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Text MiningText Mining

 Synthesis of …Synthesis of …
– Information RetrievalInformation Retrieval

 Focuses on retrieving documents from a fixed databaseFocuses on retrieving documents from a fixed database
 Bag-of-words methodsBag-of-words methods
 May be multimedia including text, images, video, audioMay be multimedia including text, images, video, audio

– Natural Language ProcessingNatural Language Processing
 Usually more challenging questionsUsually more challenging questions
 Vector space modelsVector space models
 Linguistics: morphology, syntax, semantics, lexicon Linguistics: morphology, syntax, semantics, lexicon 

– Statistical Data MiningStatistical Data Mining
 Pattern recognition, classification, clusteringPattern recognition, classification, clustering



    

Text Mining TasksText Mining Tasks

 Text ClassificationText Classification
– Assigning a document to one of several pre-specified  classesAssigning a document to one of several pre-specified  classes

 Text ClusteringText Clustering
– Unsupervised learning – discovering cluster structureUnsupervised learning – discovering cluster structure

 Text SummarizationText Summarization
– Extracting a summary for a documentExtracting a summary for a document
– Based on syntax and semanticsBased on syntax and semantics

 Author Identification/DeterminationAuthor Identification/Determination
– Based on stylistics, syntax, and semanticsBased on stylistics, syntax, and semantics

 Automatic TranslationAutomatic Translation
– Based on morphology, syntax, semantics, and lexiconBased on morphology, syntax, semantics, and lexicon

 Cross Corpus DiscoveryCross Corpus Discovery
– Also known as Literature Based DiscoveryAlso known as Literature Based Discovery



    

Text PreprocessingText Preprocessing

 DenoisingDenoising
– Means removing stopper words … words with Means removing stopper words … words with 

little semantic meaning such as little semantic meaning such as the, an, and, of, the, an, and, of, 
by, thatby, that and so on. and so on.

– Stopper words may be context dependent, e.g. Stopper words may be context dependent, e.g. 
Theorem Theorem and and ProofProof in a mathematics document in a mathematics document

 StemmingStemming
– Means removal suffixes, prefixes and infixes to Means removal suffixes, prefixes and infixes to 

rootroot
– An example: An example: wake, waking, awake, woke wake, waking, awake, woke  wake wake



    

Vector Space ModelVector Space Model

 Documents and queries are Documents and queries are 
represented in a high-represented in a high-
dimensional vector space in dimensional vector space in 
which each dimension in the which each dimension in the 
space corresponds to a word space corresponds to a word 
(term) in the corpus (document (term) in the corpus (document 
collection).collection).

 The entities represented in the The entities represented in the 
figure are figure are qq for query and  for query and dd11, d, d22, , 
and and dd33  for the three documents. for the three documents. 

 The term weights are derived The term weights are derived 
from occurrence counts.from occurrence counts.



    

Vector Space MethodsVector Space Methods

 The classic structure in vector space The classic structure in vector space 
text mining methods is a term-text mining methods is a term-
document matrix wheredocument matrix where
– Rows correspond to terms, columns Rows correspond to terms, columns 

correspond to documents, andcorrespond to documents, and
– Entries may be binary or frequency counts.Entries may be binary or frequency counts.

 A simple and obvious generalization is A simple and obvious generalization is 
a bigram (multigram)-document matrix a bigram (multigram)-document matrix 
wherewhere
– Rows correspond to bigrams, columns to Rows correspond to bigrams, columns to 

documents, and again entries are either documents, and again entries are either 
binary or frequency counts.binary or frequency counts.



    

Vector Space Methods

•  La tent Semantic  Indexing (LSI) is a  tec hnique tha t
p rojec ts queries and  doc uments into a  spac e with
la tent semantic  d imensions.

•  Co-oc c uring terms a re p rojec ted  into the same
semantic  d imensions and  non-c o-oc c uring terms
onto d ifferent d imensions.

•  In la tent semantic  spac e, a  query and  a
doc ument c an have high c osine simila rity even if
they do not sha re any terms as long as their terms
are semantic a lly simila r ac c ord ing  to the c o-
oc c urenc e ana lysis.



