and 

community populations have found that between 58 and 60% of people who met the diagnostic 

criteria for a SUD at some point in their lifetime enter recovery (Dawson, 1996; Dennis et al., 

2005; Kessler, 1994). A 33-year observational study of heroin users found that 60.3% reported 

episodes of remission that lasted at least a year and 21.4% lasting at least five years (Nosyk et 

al., 2013). While the first few years in recovery are particularly precarious, once individuals 

reach a five-year benchmark in recovery, the likelihood that they will meet the criteria for a SUD 

is significantly reduced (American Society of Addiction Medicine, 2015; Betty Ford Consensus 

Panel, 2007; Dennis et al., 2007; El-Guebaly, 2012; Finney & Moos, 1991; Flynn, Joe, Broome, 



9  

 
 

Simson, & Brown, 2003; Moos & Moos, 2006a; Moos & Moos, 2006b; White, 2007; Vaillant, 

1996; Vaillant, 2003). 

Recovery is not a single event but a lifelong, dynamic process, with most individuals 

cycling between periods of substance use, abstinence, relapse, and recovery (Galai, Safaeian, 

Vlahov, Bolotin, & Celentano, 2003; Moos et al, 2006a; 2006b; Nosyk et al., 2013; Scott, Foss, 

Dennis, 2005), with recovery involving being in remission from SUDs and achieving wellness. 

For instance, in one study of 1,326 individuals with SUDs, 82% transitioned through these stages 

at least once, while 62% moved through this cycle multiple times (Scott et al., 2005). There are 

also various pathways into recovery. While some enter recovery after multiple episodes of 

treatment (Cunningham, 1999a; 1999b; Dennis et al., 2005; Grella & Joshi, 1999; Hser et al., 

1997; Scott, Dennis, & Foss, 2005; Scott, Foss, & Dennis, 2005), others enter recovery without 

the use of formal treatment (Cloud & Granfield, 2001; Moos & Moos, 2006a). Moos et al. 

(2006a; 2006b) followed individuals with SUDs over 16 years and found that 60% of them had 

achieved remission without formal treatment. Considering the variety of ways individuals initiate 

recovery from SUDs, there is a necessity to identify the mechanisms that function as ‘natural 

reinforces’ for sustained recovery (Mckay, 2017).   

Recovery is more than the resolution of substance use problems; instead, it involves 

functional improvements and/or thriving in areas negatively impacted by substance use. While 

the path towards recovery is highly heterogeneous, it is believed to involve the growth of 

recovery capital. Recovery capital encompasses the various internal and external resources or 

‘capital’ that helps individuals initiate and sustain their recovery from SUDs (Granfield et al., 

1999). While there are several conceptualizations of recovery, the current study defines recovery 

as both no longer meeting DSM-5 criteria for SUDs and having greater access to recovery 
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capital. In the next section, the theoretical and empirical literature on recovery capital will be 

reviewed while underscoring the need to implement multiple levels of analysis to advance what 

we know about recovery.  

What is Recovery Capital? 

The recovery capital framework, which has theoretical underpinnings in the social capital 

theory literature (Bourdieu, 1980; Bourdieu & Wacquant, 1992; Coleman, 1988; 1994; Portes, 

2000; Putnam, 1993), was first proposed by Granfield and Cloud based on their research on 

individuals that had achieved “natural recovery” without the use of formal treatment or mutual-

help programs (Cloud & Granfield, 2001; Granfield & Cloud, 1999). Recovery capital is an 

ecological framework that delineates resources at the individual, interpersonal, and community 

levels that can be utilized to overcome substance use related problems and achieve well-being 

and self-actualization (Cloud & Granfield, 2001; Granfield & Cloud, 1999). These resources can 

be accumulated or expended and exist on a continuum, ranging from positive internal and 

external resources that enhance recovery to those that present obstacles that hinder these efforts. 

It is hypothesized that one’s capacity to “recover” is a function of the type and quality of these 

sets of resources (Cloud & Granfield, 2008). The relationship between recovery capital and 

remission from SUD is bidirectional, that is, recovery capital helps individuals achieve remission 

from SUDs and being in remission helps individuals gain greater access to recovery capital 

(Cloud & Granfield, 2001). Three primary domains of recovery capital have been proposed: 

personal, social, and community recovery capital. Each domain will be briefly reviewed below. 

Personal recovery capital. The first domain, personal recovery capital are any individual-

level characteristics or assets that can be used to sustain recovery from SUDs. There are two 

forms of personal recovery capital. The first, physical recovery capital refers to tangible 
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resources, including healthcare, financial assets, safe and stable housing, and access to other 

necessities such as food and transportation. However, it is important to highlight that 

conceptualizing physical recovery capital at the individual level has limitations. For instance, the 

lack of access tangible resources such as healthcare, housing, and financial assets is not based on 

individual deficits but on structural and systemic conditions that prevent individuals from 

obtaining these resources. The second, human recovery capital refers to internal resources and 

personal attributes, such as one’s knowledge, skills, self-appraisal, hopefulness, a sense of 

purpose, and well-being.  

Social recovery capital. Social recovery capital refers to the sum of resources that are 

obtained through one’s social networks, and includes material, informational, and emotional 

social support. It also includes the recovery supportive social norms and expectancies established 

through social networks that result in pro-recovery behaviors and outcomes.  

Community recovery capital. Community recovery capital is defined as the community-

level resources that support recovery. These resources can include the availability and attendance 

of community programs that facilitate the resolution of drug problems, such as formal and 

informal community-based recovery supports, treatment and aftercare services, preventative and 

early-interventions, and active community efforts to reduce recovery-related stigma. It also 

involves the cultural norms, values, and beliefs that maximize individual’s opportunities for 

recovery success. 

Several studies demonstrate that the presence of personal, social, and community 

recovery capital is linked to better recovery outcomes for various populations at different stages 

in their recovery process (Best et al., 2011; 2012a;2012b; 2014; 2015; Boeri et al., 2011; Burns 

& Marks, 2013; Daddow & Broome, 2010; Duffy & Baldwin, 2013; Evans et al., 2014; 
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Groshkova, Best, & White, 2013; Gueta et al., 2015; Hillios, 2013; 2014; Jason et al., 2020; 

Laudet et al., 2006; Laudet & White, 2008; Mawson et al., 2015; Neale et al., 2014). A study of 

3,228 U.S participants who were in recovery from SUDs with varying lengths of active addiction 

and time in recovery found significant improvement across key recovery capital domains, 

including increases in social support, civic engagement, financial and housing stability, physical 

and mental health (Laudet, 2013). It is important to note that this study allowed participants to 

answer questions based on their own definitions of addiction and recovery, so for some recovery 

involved some substance use while for others, recovery involved complete abstinence. This study 

was replicated in Canada (McQuaid et al., 2017), Australia (Best, 2015), and the United 

Kingdom (Best et al., 2015), with similar findings across the major recovery capital domains. 

While these studies examined the relationship between recovery (e.g. defined as remission from 

SUDs) and recovery capital as unidirectional (e.g., time in recovery increases one’s recovery 

capital), these relationships are thought to be bidirectional (Granfield & Cloud, 1999). 

Additionally, the quantity and quality of recovery capital have been found to play a critical role 

in the successful recovery of people who seek professional treatment, those who utilize a 

recovery support service, or those who do not seek any assistance (Granfield & Cloud, 1996; 

1999; Kaskutas, Bond, & Humphreys, 2002; Moos & Moos, 2006a). 

Individual-level recovery capital. In the current study, individual-level recovery capital 

was measured using a single latent factor (see Jason et al., 2020) comprised of the following 

resources: quality of life, hope, stress, sense of community, self-esteem, social support, self-

efficacy, and income. While these are individual-level resources, the process of increasing 

recovery capital is inherently social and contextually-based (Cloud & Granfield, 2008). When 

discussing the importance of social relationships for recovery capital, Granfield and Cloud 
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(2001) explained “personal problems and their solutions are embedded within a larger structure 

of social relations and networks. Just as drug use is mediated by the structured relations within 

which one is embedded, so too are the opportunities for personal change” (pg. 1553). This 

section will review the literature on each of the latent factor indicators, focusing on how social 

factors impact these resources.  

Quality of life. Quality of life is a measure of a person’s subjective well-being across four 

areas: social, psychological, physical, and environmental. Quality of life is an important outcome 

among individuals with SUDs given that it measures four domains of functioning that can be 

severely impaired by substance abuse (Hubbard, Craddock, & Anderson, 2003; Laudet, 2011; 

Morgan et al., 2003; Preau et al., 2007; Smith & Larson, 2003; Stein et al., 1998; Volk et al., 

1997). For instance, a study reported that the quality of life among those in treatment for drug 

addiction was as low as or lower than patients with other chronic health conditions such as lung 

and heart disease and diabetes (Smith & Larson, 2013).  

Improvements in quality of life are associated with sustained recovery efforts (Kelly, 

Greene & Bergman, 2018; Kraemer et al., 2002; Laudet et al., 2006; Laudet & White, 2008; 

McKay, 2017;  Nosyk et al., 2013; Subbaraman & Witbrodt, 2014; Villeneuve et al., 2006). A 

national study of U.S adults in recovery from alcohol and substance abuse that examined the rate 

of change in quality of life and other indices of recovery capital as a function of time spent in 

recovery found steep increases in quality of life during the first six years in recovery, with 

smaller increases after the six years (Kelly et al., 2018). Laudet, Becker, and White (2009) found 

that higher quality of life at treatment completion predicted abstinence at a 1 and 2-year follow-

up. Laudet and Stanick (2010) found that quality of life satisfaction among polysubstance-

dependent individuals after completing outpatient treatment was a significant predictor of 



14  

 
 

commitment to abstinence, a strong predictor of greater time sober. To date, the longest study of 

quality of life among those with SUDs assessed participants at 2 and 10 years after their initial 

substance use treatment (Moos, Finney, & Cronkite, 1990). Among those that remained abstinent 

at both follow-ups (49% at 2 years and 57% at 10 years), significant improvements in levels of 

physical, mental, social, and occupational functioning were observed compared to the group that 

had relapsed. Additionally, the group that went into remission demonstrated similar levels of 

functioning when compared with a matched community sample with prior history of alcohol 

dependence. While this study only included individuals with alcohol use disorders and not those 

that abuse other substances, other studies have found similar improvements in most or all quality 

of life domains among both alcohol and drug dependent populations (Fassino et al., 2004; Foster, 

Marshall, & Peters, 2000; Hubbard et al., 2003; Morgan et al., 2003; Villeneuve et al., 2006). 

Together, these findings suggest that quality of life may be a function of recovery, and thus, 

higher quality of life may signify having greater recovery capital.  

Social factors are known to enhance the quality of life of those recovering from SUDs 

(Best et al., 2012a; Laudet, Morgen, & White, 2006; Rudolf & Watts, 2002). A study examining 

the recovery factors that were most strongly associated with quality of life among individuals 

attempting to overcome their addiction found that quality of life was best predicted by the 

number of non-users in one’s social network and greater engagement in meaningful activities 

(Best et al., 2012a). A study of residents of substance abuse recovery homes found that social 

embeddedness was related to higher quality of life (Jason, Stevens, Light, & Doogan, 2020). 

Mawson et al. (2015) found that environmental quality of life was highly associated with social 

recovery capital, suggesting that factors such as environmental safety, wages, access to 
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accommodation and transportation, services, and leisure activities are connected to the 

availability of social resources.  

Hope. Hope is an internal resource that influences the motivation to engage in behaviors 

that can promote recovery from SUDs (Bradshaw, Shumway, Harris, & Baker, 2013; Bradshaw, 

Shumway, Wang & Harris, 2014; Bradshaw et al., 2017; Irving, Seidner, Burling, Pagliarini & 

Robbins-Sisco, 1998; Jackson, Wernicke, & Haaga, 2003; Laudet et al., 2006; Law & Guo, 

2012; Rollnick, Morgan, & Heather, 1996; Shumway, Bradshaw, Harris, & Baker, 2013; 

Stevens, Guerrero, Green, & Jason, 2018). Hope is characterized by three dimensions: (1) the 

perception of successful agency, (2) available pathways to achieve one’s goals (Snyder et al., 

1991), and (3) having opportunities found in their environmental context that facilitate goal 

attainment (Stevens, Buchannan, Ferrari, Jason, & Ram, 2014). Studies have demonstrated the 

importance of hope at different stages of the recovery process. For instance, high levels of hope 

is associated with entering SUD treatment (Jackson et al., 2003), greater length of sobriety after 

treatment (Strack, Carver, & Blaney, 1987), better outpatient treatment outcomes (Sowards, 

Boyle, & Weissman, 2006), and higher quality of life (Carvajal, Clair, Nash, & Evans, 1998). 

These findings suggest individuals recovering from SUDs who exhibit high levels of hope are 

better equipped to navigate challenges and generate more strategies for attaining their goals 

(Irving et al., 1998). Since hope is also contingent on the opportunities and obstacles present in 

the environment that either hinder or facilitate goal attainment, contextual factors are important 

to consider when examining individual levels of hopefulness (Jason, Stevens, & Light, 2016; 

Stevens et al., 2018). For instance, social recovery capital is an important contextual factor that 

can contribute to greater hope by providing pathways for overcoming challenges encountered in 
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recovery, bolstering greater agency perceptions, and providing essential resources that facilitate 

goal-attainment (Parker et al., 2015). 

Stress. Stress is a cited threat to recovery linked to addiction and relapse (Laudet, 

Magura, Vogel, & Knight, 2004; Laudet & White, 2008; Rhoads, 1983; Titus, Godley, & White, 

2007). Once in recovery, this path is often marked by many challenges and obstacles that can 

generate great levels of stress. However, individuals with greater recovery capital can more 

effectively manage this stress. Weaver, Turner, and O’Dell (2000) investigated stress and coping 

strategies among women in recovery and found that their perceived stress across 16 life domains 

significantly decreased, whereas the stress coping strategies increased from the pre-recovery 

phase compared to the recovery period. Laudet, et al. (2006) investigated whether recovery 

capital, measured through social support, spirituality, life meaning, and 12-step affiliation, 

mitigated the negative effects of stress on quality of life among former polysubstance users in 

recovery. They found that stress levels decreased significantly as time in recovery increased and 

that recovery capital did mitigate the negative effects of stress while enhancing quality of life. 

Similarly, Laudet and White (2008) found that greater time in recovery predicted lower stress 

and greater quality of life, suggesting that engaging in recovery can lead to improvements in 

several life functioning domains as well as gain resources that help individuals cope with stress. 

In sum, stress is an important indicator of recovery capital, with lower stress signifying greater 

recovery resources.  

It is well documented that stress can be buffered by the presence of social support 

(Barrera, 1988; Cohen & Wills, 1985; Kawachi & Berkman, 2001; Taylor & Aspinwall, 1996) 

and other resources availed through one’s social networks (Iso-Ahola & Park, 1996; Thoits, 

2011). One way that social relationships can help reduce stress is by helping individuals 
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reappraise events or problems in a positive light and by offering solutions to solve their problems 

(Thoits, 1995). Additionally, social support in the form of emotional guidance and information 

from others can help individuals cope with stress. The positive effects of social relationships on 

stress underlie the importance of considering social contextual factors when examining stress 

among those in recovery.   

Sense of community. Sense of community represents a feeling of connectedness and a 

positive relationship to one’s community and social environment (Sarason, 1974). Sarason 

(1974) first introduced sense of community as “the perception of similarity to others, an 

acknowledged interdependence with others, a willingness to maintain this interdependence by 

giving to or doing for others what one expects from them, the feeling that one is part of a larger 

dependable and stable structure” (p.157). Three domains of PSOC have been proposed that 

include the self (the importance of one’s community membership to one’s identity), membership 

(the relationship one has with other members of the community), and entity (how well the 

community’s mission and purpose resonates with the members) (Jason, Stevens, & Ram, 2015). 

The current literature on sense of community among individuals in recovery from SUDs 

highlights several beneficial outcomes related to a higher sense of community (Bahl, Nafstad, 

Blakar, Landheim, & Brodahl, 2019; Barbieri et al., 2016; Drake, Wallach, & McGovern, 2005; 

Ferrari, Jason, Olson, Davis, & Alvarez, 2002; Jason, Davis, Ferrari & Bishop, 2001; Kollath-

Cattano et al., 2018; Laudet, 2008; Peterson & Reid, 2003; Stevens, Jason, Ferrari, & Hunter, 

2010; Stevens, Jason, Ferrari, Olson, & Legler, 2012). For instance, Stevens et al. (2018) found 

that a higher sense of community and hope were associated with higher quality of life among 

recovery home residents. This finding suggests contextual factors such as one’s sense of 

community positively influence recovery trajectories.  
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Self-esteem. Self-esteem is a person’s self-reflection of their worth and abilities 

characterized by two dimensions self-liking and self-competence (Tafarodi & Milne, 2002). 

Positive self-esteem is associated with a greater likelihood of sustained recovery (McNeill 

Brown, Brennan Nanni, & LaBelle, 2020; Richter, Brown, & Mott, 1991). One study found that 

although significant drops in self-esteem occurred during the first year of recovery, individuals 

experienced steady increases over time after the first year (Kelly et al., 2018). Social 

relationships can increase self-esteem by providing positive appraisals, which can help 

individuals develop positive self-perception and higher confidence in one’s abilities to overcome 

obstacles. For instance, Groshkova et al. (2011) found that greater participation in recovery 

support groups is linked to a higher quality of life and self-esteem. This suggests that self-esteem 

can be facilitated through involvement in recovery congruent communities. 

Social support. Social support, which embodies resources obtained from social 

relationships such as the provision of information, tangible resources, emotional guidance, and 

positive appraisal (McKay, 1984; House, 1981), has been extensively linked to positive recovery 

outcomes (Brennan & Moos, 1990; El-Bassel, Duan-Rung, & Cooper, 1998; Granfield & Cloud, 

2001; Havassy, Hall, & Wasserman, 1991; Humphreys, Moos, & Cohen, 1997; Humphreys, 

Mankowski, Moos, & Finney, 1999; Humphreys & Noke, 1997; Laudet et al., 2000; Noone, 

Dua, & Markham, 1999; Rumpf, Bishof, Hapke, Meyer, & John, 2002; Weisner, Delucchi, & 

Matzger, 2003). A previous study found that one of the strongest predictor of recovery capital 

was overall social support, with higher social support predicting higher recovery capital (Best et 

al., 2012b). In another study, recovery capital, as measured by general social support, recovery 

specific support, affiliation with a sober network, spirituality, and life meaning, buffered the 

adverse effects of stress on quality of life (Laudet & White, 2008). Laudet et al. (2000) examined 
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how support for recovery and sources of support influenced the abstinence and mental health of 

individuals participating in 12-step groups and found that higher social support and greater 

support sources were related to improved mental health and sustained sobriety.  

Self-efficacy. Self-efficacy is a psychological construct that refers to a person’s 

confidence that they can use their resources, skills, and motivation to achieve a desired outcome 

(Bandura, 1977). Self-efficacy is well supported theoretically and empirically as playing a 

pivotal role in behavior change (Ajzen & Madden, 1986; Baldwin et al., 2006; Bandura, 1986; 

Marcus, Selby, Niaura, & Rossi, 1992; Prochaska & DiClemente, 1983; Rosenstock, Strecher, & 

Becker, 1988; Strecher, McEvoy DeVellis, Becker, & Rosenstock, 1986). Self-efficacy 

influences how invested individuals are to change their behavior and how persistent they will be 

in achieving their goals when faced with obstacles (Bandura, 1982; Bandura, 1999). In the realm 

of substance abuse recovery, abstinence self-efficacy - the belief in one’s ability to abstain even 

in the face of temptation and obstacles – affects several recovery stages, including recovery 

initiation, recovery attempts after relapse, and long-term recovery maintenance (Bandura, 1999). 

Studies have found that higher levels of abstinence self-efficacy are associated with not only 

abstinence but greater recovery success overall (Chavarria, Stevens, Jason, & Ferreri, 2012; Gubi 

& Marsden-Hughes, 2013; Kadden & Litt, 2011; Kelly, Finney, & Moos, 2005; Laudet et al., 

2010; Moos, 2008; Torrecillas, Cobo, Delgado, & Ucles, 2015). In a meta-analysis, Adamson, 

Sellman, and Frampton (2009) found that abstinence self-efficacy was the strongest predictor of 

alcohol consumption outcomes out of 31 predictors. Moos et al. (2006) followed individuals in 

recovery from alcohol use disorders for over sixteen years. Those who achieved remission at the 

3-year follow-up reported greater abstinence self-efficacy than those that had not achieved 

remission. Additionally, those that achieved remission at the 3-year follow-up but relapsed at the 
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16-year follow up had lower abstinence self-efficacy at the 3-year follow-up. Ilgen, McKellar, 

and Tiet (2005) studied over 3,000 individuals who completed a substance abuse treatment 

program and found that a score of 100% on an abstinence self-efficacy scale was the strongest 

predictor of sobriety at a one-year follow-up. Scott et al. (2005b) conducted a study examining 

the factors that influence the transitions between relapse, treatment entry, incarceration, and 

recovery among individuals with SUDs over two years. The study found that those who were 

most likely to transition into recovery had a higher level of self-efficacy to resist substance use 

than those who never entered recovery. 

Social relationships can help increase individuals’ belief that they are capable of 

maintaining their recovery. As Jill Kiecolt writes, “location in social structure sorts persons into 

‘contexts of action’ which afford different amounts of resources and opportunities for engaging 

in efficacious action” (1994, pg. 61). This aligns with the view that recovery capital - in the form 

of self-efficacy - is influenced by the availability of social resources (Granfield & White, 2001). 

Indeed, participation in peer support groups such as Alcoholic Anonymous has been found to 

enhance abstinence self-efficacy (Kelly, Hoeppner, Stout, & Pagano, 2012). Additionally, social 

support has been found to promote abstinence self-efficacy (Stevens, Jason, Ram, and Light, 

2015).  

Income. Research suggests that income is an important form of physical recovery capital 

that increases individuals’ financial stability, ability to secure a safe and stable living condition, 

and expand their options for pursuing recovery, such as by making treatment more accessible or 

making it possible for individuals to move away from areas with high substance availability 

(Cloud & Granfield, 2008; Gueta et al., 2015). Studies have shown that higher income is 

associated with higher recovery capital (Sanchez, Sahker, & Arndt, 2020; Whitesock, Zhao, 
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Goettsch & Hanson, 2018). For instance, Sanchez et al. (2020) found that those who reported 

income from employment as their primary source had higher recovery capital scores than those 

who reported other sources. Similarly, a validation study of the Recovery Capital Index found 

that among 22 recovery capital domains, income was among the four variables most significantly 

related to recovery capital (Whitesock et al., 2018). Dennis et al. (2007) followed individuals in 

recovery for a period of eight years and found that income, employment and housing contributed 

to long-term recovery independent of the type of treatment utilized. Higher-income is also 

associated with a lower risk of relapse and higher quality of life (Marshall et al., 2014; 

Panebianco et al., 2016). 

Conclusion. In summary, individual-level capital in the form of quality of life, hope, 

stress, sense of community, self-esteem, social support, self-efficacy, and income have been 

shown to promote recovery. Notably, these forms of capital, whether internal or external, are 

facilitated by social relationships highlighting the need to investigate the impact of social 

network dynamics on recovery capital.   

A study by Jason et al. (2020a) calls attention to the importance of considering the social 

context when examining recovery capital. The study conducted a multi-level confirmatory factor 

analysis with 602 participants who were residents of 42 substance abuse recovery homes. 

Findings revealed a single latent factor measuring recovery capital (quality of life, hope, stress, 

sense of community, self-esteem, social support, self-efficacy, and income) at both the resident 

and house-level. Notably, the study found that an individual’s probability of relapse was 

predicted by recovery capital at the house-level while the resident-level recovery factor did not 

predict variations in the relapse rates. These findings suggest that recovery is strongly influenced 

by those with whom recovering individuals come into regular contact. The current dissertation 
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aims to build on these findings in two ways: (1) by examining individual-level recovery capital 

(e.g., as measured by the recovery capital factor) along with network-level recovery capital 

(described in great detail in subsequent sections); and (2) by investigating how recovery capital is 

developed through social networks using stochastic actor-oriented modeling, with a sub aim 

being to determine which types of network characteristics facilitate or hinder the development of 

recovery capital. 

An individual-level of analysis currently dominates the research on recovery capital 

resulting in an overemphasis on how individual actions and behaviors influence recovery 

outcomes (Boeri, Gardner, Gerken, Ross & Wheeler, 2016; Boeri, Gibson, & Boshears, 2014; 

Zchau et al., 2016). This single-level approach for measuring recovery capital ignores that 

recovery occurs within a social context that includes one’s social networks (Moos, 2003), thus 

offering only a limited understanding of this complex and dynamic process. To move past 

individual-level explanations, we need to examine how individuals interact with their 

environments to generate greater recovery capital. The following section will provide an 

overview of the literature on social networks and their importance to the study of recovery 

capital. The social network theories providing the foundation for the current work will also be 

discussed. 

Social Networks  

The study of social network phenomena originated within the field of sociology (Cobb, 

1976; Coleman, 1990; Fischer, 1977; Fischer, 1982; Laumann, 1973; Mitchell, 1969; Wasserman 

& Faust, 1994) and has since been applied to several other disciplines, including engineering, 

biology, physics, community and organizational psychology, and health and medicine (Albert & 

Barabasi, 2002; Barabasi, Gulbache, & Loscalzo, 2011; Wellman,1988; Watts & Strogatz, 1998). 
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A social network refers to a social structure that is comprised of actors (e.g., the focal social 

entity), alters (e.g., an actor’s social contact), relational ties (e.g., dyadic, triadic, close, distant), 

and social groupings (e.g., clusters) within a given boundary (e.g., social system/environment). 

Actors in a network can represent individuals or entities within a larger system (e.g., group, 

organization, school, program, and other entities). Social networks can also have multiple 

relational dimensions that can either be hierarchical (e.g., mentorship) or non-hierarchical (e.g., 

friendships). Social networks thus provide a relational map of all the linkages of an entire social 

structure. 

 To fully comprehend what social networks are, it is helpful to understand how it differs 

from a similar construct: social support. The following section will discuss the fundamental 

differences between social support and social networks. 

Key distinctions between social networks and social support. While social support and 

social networks both describe processes and functions of social relationships and are often 

conflated in the literature (Berkman & Glass, 2000), there are fundamental differences between 

these two constructs. Social support is one of the most important functions of social relationships 

and define a person’s subjective appraisal of how well their support needs are met by their social 

contacts (Smith & Christakis, 2008). According to the pivotal work by House (1981), social 

support can come in the form of (1) emotional support; (2) instrumental support; (3) 

informational support; and (4) appraisal support. These types of social support are outside of the 

scope of the proposed study, so they will not be discussed further (see House, 1981; Barrera, 

1986 for further discussion on the types of social support). A significant difference between 

social support and social networks is the level of analysis used for each phenomenon. For 

instance, social support is an individual-level measure that taps into the extent to which 
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individuals perceive their social relationships to be helpful but does not reveal further insights 

into the structural characteristics of these relationships. In contrast, social networks are a 

structural-level measure that provides comprehensive information on all actual ties, relational 

patterns, and characteristics of a given network. While a social network approach can be used to 

examine the provision of social support within a network (McLeroy, Gottlieb, & Heaney, 2001), 

such an approach can also be used to investigate other social functions (e.g., social capital, social 

influence, diffusion of information and innovation).  

The social network approach to research. A social network perspective privileges the 

relationships over individual actors, ascribing to the view that the whole of a social network 

exceeds the sum of its parts (Watts, 2004). The perspective holds that actors, their relationships, 

and their actions are interdependent rather than autonomous (Wasserman et al., 1994). 

Additionally, linkages between actors are hypothesized to serve as channels for the flow of 

material (e.g., social support, financial exchange) or non-material (e.g., social conformity, social 

learning) resources, and these linkages also provide opportunities for or constraints on individual 

action.  

Social network analysis (SNA) comprises theoretical and methodological tools uniquely 

suited for studying structural and relational occurrences and processes (Wasserman et al., 1994). 

Specifically, SNA is used to examine the characteristics, patterns, and impact of social 

relationships. SNA makes it is possible to test theories regarding relational processes and how 

they impact individual and structural outcomes using mathematical and computational models. 

Another key feature of SNA is the use of graphs as a way to visualize networks that depict the 

nodes (individual actors) and ties (relationships or interactions) that connect them. 



25  

 
 

Examples of commonly examined network characteristics include the number of 

members of a network (network size), the extent to which network members share 

commonalities on one or multiple dimensions (homogeneity), the extent to which there are direct 

linkages between egos and alters (density), the extent to which resources and support are both 

given and received (reciprocity), whether networks involve multiple types of relations between 

dyads (multiplex), the extent to which the relationships are emotionally close (intensity), the 

extent to which a relationship serves several functions (complexity), the smallest number of 

connections separating an ego and an alter (geodesic distance), the extent network connections 

are dependent on a few actors (centrality), and the tendency for triads to share the same 

relationship (transitivity) (Smith & Christakis, 2008).  

There are two approaches to conducting network studies. The first approach uses 

egocentric data. Egocentric network methodology involves asking a focal individual to identify 

and rate their relationships with others in their perceived network (e.g., alters); thus, this 

approach can only model direct links to a focal individual. Since this data represents an ego’s 

perceived network, it is a limited view of their relational structures. In contrast, whole network 

studies involve collecting data from all actors in a bounded setting allowing for the analysis of 

various patterns and structures found in an entire network (Wasseman & Faust, 1994). This 

approach then allows for the collection of information regarding both direct and indirect ties. 

Due to data and methodological challenges present when conducting whole network research, 

these types of studies are rarer than egocentric studies. Conducting a social network analysis 

with whole network data is critical for an in-depth understanding of how recovery capital is 

developed in networks. A few studies using whole network data have begun looking at network-

level characteristics and how they relate to recovery capital (Jason et al., 2020a; Jason et al., 
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2020b; Jason et al., 2020c; Jason et al., 2021; Zchau et al., 2016). This dissertation will build on 

these studies by testing network dynamics over time by using stochastic actor modeling.  

The following section will review the literature on social networks and recovery. An 

overview of the three social network theories tested in the current study will be discussed. A 

subsequent section will present the integration of the theoretical foundation and stochastic actor-

oriented modeling that were utilized in the current study. Lastly, the introduction will conclude 

with an overview of the current study. 

Social networks and substance use. The impact of social networks on substance use 

behaviors, including substance use initiation, maintenance, and cessation, is well documented 

(Dobkin, Civita, Paraherakis, & Gill, 2002; Ellis, Bernichon, Yu, Roberts, & Herrell, 2004; Joe, 

Broome, Rowan-Szal, & Simpson, 2002; Litt, Kadden, Kabel-Cormier, & Petry, 2007; 2009; 

Rosenquist, Murabito, Fowler, & Christakis, 2010; Walton, Blow, Bingham, & Chermack, 2003; 

Weisner et al., 2003; Zywiak et al., 2009). Individuals that are socially connected to others who 

use substances are more likely to engage in substance use themselves (Hawkins, Catalano, & 

Miller, 1992). Continued association with other substance-using peers is linked to higher rates of 

relapse during treatment (Brewer, Catalano, Haggerty, Gainey, & Fleming, 1998; Havassy et al., 

1991; Havassy, Wasserman, & Hall, 1995) and after treatment (Latkin, Knowlton, Hoover, & 

Mandell, 1999). Research investigating the competing effects of social networks and 

neighborhood characteristics on substance use has found that social networks exert greater 

influence on individuals’ substance use than neighborhood-level factors (Davis & Tunks, 1990; 

Schroeder et al., 2001). This suggests that one’s proximal social environment has a more 

significant influence on substance-using behaviors than the more distal, social macro-
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environment, underscoring the importance of investigating social network dynamics when 

examining long-term recovery outcomes.  

 Social networks and recovery capital. The recovery capital framework is theoretically 

grounded in the social capital theory literature. Social capital refers to the tangible and intangible 

benefits obtained directly or indirectly through participation in social networks. The work of two 

prominent social capital theorists, Pierre Bourdieu (1980) and James Coleman (1988; 1990), was 

particularly influential to the conceptualization of recovery capital. While both theorists share 

similarities in their views on social capital, their views diverge on whether social capital is a 

resource that is accrued by the social group or for the members within the group (Lin, 1999). The 

current study operationalizes recovery capital as both an individual-level and a network-level 

resource that is developed through social relationships. The following section provides an 

overview of Bourdieu and Coleman’s theories of social capital to support the utility of applying a 

multi-level approach to the study of recovery capital. 

Social capital theory. While several prominent sociologists and philosophers are 

credited with describing aspects of social capital, including Karl Marx, Emile Durkheim, David 

Hume, Edmund Burke, Adam Smith, and de Tocqueville (Portes, 2000; Putnam, 2000), Pierre 

Bourdieu (1985; 1986), a French sociologist, is the first person to provide a formal 

conceptualization of social capital. Bourdieu defined social capital as “the aggregate of the actual 

or potential resources which are linked to possession of a durable network of more or less 

institutionalized relationships of mutual acquaintance or recognition” (1985; pg. 248). He 

proposes that social relationships, whether formal or informal, determine the resources that are 

available and accessible to each individual, as well as the quality of those resources. Thus, 

individuals must develop and maintain memberships in social networks to access social capital 
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(Bourdieu, 1986). While he viewed social capital as developed through social networks, 

Bourdieu posited social capital was an individual resource external to the network, meaning 

actors can leave their networks and still hold on to their capital. According to this perspective, 

social capital entails how resources embedded within a social network are accessed and utilized 

with respect to some benefit or profit at the individual level (Lin, 1999). 

