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ABSTRACT

Recent literature suggests that distributed filtering algorithms may have several advantages over
centralized ones, especially concerning robustness, scalability, use of communication resources and
flexibility. In this context, this work aims to provide a performance analysis of distributed filtering
algorithms for indoor pedestrian tracking, where a set of sensors are employed to estimate the
position of a person in a room. More specifically, two forms of distributed algorithms will be inves-
tigated: weighted average consensus and diffusion. A localization scheme based on RFID is used
as a testbed for the assessment of the performance of the algorithms. Particularly, phase difference
of arrival techniques are applied to provide measurements of the relative distance and angle from
the antennas to the RFID tag. Simulation experiments carried out in MATLAB indicate that the
diffusion algorithm has superior performance than the weighted average consensus algorithm. Fur-
thermore, the small difference in the root-mean-square error of centralized and diffusion algorithms
inspires the use of the latter for its other benefits.

RESUMO

A literatura recente indica que algoritmos de filtragem distribuída podem ter várias vantagens em
relação a algoritmos centralizados, especialmente no que se refere a robustez, escalabilidade, uso
de recursos de comunicação e flexibilidade. Neste contexto, este trabalho objetiva fornecer uma
análise da performance de algoritmos de filtragem distribuída aplicados à estimação da posição de
pesdestres em ambientes fechados. Particularmente, duas formas de algoritmos distribuídos serão
testados: consenso por média ponderada e difusão. Um esquema de localização baseado em RFID
é utilizado como teste para avaliar a performance dos algoritmos. Em especial, técnicas baseadas
na diferença da fase de chegada são utilizadas para fornecer medições das distâncias e ângulos
relativos entre as antenas e a etiqueta RFID. Simulações realizadas no software MATLAB indicam
que algoritmos de difusão tem performance superior do que algoritmos de consenso na aplicação
tratada neste trabalho. Além disso, a pequena diferença entre os erros quadráticos médios dos
algoritmos centralizados e de difusão inspiram a utilização do último por seus outros benefícios.



Summary

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation ............................................................................... 1
1.2 Problem Statement ................................................................... 3
1.3 Outline ................................................................................... 4

2 Topics in Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Optimal Estimation ................................................................... 5
2.1.1 Scalar-Valued Data .................................................................. 5
2.1.2 Vector-Valued Data.................................................................. 6
2.2 Linear Estimation ..................................................................... 8
2.3 Kalman Filter .......................................................................... 10
2.3.1 Innovations Process .................................................................. 10
2.3.2 State-Space Model .................................................................... 11
2.4 Nonlinear Kalman Filtering ...................................................... 13
2.4.1 Extended Kalman Filtering ....................................................... 14
2.4.2 Unscented Kalman Filtering ...................................................... 17

3 Distributed Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Diffusion algorithms................................................................. 22
3.2 Consensus algorithms................................................................ 27
3.3 Combination policies ................................................................. 28

4 Outdoor and Indoor Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Outdoor Localization ............................................................... 29
4.1.1 GPS......................................................................................... 29
4.1.2 Sonar ...................................................................................... 29
4.1.3 Laser Scanning ......................................................................... 30
4.2 Indoor Localization .................................................................. 30
4.3 RFID ....................................................................................... 30
4.3.1 FD-PDOA (Frequency Domain Phase Difference of Arrival).......... 31
4.3.2 SD-PDOA (Spatial Domain Phase Difference of Arrival) ............... 32

5 Modeling of measurement equations and pedestrian motion . . . . . . . . 34
5.1 Measurement Equations............................................................. 34

ii



5.2 Langevin model ........................................................................ 34
5.3 Model II (position, velocity, direction)....................................... 36

6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Measurement Noise Analysis ...................................................... 37
6.2 Pedestrian tracking - One node ................................................. 38
6.3 Comparison of the models.......................................................... 41
6.4 Distributed pedestrian tracking ................................................ 47
6.4.1 Centralized EKF ...................................................................... 47
6.4.2 Weighted Average Consensus EKF .............................................. 48
6.4.3 Diffusion EKF .......................................................................... 49
6.5 Summary .................................................................................. 50

7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1 Future Work ........................................................................... 52

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



List of Figures

2.1 Sigma points being propagated by a nonlinear transformation. (extracted from [1]) .. 19
2.2 Comparison between the a) Monte Carlo b)EKF and the c)UT in the propagation

of mean and covariance. (extracted from [2]) .................................................... 19

4.1 FD-PDOA Illustration. (extracted from [3])...................................................... 32
4.2 SD-PDOA Illustration. (extracted from [3]) ...................................................... 33

6.1 Simulation environment ................................................................................ 38
6.2 Distribution of θ ......................................................................................... 39
6.3 Graph of arcsin(x)....................................................................................... 40
6.4 State estimation of the pedestrian position achieved by a single node. (EKF) .......... 41
6.5 State estimation of the pedestrian position achieved by a single node. (UKF).......... 42
6.6 Distribution of the state prediction after one second. (Model II, QII,1) .................. 43
6.7 Distribution of the state prediction after one second. (Model II, QII,2) .................. 44
6.8 Distribution of the state prediction after one second. (Lanvegin model, QL) ............ 45
6.9 Distribution of the state prediction after one second. (Model II, QII,3) .................. 46
6.10 State estimation of the pedestrian position achieved by three nodes. (Centralized-

EKF)........................................................................................................ 49
6.11 State estimation of the pedestrian position achieved by three nodes. (Consensus-EKF) 50
6.12 State estimation of the pedestrian position achieved by three nodes. (Diffusion-EKF) 51

iv



List of Tables

6.1 Comparison of the results obtained for the models. ............................................ 47
6.2 Comparison of the results obtained for different algorithms. (node 2)..................... 51

v



List of acronyms

L.M.S Least-Mean-Square
L.L.M.S Linear Least-Mean-Square
L.L.M.S.E Linear Least-Mean-Square Estimator
M.M.S.E Minimum Mean-Square Error
KF Kalman filter
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
GPS Global Positioning System
TOA Time of Arrival
TOF Time of Flight
AOA Angle of Arrival
NLOS Non-line-of-sight
IC Integrated Circuit
RF Radio Frequency
RSSI Received Signal Strength
RSSI Received Signal Strength Indicator
UWB Ultra-wideband
RMSE Root-mean-square Error
SNR Signal to Noise Ratio
RFID Radio Frequency Identification
PDOA Phase Difference of Arrival
FD-PDOA Frequency Domain Phase Difference of Arrival
SD-PDOA Spatial Domain Phase Difference of Arrival

vi



Chapter 1

Introduction

1.1 Motivation

The estimation of the position of people in outdoor and indoor environments is crucial for
many applications. For instance, nowadays, the use of the Global Positioning System (GPS) is
pervasive. People frequently rely on information provided by a GPS in order to get from one point
to another. Moreover, many features of a building, such as heating, ventilation, air conditioning,
lighting and other systems could be automated based on the information concerning the quantity
and position of the people inside a building [4]. Consequently, building automation is another area
that highly benefits from accurate people tracking. Finally, to avoid collision, intelligent vehicles
obviously gain from accurate pedestrian tracking techniques [5].

Although there is a vast scope of applications for people tracking, this work specifically focus on
pedestrian tracking for collision avoidance, which is referred as undesired physical contact, between
robots and humans. Safe robot-human interaction pose a significant challenge for research [6] [7]
[8]. This is especially relevant important in future settings, where robots will be increasingly
required to carry out tasks in unknown and unstructured environments in the presence of human
beings.

The problem of estimating the value of a random variable based on the possibly noisy obser-
vations of other random variables is found in many areas of science and engineering. For instance,
each time a sensor is employed to measure a variable of interest, filtering arises as a valuable tool
to reduce the uncertainty of the estimated variable. As a consequence, filtering is one of the most
pervasive tools of engineering, since it deals with the fundamental problem of determining the best
estimate, according to some criteria, of a variable based on the available information.

In a indoor environment occupied by several robots, sensors, and persons, there are many
possible sources of measurements of the position of a particular pedestrian. In this context, filtering
can be employed to estimate the position of the persons with more accuracy. For mathematical
treatment, the network of sensors and robots is viewed as a graph, where the nodes correspond
to the sources of measurements and the links are related to the communication feasibility, i.e., if
the exchange of data between two nodes is possible. When several measurements of a variable
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of interest are available, there are two major methods to combine the measurements provided by
the nodes. First, all measurements could be transmitted to a fusion center, also referred as the
central node, where the data is filtered. Second, the filtering may also my accomplished in a
distributed way, where the presence of a central node is not required. Particularly, this work focus
on the case where three mobile robots collectively estimate the position of a pedestrian in a indoor
environment. Accordingly, centralized and distributed filtering algorithms are utilized to provide
estimates for the position of the pedestrian.

Over recent years, many works on distributed filtering have been developed [9] [10] [11] [12].
The majority of the aforementioned cooperation strategies can roughly be classified as consensus
or diffusion. Consensus strategies, particularly, have received more attention in a linear filtering
context [12] [13]. Despite being successfully applied to nonlinear estimation application [14], diffu-
sion algorithms were not thoroughly investigated in this context. Moreover, the study of nonlinear
distributed filtering algorithms has not received substantial attention in comparison to its linear
counterpart [9].

In distributed algorithms, the nodes exchange information and cooperate with their neighbors
in order to achieve a determined goal. Herein, the objective is to estimate the position of a
pedestrian with the lowest possible mean squared error given the individual noisy measurements of
robots. Distributed algorithms are more amenable for implementation than centralized ones, since
they are more scalable, more robust to failure, flexible, and utilizes less communication resources
[10] [11]. By scalability is meant that nodes can freely exit or join the network without significantly
compromising performance. The centralized solution depends on a fusion center to process and
merge all the available measurements coming from nodes. This fusion center is a potential failure
point, since its collapse would ruin the state estimation. Since, the distributed solution does not
rely on any particular node for data processing, it is more robust to failure.

Therefore, this work aims to assess the performance of distributed algorithms for pedestrian
tracking in mobile robot networks. With accurate information concerning the position of pedestri-
ans, the robots can recalculate their routes and avoid collision with human beings, which promotes
safer interactions between robots and humans.

While the main motivation of this work concerns pedestrian tracking, the algorithms presented
herein could be applied to the localization of any object. Moreover, the algorithms can be handily
applied to other topologies of tags and antennas, such as positioning systems based on reference
tags [15] [16], or different technologies. For example, Ultra-wideband (UWB) systems are also
a promising alternative to indoor tracking due to its precision and robustness to multipath in-
terference [17]. The proposed RFID arrangement of the sensors is only used as a testbed for the
simulation of the performance of the algorithms. In essence, this works aims to argue in favor of the
application of distributed algorithms in indoor tracking regardless of the technology or topology
of the sensors.
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1.2 Problem Statement

A pedestrian is assumed to walk at constant velocity in a room. In the same room, there are
several mobile robots, each containing one antenna array composed of two antennas. Every robot
has a processing unit capable of running a nonlinear Kalman filter and exchanging information
with neighboring robots. The goal of each robot is to determine, in the most accurate manner,
the position, in the Cartesian plane of the pedestrian. A known predefined pedestrian route is
determined, so that ground-truth data is available for the evaluation of performance.

Recent literature suggests that RFID tracking based on phase difference of arrival (PDOA) are
promising to indoor environments [3] [18] [17]. In particular, frequency domain phase difference
of arrival (FD-PDOA) and spatial domain phase difference of arrival (SD-PDOA) approaches
provide respectively, distance and angle measurements relative to a RFID tag [3]. Furthermore,
it also presumed that the robots can accurately estimate its own position. As a consequence,
robots equipped with a antenna array, and a RFID reader, are able to independently estimate the
position of the pedestrian. One possible choice to merge the measurements obtained by several
robots is to send the observations to a central processing unit for filtering. However, as stated
previously, distributed algorithms are superior to centralized ones regarding to some aspects, such
as scalability, flexibility, robustness and use of communication resources. Therefore, this work aims
to compare the performance of centralized and distributed algorithms to the proposed arrangement
of sensors.