    

Latent Semantic Indexing

•  LSI is the app lic a tion of Singula r Va lue
Dec omposition (SVD) to the term-doc ument matrix.

•  SVD takes a  matrix  and  represents it as  in aWF W

lower d imensiona l spac e suc h tha t the two-norm is
minimized , i.e. .1 1 

�

•  The SVD p rojec ts an -d imensiona l spac e onto a•
•  T h e-d imensiona l spac e where 



    

 Latent Semantic Indexing

•  In our app lic a tion to word -doc ument matric es, •
is the number of word  types (terms) in the c orpus
(doc ument c ollec tion).

•  Typ ic a lly  is c hosen between 100 to 150.•

•  The SVD p rojec tion is c omputed  by dec omposing
the term-doc ument ma trix  into the p roduc t oft 11 

three matric es

t h r e e mtt  
†

where .– – – – – – – –



    

Latent Semantic Indexing

•  These ma tric es have  c olumns. Thisorthonorma l
means the c olumn vec tors a re of unit leng th and
are orthogona l to eac h other. In partic ula r

a r e  o r t h† †(the identity ma trix)

•  The d iagona l matrix  c onta ins the • singula r va lues
of  in desc end ing order. The  singula r va lueso fof

ind ic a tes the amount of va ria tion a long the  axis.i i n

•  By restric ting  the matric es  and   to the first•  By  
•  B y  r e st r c olumns, we ob ta in and        

†

with
w i t h um n sw

www www 
†



    

LSI - Some Basic Relations

•  ° � Ê Ä S @ ² ÉTQo�| Ç  s � �† † † † † † †

† † † † † †† ² ÉTQ o � | Ç t �† † † † † †

• • ij²R : Q ojÿ ÿÿ� ��� � ] u† † † † † † †

† † †† † † † ojÿ ÿ † †

•
• † † † † † † ojÿ ÿÿ� ��� � ] u �† † † † † †



    

Social NetworksSocial Networks

 Social networks can be represented as graphsSocial networks can be represented as graphs
– A graph G(V, E), is a set of vertices, V, and edges, EA graph G(V, E), is a set of vertices, V, and edges, E
– The social network depicts actors (in classic social The social network depicts actors (in classic social 

networks, these are humans) and their connections or networks, these are humans) and their connections or 
tiesties

– Actors are represented by vertices, ties between Actors are represented by vertices, ties between 
actors by edgesactors by edges

 There is one-to-one correspondence between There is one-to-one correspondence between 
graphs and so-called adjacency matrices graphs and so-called adjacency matrices 

 Example: Author-Coauthor NetworksExample: Author-Coauthor Networks



    

Graphs versus MatricesGraphs versus Matrices



    

Two-Mode NetworksTwo-Mode Networks

 When there are two types of actorsWhen there are two types of actors
– Individuals and Institutions Individuals and Institutions 
– Alcohol Outlets and Zip CodesAlcohol Outlets and Zip Codes
– Paleoclimate Proxies and PapersPaleoclimate Proxies and Papers
– Authors and DocumentsAuthors and Documents
– Words and DocumentsWords and Documents
– Bigrams and DocumentsBigrams and Documents

 SNA refers to these as two-mode networks, graph SNA refers to these as two-mode networks, graph 
theory as bi-partite graphstheory as bi-partite graphs
– Can convert from two-mode to one-modeCan convert from two-mode to one-mode  



    

Two-Mode ComputationTwo-Mode Computation

Consider a bipartite individual by institution social 
network. Let Am×n be the individual by institution 
adjacency matrix  with m = the number of individuals 
and n = the number of institutions. Then

Cm×m = Am×nAT
n×m=

Individual-Individual social network adjacency 
matrix with cii = ∑jaij = the strength of ties to all 
individuals in i’s social network and cij = the tie 
strength between individual i and individual j.



    

Two-Mode ComputationTwo-Mode Computation

Similarly, 

Pn×n = AT
n×m Am×n=

Institution by Institution social network adjacency 
matrix with pjj=∑iaij= strength of ties to all institutions 
in i’s social network with pij the tie strength between 
institution i and institution j.