While Bourdieu distinguished between the different types of capital such as physical 

(e.g., financial resources), human (e.g., assets that reside within individuals such as knowledge, 

skills, personal attributes) and cultural capital (e.g., assets that derive from contextual factors 

such as cultural norms that facilitate the development of capital), he argued that all forms of 

capital were intricately tied to one’s social relationships. Social capital can produce what he 

referred to as a ‘multiplication effect’ that influences other types of capital. For instance, social 

relationships can help an individual accumulate economic capital by providing access to jobs or 

information on generating wealth through investments. Social relationships are also the vehicle 

that promotes social and cultural norms. Additionally, different types of capital can be traded for 

each other, and while these transactions may not be immediately mutually beneficial to both 

parties, they serve as an investment strategy in which actors establish a reliable source of future 

resources (Portes, 1998).  

James Coleman (1988) was an American sociologist who expanded on Bourdieu’s social 

capital theory by incorporating sociological and economic perspectives. In contrast to Bourdieu’s 

view of social capital as an individual-level resource, Coleman viewed social capital as a 

collective asset existing within the social network structure. As such, Coleman argued that social 

capital “…is not a single entity, but a variety of different entities having two characteristics in 

common: They all consist of some aspect of social structure, and they facilitate certain actions of 
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actors – whether persons or corporate actors - who are within the structure” (1988, pg. 98). In 

this view, social capital is endogenous to a social structure and not its individual actors. Thus, 

social capital dissolves when actors exit their networks, wherein both individuals and the overall 

group lose the capital afforded by that network. Like Bourdieu, Coleman believed that social 

capital could be used to develop other forms of capital, particularly human capital, which he 

defined as internal resources such as an individual’s intellect, skills, knowledge, traits, mental 

and physical health.   

This social capital perspective is concerned with the network processes and mechanisms 

that allow for the creation of capital. According to Coleman, three main forms of social capital 

include reciprocity, information channels, and norms and effective sanctions. Reciprocity when 

there are mutually beneficial relationships in which an actor reciprocates a favor or what he 

referred to as a “credit slip” (Coleman, 1988). This type of social capital depends on several 

conditions, including the trust between network actors that enables these exchanges, the 

expectation that the favor will be reciprocated in the future, and the obligations actors feel to 

repay the favor. Information channels refer to the paths along relational ties that allows actors to 

obtain information (Coleman, 1988). This type of social capital depends on whether the 

information acquired leads to an actionable behavior. Lastly, norms and sanctions are the social 

mechanisms that facilitate or impede an action resulting in greater capital. All three forms of 

social capital facilitate specific actions from individuals that allows them to achieve goals that 

would otherwise be unfeasible for them to accomplish alone.  

Overall, the premises that underpin Bourdieu and Coleman’s theories is that social capital 

is network-based and that relationships are the conduits through which tangible and intangible 

resources, including personal, social, and community forms of capital are attained. They differ, 
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however, on their assessment of whether social capital is an individual resource or one embedded 

in the relational structures of a network. This is a critical area of contention in the social capital 

literature that continues to be debated today (De Silva, McKenzie, Harpham, & Huttly, 2005; 

Lin, 1999; Oh, Labianca, & Chung, 2006; Tan, Zhang, & Wang, 2015). In light of these debates, 

there have been calls for more research on social capital that utilizes SNA to account for the 

multi-level nature of this phenomena (Capaldo, 2007; Klein, Dansereau, & Hall, 1994; Tan et al., 

2015). The same need has been identified within the recovery capital literature (Zschau et al., 

2016). While the conceptualization of recovery capital is grounded in both Bourdieu and 

Coleman’s perspectives on social capital (Grandfield & Cloud, 1999; Grandfield & Cloud, 2001; 

Cloud & Grandfield, 2004), recovery capital has mainly been studied as an individual resource, 

ignoring the systemic and structural aspects of this resource (Zschau et al., 2016). As a result, the 

social network dynamics involved in the recovery process are not well understood.  

The current study adopts both Bourdieu and Coleman’s perspectives by using a multi-

level analytic lens that operationalizes recovery capital as an individual and network-level 

resource. This study aims to offer additional insights into how recovery capital is developed 

through social networks, further elucidating how individuals interact with their social 

environments to build greater recovery capital. This study also seeks to understand the network 

conditions that facilitate or hinder the development of recovery capital. The following section 

provides a review of recovery capital found within networks.  

Recovery capital within social networks. Social networks have important implications 

for recovery capital. For instance, there is considerable evidence that individuals who undergo 

adaptive changes to their social networks by associating with others who support their recovery 

have better overall recovery outcomes (Longabaugh, Wirtz, Zywiak, & O'malley, 2010). For 
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instance, Litt et al. (2007, 2009) conducted a study in which people who completed a 

detoxification treatment from alcohol were randomly assigned to either usual after-care or to 

“network support” intervention, which involved adding at least one non-drinking peer to their 

network. Those in the network support intervention had a 27% increased likelihood of treatment 

success at their one-year follow-up. Best et al. (2012a) found that a higher number of recovering 

peers in one’s social network was associated with an enhanced personal and social recovery 

capital, even after accounting for time in recovery. A study that investigated the recovery capital 

factors (e.g., physical health, self-esteem, self-efficacy, anxiety, depression) that were most 

strongly associated with quality of life among individuals recovering from alcohol and heroin 

addiction found that quality of life was best predicted by the number of non-users in one’s social 

network and greater engagement in meaningful activities (Best et al., 2012b). Best, McKitterick, 

Beswick, and Savic (2015) compared the recovery capital for individuals who described 

themselves as in recovery from SUDs but no longer in treatment to individuals who were 

currently receiving treatment for their addiction. The study found that those out of treatment 

were more likely to be involved in a recovery support group and had social networks with more 

individuals in recovery and fewer individuals who were active users. Additionally, individuals in 

recovery with these social networks also reported greater quality of life, lower depression and 

anxiety, and higher social capital than those still in treatment, highlighting that social networks 

are key mechanisms through which recovery capital is developed. While these studies are 

informative, they have exclusively focused on social network composition and size and their 

impact on recovery. Therefore, there is still a lack of knowledge pertaining to the effects of more 

complex social network dynamics on the development of recovery capital.  
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 A few recent studies have begun to shed light on other network-level characteristics 

beyond network composition and how they relate to recovery capital. Work in this area has 

examined recovery capital both at the individual and network-levels. At the network level, 

advice seeking among individuals residing in recovery homes has been shown to be positively 

associated with stress at the individual and house-level (Jason et al., 2020b; Jason et al., 2020c). 

At the individual level, willingness to loan money has been shown to be positively associated 

with house-level income, social support, self-esteem, quality of life, abstinence self-efficacy, 

hope, and a sense of community and negatively associated with stress (Jason et al., 2020b; Jason 

et al., 2020c). These finding suggests that networks where there is a high willingness to share a 

tangible resource facilitate recovery capital whereas networks high in advice seeking hinder 

recovery capital. These studies further highlight the importance of measuring both the network 

level and individual level implications for recovery capital.  

 The current dissertation seeks to build on this burgeoning area of research by examining 

how individual and network-level recovery capital is developed over time using stochastic actor-

oriented modeling. Before describing the stochastic actor-oriented models that were developed 

and tested, I provide an overview of the three social network theories that serve as the theoretical 

foundation for the stochastic models in the following section. The three theories include network 

cohesion theory (Coleman, 1988), social exchange theory (Homans, 1961; Emerson, 1972), and 

generalized exchange theory (Levi-Strauss, 1949; Stanzani, 2015). These theories describe 

structural levels of social capital and propose the different social network mechanisms that 

facilitate social capital such as the network conditions that enable or hinder its production. This 

dissertation extends these theories to the study of recovery capital to understand the network 

conditions that facilitate or hinder recovery capital.  
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Network-Level Theories of Recovery Capital 

Network Cohesion. Network cohesion theory was born out of Coleman’s (1988) work on 

social capital. This theory proposes that cohesive ties are a fundamental means by which social 

capital is created and maintained. Networks with cohesive ties are characterized as those in 

which most members are connected either directly or indirectly, have multiple types of social 

relationships within the group that pull the network together, lack any distinguishable subgroups, 

and are resistant to being dissolved by the removal of a subset of its members (Moody & White, 

2003; White & Harary, 2001). Network density, which is the ratio of observed ties among actors 

to possible ties, is often used as a proxy for network cohesion (Frank & Yasumoto, 1998; 

Reagans & McEvily, 2003), with higher levels of density signifying greater levels of social 

capital exchange (Bodin & Crona, 2009; Burt, 2000; 2001; Coleman, 1988; Marti, Bolibar, & 

Lozares, 2017).   

Network cohesion is thought to engender social capital through several mechanisms. 

Network cohesion helps foster social norms and sanctions that promote trust and cooperation, 

which can result in greater resource sharing among actors (Burt & Knez, 1995; Coleman, 1988; 

Coleman, 1990; Gargiulo & Benassi, 2000; Ingram & Roberts, 2000; Reagans & McEvily, 2003; 

Uzzi, 1997). Networks are considered to be more effective at generating capital when members 

abide by these norms in their interactions with other members in the present and trust that others 

will behave according to the rules established by the group in the future (Uzzi, 1997). Trust that 

others will honor their obligations engenders a better an environment for the exchanges of 

resources. Additionally, norms in cohesive networks can mobilize members to share capital 

through group pressures to provide such capital (Coleman, 1988; 1990; Haines, Beggs, & 

Hurlbert, 2002; Wellman & Frank, 2001; Wellman & Gulia, 1999). Cohesive ties compared to 
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weak ties are also characterized by greater emotional intensity and greater investments in social 

relationships, which have been found to protect against mental illness and general stress 

(Ferlander, 2007).  Network cohesion also facilitates the acquisition and diffusion of information 

and knowledge (Bodin & Crona, 2009; Ingram et al., 2000; Reagans et al., 2003; Uzzi, 1996) and 

that information shared among cohesive ties is believed to be of greater quality compared to 

information shared in networks with more loosely connected actors (Aral & Alstyne, 2011; Uzzi, 

1996). Additionally, networks with greater cohesion can result in a more leveled playing field as 

actors have more equitable access to capital than actors in more loosely connected networks 

(Wei et al., 2011).  

In alignment with Coleman’s theory of network cohesion, Moos (2008) hypothesized that 

the social mechanisms critical to recovery from substance addiction are those found in networks 

with cohesive ties, such as social bonding, monitoring, and goal direction. More generally, 

having cohesive ties with others who are supportive of one’s recovery can help individuals 

model recovery-congruent behaviors, learn effective coping skills that can mitigate life stressors, 

and enhance their self-efficacy, all of which can optimize recovery success (Castonguay & 

Beutler, 2006; Johnson et al., 2008; Moos, 2008; Oetting & Donnermeyer, 1998; Petraitis, Flay, 

& Miller, 1995).  

A few studies have found associations between positive recovery outcomes and network 

cohesion. Tucker et al. (2011) found that greater network density among homeless women with 

SUDs predicted entering treatment for their SUDs, indicating that network cohesion can promote 

help-seeking behaviors and treatment participation. Min et al. (2013) compared the changes in 

network density of individuals in substance abuse residential treatment and those in intensive 

outpatient treatment. Individuals in both treatment modalities experienced an increase in network 
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density over the 12 months post-treatment, suggesting that greater network density are adaptive 

network changes that occur with time spent recovery.  

Network cohesion may not always yield positive effects on recovery capital. To illustrate, 

Jason et al. (2020) found that individual’s likelihood of relapse was dependent on the recovery 

capital found in their most proximal social environment. Additionally, survival analysis revealed 

significant associations between relapse risk and the network densities over two years (Jason et 

al., 2020c). In particular, denser willingness to loan network was associated with a lower hazard 

of relapse, whereas a denser advice-seeking network was associated with higher relapse rates 

(Jason et al., 2020c). Seemingly, network density is not always positively associated with 

recovery capital, suggesting that network cohesion is highly dependent on the type of network 

under investigation. Thus, it is imperative to investigate the conditions in which network 

cohesion results in higher or lower recovery capital.  

In summary, there are important social mechanisms that arise in cohesive networks that 

aid the development of capital through one’s relationships. Cohesive ties are posited to be a form 

of structural capital because they establish norms and sanctions that facilitate trust and 

cooperation between network members that enhance the availability of resources (Coleman, 

1988; Gargiulo et al., 2000). While there are positive findings associated with network cohesion, 

the available evidence suggests that contingency factors might influence whether or not cohesion 

results in greater capital. This dissertation hopes to shed light on the conditions in which network 

closure results in the generation or deterioration of recovery capital.  

Social Exchange Theory. Social exchange theory (Blau, 1946; Homans, 1958; 1961; 

Emerson, 1972; Levine & White, 1961) focuses on the mutual ‘exchanges’ of tangible and 

intangible capital from one actor to another. These exchanges occur within reciprocal 
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relationships that are considered a form of social capital (A to B; B to A) (Putnam, 2000). Social 

exchanges are part of our everyday social lives; as Molm (1997) observes, “much of what we 

need and value in life (e.g., goods, services, companionship, approval, status, information) can 

only be obtained from others. People depend on one another for such valued resources, and they 

provide them to one another through the process of exchange” (pg. 12). While different views of 

social exchanges have been proposed, these types of interactions are seen as contingent on the 

actions of another person (Blau, 1964), that is, in a dyadic relationship, actor A’s behavior is 

reinforced by B’s behavior, and B’s behavior is reinforced A’s behavior in turn.  

A basic tenet of social exchange theory is that relationships evolve over time into trusting 

and mutual commitments, but in order to do so, actors must abide by the rules of exchanges. The 

most central rule proposed by the theory is the norm of reciprocity. Reciprocity refers to a 

transactional pattern of interdependent exchanges between dyads (Cropanzano & Mitchell, 

2005). For instance, when capital is given to another, the person on the receiving end is expected 

to respond in kind (Gergen, 1969). Once reciprocation occurs, future rounds of capital exchanges 

transpire. Gouldner (1960) noted that reciprocity could be understood by examining different 

processes, including equivalence (the extent to which the capital returned is similar to what was 

received), immediacy (the time between when the capital is exchanged to when it is repaid), and 

interest (the motive for making the exchange). Reciprocity is also promoted through cultural 

mandates that sanction those whom do not comply (Mauss, 1967). Additionally, there is support 

for the universal tendency for people to reciprocate (Axelrod, 1984; Blau, 1964; Gouldner, 1960; 

Phan, Sripada, Angstadt, & McCabe, 2010; Tsui & Wang, 2002; Wang, Tsui, Zhang, & Ma, 

2003), although there are individual and cultural differences (Eisenberger, Huntington, 
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Hutchison & Sowa, 1986; Parker, 1998; Rousseau & Schalk, 2000; Shore & Coyle-Shapiro, 

2003).  

There is strong support for reciprocity in relationship formation and maintenance as well 

as other behaviors (Gächter & Falk, 2002; Göbel, Vogel, & Weber, 2013; Kahneman, Knetsch, 

& Thaler, 1986; Surma, 2016). Specifically, reciprocity is shown to be an underlying mechanism 

for cooperative behaviors (Axelrod & Hamilton, 1981; Fiske, 1991; Nowak, 2006; Ohtsuki & 

Nowak, 2007; Rand & Nowak, 2013; Santos & Pacheco, 2005; Santos & Pacheco, 2006). For 

example, several experimental studies examining game theory and reinforcement dynamics show 

that many people tend to behave conditionally cooperatively, i.e., they reciprocate others' 

contribution of a good (Croson, 2007; Keser & van Winden, 2000; Sonnemans, Schramand, & 

Offerman, 1999). Wang, Szolnoki, and Perc (2013) studied the outcome of the public goods 

game on two interdependent networks connected by means of a utility function, which 

determines how rewards on both networks influence the success of players in each network. 

They found that network reciprocity spontaneously emerged and contributed to the maintenance 

of high levels of cooperation even in adverse conditions. Reciprocity thus has important 

implications for collective actions in settings that depend on collaborative behaviors (e.g., peer to 

peer support, team production) (Lazega & Pattison, 1999).  

Reciprocity has also been studied among those recovering from SUDs. The social 

exchange of support and knowledge are believed to be central to the therapeutic processes of 

mutual support groups for individuals with SUDs (Brown et al. 2014). For example, Doogan and 

Warren (2017) examined the affirmation networks of residents of therapeutic communities where 

peers are expected to affirm other residents for prosocial behavior and to sanction behaviors that 

contradict the community’s norms. The study found a strong effect size for direct reciprocity, 
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suggesting that cooperation is high in environments that depend on trusting relationships among 

peers to operate. A study of ego networks found that individuals who were abstinent post-

treatment had support networks that exhibited higher reciprocity than those who relapsed 

(Panebianco, Gallupe, Carrington, Colozzi, 2016). In a cross-sectional study of recovery homes, 

Jason et al. (2020d) examined the reciprocity patterns of friendship, willingness to loan, and 

advice seeking networks. Within the friendship network, reciprocity was high suggesting that 

mutuality is a norm among residents. Compared to the friendship network, loan and advice 

seeking networks have far lower reciprocity rates, suggesting that there are fewer instances in 

which loaning and advice-seeking are bidirectional.  

Questions remain regarding reciprocity and the implications for recovery capital. For 

instance, what happens when there is an increased need for a resource along with a decreased 

ability to reciprocate within a network, and what impact does the failure to meet exchange 

demands have on recovery capital? Additionally, some types of reciprocity may be more 

beneficial than others (Brown, Tang, & Hollman, 2014). Thus, identifying when reciprocation is 

most beneficial would add substantial value to the recovery capital literature. Longitudinal social 

network analysis can help answer these questions and can elucidate how reciprocity in networks 

co-evolves over time with individual recovery-related attitudes and behaviors.  

Generalized exchange theory. Generalized exchange theory (Bearman, 1997; Lawler et 

al., 2000; Levi-Strauss, 1969; Molm & Cook, 1995) emerged as a way of describing exchanges 

beyond the confinements of dyadic structures. Generalized exchanges require at least three 

network actors who are involved in two unilateral exchanges where an actor transfers a resource 

to another and over time receives a resource from a third party actor (A to B; B to C) (Yamagishi 

& Cook, 1993). Thus, reciprocity is indirect and not mutual (Takahashi, 2000). Unlike direct or 
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dyadic reciprocity, generalized exchanges are inherently riskier given that reciprocity is not 

guaranteed and reciprocity via a third party takes longer to be realized. Given the riskier nature 

of these exchanges and the levels of trust required to engage, Levi-Strauss (1969) argues that 

indirect exchange systems build stronger bonds and solidarity than directed exchanges. When 

individuals have a high level of trust or expectancy that others will cooperate, they tend to 

contribute a higher level to the provision of a collective good than in the absence of such trust 

(Yamagishi et al., 1993). Ekeh (1974) proposed that dyadic reciprocity and generalized 

reciprocity produce distinctly different exchanges. For instance, he argued that dyadic exchanges 

are characterized by a ‘quid pro quo’ mentality and strict accounting. Conversely, generalized 

exchanges are characterized by a more collective orientation and reduced emotional tension.  

Patterns of generalized exchanges are omnipresent in many types of social networks 

(Easley & Kleinberg, 2010; Kadushin, 2012; Prell, 2012; Stanca, 2009; Wasserman et al., 1994), 

including among young children (Chernyak et al., 2019). Research consistently finds that 

individuals pass help to third parties after receiving help themselves (Nowak, 2006; Stanca, 

2009). Both theory and empirical evidence suggest that triadic ties effectively establish norms 

and provide social support (Centola, 2010; Coleman, 1988; Wellman et al., 2001). Indeed, social 

support theory predicts that actor A will have stronger social support if B and C are connected 

(Coleman, 1988). Exchange of feedback between triads is also believed to be more influential 

than feedback provided between dyads, thus triadic structures may be particularly important for 

bringing about behavioral change in individuals (Warren et al., 2020a). Network members may 

be more inclined to seek and accept support in generalized exchange networks, knowing that 

incidental violations of the norm of reciprocity are permitted and that they can give back at a 

later point (Ellwardt, Wittek, Hawkley, & Cacioppo, 2020). Similar to direct reciprocity, 
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generalized reciprocity has been shown to stabilize network cooperation (Herne, Lappalainen & 

Kestilä-Kekkonen, 2013; Molm et al., 2007; Nowak & Roch, 2007; Stanca, 2009).  

Lazega et al. (1999) examined multiplex generalized exchanges and transfers of three 

types of social resources (e.g., coworkers’ goodwill, advice, and friendship) in a corporate law 

firm and how these exchanges shape participation in collective action while helping mitigate 

problems associated with status competition. Different patterns of generalized exchanges were 

observed for each resource type. For instance, goodwill ties appeared to be strongly organized 

around principles of generalized exchanges, whereas advice and friendship demonstrated 

patterns of clustering and asymmetrical tie formation. This study suggests that patterns of 

generalized exchanges differ across network types, raising questions regarding how differences 

manifest in the context of recovery capital. 

The concept of generalized exchanges is highly salient among peer support recovery 

communities characterized by network members actively giving and receiving support. Warren 

et al. (2020a) conducted a study to investigate how social networks influence therapeutic 

community outcomes. The study found that residents who affirm each other are more likely to 

affirm a third-party actor and exhibit triadic clustering behaviors. Similar patterns were observed 

in a study by Doogan and Warren (2017) among residents of therapeutic communities, and these 

patterns were only present between residents but not between residents and staff. Phan and 

Yarosh (2016) also found support for generalized exchanges within an online peer-support 

community among people in recovery. Campbell et al. (2019) found that residents of therapeutic 

communities engaged in triadic ties were at a lower risk of re-incarceration post-treatment. In a 

replication study, Warren, Campbell, and Cranmer (2020b) found that residents exhibiting 

greater triadic clustering in two therapeutic communities were at lower risk for re-incarceration, 
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whereas in one facility, residents exhibiting these types of network connections were at a higher 

risk of re-incarceration. These studies suggest that generalized exchange networks are critical 

among members of recovery communities and highlight a need to examine how these networks 

positively or negatively impact the development of recovery capital.  

Yamagishi et al. (1993) and Takahashi (2000) note that particular challenges arise with 

generalized exchanges. These challenges include the potential for certain actors to exploit the 

network resources by never reciprocating and the difficulty of establishing norms of generalized 

exchanges without initial levels of trust. Additionally, in cases where most network actors are not 

cooperating, non-cooperation provides better individual outcomes than cooperation (Yamagishi 

et al., 1993). Therefore, it is important to investigate under which conditions generalized 

exchanges result in greater recovery capital. 

In summary, network cohesion, social exchange, and generalized exchange theory 

provide insights into how recovery capital can be developed with network structures. The current 

dissertation will first seek to establish the boundary conditions for each network theory presented 

in this section. Boundary conditions specify the conditions in which theories can be reasonably 

applied (Foschi, 1998; George & Bennet, 2005). This inquiry could enhance the precision in 

which these theories predict outcomes. While empirical failures to meet boundary conditions 

may limit the application of theories, they can also lead to new theoretical advancements (Parks, 

2011). Following this work, the study will examine how the network structures described in each 

theory facilitate or hinder the development of recovery capital using stochastic actor oriented 

modeling. The following section provides a discussion of this method. 

Stochastic actor oriented modeling. A major tenet within the field of community 

psychology is that the social environment shapes individual behavior and vice versa 
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(Bronfenbrenner, 1979; Kelly, 2006), yet research that employs statistical frameworks that 

account for these two-way dynamics are scarce (Neal & Christens, 2014). While commonly used 

methods within the field, such as multilevel modeling, are helpful for understanding the effect of 

social context on behavior, this technique cannot account for the mutually reinforcing dynamics 

of individuals and their environment. In contrast, stochastic actor-oriented modeling (Snijders, 

2001; Snijders et al., 2010) can model complex phenomena that involve the co-evolution of 

individual behaviors and social network structures over time. 

The stochastic actor oriented model (SAOM) defines social networks as a group of actors 

whose relationships evolve based on a probability structure. Actors in a network possess several 

attributes, including characteristics, attitudes, perceptions, traits, emotions, and behaviors that 

inform their relationships with others, such as whom to connect with and whom to disconnect 

from (Kalish, 2020). SAOM evaluates change over time from each actor's perspective with the 

underlying assumption that actors can change their network structures or their perceptions of 

their networks. For a mathematical account of SAOM, refer to Snijders (2001) and Snijders et al. 

(2007; 2010). 

SAOM estimate network evolutions by several effects, some of which are characteristics 

of actors which can be fixed effects (e.g., race/ethnicity), time-varying (e.g., attitudes, 

behaviors), dyads (e.g., distance between them, strength of relationship), or of the entire network 

structure (e.g., reciprocity, transitivity). These parameter estimates can test the social network 

theories outlined earlier in this dissertation to examine how individual and network-level 

recovery capital co-evolve. Each theory outlines a set of rules by which actors abide allowing for 

inferences regarding causality in the relations between network structures and actor-level effects. 

These network dynamics were tested on a sample of substance abuse recovery home residents.   
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Current Study  

 The current dissertation will utilize a dynamic social network approach to examine how 

recovery capital is developed through social networks. The study will analyze whole network 

data of individuals in recovery from SUDs (N = 627) using SAOM. Participants are residents of 

42 recovery homes called Oxford House (OH). OH is the largest network of substance use 

recovery homes, with over 3,000 homes across the United States and over 20,000 residents 

(Oxford House, 2020). These sex-specific residences usually occupy 6 to 12 individuals. Houses 

function without any professional staff; instead, members are in charge of all house operations. 

Individuals can remain in OH for as long as they want, as long as they follow the following 

rules: maintain abstinence from any alcohol and drug use, pay their fair share of the rent, and 

follow house rules regarding conduct and assigned tasks/responsibilities (Oxford House Manual, 

2019). While previous studies show the benefits of residing in these homes for at least six 

months (Jason, Davis, & Ferrari, 2007), these types of homes do not work for everyone, and 

more than 50% of residents have early departures (< 6 months) (Jason et al., 2007). The current 

study seeks to contribute to the theory and practice by elucidating how network processes such 

as network cohesion, social exchange, and generalized exchange influence individual-level of 

recovery capital and identifying the types of housing settings or network configurations most 

beneficial for residents’ recovery.  

The current study has two specific aims: (1) investigate the boundary conditions in which 

network cohesion, social exchange, and generalized exchange theories can be reasonably 

applied; and (2) examine how recovery capital co-evolves with changes in network structures 

over time with a sub aim to identify the network structures that facilitate or hinder recovery 

capital. The network structures under investigation are the extent that networks demonstrate 
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patterns of network cohesion, social exchanges, and generalized exchanges and how these 

patterns influence recovery capital. Recovery capital at the individual level was measured using a 

latent recovery capital factor score (quality of life, hope, stress, sense of community, self-esteem, 

social support, self-efficacy, and income) (see Jason et al., 2020a), and network level recovery 

capital was measured by several network metrics, including density, centralization, reciprocity, 

and transitivity.  

Hypotheses development. Network cohesion, social exchange, and generalized exchange 

theories provide insights on how recovery capital may develop within network structures. 

Research suggests that the benefits originating from different network structures are contingent 

on the interplay between individual attributes and the network structures (Latora, Nicosia, & 

Panzarasa, 2013); thus, specific network configurations may be more optimal for recovery 

capital under certain conditions than others.  

Cohesive networks are thought to foster social norms that promote trust and cooperation 

among network actors resulting in greater resource sharing (Burt & Knez, 1995; Coleman, 1988; 

Coleman, 1990; Gargiulo & Benassi, 2000; Ingram & Roberts, 2000; Reagans & McEvily, 2003; 

Uzzi, 1997). According to the recovery capital framework more highly connected individuals are 

able to build crucial interpersonal and intrapersonal resources for initiating and sustaining their 

recovery (Grandfield & Cloud, 2001). While there are positive findings associated with greater 

network cohesion, these effects appear to be context and time-dependent (Ahuja, 2000; Bodin & 

Norberg, 2005; Hite & Hesterly, 2001; Peng & Wang, 2013). As an example, both empirical and 

theoretical work with multi-agent simulations suggests that networks high in network density can 

result in the homogenization of information, which in turn result in the less efficient use and 

sharing of resources and/or in a reduced capacity to adapt to network changes (Bodin & Norberg, 
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2005; Little & McDonald, 2007; Ruef, 2002). These findings align with what Uzzi (1997) 

referred to as the ‘paradox of embeddedness’ in which he argued that the positive effects of 

network cohesion diminish after an optimal threshold is reached. Further, social exchange theory 

argues that ties in a cohesive network that are not reciprocated will dissolve over time (Hallinan, 

1978), arguing that the benefits of cohesive networks are contingent on networks evolving into 

one’s with dyadic reciprocity. Given that actors may face the loss of a resource when they give a 

form of capital to an alter and receive little or nothing in exchange (Molm et al., 2007), one 

could expect a lack of reciprocation in cohesive networks will negatively impact recovery 

capital. For these reasons, the following hypotheses are proposed:  

Hypothesis I: The positive impact of network cohesion on recovery capital factor scores 

will decrease over time in networks low on social exchanges. 

Existing research suggests that network centralization can lead to more optimal outcomes 

than network cohesion, whereas in other circumstances, the inverse is true (Gargiulo et al., 

2000). For instance, Tsai and Ghoshal (1998) found that network centralization was positively 

related to the ability of an organizational unit to exchange and combine their resources more 

efficiently, and in turn, it resulted in more significant innovation. Therefore, it can be 

hypothesized that network centralization may result in positive recovery capital outcomes when 

central individuals high in recovery capital engage in resource sharing. Conversely, those who 

find themselves highly embedded in networks with low recovery capital may not benefit from 

the recovery capital at the network level, and instead, maybe more negatively impacted by 

network cohesion. Therefore, the following hypothesis is proposed: 
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Hypothesis II: Network centralization will have a positive effect on recovery capital 

factor scores over time in networks where actors engaged in the resource sharing have 

higher recovery capital.  

Unlike social exchanges that only require the exchanges of resources between two actors, 

generalized exchange networks are characterized by three or more actors engaged in indirect 

reciprocity. Since greater time goes on between when an actor first gives a resource to when a 

third party reciprocates their action, generalized exchanges take longer to be realized than social 

exchanges. Additionally, since actions are not immediately repaid in generalized exchanges, 

these networks require higher levels of trust to develop, resulting in stronger bonds and 

cooperation than social exchange networks (Levi-Strauss, 1969; Yamagishi et al., 1993). Further, 

unlike social exchange networks characterized by ‘quid pro quo’ exchanges, actors in networks 

of generalized exchanges are more motivated by the contribution to a greater good rather than 

obtaining benefits for themselves. Thus, generalized exchange networks are particularly 

prominent and beneficial in contexts where the pursuit of individual goals requires the 

cooperation of the whole (Gargiulo et al., 2000). In light of previous theoretical and empirical 

research on generalized exchange networks, the following hypotheses are made: 

Hypothesis III: Generalized exchanges will develop overtime in networks that 

demonstrate a tendency for network cohesion (e.g., high levels of outgoing ties) and 

reciprocity beyond the dyadic level. 

Hypothesis IV: Generalized exchange networks will have a stronger positive effect on 

recovery capital factor scores over time compared to social exchange networks. 

METHOD 
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Participants & Procedures. The current longitudinal study included 42 Oxford Houses 

located in North Carolina, Texas, and Oregon. Data were collected every four months over a 2-

year period, for a total of seven waves, from 2015 to 2018. Although seven waves of data were 

collected, only six waves were included in the current study given the current study’s aim to 

model network dynamics. There were a total of 714 residents who resided in the OHs during the 

course of the research, of which 666 (93%) agreed to participate in the study. Of those that 

agreed to participate, 34 had entered into the study during wave 7, and therefore, were excluded 

from the analyses. An additional 5 participants were excluded due to survey non-responses. This 

resulted in analyses sample of 627 participants. Of the final sample included in the analyses, 497 

(74%) left their Oxford House at some point during the study. The analytic approach explains in 

detail how data that is missing at random (e.g., wave non-assessments) is handled within SAOM. 

The analysis sample of 627 was 51% male and 49% female, with a mean age of 37.0 years (SD = 

10.5). Participants identified as White (78.8%), African American/Black (8.5%), Latinx (10.0%), 

with all other races accounting for 2.7% of the total sample (Asian American, Alaskan Native, 

American Indian, and Pacific Islander). In previous analyses, using White as the reference group, 

the only significant contrast was for Black residents; the contrasts for Latinx and all others were 

negligible. Accordingly, racial/ethnic contrasts were simplified to not-Black (reference group 

including White, Latinx, and all other) vs Black in all analyses (see Jason, Guerrero, Bobak, 

Light & Stoolmiller, 2020). 

Participants were part of a larger study that examined the substance use recovery 

trajectories of OH residents. Residents of participating houses were able to enter the study at any 

point during the 2-year. Participants completed several measures including, stress, self-esteem, 

support, abstinence self-efficacy, hope, and social network ratings. Demographic information 
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were also collected which included time in residence, age, length of sobriety, race/ethnicity, 

gender, income, and educational level. State organizations helped the field staff assemble lists of 

residences to approach for the study, and recruitment attempts were made in approximately in 

the order that resident contact information became available. Member-elected house presidents 

were asked to introduce the study to residents by reading a description of it from a project 

provided script during a house meeting. Houses were accepted into the study if the house 

president and all other members (or all but, at most, one member) agreed to participate. All 

participants were interviewed by field research staff during individual face-to-face meetings. The 

interview began with an overview of the study in which participants were told of the voluntary 

nature of the study and were assured of confidentiality. All participants signed written consent 

forms. The consent forms granted permission for reassessment every four months over two 

years. Interviews consisted of only quantitative measures and lasted between 45 to 60 minutes 

for completion. Each questionnaire was assigned a random identification number to ensure 

participant confidentiality. Participants were compensated $20 for completing their interviews. 