Several aspects may impact the performance of distributed algorithms. The first is the choice
of filter that is performed individually on each node. Both measurements obtained by the robot are
nonlinear with regards to the pedestrian position in the x−y plane, so the use of a nonlinear filter is
motivated. There are many nonlinear filters can be employed, such as the Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF) or Particle Filter (PF). The last filter is not considered
in this work, since it is considerably uses more computing resources in comparison the other ones
[19]. As a result, only the performances of the EKF and UKF are discussed herein. Second, the
distributed algorithm is fundamental for performance, since it determines how the measurements
and estimates are combined. Specifically, in this work, diffusion and consensus techniques are
compared. Third, the model of pedestrian motion is also an important factor that affects the
accuracy of the estimates, since it governs the prediction step of the filtering techniques. This
work aims to investigate the influence of each factor and determine the most suitable distributed
scheme for indoor pedestrian tracking.

To predicted the future position the pedestrian based on a current estimate, two different models
for the movement of the pedestrian were employed. The first one is a constant velocity Langevin
model, which has been shown to accurately represent time-varying locations of a person in a room
[20] [21]. The states of this model consists of the position and velocity in the Cartesian plane. In
addition, a model based on the absolute velocity and direction of movement was developed. A
secondary goal of this work is to find an appropriate model for the pedestrian, which allows the
filter to provide reliable and accurate estimates of the pedestrian position.
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Simulation experiments carried out in MATLAB in order to compare different filters, models,
and cooperation strategies with the goal to determine the distributed filter that suits best the
pedestrian tracking problem described herein. In simulation experiments, the robots have null
velocity and act as fixed sensors. However, the movement of the robots can be handily accounted
for by a small change in the observation equation.

1.3 Outline

The following chapters are presented as follows:

Chapter 2 provides an introduction to the general theory of estimation. First, a condition
for optimal estimation is developed for scalar and vector-valued random data. In the sequence,
the linear estimators are discussed and the celebrated Kalman Filter is derived from a innovations
perspective. Subsequently, nonlinear filters based on the Kalman Filter are presented. Particularly,
this part focus on the EKF and UKF. Both filters are derived and compared. At last, their
advantages and drawbacks are stated.

Based on recent literature, Chapter 3 presents and discusses different algorithms for distributed
linear and nonlinear filtering. In particular, state-of-the-art consensus and diffusion algorithms are
presented.

In order to implement the presented filtering algorithms, Chapter 4 deals with the modeling of
the measurement and process. In particular, this chapter offers two possible models for pedestrian
motion.

Chapter 5 provides a straightforward overview of outdoor and indoor tracking. Many techniques
for both cases are presented and briefly discussed.

In Chapter 6, the simulation results for many combinations of filters, distributed algorithms,
and models. Besides, their performance are compared to the centralized solution. This way, the
most suitable scheme for estimation can be found.

Finally, Chapter 7 provides remarks concerning the simulations and proposes topics that could
be further developed in future works.
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Chapter 2

Topics in Estimation

2.1 Optimal Estimation

This section aims to provide the mathematical background necessary to the development of the
Kalman Filter. The structure and the content of the subsequent subsections were largely inspired
by the treatment given in [22]. We will start with the problem of estimating a scalar-valued random
variable x given another random variable y. Then, the results will be extended to the complex
vector-valued case. Later, the focus will turn to the topic of linear estimation. Finally, the Kalman
Filter will be developed.

2.1.1 Scalar-Valued Data

A simple example will be used to start the discussion of optimal estimation. Suppose that all is
known about a random variable x is its mean x̄ and its variance σ2x and we want the best estimate
x̂ of x, in the least mean squares sense. The cost function for this criterion is defined as:

Ex̃2

where x̃ := x− x̂ is the estimation error. Therefore, the least mean square estimation problem can
be stated as:

min
x̂
Ex̃2

The problem stated above has the following straightforward solution: Adding and subtracting x̄
on the left side, we have that:

Ex̃2 = E(x− x̂)2 = E[(x− x̄)(x̄− x̂)]2 = σ2x + (x̄− x̂)2

The choice that minimizes the mean square error (m.s.e) is x̂ = x̄. For this estimator, the m.s.e is
σ2x. � This estimator is clearly unbiased, since

Ex̂ = E(x− x̄) = 0

Besides, the estimator aims to minimize the error variance, i.e, it attempts to increase the likelihood
of small errors. The error x̃ has the same mean and variance as the variable x, which means that the
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estimator did not provide any further information about the variable x. This is due to the initial
lack of information available about the variable x. If more information of x is available through
the measurement of a related variable (which will be denoted as y), then the error variance could
be reduced.

This next part deals with the problem of estimating an unobservable variable x given the
measurement y. Now, more information is available about the random variable x; therefore, we
can get a error covariance that is less or equal than σ2x. The estimator x̂, in this case, is a function
of the measurement y that can be expressed as:

x̂ = h(y)

for some function h(.) that defines the estimator. The l.m.s estimator problem can be stated in
the following form:

min
h(.)

Ex̃2

It is shown in [22] that the solution to this problem is

x̂ = h(y) = E(x|y)

This estimator is unbiased and the minimum cost is Ex̃2 = σ2x−σ2y . This is the least-mean-square
estimator of x given the observation y. This result is intuitive, since the estimate is the expected
value of x given y.

It can be proved [22] that the error of the least-mean-square estimator

x̃ = x− x̂ = x− E(x|y)

is orthogonal to any function of y,

Ex̃g(y) := x̃ ⊥ g(y) = 0

The estimator itself is a function of y, so
x̃ ⊥ x̂

These orthogonality considerations lead to the conclusion that the estimation error x̃ is orthogonal
to any transformation of the data y. That is, there is no way that data y can be modified to
reduce the variance of x̃. It turns out that orthogonality is a defining feature of optimality in the
least-mean-squares sense. It is demonstrated in [22] that the estimator x̂ is least-mean-squares
optimal if, and only if, x̂ is unbiased and x− x̂ ⊥ g(y) for any function g(.).

2.1.2 Vector-Valued Data

This section concerns the optimal estimation of a vector-valued variable x given the the vector-
valued variable y. The results previously obtained about the estimation of scalar-valued variables
can be easily extended to the vector-valued, and possibly also complex-valued case.
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Now, the known variable y is denoted as

y = col[y(0), y(1), ..., y(n− 1)]

The estimator is a function of the entries of y and can be expressed as:

x̂ = h(y(0), y(1), ..., y(n− 1))

If x is scalar-valued and y is vector-valued. The optimization goal is the same as before, i.e, to
solve the following problem

min
h(.)

Ex̃2

The same argument used for the scalar-valued case can be applied for this case, so that the optimal
estimator is given by:

x̂ = E(x|y) = E(x|y(0), y(1), ..., y(n− 1))

If both x and y are vector-valued, then the estimator x̂ becomes:
x̂(0)

x̂(1)

. . .

x̂(m− 1)

 =


h0(y(0), y(1), ..., y(n− 1))

h1(y(0), y(1), ..., y(n− 1))

. . .

hm−1(y(0), y(1), ..., y(n− 1))


where the dimensions of x and y are m x 1 and n x 1, respectively.

The goal is to find the functions {hk(.)} that minimize the error in each component of x, that
is

min
hk(.)

E|x̃(k)|2

where x̃ := x(k)− hk(y).

This minimization problem can be formulated in equivalent forms, such as

min
{hk(.)}

Ex̃∗x̃ and min
{hk(.)}

Tr(Rx̃)

where Rx̃ := Ex̃∗x̃ is the covariance matrix of x̃. These expressions will be useful on future
derivations.

As shown by [22], the optimal choice for hk(.) is

x̂ = E[x(k)|y]

Then, the optimal estimator for the vector-valued variable x given the vector-valued y is denoted
by

x̂ = E(x|y) :=


E[x(0)|y]

E[x(1)|y]

. . .

E[x(m− 1)|y]


Even though the previous discussion provides closed forms for the estimators for the scalar and

vector cases, is not always easy to find the conditional probability between random variables. This
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approach usually leads to a nonlinear estimator, which is not feasible in many cases because of its
cost and complexity [22]. That is why the focus of this chapter, from now on, will be on linear
estimators.

2.2 Linear Estimation

For simplicity, only the complex vector-valued case will be treated, since is the most general
one. By linear estimation, is meant that the estimator x̂ is restricted to the following form

x̂ = h(y) = Ky + b

where K is a m x n matrix and b is a m x 1 vector.

It is assumed that x and y are zero-mean random variables. This will make the derivations
easier. All the following results can be applied for nonzero-mean random variables by the process
of centering the random variables [22]. The mean and covariance matrices are defined as

x̄ := Ex = 0, ȳ := Ey = 0, Rx := Exx∗, Ry := Eyy∗, Rxy := Exy∗

The estimator should be unbiased, i.e

Ex̂ = Ex = 0

This is only achieved if b = 0, since

Ex̂ = KEy + b = 0 + b

Therefore, the linear estimator has the form

x̂ = Ky

The optimal K, in the least-mean-square sense, solves the optimization problem

min
K

Ex̃∗x̃

It is demonstrated in [22] that the optimal linear least-mean-square estimator (l.l.m.s.e.) of x given
y is

x̂ = Koy

where Ko is any solution of the normal equations KoRy = Rxy. This Ko is a solution of the
minimization problem stated previously. The resulting minimum mean-square error is given by

min
K

Ex̃∗x̃ = Tr(Rx −KoRyK
∗
o )

An geometric interpretation based on the property of orthogonality of the normal equations can
provide further insight about the l.l.m.e estimator. The normal equations can be rewritten as

KoRy = Rxy → KoEyy
∗ = Exy∗ → E(x−Koy)y∗ = 0

8



The term x−Koy is the estimation error x̃, then Ex̃y∗ = 0 → x̃ ⊥ y. The estimator x̂ itself is a
linear function of y, so x̃ ⊥ x̂. It can be concluded that the estimation error is orthogonal to the
observation y. Moreover, x̃ is orthogonal to any linear transformation of the data y; therefore, no
linear transformation of y can give additional information about the variable x, so the error covari-
ance cannot be further reduced. Besides, orthogonality is inherently tied to the l.l.m.s estimator,
i.e., the linear estimator x̂ = Koy is l.m.s optimal if, and only if, it satisfies x− x̂ ⊥ y [22].

There are some interesting properties regarding the normal equations KoRy = Rxy. First, they
are always consistent, that is, a solution Ko always exists. Second, if the matrix Ry is positive
semidefinite (Ry > 0), the solution Ko is unique – the converse is also true. Lastly, there will be
infinite solutions if, and only if, Ry is singular. It is worth mentioning that, in the last case, the
estimator x̂ = Koy and the m.m.s.e remain invariant regardless of the choice of Ko. All these
properties concerning the normal equations are treated in detail in [22].

In many cases, such as the measurement of the state x, the random variables x and y are
related through a linear model of the form:

y = Hx+ v

where v is a random noise vector with known covariance matrix, Rv = Evv∗. It is assumed that
the covariance matrix of x is known, Rx = Exx∗, x and v are uncorrelated, Exv∗ = 0, and the
matrices Rx and Rv are positive definite.

