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Abstract 

Compressors are being required to operate at increasingly severe conditions in order to increase efficiency, 

and with the transition from CFC to HFC and natural refrigerants, natural ferrous chloride layers on iron surfaces 

have been eliminated.  To recover lost wear resistance with the transition to oil-less operation, greater protection is 

sought through the application of hard coatings with enhanced tribological properties.   

Controlled shoe-on-disk experiments simulating the interface in a swashplate compressor were performed 

using a High Pressure Tribometer under unlubricated conditions.  Specimens used for these experiments included 

52100 steel shoes and coated aluminum A390-T6 disks.  Coatings were provided by two leading manufacturers and 

consisted of two different single layer WC/C coatings (one from each manufacturer), multi-layer WC/C + DLC and 

multi-layer TiAlN + WC/C.  To help increase load bearing ability on the relatively soft aluminum, a CrN underlayer 

was deposited on half of the disks.  The performance of the coatings was evaluated using surface profilometry and 

scanning electron microscopy.  In some cases, the CrN underlayer increased friction due to increased roughness, 

while it also significantly increased the load bearing capability in most applications.  One of the CrN + WC/C multi-

layered coatings exhibited friction coefficients similar to lubricated experiments with scuffing loads roughly ten 

times larger than uncoated, unlubricated tests. 

Controlled, reciprocating pin-on-disk experiments imitating the wrist pin-connecting rod interface were 

also performed under unlubricated conditions.  Specimens used for these experiments included coated, cylindrical 

52100 steel wrist pins and uncoated cast iron disks.  Coatings used were the same as those for the swashplate 

simulation tests but without the CrN underlayer. Analysis of experiments investigating temperature effects, 

frequency variation, and performance in various refrigerants including R134a, R410a, and R600a, was completed 

using scanning electron microscopy, energy dispersive x-ray microanalysis, and surface profilometry.  It was found 

that steady-state friction coefficients decreased with increasing temperature while friction coefficients increased 

during the running-in period.  Also, wear decreased from testing in room temperature up to 80°C and beyond that, 

increased due to unstable running-in.  Tests conducted in R410a produced the lowest wear, while those in R600a 

had the lowest friction coefficients.  Tests in R134a performed the worst, but better than tests conducted in dry 

nitrogen.  Based on the research presented in this work, hard coatings have the potential to replace oil in future 

compressors. 
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Chapter 1:  Introduction 

1.1 Research Overview 
During the course of this research, the main objective was to conduct experiments to simulate compressors 

with the application of hard, protective coatings.  Several coatings were obtained and deposited on materials relevant 

to swashplate and piston-type compressors, tested in a variety of conditions, analyzed, and ranked by performance. 

1.2 Literature Review 
The transition from chlorofluorocarbon (CFC) refrigerants to environmentally friendly refrigerants such as 

hydrofluorocarbons (HFC), hydrocarbons (HC), and CO2 for use in compressors, has necessitated the quest for wear 

resistant and low friction materials and interfaces.  Because of the absence of chlorine which forms ferrous chloride 

layers on iron surfaces, the contact pressure limits allowed by HFCs have decreased from those of CFCs [1-2].  

Furthermore, interfaces must be able to withstand severe operating conditions caused by smaller clearances and 

increased speeds and loads of current and future compressors.  Also, the state of lubrication in many compressor 

components is limited and usually in the boundary and mixed lubrication regimes [3].  Additionally, an interest in 

transitioning towards oil-less compressors is desired to eliminate the negative effects on the thermodynamic 

efficiencies of refrigeration cycles.  Under these dry sliding conditions, one cannot rely on oxide formation and other 

surface reaction layers alone for enhanced tribological performance, and some form of protective coatings will be 

necessary. 

In order to better interpret results from compressor simulation with coatings in a dry environment, previous 

research involving lubricated testing is provided as a basis for comparison.  Significant tribological testing of 

compressor simulation has been performed, especially at the Air Conditioning and Refrigeration Center (ACRC) at 

the University of Illinois.  Until recently, most of the testing has been conducted under step-loading or “scuffing” 

conditions with typical pin-on-disk or swashplate compressor configurations [4-6].   In these tests, sliding velocity 

was generally held constant while the load was increased at prescribed intervals until the interface failed due to 

scuffing.  Also, the majority of interfaces have required lubrication to obtain anything close to representative loads 

found in a compressor. 

1.2.1 Lubrication Testing with Metallic Interfaces 
The most common test configurations have been the simulation of a swashplate compressor where a 52100 

steel pin or shoe is in contact with an aluminum A390-T6 disk (shoe-on-disk) and general pin-on-disk testing with a 

flat pin in contact with a cast iron disk.  In dry conditions, these interfaces are hardly able to withstand a normal load 

of 10 lbf (45 N) with friction coefficients greater than 0.5 in an R134a environment [7]. 

Fully submerged lubrication has typically allowed the highest scuffing loads and lowest friction 

coefficients with the contacting interface submerged in lubricant.  Using the shoe-on-disk interface in a PAG/CO2 

environment at 200 psi, Demas was able to attain normal loads in excess of 700 lbf (3120 N) with scuffing 

experiments while maintaining friction coefficients less than 0.1 and as low as ~0.02 [6].  In the majority of this 

testing, however, measurable wear cannot be obtained unless high loads are applied for durations of an hour or more 

[8]. 
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To simulate lubrication states manifested in extreme compressor conditions, starved lubrication tests were 

conducted.  By combining refrigerant and a small amount of oil in a cylinder with which to pressurize the test 

chamber, a prescribed rate of oil addition can be controlled.  Using this method, the scuffing load is reduced to 510 

lbf for the shoe-on-disk interface [5].  Due to the initial lack of lubrication, a running-in period was observed with an 

initial friction coefficient of 0.13.  However, once steady-state was reached, friction coefficients as low as 0.02 were 

again obtained.  Due to the immiscibility of some lubricants and refrigerants, Demas established another method of 

lubrication by adding oil to a small absorbing medium which contacted the disk opposite the shoe on the wear track.  

Performance was slightly better than typical starved lubrication experiments with friction coefficients of 0.1 and 

scuffing loads of 600 lbf for both CO2 and R134a refrigerants [6]. 

1.2.2 Tribology of Polymers  
Cannaday studied the tribological performance of unfilled and blended polymers as possible alternatives for 

materials in compressors [7].  Traditional flat pin-on-disk testing was conducted with polymer pins and both cast 

iron and aluminum A390-T6 disks.  Some of the major findings for both types were that performance in R134a was 

better than that in air, PTFE and PTFE blends had low friction but higher wear than others, and although transfer 

films on the disk are generally thought to decrease wear and/or lower friction, it was difficult to quantify.  Material 

transfer was apparent to the naked eye, but difficult to quantify with profilometry and chemical analyses. 

Both pure PEEK and polyimide performed similarly, having higher friction and lower wear than PTFE.  

Also, in step-loading tests with starved lubrication, PEEK and polyimide were found to perform better than metals, 

lending themselves to alternative materials for some bearing applications.  For blended polymers, the trend was 

similar, but PEEK had consistently lower friction with no running-in period.  Blends with PTFE or graphite 

exhibited lower friction but, PTFE blends still had high wear.  In R134a and a load of 50 lbf, PEEK BG and PEEK 

w/carbon obtained friction coefficients of ~0.09 and little or no wear, while polyimide blends had slightly higher 

friction coefficients of ~0.17 and similar wear.   

1.2.3 Tribology of Coatings 
There is little published research on the application of hard coatings in compressors and simulated 

environments, and none was found to specifically investigate reciprocating motion such as that of a piston-type 

compressor.  One publication sought to investigate the wear in rotary compressors with and without a TiN coating in 

a polyol ester (POE) lubricant and R410a environment [2].  The basic findings were that the addition of TiN to the 

vane surface improves the wear resistance over an uncoated vane and that there exists an optimal initial surface 

roughness at which load carrying capacity and wear can be improved.  However, the known issues of TiN producing 

high friction and high wear on the opposing interface were not discussed as they were generally not an issue in the 

fully lubricated environment. 

Another publication also studied compressors with several coatings in a POE/R407C environment [1].  TiN 

of different deposition conditions, TiAlN, WC/C, and diamond-like carbon (DLC) were deposited, and a vane that 

had undergone an ion nitriding surface treatment was also tested.  Dry and lubricated tests were performed with the 

conclusion that the WC/C coating was the most suitable, showing both good wear and friction characteristics, likely 

due to a transfer film on the uncoated surface.  Ion nitriding was deemed unsuitable for cyclic stresses found in 
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compressors.  TiAlN was found to be unsuitable due to high wear while TiN produced high friction.  The most 

surprising conclusion was that DLC produced high wear and scuffing failure in both dry and lubricated conditions, 

attributed to high hardness and corrosive wear.  This result contradicts many sources that report some forms of DLC 

are not only capable of super low friction (< 0.01) but are almost always accompanied by low wear [9-12].  Kennedy 

et al. found that tests with DLC-coated hardened 4140 steel produced 200 times less wear than uncoated tests with 

contact pressures of 300-500 MPa while friction was reduced by almost five times [12].  The coating was beneficial 

in lubricated tests as well, exhibiting 50% lower friction and 75% less wear than uncoated tests.  