    

Two-Mode ComputationTwo-Mode Computation

 Of course, this exactly resembles the Of course, this exactly resembles the 
computation for LSI.computation for LSI.

 Viewed as a two-mode social network, this Viewed as a two-mode social network, this 
computation allows us: computation allows us: 
– to calculate strength of ties between terms relative to to calculate strength of ties between terms relative to 

this document database (corpus)this document database (corpus)
– And also to calculate strength of ties between And also to calculate strength of ties between 

documents relative to this lexicondocuments relative to this lexicon
 If we can cluster these terms and these If we can cluster these terms and these 

documents, we can discover:documents, we can discover:
– similar sets of documents with respect to this lexiconsimilar sets of documents with respect to this lexicon
– sets of words that are used the same way in this sets of words that are used the same way in this 

corpuscorpus



    

Example of a Two-Mode NetworkExample of a Two-Mode Network

Our A matrix



    

Example of a Two-Mode NetworkExample of a Two-Mode Network

Our P matrix



    

Block ModelsBlock Models

 A A partition of a networkpartition of a network is a clustering of the  is a clustering of the 
vertices in the network so that each vertex is vertices in the network so that each vertex is 
assigned to exactly one class or cluster. assigned to exactly one class or cluster. 

 Partitions may specify some property that depends Partitions may specify some property that depends 
on attributes of the vertices. on attributes of the vertices. 

 Partitions divide the vertices of a network into a Partitions divide the vertices of a network into a 
number of mutually exclusive subsets. number of mutually exclusive subsets. 
– That is, a partition splits a network into parts. That is, a partition splits a network into parts. 

 Partitions are also sometimes called Partitions are also sometimes called blocks or blocks or 
block modelsblock models. . 
– These are essentially a way to cluster actors together These are essentially a way to cluster actors together 

in groups that behave in a similar way. in groups that behave in a similar way. 



    

Example of a Two-Mode NetworkExample of a Two-Mode Network

Block Model 

P Matrix - 
Clustered 



    

Example of a Two-Mode NetworkExample of a Two-Mode Network

Block Model Matrix 
– Our C Matrix 

Clustered



    

Example DataExample Data

 The text data were collected by the Linguistic Data The text data were collected by the Linguistic Data 
Consortium in 1997 and were originally used in Consortium in 1997 and were originally used in 
Martinez (2002)Martinez (2002)

– The data consisted of 15,863 news reports collected The data consisted of 15,863 news reports collected 
from Reuters and CNN from July 1, 1994 to June 30, from Reuters and CNN from July 1, 1994 to June 30, 
19951995

– The full lexicon for the text database included 68,354 The full lexicon for the text database included 68,354 
distinct wordsdistinct words
 In all 313 stopper words are removedIn all 313 stopper words are removed
 after denoising and stemming, there remain 45,021 after denoising and stemming, there remain 45,021 

words in the lexiconwords in the lexicon

– In the examples that I report here, there are 503 In the examples that I report here, there are 503 
documents onlydocuments only



    

Example DataExample Data

 A simple 503 document corpus we have worked A simple 503 document corpus we have worked 
with has 7,143 denoised and stemmed entries in with has 7,143 denoised and stemmed entries in 
its lexicon and 91,709 bigrams.its lexicon and 91,709 bigrams.
– Thus the TDM is 7,143 by 503 and the BDM is Thus the TDM is 7,143 by 503 and the BDM is 

91,709 by 503.91,709 by 503.
– The term vector is 7,143 dimensional and the The term vector is 7,143 dimensional and the 

bigram vector is 91,709 dimensional.bigram vector is 91,709 dimensional.
– The BPM for each document is 91,709 by 91,709 The BPM for each document is 91,709 by 91,709 

and, of course, very sparse.and, of course, very sparse.
 A corpus can easily reach 20,000 documents or A corpus can easily reach 20,000 documents or 

more.more.