It follows from the properties of the normal equations that if Ry > 0, the solution Ko is unique,
therefore the estimator of x given y is

Ko = RxyR
−1
y → x̂ = RxyR

−1
y y

The measurement y is related to x through a linear relationship, so the covariance matrices
{Rxy, Ry} can be expressed in terms of the matrices H,Rx, and Rv. Therefore,

Ry = Eyy∗ = E(Hx+ v)(Hx+ v)∗ = HRxH
∗ +Rv, since Exv∗ = 0

Rxy = Exy∗ = Ex(Hx+ v)∗ = RxH
∗

It was assumed that Rx and Rv are positive definite, these conditions imply that Ry is also positive
definite, therefore the estimator can be expressed as

x̂ = RxyR
−1
y y = RxH

∗[Rv +HRxH
∗]−1y

The matrix inversion lemma can be used to write the estimator alternatively as

x̂ = [R−1x +H∗R−1v H]−1H∗R−1v y

The question of whether this form or the previous is more useful depends on the application [22].
It was assumed that the random variables x, y and v have zero mean. However, the results can
be handily extended to the nonzero mean case [22]. The resulting minimum mean-square error for
the estimator developed is

Rx̃ = [R−1x +H∗R−1v H]−1

This finishes the theoretical background necessary to the understanding of the Kalman Filter,
which will be discussed in detail subsequently.
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2.3 Kalman Filter

2.3.1 Innovations Process

Assume that a linear transformation A is applied to the variable y, so that the components of
the output e = Ay = col[e0, e1, ..., eN ] are uncorrelated with each other, i.e.,

Eeie
∗
j := Re,iδij

where δij denotes the Kronecker delta function and Re,i denotes the covariance matrix of ei,

Re := Eee∗ = diag[Re,0, Re,1, ..., Re,N ]

Note that Re is block diagonal, since the elements {e0, e1, ..., eN} are uncorrelated with each other.
The l.l.m.s estimator of the variable x given the variable e is denoted by x̂|e, i.e.,

x̂|e = RxeR
−1
e e

It is shown in [22] that this estimator is equivalent to the estimator of x given y,

x̂|e = x̂|y

Thus, the problem of estimating x given y can be replaced for the problem of estimating x given
e. The advantage of dealing with e is that the covariance matrix Re is block diagonal, so that the
estimator x̂|e can be interpreted as a sum of individual estimators,

x̂|e =
N∑
i=0

(Exe∗i )R
−1
e,i ei =

N∑
i=0

x̂|ei → x̂|N = x̂|N−1 +
N−1∑
i=0

x̂|ei

The notation x̂|N indicates that the estimator of x is based on the observations y0, y1, ..., yN . The
last term on the right-hand side of the last equation is the estimator of x given the observations
y0, y1, ..., yN−1. Therefore, the estimator can be conveniently stated as

x̂|N = x̂|N−1 + x̂|eN

which is equivalent to
x̂|N = x̂|N−1 + (Exe∗N )R−1e,NeN (2.1)

which is a recursive estimator that can be updated by adding the most recent information eN .
Hence, if such a transformation e = Ay with the properties described in the beginning of this
section is found, then the estimator can be expressed in a useful recursive formula. It is revealed
by [22] that vector e with the desired properties can be constructed in the following manner

ei := yi − ŷi|i−1 (2.2)

where ŷi|i−1 is the estimator of yi based on the observations {y0, y1, ..., yi−1}. The uncorrelated-
ness of the components of e follows from the orthogonality property of linear least-mean-squares
estimation. Note that the entry {ei} is also uncorrelated with the entries {yj} for i > j. The Eq.
2.2 shows that the {ei} can be regarded as the "new information" in yi given the observations
{y0, y1, ..., yi−1}. That is why the sequence {ei} is known as the innovation process associated with
{yi}.
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2.3.2 State-Space Model

In many applications, the variable xi evolve according to a linear relationship, i.e.,

xi+1 = Fixi +Gini, i ≥ 0 (2.3)

where xi is called state-vector, ni is the process noise and vi is the measurement noise. Also, it
was already mentioned that in many cases the observation yi is related to the variable xi through
a linear relationship, that is

yi = Hixi + vi, i ≥ 0 (2.4)

For now, the focus will lie on systems governed by these two relations. It is assumed that the
sequences vi and ni are zero-mean white noise processes and have the following covariances and
cross-covariances

E

[
ni

vi

][
nj

vj

]∗
=

[
Qi Si

S∗i Ri

]
δij

Moreover, the initial state x0 is assumed to have zero mean, covariance Π0 and to be uncorrelated
with {ni} and {vi}, that is

Ex0x
∗
0 = Π0, Enix0 = 0, and Evix0 = 0

The innovations process for the system described above can be stated as

ei = yi − ŷi|i−1 = yi −Hix̂i|i−1

Thus, the innovations can be determined if x̂i|i−1 is known. The Eq. 2.1 allows the term x̂i+1|i to
e expressed in terms of x̂i+1|i−1, i.e.,

x̂i+1|i = x̂i+1|i−1 + (Exi+1e
∗
i )R

−1
e,i ei = x̂i+1|i−1 + (Exi+1e

∗
i )R

−1
e,i (yi −Hix̂i|i−1)

where Re,i := Eeie
∗
i Hence, the innovations process can be determined by the following set of

equations:
ei = yi −Hix̂i|i−1

x̂i+1|i = Fix̂i|i−1 +Kp,iei

If Eq. 2.2 is used, the recursion formula becomes

x̂i+1|i = Fp,ix̂i|i−1 +Kp,iyi

where Fp,i := Fi−Kp,iHi, Kp,i := (Exi+1e
∗
i )R

−1
e,i for i ≥ 0 with initial conditions x̂0|−1 = Ex0 = 0,

e0 = y0. The search for the innovations process provided a recursive formula for the state estimator
{x̂i+1|i}.

Now, the matrices Kp,i and Re,i will be evaluated. It is proved in [22] that

Re,i = Eeie
∗
i = Ri +HiPi|i−1H

∗
i

and
Kp,i = (FiPi|i−1H

∗
i +GiSi)R

−1
e,i

11



where Pi|i−1 := Ex̃i|i−1x̃
∗
i|i−1. The state covariance matrix is defined as

Πi := Exix
∗
i

from the state-space model it can be easily seen that the matrix Πi evolves over time according to

Πi+1 = FiΠiFi
∗ +GiQiG

∗
i

Similarly, a recursion formula for the estimate covariance matrix Σi can be found

Σi+1 = FiΣiF
∗
i +Kp,iRe, iK

∗
p,i

where Σi := Ex̂i|i−1x̂
∗
i|i−1 and Σ0 = 0. The state-vector can be expressed as xi = x̂i|i−1 + x̃i|i−1.

It is demonstrated by [22] that x̂i|i−1 ⊥ x̃i|i−1. Therefore, the state covariance can be written as

Pi+1|i = Σi+1 −Πi+1

Introducing the recursion formulas for the matrices Σi and Πi into the last equation give the
following formula

Pi+1|i = FiPi|i−1F
∗
i +GiQiG

∗
i −Kp,iRe,iK

∗
p,i

where P0|−1 = Π0. The last formula is known as the Riccati recursion.

Then, the Kalman filter can be stated as [22] [23]:

Algorithm 1: Kalman Filter (Measurement-Time Update Form)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant i ≥ 0 compute:

1) Measurement Update:

Re,i = Ri +HiPi|i−1H
∗
i

Kf,i = Pi|i−1H
∗
i R
−1
e,i

ei = yi −Hix̂i|i−1

x̂i|i = x̂i|i−1 +Kf,iei

Pi|i = Pi|i−1 −Kf,iHiPi|i−1

2) Time update:

x̂i+1|i = Fix̂i|i +GiSiR
−1
e,i ei

Pi+1|i = FiPi|iF
∗
i +Gi(Qi − SiR−1e,i S

∗
i )G∗i − FiKf,iS

∗
iG
∗
i −GiSiK∗f,iF ∗i

If it is assumed that the signals ni and vi are uncorrelated zero-mean noises with covariance
matrices Qi and Ri, then the covariance matrix is denoted by

E

[
ni

vi

][
nj

vj

]∗
=

[
Qi 0

0 Ri

]
δij

where Eniv∗j = 0→ Si = 0. Consequently, the Kalman filter can be written as:
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Algorithm 2: Kalman Filter (Measurement-Time Update Form, Si = 0)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant i ≥ 0 compute:

1) Measurement Update:

Re,i = Ri +HiPi|i−1H
∗
i

Kf,i = Pi|i−1H
∗
i R
−1
e,i

ei = yi −Hix̂i|i−1

x̂i|i = x̂i|i−1 +Kf,iei

Pi|i = Pi|i−1 −Kf,iHiPi|i−1

2) Time update:

x̂i+1|i = Fix̂i|i

Pi+1|i = FiPi|iF
∗
i +GiQiG

∗
i

which is a specific case of the previous algorithm. This filter can also be expressed in the information
form, which is shown below:

Algorithm 3: Kalman Filter (Information Form, Si = 0)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant i ≥ 0 compute:

1) Measurement Update:

P−1i|i = P−1i|i−1 +H∗i R
−1
i Hi

x̂i|i = x̂i|i−1 + Pi|iH
∗
i R
−1(yi −Hix̂i|i−1)

2) Time update:

x̂i+1|i = Fix̂i|i

Pi+1|i = FiPi|iF
∗
i +GiQiG

∗
i

2.4 Nonlinear Kalman Filtering

Oftentimes, the model and measurement equations are nonlinear, one at a time or both at the
same time. In this setting, the classic Kalman Filter algorithm cannot be directly applied. Over the
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years, many filtering techniques were developed to overcome the drawbacks of nonlinearity [1] [10].
Herein, the focus will lie on nonlinear Kalman filtering algorithms, such as the Extended Kalman
Filtering (EKF) and the Unscented Kalman Filter (UKF). The first overcomes nonlinear models
by a Taylor‘s series approximation of the functions. The latter utilizes a statistical linearization
called Unscented Transform in order to adapt the model into the Kalman filtering framework.

When a normally distributed random variable goes through a nonlinear transformation, its
probability density function (pdf) will no longer be Gaussian. In both EKF and UKF algorithms,
the pdf of the state vector is approximated by a Gaussian distribution. These two filters uses
different approaches to estimate the moments of the real state pdf. After linearization of the
nonlinear functions, a regular Kalman Filter can be employed. This provides the best estimate
given the linearization, since it has already been shown on previous sections that the optimal filter
for states following a normal distribution is the Kalman Filter.

The subsequent sections aim to explain in detail the algorithms of the EKF and UKF, and
discuss the problems and advantages related to each approach.

2.4.1 Extended Kalman Filtering

As stated by the last paragraphs, the Extended Kalman Filter overcomes nonlinearities by
using Taylor‘s series. Suppose that both the model and measurement functions are nonlinear and
the noise is additive:

xi+1 = f(xi) + ni, i ≥ 0

yi = h(xi) + vi, i ≥ 0
(2.5)

where f(xi) and h(xi) are the model and the measurement equations, respectively. In addition,
it is assumed that vi and ni are uncorrelated zero-mean white noise processes with the following
covariance matrices:

E

[
ni

vi

][
nj

vj

]∗
=

[
Qi 0

0 Ri

]
δij

the term δij denotes the Kronecker delta, which is 1 when i = j and 0 otherwise.

Assuming scalar that x is a scalar variable, a function f(x) can be approximated around a
point x0 through a Taylor’s series in the following manner:

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

= f(x0) + f(x0)
′(x− x0) +

f(x0)
′′

2!
(x− x0)2 +

f(x0)
′′′

3!
(x− x0)3 + . . .