Permission to do this study was obtained by the DePaul University Institutional Review Board 

(IRB Protocol #LJ072314PSYR9).  

Individual Level Recovery Capital Measures.  Individual-level recovery capital was 

measured using a latent recovery capital factor score based on a confirmatory factor analysis of 

several recovery capital indicators (see Jason et al., 2020a) from a resident’s first survey. The 

recovery factor score ranges from 0 to 7, with 7 signifying the highest recovery capital score. 

The recovery capital factor score was calculated from the following instruments: 
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Wages. Wages was calculated using the square root of participants’ self-reported 

employment-based income during the last 30 days were computed by taking the square root to 

reduce positive skewness. Wages was then used as a continuous variable. 

Quality of Life. World Health Organization Quality of Life Assessment- 

Brief (Quality of Life; WHOQOL Group, 1998) is a 24-item questionnaire that assesses quality 

of life across four dimensions: social relationships, environment, physical, and psychosocial. 

This scale has been validated in substance using populations (Garcia-Rea & LePage, 2010). 

The subscales varied in their reliability (α = .89 for social relationships, .84 for environment, .83 

for physical, and .83 for psychological). The alpha for the whole measure for our sample was 

.89. 

 Abstinence Self-Efficacy. The Drug Taking Confidence Questionnaire (Self-Efficacy; 

Sklar, Annis, & Turner, 1999) is an 8-item survey that measures self-efficacy in terms of 

abstinence. Participants are asked to consider eight theoretical high-risk situations and rate how 

confident they would be of resisting the urge to use a substance given the hypothetical 

circumstances. For our sample, this measure had good reliability (α = .95). 

Self-Esteem. The Rosenberg’s Self-Esteem Scale (SES; Rosenberg, 1965) was utilized to 

measure the participant’s positive and negative feelings about the self. SES is a widely used 10-

item, global self-esteem scale measured on a 4-point Likert Scale ranging from “strongly agree” 

to “strongly disagree.” Items include “I think I have a number of good qualities,” “I take a 

positive attitude toward myself,” and “I feel I do not have much to be proud of.” The internal 

reliability for our sample of the SES scale was .92. 

Stress. The Perceived Stress Scale (PSS; Cohen, Kamarck, & Mermelstein, 1983) was 

utilized to measure the degree to which situations in participants’ lives are appraised as stressful. 
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PSS consists of four items measured on a 5-point Likert scale ranging from “never” to “very 

often.” Items include “how often have you felt that you were unable to control the important 

things in your life?” and “how often have you felt difficulties were piling up so high that you 

could not overcome them?” The internal reliability of the PSS scale for our sample was .73. 

Social Support. The Interpersonal Support Evaluation List (ISEL; Cohen & Wills, 1985) 

measured three types of actual or perceived social support (tangible, appraisal, and belonging). 

Tangible support refers to instrumental aid which refers to monetary assistance; appraisal support 

refers to having someone to talk to about one’s problems; and belonging support refers to the 

availability of people one can do activities with. The ISEL consists of 12 items measured on a 4-

point likert scale ranging from "definitely false" to "definitely true." The internal reliability of the 

ISEL scale was .88 for our sample. 

Sense of Community. The Psychological Sense of Community (SOC; Jason, Stevens & 

Ram, 2015) is a 9-item scale utilized to measure participants’ sense of community. Items include 

“This Oxford House is important to me” and “For me, this Oxford House is a good fit.” The 

three subscales are Entity, Membership, and Self, and for our sample, they have Cronbach alphas 

of .67, .92, and .91, respectively. The SOC scale was used as a whole measure, and for our 

sample, the α = .91.  

Hope. Snyder’s State Hope Scale (Hope; Snyder et al., 1996) was utilized to measure 

participants’ current state of hope. The Hope measure contains two subscales: Agency (α = .94) 

and Pathways (α = .81). We included a 3-item subscale of hope that measures Environmental 

Context (Stevens et al., 2014; α = .97). This 9-item hope scale was analyzed as a whole measure, 

and for our sample, the α = .90. 
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Network Level Recovery Capital Measures. The Social Network Instrument (SNI; 

Jason & Stevens, 2017) was utilized to capture different measures of network level recovery 

capital. This instrument has been used in several investigations on the social networks of 

recovery home residents (Jason, Light, Stevens, & Beers, 2014; Jason et al., 2017; Light et al., 

2016). The SNI measures six relationship characteristics, including friendships, willingness to 

loan money, advice-seeking, help, relationship strength, and frequency of contact. Each social 

network item was measured on a 5-point likert scale (0-4). Friendship, which taps into non-

judgmental social support, was determined by asking “How friendly are you with this person?” 

Ratings ranged from “close friend” to “adversary” (0 = “close friend;” 1 = “friend;” 2 = 

“acquaintance;” 3 = “stranger;” 4 = “adversary”). Willingness to loan asked respondents “If this 

person asked to borrow money from you, how much would you be willing to lend them?” and 

the responses ranged from $0 to $500 (0 = “$0;” 1 = “$10;” 2 = “$50;” 3 = “$100;” 4 = “$500”). 

Willingness to loan was the only item that was reverse scored. Advice-seeking asked respondents 

“How often do you go to this person for advice on your recovery and other important life 

issues?” and answers range from very often to never (0 = “very often;” 1 = “quite often;” 2 = 

“regularly;” 3 = “rarely;” 4 = “never”). Help, which measures how likely a person would help an 

individual, was determined by asking “If this person needed help for a day, how likely would 

you be to help?” Ratings ranged from very likely to wouldn’t (0 = “very likely;” 1 = “likely;” 2 = 

“maybe;” 3 = “probably not;” 4 = “wouldn’t”). Frequency, which is how frequently a person 

interacts with an individual, was determined by asking “How often do you have a personal 

conversation with this person?” Ratings ranged from very often to never (0 = “very often;” 1 = 

“quite often;” 2 = “Regularly;” 3 = “rarely;” 4 = “never”). Lastly, strength, which taps into an 

individual's perception of the overall quality of their relationship with an individual, was 
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determined by asking “Overall, how strong would you relate your relationship with this person?” 

Ratings ranged from very strong to negative (0 = “very strong;” 1 = “strong;” 2 = “weak;” 3 = 

“none;” 4 = “negative”). Each item in the SNI can be examined separately as different types of 

networks. The current study only examined the friendship, willingness to loan, advice-seeking, 

and helping networks. These items were selected because they represent a relationship type 

whereas strength and frequency represent a more general relationship characteristic and not a 

theoretical relationship dimension. The SNI has a Cronbach’s alpha of .85 and all items 

contributed positively. A multilevel confirmatory factor analysis of the SNI found an excellent fit 

and per-item contribution, and neither age nor sex were significantly correlated with this 

instrument (Jason et al., 2017).  

The friendship, willingness to loan, advice-seeking and helping item scores were 

dichotomized in order to indicate the presence or absence of a tie. This is a common step that 

takes place prior to generating network statistics (Marsden, 2011). A friendship tie was 

considered present if an actor nominated an alter as a friend or a close friend (scored as 1) and 

not present if they rated the alter less than a friend (scored as 0). A willingness to loan tie was 

considered present if an actor was willing to loan actor $100 or more (scored as 1) and not 

present if they were willing to loan less than $100 (scored as 0). An advice-seeking tie was 

considered present if an actor sought advice from an alter very often or quite often (scored as 1) 

and not present if they were seeking advice less than quite often (scored as 0). A helping tie was 

considered present if an actor reported being willing to help an alter very likely and likely 

(scored as 1) and not present if they were less than likely willing to help (scored as 0).   

Analytic Approach. Prior to conducting stochastic actor-oriented modeling, several 

features of the data were evaluated. First the Moran’s network autocorrelation coefficient was 
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used to determine if there is an association between the network and the behavioral variable (e.g., 

recovery capital factor score), which will provide justification for modeling these dynamics 

using stochastic modeling. The Moran’s coefficient uses the correlation in the behavior variable 

between dyads and the degree to which actors who share a relationship deviate from the average 

in the network. The coefficient ranges from -1 through +1, with scores closer to -1 indicating the 

greatest deviation from the network average, scores closer to 0 indicating greater independence 

from the network average, and scores closer to +1 indicating greater similarity with the network 

average. Second, the Jaccard index was used to determine if the data are sufficiently informative 

to allow for the identification of effects by indicating the amount of change and stability in the 

network from one wave to the next. The Jaccard index is the fraction of relationship nominations 

among the new, lost, and stable ones between observed data points (the index disregards the 

stable absence of nominations). Jaccard indices of around 30% to 20% indicate sufficient 

stability (see Simpkins, Schaefer, Price, & Vest, 2013). Lastly, changes in the recovery capital 

factor scores were mapped from one wave to the next to evaluate the direction and the strength 

of the changes among participants.  

Stochastic actor-oriented modeling was conducted using the R package RSiena version 

4.0 (Ripley et al., 2021). Several relationship types were examined (e.g., friendship, willingness 

to loan, advice-seeking, and helping) along with structural network effects (these are elaborated 

on below), individual attributes (age, gender, and race/ethnicity) and behavioral effects (recovery 

capital factor scores). Individual house networks were pooled into a single longitudinal network 

where linkages are constrained to occur only within houses, at a given wave. This considers 

participants as subject to the same social dynamics, conditional on covariates and initial network 

relationships (Jason et al., 2014). RSiena simulates data across time points by deducing the 
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observed networks as the cumulating effects of network change mechanisms based on decisions 

made by individual actors (Veenstra & Steglich, 2012). RSiena models network change 

mechanisms in a series of steps using a “method of moments” estimation (Ripley et al., 2021). At 

each step, actors can choose to maintain, dissolve, or create ties to other actors in the network. 

Next, RSiena conducts repeated imputations via the Robbins–Monro stochastic approximation 

that allows for the estimation of structural and actor-level effects on network changes over time. 

The estimation reliability is determined using good convergence statistics such as t-ratios of 

simulated compared to observed statistics for each predictor (instead of R2, AIC, etc.). Good 

model convergence is determined by  t ratio values of .10 or less, with values closer to zero 

demonstrating better convergence (see Ripley et al., 2021), and when the overall maximum 

convergence ratio meets the recommended maximum threshold of 0.25 (Ripley et al., 2021). The 

maximum autocorrelation of successive simulation effect statistics were evaluated within the 

recommended upper limit of .30 (Ripley et al., 2021). A model selection criteria have not yet 

been developed (Snijders et al., 2010). Currently, the best way to implement ad hoc stepwise 

modeling procedures with both forward selection (adding effects) and backwards selection 

(deleting effects) that are guided by significance tests and convergence statistics (Ripley et al., 

2015; Schweinberger, 2012; Snijders et al., 2010). It is also recommended to start with 

endogenous network effects and then one can add exogenous effects (Ripley et al., 2021). 

Including many model effects may result in convergence issues, thus if this occurs, the 

recommendation is to start with endogenous network effects, then one can enter new effects 

while retaining previously significant effects (Ripley et al., 2021). Non-significant effects can 

also remain in the model to the extent that convergence statistics are still acceptable. All non-

significant effects that were removed from the final models can be found in Appendix B.  
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RSiena allows up to 20% of missingness in network, covariate, and behavioral data per 

wave. In the present study, there were less than 20% of missing network data which were due to 

residents exiting their houses or to non-responses that can be categorized as missing at random, 

thus, missing data were handled within RSiena using the model-based hybrid imputation method 

(Ripley et al., 2021). The method is called hybrid because it uses imputed values during the 

simulation of Markov chains but not during the calculation of the estimates (Zandberg and 

Huisman, 2019). More specifically, during the simulation of Markov chains between consecutive 

waves, missing network data at the first observation are set to 0, which assumes that there is no 

tie present. In subsequent observations, if there is an earlier observation for a tie variable, the 

previous value is used to impute the current value. However, if there is no previous observed 

value for a given tie, the value 0 is imputed. A similar strategy is implemented for missing 

behavior data: if there is previous value of a behavior variable then that value is imputed, if there 

is no previous value but there is a subsequent value then this is imputes, if there is no previous or 

subsequent values then the mode of the variable is imputed (Ripley et al., 2021). Following the 

simulation runs when the simulated and observed data are compared of the subsequent time 

points, the updated parameters are based on observed data only. Thus, imputed values only effect 

the simulation phase of the modeling procedures. The default method in RSiena for treating 

missing data were examined in Zandberg et al. (2019) and Huisman et al. (2008), and were found 

to provide the best performance when compared to other types of missing data methods. 

Stochastic actor-oriented models have several statistical assumptions. The evolution of 

networks and individual behaviors are represented separately using transition probabilities 

between probable states. The probable states are all possible configurations of network and 

individual behaviors combined. Due to the amount of all possible configurations, changes 
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between measurement time points are modeled using a continuous-time Markov process, 

imputing the likely developmental trajectories between observations or waves. Given that social 

network data are collected between discrete time points, therefore, failing to capture changes in 

networks between observations, the assumption underlying the Markov process is that the 

changes in network ties that are modeled only depend on the current network configuration and 

not on previous configurations. Another assumption is that actors can only change network ties 

or one level of behavior, thereby eliminating simultaneous changes. Accordingly, as a 

continuous-time Markov chain process, the estimated model parameters represent the aggregate 

series of small changes in network and behaviors over time (Burk, Steglich, & Snijders, 2007; 

Snijders et al., 2010).  

The selection of model parameters were based on several requirements, including: (1) to 

select effects theoretically relevant to the hypotheses being tested, (2) to capture the structures 

found in the data, and (3) to keep the models parsimonious. The last two requirements were 

determined using fit and convergence statistics. The following endogenous network effects were 

examined: indegree and outdegree effect, density (outdegree), reciprocity, in-degree popularity, 

out-degree popularity, transitive triplets, and transitive ties. Visual representations and 

mathematical expressions for each effect can be found in Table 1. Indegree effect refers to 

tendency for actors with more in-going ties to have high values on the recovery capital factor. 

Outdegree effect refers to tendency for actors with more out-going ties to have high values on the 

recovery capital factor. Density describes the overall tendency for actors to extend ties to alters. 

It measures the overall interconnectedness of the network and is the sum of the directed edges 

divided by the number of possible directed edges. Since it is a proportion, it is naturally bounded 

between zero and one. Reciprocity describes the tendency for actors to have mutual connections. 
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Two edges are considered reciprocal if a directed edge goes to node A to node B, and another 

from B to A. Centrality is a measure of the tendency for there to be high concentration of 

incoming or outgoing ties among key actors. Three network effects were used as proxies for 

centrality: in-degree popularity, out-degree popularity, and out-degree activity. The in-degree 

popularity effects reflects the tendency of actors who receive many nominations to receive more 

nominations over time, whereas the out-degree popularity effect reflects the tendency of actors 

with high out-degrees to attract extra incoming ties ‘because’ of their high current out-degrees. 

The out-degree activity effect reflects the tendency of actors who give many nominations to give 

more nominations over time. These three effects represent a type of network centralization that 

predict future increases in incoming or outgoing ties among key actors based on initial tie 

configuration. If significant, these effects would indicate that recovery capital is concentrated 

among a few actors rather than being more equitably distributed across many. Transitivity is a 

measure of the tendency for relationships to form three-way relationships or triads. Two network 

effects were used as proxies for transitivity: transitive triplets, and transitive ties. Transitive 

triplets refers to the tendency that two actors who have tie with a third party will eventually 

become themselves. More specifically, this effect measures the number of configurations for 

three actors (i, h, j) in which all three ties are present (e.g. i→j→h; i→h or i→h→j; i→j) (see 

table 1) (Ripley et al., 2021). The i→j tie is increasingly more likely the more indirect two-way 

paths there are between actors i and j (e.g., i→h→j) (Veenstra, Dijkstra, Steglich, & Van Zalk., 

2013). Transitive ties is similar to the transitive triplets effect, however, instead of considering 

for each alter j how many two-paths there are (i→h→j), it only considers whether there is at least 

one indirect connection. Table 1 reports which effects were used to test each of the study’s four 

hypotheses. 
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Ego and alter network selection effects for length of stay in Oxford House was included 

in the stochastic models, which reflect the effects of length of stay on nominations received or 

given across each relationship type (e.g., friendship, loaning, helping, and advice-seeking). The 

effects from length of stay, race/ethnicity, age, and sex on recovery capital were also included in 

the models as covariates to examine the changes in recovery capital scores over time across 

demographic groups. 

Table 1. Mathematical representation and interpretation of model effects 

Network dynamic 

effect  

Mathematical  

Formula 

Graphical Express RSiena description Hypothesis 

Density (out 

degree) 

∑ixij 

 

 Actor i extending ties to alter 

j {density} 

Hypothesis I; 

Hypothesis III 

Reciprocity ∑ixijxji 

 

 Actor i reciprocating ties to 

alter j {recip} 

Hypothesis I; 

Hypothesis III 

In-degree 

popularity 

∑jxij∑hxhj  Actors with many incoming 

ties attract more incoming 

ties {inPop} 

Hypothesis II 

Out-degree 

popularity 

∑jxij∑hxjh 

 

Actors with many outgoing 

ties attract more incoming 

ties {outPop} 

Hypothesis II 

Out-degree activity X2i+  Actors with many outgoing 

ties have more outgoing ties 

over time {outAct} 

Hypothesis II 
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Transitive triplets ∑jhxijxihxhj  Actor i extending ties to alter 

j to whom he is indirectly 

tied (via h) {transTrip} 

Hypothesis III 

Transitive ties ∑jxijmaxh(xihx

hj) 
 

Actor i extending ties to alter 

j to whom he is directly and 

indirectly tied (via h) (one 

indirect tie suffices) 

{transTies} 

Hypothesis III; 

Hypothesis IV 

Covariate network 

selection effect 

    

Covariate ego  Vixi+ 

 

Actor i with higher values on 

covariate (v) attracts more 

outgoing ties {egoX} 

 

Covariate alter  ∑jxij∑vj 
 

Actor i with higher values on 

covariate (v) attracts more 

incoming ties {altX} 

 

Behavioral effects     

Indegree effect Sbehi5(x) = 

zi∑jxji 

 The more incoming ties, the 

higher the behavior variable 

becomes overtime {indeg} 

Hypothesis I 

Outdegree effect Sbehi5(x) 

=zi∑ij 

 The more outgoing ties, the 

higher the behavior variable 

overtime{outdeg} 

Hypothesis I 

h 

i j 

h 

j i 
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Average alter Sbehi5(x)=zi(∑

jxijzj)/( ∑jxij) 

 Actors whose alters have a 

higher average of the 

behavior, also have 

themselves a stronger 

tendency toward high values 

on the behavior {avAlt} 

Hypothesis II 

Reciprocated 

degree 

Sbehi18(x) = 

zi∑jxijxij 

 The tendency for 

reciprocated ties to influence 

the behavior {recipDeg} 

Hypothesis I; 

Hypothesis IV 

Average alter 

popularity 
−1 
Sbehi23 (x, z) 
= zi xi+ 
J xij x + j zj ; 
(and 0 if xi+ = 
0)  

 Defined by the behavior 

multiplied by the average 

behavior of the alters, 

multiplied by their indegrees 

{avAltPop} 

Hypothesis II 

Dense triads Sbehi16(x) = 

zi∑j,h I[{xij + xji 

xih + xhi + xjh + 

xhj) ≥ c}, 

where c is 

either 5 or 6 

 Defined by the behavior 

multiplied by the number of 

dense triads 

{behDenseTriads} 

Hypothesis IV 

Behavior effect 

from covariate  

Sbehi57(x,z) = 

zivi 

 Main covariate effect on the 

behavioral variable{effFrom} 

 

 

Only uniplex (single network) models were run. Uniplex models ignore mutual 

dependencies between networks of different relational dimensions (e.g. friendship, willingness to 
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loan, helping, and advice-seeking) thus presenting dynamics for each individual network when 

considered on their own, and serving as a point of reference for the multiplex dynamics. While 

multplex network analyses could demonstrate the co-evolution of friendship, loan, advice, and 

helping networks, this type of analysis are not needed to test the study’s hypotheses.  

RESULTS 

Descriptive Statistics. Network descriptive statistics for all four types of networks (e.g. 

friendship, loaning, and advice-seeking) across the six observations of data are reported in in 

Table 2, including density, average degree, number of ties, and number of mutual and 

asymmetric dyads. Given that participants joined or left their recovery home during the course of 

the study, the number of possible ties vary between measurements. While the current study 

proposed to analyze helping networks, this network was dropped due to poor convergence.  

 
Table 2. Descriptives of the Friendship, Loaning, and Advice-Seeking Networks 
 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6  

Friendship Network        
Network characteristics         

  
Densitya 0.76 0.81 0.75 0.75 0.79 0.81  
Average degree 1.31 0.87 1.16 1.01 1.24 1.17  
Number of ties  822 547 728 634 778 733  
Mutual dyads 327 235 292 260 331 317  
Asymmetric dyads 164 77 135 110 113 92   
Loaning Network        
Densitya 0.27 0.30 0.30 0.27 0.29 0.25  
Average degree 0.51 0.34 0.51 0.34 0.44 0.37  
Number of ties  317 210 321 210 275 234  
Mutual dyads 75 50 83 47 63 61  
Asymmetric dyads 166 110 154 115 148 109  
Advice-Seeking Network        
Densitya 0.37 0.49 0.41 0.45 0.49 0.54  
Average degree 0.51 0.49 0.65 0.61 0.77 0.79  
Number of ties  320 306 407 383 499 496  
Mutual dyads 88 104 126 128 158 165  
Asymmetric dyads 143 95 151 127 182 165  
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Table 3 contains information regarding changes in nominations for each network between 

time points. There are a total of five time lags between all six waves of data. Lag 1 indicates the 

period between waves 1 and 2, Lag 2 indicates the period between waves 2 and 3, Lag 3 

indicates the period between waves 3 and 4, Lag 4 indicates the period between waves 4 and 5, 

and Lag 5 indicates the period of time between waves 5 and 6. Tie changes are indicated for each 

time lag that denote changes in values in the tie adjacency matrices for each network. The label 

the ‘0=>1’ means that a value went from a 0 at one time point to a 1 at the next time point (i.e., a 

new tie was created); the ‘1=>0’ label means that a value went from a 1 at one time point to a 0 

at the next time point (i.e., a tie dissolvement); the ‘1=>1’ label means that a value went from a 1 

at one time point to a 1 at the next time point (i.e., a stable existing tie).  

Table 3. Tie Changes between Observations for Each Network 

Lag 1 2 3 4 5 
 1 => 2 2 => 3 3 => 4 4 => 5 5 => 6 

Friendship Network         

Creating a tie (0 => 1) 317 585 417 618 469 
Dissolving a tie (1 => 0) 593 403 513 475 515 
Stable tie (1 => 1)  229 143 212 157 261 
Hamming distance 73 31 53 36 60 
Jaccard Index  0.20 0.13 0.19 0.13 0.21 
Loaning Network      

Creating a tie (0 => 1) 139 265 134 212 148 
Dissolving a tie (1 => 0) 246 155 243 148 186 
Stable tie (1 => 1)  71 55 76 62 85 
Hamming distance 97 60 77 62 109 
Jaccard Index  0.16 0.12 0.17 0.15 0.20 
Advice-Seeking Network      

Creating a tie (0 => 1) 216 343 287 412 383 
Dissolving a tie (1 => 0) 229 242 313 296 389 
Stable tie (1 => 1)  90 63 94 87 110 
Hamming distance 75 50 67 51 133 
Jaccard Index  0.17 0.10 0.14 0.11 0.13 
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The Jaccard index is a measure of network stability between time points which indicates 

the proportion of stable relations among the number of created, dissolved, and stable relations 

(Snijders et al., 2010). The proportion of stable relations for each type of network was low (a 

Jaccard index of at least 0.20 is recommended; Snijders et al., 2010), but this had no 

consequences for the analyses as all models demonstrated good convergence statistics. 

Univariate Stochastic Actor-Oriented Modeling Results 

Friendship Network Results. Table 4 shows the model results for the friendship network.  

Parameter estimates are reported along with their 95% CIs (b=estimate, [95% CI lower, upper]) 

along with two-tailed p value tests. Parameter estimates were based on 1402 iterations during the 

estimation routine, with convergence diagnostics, covariance and derivative matrices based on 

2403 iterations. The model convergence was acceptable; the overall maximum convergence ratio 

(a summary measure across effects) was .23 (the conventional cutoff is 0.25; Ripley et al., 2021), 

and all individual parameter convergence t ratios (the autocorrelation between consecutive 

iterative estimates, which ideally are near zero) were .09 or less (the conventional cutoff is 0.10; 

Ripley et al., 2021).   

The first part of the SAOM results presented are the network dynamic parameters. 

Network rate parameters are inter-wave specific estimates of the amount change in each 

endogenous variable that reflect the number of micro-steps involved in the dynamic simulation 

with significant parameters confirming sufficient variation for SAOM to explain, but have bo 

substantive significance in the hypotheses testing. The outdegree density effect is primarily an 

indicator of a tendency toward a certain proportion of non-zero ties in any given network 

variable. The outdegree density for the friendship parameter (b=-1.00, CI [-0.36, 2.36], p= 0.15) 
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was not significant. This suggests that friendship nominations are common and expected, with an 

overall probability indistinguishable from 50-50. The positive reciprocity parameter (b = 1.55 CI 

[0.73, 2.38], p < .001) means that friendship ties tend to be reciprocal with one-way ties 

changing to two-way ties overtime. In support of hypothesis III, the transitive triplets parameter 

was positive and significant (b = 0.53 CI [0.24, 0.81], p < .001), demonstrating that friendship 

ties were more likely to be extended to friends of friends. This suggests that friendship networks 

exhibit a form of generalized exchanges with friendship ties evolving into resource sharing 

triads. However, the transitive ties parameter was non-significant suggesting that generalized 

exchanges are contained to those who residents are directly connected to via a third party. The 

out-degree popularity effect parameter (b= -0.55, CI [-0.90, -0.19], p < .001) was negative and 

significant, indicating that actors with many outgoing friendship ties attract less incoming ties 

overtime. However, the in-degree popularity and out-degree activity parameters were non-

significant. Given the negative out-degree parameter and non-significant in-degree popularity 

and out-degree activity parameters, centralization of resources was not structural tendency for 

the friendship network. A positive and significant length of stay ego parameter indicated that 

friendship ties were more likely to be extended by network members who were in their recovery 

home for a longer length of time. The recovery capital network selection effects were non-

significant indicating that residents’ level of recovery capital had no bearing on incoming or 

outgoing friendship nominations.  

The behavioral dynamic portion of the model examined predictors of change in the 

recovery capital factor scores overtime. The linear and quadratic shape effects represent the 

shape of the recovery capital factor scores distribution. The in degree and out degree as well as 

the reciprocated effects were non-significant therefore disconfirming hypothesis I. That is, 
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network cohesion nor social exchanges played a role in changes in the recovery capital scores 

overtime time. The average alter popularity effect was eliminated from the final model due to 

poor convergence (see model with eliminated effect in Appendix B) thus hypothesis II was only 

partially tested. The primary finding for this part of the model is that the average recovery level 

of ones’ “friends” was predictive of improvements in recovery capital factor scores over time 

(b=0.12, [0.01, 0.23] p=.03), partially confirming hypothesis II. The dense triad effect was also 

eliminated from the final model due to poor convergence (see model with eliminated effect in 

Appendix B) thus hypothesis IV was only partially tested (see model with eliminated effect in 

Appendix B). However, the non-significant reciprocated degree parameter suggests that 

proportion reciprocation in friendship networks had no influence on changes in the recovery 

capital factor scores over time, disconfirming hypothesis IV.  

Table 4. SAOM Results For Friendship Network—Method of Moments estimation 

 Parameter SE z p-
value 

95% CI t-
ratioa 

Estimate Low High 
Network Dynamics        

1. Friend rate (period 1) 4.66 1.21 3.86 < .001 2.30 7.03 0.002 
2. Friend rate (period 2) 3.39 1.17 2.90 < .001 1.10 5.67 -0.02 
3. Friend rate (period 3) 3.64 0.90 4.05 < .001 1.88 5.41 -0.05 
4. Friend rate (period 4) 3.09 0.96 3.23 < .001 1.21 4.96 -0.01 
5. Friend rate (period 5) 5.14 3.41 1.51 0.13 -1.54 11.82 -0.06 
6. Friend: outdegree (density) 1.00 0.69 1.44 0.15 -0.36 2.36 0.08 
7. Friend: reciprocity  1.55 0.42 3.68 < .001 0.73 2.38 0.08 
8. Friend: transitive triplets 0.53 0.14 3.62 < .001 0.24 0.81 0.06 
9. Friend: transitive ties 0.18 0.28 0.63 0.53 -0.38 0.74 0.06 
10. Friend: in-degree 

popularity -0.01 0.15 -0.09 0.93 -0.32 0.29 0.08 

11. Friend: out-degree 
popularity -0.55 0.18 -3.02 < .001 -0.90 -0.19 0.06 

12. Friend: out-degree activity -0.18 0.11 -1.62 0.10 -0.40 0.04 0.07 
 Covariate Network Effects        

13. Friend: LOSb alter 0.01 0.07 0.15 0.88 -0.12 0.14 0.05 
14. Friend: LOSb 0.23 0.07 3.24 < .005 0.09 0.37 0.01 
15. RCFc alter -0.04 0.09 -0.44 0.66 -0.21 0.13 -0.03 
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16. RCFc ego 0.04 0.09 0.48 0.63 -0.13 0.22 -0.09 
Behavior Dynamics        

17. Rate RCFc (period 1) 3.76 0.53 7.12 < .001 2.73 4.80 -0.02 
18. Rate RCFc (period 2) 2.49 0.63 3.93 < .001 1.25 3.73 0.03 
19. Rate RCFc (period 3) 3.80 0.78 4.89 < .001 2.28 5.33 0.00 
20. Rate RCFc (period 4) 3.71 0.84 4.42 < .001 2.07 5.36 0.04 
21. Rate RCFc (period 5) 4.02 0.91 4.40 < .001 2.23 5.81 0.01 
22. RCFc linear shape  0.46 0.13 3.48 < .001 0.20 0.72 -0.02 
23. RCFc quadratic shape  -0.14 0.02 -6.53 < .001 -0.18 -0.10 0.05 
24. RCFc indegree -0.04 0.11 -0.35 0.72 -0.26 0.18 -0.03 
25. RCFc outdegree -0.16 0.14 -1.13 0.26 -0.44 0.12 -0.03 
26. RCFc average alter  0.12 0.06 2.15 0.03 0.01 0.23 0.01 
27. RCFc reciprocated degree 0.16 0.20 0.84 0.40 -0.22 0.55 -0.03 

Covariate Behavior Effects        
28. RCFc: effect from Sex -0.25 0.09 -2.93 < .005 -0.42 -0.08 -0.03 
29. RCFc: effect from Age -0.003 0.003 -1.02 0.31 -0.01 0.00 0.01 
30. RCFc: effect from Black 0.21 0.12 1.76 0.08 -0.02 0.44 -0.01 
31. RCFc: effect from LOSb 0.02 0.03 0.62 0.54 -0.04 0.09 0.003 

Note: aRatio of deviations of simulated vs. observed statistics for each effect, calculated in 
Phase 3 of the RSiena model estimation procedure. Conventionally, a t ratio value of less than 
0.10 indicates good convergence (Ripley et al., 2020). Overall maximum convergence ratio: 
0.24. bthe log of residents length of stay in their recovery home. cRecovery capital factor scores. 
dParameter eliminated from final model. 

 

Loaning Network Results. Table 5 shows the model results for the loaning network.  

Parameter estimates are reported along with their 95% CIs (b=estimate, [95% CI lower, upper]) 

along with two-tailed p value tests. Parameter estimates were based on 1263 iterations during the 

estimation routine, with convergence diagnostics, covariance and derivative matrices based on 

2445 iterations. The model convergence was acceptable; the overall maximum convergence ratio 

(a summary measure across effects) was .24 (the conventional cutoff is 0.25; Ripley et al., 2021), 

and all individual parameter convergence t ratios (the autocorrelation between consecutive 

iterative estimates, which ideally are near zero) were .09 or less (the conventional cutoff is 0.10; 

Ripley et al., 2021).   
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The outdegree density for the loaning parameter (b=-0.83, CI [-1.31, -0.35], p < .001) 

was negative and significant, implying both that willingness to loan relationships are quite sparse 

(well below 50 percent of ties that a value of zero would imply), and that a larger number of such 

ties for any given individual are unlikely to form overtime. This finding suggests that unlike in 

the friendship network, cohesion is not at play in the loaning networks. The positive reciprocity 

parameter (b= 1.39, CI [0.91, 1.87], p < .001) means that loan ties tend to be reciprocal with one-

way loan ties changing to two-way ties overtime. In support of hypothesis III, the transitive 

triplets parameter was positive and significant (b = 0.50 CI [0.25, 0.76], p < .001), suggesting 

that residents show a tendency to share tangible resources with others if they are already willing 

to loan to someone who loans to this alter. While loaning networks demonstrate tendencies for 

generalized exchanges, a non-significant transitive ties parameter suggests that generalized 

exchanges of tangible resources are contained to those who residents are directly connected to 

via a third party. The out-degree popularity effect parameter (b= -0.58, CI [-0.81, -0.36], p < 

.001) was negative and significant, indicating that actors with many outgoing ties attract less 

incoming ties overtime. However, the in-degree popularity and out-degree activity parameters 

were non-significant. Given the negative out-degree parameter and non-significant in-degree 

popularity and out-degree activity parameters, centralization of resources was not structural 

tendency for the loaning network. No network selection effects were found for willingness to 

loan based on resident’s length of stay or levels of recovery capital factor scores. This indicates 

that residents’ length of stay and level of recovery capital had no bearing on their incoming or 

outgoing willingness to loan nominations. 