1.2.4 Refrigerants 
Little research has been conducted to directly compare the tribological performance of compressor 

interfaces in different refrigerant environments under dry conditions.  Some of the most popular refrigerants 

currently are R134a, R410a, and R600a (isobutane) which is mostly used outside of the United States due to 

government regulations of the flammable gas, but has been shown to have good thermodynamic properties.  Yoon et 

al. performed steel pin on aluminum disk tests in several different refrigerants and found slightly less wear on those 

in an R410a environment versus R134a [8].  However, these tests were fully lubricated, and performance may have 

been influenced by the lubricant composition.  Similarly, Garland et al. performed aluminum pin on steel disk 

testing with different refrigerant/lubricant combinations [11].  Using the same lubricant, it was found that R134a had 

better wear but worse friction characteristics at room temperature.  At a temperature of 110°C, the trend was 

reversed.  However, R600a and R134a require different lubricants (typically mineral oil for R600a and POE for 

R134a) due to miscibility issues and using these combinations produced different trends.  The point to be made is 

that no significant testing has been conducted to compare refrigerants in a dry environment, let alone with coatings. 

1.3 Research Objectives 
In this research, the use of hard coatings was investigated for use in swashplate and piston-type 

compressors.  The coatings chosen were single-layer WC/C from two leading coatings manufacturers, and multi-

layered coatings, WC/C + DLC and TiAlN + WC/C.  These coatings were chosen for their advertised and widely 

known low friction characteristics, high relative hardness, low surface energy, and, therefore, expected reduced 

adhesive and abrasive wear.  The areas of investigation presented are friction, wear, and scuffing characteristics for 

swashplate compressor simulation, while piston-type compressor simulation is used to study performance at 

different speeds, temperatures up to 120°C including the amplified effects of running-in at elevated temperatures, 

and performance in various refrigerants and inert environments. 
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Chapter 2:  Experimental Procedures 

2.1 High Pressure Tribometer 
A specialized high pressure tribometer (HPT) was used in this study to perform controlled tribological 

experiments and evaluate friction and wear characteristics while simulating typical operating conditions found in air 

conditioning and refrigeration compressors.  A photograph and schematic of the HPT are shown in Figures 2.1 and 

2.2.  It uses an upper rotating spindle to which the disk is attached and a stationary fixture that holds the lower 

specimen.  A power screw mechanism adjusts the vertical position of the lower fixture to open or close the pressure 

chamber and apply a controlled normal load ranging from 10 lbf (45 N) to 1000 lbf (4450 N).  The lower fixture is 

mounted to a 6-axis force transducer which measures the forces in the x, y, and z linear directions to calculate the 

coefficient of friction for eccentric contacts by dividing the resultant of the tangential forces by the normal force. For 

concentric contacts, frictional torque, Mz, is used to calculate the friction coefficient.  Rotary or theta-axis control 

regulates upper spindle oscillation amplitude and frequency up to 5 Hz or produce unidirectional rotation speeds up 

to 2000 rpm. 

Pressure
Chamber 

Rotation 

Normal Load

Pressure
Chamber 

Rotation 

Normal Load

  

Figure 2.1:  The High Pressure Tribometer Figure 2.2:  Schematic of HPT Pressure Chamber and 
Lubricant Supply System 

The chamber temperature of the HPT can be varied from -20 to 120°C by pumping a heat transfer fluid 

through the upper spindle which is temperature regulated by an external unit. The chamber can also be vacuum 

evacuated and subsequently pressurized up to 250 psi (1.72 MPa). The HPT is computer controlled and acquires 

data including in-situ normal load, friction coefficient, and near contact temperature of the stationary specimen 

(approximately 2 mm below the surface with a miniature thermocouple) while exporting the data for analysis. 

Electrical contact resistance (ECR) can also be measured to determine the severity of the wear or lubrication state, 

but was not used in the data analysis due to apparatus problems, caused by issues with instrumentation and wiring, 
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for the majority of the experiments. A detailed description of the HPT can be found in Yoon [4], Patel [5], Demas 

[6], and Sheiretov [13]. 

2.2 Contact Geometry 

2.2.1 Swashplate Compressor Simulation (Unidirectional) 
The contact geometries used in this study were shoe-on-disk and pin-on-disk configurations.  Shoe-on-disk 

testing has been conducted extensively in past ACRC projects for swashplate compressor simulation and consists of 

a 52100 steel shoe (Figure 2.3) that is allowed to self-align to form a flat contact with the disk (Figure 2.4).  The 

self-aligning holder is depicted in Figure 2.5 and shows where the temperature and ECR measurements were made.  

An illustration of the contact is also displayed in Figure 2.6 while wear on an actual disk is exhibited in Figure 2.4 

with a wear track diameter of 1.75” (44.5 mm).  Although it appears that the shoe is flat, it is actually crowned with 

a dimple in the center causing higher contact pressure and wear initiation to occur where the central region of the 

shoe meets the disk.  A cross section profile of the shoe is depicted in Figure 2.7. 

 

Ø 1.75”
(44.5 mm)

Ø 1.75”
(44.5 mm)

 
Figure 2.3:  52100 Steel Shoe Figure 2.4:  Worn WC/C-coated A390-T6 disk 
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Figure 2.5:  Self-aligning shoe holder with provisions for temperature and ECR measurements 

52100 Steel 
Shoe
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Al390-T6
Disk (coated)

Thermocouple 
hole
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Figure 2.6:  Illustration of shoe-on-disk contact and wear track 

 
Figure 2.7:  Cross section profile of 52100 steel shoe 
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2.2.2 Piston-type Compressor Simulation (Oscillatory Motion) 
The emulation of the wrist pin/connecting rod interface (Figure 2.8) of a piston-type compressor was 

performed based on the equivalent contact pressure occurring on an actual connecting rod journal.  Traditional pin-

on-disk testing utilizes a cylindrical pin with a spherical top, usually a ball bearing, in contact with a flat disk.  

However, to achieve contact pressures relevant to piston-type compressors, relatively large contact radii on the order 

of 50 mm for the same load are needed necessitating custom pins.  It proved difficult to attain a perfectly spherical 

surface due to manufacturing limitations, and many times a sharp point remained on the pin tip causing immediate 

severe wear.  In this research, a new method was developed that used actual cylindrical wrist pins oriented to create 

a line contact as illustrated in Figure 2.9.  Using this configuration, desired contact pressures were easily applied, 

and it is felt that test results were more applicable to piston-type compressors due to the similarity of the line 

contact.  Pins were 8 mm in diameter and 8 mm long with a 1 mm diameter hole for miniature thermocouple 

insertion.  They were produced from actual wrist pins that were cut to length and machined to have a flat seat 

(Figure 2.10).  To accommodate this pin orientation, a special holder was designed which allows the pin to self-align 

(Figure 2.9(b)) to the disk surface ensuring a uniform contact pressure.  The holder was similar to the shoe holder 

and is shown with provisions for temperature and ECR measurements in Figure 2.11.  It was mounted such that a 

wear track diameter of 1.75” (44.5 mm) was attained, as depicted on the disk in Figure 2.12 that contains four tests.  

The disks for both piston-type and swashplate configurations are 3” (75 mm) in diameter and either 0.267” (6.8 mm) 

thick (cast iron) or 0.5” (12.7 mm) thick (aluminum).  The exact dimensions of the pin and disks are given in 

Figures 2.13 and 2.14. 

Wrist pin/
connecting rod

interface

Wrist pin/
connecting rod

interface

 
Figure 2.8:  Piston assembly for a piston-type compressor indicating the wrist pin-connecting rod interface of 
interest. 
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Figure 2.9:  Illustration of (a) pin-on-disk contact and wear track and (b) self-alignment holder 

 
 
 
 
 
 
 
 
 

 

ECR
Thermocouple

Base Fixture
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Figure 2.10:  52100 Steel pin test specimen 
machined from an actual wrist pin 

Figure 2.11:  Self-aligning pin holder with provisions 
for temperature and ECR measurements for wrist pin 
testing 
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Ø 1.75”
(44.5 mm)

Ø 1.75”
(44.5 mm)

 
Figure 2.12:  Gray cast iron disk with four tests 

 
Figure 2.13:  52100 Steel cylindrical pin dimensions in millimeters (machined from wrist pin) 
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Figure 2.14:  Cast iron and A390-T6 disk dimensions in millimeters (A390-T6 disk thickness is 12.7 mm) 

2.3 Materials and Coatings 

2.3.1 Swashplate Compressor Simulation 
To simulate swashplate compressors, aluminum A390-T6 disks were used which are a cast Al-Si alloy 

obtained from Shotic Corp. and have an average hardness of 72 HRB [5].  The chemical compostion, obtained from 

MatWeb [14], is given in Table 2.1.  As mentioned previously, the opposing interface was a SAE 52100 chrome 

steel shoe, which is the same part used in compressors and have a hardness of 62 HRC [14]. 

Table 2.1:  Aluminum A390-T6 composition 

Element 

 Al Si Cu Fe Mg Mn Ti Zn Other 

wt. % 75.2-79.6 16-18 4-5 < 0.5 0.45-0.65 < 0.1 < 0.2 < 0.1 < 0.2 

 
It was decided to coat the aluminum disk as it is usually the area where the majority of wear occurs due to 

its low relative hardness compared to the 52100 steel shoe. Carbon based coatings were obtained from two leading 

manufacturers, due to their low friction and wear characteristics.  Single-layer WC/C coatings from each company 

were acquired, and to differentiate between the two, they will be referred to as WC/C(A) and WC/C(B).  Multi-

layered WC/C + DLC and TiAlN + WC/C were also obtained.  WC/C, an amorphous, hydrogenated metal-carbon 

coating (a-C:H:W), was chosen based on its successful application in areas where low friction (μ < 0.2) is required.  