Generally, a first order approximation is used, i.e.,

f(x) ≈ f(x0) + f(x0)
′(x− x0)

Now, suppose that the variable x is vector-valued. The approximation can be handily adapted to
accommodate this case. Then,

f(x) = f(x0) + F̄ (x0)(x− x0)
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where F̄ (x) is the Jacobian matrix of f(x) with respect to the random variables contained in the
vector x:

F̄ (x0) =
∂f(x)

∂x

∣∣∣
x=x0

A first-order approximation of the nonlinear state space model (Eq. 2.5) around a point x0 is
given by:

xi+1 ≈ f(x0) + F̄ (x0)(x− x0) + ni

yi ≈ h(x0) + H̄(x0)(x− x0) + vi

where
F̄ (x0) =

∂f(x)

∂x

∣∣∣
x=x0

and H̄(x0) =
∂h(x)

∂x

∣∣∣
x=x0

Introducing the variables

ȳi(x0) = yi − h(x0) + H̄(x0)x0

ū(x0) = f(x0)− F̄ (x0)x0

into the linearized state space model, we have that

xi+1 ≈ F̄ (x0)xi + ni + ū

ȳi(x0) ≈ H̄(x0)xi + vi
(2.6)

Now, an algorithm similar to the classic Kalman Filter can be applied on the linearized model of
Eq. 2.6. The algorithm is presented below in measurement-time update and information forms:
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Algorithm 4: Extended Kalman Filter (Measurement-Time Update Form,
Si = 0)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant i ≥ 0 compute:

1) Measurement Update:

Ĥi = H̄(x̂i|i−1)

Re,i = Ri + ĤiPi|i−1Ĥ
∗
i

Kf,i = Pi|i−1Ĥ
∗
i R
−1
e,i

ei = yi − Ĥix̂i|i−1

x̂i|i = x̂i|i−1 +Kf,iei

Pi|i = Pi|i−1 −Kf,iĤiPi|i−1

2) Time update:

F̂i = F̄ (x̂i|i−1)

x̂i+1|i = f(x̂i|i)

Pi+1|i = F̂iPi|iF̂
∗
i +Qi

Algorithm 5: Extended Kalman Filter (Information Form)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant i ≥ 0 compute:

1) Measurement Update:

Ĥi = H̄(x̂i|i−1)

P−1i|i = P−1i|i−1 + Ĥ∗i R
−1
i Ĥi

x̂i|i = x̂i|i−1 + Pi|iĤ
∗
i R
−1
i [yi − h(x̂i|i−1)]

2) Time update:

F̂i = F̄ (x̂i|i−1)

x̂i+1|i = f(x̂i|i)

Pi+1|i = F̂iPi|iF̂
∗
i +Qi

The main differences of this algorithm compared to the classic Kalman Filter are:
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• in the measurement update, the innovation is calculated as yi − h(x̂i|i−1) instead of yi −
Hix̂i|i−1

• in the time update, the nonlinear state function is used to computed the predicted state, i.e,
x̂i+1|i = f(x̂i|i)

• the Jacobian matrices F̄ (x) and H̄(x) play the roles of the matrices F and H that correspond
to the linear case

This approach produces good estimates only if the nonlinear function can be well approximated
by a line between two consecutive time steps. That is, if the function is linear with respect to the
time scale of the time step, then this algorithm will converge and provide good results. It has been
shown in [24] that if this condition is not met, the state estimates can even diverge. Besides, the
Jacobian matrices need to exist, otherwise the linearization cannot be accomplished. For instance,
if the system is jump-linear, such Jacobian matrices will not exist.

2.4.2 Unscented Kalman Filtering

The Kalman Filter is a way of handily propagating the mean and covariance of a variable that
undergoes a linear transformation. However, in many systems of interest, its dynamics or the
observation equation is nonlinear. In this context, the Kalman Filter is not suitable for estimation.
The EKF makes use of a Taylor series approximation to predict and estimate the mean and
covariance of the states. As was discussed in the previous section, there are some difficulties
associated with the implementation of this filter. One alternative do deal with the shortcomings
of the EKF is the introduction of the Unscented Transform, a deterministic sampling technique
that estimates the statistics of a variable that undergoes nonlinear transformation. Once the mean
and covariance are approximated by this method, the results are inserted in the classic Kalman
filtering framework and the filtering is accomplished.

Unscented Transform

This transformation is based on the idea that is "easier to approximate a Gaussian distribution
than it is to approximate an arbitrary nonlinear function or transformation" [1].

Suppose a random variable x undergoes a nonlinear transformation, i.e, y = f(x), the Un-
scented Transform estimates the mean (ȳ) and covariance (Pyy) of the transformed variable y.
For this purpose, a set of points, called sigma points, are deterministically chosen based on the
probability distribution of x. These points are selected so that their sample mean and covariance
match the mean (x̄) and covariance (Pxx) of x. That is, the sigma points encode information
about the statistics (mean and covariance) of the variable x, which is the same as parameterizing
the statistics of the distribution on some points. Then, the nonlinear is applied to each sigma
point and the sample mean and covariance of the transformed points is calculated. The computed
sample mean and covariance serve as good approximations of (ȳ) and (Pyy).

This process avoids the calculation of the Jacobian matrices, since it does not use a Taylor
series approach to linearize the nonlinear equations. Thus, it can be applied to a broader scope
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of systems. Also, the analytical derivation of the Jacobian matrices can be troublesome in many
applications, which can often lead to implementations difficulties and errors.

Again, suppose that x is a n dimensional random variable with mean x̄ and covariance Pxx.
The statistics of this variable can be encoded by 2n + 1 weighted sigma points given by:

X0 = x̄ W0 = κ/(n+ κ)

Xi = x̄+ (
√

(n+ κ)Pxx)i Wi = 1/(n+ κ)

Xi+n = x̄− (
√

(n+ κ)Pxx)i Wi+n = 1/(n+ κ)

where i = 1, 2, . . . , n, κ ∈ R, (
√

(n+ κ)Pxx)i is the ith row or column of the matrix square root
of (n + κ)Pxx and Wi is the weight related to the ith sigma point. A summary of the unscented
transform is shown below:

Step 1: Apply the nonlinear transformation f(x) to each sigma point Xi in order to generate
the set of transformed sigma points

Yi = f(Xi)

Step 2: The mean of the transformed points is given by

ȳ =
2n∑
i=0

WiYi

Step 3: Compute the covariance of the transformed points

Pyy =

2n∑
i=0

Wi(Yi − ȳ)(Yi − ȳ)T

This process is illustrated by Fig. 2.1. The differences between the estimation of the mean
and covariance of a random variable that undergoes a nonlinear transformation is shown in Fig.
2.2. The resulting sample mean (ȳ) and covariance (Pyy) are approximations of the real mean
and covariance of the variable y. Since the statistics of the variable y is not approximated by
a truncated approximation of the nonlinear function f(x), it is able to partially incorporated
information from the higher orders terms of the Taylor series, which leads to greater accuracy. A
numerically efficient and stable definition for the square root matrix is the Cholesky decomposition
[1]. If the distributed of x is assumed to be Gaussian, the parameter selection n + κ = 3 yields
good results. This discussion paves the way to the application of the unscented transform in the
context of filtering, which leads us to the development of the Unscented Kalman Filter.

Unscented Kalman Filter

Again, the model is assumed to be

xi+1 = f(xi) + ni, i ≥ 0

yi = h(xi) + vi, i ≥ 0

where the system dynamics and the observation functions are time-invariant, and the noise is
additive. A more general filter can be deduced for time-varying systems with non-additive noise,
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Figure 2.1: Sigma points being propagated by a nonlinear transformation. (extracted from [1])

Figure 2.2: Comparison between the a) Monte Carlo b)EKF and the c)UT in the propagation of
mean and covariance. (extracted from [2])

but for ease of notation the discussion is limited to a specific case. In addition, it is assumed that
vi and ni are uncorrelated zero-mean white noise processes with the following covariance matrices:

E

[
ni

vi

][
nj

vj

]∗
=

[
Q 0

0 R

]
δij

The unscented transform can be used to predict the observation and innovation covariance and
the cross covariance between the measurement the and the state estimate. Also, it can be used
to predict the state and its associated covariance. Then, these predictions can be applied into a
Kalman filtering framework. The algorithm for the Unscented Kalman Filter is shown (Alg. 6) in
measurement-time update form.
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Algorithm 6: Unscented Kalman Filter (Measurement-Time Update Form)

Start with x̂0|−1 = Ex0, P0|−1 = Π0, and at every time instant k ≥ 0 compute:

1) Measurement Update:

• Calculate the sigma points Xi,k|k−1 around the predicted state x̂k|k−1

• Propagate the sigma points Xi,k|k−1 through the observation model

Yi,k|k−1 = h(Xi,k|k−1)

• Predict observation

ŷk|k−1 =
2n∑
i=0

WiYi,k|k−1

• Compute the innovation covariance and cross covariance

Pỹỹ =

2n∑
i=0

Wi(Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)T +R

Pxŷ =

2n∑
i=0

Wi(Xi,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)T

• Estimate the state and its covariance matrix

K = PxŷP
−1
ỹỹ

x̂k|k = x̂k|k−1 +K(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KPỹỹKT

2) Time update:

• Calculate the sigma points Xi,k|k around the estimate state x̂k|k

• Propagate the sigma points Xi,k|k through the process dynamics model

Xi,k+1|k = f(Xi,k|k)

• Predict the next state

x̂k+1|k =
2n∑
i=0

WiXi,k+1|k

• Predict the covariance

Pk+1|k =
2n∑
i=0

Wi(Xi,k+1|k − x̂k+1|k)(Xi,k+1|k − x̂k+1|k)
T +Q
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Chapter 3

Distributed Filtering

In a wide range of applications, individual agents must determine the value of some variable of
interest. Distributed filtering arises a alternative to use the information available from neighboring
agents in order to improve the accuracy of the estimated variable. On the other hand, a centralized
approach could also be used to provide the state estimates for each node. In this method, all the
measurements are send to a fusion center, where a filtering algorithm is applied. Then, the resulting
estimate is sent back to each node. This scheme has many drawbacks. First, it has a potential
failure point [11]. If any problem occurs to the fusion center, which is also called the central node,
then the estimation process is completely compromised. Second, central processing requires a large
amount of energy for communications [10]. Finally, it is not as scalable as distributed algorithms,
since the addition of nodes would impose new constraints on the processing and communication
hardware of the central node. Thus, the focus of this chapter will lie on distributed filtering
algorithms.

As shown in [10] [11], distributed approaches to estimation are more advantageous, since they
are more scalable, flexibility, robust, require less energy for communications, and allow for parallel
processing. Scalability and flexibility are referred to the capacity of the algorithm to work steadily
despite of variations on the network topology. That is, nodes can freely enter of leave the network
without compromising the functioning of the algorithm. As a consequence, distributed computing
is more flexible, since it does not impose limiting constraints on the network, and the environment.
Furthermore, if failure occurs at any node, then the algorithm is still able to perform normally.
Therefore, it is more robust to failure than the centralized approach. These aspects combined
make distributed filtering an attractive alternative for sensor fusion.

There are two main approaches to distributed filtering: diffusion and consensus. As indicated
by [25], diffusion outperforms consensus for LMS filtering over adaptive networks. However, this
conclusion cannot be extended to nonlinear distributed filtering. Consequently, this work aims to
compare both techniques in a pedestrian tracking application. The remaining of the chapter is
devoted to the presentation of two state-of-the-art algorithm for distributed estimation.

In distributed algorithms, a set of nodes nodes are required to collectively estimate the state of
a dynamic system subject to additive process and measurement noise. It is assumed that the nodes
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can only communicate with their neighborhood. For instance, node k can exchange information
with every node l ∈ Nk, which is the set of nodes connected to k including itself.

3.1 Diffusion algorithms

Diffusion algorithms can be divided in two parts: local filtering and diffusion. The local
Kalman filter provides a state estimate for the node k given only the measurements available in its
neighborhood Nk. If the system is linear and the noise normally distributed, this is the filter that
minimizes the variance of the estimate error [22]. Therefore, it is the optimal manner to combine
the measurements. This can be accomplished by running the measurement update step for each
measurement available. The algorithm is established in [23] [10] and is illustrated in Alg. 7.