The behavioral dynamic portion of the model revealed non-significant effects for the in 

and out degree parameters as well as the reciprocated degree parameter, therefore disconfirming 
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hypothesis I. More specifically, network cohesion nor social exchanges in the loaning network 

had an influence on changes in the recovery capital scores overtime time.  The average alter 

popularity effect was eliminated from the final model due to poor convergence (see model with 

eliminated effect in Appendix B) thus hypothesis II was only partially tested. The second effect 

of interest, average alter effect, for testing hypothesis II was included in the final model and was 

found to be non-significant. The dense triads effect was also non-significant suggesting that 

generalized exchanges within the loaning network did not impact the changes in recovery capital 

overtime, disconfirming hypothesis IV.  

Table 5. SAOM Results For Loaning Network—Method of Moments estimation 

 Parameter SE z p-value 95% CI t-ratioa 
Estimate Low High 

Network Dynamics        
1. Loan rate (period 1) 4.31 0.84 5.12 < .001 2.66 5.96 -0.07 
2. Loan rate (period 2) 3.38 0.69 4.90 < .001 2.03 4.73 -0.06 
3. Loan rate (period 3) 3.26 0.60 5.39 < .001 2.07 4.44 0.01 
4. Loan rate (period 4) 3.26 0.68 4.81 < .001 1.93 4.59 0.02 
5. Loan rate (period 5) 5.01 1.47 3.40 < .001 2.13 7.90 -0.05 
6. Loan: outdegree (density) -0.83 0.24 -3.38 < .001 -1.31 -0.35 0.00 
7. Loan: reciprocity  1.39 0.25 5.65 < .001 0.91 1.87 -0.02 
8. Loan: transitive triplets 0.50 0.13 3.88 < .001 0.25 0.76 0.03 
9. Loan: transitive ties 0.32 0.19 1.69 0.09 -0.05 0.69 0.04 
10. Loan: in-degree popularity 0.10 0.07 1.40 0.16 -0.04 0.25 0.02 
11. Loan: out-degree popularity -0.58 0.11 -5.10 < .001 -0.81 -0.36 0.01 
12. Loan: out-degree activity -0.02 0.06 -0.31 0.76 -0.13 0.09 0.03 

Covariate Network Effects        
13. Loan: LOSb alter 0.05 0.04 1.26 0.21 -0.03 0.14 0.01 
14. Loan: LOSb ego 0.00 0.04 -0.09 0.93 -0.09 0.08 -0.04 
15. RCFc alter 0.10 0.06 1.67 0.10 -0.02 0.21 0.09 
16. RCFc ego -0.01 0.05 -0.15 0.88 -0.10 0.09 0.02 

Behavior Dynamics        
17. Rate RCFc (period 1) 3.67 0.51 7.21 < .001 2.67 4.66 0.01 
18. Rate RCFc (period 2) 2.50 0.50 5.03 < .001 1.53 3.48 0.02 
19. Rate RCFc (period 3) 3.66 0.81 4.54 < .001 2.08 5.24 -0.02 
20. Rate RCFc (period 4) 3.76 0.74 5.10 < .001 2.32 5.21 0.06 
21. Rate RCFc (period 5) 3.94 0.77 5.15 < .001 2.44 5.44 -0.01 
22. RCFc linear shape  0.28 0.10 2.67 < .001 0.07 0.48 0.02 



69  

 
 

23. RCFc quadratic shape  -0.13 0.02 -7.19 < .001 -0.17 -0.10 0.03 
24. RCFc indegree -0.05 0.07 -0.76 0.45 -0.19 0.08 0.02 
25. RCFc outdegree 0.06 0.08 0.82 0.41 -0.09 0.22 -0.04 
26. RCFc average alter  0.15 0.08 1.84 0.07 -0.01 0.32 0.08 
27. RCFc dense triads -0.004 0.07 -0.06 0.96 -0.14 0.13 -0.03 
28. RCFc reciprocated degree -0.08 0.23 -0.36 0.72 -0.52 0.36 -0.03 

Covariate Network Effects        
29. RCFc: effect from Sex -0.26 0.08 -3.17 < .001 -0.42 -0.10 -0.02 
30. RCFc: effect from Age 0.00 0.00 -0.58 0.56 -0.01 0.005 0.04 
31. RCFc: effect from Black 0.21 0.12 1.78 0.08 -0.02 0.43 0.00 
32. RCFc: effect from LOSb 0.03 0.03 0.98 0.33 -0.03 0.10 -0.01 

Note: aRatio of deviations of simulated vs. observed statistics for each effect, calculated in 
Phase 3 of the RSiena model estimation procedure. Conventionally, a t ratio value of less than 
0.10 indicates good convergence (Ripley et al., 2020). Overall maximum convergence ratio: 
0.24. bthe log of residents length of stay in their recovery home. cRecovery capital factor 
scores. dParameter eliminated from final model. 

 

Advice-Seeking Network Results. Table 6 shows the model results for the loaning 

network.  Parameter estimates are reported along with their 95% CIs (b=estimate, [95% CI 

lower, upper]) along with two-tailed p value tests. Parameter estimates were based on 1167 

iterations during the estimation routine, with convergence diagnostics, covariance and derivative 

matrices based on 2168 iterations. The model convergence was acceptable; the overall maximum 

convergence ratio (a summary measure across effects) was .24 (the conventional cutoff is 0.25; 

Ripley et al., 2021), and all individual parameter convergence t ratios (the autocorrelation 

between consecutive iterative estimates, which ideally are near zero) were .07 or less (the 

conventional cutoff is 0.10; Ripley et al., 2021).   

The outdegree density for the advice-seeking parameter (b=-0.57, CI [-1.07, -0.08], p = 

0.02) was negative and significant, implying both that advice-seeking networks are quite sparse 

(well below 50 percent of ties that a value of zero would imply), and that a larger number of such 

ties for any given individual are unlikely to form overtime. This finding suggests that unlike in 

the friendship network, cohesion is not at play in the advice-seeking networks. The positive 



70  

 
 

reciprocity parameter (b= 1.35, CI [0.87, 1.82], p < .001) means that advice-seeking ties tend to 

be reciprocal with one-way advice-seeking ties changing to two-way ties overtime. The positive 

and significant transitive triplets parameter (b = 0.38 CI [0.18, 0.57], p < .001) suggest that 

seeking advice from another resident is greater if you are connected to someone who also seeks 

advice from this resident. The transitive ties parameter is also positive and significant (b = 0.38 

CI [0.18, 0.57], p < .001), suggesting that residents show a tendency to seek advice from those 

they are both directly and indirectly connected to. Together, the transitive triplets and transitive 

ties parameters provide support for hypothesis III, suggesting that generalized exchangers are 

particularly prevalent in advice-seeking networks, even more so than in friendship and loaning 

networks. That is, advice-seeking networks demonstrate tendencies for generalized exchanges 

even more so than the loaning networks. The out-degree popularity effect parameter (b= -0.47, 

CI [-0.69, -0.24], p < .001) was negative and significant, indicating that actors with many 

outgoing ties attract less incoming ties overtime. No network selection effects were found for 

advice-seeking based on resident’s length of stay or levels of recovery capital factor scores.  

The behavioral dynamic portion of the model revealed non-significant effects for the in 

and out degree parameters as well as the reciprocated degree parameter, therefore disconfirming 

hypothesis I. More specifically, network cohesion nor social exchanges in the advice-seeking 

network had an influence on changes in the recovery capital scores overtime time. The average 

alter popularity effect was eliminated from the final model due to poor convergence (see model 

with eliminated effect in Appendix B) thus hypothesis II was only partially tested. The second 

effect of interest, average alter effect, for testing hypothesis II was included in the final model 

and was found to be non-significant. The average alter effect was positive and significant for the 

advice-seeking network (b = 0.15, CI [0.005, 0.30], p = 0.04) partially confirms Hypothesis II. 
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This finding suggest that the average recovery capital level of those resident’s seek advice from 

within the recovery home was predictive of improvements in recovery capital scores over time (b 

= -0.23, CI [-0.38, -0.08], p = 0.04). The dense triads effect was non-significant suggesting that 

despite advice-seeking networks demonstrating a strong tendency for generalized exchanges, this 

structural characteristic did not have an influence on recovery capital factor scores overtime, 

disconfirming hypothesis IV. 

Covariate Behavior Effects. The only covariate behavioral effect to emerge from the 

analyses was a significant sex effect (see the behavior dynamic component of each model; 

Tables 4-6). As sex is coded 0 for male and 1 for female, the negative value for this estimate 

means that men have a tendency to improve on the recovery capital factor scores faster than 

women. No other behavioral effects from other demographic covariates were found. However, 

while non-significant, the race parameter was closed to the conventional .05 p value cut off, with 

Black residents showing greater improvements in their recovery factor scores.  

Table 6. Stochastic Actor-Oriented Model Results For Advice-Seeking Network—Method of 
Moments estimation 

  Parameter SE z p-
value 

95% CI t-
ratioa Estimate Low High 

Network Dynamics       
 

1. Advice rate (period 1) 2.52 0.54 4.64 < .001 1.45 3.58 -0.04 
2. Advice rate (period 2) 2.91 1.02 2.85 < .001 0.91 4.91 0.01 
3. Advice rate (period 3) 2.62 0.47 5.62 < .001 1.70 3.53 0.05 
4. Advice rate (period 4) 2.28 0.48 4.80 < .001 1.35 3.21 0.04 
5. Advice rate (period 5) 7.71 3.08 2.50 0.01 1.66 13.75 0.07 
6. Advice: outdegree (density) -0.57 0.25 -2.26 0.02 -1.07 -0.08 -0.01 
7. Advice: reciprocity  1.35 0.24 5.54 < .001 0.87 1.82 -0.02 
8. Advice: transitive triplets 0.38 0.10 3.82 < .001 0.18 0.57 -0.05 
9. Advice: transitive ties 0.51 0.15 3.37 < .001 0.22 0.81 -0.04 
10. Advice: in-degree popularity -0.06 0.08 -0.77 0.44 -0.21 0.09 -0.03 
11. Advice: out-degree popularity -0.47 0.12 -4.00 < .001 -0.69 -0.24 -0.05 
12. Advice: out-degree activity 0.03 0.06 0.43 0.67 -0.09 0.14 -0.02 

Covariate Network Effects    
 

   

13. Advice: LOSb alter 0.01 0.05 0.27 0.79 -0.09 0.11 -0.01 
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14. Advice: LOSb ego 0.06 0.04 1.34 0.18 -0.03 0.14 -0.04 
15. RCFc alter 0.04 0.07 0.54 0.59 -0.09 0.17 -0.02 
16. RCFc ego -0.03 0.06 -0.62 0.54 -0.14 0.07 -0.05 

Behavior Dynamics        
17. Rate RCFc (period 1) 3.80 0.64 5.97 < .001 2.55 5.05 0.00 
18. Rate RCFc (period 2) 2.59 0.52 4.97 < .001 1.57 3.61 0.00 
19. Rate RCFc (period 3) 3.91 0.90 4.36 < .001 2.15 5.67 -0.01 
20. Rate RCFc (period 4) 3.78 0.82 4.60 < .001 2.17 5.39 -0.01 
21. Rate RCFc (period 5) 4.08 0.85 4.82 < .001 2.42 5.75 -0.04 
22. RCFc linear shape  0.22 0.11 2.04 0.04 0.01 0.43 -0.02 
23. RCFc quadratic shape  -0.14 0.02 -7.85 < .001 -0.17 -0.10 -0.05 
24. RCFc indegree 0.00 0.08 0.05 0.96 -0.15 0.16 0.01 
25. RCFc outdegree -0.02 0.06 -0.38 0.71 -0.15 0.10 -0.02 
26. RCFc average alter  0.15 0.08 2.02 0.04 0.005 0.30 -0.01 
27. RCFc dense triads -0.001 0.03 -0.03 0.98 -0.06 0.05 0.02 
28. RCFc reciprocated degree 0.04 0.13 0.30 0.77 -0.22 0.30 0.02 

Covariate Behavior Effects        
29. RCFc: effect from Sex -0.23 0.08 -3.04 < .001 -0.38 -0.08 0.04 
30. RCFc: effect from Age 0.00 0.00 -0.76 0.45 -0.01 0.00 -0.06 
31. RCFc: effect from Black 0.22 0.11 1.95 0.05 0.00 0.45 0.01 
32. RCFc: effect from LOSb 0.02 0.03 0.60 0.55 -0.04 0.08 -0.03 

Note: aRatio of deviations of simulated vs. observed statistics for each effect, calculated in Phase 3 
of the RSiena model estimation procedure. Conventionally, a p value of less than 0.10 indicates 
good convergence (Ripley et al., 2020). Overall maximum convergence ratio: 0.24. bthe log of 
residents length of stay in their recovery home. cRecovery capital factor scores. dParameter 
eliminated from final model. 

 

Discussion 

 The current study presents a dynamic social network analysis that investigates how 

recovery capital is developed through social connections. The study conceptualized recovery 

capital as both an individual and network-level resource. Network cohesion, social exchange, 

and generalized exchange theories were tested across different relationship types to examine the 

interdependence of recovery behaviors and network formation. The current study had two 

overarching aims: (1) to investigate the boundary conditions in which network cohesion, social 

exchange, and generalized exchange theories can be reasonably applied; and (2) examine how 

recovery capital co-evolves with changes in network structures over time, with sub-aim to 
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identify the network structures that facilitate or hinder recovery capital. It was expected that 

cohesive networks that failed to evolve into ones rich in social exchanges would be detrimental 

to recovery capital (Hypothesis I), that network centralization would have a positive effect on 

recovery capital when actors engaged in the resource sharing had higher recovery capital 

(Hypothesis II), that generalized exchanges would develop in networks demonstrating 

reciprocation beyond the dyadic level (Hypotheses III), and lastly, that generalized exchange 

networks would have a stronger positive effect on recovery capital compared to social exchange 

networks (Hypothesis IV). Partial support for Hypothesis II and full support for Hypothesis III 

were found. The following sections synthesize the major findings related to the study’s aims, 

present the theoretical and practical implications, consider the methodological strengths and 

limitations, and propose future directions. 

Aim One: Theoretical Boundary Conditions 

 The current investigation examined how network cohesion, social exchange, and 

generalized exchange theories apply to three types of networks, including friendship, willingness 

to loan, and advice-seeking. The aim was to identify the boundary conditions under which 

networks structures described in each theory manifest across different relational dimensions. 

There were a few noteworthy structural differences across the different relationship networks 

examined. Friendship networks demonstrated a tendency to evolve into cohesive networks. 

However, this was not the case for loaning and advice-seeking relationships, which demonstrated 

a lower than 50% probability of ties forming over time, thus suggesting that these networks are 

quite sparse. Results were consistent with patterns found in a cross-sectional study on friendship, 

willingness to loan, and advice-seeking networks in recovery homes (Jason et al., 2020d). Given 

that both loaning and advice-seeking relationships are harder to come by in the recovery home 
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setting, a possible avenue for future research is to investigate the predictors of acceptance into 

these networks.  All networks demonstrated a tendency towards social exchanges and 

generalized exchanges. However, advice-seeking networks demonstrated the greatest tendency 

towards generalized exchanges compared to the other networks, as demonstrated by positive and 

significant transitive triplets and transitive ties parameters. Furthermore, none of the networks 

demonstrated tendencies towards network centralization, as shown by the lack of significant 

positive popularity parameters. Instead, a significant negative out-degree popularity effect 

revealed that actors with many outgoing ties attract fewer incoming ties over time. One possible 

explanation for this finding is that actors that indiscriminately extend ties to others may be less 

attractive to develop ties with. These findings emphasize the importance of considering the 

context for defining the boundary conditions of each theory to aid the understanding of how the 

prevalence of specific network structures co-evolve with recovery capital, the second focus of 

this study.  

Aim Two: The Co-Evolution of Recovery Capital and Social Networks 

The second aim was to examine how recovery capital co-evolves with changes in 

network structures over time. Contrary to the study’s hypotheses which predicted that network-

level structures such as those representing cohesion and resource exchanges would impact 

recovery capital, no network-level effect emerged from the SAOM analyses. Instead, findings 

revealed a dyadic-level effect on recovery capital. Specifically, findings suggest that direct 

connection to friends and seeking advice from those high in recovery capital improved one’s 

recovery over time. The lack of a network-level effect on recovery capital is surprising, given a 

previous study that found that individuals’ probability of relapse was predicted by the average 

levels of recovery capital of their recovery home peers (Jason et al., 2020a). Nonetheless, the 
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dyadic effect found is an important one demonstrating that recovery capital is indeed developed 

through one’s social connections, as many theorists have argued (Cleveland et al., 2021; 

Granfield & Cloud, 2001; Moos, 2003; Vaillant, 1995).  

          Previous studies have found that denser advice-seeking networks were related to higher 

stress and relapse among recovery home residents (Jason et al., 2020b; Jason et al., 2020c), yet 

when examining this dynamic more closely in the current study, seeking advice from those 

higher in recovery capital contributed to positive changes. These discrepancies can imply that 

high outgoing advice-seeking ties can signify greater stress and instability among residents at a 

network-level level. However, at a more granular level, residents who strategically approach 

other residents with high levels of recovery capital can directly benefit from their peers’ capital 

(Jason, Lynch, et al., 2021). This demonstrates that the characteristics of the advice-giver matter. 

Such findings reveal the importance of disentangling the network and dyadic level when 

studying recovery capital and social networks.   

Implications for theory, research, and practice. The findings from the current study 

serve to inform the study of recovery capital and social networks and provide important 

implications for mental health professionals and community-based programs serving those with 

SUDs. Our findings suggest that recovery capital may be enhanced through direct connections 

with peers rich in recovery capital - and this appears to be one of the most important value-

derived from living in recovery homes settings. The practical implications include the need to 

ensure that houses have a good mix of individuals, both high and low in recovery capital, to 

ensure that residents most in need can access needed resources from their peers. 

 It was found that men improved their recovery capital factors scores faster than women. 

This finding further reflects the disparities that exist among women in recovery from SUDs when 
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compared to men. For instance, women in recovery often face more significant barriers to 

treatment, greater disruptions to social relationships, face greater stigma related to their 

substance use, and more trauma (Laudet, 2013; Sutherland, Cook, & Hernandez, 2009). These 

social disadvantages are further compounded at the intersection of their many identities (e.g., 

race/ethnicity, sexual orientation, gender identities, and mental health status) (Crenshaw, 1990). 

As such, there is a greater need to create appropriate community-based supports that help build 

their recovery capital. Additionally, only one study on recovery capital has primarily focused on 

women's experiences (Gueta & Addad, 2015), presenting an area in need of greater research. 

 Despite the lack of network-level effects in the results, there might be other recovery 

benefits from the network structures examined. For instance, Moos (2008) and Vaillant (2005) 

hypothesized that the social mechanisms most critical to recovery from SUDs are those found in 

cohesive networks, such as social bonding, monitoring, and goal direction. More generally, 

having cohesive ties with others who are supportive of one’s recovery can help individuals 

model recovery-congruent behaviors, and learn effective coping skills that can mitigate life 

stressors, and build one’s feelings of  self-efficacy, all of which can optimize recovery success 

(Castonguay & Beutler, 2006; Oetting & Donner meyer, 1998; Petraitis, Flay, & Miller, 1995). 

More research is warranted to examine how networks may impact other recovery-supportive 

processes. 

Strengths, Limitations and Future Directions. The current study has several strengths 

worth highlighting. First, this study made several contributions to the theoretical understanding 

of how recovery capital is gained through social connections. At its core, this study attempted to 

promote our understanding of recovery capital as both an individual and network-level construct 

that is both developed within and between individuals. Second, the study’s design used a 
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dynamic social network approach to network analysis. Further, the completeness of the current 

data and the number of networks examined over six waves of data are strengths of this 

investigation. Data were collected from 85% of the participants, with complete participation 

from all members of most of the homes in the sample. The small amount of missing data 

provides some confidence that the results of this study are meaningful.  

The findings of this study must be considered in light of several methodological 

limitations. While the homes included in the study were located in three states from three 

different regions (e.g., North West, South East, and South West) of the US, it is unclear whether 

these findings can generalize to other Oxford Houses in other regions of the US. Further, the 

sample is demographically homogenous, with the vast majority of participants being White. 

However, participant’s racial and ethnic breakdowns were comparable to national estimates of 

the overall Oxford House population (Oxford House, 2020) and of the broader United States 

population with substance use disorders (Grisgsby & Howard, 2019; Witbrodt, Mulia, Zemore, 

& Kerr, 2014) and thus do not represent a sampling bias. While racial and ethnic differences 

across rates of SUDs are modest (SAMHSA, 2018), racial and ethnic minorities are 

disproportionally impacted by the negative consequences of substance use due to systemic 

discrimination (Acevedo et al., 2012; Algeria et al., 2004; Bluthenthal, Jacobson, & Robinson, 

2007; Centers for Disease Control and Prevention, 2017a; 2017b; Davis & Ancis, 2012; 

Guerrero et al., 2013; Knighton et al., 2018; Lappan, Brown, & Hendricks, 2020; Le Cook et al., 

2011; Mays, Jones, Delany-Brumsey, Coles, & Cochran, 2018; Saloner & Le Cook, 2013; Wells, 

2001).  Future studies on racial and ethnic minorities with SUDs are warranted for reducing 

health disparities and ensuring equitable recovery outcomes.   
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Findings may not be representative of other types of recovery homes. Recovery homes 

are the largest residential community-based option for individuals recovering from SUDs (Jason, 

Wiedbusch, Bobak, & Taullahu, 2020). Whereas most recovery homes are run by professional 

staff, Oxford Houses are entirely peer-run with house members managing all house operations, 

including financial obligations, house maintenance, rule enforcement, and behavioral 

management. Therefore, the organizational characteristics of Oxford Houses such as its peer-run 

model may influence how relationships form in the homes which suggests that Oxford House 

networks may differ from those formed in staff governed recovery homes. Future research can 

expand on the current study by comparing how networks form and evolve overtime in Oxford 

Houses versus traditional homes and its influence on recovery capital. 

Another limitation of the study include the methodological disadvantages of conducting 

longitudinal social network analyses on small networks. While the study sample included 627 

residents over six observations, the number of ties is much fewer than that of a single network 

comprised of the same number of actors. While an unrestricted network of 627 actors would 

potentially have 393,129 ties per wave (627 x 627 = 393,129), the restricted networks of 627 

actors bounded by a recovery home examined in the study resulted in a total number of 5,389 ties 

of per observation. This possibly prevented the examination of more complex models, such as 

those testing the interaction effects of average alter popularity which did not make it to any of 

the final models. While the effects of reciprocated degree and dense triads were tested, these 

were not statistically significant. Nonetheless, analyzing the small bounded networks of 

individuals in recovery was important to the study’s aim to investigate how their most proximal 

social environments influences their recovery trajectories. However, increasing the number of 

networks in future studies can aid the investigation of more complex models.   
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While a significant percentage of participants (74%) exited their recovery home 

throughout the study, the current study only examined data collected during residents’ stay in 

their recovery homes and not when they transitioned out of their homes. Future studies can 

augment the findings by examining outcomes after individuals exit their homes. 

Social networks are complex and multidimensional; therefore, combining multiple 

methods in social network research can help account for these intricacies in future investigations. 

For instance, quantitative and qualitative methodology can be merged in social network analyses 

to provide a more nuanced understanding of individual’s social context and the mechanisms 

behind network change (Bolibar, 2016; Rice & Yoshioka-Maxwell, 2015), and such a mixed-

method approach has been increasingly used in social network research (Froehlich, Van Waes, & 

Schafer, 2020; Henwood et al., 2015; Nooraie, Lohfeld, Marin, Hanneman & Dobbins, 2017).  A 

mixed-method study can augment the information obtained through quantitative social network 

instruments by helping elucidate the nature and quality of the relationships under investigation in 

greater detail thus enhancing the explanatory power and resulting knowledge of the findings 

(Bolibar, 2016; Bryman, 2008; Hollstein, 2014; Nooraei et al., 2021). 

Future research would benefit from utilizing network visualization to provide a dynamic 

representation of the SAOM results (see Adams & Schaefer, 2018). Network visualizations are 

particularly helpful in understanding the unobserved process that unfold between waves of 

observed data referred to as ‘micro steps,’ which is when actors have the opportunity to change 

their outgoing ties or change their behavior (e.g., increasing or decreasing one level).  

The studies proposed a multi-level framework of recovery capital that can also be 

extended to other subpopulations within the substance use recovery community to examine 

whether there are consistencies or discrepancies between our sample of Oxford House residents 
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and those utilizing different recovery support services or those who do not utilize any services. 

These subpopulations may have different access to resources and network support, thus offering 

greater insights into a broader range of recovery trajectories. 

Conclusion 

Social networks represent individuals' most proximal social environment and thus play an 

important role in developing recovery capital. This study presents new research beginning to 

model the co-evolution of social network dynamics and recovery capital trajectories for those 

with SUDs. Insights into the social dynamics that predict individuals’ positive recovery course 

helps facilitate future theoretical developments and empirical investigations on the social 

ecology of recovery. 

 

 

 

 

 

 

 

 

 

 

 

 

 



81  

 
 

References 

Abbott, S., & Freeth, D. (2008). Social capital and health: starting to make sense of the role of 

generalized trust and reciprocity. Journal of health psychology, 13(7), 874-883. 

Adams, J., & Schaefer, D. R. (2018). Visualizing stochastic actor-based model 

microsteps. Socius, 4, 2378023118816545. 

Adamson, S. J., Sellman, J. D., & Frampton, C. M. (2009). Patient predictors of alcohol 

treatment outcome: a systematic review. Journal of Substance Abuse Treatment, 36(1), 

75-86. 

Adler, P. S., & Kwon, S. W. (2002). Social capital: Prospects for a new concept. Academy of 

Management Review, 27(1), 17-40. 

Ahuja, G. (2000). Collaboration networks, structural holes, and innovation: A longitudinal 

study. Administrative Science Quarterly, 45(3), 425-455. 

Ajzen, I., & Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and 

perceived behavioral control. Journal of Experimental Social Psychology, 22(5), 453-

474. 

Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of 

Modern Physics, 74(1), 47. 

Alegria M, Vera M, Shrout P, Canino G, Lai S, Albizu C, Marin H, Pena M, & Rusch D.(2004). 

Understanding hard-core drug use among urban Puerto Rican women in high-risk 

neighborhoods. Addictive Behaviors, 29, 643–664. 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 

(5th ed.). Arlington, VA: Author. 



82  

 
 

American Society of Addiction Medicine (ASAM). (2013).Terminology related to addiction, 

treatment, and recovery. Retrieved fromhttp://www.asam.org/docs/default-source/public-

policy-statements/1-terminology-atr-7 

135f81099472bc604ca5b7ff000030b21a.pdf?sfvrsn= 

Aral, S., & Van Alstyne, M. (2011). The diversity-bandwidth trade-off. American Journal of 

Sociology, 117(1), 90-171. 

Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books. 

Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 

1390-1396. 

Bahl, N. K. H., Nafstad, H. E., Blakar, R. M., Landheim, A. S., & Brodahl, M. (2019). Multiple 

senses of community and recovery processes. A pilot study for a national evaluation of 

the experiences of persons with substance use problems receiving help and services from 

Norwegian municipalities. Journal of Community Psychology, 47(6), 1399-1418. 

Baker, W., & Dutton, J. E. (2007). Enabling positive social capital in organizations. In J. E. 

Dutton & B. Ragins (Eds.), Exploring positive relationships at work: Building a 

theoretical and research foundation: 325-345. Mahwah, NJ: Lawrence Erlbaum 

Association. 

Baldwin, A. S., Rothman, A. J., Hertel, A. W., Linde, J. A., Jeffery, R. W., Finch, E. A., & 

Lando, H. A. (2006). Specifying the determinants of the initiation and maintenance of 

behavior change: an examination of self-efficacy, satisfaction, and smoking 

cessation. Health Psychology, 25(5), 626. 



83  

 
 

Baliunas, D., Rehm, J., Irving, H., & Shuper, P. (2010). Alcohol consumption and risk of 

incident human immunodeficiency virus infection: a meta-analysis. International Journal 

of Public Health, 55(3), 159-166. 

Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 

122. 

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, 1986(23-

28). 

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological 

Review, 84(2), 191. 

Bandura, A. (1999). A sociocognitive analysis of substance abuse: An agentic 

perspective. Psychological Science, 10(3), 214-217. 

Barbieri, B., Dal Corso, L., Sipio, D., Maria, A., De Carlo, A., & Benevene, P. (2016). Small 

opportunities are often the beginning of great enterprises: The role of work engagement 

in support of people through the recovery process and in preventing relapse in drug and 

alcohol abuse. Work, 55(2), 373–383. 

Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based 

approach to human disease. Nature reviews. Genetics, 12(1), 56–68. 

https://doi.org/10.1038/nrg2918 

Barrera Jr, M. (1986). Distinctions between social support concepts, measures, and 

models. American Journal of Community Psychology, 14(4), 413-445. 

Barrera, M. (1988). Models of social support and life stress: Beyond the buffering 

hypothesis. Life events and psychological functioning: Theoretical and methodological 

issues, 1988, 211-236. 

https://doi.org/10.1038/nrg2918


84  

 
 

Bearman, P. (1997). Generalized exchange. American Journal of Sociology, 102(5), 1383-1415. 

Berkman, L. F., & Glass, T. (2000). Social integration, social networks, social support, and 

health. Social Epidemiology, 1(6), 137-173. 

Best, D. (2015). The Australian life in recovery survey. Melbourne, Australia: Turning Point, 

Eastern Health; p. 32. 

Best, D., Gow, J., Knox, T., Taylor, A., Groshkova, T., & White, W. (2012). Mapping the 

recovery stories of drinkers and drug users in Glasgow: Quality of life and its 

associations with measures of recovery capital. Drug and Alcohol Review, 31(3), 334-

341. 

Best, D., Honor, S., Karpusheff, J., Loudon, L., Hall, R., Groshkova, T., & White, W. (2012b). 

Well-being and recovery functioning among substance users engaged in posttreatment 

recovery support groups. Alcoholism Treatment Quarterly, 30(4), 397-406. 

Best, D., McKitterick, T., Beswick, T., & Savic, M. (2015). Recovery capital and social 

networks among people in treatment and among those in recovery in York, 

England. Alcoholism Treatment Quarterly, 33(3), 270-282. 

Best, D., Vanderplasschen, W., & Nisic, M. (2020). Measuring capital in active addiction and 

recovery: the development of the strengths and barriers recovery scale 

(SABRS). Substance Abuse Treatment, Prevention, and Policy, 15(1), 1-8. 

Betty Ford Institute Consensus Panel. (2007).What is recovery? A working definition from the 

Betty Ford Institute. Journal of Substance Abuse Treatment, 33(3), 221-228. 

Blau, P. (1964). Exchange and power in social life. New York: Wiley. 



85  

 
 

Bluthenthal, R. N., Jacobson, J. O., & Robinson, P. L. (2007). Are racial disparities in alcohol 

treatment completion associated with racial differences in treatment modality entry? 

Comparison of outpatient treatment and residential treatment in Los Angeles County, 

1998 to 2000. Alcoholism: Clinical and Experimental Research, 31(11), 1920-1926. 

Bodin, Ö., & Crona, B. I. (2009). The role of social networks in natural resource governance: 

What relational patterns make a difference?. Global environmental change, 19(3), 366-

374. 

Bodin, Ö., & Norberg, J. (2005). Information network topologies for enhanced local adaptive 

management. Environmental Management, 35(2), 175-193. 

Boeri, M., Gardner, M., Gerken, E., Ross, M., & Wheeler, J. (2016). “I don’t know what fun is”: 

examining the intersection of social capital, social networks, and social recovery. Drugs 

and Alcohol Today. 16(1): 95–105. 

Boeri, M., Gibson, D., & Boshears, P. (2014). Conceptualizing Social Recovery: Recovery 

Routes of Methamphetamine Users. Journal of Qualitative Criminal Justice & 

Criminology: JQCJC, 2(1), 5–38. 

Boeri, M., Lamonica, A. K., & Harbry, L. (2011). Social recovery, social capital, and drug 

courts. Practicing Anthropology, 33(1), 8-13. 

Bolíbar, M. (2016). Macro, meso, micro: Broadening the ‘social’of social network analysis with 

a mixed methods approach. Quality & Quantity, 50(5), 2217-2236. 

Bourdieu, P. (1980). Le capital social: notes provisoires. Actes de la recherche en sciences 

sociales, 31(1), 2-3. 



86  

 
 

Bourdieu, P. (1985). The Forms of Capital. In Handbook of Theory and Research for the 

Sociology of Education, ed. John Richardson, pp. 241–58. New York: Greenwood. 

Bourdieu, P. (1986). The forms of capital. In: John G. Richardson (ed.): Handbook of Theory 

and Research for the Sociology of Education. New York: Greenwood Press, s. 241-258. 

Bourdieu, P., & Wacquant, L. J. (1992). An invitation to reflexive sociology. University of 

Chicago press. 

Bradshaw, S. D., Shumway, S. T., Harris, K. S., & Baker, A. K. (2013). Predictive factors of 

readiness for change during inpatient treatment. Alcoholism Treatment Quarterly, 31(3), 

280-302. 

Bradshaw, S. D., Shumway, S. T., Wang, E. W., & Harris, K. S. (2014). Addiction and the 

mediation of hope on craving, readiness, and coping. Journal of Groups in Addiction & 

Recovery, 9(4), 294-312. 