Although the performance of coatings usually varies due to adhesion layers used, deposition method, and surface 

roughness, according to the literature, WC/C has been found to perform similarly to harder, pure DLC (a-C:H, 

amorphous, hydrogenated carbon) coatings in terms of frictional characteristics and wear resistance [15].  

Furthermore, the abrasive wear resistance of WC/C coatings has been found to be as high as TiN, a common coating 
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unsuitable for low friction applications with a friction coefficient of 0.6 or higher [16].  The good wear resistance is 

a result of the alternating tungsten carbide and amorphous carbon phases in layers a few atoms thick, which can also 

provide good running-in characteristics. 

Multi-layered coatings are often used to increase tribological performance of the individual constituents.  

They can provide increased adhesion, increased load capacity, decreased surface stresses, and resistance to crack 

propagation [17].  WC/C + DLC was chosen due to the low friction and high wear resistance of each coating.  

However, it has also been shown that the DLC/WC pairing performs particularly well where cyclic loading is 

prevalent, such as gears and bearings [17], making it a good candidate for piston-type compressors. TiAlN + WC/C 

was also chosen for its advertised low friction and high wear resistance, but in all tests performed, caused instant 

failure at similar conditions to tests with other coatings, to be discussed in a later chapter.  Due to the low relative 

hardness of the aluminum, it was suggested by the coatings manufacturers to investigate the effects of applying an 

additional hard underlayer of CrN to increase load capacity by bearing more of the load before deformation of the 

substrate occurs.  A list of the coatings, substrates, and roughness of coated and uncoated samples used in this 

portion of testing is provided in Table 2.2 with their respective profiles scans in Figures 2.15-2.24.  Coating 

thicknesses were not directly measured on the aluminum disks, but theoretically identical to those on the pins for the 

piston-type compressor simulation (Section 2.3.2), with the addition of a few micron thick CrN underlayer on some 

of the disks.  

A third coating manufacturer, General Magnaplate, was also considered as a source of coatings, but due to 

time contstaints and the amount of coatings already obtained, their coatings were left for a future study.  However, 

one of their coatings claims to have the lowest coefficient of friction in the world and some are polymer-based, 

lending themselves to softer substrates such as aluminum. 

Table 2.2:  Roughness of coatings and virgin test samples 

Coated A390-T6 Disks 

Coating Ra (µm) Rq (µm) 

WC/C(A) 0.72 0.93 

CrN + WC/C(A) 1.67 2.50 

WC/C(B) 0.19 0.24 

CrN + WC/C(B) 0.44 0.54 

TiAlN + WC/C 0.48 0.62 

CrN + TiAlN + WC/C 1.57 2.35 

WC/C + DLC 0.33 0.42 

CrN + WC/C + DLC 0.43 0.54 

Uncoated Samples 

A390-T6 Disk 0.41 0.52 

52100 Steel Shoe 0.054 0.076 
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Figure 2.15:  Uncoated A390-T6 disk roughness scan Figure 2.16:  WC/C(A)-coated A390-T6 disk roughness 

scan 

  

Figure 2.17:  CrN + WC/C(A)-coated A390-T6 disk 
roughness scan 

Figure 2.18:  WC/C(B)-coated A390-T6 disk roughness 
scan 

  
Figure 2.19:  CrN + WC/C(B)-coated A390-T6 disk 
roughness scan 

Figure 2.20:  TiAlN + WC/C-coated A390-T6 disk 
roughness scan 

  

Figure 2.21:  CrN + TiAlN + WC/C-coated A390-T6 
disk roughness scan 

Figure 2.22:  WC/C + DLC-coated A390-T6 disk 
roughness scan 
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Figure 2.23:  CrN + WC/C + DLC-coated A390-T6 disk 
roughness scan 

Figure 2.24:  52100 steel shoe roughness scan 

 

2.3.2 Piston-type Compressor Simulation 
The substrates used for the piston-type compressor simulation were chosen to best simulate the wrist pin-

connecting rod interface while at the same time remaining general for comparison to previous research as well as 

other types of compressors.  The pins were produced from 52100 steel wrist pins that were modified to mount in the 

self-aligning holder (see Figure 2.9).  Gray cast iron (Dura-Bar® G2) was chosen for the disk counter-surface as it is 

a commonly used material in compressor applications.  Its chemical composition and mechanical properties are 

given in Table 2.3 [14]. 

Table 2.3:  Gray cast iron composition 

Element 

 C Cr Cu Fe Mn P S Sb Si Sn 

wt. % 2.7-4.0 < 0.05 0.05-
0.30 95 0.60-

0.95 
0.05-
0.20 

0.03-
0.07 

0.02-
0.20 

1.8-
3.0 

0.1-
0.3 

 
Unlike the shoe-on-disk testing, the harder 52100 steel pins were coated due to poor coating adhesion to 

gray cast iron as shown in Figure 2.25.  Initially, the effects of coating one or both substrates were to be 

investigated, but poor adhesion dictated meant that only uncoated disks could be tested.  Poor adhesion in gray cast 

iron stems from the soft, graphitic nature of the carbon content [18].  The same coatings were applied to the wrist 

pins as the aluminum disks, except without the CrN underlayer.  A list of the coatings, substrates, and roughness of 

coated and uncoated samples used in this portion of testing is provided in Table 2.4 with their respective profiles 

scans in Figures 2.26-2.31.  All coated samples have a ~0.5 µm thick Cr interlayer to promote adhesion, and the 

separate layers and thicknesses are displayed in Figure 2.32.  TiAlN + WC/C is not shown due to poor performance, 

explained in later sections. 
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Figure 2.25:  Cast iron disk with poor WC/C(A) coating adhesion 

Table 2.4:  Roughness of coatings and virgin test samples 

Coated 52100 Steel Pins 

Coating Ra (nm) Rq (nm) 

WC/C(A) 46 55 

WC/C(B) 50 77 

TiAlN + WC/C 278 433 

WC/C + DLC 35 45 

Uncoated Samples 

Cast Iron Disk 624 810 

52100 Steel Pin 32 36 

 

  
Figure 2.26:  Uncoated pin roughness scan Figure 2.27:  WC/C(A)-coated pin roughness scan 
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Figure 2.28:  WC/C(B)-coated pin roughness scan Figure 2.29:  TiAlN + WC/C-coated pin roughness scan 

  
Figure 2.30:  WC/C + DLC-coated pin roughness scan Figure 2.31:  Gray cast iron disk roughness scan 
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Figure 2.32:  Cross-sectional SEM images of (a) WC/C(A), (b) WC/C(B), and (c) WC/C + DLC coated pins 

2.3.3 Specimen Inventory 
Only a limited amount of samples were available for coating and the number chosen for each coating was 

based on manufacturer’s suggestions.  A total of 28 A390-T6 disks were available and only able to be coated on one 

side due to cost issues.  A total of 60 wrist pins were available as well as 60 cast iron disks.  Also, only 10% of the 
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pins and shoes had thermocouple holes drilled.  Again, this was a cost issue as the hard, bearing steel required two 

drill bits to finish one hole.  Tables 2.5 and 2.6 list the quantity of all samples that were coated.  Steel shoes were not 

coated and, thus, not listed. 

Table 2.5:  List of A390-T6 disks coated for swashplate compressor simulation 

 WC/C(A) CrN + WC/C(A) TiAlN + WC/C CrN + TiAlN + WC/C 
# of Disks 4 3 4 3 

 WC/C(B) CrN + WC/C(B) WC/C + DLC CrN + WC/C + DLC 
# of Disks 4 3 4 3 

Table 2.6:  List of 52100 steel pins and gray cast iron disks coated for piston-type compressor simulation 

 WC/C(A) WC/C(B) TiAlN + WC/C WC/C + DLC 
# of Pins 20 10 10 10 
# of Disks 101 0 0 0 

1Poor coating adhesion 
 

2.3.4 Mechanical Properties 
Nanoindentation measurements on coated and uncoated pins were performed to measure hardness and 

reduced Young’s modulus values.  A Hysitron TriboScope® nanoindenter was used in conjunction with a Berkovich 

tip to obtain contact depths of 50-200 nm and mechanical properties were determined using the Oliver and Pharr 

method [19].  The nanohardness and reduced modulus of bare 52100 steel were 12 GPa and 205 GPa, respectively, 

but higher than the bulk hardness of 7.3 GPa (converted from a hardness of 62 HRC).  These values were assumed 

to be similar to those of the 52100 steel shoes.  WC/C(A) hardness was similar at 10.5–12.5 GPa with a reduced 

modulus ranging from 90-125 GPa.  While nanoindentation on WC/C(B) was not performed, it was assumed that it 

was similar to WC/C(A).  The values for the WC/C + DLC coating were much higher with a hardness of 26 GPa 

and a reduced modulus of 200-220 GPa.  The high values were expected as the indenter penetrated to a maximum 

depth of 200 nm, ensuring that only the properties of the top layer, in this case DLC, were quantified.  The hardness 

values of all the substrates and coatings are summarized in Table 2.7 and also agreed with published values and 

manufacturer specifications [20-21].  The nanoindentation procedure and experiments are discussed further in 

Appendix A. 