Algorithm 7: Local Kalman Filter (Measurement-Time Update Form)

Initialize the initial estimates x̂k,0 and covariance matrices Pk,0 for each node k ∈ N . At
every time instant i ≥ 0:

1) Measurement Update:

ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1

for l ∈ Nk repeat :

Re ← Rl,i +Hl,iPk,iH
∗
l,i

ψk,i ← ψk,i + Pk,iH
∗
l,iR
−1
e [yl,i −Hl,iψk,i]

Pk,i ← Pk,i − Pk,iH∗l,iR−1e Hl,iPk,i

end

x̂k,i|i ← ψk,i

Pk,i|i ← Pk,i

2) Time update:

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,iF
∗
i +GiQiG

∗
i

where ← denotes sequential assignment. The local Kalman filter computes the optimal estimate
for every neighborhood only, but it does not consider the connection between neighborhoods. The
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role of diffusion is to propagate the estimates through the network. For this reason, diffusion is
crucial for enhanced performance.

After the local estimates are found, the following diffusion formula is used to propagate the
estimates through the network

x̂k,i|i =
∑
l∈Nk

cl,kψl,i with
N∑
l=1

cl,k = 1

where cl,k is the (l, k) entry of the diffusion matrix C ∈ RN×N , which has the following properties

1∗C = 1, cl,k = 0 if l /∈ Nk, and cl,k ≥ 0 ∀l, k

The matrix C describes the weights used to combine the estimates of the nearby nodes. It plays
an important role on the diffusion process and the steady-state performance of the network [10].
If a diffusion step is included after the the local Kalman filter, it results in the diffusion Kalman
filter, whose algortithm can be seen below in Alg. 8 [10].

Algorithm 8: Diffusion Kalman Filter (Measurement-Time Update Form)

Initialize the initial estimates x̂k,0 and covariance matrices Pk,0 for each node k ∈ N . At
every time instant i ≥ 0:

1) Measurement Update:

ψk,i ← x̂k,i|i−1

Pk,i ← Pk,i|i−1

for l ∈ Nk repeat :

Re ← Rl,i +Hl,iPk,iH
∗
l,i

ψk,i ← ψk,i + Pk,iH
∗
l,iR
−1
e [yl,i −Hl,iψk,i]

Pk,i ← Pk,i − Pk,iH∗l,iR−1e Hl,iPk,i

end

2) Diffusion update:

x̂k,i|i ←
∑
l∈Nk

cl,kψk,i

Pk,i|i ← Pk,i

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,iF
∗
i +GiQiG

∗
i
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Based on the diffusion Kalman filter, the diffusion filter was extended to the nonlinear case.
Specifically, the extended and unscented Kalman filter were chosen as the local filter. These
algorithms, Algs. 9 and 10, were developed in [14]. Even though the author applied selective
diffusion, the algorithm presented herein employs simple diffusion. This choice is justified for
simplicity of implementation and analysis. Moreover, the change has minimal impact over the
performance of the algorithm.

Algorithm 9: Diffusion Extended Kalman Filter (Information Form)

Initialize the initial estimates x̂k,0|−1, and covariance matrices Pk,0|−1 for each node. At
every time instant i ≥ 0, and every node k ∈ N compute:

1) Measurement Update:

Ĥk,l,i = H̄l,i(x̂k,i|i−1)

P−1k,i|i = P−1k,i|i−1 +
∑
l∈Nk

Ĥ∗k,l,iR
−1
l,i Ĥk,l,i

ψk,i = x̂k,i|i−1 + Pk,i|i
∑
l∈Nk

Ĥ∗k,l,iR
−1
l,i [yl,i − hl,i(x̂k,i|i−1)]

2) Diffusion update:
x̂k,i|i =

∑
l∈Nk

ck,lψk,i

3) Time update:

F̂i = F̄i(x̂k,i|i)

x̂k,i+1|i = fi(x̂k,i|i)

Pk,i+1|i = F̂iPk,i|iF̂
∗
i +Qi

Notation: F̄i(x̂k,i|i−1) = ∂fi(x)
∂x

∣∣∣
x=x̂k,i|i−1

and H̄k,i(x̂k,i|i−1) =
∂hk,i(x)
∂x

∣∣∣
x=x̂k,i|i−1
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Algorithm 10: Diffusion Unscented Kalman Filter

Initialize the initial estimates x̂k,0|−1, and covariance matrices Pk,0|−1 for each node. At
every time instant i ≥ 0, do:

1) Measurement Update. For every node k ∈ N :

• Calculate the sigma points Xk,j,i|i−1 around the predicted state x̂k,i|i−1.

• Propagate the sigma points Xk,j,i|i−1 through the augmented observation model
hak,i(xi)

Yk,j,i|i−1 = hak,i(Xk,j,i|i−1)

• Predict observation

ŷk,i|i−1 =

2n∑
j=0

WjYk,j,i|i−1

• Compute the innovation covariance and cross covariance

P k,iỹỹ =

2n∑
j=0

Wj(Yk,j,i|i−1 − ŷk,i|i−1)(Yk,j,i|i−1 − ŷk,i|i−1)T +Rak,i

P k,ixŷ =
2n∑
j=0

Wj(Xk,j,i|i−1 − x̂k,i|i−1)(Yk,j,i|i−1 − ŷk,i|i−1)T

• Estimate the state and its covariance matrix

Kk,i = P k,ixŷ (P k,iỹỹ )−1

ψk,i = x̂k,i|i−1 +Kk,i(y
a
k,i − ŷk,i|i−1)

Pk,i|i = Pk,i|i−1 −Kk,iP
k,i
ỹỹ K

T
k,i

2) Diffusion update. For every node k ∈ N compute:

x̂k,i|i =
∑
l∈Nk

ck,lψk,i

3) Time update. For every node k ∈ N :

• Calculate the sigma points Xk,j,i|i around the estimate state x̂k,i|i

• Propagate the sigma points Xk,j,i|i through the process dynamics model

Xk,j,i+1|i = f(Xk,j,i|i)

• Predict the next state

x̂k,i+1|i =
2n∑
j=0

WjXk,j,i+1|i

• Predict the covariance

Pk,i+1|i =

2n∑
j=0

Wj(Xk,j,i+1|i − x̂k,i+1|i)(Xk,j,i+1|i − x̂k,j,i+1|i)
T +Qi
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The variable Xk,j,i|i−1 refers to the jth sigma point of node k at time i given information up to
time i−1. Note that the diffusion step does not affects the covariance matrix of the estimated state.
In contrast, consensus algorithms commonly perform some kind of averaging between the estimated
covariance matrices of the neighboring nodes. Another difference is that diffusion incorporates the
measurements of its neighbors in the local filtering, which corresponds to step 1 of the presented
algorithms. In this step, the node receives the measurements from its neighbors and uses them
to calculate its estimate. Consensus strategies compute the node estimate solely based on its own
measurement. Although this fact saves communication resources, it has an effect on the accuracy
of the state estimate obtained by the node.

Let k1, k2, ..., knk
denote the indexes of the neighbors of node k, where nk is the total number

neighbors of node k, including itself. Since every node can access the measurements of its neighbors,
the observations can be concatenated into a new vector, which is shown below:

yak,i = col{yk1 , yk2 , . . . , yknk
} =


yk1
yk2
. . .

yknk

 = hak,i(xi)

Rak,i = diag{Rk1,i, Rk2,i, . . . , Rknk
} =


Rk1,i 0 0 0

0 Rk2,i 0 0

0 0
. . . 0

0 0 0 Rknk


where the operators col{.} and diag{.} stack their arguments in columns and diagonals, respec-
tively. The superscript a denotes augmented vectors, where all information arriving from the node
neighborhood is merged. The augmented measurement function can be expressed in the following
way:

hak,i(xi) = col{hk1,i(xi), hk2,i(xi), . . . , hknk
(xi)} =


hk1,i(xi)

hk2,i(xi)

. . .

hknk
(xi)


For instance, the calculation of the sigma points on the first step can be accomplished by the

subsequent equation:

Xk,i|i−1 = x̂k,i|i−11
T + [0

√
(n+ κ)P

1/2
k,i|i−1 −

√
(n+ κ)P

1/2
k,i|i−1]

where P 1/2
k,i|i−1 denotes the lower triangular Cholesky factor of Pk,i|i−1, and 1 is a vector of unit

entries of dimension 2M + 1, where M is the dimension of the vector x̂k,i|i−1. The vector Xk,i|i−1
corresponds to the collection of the 2M + 1 sigma points. That is,

Xk,i|i−1 = [Xk,0,i|i−1 Xk,1,i|i−1 . . . Xk,2M+1,i|i−1]

where Xk,j,i|i−1, j ∈ 0, 1, . . . , 2M + 1, denotes the jth sigma point.
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3.2 Consensus algorithms

In [9], a weighted average consensus-based algorithm was developed for unscented Kalman
filtering. Although the original intent of the paper was to develop an algorithm for unscented
filtering, herein the consensus algorithm is extended to accommodate any choice of local filter.
The referred algorithm is shown below:

Algorithm 11: Weighted Average Consensus

Initialize the initial estimates x̂k,0 and covariance matrices Pk,0 for each node k ∈ N . At
every time instant i ≥ 0:

1) Collect the measurements yk,i and compute the estimated state x̂k,i and covariance
matrix Pk,i according to a local filter.

2) Initialize x̂k,i,0 = x̂k,i and Pk,i,0 = Pk,i.

3) Exchange information with neighbors and perform a consensus step. For each node
k ∈ N , and for j = 0, 1, 2, ..., L− 1:

• Send x̂k,i and Pk,i to its neighbors l ∈ Nk

• Wait until the estimates and covariance matrices have been received by the corre-
spondent neighbors

• Perform consensus step

x̂k,i,j+1 =
∑
l∈Nk

πk,lx̂l,i,j

Pk,i,j+1 =
∑
l∈Nk

πk,lPl,i,j

4) Set the state estimates as

x̂k,i = x̂k,i,L

Pk,i = Pk,i,L

5) Perform the prediction step

The parameter L determines how many iterations of the consensus step are performed. At each
iteration, the node k sends its estimate x̂k,l,j , and receives the state estimates x̂l,l,j , where l ∈ Nk.
Naturally, if L is increased, then the use of communications will be higher. In order to draw a
comparison between consensus and diffusion algorithms in terms of similar use of communication
resources, the parameter L is set to 1. Hence, the consensus algorithm is simplified and its third
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step is only computed once for each node.

In particular, this algorithm is applied to the UKF and the EKF, since they are established
standards choices for nonlinear filtering. The use of a particle was not considered because it requires
higher computational power when compared to nonlinear Kalman filters. Finally, it should be noted
that only the steps 1 and 5 are affected by the choice of local filter.

3.3 Combination policies

In diffusion and consensus algorithms, the nodes associate combination weights to its neighbors.
This weight determines the importance of the incoming information from the neighbor. If the
weight of a communication link is set to zero, there is no exchange of information between the
nodes. On the other hand, if the weight is nonzero, there is communication between the nodes.
Usually, the weights one node associates with its neighbors are normalized to sum up 1. That is,
the weight denotes the influence that the measurement or estimate received from a neighboring
node will have on the estimation. Consequently, the determination of such weights are a crucial
step for the implementation of distributed filtering algorithms. This topic is covered in detail
in [11], which reserves a whole chapter for combination policies. This reference presents many
possibilities for combination weights, such as averaging rule, Laplacian rule, Metropolis rule and
relative-degree rule. In this work, the Metropolis rule will be used for diffusion and consensus
algorithms. If this rule is applied, the combination matrix is symmetric and doubly-stochastic,
i.e. the row and column elements sum to 1. Under this rule, the weights can be computed in the
following manner

πk,l =


1

max(nk, nl)
, if l ∈ N ∗k

1−
∑

m∈N ∗k
amk, ifl = k

.
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Chapter 4

Outdoor and Indoor Localization

In many applications, it is of interest to identify or locate a person or an object. Wireless local-
ization techniques have been increasingly gaining attention over the last years, especially because
of developments in computing and communications [26]. Many schemes for outdoor localization
are being widely used, such as the Global Positioning System, sonar and laser scanning [26]. For
indoor localization, many techniques based on RFID, infrared, wireless local area network (WLAN)
and ultrasonic waves have been developed [26]. This chapter aims to give a quick overview of the
localization schemes cited above and to motivate the use of RFID for indoor localization.