Brennan, P. L., & Moos, R. H. (1990). Life stressors, social resources, and late-life problem 

drinking. Psychology and Aging, 5(4), 491. 

Brewer, D. D., Catalano, R. F., Haggerty, K., Gainey, R. R., & Fleming, C. B. (1998). A meta‐

analysis of predictors of continued drug use during and after treatment for opiate 

addiction. Addiction, 93(1), 73-92. 

Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and  

design. Harvard university press. 

Brown, L. D., Tang, X., & Hollman, R. L. (2014). The structure of social exchange in self-help 

support groups: Development of a measure. American Journal of Community 

Psychology, 53(1), 83-95. 



87  

 
 

Burk, W. J., Steglich, C. E., & Snijders, T. A. (2007). Beyond dyadic interdependence: Actor-

oriented models for co-evolving social networks and individual behaviors. International 

Journal of Behavioral Development, 31(4), 397-404. 

Burns, J., & Marks, D. (2013). Can recovery capital predict addiction problem severity? 

Alcoholism Treatment Quarterly, 31(3), 303-320. 

Burt, R. S. (2000). The network structure of social capital. Research in Organizational 

Behavior, 22, 345-423. 

Burt, R. S. (2001). Closure as social capital. Social capital: Theory and research, 31-55. 

Burt, R. S., & Knez, M. (1995). Kinds of third-party effects on trust. Rationality and 

Society, 7(3), 255-292. 

Campbell, B. W., Cranmer, S., Doogan, N., & Warren, K. (2019). Relationship between network 

clustering in a therapeutic community and reincarceration following discharge. Journal of 

Substance Abuse Treatment, 97, 14-20. 

Capaldo, A. (2007). Network structure and innovation: The leveraging of a dual network as a 

distinctive relational capability. Strategic Management Journal, 28(6), 585-608. 

Carvajal, S. C., Clair, S. D., Nash, S. G., & Evans, R. I. (1998). Relating optimism, hope, and 

self-esteem to social influences in deterring substance use in adolescents. Journal of 

Social and Clinical Psychology, 17(4), 443-465. 

Castonguay, L. G., & Beutler, L. E. (2006). Principles of therapeutic change: A task force on 

participants, relationships, and techniques factors. Journal of Clinical Psychology, 62(6), 

631-638. 

Centers for Disease Control and Prevention (CDC). (2016a). Increases in drug and opioid 

overdose Deaths – United States, 2000–2014. Morbidity and Mortality Weekly Report, 



88  

 
 

64 (50), 1378-1382. Retrieved from: 

https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6450a3.htm 

Centers for Disease Control and Prevention (2017a). Injury prevention and control: Opioid 

overdose. Retrieved from www.cdc.gov/drugoverdose/. 

Centers for Disease Control and Prevention (2017b). Hepatits C disproportionately affects the 

African American community. Retrieved 

from https://www.cdc.gov/hepatitis/blackhistmnth-hepc.htm, Accessed date: 16 October 

2018 
 

Centola, D. (2010). The spread of behavior in an online social network 

experiment. Science, 329(5996), 1194-1197. 

Chavarria, J., Stevens, E. B., Jason, L. A., & Ferrari, J. R. (2012). The effects of self-regulation 

and self-efficacy on substance use abstinence. Alcoholism Treatment Quarterly, 30(4), 

422-432. 

Chernyak, N., Leimgruber, K. L., Dunham, Y. C., Hu, J., & Blake, P. R. (2019). Paying back 

people who harmed us but not people who helped us: Direct negative reciprocity 

precedes direct positive reciprocity in early development. Psychological Science, 30(9), 

1273-1286. 

Cleveland, H. H., Brick, T. R., Knapp, K. S., & Croff, J. M. (2021). Recovery and Recovery 

Capital: Aligning Measurement with Theory and Practice. In Family Resilience and 

Recovery from Opioids and Other Addictions (pp. 109-128). Springer, Cham. 

Cloud, W., & Granfield, R. (2004). A life course perspective on exiting addiction: The relevance 

of recovery capital in treatment. NAD publication, 44, 185-202. 

https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6450a3.htm
http://www.cdc.gov/drugoverdose/
https://www.cdc.gov/hepatitis/blackhistmnth-hepc.htm


89  

 
 

Cloud, W., & Granfield, R. (2008). Conceptualizing recovery capital: Expansion of a theoretical 

construct. Substance Use & Misuse, 43(12-13), 1971-1986. 

Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Medicine. 

Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of 

Sociology, 94, S95-S120. 

Coleman, J. S. 1990. Foundations of social theory. Harvard University Press, Cambridge, 

Massachusetts, USA. 

Coleman, J. S. (1994). Social capital, human capital, and investment in youth. Youth 

Unemployment and Society, 34. 

Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived 

stress. Journal of Health and Social Behavior, 385-396. 

Cohen, S., & Wills, T. A. (1985). Stress, social support, and the buffering 

hypothesis. Psychological Bulletin, 98(2), 310. 

Cropanzano, R., & Mitchell, M. S. (2005). Social exchange theory: An interdisciplinary 

review. Journal of Management, 31(6), 874-900. 

Cook, K. S., Molm, L. D., & Yamagishi, T. 1993. Exchange relations and exchange networks: 

Recent developments insocial exchange theory. In J. Berger & M. Zelditch (Eds.), 

Theoretical research programs: Studies in the growth of theory: 296-322. Stanford, CA: 

Stanford University Press. 



90  

 
 

Croson, R. T. (2007). Theories of commitment, altruism and reciprocity: Evidence from linear 

public goods games. Economic Inquiry, 45(2), 199-216. 

Cunningham, J. A. (1999a). Resolving alcohol-related problems with and without treatment: the 

effects of different problem criteria. Journal of Studies on Alcohol, 60(4), 463-466. 

Cunningham, J. A. (1999b). Untreated remissions from drug use: the predominant 

pathway. Addictive Behaviors, 24(2), 267-270. 

Daddow R, Broome S. (2010). Whole person recovery: a user-centred systems approach to 

problem drug use. RSA, London [Internet]. Available from: 

http://www.thersa.org/data/assets/pdf_file/0011/362099/RSA-Whole-Person-Recovery 

report.pdf 

Davis, J. A. (1970). Clustering and hierarchy in interpersonal relations: Testing two graph 

theoretical models on 742 socio matrices. American Sociological Review, 35,843–851. 

Davis, J. R., & Tunks, E. (1991). Environments and addiction: A proposed 

taxonomy. International Journal of the Addictions, 25(sup7), 805-826. 

Davis, T. A., & Ancis, J. (2012). Look to the relationship: A review of African American women 

substance users’ poor treatment retention and working alliance development. Substance 

Use & Misuse, 47(6), 662-672. 

Dawson, D. A. (1996). Gender differences in the probability of alcohol treatment. Journal of 

Substance Abuse, 8(2), 211-225. 

http://www.thersa.org/data/assets/pdf_file/0011/362099/RSA-Whole-Person-Recovery%20report.pdf
http://www.thersa.org/data/assets/pdf_file/0011/362099/RSA-Whole-Person-Recovery%20report.pdf


91  

 
 

Degenhardt, L., & Hall, W. (2012). Extent of illicit drug use and dependence, and their 

contribution to the global burden of disease. The Lancet, 379(9810), 55-70. 

Dennis, M. L., Foss, M. A., & Scott, C. K. (2007). An eight-year perspective on the relationship 

between the duration of abstinence and other aspects of recovery. Evaluation 

Review, 31(6), 585-612. 

Dennis, M., & Scott, C. K. (2007). Managing addiction as a chronic condition. Addiction Science 

& Clinical Practice, 4(1), 45. 

Dennis, M. L., Scott, C. K., Funk, R., & Foss, M. A. (2005). The duration and correlates of 

addiction and treatment careers. Journal of Substance Abuse Treatment, 28(2), S51-S62. 

De Silva, M. J., McKenzie, K., Harpham, T., & Huttly, S. R. (2005). Social capital and mental 

illness: a systematic review. Journal of Epidemiology & Community Health, 59(8), 619-

627. 

Dobkin, P. L., Civita, M. D., Paraherakis, A., & Gill, K. (2002). The role of functional social 

support in treatment retention and outcomes among outpatient adult substance 

abusers. Addiction, 97(3), 347-356. 

Doogan, N. J., & Warren, K. (2017). A network of helping: Generalized reciprocity and 

cooperative behavior in response to peer and staff affirmations and corrections among 

therapeutic community residents. Addiction Research & Theory, 25(3), 243-250. 

Drake, R. E., Wallach, M. A., & McGovern, M. P. (2005). Special section on relapse prevention: 

Future directions in preventing relapse to substance abuse among clients with severe 

mental illnesses. Psychiatric Services, 56(10), 1297-1302. 

Duffy, P., & Baldwin, H. (2013). Recovery post treatment: plans, barriers and 

motivators. Substance Abuse Treatment, Prevention, and Policy, 8(1), 1-12. 



92  

 
 

Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets (Vol. 8). Cambridge: 

Cambridge university press. 

Eisenberger, R., Huntington, R., Hutchison, S., & Sowa, D. (1986). Perceived organizational 

support. Journal of Applied psychology, 71(3), 500. 

Ekeh, P. P. (1974). Social exchange theory: The two traditions. London: Heinemann. 

El-Bassel, N., Chen, D. R., & Cooper, D. (1998). Social support and social network profiles 

among women on methadone. Social Service Review, 72(3), 379-491. 

el-Guebaly, N. (2012). The meanings of recovery from addiction: Evolution and 

promises. Journal of Addiction Medicine, 6(1), 1-9. 

Ellis, B., Bernichon, T., Yu, P., Roberts, T., & Herrell, J. M. (2004). Effect of social support on 

substance abuse relapse in a residential treatment setting for women. Evaluation and 

Program Planning, 27(2), 213-221. 

Ellwardt, L., Wittek, R. P., Hawkley, L. C., & Cacioppo, J. T. (2020). Social network 

characteristics and their associations with stress in older adults: Closure and balance in a 

population-based sample. The Journals of Gerontology: Series B, 75(7), 1573-1584. 

Emerson, R. M. (1972). Exchange theory, part II: Exchange relations and networks. Sociological 

theories in progress, 2, 58-87. in Sociological Theories in Progress, vol. 2, edited by J. 

Berger, M. Zelditch, Jr., and B. Anderson. Boston, MA: Houghton-Mifflin. 

Evans, E., Li, L., Buoncristiani, S., & Hser, Y. I. (2014). Perceived neighborhood safety, 

recovery capital, and successful outcomes among mothers 10 years after substance abuse 

treatment. Substance Use & Misuse, 49(11), 1491-1503. 

Fassino, S., Daga, G. A., Delsedime, N., Rogna, L., & Boggio, S. (2004). Quality of life and 

personality disorders in heroin abusers. Drug and Alcohol Dependence, 76(1), 73-80. 



93  

 
 

Ferrari, J. R., Jason, L. A., Olson, B. D., Davis, M. I., & Alvarez, J. (2002). Sense of community 

among Oxford House residents recovering from substance abuse. In Psychological sense 

of community (pp. 109-122). Springer, Boston, MA. 

Fergusson, D. M., Horwood, L. J., & Swain‐Campbell, N. (2002). Cannabis use and 

psychosocial adjustment in adolescence and young adulthood. Addiction, 97(9), 1123-

1135. 

Ferlander, S. (2007). The importance of different forms of social capital for health. Acta 

Sociologica, 50(2), 115-128. 

Finney, J. W., & Moos, R. H. (1991). The long-term course of treated alcoholism: I. Mortality, 

relapse and remission rates and comparisons with community controls. Journal of Studies 

on Alcohol, 52(1), 44-54. 

Fischer, C.S. (1977) Networks and places: social relations in the urban setting. Free Press, New 

York. 

Fisher, C.S. (1982) To Dwell Among Friends: Personal Networks in Town and City. Chicago, 

IL: University of Chicago Press. 

Fischer, P. J., & Breakey, W. R. (1991). The epidemiology of alcohol, drug, and mental 

disorders among homeless persons. American Psychologist, 46(11), 1115. 

Fiske, A. P. (1991).Structures of social life: The four elementary forms of human relations. New 

York: Free Press. 

Flap, H. (2002). No man is an island: the research programme of a social capital 

theory. Conventions and Structures in Economic Organisations: Markets and 

Hierarchies. Cheltenham: Edward Elgar. 



94  

 
 

Flynn, P. M., Joe, G. M., Broome, K. M., Simpson, D. D., & Brown, B. S. (2003). Looking back 

on cocaine dependence: Reasons for recovery. American Journal of Addiction, 12, 398–

411. 

Foschi, M. (1997). On scope conditions. Small Group Research, 28, 535–555. 

Foster, J. H., Marshall, E. J., & Peters, T. J. (2000). Application of a quality of life measure, the 

life situation survey (LSS), to alcohol‐dependent subjects in relapse and 

remission. Alcoholism: Clinical and Experimental Research, 24(11), 1687-1692. 

Fowler, J. S., Volkow, N. D., Kassed, C. A., & Chang, L. (2007). Imaging the addicted human 

brain. Science & Practice Perspectives, 3(2), 4–16. doi:10.1151/spp07324 

Frank, K. A., & Yasumoto, J. Y. (1998). Linking action to social structure within a system: 

Social capital within and between subgroups. American Journal of Sociology, 104(3), 

642-686. 

Froehlich, D. E., Van Waes, S., & Schäfer, H. (2020). Linking quantitative and qualitative 

network approaches: a review of mixed methods social network analysis in education 

research. Review of Research in Education, 44(1), 244-268. 

Galai, N., Safaeian, M., Vlahov, D., Bolotin, A., & Celentano, D. D. (2003). Longitudinal 

patterns of drug injection behavior in the ALIVE Study cohort, 1988–2000: description 

and determinants. American Journal of Epidemiology, 158(7), 695-704. 

Garcia-Rea, E. A., & LePage, J. P. (2010). Reliability and validity of the World Health 

Organization quality of life: brief version (WHOQOL-BREF) in a homeless substance 

dependent veteran population. Social Indicators Research, 99(2), 333-340. 

Gargiulo, M., & Benassi, M. (2000). Trapped in your own net? Network cohesion, structural 

holes, and the adaptation of social capital. Organization Science, 11(2), 183-196. 



95  

 
 

Gächter, S., & Falk, A. (2002). Reputation and reciprocity: Consequences for the labour 

relation. Scandinavian Journal of Economics, 104(1), 1-26. 

George, A. L., & Bennett, A. (2005).Case studies and theory development in the social sciences. 

Cambridge, MA: MIT Press. 

Gergen, K. J. 1969.The psychology of behavioral exchange. Reading, MA: Addison-Wesley. 

Göbel, M., Vogel, R., & Weber, C. (2013). Management research on reciprocity: A review of the 

literature. Business Research, 6(1), 34-53. 

Gonzales, R., Hernandez, M., Douglas, S. B., & Yu, C. H. (2015). Exploring the factor structure 

of a recovery assessment measure among substance-abusing youth. Journal of 

Psychoactive Drugs, 47(3), 187-196. 

Gouldner, A. W. (1960). The norm of reciprocity: A preliminary statement. American 

Sociological Review, 25: 161-178. 

Granfield, R., & Cloud, W. (1996). The elephant that no one sees: Natural recovery among 

middle-class addicts. Journal of Drug Issues, 26(1), 45-61. 

Granfield, R., & Cloud, W. (1999). Coming clean: Overcoming addiction without treatment. 

NYU Press. 

Granfield, R., & Cloud, W. (2001). Social context and “natural recovery”: The role of social 

capital in the resolution of drug-associated problems. Substance Use & Misuse, 36(11), 

1543-1570. 

Grella, C. E., & Joshi, V. (1999). Gender differences in drug treatment careers among clients in 

the national drug abuse treatment outcome study. The American Journal of Drug and 

Alcohol Abuse, 25(3), 385-406. 



96  

 
 

Grigsby, T. J., & Howard, J. T. (2019). Prescription opioid misuse and comorbid substance use: 

Past 30‐day prevalence, correlates and co‐occurring behavioral indicators in the 2016 

National Survey on Drug Use and Health. The American Journal on Addictions, 28(2), 

111-118. 

Groshkova, T., Best, D., & White, W. (2011). Recovery Group Participation Scale (RGPS): 

Factor structure in alcohol and heroin recovery populations. Journal of Groups in 

Addiction & Recovery, 6(1-2), 76-92. 

Groshkova, T., Best, D., & White, W. (2013). The Assessment of Recovery Capital: Properties 

and psychometrics of a measure of addiction recovery strengths. Drug and Alcohol 

Review, 32(2), 187-194. 

Gubi, P. M., & Marsden-Hughes, H. (2013). Exploring the processes involved in long-term 

recovery from chronic alcohol addiction within an abstinence-based model: Implications 

for practice. Counselling and Psychotherapy Research, 13(3), 201-209. 

Guerrero, E. G., Marsh, J. C., Duan, L., Oh, C., Perron, B., & Lee, B. (2013). Disparities in 

completion of substance abuse treatment between and within racial and ethnic 

groups. Health Services Research, 48(4), 1450-1467. 

Gueta, K., & Addad, M. (2015, January). A house of cards: The long-term recovery experience 

of former drug-dependent Israeli women. In Women's Studies International Forum (Vol. 

48, pp. 18-28). Pergamon. 

Haines, V. A., Beggs, J. J., & Hurlbert, J. S. (2002). Exploring the structural contexts of the 

support process: Social networks, social statuses, social support, and psychological 

distress. In Social Networks and Health. Emerald Group Publishing Limited. 

Hallinan, M. T. (1978). The process of friendship formation. Social Networks, 1(2), 193-210. 



97  

 
 

Havassy, B. E., Hall, S. M., & Wasserman, D. A. (1991). Social support and relapse: 

Commonalities among alcoholics, opiate users, and cigarette smokers. Addictive 

Behaviors, 16(5), 235-246. 

Havassy, B. E., Wasserman, D. A., & Hall, S. M. (1995). Social relationships and abstinence 

from cocaine in an American treatment sample. Addiction, 90(5), 699-710. 

Hawkins, J. D., Catalano, R. F., & Miller, J. Y. (1992). Risk and protective factors for alcohol 

and other drug problems in adolescence and early adulthood: implications for substance 

abuse prevention. Psychological Bulletin, 112(1), 64. 

Henwood, B. F., Stefancic, A., Petering, R., Schreiber, S., Abrams, C., & Padgett, D. K. (2015). 

Social relationships of dually diagnosed homeless adults following enrollment in Housing 

First or traditional treatment services. Journal of the Society for Social Work and 

Research, 6(3), 385-406. 

Herne, K., Lappalainen, O., & Kestilä-Kekkonen, E. (2013). Experimental comparison of direct, 

general, and indirect reciprocity. The Journal of Socio-Economics, 45, 38-46. 

Hillios J. 2013. The influence of social recovery capital and stress on the health and well-being 

of individuals recovering from addiction [dissertation]. Boston College, Massachusetts. 

Hite, J. M., & Hesterly, W. S. (2001). The evolution of firm networks: From emergence to early 

growth of the firm. Strategic Management Journal, 22(3), 275-286. 

Hollstein, B. (2014). Mixed methods social network research: an introduction. In: Domı´nguez, 

S., Hollstein, B. (eds.) Mixed Methods Social Networks Research. Design and 

Applications. Cambridge University Press, New York. 

Homans, G. C. (1958). Social behavior as exchange. American Journal of Sociology, 63(6), 597-

606. 



98  

 
 

Homans, G. (1961). Social Behaviour: Its Elementary Forms. London: Routledge and Kegan 

Paul. 

House, J.  S. (1981).  Work stress and social support. Reading, house MA: Addison-Wesley. 

Hser, Y. I., Anglin, M. D., Grella, C., Longshore, D., & Prendergast, M. L. (1997). Drug 

treatment careers A conceptual framework and existing research findings. Journal of 

Substance Abuse Treatment, 14(6), 543-558. 

Hubbard, R. L., Craddock, S. G., & Anderson, J. (2003). Overview of 5-year follow-up 

outcomes in the drug abuse treatment outcome studies (DATOS). Journal of Substance 

Abuse Treatment, 25(3), 125-134. 

Huisman, M., & Steglich, C. (2008). Treatment of non-response in longitudinal network 

studies. Social Networks, 30(4), 297-308. 

Humphreys, K., Mankowski, E. S., Moos, R. H., & Finney, J. W. (1999). Do enhanced 

friendship networks and active coping mediate the effect of self-help groups on substance 

abuse?. Annals of Behavioral Medicine, 21(1), 54. 

Humphreys, K., Moos, R. H., & Cohen, C. (1997). Social and community resources and long-

term recovery from treated and untreated alcoholism. Journal of Studies on 

Alcohol, 58(3), 231-238. 

Ilgen, M., McKellar, J., & Tiet, Q. (2005). Abstinence self-efficacy and abstinence 1 year after 

substance use disorder treatment. Journal of Consulting and Clinical Psychology, 73(6), 

1175. 

Ingram, P., & Roberts, P. W. (2000). Friendships among competitors in the Sydney hotel 

industry. American Journal of Sociology, 106(2), 387-423. 



99  

 
 

International Narcotics Board. (2013). Economic consequences of drugabuse.  Retrieved from 

https://www.incb.org/documents/Publications/AnnualReports/Thematic_chapters/English

/AR_2013_E_Chapter_I. 

Irving, L. M., Seidner, A. L., Burling, T. A., Pagliarini, R., & Robbins-Sisco, D. (1998). Hope 

and recovery from substance dependence in homeless veterans. Journal of Social and 

Clinical Psychology, 17(4), 389-406. 

Iso-Ahola, S. E., & Park, C. J. (1996). Leisure-related social support and self-determination as 

buffers of stress-illness relationship. Journal of Leisure Research, 28(3), 169-187. 

Jackson, R., Wernicke, R., & Haaga, D. A. (2003). Hope as a predictor of entering substance 

abuse treatment. Addictive Behaviors, 28(1), 13-28. 

Jason, L. A., Davis, M. I., & Ferrari, J. R. (2007). The need for substance abuse after-care: 

Longitudinal analysis of Oxford House. Addictive Behaviors, 32(4), 803-818. 

Jason, L. A., Davis, M. I., Ferrari, J. R., & Bishop, P. D. (2001). Oxford House: A review of 

research and implications for substance abuse recovery and community research. Journal 

of Drug Education, 31(1), 1-27. 

Jason, L. A., Guerrero, M., Bobak, T., Light, J. M., & Stoolmiller, M. (2020). Reducing health 

disparities among black individuals in the post-treatment environment. Journal of 

Ethnicity in Substance Abuse, 1-17. 

Jason, L. A., Guerrero, M., Lynch, G., Stevens, E., Salomon‐Amend, M., & Light, J. M. (2020d). 

Recovery home networks as social capital. Journal of Community Psychology, 48(3), 

645-657. 

https://www.incb.org/documents/Publications/AnnualReports/Thematic_chapters/English/AR_2013_E_Chapter_I
https://www.incb.org/documents/Publications/AnnualReports/Thematic_chapters/English/AR_2013_E_Chapter_I


100  

 
 

Jason, L. A., Guerrero, M., Salomon-Amend, M., Light, J. M., & Stoolmiller, M. (2021). 

Personal and environmental social capital predictors of relapse following departure from 

recovery homes. Drugs: Education, Prevention and Policy, 1-14. 

Jason, L. A., Guerrero, M., Salomon‐Amend, M., Stevens, E., Light, J. M., & Stoolmiller, M. 

(2020a). Context Matters: Home‐level But Not Individual‐Level Recovery Social Capital 

Predicts Residents’ Relapse. American Journal of Community Psychology. 

Jason, L. A., Guerrero, M., Salomon-Amend, M., Lynch, G., Stevens, E., Light, J. M., ... & 

Doogan, N. J. (2020b). Network measures of advice-seeking and resource sharing are 

related to well-being in recovery homes. International Journal of Drug Policy, 102970. 

Jason, L. A., Guerrero, M., Salomon‐Amend, M., Lynch, G., Stevens, E., Light, J. M., & 

Stoolmiller, M. (2020c). Advice seeking and loaning of money related to relapse in 

recovery homes. Journal of Community & Applied Social Psychology, 31(1), 39-52. 

Jason, L. A., Light, J. M., Stevens, E. B., & Beers, K. (2014). Dynamic social networks in 

recovery homes. American Journal of Community Psychology, 53(3-4), 324-334. 

Jason, L. A., & Stevens, E. (2017). The reliability and reciprocity of a social network 

measure. Alcoholism Treatment Quarterly, 35(4), 317-327. 

Jason, L. A., Stevens, E., & Ram, D. (2015). Development of a three‐factor psychological sense 

of community scale. Journal of Community Psychology, 43(8), 973-985. 

Jason, L. A., Stevens, E., & Light, J. M. (2016). The relationship of sense of community and 

trust to hope. Journal of Community Psychology, 44(3), 334-341. 

Jason, L. A., Stevens, E. B., Light, J. M., & Doogan, N. J. (2020). An empirically based theory 

of the relationships among social embeddedness, economic viability, learned recovery 



101  

 
 

skills and perceived quality of life in recovery homes. Alcoholism Treatment 

Quarterly, 38(1), 126-142. 

Jason, L. A., Wiedbusch, E., Bobak, T. J., & Taullahu, D. (2020). Estimating the number of 

substance use disorder recovery homes in the United States. Alcoholism Treatment 

Quarterly, 38(4), 506-514. 

Joe, G. W., Broome, K. M., Rowan-Szal, G. A., & Simpson, D. D. (2002). Measuring patient 

attributes and engagement in treatment. Journal of Substance Abuse Treatment, 22(4), 

183-196. 

John, W. S., Zhu, H., Mannelli, P., Schwartz, R. P., Subramaniam, G. A., & Wu, L. T. (2018). 

Prevalence, patterns, and correlates of multiple substance use disorders among adult 

primary care patients. Drug and Alcohol Dependence, 187, 79-87. 

Kadden, R. M., & Litt, M. D. (2011). The role of self-efficacy in the treatment of substance use 

disorders. Addictive Behaviors, 36(12), 1120-1126. 

Kadushin, C. (2012).Understanding social networks. Theories, concepts and findings. New York, 

NY: Oxford University Press. 

Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1986). Fairness and the assumptions of 

economics. Journal of Business, 59: 285-300 

Kalish, Y. (2020). Stochastic actor-oriented models for the co-evolution of networks and 

behavior: An introduction and tutorial. Organizational Research Methods, 23(3), 511-

534. 

Kaskutas, L. A., Bond, J., & Humphreys, K. (2002). Social networks as mediators of the effect of 

Alcoholics Anonymous. Addiction, 97(7), 891-900. 



102  

 
 

Kawachi, I., & Berkman, L. F. (2001). Social ties and mental health. Journal of Urban 

Health, 78(3), 458-467. 

Knighton, J., Stevens-Watkins, D., Staton, M., & Pangburn, K. (2018). Trends and mental health 

correlates of nonmedical opioid use among criminal justice-involved African American 

men. Addictive Behaviors, 85, 14-20. doi:10.1016/j.addbeh.2018.04.022 

Kelly, J. G. (2006). Becoming ecological: An expedition into community psychology. Oxford  

University Press. 

Kelly, J. F., Greene, M. C., & Bergman, B. G. (2018). Beyond abstinence: Changes in indices of 

quality of life with time in recovery in a nationally representative sample of US 

adults. Alcoholism: Clinical and Experimental Research, 42(4), 770-780. 

Kelly, J. F., Hoeppner, B., Stout, R. L., & Pagano, M. (2012). Determining the relative 

importance of the mechanisms of behavior change within Alcoholics Anonymous: A 

multiple mediator analysis. Addiction, 107(2), 289-299. 

Kelly, J. F., Finney, J. W., & Moos, R. (2005). Substance use disorder patients who are 

mandated to treatment: Characteristics, treatment process, and 1-and 5-year 

outcomes. Journal of Substance Abuse Treatment, 28(3), 213-223. 

Kelly, J. F., & Hoeppner, B. (2015). A biaxial formulation of the recovery construct. Addiction 

Research & Theory, 23(1), 5-9. 

Keser, C., & Van Winden, F. (2000). Conditional cooperation and voluntary contributions to 

public goods. Scandinavian Journal of Economics, 102(1), 23-39. 

Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., ... & 

Kendler, K. S. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric 



103  

 
 

disorders in the United States: results from the National Comorbidity Survey. Archives of 

General Psychiatry, 51(1), 8-19. 

Kiecolt, K. J. (1994). Stress and the decision to change oneself: A theoretical model. Social 

Psychology Quarterly, 49-63. 

Klein, K. J., Dansereau, F., & Hall, R. J. (1994). Levels issues in theory development, data 

collection, and analysis. Academy of Management review, 19(2), 195-229. 

Knopf, A. (2020). Treatments for substance use disorders for teens and young adults. The Brown 

University Child and Adolescent Behavior Letter, 36(8), 9-10. 

Kollath-Cattano, C., DeMaria, A. L., Sundstrom, B., Kooper, A., Manzi, H., McInnis, S. M., & 

Cabot, J. O. (2018). ‘Everyone wants a community’: a qualitative investigation of the 

challenges and service needs among college students in recovery. Addiction Research & 

Theory, 26(5), 369-376. 

Koopman, J., Matta, F. K., Scott, B. A., & Conlon, D. E. (2015). Ingratiation and popularity as 

antecedents of justice: A social exchange and social capital perspective. Organizational 

Behavior and Human Decision Processes, 131, 132-148. 

Kraemer, K. L., Maisto, S. A., Conigliaro, J., McNeil, M., Gordon, A. J., & Kelley, M. E. 

(2002). Decreased alcohol consumption in outpatient drinkers is associated with 

improved quality of life and fewer alcohol‐related consequences. Journal of General 

Internal Medicine, 17(5), 382-386. 

Krishna, A. (2000). Creating and harnessing social capital. Social capital: A multifaceted 

perspective, 71-93. 

Lange, R. A., & Hillis, L. D. (2001). Cardiovascular complications of cocaine use. New England 

Journal of Medicine, 345(5), 351-358. 



104  

 
 

Lappan, S. N., Brown, A. W., & Hendricks, P. S. (2020). Dropout rates of in‐person 

psychosocial substance use disorder treatments: a systematic review and meta‐

analysis. Addiction, 115(2), 201-217. 

Latkin, C. A., Knowlton, A. R., Hoover, D., & Mandell, W. (1999). Drug network characteristics 

as a predictor of cessation of drug use among adult injection drug users: a prospective 

study. The American Journal of Drug and Alcohol Abuse, 25(3), 463-473. 

Latora, V., Nicosia, V., & Panzarasa, P. (2013). Social cohesion, structural holes, and a tale of 

two measures. Journal of Statistical Physics, 151(3), 745-764. 

Laudet, A. B. (2011). The case for considering quality of life in addiction research and clinical 

practice. Addiction Science & Clinical Practice, 6(1), 44. 

Laudet, A.B. (2013). "Life in Recovery": Report on Survey Findings. Faces & Voices of 

Recovery. Retrieved from: https://facesandvoicesofrecovery.org/wp-

content/uploads/2019/06/22Life-in-Recovery22-Report-on-the-Survey-Findings.pdf 

Laudet, A. B. (2008). The road to recovery: Where are we going and how do we get there? 

Empirically driven conclusions and future directions for service development and 

research. Substance Use & Misuse, 43(12-13), 2001-2020. 

Laudet, A. B., Becker, J. B., & White, W. L. (2009). Don't wanna go through that madness no 

more: quality of life satisfaction as predictor of sustained remission from illicit drug 

misuse. Substance Use & Misuse, 44(2), 227-252. 

Laudet, A. B., Magura, S., Vogel, H. S., & Knight, E. (2000). Support, mutual aid and recovery 

from dual diagnosis. Community Mental Health Journal, 36(5), 457-476. 

https://facesandvoicesofrecovery.org/wp-content/uploads/2019/06/22Life-in-Recovery22-Report-on-the-Survey-Findings.pdf
https://facesandvoicesofrecovery.org/wp-content/uploads/2019/06/22Life-in-Recovery22-Report-on-the-Survey-Findings.pdf


105  

 
 

Laudet, A. B., Magura, S., Vogel, H. S., & Knight, E. L. (2004). Perceived reasons for substance 

misuse among persons with a psychiatric disorder. American Journal of 

Orthopsychiatry, 74(3), 365-375. 

Laudet, A. B., Morgen, K., & White, W. L. (2006). The role of social supports, spirituality, 

religiousness, life meaning and affiliation with 12-step fellowships in quality of life 

satisfaction among individuals in recovery from alcohol and drug problems. Alcoholism 

Treatment Quarterly, 24(1-2), 33-73. 

Laudet, A. B., & Stanick, V. (2010). Predictors of motivation for abstinence at the end of 

outpatient substance abuse treatment. Journal of Substance Abuse Treatment, 38(4), 317-

327. 

Laudet, A. B., & White, W. L. (2008). Recovery capital as prospective predictor of sustained 

recovery, life satisfaction, and stress among former poly-substance users. Substance Use 

& Misuse, 43(1), 27-54. 

Laumann, E. O. (1973). Bonds of pluralism: The form and substance of urban social networks. 

New York: J. Wiley. 

Law, F. M., & Guo, G. J. (2012). Hope and recovery from substance abuse for female drug 

offenders in Taiwan. International Journal of Offender Therapy and Comparative 

Criminology, 56(8), 1258-1282. 

Lawler, E. J., Thye, S. R., & Yoon, J. (2000). Emotion and group cohesion in productive 

exchange. American Journal of Sociology, 106(3), 616-657. 

Lazega, E., & Pattison, P. E. (1999). Multiplexity, generalized exchange and cooperation in 

organizations: a case study. Social Networks, 21(1), 67-90. 