Table 2.7:  Mechanical Properties of coatings and substrates 

Material 
Hardness 

(GPa) 
Reduced Modulus 

(GPa) 
HV 

(from mfr.) 
Uncoated 52100 Steel 12 205 - 

A390-T61 4-6 70-100 - 
Dura-Bar G2 gray cast iron 1.5-32 1243 - 

WC/C(A) 8-10 90-125 1500 
WC/C(B) - - 1500 

WC/C + DLC 26 200-220 2000-3500 
1Obtained with a 90° cube corner tip [3], 2Converted  from Brinell hardness; 3Bulk tensile modulus 
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2.4 Experimental Conditions 

2.4.1 Set-up 
Prior to all testing, the specimens were wiped clean with a towel and 2-propanol to remove large amounts 

of grease or rust inhibitor that was used to prevent oxidation on ferrous substrates.  They were then ultrasonically 

cleaned in acetone for ten minutes, rinsed with 2-propanol, and dried with a blow dryer.  It was found that if only 

ultrasonic cleaning was performed, residue or debris from machining was still present.  A picture of the cleaning 

station in the Tribology Laboratory is shown in Figure 2.33. 

Ultrasonic Cleaner

2-propanol

Blow Dryer

Fume Hood

Ultrasonic Cleaner

2-propanol

Blow Dryer

Fume Hood

 
Figure 2.33:  Cleaning station 

The basic steps for the tests performed in this research are outlined below: 

1. The desired chamber temperature is set on the external temperature control unit of the HPT. 
2. The pin or shoe holder is attached to the lower base fixture which is then mounted inside the pressure 

chamber 
3. The thermocouple and ECR wires are connected and positioned to avoid touching the upper spindle. 
4. A clean shoe or pin is placed in the self-aligning holder using tweezers, and the disk is mounted to the 

upper spindle.  Contact with the clean test surfaces is avoided. 
5. The chamber is closed, vacuum evacuated to 0.1 Torr, and filled with refrigerant to the desired 

pressure. 
6. The pin is brought into contact with the disk at an initial load of 10 lbf. 
7. The test is initiated via the computer and data collection begins. 
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2.4.2 Swashplate Compressor Simulation 
A limited number of tests were performed using the shoe-on-disk configuration due to the amount of coated 

disks available.  All experiments were carried out at ambient temperature in refrigerant R134a at 25 psi.  Rotation 

was unidirectional with a linear speed of 2.4 m/s.  Both step-loading and constant load tests were performed in an 

effort to determine the maximum load carrying capability of the coating as well as quantify wear and wear rates.  

Step-loading tests were primarily performed with an initial load of 35 lbf with a 35 lbf increase every 30 seconds.  It 

was found that the interface undergoes a running-in period with higher friction during which polishing and/or 

material transfer could occur possibly allowing the coating to perform better.  For this reason, several tests were also 

conducted at a low load for a longer period of time before increasing to the final load to determine if the interface 

could sustain more extreme conditions. 

Temperature was measured with a miniature thermocouple for a portion of this testing.  This allowed 

observation of the near-contact temperature in anticipation of scuffing or coating failure which would be 

accompanied by a sharp temperature increase.  An example of where temperature was an indicator of the onset of 

failure is shown in Figure 2.34.  Note that after the increase in load, temperature increased dramatically, followed by 

a steady-state response, and finally, a sharp increase at coating failure.  This figure also shows an example using an 

initial low load to wear-in the coating in an effort to achieve higher performance.  Electrical contact resistance was 

also measured for the same reason, but due to difficulties in obtaining consistent measurements resulting from 

instrumentation problems, it was only considered qualitatively when “realistic” values were observed.  Ideally, the 

ECR would exhibit a sharp decrease with scuffing.  Figure 2.35 shows a case where ECR was a clear indicator of 

scuffing when the shoe and disk became friction welded to each other, decreasing the resistance between the two.   

 
Figure 2.34:  An example of temperature warning of scuffing failure with WC/C(A) coated disk in R134a @ 25 
psi and ambient temperature 
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Figure 2.35:  An example of ECR indicating scuffing failure with a CrN + WC/C + DLC coated disk in R134a 
@ 25 psi and ambient temperature 

2.4.3 Piston-type Compressor Simulation 
With the exception of a few preliminary experiments, all oscillatory experiments were performed under a 

constant normal load in order to evaluate wear and running-in.  Due to the high wear resistance of the coatings, it 

was necessary to use higher contact pressures to obtain measurable wear with accelerated experiments.  All tests 

were performed with an amplitude of 30 degrees, with an average wear track diameter of 1.75” (44.5 mm) in dry, 

unlubricated conditions for 21 minutes, unless otherwise noted. 

Following all tests, wear and roughness were quantified using two profilometric scans on each disk and pin 

using a Tencor P-15 profilometer (see Appendix B for complete details).  To precisely determine pin wear, the worn 

pin profile was subtracted from the original measurement of the cylindrical pin shape.  The areas of the two scans 

were averaged and multiplied by the pin length to determine the wear volume.  Figure 2.36 illustrates the scan 

directions on the pin and disk and method of wear quantification. 
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Figure 2.36:  Images and profilometric scans of typical worn (a) pin and (b) disk.  The white arrows on the pin 
micrograph denote the scan directions while the black arrows indicate the sliding direction. 

2.4.3.1 Preliminary Experiments 
As a baseline, uncoated experiments were performed first at a lower normal load of 45 lbf (200 N) for 10 

minutes, the highest load attainable before premature scuffing failure, as shown in Figure 2.37.  Preliminary testing 

with coatings was conducted at ambient temperature in R134a at 25 psi with a frequency of 4.5 Hz to determine a 

suitable normal load at which to conduct subsequent tests.  Extremely high contact pressures were attainable, much 

higher than those present in a piston-type compressor.  To demonstrate the effectiveness of the hard coatings, 

though, these results will be presented.  Constant load experiments were performed with normal loads up to 300 lbf 

(1336 N), while a single step-loading test was performed with a maximum load of 750 lbf (3341 N) for an initial 

Hertzian contact pressure of 1.7 GPa, assuming elastic contact. 
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Figure 2.37:  Uncoated pin-on-disk experiment exhibiting scuffing failure 

2.4.3.2 Temperature Variation 
Tests to investigate the effects of temperature variation were performed for all coatings with durations of 

21 minutes. These times provided measurable wear from which performance distinction could be made without 

observing scuffing failures.  For the first minute of each test, the normal load was set to half that of the remaining 

test load to aid running-in.  In the absence of this initial lower load at the beginning of the running-in process, 

several immediate coating failures had occurred, as seen with WC/C(A) at just over 100 lbf (445 N) in Figure 2.38.  

The temperatures studied ranged from ambient (23°C) to 120°C. 

 
Figure 2.38:  Example of immediate coating failure with WC/C(A) 

Most tests were performed at a normal load of 100 lbf to quantify wear.  At chamber temperatures above 

60°C, a progressively increasing running-in period was observed where friction coefficients of up to 0.4 were 

measured, and to study this behavior, WC/C(A) was tested at 120°C and 50 lbf for 5, 10, and 21 minutes.  A lower 

normal load was necessary due to immediate failure of WC/C(A) at 100 lbf and 120°C.  Following this testing, 4 

mm long roughness scans were completed on both the pin and disk to correlate roughness to the running-in process.   
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2.4.3.3 Refrigerant Variation 
This group of testing aimed to determine how different refrigerants affected coating performance. WC/C + 

DLC, thought to be the highest performing to this point, was evaluated in R134a, R410a, and R600a while baseline 

tests were conducted in N2.  The chamber pressure was 25 psi for all environments to obtain the same number of 

refrigerant molecules present (according to the ideal gas law).  These experiments were all performed at ambient 

temperature with a frequency of 4.5 Hz and a normal load of 100 lbf (445 N). 

2.4.3.4 Oscillation Frequency Variation 
The effects of speed on friction and wear were studied with frequencies of 3 Hz and 4.5 Hz to produce 

average linear speeds of 0.14 m/s and 0.21 m/s, respectively.  Similar to other test groups, the normal load was set at 

50 lbf (223 N) for the first minute and 100 lbf (445 N) thereafter.  The test environment was at ambient temperature 

with R134a at 25 psi.  To correctly correlate tests at different frequencies, the number of cycles was kept the same to 

achieve the same sliding distance. 
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Chapter 3:  Results and Discussion 

3.1 Swashplate Compressor Simulation 

3.1.1 Preliminary Testing 
Cannaday found that the friction coefficient of uncoated 52100 steel on an aluminum disk was unstable [7].  

Figure 3.1 shows a 10 minute test at a load of ~15 lbf with a friction coefficient that is initially around 0.5, but 

begins to fluctuate soon after.  Also, temperature was continuously rising through the duration of the test.  The 

contact geometry was different than typical swashplate compressor testing with a flat 6.35 mm diameter pin; 

nevertheless, high adhesive friction of the two materials was exhibited.  This test is shown as a baseline for coated 

tests. 