4.1 Outdoor Localization

4.1.1 GPS

The GPS utilizes the Time Of Arrival (TOA) from the signal received from at least four
satellites to estimate the location of the receiver [27]. The signal emitted by every satellite contains
its position and time. The receiver uses this information to estimate the object’s position and time.
Nowadays, most of Earth’s surface is covered by 32 satellites [28]. This number can vary depending
on satellite outages and operational spares in orbit [29]. Still, it is sufficient for a receiver to get
enough information from at least four satellites from anywhere on Earth.

Nevertheless, the GPS is not suitable for indoor localization. As the signals are emitted by
satellites, they have very low power. Therefore, the attenuation by walls and objects, especially
metallic ones, hinders the reception with acceptable power [30]. Besides, they cannot offer sufficient
accuracy for indoor positioning. These two reasons combined make GPS a weak candidate for a
indoor localization scheme.

4.1.2 Sonar

Sonar systems utilizes acoustic waves instead of electromagnetic waves to locate objects. Usu-
ally, the receiver detects the backscattered waves by a array of antennas [30 de (Li, 2012)]. The
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times of arrival of the incoming waves are used to estimate the position of the object. Thus, the
working principle is the same as the GPS. It is widely used in underwater environments, where
acoustic waves are much less attenuated than electromagnetic waves. On the other hand, the
situation is the opposite when the propagation medium is air. For this reason, a sonar system is
not typically a good choice to indoor tracking.

4.1.3 Laser Scanning

Another option to locate objects is laser scanning. It uses the time of flight (ToF), i.e. the
time it takes to the wave to be reflected by an object and return to the reader, of a laser beam to
determine the distance to an object. This technology requires a line of sight from the transmitter
to the object being located. Therefore, it is not applicable in a indoor environment, where several
objects could potentially block the line of sight.

4.2 Indoor Localization

All the indoor localization schemes mentioned at the beginning of this chapter allow tracking in
non-line-of-sight (NLOS) environments. The difference between them lies on accuracy, precision,
complexity, robustness, and cost. The remaining of this part will focus specifically in radio fre-
quency identification (RFID). This technology utilizes readers to transmit RF signals and tags to
backscatter these signals. The tags are usually attached to objects, which allows for identification
and localization. There are many different types of tags. Passive tags do not require a battery
to power its internal integrated circuit (IC) and antenna. The power comes from the RF wave
emitted by a RFID reader. Active tags have a battery that serves as a power source to its IC
and antenna. In general, they are more expensive than passive tags, but they can emit signals at
a higher power, which make reception easier for the reader and provides localization at a longer
range at the cost of a briefer operation time. Moreover, active tags are also bigger that its passive
counterpart. Consequently, they are less portable, which decreases its scope of applications. The
choice between the types of tags depends mainly on the location range, and cost.

4.3 RFID

As shown by [26], Radio Frequency Identification (RFID) is a cost effective manner to achieve
both identification and localization of pedestrians in indoor environments. Many RFID localization
schemes based on the Received Strenght Signal Indicator (RSSI) have been developed. However,
the RSSI is highly sensitive to orientation of the RFID tag and multipath interference [16] [31] [17]
[32]. That is, even if the tag remains at the same position same position, different orientations
of the tag may result in different values of the RSSI. This factor degrades the performance of the
position estimation considerably. Over recent years, RFID tracking has received great attention.
In particular, techniques based on the phase difference of arrival arise as a potential alternatives
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to indoor localization [3] [17] [18]. Although the RSSI is available on most RFID readers, phase
information is generally obtained by additional hardware [26]. Methods based on the phase differ-
ence of arrival are shown to be more robust to both the orientation of the antennas and multipath
interference. For this reason, they are potentially more suited for indoor localization [17]. Another
promising technique to indoor tracking is UWB. Compared to RFID, this technology requires
more bandwidth, hardware and antenna resources. Therefore, there is still technology to be ac-
complished in order to develop UWB transmitters into a passive and low-cost tag [17]. Therefore,
the remaining of this chapter focus in RFID tracking using phase difference of arrival.

In recent literature, several implementations of PDOA techniques have been developed to
estimate the radial velocity, distance, and angle of pedestrians and objects [3] [33] [34] [31] [16]
[18] [32] [35]. If the frequency of the transmitted signal of a RFID reader is varied and the phase
difference of the backscattered signal from the tag is measured, then it is possible to determine
the distance to a RFID tag. This method is called Frequency Domain Phase Difference of Arrival
(FD-PDOA). This method has some drawbacks, such as range ambiguity, which can be solved by
careful selection of the frequency transmitted. Implementations of this method can be found in [3].
The angle between the reader and the tag can be found by placing two or more antennas in known
positions, which is called a antenna array, to receive the backscattered signal. The phase difference
of the received signals at the antennas can be used to determine the angle. This technique is called
Spatial Domain Phase Difference of Arrival (SP-PDOA). Several articles [16] [35] [32] successfully
implemented this technique to determine angles from a RFID reader to a RFID tag.

4.3.1 FD-PDOA (Frequency Domain Phase Difference of Arrival)

This technique enables the determination of the relative distance between an antenna and a
RFID tag. By comparing the phase of the received backscattered signals of at least two different
transmitting frequencies, a antenna is able to determine the distance to the tag according to the
following formula [3]:

d = − c

4π

∂ϕ

∂f
(4.1)

where c is the velocity of light in vacuum, and ∂ϕ
∂f is the variation of the PDOA with respect to

frequency. For instance, if two different frequencies f1 and f2 are used, then the equation can be
expressed as:

d = − c

4π

∆ϕ

∆f
= − c

4π

(ϕ2 − ϕ1)

(f2 − f1)
(4.2)

where ϕi is the measured phase of the backscattered signal when the transmitted signal has fre-
quency fi.

In this method, it is assumed that the RFID tag is stationary during the measurements. Usually,
this condition is not met, since a antenna transmits signals with different frequencies at different
time instants. However, if the time-step of the FD-PDOA is set sufficiently small compared to
the motion dynamics of the tag, then it can be assumed as stationary. By "sufficient small" is
meant that the tag moves small fractions of the wavelength of the transmitted wave between the
measurements.
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The phase difference of arrival is confined to the interval ∆ϕ ∈ [0, 2π). This fact may provoke
ambiguity in the distance computed by Eqs. 4.1 and 4.2. Nonetheless, if the carrier wave is swept
across a certain bandwidth, which depends on the application, the range ambiguity can be reduced
significantly.

In [33], FD-PDOA experiments were made in a anechoic chamber. The mean absolute error
(MAE) of the range estimation was 14 centimeters. Additionally, [34] performed simulations in
order to assess the performance of FD-PDOA. In this case, the root mean square error (RMSE)
of the estimates were between 10-30 centimeters, which depended on the SNR of the received
signal. Specifically, this work solves the problem of range ambiguity by using several distinct
transmitting frequencies. Real experiments were carried out in [18], where the performance of FD-
PDOA was accessed with different methods of phase extraction. The experiment took place in a
environment without strong multipath propagation. The errors lied on the interval of 7.3 and 23.2
centimeters. However, the referred articles do not address multipath interference or estimation in
NLOS environments. These two aspects remain an crucial area for future scientific investigation
[17].

Figure 4.1: FD-PDOA Illustration. (extracted from [3])

4.3.2 SD-PDOA (Spatial Domain Phase Difference of Arrival)

Spatial domain phase difference of arrival is a method to determine the direction of arrival of
the backscattered wave from the tag. The process is illustrated by Fig. 4.2. An antenna array
receives a backscattered signal and measures the phase of the signal in least two antennas, which
are positioned at a fixed distance. By comparing the PDOA of the signals, the reader is able to
determine the angle to the tag according to the following equation [3]:

θ ≈ arcsin

[
− c

2πf

(ϕ2 − ϕ1)

a

]
(4.3)

where c is the velocity of light, f is the frequency of the wave emitted by the RFID reader, a
is the distance between the antennas, and ϕi is the measured phase in the ith antenna. This
approximation is only valid when the distance between the reader and the tag is considerably
larger than the distance between the antennas [3]. Furthermore, due to the periodicity of phase
difference, the distance a between the antennas, must be in the range λ/2 < a < λ [18].
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Figure 4.2: SD-PDOA Illustration. (extracted from [3])

In [31] real experiments were conducted to verify the performance of the SD-PDOA method.
In this work, there was line of sight during the reader and the tag during the whole experiment.
Besides, the environment did not have strong multipath interference. Each antenna array consisted
of two antennas. The resulting root mean square error was 3.3 degrees. Likewise, [16] implemented
SD-PDOA in a real setting. Three antenna arrays, each one composed of three individual antennas,
are used to estimate the position of a tag using angle of arrival (AOA) measurements. The RMSE
for AOA estimation of a single antenna array is 2.39 degrees. Moreover, experiments executed in
[32] for angle estimation using an antenna array composed of two antennas resulted in a RMSE
of 1.7 degrees. Finally, [35] proposes a arrangement of four antenna arrays, each one composed of
three individual antennas, to estimate the position of a tag based on the direction of arrival. As
indicated by experimental results, the error mean is 3.6 degrees.

As discussed by the previously, SD-PDOA offers a reliable alternative to accurate estimation
of the relative angle between and the RFID reader and tag. However, its performance has not
been investigated throughly in the presence of strong multipath, which can potentially deteriorate
accuracy. Besides, SD-PDOA only offers accurate measurements when the distance from the reader
to the tag is large compared to the wavelength of the wave. Nonetheless, it is a promising method
to the determination of the angle of arrival in many applications, such as pedestrian tracking in
indoor environments.
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Chapter 5

Modeling of measurement equations and
pedestrian motion

5.1 Measurement Equations

As discussed in the previous chapter, each robot is assumed to possess an antenna array com-
posed of two antennas. Accordingly, each robot will be able to measure its relative distance and
angle to the tag through FD-PDOA and SD-PDOA, respectively. The measurement at time k can
be described as follows:

zk = h(xk) + vk =

[
r + vr,k

θ + vθ,k

]
(5.1)

with

h(xk, yk) =

[√
(xk − px(k))2 + (yk − py(k))2

atan2(xk − px(k), yk − py(k))

]
(5.2)

where r and θ are the the relative distance and angle, respectively, (xk, yk) denotes the position of
the pedestrian at time k, and (px(k), py(k)) represents the position of the antenna at time instant
k.

The measurement noises vr,k and vθ,k are assumed to be normally distributed with the following
covariance matrix:

Rk =

[
vr,k

vθ,k

][
vr,k

vθ,k

]∗
(5.3)

Moreover, the covariance matrix is assumed to be time-invariant, i.e., Rk = R ∀ k. The matrix
R is determined by the sensor noise characteristics.