106  

 
 

Lê Cook, B., & Alegría, M. (2011). Racial-ethnic disparities in substance abuse treatment: the 

role of criminal history and socioeconomic status. Psychiatric Services, 62(11), 1273-

1281. 

Lennox, R. D., Zarkin, G. A., & Bray, J. W. (1996). Latent variable models of alcohol-related 

constructs. Journal of Substance Abuse, 8(2), 241-250. 

Levine, S., & White, P. E. (1961). Exchange as a conceptual framework for the study of 

interorganizational relationships. Administrative Science Quarterly, 583-601. 

Levi-Strauss, C. (1949). Les Structures Elementaires de la Parente. Paris: Presses Universitaires 

de France. 

Lévi-Strauss, C. (1969). The elementary structures of kinship (No. 340). Beacon Press. 

Light, J. M., Jason, L. A., Stevens, E. B., Callahan, S., & Stone, A. (2016). A mathematical 

framework for the complex system approach to group dynamics: The case of recovery 

house social integration. Group Dynamics: Theory, Research, and Practice, 20(1), 51. 

Lin, N. (1999). Building a network theory of social capital. Connections, 22(1), 28-51. 

Litt, M. D., Kadden, R. M., Kabela-Cormier, E., & Petry, N. (2007). Changing network support 

for drinking: Initial findings from the Network Support Project. Journal of Consulting 

and Clinical Psychology, 75(4), 542. 

Litt, M. D., Kadden, R. M., Kabela-Cormier, E., & Petry, N. M. (2009). Changing network 

support for drinking: network support project 2-year follow-up. Journal of Consulting 

and Clinical Psychology, 77(2), 229.  

Little, L. R., & McDonald, A. D. (2007). Simulations of agents in social networks harvesting a 

resource. Ecological Modelling, 204(3-4), 379-386. 



107  

 
 

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John Wiley 

& Sons. 

Longabaugh, R., Wirtz, P. W., Zywiak, W. H., & O'malley, S. S. (2010). Network support as a 

prognostic indicator of drinking outcomes: The COMBINE study. Journal of Studies on 

Alcohol and Drugs, 71(6), 837-846. 

Lyons, T., & Lurigio, A. J. (2010). The role of recovery capital in the community reentry of 

prisoners with substance use disorders. Journal of Offender Rehabilitation, 49(7), 445-

455. 

Marcus, B. H., Selby, V. C., Niaura, R. S., & Rossi, J. S. (1992). Self-efficacy and the stages of 

exercise behavior change. Research Quarterly for Exercise and Sport, 63(1), 60-66. 

Marsden, P. V. (2011). Survey methods for network data. The SAGE handbook of social network 

analysis, 25, 370-388. 

Marshall, T., Goldberg, R. W., Braude, L., Dougherty, R. H., Daniels, A. S., Ghose, S. S., ... & 

Delphin-Rittmon, M. E. (2014). Supported employment: assessing the 

evidence. Psychiatric Services, 65(1), 16-23. 

Martí, J., Bolíbar, M., & Lozares, C. (2017). Network cohesion and social support. Social 

Networks, 48, 192-201. 

Mauss, M. (1967).The gift: Forms and functions of exchange in archaic societies. New York: 

Norton. 

Mawson, E., Best, D., Beckwith, M., Dingle, G. A., & Lubman, D. I. (2015). Social identity, 

social networks and recovery capital in emerging adulthood: A pilot study. Substance 

Abuse Treatment, Prevention, and Policy, 10(1), 1-11. 



108  

 
 

Mays, V. M., Jones, A., Delany-Brumsey, A., Coles, C., & Cochran, S. D. (2017). Perceived 

discrimination in healthcare and mental health/substance abuse treatment among Blacks, 

Latinos, and Whites. Medical Care, 55(2), 173. 

McKay, G. (1984). Social Support, Stress and the Buffering Hypothesis: A. Theoretical 

Analysis. Handbook of psychology and health, 2, 253. 

McKay, J. R. (2017). Making the hard work of recovery more attractive for those with substance 

use disorders. Addiction, 112(5), 751-757. 

McLellan, A. T., Lewis, D. C., O'brien, C. P., & Kleber, H. D. (2000). Drug dependence, a 

chronic medical illness: implications for treatment, insurance, and outcomes 

evaluation. JAMA, 284(13), 1689-1695. 

McLeroy, K. R., Gottlieb, N. H., and Heaney, C. A. (2001) “Social Health.” In M. P. O’Donnell 

and J. S. Harris (eds.), Health Promotion in the Workplace.(3rd ed). Albany, New York: 

Delmar, 2001. 

McNeill Brown, A., Brennan Nanni, M., & LaBelle, O. P. (2020). Self-Esteem in 12-Step 

Recovery; Theoretical History, Evidence, and Implications for Future 

Research. Alcoholism Treatment Quarterly, 1-15. 

McQuaid, R. J., Malik, A., Moussouni, K., Baydack, N., Stargardter, M., & Morrisey, M. (2017). 

Life in recovery from addiction in Canada. Ottawa, Canada: Canadian Centre on 

Substance Use and Addiction, 84. 

Min, M. O., Tracy, E. M., Kim, H., Park, H., Jun, M., Brown, S., McCarty, C., & Laudet, A. 

(2013). Changes in personal networks of women in residential and outpatient substance 

abuse treatment. Journal of Substance Abuse Treatment, 45(4), 325-334. 



109  

 
 

Mitchell, J. C. (Ed.). (1969). Social networks in urban situations: analyses of personal 

relationships in Central African towns. Manchester University Press. 

Molm, L. D. (1997). Risk and power use: Constraints on the use of coercion in 

exchange. American Sociological Review, 113-133. 

Molm, L. D., Collett, J. L., & Schaefer, D. R. (2007). Building solidarity through generalized 

exchange: A theory of reciprocity. American Journal of Sociology, 113(1), 205-242. 

Molm, L. D., & Cook, K. S. (1995). Social exchange and exchange networks. Sociological 

Perspectives on Social Psychology, 2(3), 209-235. 

Moody, J., & Paxton, P. 2009. Building bridges linking social capital and social networks to 

improve theory and re- search introduction. American Behavioral Scientist, 52: 1491-

1506. 

Moody, J., & White, D. R. (2003). Structural cohesion and embeddedness: A hierarchical 

concept of social groups. American Sociological Review, 103-127. 

Moos, R. H. (2003). Addictive disorders in context: Principles and puzzles of effective treatment 

and recovery. Psychology of Addictive Behaviors, 17(1), 3. 

Moos, R. H. (2008). Active ingredients of substance use‐focused self‐help 

groups. Addiction, 103(3), 387-396. 

Moos, R. H., Finney, J. W., & Cronkite, R. C. (1990). Alcoholism treatment: Context, process, 

and outcome. Oxford University Press. 

Moos, R. H., & Moos, B. S. (2006a). Participation in treatment and Alcoholics Anonymous: A 

16‐year follow‐up of initially untreated individuals. Journal of Clinical 

Psychology, 62(6), 735-750. 



110  

 
 

Moos, R. H., & Moos, B. S. (2006b). Rates and predictors of relapse after natural and treated 

remission from alcohol use disorders. Addiction, 101(2), 212-222. 

Morgan, T. J., Morgenstern, J., Blanchard, K. A., Labouvie, E., & Bux, D. A. (2003). Health-

related quality of life for adults participating in outpatient substance abuse 

treatment. American Journal on Addictions, 12(3), 198-210. 

Neal, J. W., & Christens, B. D. (2014). Linking the levels: Network and relational perspectives 

for community psychology. American Journal of Community Psychology, 53(3-4), 314-

323. 

Neale, J., Stevenson, C. (2014). Social and recovery capital amongst homeless hostel residents 

who use drugs and alcohol. International Journal of Drug Policy. 26:475–483. 

Noone, M., Dua, J., & Markham, R. (1999). Stress, cognitive factors, and coping resources as 

predictors of relapse in alcoholics. Addictive Behaviors, 24(5), 687-693. 

Nooraie, R. Y., Lohfeld, L., Marin, A., Hanneman, R., & Dobbins, M. (2017). Informing the 

implementation of evidence-informed decision-making interventions using a social 

network analysis perspective; a mixed-methods study. BMC Health Services 

Research, 17(1), 1-14. 

Nooraie, R. Y., Thompson, B., D’Silva, C., Zenlea, I., Tabatabaee, M., & Aghaei, A. M. (2021). 

A fused mixed-methods approach to thematic analysis of personal networks: Two case 

studies of caregiver support networks. Network Science, 9(2), 236-253. 

Nosyk, B., Anglin, M. D., Brecht, M. L., Lima, V. D., & Hser, Y. I. (2013). Characterizing 

durations of heroin abstinence in the California Civil Addict Program: results from a 33-

year observational cohort study. American Journal of Epidemiology, 177(7), 675-682. 



111  

 
 

Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805), 1560-

1563. 

Nowak, M. A., & Roch, S. (2007). Upstream reciprocity and the evolution of 

gratitude. Proceedings of the royal society B: Biological Sciences, 274(1610), 605-610. 

Oetting, E. R., & Donnermeyer, J. F. (1998). Primary socialization theory: The etiology of drug 

use and deviance. I. Substance Use & Misuse, 33(4), 995-1026. 

Oh, H., Labianca, G., & Chung, M. H. (2006). A multilevel model of group social 

capital. Academy of Management Review, 31(3), 569-582. 

Ohtsuki, H., & Nowak, M. A. (2007). Direct reciprocity on graphs. Journal of Theoretical 

Biology, 247(3), 462-470. 

Office  of  Alcoholism  and  Substance  Abuse  Services,  State  of  New York. (2012).Survey: 

Ten percent of American adults report being in recovery from substance abuse or 

addiction. Retrieved from: https://oasas.ny.gov/news/survey-ten-percent-american-adults-

report-being-recovery-substance-abuse-or-addiction 

Oxford House (2019). Oxford House manual: An Idea Based On a Sound System For 

Recovering Alcoholics and Drug Addicts to Help Themselves. Silver Spring, MD: 

Oxford House, Inc. 

Oxford House (2020). Oxford House, Inc. Annual Report FY2020. Silver Spring, MD: Oxford 

House, Inc. Retrieved from: https://www.oxfordhouse.org/userfiles/file/doc/ar2020.pdf 

Panebianco, D., Gallupe, O., Carrington, P. J., & Colozzi, I. (2016). Personal support networks, 

social capital, and risk of relapse among individuals treated for substance use 

issues. International Journal of Drug Policy, 27, 146-153. 

Parker, B. (1998).Globalization: Managing across boundaries. London: Sage. 

https://oasas.ny.gov/news/survey-ten-percent-american-adults-report-being-recovery-substance-abuse-or-addiction
https://oasas.ny.gov/news/survey-ten-percent-american-adults-report-being-recovery-substance-abuse-or-addiction


112  

 
 

Parker, P. D., Ciarrochi, J., Heaven, P., Marshall, S., Sahdra, B., & Kiuru, N. (2015). Hope, 

friends, and subjective well‐being: A social network approach to peer group contextual 

effects. Child Development, 86(2), 642-650. 

Parkin, S. (2016). Salutogenesis: Contextualising place and space in the policies and politics of 

recovery from drug dependence. International Journal of Drug Policy, 33, 21-26. 

Parks, M. R. (2011). Boundary conditions for the application of three theories of computer-

mediated communication to MySpace. Journal of Communication, 61(4), 557-574. 

Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of 

methamphetamine-dependent subjects during decision making predict relapse. Archives 

of General Psychiatry, 62(7), 761-768. 

Paxton, P. (1999). Is social capital declining in the United States? A multiple indicator 

assessment. American Journal of Sociology, 105(1), 88-127. 

Peng, T. Q., & Wang, Z. Z. (2013). Network closure, brokerage, and structural influence of 

journals: a longitudinal study of journal citation network in Internet research (2000–

2010). Scientometrics, 97(3), 675-693. 

Peterson, N. A., & Reid, R. J. (2003). Paths to psychological empowerment in an urban 

community: Sense of community and citizen participation in substance abuse prevention 

activities. Journal of Community Psychology, 31(1), 25-38. 

Petraitis, J., Flay, B. R., & Miller, T. Q. (1995). Reviewing theories of adolescent substance use: 

organizing pieces in the puzzle. Psychological Bulletin, 117(1), 67. 

Phan, K. L., Sripada, C. S., Angstadt, M., & McCabe, K. (2010). Reputation for reciprocity 

engages the brain reward center. Proceedings of the National Academy of 

Sciences, 107(29), 13099-13104. 



113  

 
 

Phan, T. M., & Yarosh, S. (2016, February). Sustaining Reciprocity: Generating Social Capital 

within Peer-Support Communities. In Proceedings of the 19th ACM Conference on 

Computer Supported Cooperative Work and Social Computing Companion (pp. 369-

372). 

Portes, A. (1998). Social capital: Its origins and applications in modern sociology. Annual 

Review of Sociology, 24(1), 1-24. 

Portes, A. (2000). The two meanings of social capital. In Sociological forum (Vol. 15, No. 1, pp. 

1-12). Kluwer Academic Publishers-Plenum Publishers. 

Préau, M., Protopopescu, C., Spire, B., Sobel, A., Dellamonica, P., Moatti, J. P., & Carrieri, P., 

& MANIF-2000 Study Group. (2007). Health related quality of life among both current 

and former injection drug users who are HIV-infected. Drug and Alcohol 

Dependence, 86(2-3), 175-182. 

Prell, C. (2011).Social network analysis: history, theory and methodology. New York: Sage. 

Prochaska, J. O., & DiClemente, C. C. (1983). Stages and processes of self-change of smoking: 

toward an integrative model of change. Journal of Consulting and Clinical 

Psychology, 51(3), 390. 

Putnam, R. (1993). The prosperous community: Social capital and public life. The american 

prospect, 13(Spring), Vol. 4. Available online: http://www. prospect. org/print/vol/13. 

Putnam, Robert D. 2000. Bowling Alone: The Collapse and Revival of American Community. 

New York: Simon & Schuster. 

Rand, D. G., & Nowak, M. A. (2013). Human cooperation. Trends in Cognitive Sciences, 17(8), 

413-425. 



114  

 
 

Reagans, R., & McEvily, B. (2003). Network structure and knowledge transfer: The effects of 

cohesion and range. Administrative Science Quarterly, 48(2), 240-267. 

Rehm, J., Mathers, C., Popova, S., Thavorncharoensap, M., Teerawattananon, Y., & Patra, J. 

(2009). Global burden of disease and injury and economic cost attributable to alcohol use 

and alcohol-use disorders. The Lancet, 373(9682), 2223-2233. 

Reise, S. P., Ventura, J., Nuechterlein, K. H., & Kim, K. H. (2005). An illustration of multilevel 

factor analysis. Journal of Personality Assessment, 84(2), 126-136. 

Rice, E., & Yoshioka-Maxwell, A. (2015). Social network analysis as a toolkit for the science of 

social work. Journal of the Society for Social Work and Research, 6(3), 369-383. 

Rhoads, D. L. (1983). A longitudinal study of life stress and social support among drug 

abusers. International Journal of the Addictions, 18(2), 195-222. 

Richter, S. S., Brown, S. A., & Mott, M. A. (1991). The impact of social support and self-esteem 

on adolescent substance abuse treatment outcome. Journal of Substance Abuse, 3(4), 371-

385. 

Ripley, R. M., Snijders, T. A. B., Boda, Z., Voros, A., & Preciado, P. (2021). Manual for SIENA 

(version May 11 2021). Oxford: University of Oxford. Retrieved from 

http://www.stats.ox.ac.uk/siena/ 

Robertson, M. J., Zlotnick, C., & Westerfelt, A. (1997). Drug use disorders and treatment contact 

among homeless adults in Alameda County, California. American Journal of Public 

Health, 87(2), 221-228. 

Rollnick, S., Morgan, M., & Heather, N. (1996). The development of a brief scale to measure 

outcome expectations of reduced consumption among excessive drinkers. Addictive 

Behaviors, 21(3), 377-387. 



115  

 
 

Rosenberg, M. (1965). Rosenberg self-esteem scale (RSE). Acceptance and commitment therapy. 

Measures package, 61(52), 18. 

Rosenquist, J. N., Murabito, J., Fowler, J. H., & Christakis, N. A. (2010). The spread of alcohol 

consumption behavior in a large social network. Annals of Internal Medicine, 152(7), 

426-433. 

Rosenstock, I. M., Strecher, V. J., & Becker, M. H. (1988). Social learning theory and the health 

belief model. Health Education Quarterly, 15(2), 175-183. 

Rousseau, D. M., & Schalk, R. (2000).Psychological contracts in employment: Cross-national 

perspectives. Thousand Oaks, CA: Sage. 

Rudolf, H., & Watts, J. (2002). Quality of life in substance abuse and dependency. International 

Review of Psychiatry, 14(3), 190-197. 

Ruef, M. (2002). Strong ties, weak ties, and islands: structural and cultural predictors of   

organizational innovation. Industrial and Corporate Change, 11(3): 427–449. 

Rumpf, H. J., Bischof, G., Hapke, U., Meyer, C., & John, U. (2002). The role of family and 

partnership in recovery from alcohol dependence: comparison of individuals remitting 

with and without formal help. European Addiction Research, 8(3), 122-127. 

Sánchez, J., Sahker, E., & Arndt, S. (2020). The Assessment of Recovery Capital (ARC) predicts 

substance abuse treatment completion. Addictive Behaviors, 102, 106189. 

Sandefur, R. L., & Laumann, E. O. (1998). A paradigm for social capital. Rationality and 

Society, 10(4), 481-501. 

Santos, F. C., & Pacheco, J. M. (2005). Scale-free networks provide a unifying framework for 

the emergence of cooperation. Physical Review Letters, 95(9), 098104. 



116  

 
 

Santos, F. C., & Pacheco, J. M. (2006). A new route to the evolution of cooperation. Journal of 

Evolutionary Biology, 19(3), 726-733. 

Sarason, S. B. (1974). The psychological sense of community: Prospects for a community 

psychology. Jossey-Bass. 

Sklar, S. M., Annis, H. M., & Turner, N. E. (1999). Group comparisons of coping self-efficacy 

between alcohol and cocaine abusers seeking treatment. Psychology of Addictive 

Behaviors, 13(2), 123. 

Scott, C. K., Dennis, M. L., & Foss, M. A. (2005a). Utilizing recovery management checkups to 

shorten the cycle of relapse, treatment reentry, and recovery. Drug and Alcohol 

Dependence, 78(3), 325-338.  

Scott, C. K., Foss, M. A., & Dennis, M. L. (2005b). Pathways in the relapse—treatment—

recovery cycle over 3 years. Journal of Substance Abuse Treatment, 28(2), S63-S72. 

Schulte, M. T., & Hser, Y. I. (2013). Substance use and associated health conditions throughout 

the lifespan. Public Health Reviews, 35(2), 3. 

Schmidt, L. K., Bojesen, A. B., Nielsen, A. S., & Andersen, K. (2018). Duration of therapy–

Does it matter?: A systematic review and meta-regression of the duration of psychosocial 

treatments for alcohol use disorder. Journal of Substance Abuse Treatment, 84, 57-67. 

Schroeder, J. R., Latkin, C. A., Hoover, D. R., Curry, A. D., Knowlton, A. R., & Celentano, D. 

D. (2001). Illicit drug use in one's social network and in one's neighborhood predicts 

individual heroin and cocaine use. Annals of Epidemiology, 11(6), 389-394. 

Schweinberger, M. (2012). Statistical modelling of network panel data: Goodness of fit. British 

Journal of Mathematical and Statistical Psychology, 65(2), 263-281. 



117  

 
 

Shore, L. M., & Coyle-Shapiro, J. A.-M. (2003). New developments in the employee-

organization relationship. Journal of Organizational Behavior, 24: 443-450 

Shumway, S. T., Bradshaw, S. D., Harris, K. S., & Baker, A. K. (2013). Important factors of 

early addiction recovery and inpatient treatment. Alcoholism Treatment Quarterly, 31(1), 

3-24. 

Simpkins, S. D., Schaefer, D. R., Price, C. D., & Vest, A. E. (2013). Adolescent friendships, 

BMI, and physical activity: untangling selection and influence through longitudinal social 

network analysis. Journal of Research on Adolescence, 23(3), 537-549. 

Smith, K. P., & Christakis, N. A. (2008). Social networks and health. Annual Review 

Sociology, 34, 405-429. 

Smith, K. W., & Larson, M. J. (2003). Quality of life assessments by adult substance abusers 

receiving publicly funded treatment in Massachusetts. The American Journal of Drug and 

Alcohol Abuse, 29(2), 323-335. 

Snijders, T. A. (2001). The statistical evaluation of social network dynamics. Sociological 

Methodology, 31(1), 361-395. 

Snijders, T. A., Steglich, C. E., & Schweinberger, M. (2007). Modeling the co-evolution of 

networks and behavior. Longitudinal Models in the Behavioral and Related 

Sciences, 31(4), 41-71. 

Snijders, T. A., Lomi, A., & Torló, V. J. (2013). A model for the multiplex dynamics of two-

mode and one-mode networks, with an application to employment preference, friendship, 

and advice. Social Networks, 35(2), 265-276. 

Snijders, T. A., Van de Bunt, G. G., & Steglich, C. E. (2010). Introduction to stochastic actor-

based models for network dynamics. Social Networks, 32(1), 44-60. 



118  

 
 

Snyder, C. R., Harris, C., Anderson, J. R., Holleran, S. A., Irving, L. M., Sigmon, S. T., ... & 

Harney, P. (1991). The will and the ways: development and validation of an individual-

differences measure of hope. Journal of Personality and Social Psychology, 60(4), 570. 

Snyder, C. R., Sympson, S. C., Ybasco, F. C., Borders, T. F., Babyak, M. A., & Higgins, R. L. 

(1996). Development and validation of the State Hope Scale. Journal of Personality and 

Social Psychology, 70(2), 321. 

Sonnemans, J., Schram, A. and Offerman T. (1999), Strategic Behavior in Public Good Games: 

When Partners Drift Apart, Economics Letters, 62, pp35- 41. 

Sowards, K. A., O'Boyle, K., & Weissman, M. (2006). Inspiring hope, envisioning alternatives: 

The importance of peer role models in a mandated treatment program for 

women. Journal of Social Work Practice in the Addictions, 6(4), 55-70. 

Stadtfeld, C., Takács, K., & Vörös, A. (2020). The emergence and stability of groups in social 

networks. Social Networks, 60, 129-145. 

Stanca, L. (2009). Measuring indirect reciprocity: Whose back do we scratch?. Journal of 

Economic Psychology, 30(2), 190-202. 

Stanzani, S. (2015). Dimensions of social capital and subjective well-being: evidence from 

Italy. International Review of Sociology, 25(1), 129-143. 

Stein, M. D., Mulvey, K. P., Plough, A., & Samet, J. H. (1998). The functioning and well-being 

of persons who seek treatment for drug and alcohol use. Journal of Substance 

Abuse, 10(1), 75-84. 

Sterling, R., Slusher, C., & Weinstein, S. (2008). Measuring recovery capital and determining its 

relationship to outcome in an alcohol dependent sample. The American Journal of Drug 

and Alcohol Abuse, 34(5), 603-610. 



119  

 
 

Stevens, E. B., Buchannan, B., Ferrari, J. R., Jason, L. A., & Ram, D. (2014). An investigation of 

hope and context. Journal of Community Psychology, 42(8), 937-946. 

Stevens, E., Guerrero, M., Green, A., & Jason, L. A. (2018). Relationship of hope, sense of 

community, and quality of life. Journal of Community Psychology, 46(5), 567-574. 

Stevens, E. B., Jason, L. A., Ferrari, J. R., & Hunter, B. (2010). Self-efficacy and sense of 

community among adults recovering from substance abuse. North American Journal of 

Psychology, 12(2), 255. 

Stevens, E. B., Jason, L. A., Ferrari, J. R., Olson, B., & Legler, R. (2012). Sense of community 

among individuals in substance abuse recovery. Journal of Groups in Addiction & 

Recovery, 7(1), 15-28. 

Stevens, E., Jason, L. A., Ram, D., & Light, J. (2015). Investigating social support and network 

relationships in substance use disorder recovery. Substance Abuse, 36(4), 396-399. 

Strack, S., Carver, C. S., & Blaney, P. H. (1987). Predicting successful completion of an 

aftercare program following treatment for alcoholism: The role of dispositional 

optimism. Journal of Personality and Social Psychology, 53(3), 579. 

Strecher, V. J., McEvoy DeVellis, B., Becker, M. H., & Rosenstock, I. M. (1986). The role of 

self-efficacy in achieving health behavior change. Health Education Quarterly, 13(1), 73-

92. 

Subbaraman, M. S., & Witbrodt, J. (2014). Differences between abstinent and non-abstinent 

individuals in recovery from alcohol use disorders. Addictive Behaviors, 39(12), 1730-

1735. 

Substance Abuse and Mental Health Services Administration (2012). SAMHSA's working 

definition of recovery: 10 guiding principles of recovery. Substance Abuse and Mental 



120  

 
 

Health Services Administration. 

(Retrievedfromhttps://www.webcitation.org/6Vm7B2SaF). 

Substance Abuse and Mental Health Services Administration (2018). National Survey on Drug 

Use and Health: Detailed tables. Retrieved 

from: https://www.samhsa.gov/data/report/2018-nsduh-detailed-tables 

Substance Abuse and Mental Health Services Administration (2019). Key Substance Use and 

Mental Health Indicators in the United States: Results from the 2018 National Survey on 

Drug Use and Health. North Bethesda (MD).[Accessed 2020 Sep 15]. 

https://www.samhsa.gov/data/sites/default/files/cbhsq-

reports/NSDUHNationalFindingsReport2018/NSDUHNationalFindingsReport2018.pdf 

Surma, J. (2016). Social exchange in online social networks. The reciprocity phenomenon on 

Facebook. Computer Communications, 73, 342-346. 

Tafarodi, R. W., & Milne, A. B. (2002). Decomposing global self‐esteem. Journal of 

Personality, 70(4), 443-484. 

Takahashi, N. (2000). The emergence of generalized exchange. American Journal of 

Sociology, 105(4), 1105-1134. 

Tan, J., Zhang, H., & Wang, L. (2015). Network Closure or Structural Hole? The Conditioning 

Effects of Network–Level Social Capital on Innovation Performance. Entrepreneurship 

Theory and Practice, 39(5), 1189-1212. 

https://www.samhsa.gov/data/report/2018-nsduh-detailed-tables
https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHNationalFindingsReport2018/NSDUHNationalFindingsReport2018.pdf
https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHNationalFindingsReport2018/NSDUHNationalFindingsReport2018.pdf


121  

 
 

The World Health Organization Group. (1998). The World Health Organization quality of life 

assessment (WHOQOL): development and general psychometric properties. Social 

Science & Medicine, 46(12), 1569-1585. 

Taylor, S. E., & Aspinwall, L. G. (1996). Mediating and moderating processes in psychosocial 

stress: appraisal, coping, resistance, and vulnerability. 

Thoits, P. A. (2011). Mechanisms linking social ties and support to physical and mental 

health. Journal of Health and Social Behavior, 52(2), 145-161. 

Thoits, P. A. (1995). Stress, coping, and social support processes: Where are we? What 

next?. Journal of Health and Social Behavior, 53-79. 

Tiffany, S. T., Friedman, L., Greenfield, S. F., Hasin, D. S., & Jackson, R. (2012). Beyond drug 

use: a systematic consideration of other outcomes in evaluations of treatments for 

substance use disorders. Addiction, 107(4), 709-718. 

Titus, J. C., Godley, S. H., & White, M. K. (2007). A post-treatment examination of adolescents' 

reasons for starting, quitting, and continuing the use of drugs and alcohol. Journal of 

Child & Adolescent Substance Abuse, 16(2), 31-49. 

Torrecillas, F. L., Cobo, M. T., Delgado, P., & Ucles, I. R. (2015). Predictive capacity of self-

efficacy in drug dependence and substance abuse treatment. Journal of Psychology and 

Clinical Psychiatry, 2(3), 1-7. 

Tsai, W., & Ghoshal, S. (1998). Social capital and value creation: The role of intrafirm 

networks. Academy of Management Journal, 41(4), 464-476. 



122  

 
 

Tsui, A. S., & Wang, D. X. 2002. Employment relationships from the employer’s perspective: 

Current research and future directions. In C. L. Cooper & I. T. Robertson (Eds.), 

International review of industrial and organizational psychology: 77-114. Chichester, 

UK: Wiley. 

Tucker, J. S., Wenzel, S. L., Golinelli, D., Zhou, A., & Green Jr, H. D. (2011). Predictors of 

substance abuse treatment need and receipt among homeless women. Journal of 

Substance Abuse Treatment, 40(3), 287-294. 

Tucker, J. A., Vuchinich, R. E., & Gladsjo, J. A. (1994). Environmental events surrounding 

natural recovery from alcohol-related problems. Addictions Nursing, 6(4), 117-128. 

United Nations Office on Drugs and Crime (UNODC). (2012). World Drug Report. Retrieved 

from: https://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf 

United Nations Office on Drugs and Crime (UNODC). (2020). International standards for the 

treatment of drug use disorders. Geneva: World Health Organization. Retrieved from: 

https://apps.who.int/iris/rest/bitstreams/1273579/retrieve 

Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of 

embeddedness. Administrative Science Quarterly, 35-67. 

Vaillant, G. E. (1995) The Natural History of Alcoholism Revisited. Cambridge: Harvard 

University Press. 

Vaillant, G. E. (1996). Addictions over the life course: Therapeutic implications. Psychotherapy, 

Psychological Treatments and the Addictions, 3-18. 



123  

 
 

Vaillant, G. E. (2003). A 60‐year follow‐up of alcoholic men. Addiction, 98(8), 1043-1051. 

Valente, T. W. (2010). Social networks and health: Models, methods, and applications (Vol. 1). 

New York: Oxford University Press. 

van Melick, M., McCartney, D., & Best, D. (2013). Ongoing recovery support and peer 

networks: A preliminary investigation of recovery peer supporters and their 

peers. Journal of Groups in Addiction & Recovery, 8(3), 185-199. 

Veenstra, R., Dijkstra, J. K., Steglich, C., & Van Zalk, M. H. (2013). Network–behavior 

dynamics. Journal of Research on Adolescence. 3(3), 399–412. 

Veenstra, R., & Steglich, C. (2012). Actor-based model for network and behavior dynamics. In 

B. Laursen, T. D. Little, & N. A. Card (Eds.), Handbook of developmental research 

methods (p. 598–618). The Guilford Press. 

Villeneuve, P. J., Challacombe, L., Strike, C. J., Myers, T., Fischer, B., Shore, R., Hopkins, S., & 

Millson, P. E. (2006). Change in health‐related quality of life of opiate users in low‐

threshold methadone programs. Journal of Substance Use, 11(2), 137-149. 

Volk, R. J., Cantor, S. B., Steinbauer, J. R., & Cass, A. R. (1997). Alcohol use disorders, 

consumption patterns, and health‐related quality of life of primary care 

patients. Alcoholism: Clinical and Experimental Research, 21(5), 899-905. 

Walton, M. A., Blow, F. C., Bingham, C. R., & Chermack, S. T. (2003). Individual and 

social/environmental predictors of alcohol and drug use 2 years following substance 

abuse treatment. Addictive Behaviors, 28(4), 627-642. 



124  

 
 

Wang, Z., Szolnoki, A., & Perc, M. (2013). Optimal interdependence between networks for the 

evolution of cooperation. Scientific Reports, 3(1), 1-7. 

Wang, D., Tsui, A. S., Zhang, Y., & Ma, L. 2003. Employment relationships and firm 

performance: Evidence from an emerging economy. Journal of Organizational Behavior, 

24: 511-534. 

Warren, K., Campbell, B., & Cranmer, S. (2020b). Tightly bound: the relationship of network 

clustering coefficients and reincarceration at three therapeutic communities. Journal of 

Studies on Alcohol and Drugs, 81(5), 673-680. 

Warren, K., Campbell, B., Cranmer, S., De Leon, G., Doogan, N., Weiler, M., & Doherty, F. 

(2020a). Building the community: Endogenous network formation, homophily and 

prosocial sorting among therapeutic community residents. Drug and Alcohol 

Dependence, 207, 107773. 

Wasko, M. M., & Faraj, S. (2005). Why should I share? Examining social capital and knowledge 

contribution in electronic networks of practice. MIS Quarterly, 35-57. 

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. 

Cambridge, England: Cambridge University Press. 

Watts, D. J. (2004). The “new” science of networks. Annual Review Sociology, 30, 243-270. 

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small world’ 

networks. Nature, 393(6684), 440-442. 



125  

 
 

Weaver, G. D., Turner, N. H., & O'Dell, K. J. (2000). Depressive symptoms, stress, and coping 

among women recovering from addiction. Journal of Substance Abuse Treatment, 18(2), 

161-167. 

Wei, J., Zheng, W., & Zhang, M. (2011). Social capital and knowledge transfer: A multi-level 

analysis. Human Relations, 64(11), 1401-1423. 

Weisner, C., Delucchi, K., Matzger, H., & Schmidt, L. (2003). The role of community services 

and informal support on five-year drinking trajectories of alcohol dependent and problem 

drinkers. Journal of Studies on Alcohol, 64(6), 862-873. 

Wei, J., Zheng, W., & Zhang, M. (2011). Social capital and knowledge transfer: A multi-level 

analysis. Human Relations, 64(11), 1401-1423. 

Wellman, B. (1988). Structural analysis: From method and metaphor to theory and substance. In 

B. Wellman & S. D. Berkowitz (Eds.), Social structures: A network approach: 19-61. 

New York: Cambridge University Press. 