 
Figure 3.1:  HPT data for a flat pin-on-disk test with no lubrication or coating [7] 

During the preliminary experiments, it was immediately found that the TiAlN + WC/C coating was 

unsuitable for this application.  Figure 3.2 shows the HPT data from one experiment, and although the friction 

coefficient is low relative to the uncoated experiment, the coating has completely worn through as shown in the 

micrograph in Figure 3.3 and accompanying wear scan in Figure 3.4.  A cross section SEM image of a virgin TiAlN 

+ WC/C coating on the aluminum (Figure 3.5) shows a subsurface crack which may have been caused by high 

residual stresses of the TiAlN underlayer.  Figure 3.6 shows delamintation of a virgin TiAlN + WC/C coating which 

suggests that this particular coating has poor adhesion to A390-T6.  It is interesting that the friction is still stable 

compared to the uncoated test due to the embedding of coating particles within the aluminum, exhibited in Figure 

3.3.2.  TiAlN + WC/C was eliminated from further testing, but it is important to note that it is possible that this 

multi-layered coating could perform better if it was optimized for the specific substrate. 
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Figure 3.2:  HPT data of TiAlN + WC/C -coated disk 

5 mm5 mm
 

Figure 3.3:  Wear scar of a failed TiAlN + WC/C-coated disk 
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Figure 3.4:  Profile scan of scuffed TiAlN + WC/C-coated disk 
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Figure 3.5:  Cross-sectional SEM image of a virgin TiAlN + WC/C-coated disk showing subsurface cracks 
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Figure 3.6:  Cross-sectional SEM images of a virgin TiAlN + WC/C-coated disk showing delamination 

 
Figure 3.7:  Embedding of coating particles in a scuffed TiAlN + WC/C-coated disk 

3.1.2 Friction and Scuffing Experiments 
In an effort to quantify wear on constant load tests, profilometric scans of the disk wear track were 

performed.  It was difficult to distinguish wear from roughness on the disk, though, as mostly polishing occurred.  

Despite this difficulty in preliminary testing, a series of tests was performed with WC/C(A) at successively higher 

loads using the same disk with a new shoe each time to try and produce wear and investigate effects of transfer 
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films.  After each test, only polishing was observed on the coating surface while the softer WC/C(A) (versus 52100 

steel) formed a transfer film on the shoe, displayed in Figure 3.8.  Transfer films have been shown to be a key 

ingredient to low friction in the literature [9-12], but seemed to have little or no effect in these tests.  Table 3.1 lists 

the friction coefficients obtained with each load showing little variation except that it decreased slightly with higher 

loads.  It became apparent through these tests and those explained next, that without extremely long tests, no 

measurable wear will be obtained.  In general, with coated aluminum, the scuffing occurs due to the soft substrate 

and poor load support causing coating fracture. 

 
Figure 3.8:  WC/C(A) transfer film formed on 52100 steel shoe 

Table 3.1:  Results of successively higher loads on WC/C(A) coated disk 

Load (lbf) Duration (min.) Friction Coeff., µ 
40 10 0.13 
75 10 0.11 
100 10 0.13 
150 10 0.11 
200 10 0.07 
250 4.33 0.09 

 
Due to the difficulty of wear quantification in constant load tests, step-loading tests were performed until 

scuffing occurred to observe friction coefficients at different loads as well as determine the load bearing capability 

of the coatings.  WC/C(B) and WC/C + DLC without a CrN underlayer appeared to be very inconsistent.  A coating 

may be able to support a 250 lbf load in one test and scuff instantly at 35 lbf in the next test as shown with data from 

two tests in Figure 3.9.  It is unknown whether this was due to differences in coating thicknesses or if the scuff 

marks and light scratches observed after shipping initiated scuffing.  WC/C(A) disks, however, were shipped using 

the same method, had little or no scuff marks, and performed relatively consistently.  As a result of the quality of 

WC/C(B), all step-loading tests starting at 35 lbf scuffed before the first load step.  Only scuffing tests starting at 50 

lbf with longer step durations were performed successfully and are presented later. 
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Figure 3.9:  Unsuccessful WC/C(B) tests with immediate scuffing 

Although, WC/C(B) performed poorly, the same coating with a CrN underlayer produced the lowest 

steady-state friction coefficient of 0.05 and highest load bearing capacity (455 lbf) of all the coatings.  CrN + 

WC/C(A) was able to achieve the same load, but exhibited a higher steady-state friction coefficient at 0.17 that 

began to rise for a short period before scuffing.  The HPT data for the two types of CrN + WC/C coatings are given 

in Figures 3.10 and 3.12 as well as representative worn disks and shoes in Figures 3.11 and 3.13.  All tests were 

performed until scuffing failure, but some were stopped before the large increase in friction became apparent.  The 

higher friction generated by CrN + WC/C(A) coating is likely due to the higher initial roughness and the abrasive 

wear resistance of the hard multi-layer coating, inhibiting running-in.  The effects of higher friction were also 

apparent in the higher temperature attained, exhibited in the discolored shoe in Figure 3.13.  It is unknown what 

causes the friction spikes early in testing with this coating, but they illustrate its tribological consistency. 

 
Figure 3.10:  HPT data for scuffing of CrN + WC/C(B) 
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Figure 3.11:  Worn CrN + WC/C(B) coated disk and shoe 

 
Figure 3.12:  HPT data for scuffing of CrN + WC/C(A) 
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Figure 3.13:  Worn CrN + WC/C(A) coated disk and shoe 

The CrN underlayer improved the consistency of WC/C + DLC as observed in the HPT data shown in 

Figures 3.14 and 3.16 with representative worn disks and shoes in Figures 3.15 and 3.17.  In this case, however, the 

CrN increased the surface roughness, similar to WC/C(A), causing a higher friction coefficient.  The lowest friction 

coefficient produced with WC/C + DLC was 0.06 while the CrN underlayer caused the value to increase to 0.11.  

The increase in friction appeared to increase wear and cause the interface to scuff at a lower load than one, but not 

both, of the disk without the CrN underlayer.   

 
Figure 3.14:  HPT data for scuffing of WC/C + DLC 
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Figure 3.15:  Worn WC/C + DLC coated disk and shoe 

 
Figure 3.16:  HPT data for scuffing of CrN + WC/C + DLC 
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Figure 3.17:  Worn CrN + WC/C + DLC coated disk and shoe 

The final test in this series of scuffing experiments was performed with WC/C(A).  As the HPT data in 

Figure 3.18 shows, the scuffing load of 245 lbf (1091 N) is much lower than that of the previous tests due to the load 

bearing capability of the CrN underlayer.  As a result of the lower roughness, though, it produces a friction 

coefficient of 0.09, about half of that produced with a CrN underlayer, but was still higher than CrN + WC/C(B).  

The worn disk and shoe are displayed in Figure 3.19. 

 
Figure 3.18:  HPT data for scuffing of WC/C(A) 
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Figure 3.19:  Worn WC/C(A) coated disk and shoe 

Only two successful tests were performed with WC/C(B).  To determine if running-in at low loads for an 

extended period ultimately affected performance, WC/C(B) was tested at 10 lbf (45 N) and 50 lbf (223 N) for 10 

minutes each before increasing to 250 lbf (1114 N), as shown in Figure 3.20.  Scuffing occurred within a few 

minutes or less at a similar load to WC/C(A), suggesting similar performance, as expected.  However, premature 

coating failure was never an issue with WC/C(A).   

 
Figure 3.20:  HPT data for scuffing of WC/C(B) 

A summary of scuffing loads for each coating is presented in Figure 3.21.  Based on this testing, the 

hypothesis that a CrN underlayer improves load bearing capacity is confirmed in the case of WC/C(A) and 

WC/C(B).  However, the deposition of CrN under WC/C(A) increased the overall surface roughness causing 

significantly increased friction.  Still, with a scuffing load over 400 lbf (1782 N), and a friction coefficient of 0.17, 

the CrN + WC/C(A) coating performs significantly better than uncoated, unlubricated tests.  The CrN underlayer 

improves the quality consistency, ultimately allowing WC/C(B) to achieve the highest load and lowest friction 
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coefficient of all coatings, but still falls short of fully lubricated tests performed by Demas with scuffing loads of 

750 lbf and a friction coefficient of 0.05 [6]. 
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Figure 3.21:  Average scuffing loads of tested coatings.  Error bars represent the maximum and minimum values 
for each coating. 

3.2 Piston-type compressor Simulation 

3.2.1 Preliminary Testing 
To obtain a baseline from which to compare coating performance, tests were performed with uncoated pins 

at room temperature.  The aim was to determine at which load the uncoated tests could be run without scuffing 

failure.  Uncoated pins were only able to support a 45 lbf (200 N) normal load for ten minute tests and exhibited a 

steadily increasing friction coefficient with a final value of 0.32 as shown in Figure 3.22.  A running-in period was 

apparent in the first few minutes where friction reached a maximum and started to decrease. The cause of this 

running-in period is possibly a result of adhesive wear increasing roughness of both surfaces and subsequently the 

abrasive wear and friction coefficient as evidenced by material transfer to the pin as well as significant wear debris 

from the disk.  The worn disk and profile scan showing a wear depth of 1-2 µm are displayed in Figures 3.23 and 

3.24.  Note that scuffed disks had wear depths on the order of 100 µm.  No measurable pin wear was observed as 

mostly material transfer from the disk occurred.  In contrast to the behavior exhibited in the uncoated experiments, 

measurable disk wear was not observed in coated experiments. 
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Figure 3.22:  HPT data for uncoated test in R134a at 25 psi and 23°C 

 
Figure 3.23:  Worn cast iron disk used in uncoated test 

 
Figure 3.24:  Profile scan of worn cast iron disk used in uncoated test 

At the opposite extreme, a step-loading test was conducted with WC/C + DLC that was able to withstand 

750 lbf (3341 N) before failure.  HPT data for this test is shown in Figure 3.25.  Note that the long step duration in 

the middle of the test was a result of two tests run back to back using the same specimens.  The original maximum 

load was set of 500 lbf (2227 N) which did not result in scuffing, so the load was set higher and the test restarted 

with the specimens still in contact under load.  This is a remarkable feat considering the uncoated results and the 

presence of very little wear debris due to mostly plastic deformation as evidenced by the leftover machining marks 

in Figure 3.26.  Also interesting to note is that the coating was not worn through, but failure was caused by extreme 

plastic deformation of the disk as depicted by the disk wear scan in Figure 3.27.  The radius of the worn pin 

determined from the pin wear scan in Figure 3.28 was ~4.6 mm indicating a final Hertzian contact pressure of 1.6 
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GPa.  A contact pressure of this magnitude could not be accomplished with other coatings, and therefore, this test 

was not repeated. 