    

Term-Document Matrix Term-Document Matrix 
AnalysisAnalysis

Zipf’s Law



    

Term-Document Matrix Term-Document Matrix 
AnalysisAnalysis
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Mixture Models for Mixture Models for 
ClusteringClustering

 Mixture models fit a mixture of (normal) Mixture models fit a mixture of (normal) 
distributionsdistributions

 We can use the means as centroids of We can use the means as centroids of 
clustersclusters

 Assign observations to the “closest” Assign observations to the “closest” 
centroidcentroid

 Possible improvement in Possible improvement in 
computational complexitycomputational complexity



    

Our Proposed AlgorithmOur Proposed Algorithm  

 Choose the number of desired clusters.Choose the number of desired clusters.
 Using a normal mixtures model, calculate the Using a normal mixtures model, calculate the 

mean vector for each of the document proto-mean vector for each of the document proto-
clusters. clusters. 

 Assign each document (vector) to a proto-cluster Assign each document (vector) to a proto-cluster 
anchored by the closest mean vector.anchored by the closest mean vector.
– This is a Voronoi tessellation of the 7143-This is a Voronoi tessellation of the 7143-

dimensional term vector space. The Voronoi tiles dimensional term vector space. The Voronoi tiles 
correspond to topics for the documents.correspond to topics for the documents.

 Or assign documents based on maximum Or assign documents based on maximum 
posterior probability.posterior probability.



    

Normal Mixtures

  , ,Qo v w �  
¦¦



 ý

where is taken as thew     h er e  i s  t 

multiva ria te norma l density, a re the mixing   
c oeffic ients, is the number of mixing terms, and  
  vj  vj ²  is the mean vec tor and  c ovarianc e
matrix. The samp le size we denote by , in our c asem
mm         aThe d imension, , of the vec tor is 



    

EM Algorithm for Normal
Mixtures

M i x
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††   is the estima ted  posterior p robab ility tha t  
belongs to c omponent is the estimated  mixing ,    

c oeffic ient, and are the estimated  mean and       

c ovarianc e matrix respec tively. 



    

Notation

• ; the number of doc uments.1 1   

• the desired  number of c lusters• • 

•   the d imension of the term vec tor the    
size of the lexic on for this c orpus



    

Considerations about the
Normal Density

Bec ause the d imensiona lity of the term vec tors is so
la rge, there a re some c onsidera tions about the EM
a lgorithm to be made. Rec a ll

aa a a vj   

�  



 
 �

  †

†  tends to be singula r, c erta inly ill-c ond itioned . In
our experienc e just used  as a  raw estimate roundoff
error c auses to have a  zero determinant.e  
Morover, a lso rounds to zero.  






    

Revised EM Algorithm

In order to regula rize the c omputa tion, we take I I

I n, the identity matrix. Then the EM a lgorithm
bec omes

bbe b 





  










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 e

 e
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And of c ourse we no longer estima te A . We a re
rea lly only interested  in estimating  the means.



    

Comuptational Complexity

The c omputa tion of TTh has c omp lexity ,  
the c omputa tion of  has c omp lexity    he c
and  the c omputa tion of  has c omp lexity 

    The EM a lgorithm is a  rec ursive
a lgorithm. The number of rec ursions c an be
determined  by a  stopp ing a lgorithm or fixed  by
the user. In either c ase, if the number of
rec ursions is , then the overa ll c omp lexity ofr
the EM phase is . It is linea r in a ll thet t t 
key size va riab les.

The Voronoi c omputa tion is T he Vo



    

Results

In the p resent da ta  set, ,    
       ,  and   Time in
sec onds from load ing file to
membership  c omputa tion is   
sec onds. This c omputa tion was done
on an Intel Centrino Dua l Core
proc essor running a t 1.6 g igahertz.



    

ππ  WeightsWeights



    

Cluster Size Distribution Cluster Size Distribution 
(Based on Voronoi Tessellation)(Based on Voronoi Tessellation)



    

Cluster Size DistributionCluster Size Distribution
(Based on Maximum Estimated (Based on Maximum Estimated 

Posterior Probability, Posterior Probability, ττijij))



    

Document by Cluster Plot Document by Cluster Plot 
(Voronoi)(Voronoi)
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