Wellman, B., & Frank, K. (2001). Network capital in a multi-level world: Getting support from 

personal communities. Social capital: Theory and research, Pp. 233–73 in Social Capital: 

Theory and Research, edited by N. Lin, K. Cook, and R. S. Burt. New York: Aldine de 

Gruyter. 

Wellman, B., and Gulia, M. (1999). The network basis of social support: A network is more than 

the sum of its ties, in Wellman B (Ed): ‘Networks in the Global Village’, Boulder, CO, 

Westview Press. 



126  

 
 

Wells K, Klap R, Koike A, & Sherbourne C. (2001). Ethnic disparities in unmet need for 

alcoholism, drug abuse and mental health care. American Journal of Psychiatry, 

158, 2027–2032. 

White, W. L. (2007). Addiction recovery: Its definition and conceptual boundaries. Journal of 

Substance Abuse Treatment, 33(3), 229-241. 

White, W., & Cloud, W. (2008). Recovery capital: A primer for addictions 

professionals. Counselor, 9(5), 22-27. 

White, D. R., & Harary, F. (2001). The cohesiveness of blocks in social networks: Node 

connectivity and conditional density. Sociological Methodology, 31(1), 305-359. 

Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., ... & 

Burstein, R. (2013). Global burden of disease attributable to mental and substance use 

disorders: findings from the Global Burden of Disease Study 2010. The 

Lancet, 382(9904), 1575-1586. 

Whitesock, D., Zhao, J., Goettsch, K., & Hanson, J. (2018). Validating a Survey for Addiction 

Wellness: The Recovery Capital Index. South Dakota Medicine: The Journal of the South 

Dakota State Medical Association, 71(5), 202. 

Witbrodt, J., Mulia, N., Zemore, S. E., & Kerr, W. C. (2014). Racial/ethnic disparities in alcohol‐

related problems: Differences by gender and level of heavy drinking. Alcoholism: 

Clinical and Experimental Research, 38(6), 1662-1670. 

World Health Organization (WHO). (2016).Management of sub-stance abuse: Lexicon of 

alcohol and drug terms.  Retrieved from 

http://www.who.int/substance_abuse/terminology/who_lexicon/en/ 

http://www.who.int/substance_abuse/terminology/who_lexicon/en/


127  

 
 

Yamagishi, T., & Cook, K. S. (1993). Generalized exchange and social dilemmas. Social 

Psychology Quarterly, 235-248. 

Yuan, Y. C., Gay, G., & Hembrooke, H. (2006). Focused activities and the development of 

social capital in a distributed learning “community”. The Information Society, 22(1), 25-

39. 

Zandberg, T., & Huisman, M. (2019). Missing behavior data in longitudinal network studies: the 

impact of treatment methods on estimated effect parameters in stochastic actor oriented 

models. Social Network Analysis and Mining, 9(1), 1-20. 

Zschau T, Collins C, Lee H, Hatch DL. (2016). The hidden challenge: limited recovery capital of 

drug court participants’ support networks. Journal of Applied Social Science. 10:1–22. 

Zywiak, W. H., Neighbors, C. J., Martin, R. A., Johnson, J. E., Eaton, C. A., & Rohsenow, D. J. 

(2009). The Important People Drug and Alcohol interview: Psychometric properties, 

predictive validity, and implications for treatment. Journal of Substance Abuse 

Treatment, 36(3), 321-333.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



 
 
 

 
 
 
 
 
 
 
 
 

APPENDICES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



130  

 
 

 
 
 

APPENDIX A 
Measures 

 
Oxford House Member Social Network Instrument 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
 
1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 2 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
 
1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 3 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
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1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 4 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
 
1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 5 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
 
1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
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Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 6 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
 
1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 7 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
 
1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 8 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
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1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very      Strong     Strong    Weak    None    Negative 
 
Oxford House Member 9 
Record ID __________________________________ 
Member First & Last Initial __________________________________ 
 
1. How friendly are you with this person? 
Close Friend    Friend    Acquaintance    Stranger      Adversary 
 
2. If this person asked to borrow money from you, how much would you be willing to lend them? 
$0      $10     $50   $100   $500 
 
3. If this person needed help for a day, how likely would you be to help? 
Very Likely     Likely    Maybe    Probably     Not Wouldn't 
 
4. How often do you have a personal conversation with this person? 
Daily            Almost Daily     Every Few Days    Weekly       Almost Never 
 
5. How often do you go to this person for advice on your recovery and other important life issues? 
Very Often        Quite Often     Regularly      Rarely     Never 
 
6. Overall, how strong would you relate your relationship with this person? 
Very Strong     Strong    Weak     None     Negative 
 
 
 

World Health Organization Quality Of Life-BREF 
Record ID __________________________________ 
The following questions ask how you feel about your quality of life, health, or other areas of your 
life. I will read out each question to you, along with the response options. Please choose the answer 
that appears most appropriate. If you are unsure about which response to give to a question, the 
first response you think of is often the best one. 
Please keep in mind your standards, hopes, pleasures and concerns. We ask that you think about 
your life since your last interview. 
 
1. How would you rate your quality of life? 

1. Very poor 
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2. Poor 
3. Neither poor nor good 
4. Good 
5. Very good 

 
 
2. How satisfied are you with your health?  

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

The following questions ask about how much you have experienced certain things in the last four 
weeks. 
 
3. To what extent do you feel that physical pain prevents you from doing what you need to do? 

5. Not at all  
4. A little 
3. A moderate amount 
2. Very much 
1. An extreme amount 

 
4. How much do you need any medical treatment to function in your daily life?  

5. Not at all 
4. A little 
3. A moderate amount 
2. Very much 
1. An extreme amount 

 
5. How much do you enjoy life?  

1. Not at all 
2. A little 
3. A moderate amount 
4. Very much 
5. An extreme amount 

 
6. To what extent do you feel your life to be meaningful?  

1. Not at all 
2. A little 
3. A moderate amount 
4. Very much 
5. An extreme amount 

 
7. How well are you able to concentrate?  

1. Not at all 
2. A little 
3. A moderate amount 
4. Very much 
5. Extremely 

 
8. How safe do you feel in your daily life?  

1. Not at all 
2. A little 
3. A moderate amount 
4. Very much 
5. Extremely 
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9. How healthy is your physical environment?  

1. Not at all 
2. A little 
3. A moderate amount 
4. Very much 
5. Extremely 
 

The following questions ask about how completely you experience or were able to do certain things 
in the last four weeks. 
 
10. Do you have enough energy for everyday life?  

1. Not at all 
2. A little 
3. Moderately 
4. Mostly 
5. Completely 

 
11. Are you able to accept your bodily appearance?  

1. Not at all 
2. A little 
3. Moderately 
4. Mostly 
5. Completely 

 
12. Have you enough money to meet your needs?  

1. Not at all 
2. A little 
3. Moderately 
4. Mostly 
5. Completely 

 
13. How available to you is the information that you need in your day-to-day life? 

1. Not at all 
2. A little 
3. Moderately 
4. Mostly 
5. Completely 

 
14. To what extent do you have the opportunity for leisure activities?  

1. Not at all 
2. A little 
3. Moderately 
4. Mostly 
5. Completely 

 
15. How well are you able to get around?  

1. Very poor 
2. Poor 
3. Neither poor nor good 
4. Good 
5. Very good 

 
16. How satisfied are you with your sleep?  

1. Very dissatisfied 
2. Dissatisfied 
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3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
17. How satisfied are you with your ability to perform your daily living activities? 

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
18. How satisfied are you with your capacity for work? 

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
19. How satisfied are you with yourself? 

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
20. How satisfied are you with your personal relationships? 

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
21. How satisfied are you with your sex life?  

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
22. How satisfied are you with the support you get from your friends? 

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
23. How satisfied are you with the conditions of your living place? 

1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

24. How satisfied are you with your access to health services? 
1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
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4. Satisfied 
5. Very satisfied 
 

25. How satisfied are you with your transport? 
1. Very dissatisfied 
2. Dissatisfied 
3. Neither satisfied nor dissatisfied 
4. Satisfied 
5. Very satisfied 

 
The following question refers to how often you have felt or experienced certain things in the last 
four weeks. 
 
26. How often do you have negative feeling such as blue mood, despair, anxiety, depression? 

5. Never 
4. Seldom 
3. Quite often 
2. Very often 
1. Always 

Do you have any comments about the assessment? _____________________________ 
 
 

Perceived Stress Scale Pss 
Record ID __________________________________ 
The questions in this scale ask you about your feelings and thoughts. In each case, you will be 
asked to indicate how often you felt or thought a certain way 
 
Never     Almost never   Sometimes  Fairly often   Very often 
   1                    2                  3                4                 5 
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1. How often have you felt that you were unable to control the important things in your life? 
 
2. How often have you felt confident about your ability to handle your personal problems? 
 
3. How often have you felt that things were going your way? 
 
4. How often have you felt difficulties were piling up so high that you could not overcome them? 
 
 

Drug Taking Confidence Questionaire (DTCQ) 
Record ID __________________________________ 
Listed below are a number of situations or events in which some people experience a drug use 
problem. Imagine yourself as you are right now in each of these situations. Indicate on the scale 
provided how confident you are that you will be able to resist the urge to use your drug of choice in 
that situation. 
 
Circle 100 if you are 100% confident right now that you could resist the urge to use your drug of 
choice; 80 if you are 80% confident; 60 if you are 60% confident. If you are more unconfident than 
confident, circle 40 to indicate that you are only 40% confident that you could resist the urge to use 
your drug of choice; 20 for 20% confident; or 0 if have no confidence at all about that situation.  
 
I would be able to resist the urge to use... 
Not at all confident                              Very confident 
      0       20      40       60     80     100  
 
1. If I were angry at the way things had turned out 
 
2. If I had trouble sleeping 
 
3. If I remembered something good that had happened 
 
4. If I wanted to find out whether I could use occasionally without getting hooked 
 
5. If I unexpectedly found my drug of choice or happened to see something that reminded me of my drug of choice 
 
6. If other people treated me unfairly or interfered with my plans 
 
7. If I were out with friends and they kept suggesting we go somewhere and use my drug of choice 
 
8. If I wanted to celebrate with a friend 
 
 
 

Snyders State Hope Scale 
Record ID __________________________________ 
Read each item carefully. Please rank on the 8-point scale what best describes how you think 
about yourself right now. 
Definitely False  Mostly False    Somewhat False Slightly False Slightly True  Somewhat True  Mostly True Definitely 
1                                2                           3                     4                       5                        6                 7                 8 
 
1. If I should find myself in a jam, I could think of many ways to get out of it. 
 
2. At the present time, I am energetically pursuing my goals. 
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3. There are lots of ways around my problems that I am facing now. 
 
4. Right now, I see myself as being pretty successful. 
 
5. I can think of many ways to reach my current goals. 
6. At this time, I am meeting the goals that I have set for myself. 
 
7. Right now I don't feel limited by the opportunities that are available. 
 
8. I feel like I have plenty of good choices in planning my future. 
 
9. The obstacles I face are similar to what everybody else faces. 
 
 
 
 
 
 
 
 
 
 
 

Rosenberg Self-Esteem Scale 
Record ID __________________________________ 
Instructions: Below is a list of statements dealing with your general feelings about yourself. 
 
Please indicate how strongly you agree or disagree with each statement. 
 
Strongly agree  Agree  Disagree   Strongly disagree 
  1                         2             3                   4 
 
1. I feel that I'm a person of worth, at least on an equal plane with others.  
 
2. I feel that I have a number of good qualities.  
 
3. All in all, I am inclined to feel that I am a failure. 
 
4. I am able to do things as well as most other people.  
 
5. I feel I do not have much to be proud of.  
 
6. I take a positive attitude toward myself.  
 
7. On the whole, I am satisfied with myself.  
 
8. I wish I could have more respect for myself.  
 
9. I certainly feel useless at times.  
 
10. At times I think I am no good at all.  
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Psychological Sense Of Community Scale 
Record ID __________________________________ 
Psychological Sense of Community Scale. Respondents answer whether they Strongly 
Disagree, Disagree, Slightly Disagree, Slightly Agree, Agree, or Strongly Agree with the 
questions below. 
 
1. I think this Oxford House is a good Oxford House 
 
2. I am not planning on leaving this Oxford House 
 
3. For me, this Oxford House is a good fit 
 
4. Residents can depend on each other in this Oxford House 
 
5. Residents can get help from other residents if they need it 
 
6. Residents are secure in sharing opinions or asking for advice 
 
7. This Oxford House is important to me 
 
8. I have friends in this Oxford House 
 
9. I feel good helping Oxford House and the residents 
 
 
 
 

Interpersonal Support Evaluation List (ISEL) 
Record ID __________________________________ 
INSTRUCTIONS: This scale is made up of a list of statements each of which may or may not be 
true about you. For each statement check "definitely true" if you are sure it is true about you and 
"probably true" if you think it is true but are not absolutely certain. Similarly, you should check 
"definitely false" if you are sure the statement is false and "probably false" is you think it is false 
but are not absolutely certain. 
 
definitely    false probably     false probably    true      definitely true 
          1               2                        3                    4                5 
   
1. If I wanted to go on a trip for a day (e.g., to the mountains, beach, or country) I would have a hard time finding 
someone to go with me 
 
2. I feel that there is no one I can share my most private worries and fears with. 
 
3. If I were sick, I could easily find someone to help me with my daily chores. 
 
4. There is someone I can turn to for advice about handling problems with my family. 
 
5. If I decide one afternoon that I would like to go to a movie that evening, I could easily find someone to go with 
me. 
 
6. When I need suggestions on how to deal with a personal problem, I know someone I can turn to. 
 
7. I don't often get invited to do things with others. 
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8. If I had to go out of town for a few weeks, it would be difficult to find someone who would look after my house 
or apartment (the plants, pets, garden, etc.). 
 
9. If I wanted to have lunch with someone, I could easily find someone to join me. 
 
10. If I was stranded 10 miles from home, there is someone I could call who would come and get me. 
 
11. If a family crisis arose, it would be difficult to find someone who could give me good advice about how to 
handle it. 
 
12. If I needed some help in moving to a new house or apartment, I would have a hard time finding someone to help 
me
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APPENDIX B 
Models with Eliminated Parameters 

Table 7. Stochastic Actor-Oriented Model Results For Friendship Network—Method of Moments 
estimation 

  
Parameter 

SE 
  

p-value 
95% CI t-

ratioa 
Estimate z Low High  

Network Dynamics       
 

1. Friend rate (period 1) 3.61 2.17 1.67 0.10 -0.64 7.86 -1.35 
2. Friend rate (period 2) 4.30 2.54 1.69 0.09 -0.68 9.29 0.18 
3. Friend rate (period 3) 3.88 1.22 3.19 < .001 1.50 6.27 -0.11 
4. Friend rate (period 4) 2.92 2.60 1.12 0.27 -2.18 8.01 -0.40 
5. Friend rate (period 5) 6.60 3.25 2.03 0.04 0.24 12.96 0.02 
6. Friend: outdegree (density) 1.25 0.91 1.37 0.17 -0.54 3.03 0.60 
7. Friend: reciprocity  1.68 0.44 3.80 < .001 0.81 2.55 0.44 
8. Friend: transitive triplets 0.65 0.17 3.87 < .001 0.32 0.98 0.59 
9. Friend: transitive ties 0.21 0.29 0.73 0.46 -0.35 0.78 0.69 
10. Friend: in-degree popularity -0.02 0.23 -0.09 0.93 -0.47 0.42 0.45 
11. Friend: out-degree popularity -0.70 0.30 -2.32 0.02 -1.30 -0.11 0.38 
12. Friend: out-degree activity -0.21 0.12 -1.70 0.09 -0.45 0.03 0.61 
13. Friend: LOSb alter -0.01 0.09 -0.17 0.86 -0.18 0.15 -0.39 
14. Friend: LOSb ego 0.22 0.11 1.96 0.05 0.00 0.43 0.07 
15. RCFc alter -0.05 0.10 -0.50 0.62 -0.25 0.15 -0.01 
16. RCFc ego 0.07 0.14 0.54 0.59 -0.20 0.35 0.43 

Behavior Dynamics        
17. Rate RCFc (period 1) 5.22 3.11 1.68 0.09 -0.88 11.32 -0.04 
18. Rate RCFc (period 2) 2.58 1.68 1.53 0.13 -0.73 5.88 -0.59 
19. Rate RCFc (period 3) 3.78 2.54 1.49 0.14 -1.19 8.76 -0.88 
20. Rate RCFc (period 4) 5.38 1.33 4.03 < .001 2.76 7.99 -0.50 
21. Rate RCFc (period 5) 3.32 2.00 1.66 0.10 -0.60 7.24 -1.17 
22. RCFc linear shape  1.96 5.02 0.39 0.70 -7.87 11.80 0.20 
23. RCFc quadratic shape  -0.40 1.00 -0.40 0.69 -2.36 1.55 0.03 
24. RCFc indegree 0.37 1.21 0.31 0.76 -2.01 2.76 0.99 
25. RCFc outdegree -0.96 2.91 -0.33 0.74 -6.66 4.73 0.22 
26. RCFc average alter  -0.88 2.54 -0.35 0.73 -5.86 4.09 -1.42 
27. RCFc ave. alter x pop. alterd 59.89 105.0 0.57 0.57 -145.95 265.72 -1.30 
28. RCFc reciprocated degree 0.66 2.10 0.32 0.75 -3.45 4.77 0.53 
29. RCFc: effect from Sex -1.48 4.11 -0.36 0.72 -9.53 6.58 -0.35 
30. RCFc: effect from Age -0.01 0.03 -0.43 0.67 -0.08 0.05 -0.58 
31. RCFc: effect from Black 1.06 2.79 0.38 0.70 -4.40 6.53 1.25 
32. RCFc: effect from LOSb 0.09 0.24 0.38 0.70 -0.38 0.56 -0.66 



143 
 

 
 

Note: aRatio of deviations of simulated vs. observed statistics for each effect, calculated in Phase 3 of 
the RSiena model estimation procedure. Conventionally, a p value of less than 0.10 indicates good convergence 
(Ripley et al., 2020). Overall maximum convergence ratio: 5.34. bthe log of residents length of stay in their 
recovery home. cRecovery capital factor scores. dParameter eliminated from final model. 

 
 
 
Table 8. Stochastic Actor-Oriented Model Results For Friendship Network—Method of Moments 
estimation 

  
Parameter 

SE 
  

p-value 
95% CI t-

ratioa 
Estimate z Low High  

Network Dynamics       
 

1. Friend rate (period 1) 4.65 1.14 4.07 0.00 2.41 6.89 -0.04 
2. Friend rate (period 2) 3.32 1.31 2.53 0.01 0.75 5.89 -0.02 
3. Friend rate (period 3) 3.67 1.10 3.35 < .001 1.52 5.82 -0.06 
4. Friend rate (period 4) 3.14 0.83 3.79 < .001 1.52 4.77 -0.01 
5. Friend rate (period 5) 4.94 3.59 1.37 0.17 -2.10 11.99 -0.13 
6. Friend: outdegree (density) 0.77 0.73 1.05 0.29 -0.66 2.19 0.13 
7. Friend: reciprocity  1.64 0.52 3.14 < .001 0.61 2.66 0.09 
8. Friend: transitive triplets 0.48 0.16 3.01 < .001 0.17 0.80 0.19 
9. Friend: transitive ties 0.20 0.29 0.71 0.48 -0.36 0.77 0.13 
10. Friend: in-degree popularity 0.03 0.19 0.16 0.87 -0.34 0.40 0.19 
11. Friend: out-degree popularity -0.58 0.23 -2.56 0.01 -1.03 -0.14 0.16 
12. Friend: out-degree activity -0.14 0.14 -0.99 0.32 -0.40 0.13 0.23 
13. Friend: LOSb alter 0.02 0.10 0.24 0.81 -0.17 0.22 0.07 
14. Friend: LOSb ego 0.23 0.08 2.99 < .005 0.08 0.38 0.08 
15. RCFc alter -0.02 0.09 -0.25 0.80 -0.20 0.16 0.18 
16. RCFc ego 0.05 0.08 0.59 0.56 -0.11 0.21 0.17 

Behavior Dynamics        
17. Rate RCFc (period 1) 3.76 0.65 5.76 < .001 2.48 5.04 -0.04 
18. Rate RCFc (period 2) 2.45 0.43 5.65 < .001 1.60 3.30 -0.07 
20. Rate RCFc (period 3) 3.71 0.73 5.10 < .001 2.28 5.13 -0.04 
21. Rate RCFc (period 4) 3.69 0.89 4.15 < .001 1.95 5.44 -0.06 
22. Rate RCFc (period 5) 4.14 1.22 3.40 < .001 1.75 6.52 0.19 
23. RCFc linear shape  0.60 0.26 2.35 0.02 0.10 1.11 0.11 
24. RCFc quadratic shape  -0.14 0.02 -7.05 < .001 -0.18 -0.10 -0.19 
25. RCFc indegree -0.06 0.13 -0.46 0.64 -0.32 0.20 0.10 
26. RCFc outdegree -0.19 0.14 -1.37 0.17 -0.45 0.08 0.07 
27. RCFc average alter  0.12 0.06 2.20 0.03 0.01 0.23 -0.07 
28. RCFc dense triadsd 0.03 0.03 0.76 0.45 -0.04 0.09 0.02 
29. RCFc reciprocated degree 0.12 0.17 0.72 0.47 -0.21 0.45 0.07 
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30. RCFc: effect from Sex -0.26 0.10 -2.69 0.01 -0.44 -0.07 0.13 
31. RCFc: effect from Age 0.00 0.00 -0.96 0.34 -0.01 0.00 0.03 
32. RCFc: effect from Black 0.18 0.12 1.50 0.13 -0.06 0.42 -0.18 
33. RCFc: effect from LOSb 0.02 0.03 0.73 0.47 -0.04 0.09 -0.02 

Note: aRatio of deviations of simulated vs. observed statistics for each effect, calculated in Phase 3 of 
the RSiena model estimation procedure. Conventionally, a p value of less than 0.10 indicates good 
convergence (Ripley et al., 2020). Overall maximum convergence ratio: 0.69. bthe log of residents length of 
stay in their recovery home. cRecovery capital factor scores. dParameter eliminated from final model. 

 
 

Table 9. Stochastic Actor-Oriented Model Results For Loaning Network—Method of 
Moments estimation  

  
Parameter 

SE z p-value 
95% CI t-

ratioa 
Estimate Low High  

Network Dynamics       
 

1. Loan rate (period 1) 4.09 1.34 3.04 < .001 1.45 6.72 -0.44 
2. Loan rate (period 2) 2.87 0.81 3.56 < .001 1.29 4.45 -0.54 
3. Loan rate (period 3) 3.97 0.88 4.53 < .001 2.25 5.68 0.94 
4. Loan rate (period 4) 3.83 1.28 2.98 < .001 1.31 6.35 0.81 
5. Loan rate (period 5) 6.33 1.32 4.80 < .001 3.74 8.92 0.96 
6. Loan: outdegree (density) -1.23 0.27 -4.63 < .001 -1.76 -0.71 -1.68 
7. Loan: reciprocity  1.42 0.30 4.78 < .001 0.84 2.00 -1.51 
8. Loan: transitive triplets 0.41 0.13 3.18 < .001 0.16 0.67 -0.54 
9. Loan: transitive ties 0.53 0.19 2.83 < .001 0.16 0.89 -0.44 
10. Loan: in-degree popularity 0.17 0.08 2.05 0.04 0.01 0.34 -0.48 
11. Loan: out-degree popularity -0.58 0.13 -4.37 < .001 -0.84 -0.32 -0.85 
12. Loan: out-degree activity 0.02 0.06 0.26 0.79 -0.11 0.14 -1.16 
13. Loan: LOSb alter 0.00 0.04 -0.08 0.94 -0.09 0.08 -1.56 
14. Loan: LOSb ego -0.03 0.04 -0.72 0.47 -0.12 0.05 -1.92 
15. RCFc alter 0.27 0.07 3.79 < .001 0.13 0.41 2.26 
16. RCFc ego -0.08 0.06 -1.22 0.22 -0.21 0.05 -0.39 

Behavior Dynamics        
17. Rate RCFc (period 1) 7.70 2.16 3.56 < .001 3.47 11.94 -0.19 
18. Rate RCFc (period 2) 5.42 1.44 3.76 < .001 2.60 8.25 0.83 
19. Rate RCFc (period 3) 6.09 1.63 3.73 < .001 2.89 9.29 -0.30 
20. Rate RCFc (period 4) 9.54 3.39 2.82 < .001 2.91 16.18 1.24 
21. Rate RCFc (period 5) 7.61 1.31 5.81 < .001 5.04 10.17 -0.69 
22. RCFc linear shape  0.76 0.26 2.93 < .001 0.25 1.26 -0.34 
23. RCFc quadratic shape  -0.22 0.07 -3.10 < .001 -0.35 -0.08 -0.71 
24. RCFc indegree -0.34 0.19 -1.77 0.08 -0.71 0.04 -1.36 
25. RCFc outdegree 0.11 0.19 0.58 0.56 -0.26 0.49 -1.30 
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26. RCFc average alter  0.81 0.51 1.58 0.11 -0.20 1.81 0.38 
27. RCFc average alter popularityd -83.72 86.33 -0.97 0.33 -252.92 85.48 1.10 
28. RCFc reciprocated degree 0.16 0.37 0.44 0.66 -0.57 0.89 -0.37 
29. RCFc: effect from Sex -0.31 0.13 -2.44 < .001 -0.56 -0.06 0.10 
30. RCFc: effect from Age 0.00 0.00 0.40 0.69 -0.01 0.01 1.58 
31. RCFc: effect from Black 0.02 0.16 0.13 0.90 -0.29 0.33 -1.68 
32. RCFc: effect from LOSb 0.08 0.05 1.72 0.09 -0.01 0.17 0.90 

Note: aRatio of deviations of simulated vs. observed statistics for each effect, calculated in Phase 3 of 
the RSiena model estimation procedure. Conventionally, a p value of less than 0.10 indicates good convergence 
(Ripley et al., 2020). Overall maximum convergence ratio: 7.35. bthe log of residents length of stay in their 
recovery home. cRecovery capital factor scores. dParameter eliminated from final model.  

 
 

 
 
 

Table 10. Stochastic Actor-Oriented Model Results For Advice-Seeking Network—Method of 
Moments estimation  

  
Parameter 

SE z p-
value 

95% CI t-
ratioa 

Estimate Low High  

Network Dynamics       
 

1. Advice rate (period 1) 2.58 0.38 6.81 < .001 1.84 3.32 0.18 
2. Advice rate (period 2) 2.89 0.73 3.96 < .001 1.46 4.32 0.01 
3. Advice rate (period 3) 2.61 0.62 4.23 < .001 1.40 3.82 -0.03 
4. Advice rate (period 4) 2.28 0.63 3.62 < .001 1.05 3.52 0.03 
5. Advice rate (period 5) 7.61 48.83 0.16 0.88 -88.09 103.32 0.01 
6. Advice: outdegree (density) -0.57 0.36 -1.61 0.11 -1.27 0.13 -0.09 
7. Advice: reciprocity  1.35 0.34 3.94 < .001 0.68 2.02 -0.06 
8. Advice: transitive triplets 0.37 0.23 1.62 0.11 -0.08 0.83 -0.17 
9. Advice: transitive ties 0.53 0.75 0.70 0.49 -0.95 2.00 -0.11 
10. Advice: in-degree popularity -0.06 0.10 -0.57 0.57 -0.25 0.14 -0.11 
11. Advice: out-degree popularity -0.46 0.26 -1.76 0.08 -0.98 0.05 -0.12 
12. Advice: out-degree activity 0.02 0.22 0.10 0.92 -0.41 0.46 -0.16 
13. Advice: LOSb alter 0.01 0.22 0.07 0.95 -0.41 0.44 0.01 
14. Advice: LOSb ego 0.05 0.42 0.13 0.90 -0.78 0.89 -0.14 
15. RCFc alter 0.04 0.09 0.44 0.66 -0.13 0.21 -0.06 
16. RCFc ego -0.04 0.06 -0.59 0.55 -0.16 0.09 -0.11 

Behavior Dynamics    
 

   

17. Rate RCFc (period 1) 4.52 1.33 3.39 < .001 1.90 7.13 -0.07 
18. Rate RCFc (period 2) 2.85 0.61 4.72 < .001 1.67 4.04 -0.05 
19. Rate RCFc (period 3) 4.42 0.70 6.30 < .001 3.05 5.80 -0.08 
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20. Rate RCFc (period 4) 5.00 1.19 4.20 < .001 2.67 7.34 -0.04 
21. Rate RCFc (period 5) 4.53 17.39 0.26 0.79 -29.56 38.61 0.04 
22. RCFc linear shape  0.16 0.43 0.36 0.72 -0.69 1.01 -0.03 
23. RCFc quadratic shape  -0.14 0.05 -2.72 < .001 -0.24 -0.04 0.01 
24. RCFc indegree 0.01 0.09 0.13 0.89 -0.17 0.20 0.01 
25. RCFc outdegree 0.01 0.13 0.05 0.96 -0.25 0.26 0.02 
26. RCFc average alter  0.16 0.45 0.36 0.72 -0.73 1.05 0.01 
27. RCFc average alter popularityd 3.54 126.57 0.03 0.98 -244.53 251.60 -0.03 
28. RCFc reciprocated degree 0.00 0.13 0.00 < .001 -0.25 0.25 0.01 
29. RCFc: effect from Sex -0.27 0.37 -0.73 0.47 -1.01 0.46 -0.01 
30. RCFc: effect from Age 0.00 0.01 -0.27 0.79 -0.02 0.01 0.07 
31. RCFc: effect from Black 0.26 0.12 2.08 0.04 0.01 0.50 0.07 
32. RCFc: effect from LOSb 0.03 0.03 0.84 0.40 -0.03 0.08 0.10 

Note: aRatio of deviations of simulated vs. observed statistics for each effect, calculated in Phase 3 of 
the RSiena model estimation procedure. Conventionally, a p value of less than 0.10 indicates good convergence 
(Ripley et al., 2020). Overall maximum convergence ratio: 0.41. bthe log of residents length of stay in their 
recovery home. cRecovery capital factor scores. dParameter eliminated from final model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
APPENDIX C 

 
R Code for Creating the Social Network Data Objects and Stochastic Actor Oriented Models 

using RSiena 
 

install.packages("devtools") 
install.packages("data.table") 
install.packages ("keyring") 
install.packages("blastula") 
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install.packages("tidyverse") 
install.packages("dtplyr") 
install.packages("naniar") 
install.packages("network") 
install.packages("sna") 
install.packages("RHNetTools") 
install.packages("Matrix") 
install.packages("JMLUtils") 
install.packages("haven") 
install.packages("RSienaTest") 
 
##To install RSiena 
install.packages("RSienaTest", dependencies = TRUE, repos="http://R-Forge.R-project.org") 
 
#Load Packages 
library("devtools") 
library("data.table") 
library ("keyring") 
library("blastula") 
library("tidyverse") 
library("dtplyr") 
library("naniar") 
library("network") 
library("sna") 
library("RHNetTools") 
library("Matrix") 
library("JMLUtils") 
library ("haven") 
library("RSienaTest") 
 
##Create a superset of participants in waves 1-6 from the survey data 
sids2Include <- survey.w1_7.mike %>% pull(SID) %>% unique() %>% sort() 
longTB.net.w1_6 <- bind_rows(longTB.net.w1, longTB.net.w2, 
                             longTB.net.w3, longTB.net.w4,  
                             longTB.net.w5, longTB.net.w6) %>%  
  filter(SID %in% sids2Include) %>%  
  arrange(WID, SID, AltID) 
``` 
#Check network stats 
longTB.net.w1_6 %>% group_by(WID) %>%  
  summarize(n=n()) 
 
#Check count of residents by house by wave 
houseCt1_6 <- makeCountByHouseByWave(longTB.net.w1_6) 
min(houseCt1_6$Count) 
houseCt1_6 %>% filter(Count>2) %>% pull(HID) %>%  length() 
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#Find participants that are not rated by others in the network data  
sidsOnly <- c(errorListw4[[4]]$SID, errorListw5[[4]]$SID,  
              errorListw6[[4]]$SID) %>% unique() %>% sort() 
 
longTB.net.w1_6 %>% filter(WID==4 & AltID==6024) 
longTB.net.w1_6 %>% filter(WID==5 & AltID==1081) 
longTB.net.w1_6 %>% filter(WID==6 & AltID %in% c(1105, 1156, 1207, 1256,  
                                                 3048, 5026, 5068, 6014)) 
longTB.net.w1_6.1 <- longTB.net.w1_6 %>%  
  filter(!(WID==4 & SID==6024) & 
         !(WID==5 & SID==1081) & 
         !(WID==6 & SID %in% c(1105, 1156, 1207, 1256,  
                              3048, 5026, 5068, 6014))) 
 
#Find other non-participants  
  w6Alt <- longTB.net.w1_6.1 %>% filter(WID==6) %>%  pull(AltID) %>% unique() %>%  
sort 
w6S   <- longTB.net.w1_6.1 %>% filter(WID==6) %>%  pull(SID) %>% unique() %>%  sort 
w6Rmv <- w6Alt %w/o% w6S 
 
#Create an edgelist of network data waves 1-6 
```{r} 
longTB.net.w1_6.2 <- longTB.net.w1_6.1 %>%  
  filter(!(WID==6 & AltID %in% w6Rmv)) 
``` 
 
#Creates friendship network set 
```{r} 
fNet <- makeNetworkSet(longTB.net.w1_6.2, pWavVec=c(1,2,3,4,5,6), 
               pTypNet = "FR",  
               pTypOut = "MX", 
               pTHold = -2, #Friend or close friend 
               pHID = TRUE, 
               includeAltID = FALSE) 
``` 
#Create loaning network set 
```{r} 
loanNet <- makeNetworkSet(longTB.net.w1_6.2, pWavVec=c(1,2,3,4,5,6), 
               pTypNet = "LO",  
               pTypOut = "MX", 
               pTHold = 4, #at least $100 
               pHID = TRUE, 
               includeAltID = FALSE) 
``` 
#Create advice-seeking network set 
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```{r} 
advNet <- makeNetworkSet(longTB.net.w1_6.2, pWavVec=c(1,2,3,4,5,6), 
               pTypNet = "AD",  
               pTypOut = "MX", 
               pTHold = -2, #Very often or quite often 
               pHID = TRUE, 
               includeAltID = FALSE)  
``` 
 