 
Figure 3.25:  HPT data for step-loading test with WC/C + DLC in R134a at 25 psi and 23°C 

 

 
Figure 3.26:  Image of worn cast iron disk showing plastic deformation in step-loading test 

 
Figure 3.27:  Disk wear scan performed perpendicular to sliding direction 
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Figure 3.28:  Pin wear scan performed parallel to sliding direction 

Constant load experiments were also conducted with the WC/C + DLC coating.  Figure 3.29 shows images 

of the disks with their respective loads and friction coefficients.  Again, the wear was mostly plastic deformation 

with a depth of less that 1 µm on the disk for 300 lbf, as depicted in Figure 3.30.  Similar to the step-loading tests, 

the friction coefficient appeared to decrease with increasing load.  While it is certainly interesting that the interfaces 

are able to sustain these loads, lower constant loads with longer durations must be used for comparison to coatings 

with lower load bearing capability. 

Similar to the shoe-on-disk testing, the TiAlN + WC/C coating was deemed unsuitable for the pin-on-disk 

testing.  The coating produced higher friction than that of the uncoated experiment at a load of only 50 lbf (223 N) 

and was eliminated from further testing.  A possible cause of this, as indicated by cross-sectional SEM in Figure 3.5, 

is that the WC/C overcoat is relatively thin compared to other coatings, and is quickly worn off, exposing the high 

friction TiAlN underlayer. 
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3.2.2 Temperature Variation 
Due to insignificant disk wear produced in coated experiments (depths < 0.5 µm, indistinguishable from the 

disk roughness) while pin wear became significant, only pin wear was quantified.  Steady-state friction coefficient 

values and wear rates, defined as wear volume per total sliding distance, for coated and uncoated pins are depicted in 

Figures 3.31 where error bars represent the minimum and maximum values for a given condition.  As the error bars 

indicate, test repeatability was high.  Steady-state friction coefficients are shown to decrease with temperature while 

wear rates initially decreased and then increased at the highest temperature tested.  At temperatures below 60°C, 

WC/C + DLC performed slightly better in terms of friction than the other coatings with a value of 0.12, but the trend 

was reversed at 60°C with WC/C from both manufacturers performing similarly and WC/C(A) showing the lowest 

friction coefficient of 0.05 at 120°C (normal load of 50 lbf).  This is possibly due to WC/C’s ability to form a more 

effective transfer layer than pure DLC in some conditions [1].  However, the pin wear of WC/C + DLC is 

significantly better than the others with less than one third of the wear at 60°C and about 40% less at 120°C.  This is 

undoubtedly a result of the DLC overcoat’s higher hardness.  In fact, the DLC overcoat is never worn through as 

depicted in Figure 3.32 where the green line denoted the boundary below which the WC/C underlayer starts, and the 

black line is the boundary below which the 52100 steel substrate starts. 

 
Figure 3.31:  (a) Steady state coefficient of friction and (b) pin wear rate versus temperature for uncoated and 
coated pins.  Note that WC/C(A) at 120°C was tested at 50 lbf.  Error bars represent maximum and minimum 
values for a particular condition. 
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Figure 3.32:  Pin wear scan of WC/C + DLC at 120°C.  The green line denotes the boundary below which the 
WC/C underlayer starts, and the black line is the boundary below which the 52100 steel substrate starts. 

At room temperature, no significant running-in period was observed, reaching steady-state almost 

immediately after the 50 lbf wear-in load.  This is likely due to low adhesive wear from the low surface energy of 

the coating while the disk surface was quickly polished.  At temperatures of 60°C and above, however, adhesive 

wear began to increase, increasing the pin wear rate.  As wear of the pin increased with temperature, it is postulated 

that a transfer film on the disk from the coating begins to form causing the steady-state friction coefficient to 

decrease, which is in agreement with the literature [9-12, 17].  Also contributing to the friction decrease was a 

higher polishing rate of the disk surface at increased temperatures.  It is important to note, however, that disk wear 

was still not measurable while pin wear rates decreased in the transition from room temperature to 60°C, with 

WC/C(B) exhibiting the largest decrease.  Wear rates decreased further from 60°C to 80°C for both WC/C coatings, 

but steady-state friction coefficients remained similar with initial running-in values of 0.2-0.25.  Increased wear and 

similar friction is due to a transition period from abrasive to adhesive wear in this temperature range.  An increase in 

temperature to 120°C produced a lower steady-state friction coefficient for WC/C(A) while the transition to 

adhesive wear increases the pin wear rate by over 50% from values at 80°C.  The increase in adhesive wear was 

evidenced by greater material flow on the coating surface at higher temperatures, as observed with SEM, which also 

caused pronounced running-in periods.   

3.2.3 Running-in at Elevated Temperatures with WC/C(A) 
During tests conducted at 120°C, a very pronounced running-in period was observed with friction 

coefficients reaching in excess of 0.4, but would then attain steady-state values of less than 0.05.  To study this 

running-in behavior, additional tests were performed that were stopped at the friction coefficient peak (5 minutes) 

and at the end of the running-in period (10 minutes).  Tests were repeatable and plots are shown with load and 

friction evolution in Figure 3.33, exhibiting the same trend of high values in running-in and attaining steady-state 

thereafter.  Notice also in Figure 3.34 that friction immediately reaches steady-state at 23°C, while running-in 

friction coefficients increased with temperature.  While running-in is investigated for only WC/C(A), the same 



 

42 

trends are apparent for all coatings.  It is possible that the cause is something common to all coatings, such as similar 

roughness. 

 
Figure 3.33:  Load and friction coefficient, μ, evolution for WC/C(A) with test durations of 5, 10, and 21 
minutes (full length). Note the test repeatability and apparent noise caused by oscillatory motion. 

 
Figure 3.34:  A comparison running-in characteristics in terms of the friction coefficient of WC/C (A) for each 
temperature tested.   

As postulated, nearly all pin wear occurred during the running-in period with little or none during steady 

state.  The pin wear volume for the 5, 10 and 21 minute tests were 1.68 x 10-3 mm3, 2.44 x 10-3 mm3, and 2.37 x 10-3 

mm3, respectively. Although, the volume at 10 minutes was measured to be more than 21 minutes, the values are 

within 3% and are essentially equal.  The pin wear volume at 5 minutes, suggests that the majority of the wear 

occurs during the first half of the running-in period.  Illustrating material transfer to and from the disk, SEM images 

of the entire wear tracks and close-ups of the wear track edges are displayed in Figures 3.35 and 3.36.  The image 

taken after the 5 minute test shows that only polishing of the pin occurred with possibly some material transfer from 

the coating to the disk.  However, the images taken after the 10 and 21 minute tests show possible coating material 

flow or material transfer from the disk. 
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Figure 3.35:  Surface SEM images of pin wear after (a) 5, (b) 10, and (c) 21 minute tests at 120°C.  Image (b) 
was taken at X230 and magnified to match the scales of (a) and (c). 
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Figure 3.36:  X2500 Surface SEM images of the edge of pin wear after (a) 5, (b) 10, and (c) 21 minute tests at 
120°C.   
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As mentioned previously, it was postulated that a transfer film from the coating to the disk occured, which 

may have caused a decrease in friction.  Such a transfer film would likely be more apparent at higher temperatures 

due to increased adhesion, causing the pronounced running-in period.  The evidence of transfer films was 

investigated using EDS on a JEOL 6060LV SEM for WC/C(A) at 120°C.  To provide an explanation for running-in, 

a thicker transfer film should be apparent for the 10 and 21 minute tests versus the 5 minute tests.  However, the wt. 

% of tungsten (the only defining element of WC/C(A) since cast iron contains carbon) ranged from 1 to 3% with no 

correlation to the test times.  This suggests that the transfer film forms early on and is most likely not the cause of 

the running-in period.  Representative EDS spectra for 5 and 10 minute tests are shown in Figures 3.37 and 3.38 

with the corresponding compositions in Table 3.2.  Note that the tungsten composition at 10 minutes is less than at 5 

minutes.  Some spectra at 10 minutes showed greater tungsten composition than at 5 minutes, though, rendering 

these results inconclusive as a single explanation for the running-in period. 

 
Figure 3.37:  EDS spectrum of worn cast iron disk after 5 minute test 
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Figure 3.38:  EDS spectrum of worn cast iron disk after 10 minute test 

Table 3.2:  Elemental composition of bulk cast iron, virgin surface, and worn surface 

Element (wt. %) 

 C Cr Cu Fe Mn O P S Sb Si Sn W 

Mfr. Spec. 2.7-4 >0.05 0.05-
0.30 95 0.60-

0.95 - 0.05-
0.20 

0.03-
0.07 

0.02-
0.2 

1.8-
3.0 

0.1-
0.3 - 

Virgin EDS 3.36 - - 93.72 0.89 - 0.16 - - 1.88 - - 
EDS: 5min. 2.91 - - 86.61 0.86 4.76 0.14 0.09 - 1.69 - 2.95 

EDS: 10min. 3.44 - - 86.06 0.69 5.95 0.07 0.04 - 1.78 - 1.97 

 
To further examine running-in, profilometric scans of the pins and disks were performed perpendicular to 

the sliding direction within the central 4 mm of the wear scar.  Figures 3.39 and 3.40 depict profiles of worn and 

corresponding virgin pins and disks, and relative roughness and skewness values are listed in Table 3.3.  A 

difference is clearly seen in that during the first 5 minutes, pin micro-roughness significantly decreased through the 

shearing of asperity peaks.  From 5 to 10 minutes, the roughness increased, likely due to the conforming wear 

caused by the rougher disk.  At 21 minutes, overall pin roughness decreased due to polishing while microroughness 

increased slightly, as it did on the disk. 