5.2 Langevin model

The person’s dynamics was represented by a Lagevin model, which was shown in the literature
to accurately portrait the time-varying location of a person moving in a room [21] [20] . The
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Langevin model on the Cartesian plane is described below:

xk+1 = xk + ∆T ẋk

ẋk+1 = asẋk + bsnx

yk+1 = yk + ∆T ẏk

ẏk+1 = asẏk + bsny

(5.4)

For ease of notation, it can be represented as:

xk+1 = Fxk + nk (5.5)

where xk is the augmented state vector xk = (xk, ẋk, y, ẏ),

F =


1 ∆T 0 0

0 as 0 0

0 0 1 ∆T

0 0 0 as


∆T is the time-step, and

as = exp(−βs∆T ), bs = v̄s
√

1− a2s)

The parameters βs and v̄s are, respectively the rate constant and the steady state root-mean-
square velocity. The state xk is composed of the Cartesian positions (x, y) and velocities (ẋ, ẏ) in
the plane x − y. Also, the movement in each axis is assumed to be independent. The noise nk is
assumed to be normally distributed with null mean and covariance Q, i.e., nk ∼ N(0, Q).

nk =


0

nx

0

ny

 and Q =


0 0 0 0

0 b2s 0 0

0 0 0 0

0 0 0 b2s


In order to implement the EKF using this model, it is necessary to compute the derivative

of the measurement equation h(xk) with respect to the states (xk, ẋk, yk, ẏk). The measurement
function can be expressed as a function of the augmented state vector xk:

h(xk) =

[
d(xk)

atan2(xk,3 − py(k), xk,1 − px(k))

]
(5.6)

where d(xk) =
√

(xk,1 − px(k))2 + (xk,3 − py(k))2 is the relative distance from the antenna to the
tag at time instant k, (px(k), py(k)) denotes the position of the antenna at time instant k, and xk,i
denotes the ith entry of the vector xk. This notation helps the determination of the derivative of
hk with respect to the state vector xk, which is shown in Eq. 5.7:

∂h(xk)

∂xk
=


xk,1 − px(k)

d(xk)
0

xk,3 − py(k)

d(xk)
0

−(xk,3 − py(k))

d(xk)2
0
−(xk,1 − px(k))

d(xk)2
0

 (5.7)
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5.3 Model II (position, velocity, direction)

Another model, based on the absolute velocity vk and direction of motion θk relative to the
positive x axis can be derived. Here, the model states are (xk, yk, vk, θk), where the pair (xk, yk)

denotes the current position of the pedestrian.

xk+1 = xk + vk∆T cos(θk) + nk,x

yk+1 = yk + vk∆T sin(θk) + nk,y

vk+1 = vk + nk,v

θk+1 = θk + nk,θ

(5.8)

For ease of notation, the model can be represented as:

xk+1 = f(xk) + nk (5.9)

where

f(xk) =


xk,1 + xk,3∆T cos(xk,4)

xk,2 + xk,3∆T sin(xk,4)

xk,3

xk,4

 (5.10)

and xk,i denotes the ith entry of the vector x at time k. Its derivative with respect to the vector
x evaluated in the point xk is shown in Eq. 5.11.

∂f(x)

∂x

∣∣∣
x=xk

=


1 0 ∆T cos(xk,4) −xk,3∆T sin(xk,4)

0 1 ∆T sin(xk,4) xk,3∆T cos(xk,4)

0 0 1 0

0 0 0 1

 (5.11)

where ∆T is the time step.

Moreover, the measurement function ans its derivative can be expressed in function of the new
state vector, which are shown in Eqs. 5.12 and 5.13.

h(xk) =

[√
(xk,1 − px(k))2 + (xk,2 − py(k))2

atan2(xk,2 − py(k), xk,1 − px(k))

]
(5.12)

∂h(x)

∂x

∣∣∣
x=xk

=


xk,1 − px(k)

d(xk)

xk,2 − py(k)

d(xk)
0 0

−(xk,2 − py(k))

d(xk)2
−(xk,1 − px(k))

d(xk)2
0 0

 (5.13)

where (px(k), py(k)) denotes the position of the antenna at time instant k.
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Chapter 6

Simulation Results

6.1 Measurement Noise Analysis

This part is devoted to the analysis of measurement noise distribution. As shown by the
previous chapter, the angle between a RFID tag and two antennas is given by:

θ ≈ arcsin

[
− c

2πf

(ϕ2 − ϕ1)

a

]
It is assumed that due to jitter, there is a Gaussian distributed error related to the measurement
of the variables ϕ1 and ϕ2. As a consequence of the nonlinearity of the previous equation, the
variable θ is not expected to be normally distributed. In order to estimate the distribution of θ
given the measurements of ϕ1 and ϕ2, simulation experiments were performed. As illustrated by
Fig. 6.1, an antenna array, composed of two antennas, is located around the coordinates (3, 1) and
indicated by two crosses. It aims to estimate the angle to the tag located in the room, which is
indicated by a green circle. For instance, if the tag is located in the position (4, 4), as it shown in
Fig 6.1, the obtained angle measurement is depicted in Fig. 6.2.

The RFID is assumed to operate in UHF band, so the simulation frequency was set to 900

MHz. The resulting wavelength is approximately 33.333 centimeters, and the distance between
the antennas a is set to 16 centimeters, in order to satisfy the relation λ/2 < a < λ. The simulation
was iterated over 10000 times in order to obtain the histogram shown by Fig. 6.2. Moreover, this
simulation experiment was assumed to occur in a room with sizes 6x8 meters, as indicated by the
x− y axis in Fig. 6.1.

The true angle between the y− axis and the RFID tag is 18.4349 degrees. Similarly, the mean
of the samples obtained in the simulation experiment shown in Fig. 6.2 is 18.4324 degrees, which
indicates that the sample mean is very close to the true angle. Furthermore, one can notice that
the distribution of the angle θ clearly resembles a normal distribution. This fact is explained by
the fact the function arcsin is nearly linear in most of its domain. Hence, the normally distributed
variables ϕ1 and ϕ2 goes through a nearly linear transformation, and the transformed variable θ
is nearly normally distributed as a consequence. Therefore, in the subsequent analysis, the noise
θ is assumed to be Gaussian.
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In addition, the antenna array provides a measurement of distance d through FD-PDOA. As
shown by the previous chapter the distance between a RFID tag and a antenna is given by:

d = − c

4π

∆ϕ

∆f
= − c

4π

(ϕ2 − ϕ1)

(f2 − f1)

From the linearity of d with respect to the normally distributed variables ϕ1 and ϕ2, it follows
that d is also normally distributed. As a result, both variables d and θ can be assumed to be
Gaussian for filtering purposes.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Figure 6.1: Simulation environment

6.2 Pedestrian tracking - One node

The focus of this subsection lies on local filtering. For this reason, simulations experiments
were conducted in order to examine the filtering performance of a individual node. As motivated
previously, the main candidates for local filtering are the EKF and the UKF. Therefore, one of the
goals of this part is to compare the performance of both filters when all other parameters remain
constant. Furthermore, two potential model for pedestrian motion dynamics were presented herein.
This subsection aims to test the performance of both models, and find the one that is most suitable
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Figure 6.2: Distribution of θ

to people localization. In conclusion, this part aims to establish the local filter and process model
to be used in subsequent simulation experiments.

A fixed robot containing two antennas and RFID tag is in the same room as one pedestrian
moving with unknown constant velocity. The room has 8 meters of width and 6 meters of length.
It is assumed that no other object is present in the room. Therefore, there is line-of-sight between
the antenna and the tag. Besides, the antenna is assumed to get distance and angle measurements
every 0.05 seconds.

Furthermore, the sensor noise covariance was based on results extracted from recent literature,
which were shown in the last chapter. Specifically, the distance obtained by FD-PDOA and angle
obtained by SD-PDOA were assumed to have standard variations of 25 centimeters and 5 degrees,
respectively. These values are conservative compare to values found in the literature.

The robot is presumed to start with a noisy estimate x̂0|−1 of the true initial position, and
a initial covariance matrix P0|−1. Based on the Langevin model, the EKF and the UKF, Algs.
4 and 6, were employed. The result are illustrated in Figs. 6.4 and 6.5. The magenta diamond
represents the fixed robot, the green triangles denote the measurements, the red circle shows the
estimate after filtering, and the blue star illustrates the true position of the pedestrian. For the
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Figure 6.3: Graph of arcsin(x)

sake of graphical representation, not all measurements and estimated positions were plotted in the
graphs. A larger, scaled ten times, time step of 0.5 seconds was chosen for the presentation of the
simulation results.

The performance metric used herein is the position root mean square error, which is defined
as:

RMSE =

√∑N
n=1 |p̂n − pn|2

N
(6.1)

where the operator |.| gives back the distance of the input to the origin, p̂n is the position estimate
at time n, and pn is the true position at time n.

As shown by Figs. 6.4 and 6.5, the performance of both filters were very similar, where the
position RMSE is approximately 19.2 centimeters. In order to obtain a reliable value for the RMSE,
it was averaged over 500 iterations of simulation experiments. The RMSE without filtering, which
is based solely on measurements, was 38.58 centimeters. Therefore, filtering provoked a reduction
of the position RMSE of approximately 50.2%.

The similarity performances of the EKF and UKF is explained by the fact that the observation
equations become almost linear, for practical purposes, when a small time step, such as 0.05

seconds, is used. As a consequence, the effects of the nonlinearity, only present in the observation
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model, is diminished.

For simulation experiments carried out in subsequent subsections, it was decided to employ the
EKF as the local filter. As discussed above, there is no significant performance differences between
the EKF and the UKF. Hence, the choice of a filter is based on practical aspects, such as ease of
implementation. For this reason, the EKF is the filter what will employed to test the performance
of distributed algorithms to pedestrian tracking.
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Figure 6.4: State estimation of the pedestrian position achieved by a single node. (EKF)

6.3 Comparison of the models

In chapter 5 two alternatives were offered as possible models for the person motion dynamics.
This subsection aims to evaluate the performances of both models when applied to pedestrian
tracking. The first model will be referred as Langevin model, whose states are the position and
velocity in the Cartesian plane. The second model will be referred as Model II, which depends on
the position, absolute velocity and direction of movement. At a first glance, the Langevin is the
favorite for selection, since it is linear. On the other hand, the nonlinear Model II may potentially
describe the motion dynamics more accurately than its other contender.

In order to successfully apply the models in filtering, the covariance matrix Q must be tuned.
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Figure 6.5: State estimation of the pedestrian position achieved by a single node. (UKF)

This matrix is closely connected to process noise and will determine how much the filter will rely
on the prediction made by the model. The Q matrix for the models were determined heuristically
by a method that will be described in the next paragraphs.

People tend to walk at velocities close to 1.4 meters per second, which is known as the preferred
walking speed [36]. This information will be used to acquire a candidate for matrix Q, as it is
expected that a person moves the distance of 1.4 meters each second. Besides, a good choice of Q
will also lead to lower position RMSE when filtering is applied.

As a first step, the predicted states, provided by the model, are simulated when the initial
condition is known. The total simulation time is set to 1 second. The simulation aims to answer
the following question: Given a accurate initial condition, where will the person be located after 1

second according to the model?