#Create helping network set 
```{r} 
helpNet <- makeNetworkSet(longTB.net.w1_6.2, pWavVec=c(1,2,3,4,5,6), 
               pTypNet = "HE",  
               pTypOut = "MX", 
               pTHold = -2, #Likely or Very Likely 
               pHID = TRUE, 
               includeAltID = FALSE) 
``` 
#Check if all network sets consist of n=627  
```{r} 
length(fNet[[7]]$SID) 
length(loanNet[[7]]$SID) 
length(advNet[[7]]$SID) 
length(helpNet[[7]]$SID) 
length(cfNet[[7]]$SID) 
``` 
```{r} 
all.equal(fNet[[7]]$SID, loanNet[[7]]$SID) 
all.equal(loanNet[[7]]$SID, advNet[[7]]$SID) 
all.equal(fNet[[7]]$SID, unique(fNet[[7]]$SID)) 
all.equal(helpNet[[7]]$SID, unique(helpNet[[7]]$SID)) 
all.equal(cfNet[[7]]$SID, unique(fNet[[7]]$SID)) 
``` 
```{r} 
sids2Exclude <- sids2Include %w/o% fNet[[7]]$SID 
``` 
Pick out the 627 individuals in the analyses from survey data (recovery capital variables) 
```{r} 
survey.w1_6 <- survey.w1_7.mike %>%  
  filter(WID<7 & !(SID %in% sids2Exclude)) 
``` 
#Add structural zeros to the network sets 
```{r} 
fNet0 <-s0Fill(fNet) 
loanNet0 <- s0Fill(loanNet) 
advNet0 <- s0Fill(advNet) 
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helpNet0<- s0Fill(helpNet) 
``` 
Convert to type dgTMatrix (sparse triplets) 
```{r} 
fNet0.sp <- fNet0[c(1:6)] %>%  
  lapply(function(x) as(x,"dgTMatrix")) 
advNet0.sp <- advNet0[c(1:6)] %>%  
  lapply(function(x) as(x,"dgTMatrix")) 
loanNet0.sp <- loanNet0[c(1:6)] %>%  
  lapply(function(x) as(x,"dgTMatrix")) 
helpNet0.sp <- helpNet0[c(1:6)] %>%  
  lapply(function(x) as(x,"dgTMatrix")) 
cfNet0.sp <- cfNet0[c(1:6)] %>%  
  lapply(function(x) as(x,"dgTMatrix")) 
``` 
#Check the networks  
Check and see if a network looks more or less OK. 
```{r} 
fNet0[[1]][1:20, 1:20] 
``` 
```{r} 
helpNet0[[1]][1:20, 1:20] 
``` 
#Create array tables 
 
```{r} 
helpNet0.ar <- array( 
      unlist(lapply(helpNet0.sp, as.matrix)), 
      dim=c(nrow(helpNet0.sp[[1]]), nrow(helpNet0.sp[[1]]), 6)) 
``` 
 
```{r} 
fNet0.ar <- array( 
      unlist(lapply(fNet0.sp, as.matrix)), 
      dim=c(nrow(fNet0.sp[[1]]), nrow(fNet0.sp[[1]]), 6)) 
``` 
```{r} 
advNet0.ar <- array( 
      unlist(lapply(advNet0.sp, as.matrix)), 
      dim=c(nrow(advNet0.sp[[1]]), nrow(advNet0.sp[[1]]), 6)) 
``` 
```{r} 
loanNet0.ar <- array( 
      unlist(lapply(loanNet0.sp, as.matrix)), 
      dim=c(nrow(loanNet0.sp[[1]]), nrow(loanNet0.sp[[1]]), 6)) 
``` 
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#Input survey data with recovery capital variable and covariates 
```{r} 
fxcovs <- survey.w1_6 %>% select(SID, WID, sex, race, age, region, 
                                inResMo1, inResMoLn1, exit_type,  
                                left_reason) %>%  
  group_by(SID) %>%  
  summarize (sex=max(sex, na.rm=T), 
             race=max(race, na.rm=T), 
             age=max(age, na.rm=T), 
             region=max(region, na.rm=T), 
             inResMo1=max(inResMo1, na.rm=T), 
             inResMoLn1 = max(inResMoLn1, na.rm=T), 
             exitTp=max(exit_type, na.rm=T), 
             whyLeft=max(left_reason, na.rm=T) 
             ) %>%  
  naniar::replace_with_na_all(condition = ~.x == "-Inf") %>%  
  mutate(sex=ifelse(!is.na(sex), sex-1, NA), 
         region=ifelse(!is.na(region), region-1, NA), 
         raceBNB=ifelse(race==2,1,0))  
  # The above operation is necessary because 'max' returns -Inf 
  # if the values it's trying to test are all NA 
``` 
 
Check the distribution of the recovery factor, in order to help 
determine which cut points should be used to score it. 
```{r} 
hist(survey.w1_6 %>% filter(WID==1) %>% pull(recFacTV)) 
``` 
#Recode the recovery capital variable to a 7 point likert 
```{r} 
tv.recfac <- survey.w1_6 %>% select(SID, WID, recFacTV) %>%  
  mutate(w="w") %>%  
  pivot_wider(names_from=c(w, WID), 
              values_from=recFacTV) %>%  
  #Creates four values 
  mutate(w1=ifelse(!is.na(w_1), cut(w_1, breaks=c(-Inf, -1, 0, 1, Inf )), NA), 
         w2=ifelse(!is.na(w_2), cut(w_2, breaks=c(-Inf, -1, 0, 1, Inf )), NA), 
         w3=ifelse(!is.na(w_3), cut(w_3, breaks=c(-Inf, -1, 0, 1, Inf )), NA), 
         w4=ifelse(!is.na(w_4), cut(w_4, breaks=c(-Inf, -1, 0, 1, Inf )), NA), 
         w5=ifelse(!is.na(w_5), cut(w_5, breaks=c(-Inf, -1, 0, 1, Inf )), NA), 
         w6=ifelse(!is.na(w_6), cut(w_6, breaks=c(-Inf, -1, 0, 1, Inf )), NA), 
         ) %>%  
  select(w1:w6) %>%  
  as.matrix() 
``` 
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#Create RSiena data objects for analysis 
```{r} 
fNet0SD <- sienaDependent(fNet0.sp, sparse=T) 
advNet0SD <- sienaDependent(advNet0.sp, sparse=T) 
loanNet0SD <- sienaDependent(loanNet0.sp, sparse=T) 
helpNet0SD <- sienaDependent(helpNet0.sp, sparse=T) 
RFD <- sienaDependent(RFD, type="behavior") 
``` 
```{r} 
helpNet0SD <-sienaDependent(helpNet0.ar) 
```{r} 
fNet0SD <- sienaDependent(fNet0.ar) 
``` 
```{r} 
loanNet0SD <- sienaDependent(loanNet0.ar) 
``` 
```{r} 
advNet0SD <- sienaDependent(advNet0.ar) 
``` 
#####SAOM Script 
##Friendship Model 
 
```{r} 
packages <- c("data.table", "tidyverse", "keyring", "blastula", 
              "dtplyr", "naniar", 
              "network", "sna", "RHNetTools", "Matrix", "RSienaTest", 
              "JMLUtils", "haven", "xtable") 
if(length(setdiff(packages, rownames(installed.packages))) > 0) { 
  lapply(packages, library, character.only = TRUE) 
} 
# If necessary (RSienaTest is not on Cran): 
#install.packages("RSienaTest", repos="http://R-Forge.R-project.org") 
workingDir <- here::here() 
``` 
##Create RSiena data object for the Friendship network 
 
```{r} 
dtObj1 <- sienaDataCreate(fNet0SD, RFD, RS.sex, RS.age, RS.Blk, RS.inResL, ccSD) 
``` 
```{r} 
print01Report(dtObj1, modelname="RFNetModels_1") 
``` 
#Create effect objects 
```{r} 
effObj1.16 <- getEffects(dtObj1) 
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``` 
```{r} 
effObj1.17 <- getEffects(dtObj1) 
``` 
```{r} 
effObj1.18 <- getEffects(dtObj1) 
``` 
```{r} 
effObj1.19 <- getEffects(dtObj1) 
``` 
```{r} 
effObj1.20 <- getEffects(dtObj1) 
``` 
```{r} 
effectsDocumentation(effObj1.16) 
``` 
```{r} 
effectsDocumentation(effObj1.17) 
``` 
```{r} 
effectsDocumentation(effObj1.18) 
``` 
```{r} 
effectsDocumentation(effObj1.19) 
``` 
```{r} 
effectsDocumentation(effObj1.20) 
``` 
#The model 
 
```{r} 
rfMod1.25 <- sienaModelCreate(projname="RFNetModels.results.FR", 
                           useStdInits=T, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(fNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
 
```{r} 
rfMod1.26 <- sienaModelCreate(projname="RFNetModels.results.FR", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(fNet0SD=1), 
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                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod1.27 <- sienaModelCreate(projname="RFNetModels.results.FR", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(fNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod1.28 <- sienaModelCreate(projname="RFNetModels.results.FR", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(fNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod1.29 <- sienaModelCreate(projname="RFNetModels.results.FR", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(fNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
effObj1.16 <- includeEffects(effObj1.16, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.17 <- includeEffects(effObj1.17, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.18 <- includeEffects(effObj1.18, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.19 <- includeEffects(effObj1.19, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.20 <- includeEffects(effObj1.20, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
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effObj1.16 <- includeEffects(effObj1.16, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.16 <- includeEffects(effObj1.16, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.16 <- includeEffects(effObj1.16, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.16 <- includeEffects(effObj1.16, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = F) 
effObj1.16 <- includeEffects(effObj1.16, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.16 <- includeEffects(effObj1.16, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.16 <- includeEffects(effObj1.16, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
effObj1.16 <- includeEffects(effObj1.16, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
``` 
 
 
```{r} 
effObj1.17 <- includeEffects(effObj1.17, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.17 <- includeEffects(effObj1.17, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.17 <- includeEffects(effObj1.17, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 



156 
 

 
 

effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.17 <- includeEffects(effObj1.17, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.17 <- includeEffects(effObj1.17, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.17 <- includeEffects(effObj1.17, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.17 <- includeEffects(effObj1.17, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
effObj1.17 <- includeEffects(effObj1.17, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
 
 
effObj1.17 <- includeEffects(effObj1.17, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.17 <- includeEffects(effObj1.17, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.17 <- includeEffects(effObj1.17, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
``` 
 
```{r} 
effObj1.18 <- includeEffects(effObj1.18, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.18 <- includeEffects(effObj1.18, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.18 <- includeEffects(effObj1.18, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.18 <- includeEffects(effObj1.18, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.18 <- includeEffects(effObj1.18, indeg, name="RFD", type="eval", 
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                          interaction1="fNet0SD") 
effObj1.18 <- includeEffects(effObj1.18, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.18 <- includeEffects(effObj1.18, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
effObj1.18 <- includeEffects(effObj1.18, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
effObj1.18 <- includeEffects(effObj1.18, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
 
effObj1.18 <- includeEffects(effObj1.18, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.18 <- includeEffects(effObj1.18, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.18 <- includeEffects(effObj1.18, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
``` 
 
 
```{r} 
effObj1.19 <- includeEffects(effObj1.19, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.19 <- includeEffects(effObj1.19, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.19 <- includeEffects(effObj1.19, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.19 <- includeEffects(effObj1.19, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.19 <- includeEffects(effObj1.19, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.19 <- includeEffects(effObj1.19, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
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effObj1.19 <- includeEffects(effObj1.19, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
effObj1.19 <- includeEffects(effObj1.19, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
effObj1.19 <- includeEffects(effObj1.19, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
 
effObj1.19 <- includeEffects(effObj1.19, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.19 <- includeEffects(effObj1.19, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.19 <- includeEffects(effObj1.19, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
``` 
 
```{r} 
effObj1.20 <- includeEffects(effObj1.20, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.20 <- includeEffects(effObj1.20, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.20 <- includeEffects(effObj1.20, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.20 <- includeEffects(effObj1.20, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.20 <- includeEffects(effObj1.20, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.20 <- includeEffects(effObj1.20, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.20 <- includeEffects(effObj1.20, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
effObj1.20 <- includeEffects(effObj1.20, egoX, altX, name="fNet0SD", type="eval", 
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                          interaction1="RS.age", include =F) 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
effObj1.20 <- includeEffects(effObj1.20, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
 
effObj1.20 <- includeEffects(effObj1.20, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.20 <- includeEffects(effObj1.20, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.20 <- includeEffects(effObj1.20, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
``` 
 
```{r} 
mod1.25 <- siena07(rfMod1.25, data=dtObj1, effects=effObj1.16, useCluster=T, 
                  nbrNodes=7) #prevAns=mod1.12) 
``` 
```{r} 
mod1.26 <- siena07(rfMod1.26, data=dtObj1, effects=effObj1.17, useCluster=T, 
                  nbrNodes=7, prevAns=mod1.25) 
``` 
```{r} 
mod1.27 <- siena07(rfMod1.27, data=dtObj1, effects=effObj1.18, useCluster=T, 
                  nbrNodes=7, prevAns=mod1.26) 
``` 
```{r} 
mod1.28 <- siena07(rfMod1.28, data=dtObj1, effects=effObj1.19, useCluster=T, 
                  nbrNodes=7, prevAns=mod1.26) 
``` 
 
##Create RSiena data object for the Loaning network 
 
```{r} 
dtObj3 <- sienaDataCreate(loanNet0SD, RFD, RS.sex, RS.age, RS.Blk, RS.inResL, ccSD) 
``` 
```{r} 
print01Report(dtObj3, modelname="RFNetModels_3") 
``` 
#Create effect objects 
```{r} 
effObj3.16 <- getEffects(dtObj3) 
``` 
```{r} 
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effObj3.17 <- getEffects(dtObj3) 
``` 
```{r} 
effObj3.18 <- getEffects(dtObj3) 
``` 
```{r} 
effObj3.19 <- getEffects(dtObj3) 
``` 
```{r} 
effObj3.20 <- getEffects(dtObj3) 
``` 
```{r} 
effectsDocumentation(effObj3.16) 
``` 
```{r} 
effectsDocumentation(effObj3.17) 
``` 
```{r} 
effectsDocumentation(effObj3.18) 
``` 
```{r} 
effectsDocumentation(effObj3.19) 
``` 
```{r} 
effectsDocumentation(effObj3.20) 
``` 
#The model 
 
```{r} 
rfMod3.25 <- sienaModelCreate(projname="RFNetModels.results.LO", 
                           useStdInits=T, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
 
```{r} 
rfMod3.26 <- sienaModelCreate(projname=" RFNetModels.results.LO ", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
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``` 
```{r} 
rfMod1.27 <- sienaModelCreate(projname=" RFNetModels.results.LO", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod1.28 <- sienaModelCreate(projname=" RFNetModels.results.LO", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod1.29 <- sienaModelCreate(projname=" RFNetModels.results.LO ", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
effObj1.16 <- includeEffects(effObj1.16, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.17 <- includeEffects(effObj1.17, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.18 <- includeEffects(effObj1.18, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.19 <- includeEffects(effObj1.19, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.20 <- includeEffects(effObj1.20, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj1.16 <- includeEffects(effObj1.16, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
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effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.16 <- includeEffects(effObj1.16, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.16 <- includeEffects(effObj1.16, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.16 <- includeEffects(effObj1.16, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = F) 
effObj1.16 <- includeEffects(effObj1.16, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.16 <- includeEffects(effObj1.16, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.16 <- includeEffects(effObj1.16, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
effObj1.16 <- includeEffects(effObj1.16, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.16 <- includeEffects(effObj1.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
``` 
 
 
```{r} 
effObj1.17 <- includeEffects(effObj1.17, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.17 <- includeEffects(effObj1.17, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.17 <- includeEffects(effObj1.17, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
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effObj1.17 <- includeEffects(effObj1.17, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.17 <- includeEffects(effObj1.17, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.17 <- includeEffects(effObj1.17, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.17 <- includeEffects(effObj1.17, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
effObj1.17 <- includeEffects(effObj1.17, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.17 <- includeEffects(effObj1.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
 
 
effObj1.17 <- includeEffects(effObj1.17, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.17 <- includeEffects(effObj1.17, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.17 <- includeEffects(effObj1.17, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
``` 
 
```{r} 
effObj1.18 <- includeEffects(effObj1.18, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.18 <- includeEffects(effObj1.18, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.18 <- includeEffects(effObj1.18, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.18 <- includeEffects(effObj1.18, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.18 <- includeEffects(effObj1.18, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.18 <- includeEffects(effObj1.18, outdeg, name="RFD", type="eval", 
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                          interaction1="fNet0SD") 
effObj1.18 <- includeEffects(effObj1.18, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
effObj1.18 <- includeEffects(effObj1.18, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.18 <- includeEffects(effObj1.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
effObj1.18 <- includeEffects(effObj1.18, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
 
effObj1.18 <- includeEffects(effObj1.18, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.18 <- includeEffects(effObj1.18, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.18 <- includeEffects(effObj1.18, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
``` 
 
 
```{r} 
effObj1.19 <- includeEffects(effObj1.19, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.19 <- includeEffects(effObj1.19, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.19 <- includeEffects(effObj1.19, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.19 <- includeEffects(effObj1.19, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.19 <- includeEffects(effObj1.19, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.19 <- includeEffects(effObj1.19, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.19 <- includeEffects(effObj1.19, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
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effObj1.19 <- includeEffects(effObj1.19, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
effObj1.19 <- includeEffects(effObj1.19, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
 
effObj1.19 <- includeEffects(effObj1.19, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.19 <- includeEffects(effObj1.19, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.19 <- includeEffects(effObj1.19, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
``` 
 
```{r} 
effObj1.20 <- includeEffects(effObj1.20, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj1.20 <- includeEffects(effObj1.20, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.20 <- includeEffects(effObj1.20, totAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
 
 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj1.20 <- includeEffects(effObj1.20, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj1.20 <- includeEffects(effObj1.20, indeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.20 <- includeEffects(effObj1.20, outdeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
effObj1.20 <- includeEffects(effObj1.20, avAlt, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
effObj1.20 <- includeEffects(effObj1.20, egoX, altX, name="fNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj1.20 <- includeEffects(effObj1.20, effFrom, name="RFD", type="eval", 
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                          interaction1="RS.age") 
 
effObj1.20 <- includeEffects(effObj1.20, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD") 
 
effObj1.20 <- includeEffects(effObj1.20, recipDeg, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj1.20 <- includeEffects(effObj1.20, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = F) 
effObj1.20 <- includeEffects(effObj1.20, behDenseTriads, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
 
``` 
 
```{r} 
mod1.25 <- siena07(rfMod1.25, data=dtObj1, effects=effObj1.16, useCluster=T, 
                  nbrNodes=7) #prevAns=mod1.12) 
``` 
###Final Friendship Model 
```{r} 
mod1.26 <- siena07(rfMod1.26, data=dtObj1, effects=effObj1.17, useCluster=T, 
                  nbrNodes=7, prevAns=mod1.25) 
``` 
```{r} 
mod1.27 <- siena07(rfMod1.27, data=dtObj1, effects=effObj1.18, useCluster=T, 
                  nbrNodes=7, prevAns=mod3.26) 
``` 
```{r} 
mod1.28 <- siena07(rfMod1.28, data=dtObj1, effects=effObj1.19, useCluster=T, 
                  nbrNodes=7, prevAns=mod1.26) 
``` 
 
##Create RSiena data object for the Friendship network 
 
```{r} 
dtObj3 <- sienaDataCreate(loanNet0SD, RFD, RS.sex, RS.age, RS.Blk, RS.inResL, ccSD) 
``` 
```{r} 
print01Report(dtObj3, modelname="RFNetModels_3") 
``` 
#Create effect objects 
```{r} 
effObj3.16 <- getEffects(dtObj3) 
``` 
```{r} 
effObj3.17 <- getEffects(dtObj3) 
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``` 
```{r} 
effObj3.18 <- getEffects(dtObj3) 
``` 
```{r} 
effObj3.19 <- getEffects(dtObj3) 
``` 
```{r} 
effObj3.20 <- getEffects(dtObj3) 
``` 
```{r} 
effectsDocumentation(effObj3.16) 
``` 
```{r} 
effectsDocumentation(effObj3.17) 
``` 
```{r} 
effectsDocumentation(effObj3.18) 
``` 
```{r} 
effectsDocumentation(effObj3.19) 
``` 
```{r} 
effectsDocumentation(effObj3.20) 
``` 
#The model 
 
```{r} 
rfMod3.25 <- sienaModelCreate(projname="RFNetModels.results.LO", 
                           useStdInits=T, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
 
```{r} 
rfMod3.26 <- sienaModelCreate(projname="RFNetModels.results.LO", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
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```{r} 
rfMod3.27 <- sienaModelCreate(projname="RFNetModels.results.LO", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod3.28 <- sienaModelCreate(projname="RFNetModels.results.LO", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod3.29 <- sienaModelCreate(projname="RFNetModels.results.LO", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(loanNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
effObj3.16 <- includeEffects(effObj3.16, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj3.17 <- includeEffects(effObj3.17, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj3.18 <- includeEffects(effObj3.18, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj3.19 <- includeEffects(effObj3.19, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj3.20 <- includeEffects(effObj3.20, transTies, transTrip, inPop, outPop, outAct) 
``` 
```{r} 
effObj3.16 <- includeEffects(effObj3.16, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.16 <- includeEffects(effObj3.16, effFrom, name="RFD", type="eval", 
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                          interaction1="RS.inResL") 
effObj3.16 <- includeEffects(effObj3.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj3.16 <- includeEffects(effObj3.16, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.16 <- includeEffects(effObj3.16, totAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
 
 
effObj3.16 <- includeEffects(effObj3.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj3.16 <- includeEffects(effObj3.16, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RFD", include = F) 
effObj3.16 <- includeEffects(effObj3.16, indeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.16 <- includeEffects(effObj3.16, outdeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.16 <- includeEffects(effObj3.16, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
 
effObj3.16 <- includeEffects(effObj3.16, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj3.16 <- includeEffects(effObj3.16, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
``` 
 
 
```{r} 
effObj3.17 <- includeEffects(effObj3.17, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.17 <- includeEffects(effObj3.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.17 <- includeEffects(effObj3.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj3.17 <- includeEffects(effObj3.17, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.17 <- includeEffects(effObj3.17, totAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
 
 
effObj3.17 <- includeEffects(effObj3.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj3.17 <- includeEffects(effObj3.17, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RFD", include = F) 
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effObj3.17 <- includeEffects(effObj3.17, indeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.17 <- includeEffects(effObj3.17, outdeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.17 <- includeEffects(effObj3.17, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
 
effObj3.17 <- includeEffects(effObj3.17, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj3.17 <- includeEffects(effObj3.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
``` 
 
```{r} 
effObj3.18 <- includeEffects(effObj3.18, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.18 <- includeEffects(effObj3.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.18 <- includeEffects(effObj3.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj3.18 <- includeEffects(effObj3.18, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.18 <- includeEffects(effObj3.18, totAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
 
 
effObj3.18 <- includeEffects(effObj3.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj3.18 <- includeEffects(effObj3.18, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj3.18 <- includeEffects(effObj3.18, indeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.18 <- includeEffects(effObj3.18, outdeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.18 <- includeEffects(effObj3.18, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = T) 
 
effObj3.18 <- includeEffects(effObj3.18, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj3.18 <- includeEffects(effObj3.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
 
 
effObj3.18 <- includeEffects(effObj3.18, recipDeg, name="RFD", type="eval", 
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                          interaction1="loanNet0SD", include = T) 
effObj3.18 <- includeEffects(effObj3.18, avAltPop, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
effObj3.18 <- includeEffects(effObj3.18, behDenseTriads, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
``` 
 
 
```{r} 
effObj3.19 <- includeEffects(effObj3.19, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.19 <- includeEffects(effObj3.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.19 <- includeEffects(effObj3.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj3.19 <- includeEffects(effObj3.19, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.19 <- includeEffects(effObj3.19, totAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
 
 
effObj3.19 <- includeEffects(effObj3.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj3.19 <- includeEffects(effObj1.19, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj3.19 <- includeEffects(effObj1.19, indeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.19 <- includeEffects(effObj1.19, outdeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.19 <- includeEffects(effObj1.19, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = T) 
 
effObj3.19 <- includeEffects(effObj1.19, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj3.19 <- includeEffects(effObj1.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
effObj3.19 <- includeEffects(effObj1.19, recipDeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
 
effObj3.19 <- includeEffects(effObj3.19, recipDeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = T) 
effObj3.19 <- includeEffects(effObj1.19, avAltPop, name="RFD", type="eval", 
                          interaction1="fNet0SD", include = T) 
effObj3.19 <- includeEffects(effObj1.19, behDenseTriads, name="RFD", type="eval", 
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                          interaction1="fNet0SD", include = F) 
 
``` 
 
```{r} 
effObj3.20 <- includeEffects(effObj3.20, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.20 <- includeEffects(effObj3.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj3.20 <- includeEffects(effObj3.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj3.20 <- includeEffects(effObj3.20, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.20 <- includeEffects(effObj3.20, totAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
 
 
effObj3.20 <- includeEffects(effObj3.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj3.20 <- includeEffects(effObj3.20, egoX, altX, name="loanNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj3.20 <- includeEffects(effObj3.20, indeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.20 <- includeEffects(effObj3.20, outdeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
effObj3.20 <- includeEffects(effObj3.20, avAlt, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = T) 
 
effObj3.20 <- includeEffects(effObj3.20, egoX, altX, name="laonNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj3.20 <- includeEffects(effObj3.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
effObj3.20 <- includeEffects(effObj3.20, recipDeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD") 
 
effObj3.20 <- includeEffects(effObj3.20, recipDeg, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = T) 
effObj3.20 <- includeEffects(effObj3.20, avAltPop, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = F) 
effObj3.20 <- includeEffects(effObj3.20, behDenseTriads, name="RFD", type="eval", 
                          interaction1="loanNet0SD", include = T) 
 
``` 
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```{r} 
mod3.25 <- siena07(rfMod3.25, data=dtObj3, effects=effObj3.16, useCluster=T, 
                  nbrNodes=7) #prevAns=mod3.12) 
``` 
```{r} 
mod3.26 <- siena07(rfMod3.26, data=dtObj3, effects=effObj3.17, useCluster=T, 
                  nbrNodes=7, prevAns=mod3.25) 
``` 
```{r} 
mod3.27 <- siena07(rfMod3.27, data=dtObj3, effects=effObj3.18, useCluster=T, 
                  nbrNodes=7, prevAns=mod3.26) 
``` 
```{r} 
mod3.28 <- siena07(rfMod3.28, data=dtObj3, effects=effObj3.19, useCluster=T, 
                  nbrNodes=7, prevAns=mod3.26) 
``` 
 
##Script for advice-seeking model 
 
```{r} 
dtObj4 <- sienaDataCreate(advNet0SD, RFD, RS.sex, RS.age, RS.Blk, RS.inResL, ccSD) 
``` 
 
```{r} 
effObj4.1 <- getEffects(dtObj4) 
``` 
 
```{r} 
effObj4.16 <- getEffects(dtObj4) 
``` 
 
 
```{r} 
effObj4.17 <- getEffects(dtObj4) 
``` 
 
```{r} 
effObj4.18 <- getEffects(dtObj4) 
``` 
 
```{r} 
effObj4.19 <- getEffects(dtObj4) 
``` 
 
```{r} 
effObj4.20 <- getEffects(dtObj4) 
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``` 
```{r} 
rfMod4.26 <- sienaModelCreate(projname="RFNetModels.results.AD", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(advNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
```{r} 
rfMod4.27 <- sienaModelCreate(projname="RFNetModels.results.AD", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(advNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
 
```{r} 
rfMod4.28 <- sienaModelCreate(projname="RFNetModels.results.AD", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(advNet0SD=1), 
                           behModelType=c(RFD=1) 
                           ) 
``` 
 
```{r} 
rfMod4.29 <- sienaModelCreate(projname="RFNetModels.results.AD", 
                           useStdInits=F, 
                           dolby=T, 
                           maxlike = F, 
                           modelType = c(advNet0SD=1), 
                           behModelType=c(RFD=1)                           ) 
``` 
 
```{r} 
effObj4.17 <- includeEffects(effObj4.17, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.17 <- includeEffects(effObj4.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.17 <- includeEffects(effObj4.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
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effObj4.17 <- includeEffects(effObj4.17, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.17 <- includeEffects(effObj4.17, totAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
 
 
effObj4.17 <- includeEffects(effObj4.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj4.17 <- includeEffects(effObj4.17, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RFD", include = F) 
effObj4.17 <- includeEffects(effObj4.17, indeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.17 <- includeEffects(effObj4.17, outdeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.17 <- includeEffects(effObj4.17, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
 
effObj4.17 <- includeEffects(effObj4.17, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj4.17 <- includeEffects(effObj4.17, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
 
``` 
 
```{r} 
effObj4.18 <- includeEffects(effObj4.18, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.18 <- includeEffects(effObj4.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.18 <- includeEffects(effObj4.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj4.18 <- includeEffects(effObj4.18, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.18 <- includeEffects(effObj4.18, totAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
 
 
effObj4.18 <- includeEffects(effObj4.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj4.18 <- includeEffects(effObj4.18, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj4.18 <- includeEffects(effObj4.18, indeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
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effObj4.18 <- includeEffects(effObj4.18, outdeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.18 <- includeEffects(effObj4.18, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
 
effObj4.18 <- includeEffects(effObj4.18, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj4.18 <- includeEffects(effObj4.18, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
 
 
effObj4.18 <- includeEffects(effObj4.18, recipDeg, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
effObj4.18 <- includeEffects(effObj4.18, avAltPop, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
effObj4.18 <- includeEffects(effObj4.18, behDenseTriads, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
 
 
 
``` 
```{r} 
effObj4.19 <- includeEffects(effObj4.19, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.19 <- includeEffects(effObj4.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.19<- includeEffects(effObj4.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj4.19 <- includeEffects(effObj4.19, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.19 <- includeEffects(effObj4.19, totAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
 
 
effObj4.19 <- includeEffects(effObj4.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj4.19 <- includeEffects(effObj4.19, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj4.19 <- includeEffects(effObj4.19, indeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.19 <- includeEffects(effObj4.19, outdeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.19 <- includeEffects(effObj4.19, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
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effObj4.19 <- includeEffects(effObj4.19, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj4.19 <- includeEffects(effObj4.19, effFrom, name="RFD", type="eval", 
                          interaction1="RS.age") 
 
 
 
effObj4.19 <- includeEffects(effObj4.18, recipDeg, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
effObj4.19 <- includeEffects(effObj4.18, avAltPop, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
effObj4.19 <- includeEffects(effObj4.18, behDenseTriads, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
 
 
 
``` 
```{r} 
effObj4.20 <- includeEffects(effObj4.20, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.20 <- includeEffects(effObj4.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.inResL") 
effObj4.20<- includeEffects(effObj4.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.sex") 
 
effObj4.20 <- includeEffects(effObj4.20, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.20 <- includeEffects(effObj4.20, totAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
 
 
effObj4.20 <- includeEffects(effObj4.20, effFrom, name="RFD", type="eval", 
                          interaction1="RS.Blk") 
effObj4.20 <- includeEffects(effObj4.20, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RFD", include = T) 
effObj4.20 <- includeEffects(effObj4.20, indeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.20 <- includeEffects(effObj4.20, outdeg, name="RFD", type="eval", 
                          interaction1="advNet0SD") 
effObj4.20 <- includeEffects(effObj4.20, avAlt, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
 
effObj4.20 <- includeEffects(effObj4.20, egoX, altX, name="advNet0SD", type="eval", 
                          interaction1="RS.age", include =F) 
effObj4.20 <- includeEffects(effObj4.20, effFrom, name="RFD", type="eval", 
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                          interaction1="RS.age") 
 
 
effObj4.20 <- includeEffects(effObj4.20, recipDeg, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
effObj4.20 <- includeEffects(effObj4.20, avAltPop, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = F) 
effObj4.20 <- includeEffects(effObj4.20, behDenseTriads, name="RFD", type="eval", 
                          interaction1="advNet0SD", include = T) 
 
``` 
 
```{r} 
mod4.26 <- siena07(rfMod4.26, data=dtObj4, effects=effObj4.17, useCluster=T, 
                  nbrNodes=7, prevAns=mod4.11) 
``` 
```{r} 
mod4.27 <- siena07(rfMod4.27, data=dtObj4, effects=effObj4.18, useCluster=T, 
                  nbrNodes=7, prevAns=mod4.26) 
``` 
 
 
```{r} 
mod4.28 <- siena07(rfMod4.28, data=dtObj4, effects=effObj4.19, useCluster=T, 
                  nbrNodes=7, prevAns=mod4.27) 
``` 
 
```{r} 
mod4.29 <- siena07(rfMod4.29, data=dtObj4, effects=effObj4.20, useCluster=T, 
                  nbrNodes=7, prevAns=mod4.27) 
``` 
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