Although the virgin roughnesses of the two virgin disks were quite different (Rq = 517 nm vs. Rq = 299 

nm), it is important to note that the roughness always decreased with test time.  More interesting, however, is that 

the negative skewness was greater for longer tests due to increased polishing.  It is possible that the polishing 

process was the cause of the running-in period.  At low temperatures, the polishing process may have been 

accelerated, causing a less severe and shorter running-in period. 
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(a) Rq = 164 nm

(b) Rq = 87 nm

(c) Rq = 116 nm

(d) Rq = 167 nm

(e) Rq = 73 nm

(a) Rq = 164 nm

(b) Rq = 87 nm

(c) Rq = 116 nm

(d) Rq = 167 nm

(e) Rq = 73 nm

 
Figure 3.39:  Representative  profile scans of (a) a virgin pin used for 5 and 10 minute tests, (b) pin roughness 
after 5 minutes, (c) pin roughness after 10 minutes, (d) virgin pin used for 21 minute test, and (e) pin roughness 
after 21 minutes.  Scans were performed perpendicular to the sliding direction. 
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(a) Rq = 517 nm; Sk = -2.28

(b) Rq = 476 nm; Sk = -2.61

(c) Rq = 407 nm; Sk = -2.85

(d) Rq = 299 nm; Sk = -0.69

(e) Rq = 279 nm; Sk = -2.91

(a) Rq = 517 nm; Sk = -2.28

(b) Rq = 476 nm; Sk = -2.61

(c) Rq = 407 nm; Sk = -2.85

(d) Rq = 299 nm; Sk = -0.69

(e) Rq = 279 nm; Sk = -2.91

 
Figure 3.40:  Representative profile scans of (a) a virgin disk used for 5 and 10 minute tests, (b) disk roughness 
after 5 minutes, (c) disk roughness after 10 minutes, (d) virgin disk used for 21 minute test, and (e) disk 
roughness after 21 minutes.  Scans were performed perpendicular to the sliding direction. 

Table 3.3:  Roughness and skewness of specimens used for running-in investigation 

 Pin Disk 

Test Rq (nm) Rq (nm) Sk 

Virgin (5 & 10 min. tests) 164 517 -2.28 

5 minutes 87 476 -2.61 

10 minutes 116 407 -2.85 

Virgin (21 min. test) 167 299 -0.69 

21 minutes 73 279 -2.93 

 
Relative roughness can also be clearly seen in SEM images of disk surfaces at magnifications of X500 and 

X2500 in Figure 3.41.  The images confirm that material flow of the cast iron occurred, progressively filling in 

valleys with material that was removed from asperity peaks, increasing negative skewness and decreaseing 

roughness.  The roughness and skewness values along with the evolution of the pin and disk wear profiles 

demonstrate that pin and disk surfaces conformed to each other through polishing and material transfered to reduce 

abrasive friction and complete the running-in process.  For real engineering applications, it would be best to polish 
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contacting surfaces before coating.  As this can be costly or unfeasible, proper running-in procedures should be 

investigated to optimize tribological performance. 

5 min.

10 min.

21 min.

Sliding Direction

5 min.

10 min.

21 min.

Sliding Direction

 
Figure 3.41:  X500 (left column) and X2500 (right column) SEM images of cast iron disks from WC/C(A) tests 
at 120°C and various durations.  White arrows on images denote machining mark directions. 

3.2.4 Refrigerant Variation 
Due to the absence of literature on refrigerant comparison, it was unsure how each refrigerant would 

perform relative to each other.  HPT friction and load data are shown for representative experiments for each 
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environment in Figure 3.42.  It was found that friction coefficients for R134a, R410a, and N2 were similar in the first 

few minutes with the WC/C + DLC coating, but then scuffing occurred in the N2 environment at a little over four 

minutes. This is not surprising as interfaces tend to have less wear in refrigerant environments versus air [7].  At 

around five minutes, the R410a interface exhibited decreasing friction indicating that it was in a state of running-in.  

It reached steady-state with slightly lower friction than in the R134a environment, but the friction in the R600a 

environments remained the lowest for the entire test.  Steady-state friction coefficients for each environment are 

displayed in Figure 3.43.  Note that the friction coefficient for N2 was the average prior to scuffing.  Chemical 

analyses were not performed to detect compounds that may improve friction or wear characteristics, but R600a has 

the highest percentage of hydrogen atoms per unit volume (Table 3.4), and Fontaine et al. found that H2 has a 

healing effect on hydrogenated DLC coatings in tribological applications enabling lower friction but not necessarily 

wear [22].  Conversely, R410a produced the least amount of wear with R600a being the second best.  Reasons for 

this are unknown without further chemical analyses.  Relative pin wear rates are given in Figure 3.44.   Also, note 

that wear is not reported for N2 due to extreme material transfer with scuffing failure. 

Figure 3.42:  Representative friction coefficient 
evolution for various environments 

Figure 3.43:  Friction coefficients for the WC/C + DLC 
coating in various refrigerants.  Error bars represent 
maximum and minimum values for a particular 
condition. 

Table 3.4:  Element composition by % vol. for various refrigerants 

Element 
Refrigerant Molecular formula 

C H F 

R134a F3C-CH2F 27.4 13.9 38.5 

R410a CH2F2 + F3C-CHF2 54.8 69.5 0.0 

R600a (CH3)2CH-CH3 17.8 16.6 61.5 
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Figure 3.44:  Pin wear rates for various environments.  Note that N2 is not shown due to severe damage caused 
during scuffing. 

3.2.5 Frequency Variation 
Limited testing was conducted to study how speed affected friction and wear.  In general, increased 

velocity appeared to cause higher wear, as shown in Figure 3.45 with the exception of WC/C(A).  However, the 

decrease is too small to conclude that wear is proportional to speed.  Also, the friction coefficient for all three 

coatings increased slightly with increasing velocity.  Only two frequencies were tested, though, producing limited 

data on the affects of velocity.  It was decided that frequencies lower than 4.5 Hz (0.21 m/s) were not relevant to 

piston-type compressors and this group of testing was discontinued due to the limitations of the HPT. 

 
Figure 3.45:  Coefficient of friction and pin wear rate dependence on velocity 
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Chapter 4: Conclusions and Recommendations 

4.1 Swashplate Compressor Simulation 
The application of hard coatings to the A390-T6 surface greatly improved the tribological performance of 

the swashplate compressor simulation.  Without coatings or lubrication, the shoe-on-disk interface was hardly able 

to support 15 lbf while producing a very unstable friction coefficient.  However, thought step-loading experiments, 

the best performing coating, CrN + WC/C(B), was able to support loads as high as about 450 lbf with a friction 

coefficient of ~0.5. 

It was difficult to investigate wear with this interface as the cause of scuffing was due to poor load support 

by the soft aluminum substrate rather than wearing through the coating.  Mostly step-loading experiments were 

conducted because of this and the coatings were judged by their maximum scuffing load and friction coefficient.  

TiAlN + WC/C was eliminated early in testing due to immediate scuffing, possibly caused by poor coating adhesion 

or relatively thin low friction WC/C overcoat, quickly uncovering the high friction TiAlN underlayer.  The lowest 

performing coating after TiAlN + WC/C was WC/C(B) with a scuffing load of 250 lbf.  While this is the same 

scuffing load as WC/C(A), WC/C(B) performed very inconsistently due to scuff marks that were produced during 

shipping of the coated disks,  even though both types of coatings were shipped in the same manner.  WC/C + DLC 

was able to support a maximum load of just over 300 lbf, although the friction coefficient was slightly larger than 

the single-layer WC/C.  Consistency was a problem with WC/C + DLC as well, but the CrN underlayer improved 

this, increasing the load support to ~325 lbf. 

The best performing coatings were both CrN + WC/C.  Both were able to support ~450 lbf in some cases, 

but the WC/C(A) overcoat caused higher friction due to greater roughness.  CrN + WC/C(A) was slightly more 

consistent, but CrN + WC/C(B) had a lower friction coefficient of 0.05, about half that of CrN + WC/C(A).   

4.2 Piston-type Compressor Simulation 
The application of hard coatings to 52100 steel pins greatly improved the tribological performance of the 

piston-type compressor simulation as well.  Without coatings or lubrication, the pin-on-disk interface would only 

support 45 lbf before scuffing occurred.  These tests produced friction coefficients of ~0.3 and a disk wear depth of 

about 1 µm.  In contrast, most experiments with coated pins produced negligible disk wear, and the WC/C + DLC 

coating was able to support 750 lbf with a minimum friction coefficient of 0.06 before failure due to plastic 

deformation of the disk in a step-loading experiment. 