In Model II, if the absolute velocity and direction of movement are known, the person is usually
expected to maintain its velocity and direction in the simulation period. However, both the velocity
and direction may also randomly change. Therefore, process noise in the dynamics of these states
accounts for random changes. The matrix Q was tuned in order to match this expected behavior.
The result is shown in Fig. 6.6. The ellipsoid contour represents the 3-sigma curve, which is region
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in which points are within three standard deviations of the mean. In this case, the pedestrian
begins in the origin, with velocity of 1.4 meters per second and orientation of 45 degrees. The
process was iterated over 5000 times. The resulting Q matrix is:

QII,1 =


0 0 0 0

0 0 0 0

0 0 0.005 0

0 0 0 0.0131

 (6.2)
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Figure 6.6: Distribution of the state prediction after one second. (Model II, QII,1)

If this matrix QII,1 is used in the EKF, a estimate with RMSE of 31.2 centimeters is obtained.
This matrix served as a starting point for manual tunning of the process noise variances. The
matrix Q that yielded the best results for Model II is the following:

QII,2 =


0.0075 0 0 0

0 0.0075 0 0

0 0 0.07 0

0 0 0 0.1745

 (6.3)

where its sample distribution are shown in Fig 6.7. If matrix QII,2 is applied in the EKF, the
resulting RMSE is 20.7 centimeters. It turns out that matrix QII,2 allow more accurate filtering.
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As illustrated by Fig. 6.7, the sample points seem to be randomly placed around the origin. This
is a consequence of the fact that little confidence is put into the values of absolute velocity and
direction. On the other hand, matrix QII,1 confidence in these states allow for a more accurate
prediction.
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Figure 6.7: Distribution of the state prediction after one second. (Model II, QII,2)

In the simulation experiments, only the relative distance and angle between the sensor and
tag are measured. The absolute velocity and direction of motion are not directly accessible for
measurement. Consequently, these states must be estimated by a filter, and the simulations indicate
that the resulting estimates of velocity and direction of motion are poor, which mainly affects Model
II with covariance matrix QII,1. In contrast, QII,2 assumes that the referred states are not reliable,
or accurately estimated, and gives more random predictions about the position of the person. For
this reason, this covariance matrix generates more accurate position estimates.

A similar approach was used for the determination of the process noise covariance matrix for
the Langevin model, which is denoted by QL. The matrix that produced the least RMSE when
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applied to the context of the last subsection is:

QL =


0 0 0 0

0 0.0488 0 0

0 0 0 0

0 0 0 0.0488

 (6.4)

where the predicted states after one second of simulations are shown in Fig. 6.8. This model with
matrix QL provided a RMSE of 19.1 centimeters, which are superior to the ones obtained by Model
II.The initial conditions are set so they match the conditions of previous simulations with Model
II. That is, the person start at the origin with positive velocities of 1.4√

2
in both axis. Furthermore,

the parameters of the Langevin model (βs and v̄s) were heuristically determined to yield the least
RMSE. The resulting state matrix F is:

F =


1 0.05 0 0

0 0.9753 0 0

0 0 1 0.05

0 0 0 0.9753

 (6.5)

where βs = 0.5 and v̄s = 1.
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Figure 6.8: Distribution of the state prediction after one second. (Lanvegin model, QL)
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As an attempt to emulate the distribution obtained by the Langevin model, the parameters of
the covariance matrix of Model II were chosen to closely match the distribution shown in 6.8. The
matrix found which represents more accurately the distribution is:

QII,3 =


0.01 0 0 0

0 0.01 0 0

0 0 0.1 0

0 0 0 0.0004

 (6.6)

where the predicted states after one second of simulations are shown in Fig. 6.9. However, the
RMSE of the position estimates was 25.7 centimeters, which is worst than the outcome using the
Langevin model.
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Figure 6.9: Distribution of the state prediction after one second. (Model II, QII,3)

In essence, the method used to the determination of the covariance matrix of the process noise
is based on two elements. First, the matrix Q establish the form of the sample distribution of the
pedestrian position after one second. This way, the designer can tune the matrix parameters in
order to match the expected behavior of a model. Second, the matrix Q is a fundamental aspect
for the RMSE of the position estimates, since it determines how much influence the model will
have in the resulting estimate. Therefore, these two performance indicators were used in order to
get an suitable model for process noise.
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The result exhibited in this subsection motivates the selection of the Lagevin model as the
alternative that best suits this application, when compared to Model II. With the local filter and
dynamic model chosen, the next subsection aims to analyze the performance of distributed filtering
algorithms to indoor pedestrian tracking.

A summary of the simulation results for the models is offered in Tab. 6.1.

Model Covariance matrix RMSE (cm)

II QII,1 31.2
II QII,2 20.7
II QII,3 25.7

Langevin QL 19.1

Table 6.1: Comparison of the results obtained for the models.

6.4 Distributed pedestrian tracking

In this part, the same simulation conditions are maintained. However, several robots are added
to the room. Each one has the same set of measuring equipment. Therefore, each robot is able to
measure the relative distance and angle to a pedestrian walking in the room. A approach to obtain
a more accurate state estimate can be achieved by a centralized, which fuses all measurements
in a central processing unit. On the other hand, filtering can also be achieved by distributed
techniques discussed in detail in chapter 3. The advantage of opting for distributed algorithms lies
on scalability, robustness to failure, flexibility and use of communication resources [11]. As a way
to investigate the performance of both approaches, simulation experiments were performed. The
result s obtained in previous subsections inspires the employment of the EKF as the local filter
and the Langevin model as the model.

All values of RMSE shown in the next sections were averaged over two hundred simulation
experiments. Moreover, simulation conditions such as the model, the noise and process covariance
matrices, the position of the nodes and the route of the pedestrian remained constant through the
experiments.

6.4.1 Centralized EKF

The centralized algorithm shown herein is simply a EKF applied to all available measurements.
It can be simply derived from a EKF in information, the resulting centralized filter is illustrated
in Alg. 12. This approach provides the most accurate state estimates, since it can take advantage
of all measurements available.
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Algorithm 12: Diffusion Extended Kalman Filter (Information Form)

Initialize the initial estimates x̂c,0|−1, and covariance matrices Pc,0|−1. At every time instant
i ≥ 0 compute:

1) Measurement Update. :

Ĥl,i = H̄l,i(x̂c,i|i−1)

P−1c,i|i = P−1i|i−1 +
∑
l∈N

Ĥ∗l,iR
−1
l,i Ĥl,i

x̂c,i = x̂c,i|i−1 + Pc,i|i
∑
l∈N

Ĥ∗l,iR
−1
l,i [yl,i − hl,i(x̂c,i|i−1)]

2) Time update:

F̂i = F̄i(x̂c,i|i)

x̂c,i+1|i = fi(x̂c,i|i)

Pc,i+1|i = F̂iPc,i|iF̂
∗
i +Qi

Notation: F̄i(x̂k,i|i−1) = ∂fi(x)
∂x

∣∣∣
x=x̂k,i|i−1

, H̄k,i(x̂k,i|i−1) =
∂hk,i(x)
∂x

∣∣∣
x=x̂k,i|i−1

N is the set of all nodes and x̂c,i|i−1 denotes the centralized state estimate at time i given
information up to time i− 1.

The simulation results for this filter are shown in Fig. 6.10. In this case, the RMSE is 11.9

centimeters. On the other hand, the RMSE of the measurements of node 2, which is represented
by a black diamond, was 38.6 centimeters. This shows an considerable increase of accuracy, since
the RMSE was reduced by 69.17% through filtering. Furthermore, this performance is superior to
the case shown in the last subsection, where only one node estimates the position of the person.
In conclusion, this value gives a lower bound of RMSE, since it is the best case scenario. The goal
of the next simulations is to compare the RMSE of the distributed algorithms to this lower bound
furnished by the centralized algorithm.

6.4.2 Weighted Average Consensus EKF

Now, the weighted average consensus filter, shown in Alg. 11, was implemented in the same
condition as the centralized one. The parameter L, which determines the number of consensus
iterations, was set to L = 1 in order to make it comparative to diffusion algorithms in regard to
computational resources. Moreover, the Metropolis rule [11] was used to determine the consensus

48



0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Figure 6.10: State estimation of the pedestrian position achieved by three nodes. (Centralized-
EKF)

weights, i.e.,

πk,l =


1

max(nk, nl)
, if l ∈ N ∗k

1−
∑

m∈N ∗k
amk, ifl = k

where nk is the node degree of node k, N ∗k is the set containing all the neighbors of node k except
itself and πk,l denotes the weight given to the link {k, l}.

The simulation results are displayed in Fig. 6.11. In this case, the RMSE of the estimated
state obtained by node 2 is 13.5 centimeters, which is 1.6 centimeters higher than the one found
in the centralized algorithm.

6.4.3 Diffusion EKF

Lastly, the diffusion EKF, which is presented in Alg. 9, was applied to the same simulation
settings of previous analysis. Again, the diffusion weights were also determined by the Metropolis
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Figure 6.11: State estimation of the pedestrian position achieved by three nodes. (Consensus-EKF)

rule [11], which is shown below:

ck,l =


1

max(nk, nl)
, if l ∈ N ∗k

1−
∑

m∈N ∗k
amk, if l = k

Its simulation performance is exhibited in Fig. 6.12, which shows a RMSE of 12.9 centimeters
for the estimated state of node 2. This RMSE is better than the one obtained by a consensus
algorithm. As expected, it performs worse than the centralized solution. However, the difference
is not significant, since it is only 1 centimeter. In comparison the RMSE of the measurements of
node 2 (38.6 centimeters), the distributed filter was able to decrease this error by 66.58%.

6.5 Summary

A review of the simulation experiments is offered in Tab. 6.2. The RMSE column refers to
the state estimates attained by node 2. The line “Without filtering” refers to the case there the
estimation is based solely on the measurement, and filtering is not employed. Besides, “EKF (no
cooperation)”. As shown by Tab. 6.2, node 2 greatly benefits from collaboration with neighboring
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Figure 6.12: State estimation of the pedestrian position achieved by three nodes. (Diffusion-EKF)

nodes. In particular, the diffusion algorithm outperformed the consensus algorithm by a small
margin of approximately 6 millimeters, considering the RMSE as a performance metric. As ex-
pected, the RMSE of the estimate state for the centralized algorithm is lower than the one obtain
by distributed algorithms. However, the difference between centralized and diffusion approaches
is approximately only 1 centimeter.

Algorithm RMSE (cm)

Without filtering 38.6

EKF (no cooperation) 19.2

Centralized-EFK 11.92

Consensus-EFK 13.53

Diffusion-EFK 12.94

Table 6.2: Comparison of the results obtained for different algorithms. (node 2)
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Chapter 7

Concluding remarks

First, it was verified by simulation experiments that relative distance and angle measurements
based on the phase difference of arrival are normally distributed. Subsequently, the UKF and EKF
were tested as possible choices of local filter. For small time steps, there was no significant difference
of performance between the two filters. Consequently, the EKF was used as a local filter in the
distributed consensus and diffusion algorithms. Moreover, two models for the pedestrian motion
dynamics were compared. Ultimately, the use of the Langevin model led to better performance.
Finally, consensus, diffusion and centralized algorithms were employed to estimate the position
of a pedestrian given the measurements provided by three robots. As shown by the simulation
experiments, the diffusion algorithm outperformed the consensus algorithm. Furthermore, the
small difference between the RMSE of the centralized and diffusion algorithms inspires the use
of the latter for indoor pedestrian tracking due to its many other benefits, such as scalability,
robustness to failure and flexibility.

7.1 Future Work

Ideally, all the available information about the received backscattered signal should be used
in the local filtering step of the algorithm, so that the most accurate estimate is obtained. For
instance, a RFID reader can also exploit information about the RSSI of the incoming signal in order
to improve the estimate. The introduction of these new measurements can be handily achieved
in the algorithms presented on the last chapters. Therefore, the evaluation of the performance
of tracking algorithm which made use of RSSI and PDOA measurements would be a valuable
contribution.

Herein, multipath interference was not dealth with. More specifically, RFID localization suffers
greatly from multipath interference. The localization of pedestrians and objects in indoor envi-
ronments remain a challenge due to multiple possible sources of interference. Effective manners of
dealing with multipath remain an active area of research.

The scenario analyzed in this work only concerns position estimation in the Cartesian plane.
That is, the readers and tags are assumed to be at the same height. Nonetheless, this assumption

52



places a mild constraint on the applications. Therefore, a relevant contribution would be the
extension of the distributed localization algorithms to the three dimensional space, which would
loose the aforementioned constraint.

Finally, this work only considered simulations in order to evaluate the proposed arrangement for
pedestrian tracking. Naturally, the implementation of the algorithms in real conditions would be
fundamental for determining the performance of the algorithms in environments where multipath
interference is significant.
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