In constant load experiments, the coatings used in this research enhanced tribological performance greatly 

by reducing the friction coefficient by factors of 3.5 and almost ten for WC/C and WC/C + DLC, respectively, at 

high temperatures and virtually eliminating wear of the uncoated disk.  WC/C + DLC consistently showed the least 

wear while friction for WC/C(A) and WC/C(B) are slightly higher at lower temperatures, a trend that is reversed at 

elevated temperatures.  The friction coefficients decreased with temperature while wear decreased and then 

increased following a critical point in temperature where running-in wear becomes more severe.  Following running-

in, minimal additional wear occurs, indicating the advantage of using coatings with good running-in characteristics 

and reducing the initial roughness of the interface as much as possible.  The cause of running-in is believed to be 

roughness as the pin and disk conform to each other more throughout the test. 
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In the refrigerant investigation, experiments in R410a produce the least amount of wear, about half that of 

R134a.  However, tests in R600a exhibited the lowest friction coefficient of about 0.09 possibly due to the 

abundance of hydrogen in the environment.  Tests in R134a, produced the highest friction at almost 0.12, similar to 

N2.  It was found that refrigerant increases tribological performance as the inert N2 environment produced scuffing 

failure. 

4.3 Recommendations for Future Testing 
While it has already been shown the hard coatings greatly improve the tribological characteristics of 

compressor surfaces, it is believed that other test parameters and coatings that were not able to be studied here may 

further enhance performance.  Recommendations include: 

• Investigate substrate roughness effects 

• Test polymer based coatings such as ATSP from the University of Illinois and coatings from other 

manufacturers such as General Magnaplate for use on soft substrates 

• Investigate wear mechanisms and transfer films further with more in depth chemical analyses 

• Test in more environmentally friendly refrigerants such as CO2 at high pressures 

• Investigate Si-based and other coatings with greater adhesion characteristics 

• Investigate non-hydrogenated DLC coatings that may perform differently with oil under starved 

lubrication conditions. 
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Appendix A:  Nanoindentation and Running-In Investigation 

A.1 Nanoindentation Procedure 
In order to validate manufacturer’s specifications and determine the nanohardness and reduced modulus of 

the coatings tested, nanoindentation was performed using a Hysitron TriboScope® fitted to a MultiMode AFM.  A 

view of the TriboScope is given in Figure A.1.  A detailed review of the nanoindetation method is given by Oliver 

and Pharr [19]. 

 
Figure A.1:  Hysitron TriboScope® [23] 

Two of the most commonly used loading profiles are triangle and pull-loading.  Triangle involves applying 

a specified load at a constant rate and immediately unloading at that same rate.  An example of this profile is 

depicted in Figure A.2.  Pull-loading is similar to a set of smaller triangle load profiles.  A maximum load is 

specified and divided into 10 steps as shown in Figure A.3.  After each successively higher load is applied, the 

transducer is partially unloaded, allowing the determination of hardness and reduced modulus at various depths.  

Care must be taken, though, to ensure that work hardening is not occurring during each load step.  This is 

accomplished by first performing triangle-load indentations at various depths and comparing the results to those 

obtained with a pull-loading indentation.  If they are similar, then it is assumed that work hardening can be 

neglected.  In this investigation, after performing several triangle-load indentations at loads up to 8 mN, pull-loading 

was used with a maximum load of 6 mN.  Loading (and unloading) rates of 800 µN/s and 1200 µN/s were used for 

4000 µN and 6000 µN indentations for both triangle and pull-load profiles.  One thousand data points were acquired 

for triangle-load, while 8000 points were acquired for pull-load indentations due to the increase in load intervals.  

Representative load-depth plots are depicted in Figures A.4 and A.5. 
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Figure A.2:  Triangle-load profile 
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Figure A.3:  Pull-load profile 

 
Figure A.4:  Representative load-depth plot for triangle-load profile 
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Figure A.4:  Representative load-depth plot for pull-load profile 

There are many different indenter tip geometries that can be used but are usually suited to a particular type 

of material or depth.  Here, a relatively sharp Berkovich tip (triangular pyramid) was used that is accurate at contact 

depths ranging from 50-200 nm.  Loads were chosen to obtain a depth slightly less than the maximum. 

A.2 Virgin Samples 
Nanoindentation was performed on uncoated and coated 52100 steel pins in this research, and hardness and 

reduced modulus values are provided in Section 2.4.  Values for uncoated A390-T6 were obtained from Pergande 

and Polycarpou [3].  It is assumed that properties of the coatings on the steel pins are similar to those on A390-T6, 

which is reasonable as the penetration of the coating was about 10% of the thickness, less than the limit of 20% to 

avoid substrate effects [24].  It is also assumed that the influence of pin curvature on the properties could be 

neglected due to the large differential between the pin and tip radii.  It was necessary, however, to indent normal to 

the pin surface for accurate measurements. 

Hardness and reduced modulus plots for uncoated, WC/C(A), WC/C + DLC coated pins are shown in 

Figure A.5.  Nanoindentation was not performed on WC/C(B), but is assumed to be similar to WC/C(A).  The 

reasons for anomalies in some of the plots are unknown, but hardness and modulus values for different indentations 

are very similar for the most part.  Important to note is that the uncoated pin hardness is higher than the bulk 

hardness of ~7.3 GPa (converted from 62 HRC), and is actually higher than WC/C(A), suggesting that improvement 

in wear is a result of differences in surface energies of the contacting materials.  Also, the properties for the WC/C + 

DLC coating reflect only those of the DLC coating as the DLC overcoat is penetrated less than 5%. 
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(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)
 

Figure A.5:  Hardness and reduced modulus of virgin (a-b) Uncoated, (c-d) WC/C(A), and (e-f) WC/C + DLC 
coated pins obtained with a maximum load of 6 mN 
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A.3 Worn WC/C(A):  Running-in Investigation 
It was hypothesized that work-hardening of the WC/C(A) coating may occur during testing at elevated 

temperatures due to the high friction produced in the running-in period.  This would explain the resulting lower 

steady-state friction coefficient values as compared to lower temperature tests.  To test this, nanoindentation was 

performed pins from the 5 minute, 10 minute, and 21 minute tests with indentations in the center and edge of wear 

on the pin, as illustrated by the white X in Figure A.6.   

  
Figure A.6:  Nanoindentation locations 

Hardness and reduced modulus values are plotted in Figure A.7 at various depths.  After 5 minutes, values 

are relatively consistent and slightly higher than virgin values with a hardness of 12.5-14.5 GPa.  This suggests that 

there may be some work-hardening of the coating in the first 5 minutes.  After 10 minutes, the hardness increases 

further with values up to 19 GPa at the center of wear, but more scatter in the data is observed.  However, as can be 

seen in Figure A.8, the thickness of the WC/C coating in one portion of the wear is only ~.5 µm, meaning the 

contact depth is 17% of the thickness of the coating.  The reduced modulus values approach those of the substrate 

meaning substrate effects cannot be neglected.  Interesting to note, though, is that the hardness is higher than that of 

virgin 52100 steel, possibly due to work hardening itself.  The hardness and reduced modulus values at 21 minutes 

are similar to those at 5 minutes because there is slightly less wear than in the 10 minute test, exhibited in Figure 

A.9.  Based on these observations, work hardening of the coating is most likely not the cause of the lower friction 

after running-in, but the higher virgin hardness of the 52100 steel substrate and apparent work hardening exhibited 

in the 10 minute test may contribute. 



 

62 

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)
 

Figure A.7:  Hardness and reduced modulus for running-in specimens after (a-b) 5 minutes, (c-d) 10 minutes, 
and (e-f) 21 minutes obtained with a maximum load of 4 mN.  Red data points are those obtained in the center of 
the wear and blue were obtained at the edge of wear. 
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Figure A.8:  Wear scans (red) of the 10 minute running-in test with Cr underlayer and steel substrate references 

 

 
Figure A.9:  Wear scans (red) of the 21 minute running-in test 
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Appendix B:  Contact Profilometry 

All roughness and were measurements were completed with the Tencor P-15 Profiler, pictured in Figure 

B.1.  A load of 5 mg was applied with a 2.5 µm stylus tip.  General roughness measurements of virgin uncoated and 

coated samples were performed perpendicular to machining marks (see Figures  2.12 and 2.35 for machining marks) 

with a length of 2 mm, speed of 50 µm/s, and sampling frequency of 500 Hz for a total of 20000 data points to 

obtain the most accurate profile.  A sample roughness scan of a cast iron disk is shown in Figure B.2. 

 
Figure B.1:  Tencor P-15 Profiler in Microtribodynamics Laboratory 

 
Figure B.2:  Sample roughness scan of a cast iron disk (Rq = 235 nm) 
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Wear scans require much less data points and, thus, were performed at a speed of 100 µm/s and sampling 

rate of 100 Hz.  For pins, a scan length of 800 µm was used, oriented parallel to the sliding direction as shown in 

Figure 2.35.  Scans of worn disks were performed with a length of 12 mm perpendicular to the wear track.  Wear on 

both coated A390-T6 and cast iron disks was generally not distinguishable from the roughness (except for scuffing 

tests), and only two scans of each were taken.   

For the running-in investigation of WC/C(A)-coated pins on cast iorn, roughness scans were also 

performed to find a correlation between roughness and running-in.  In this case, scans were taken perpendicular to 

the sliding direction.  During the hardness investigation, it was discovered that a significant micro-roughness was 

apparent on virgin and 21 minute tests while 5 minute tests had little micro-roughness.  To capture this micro-

roughness, a scan speed of 20 µm/s and sampling rate of 500 Hz were used with a scan length of 4 mm in the center 

of the wear on pins and disks for a total of 100000 data points (see Figures 3.39 and 3.40).  

 


