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ABSTRACT

This thesis aims to provide a novel method for designing nonlinear moment preserving quantiz-
ers based on the Clenshaw-Curtis quadrature. The basic concepts of Analog-to-Digital Converters
(ADCs) are defined for contextualization of the discussed problem and to serve as a basis for un-
derstanding quantizers parameters. Then, a formal definition of the Unscented Transform (UT) is
proposed for this work’s context, and the key concepts of quadrature are applied to it as a mathe-
matical tool for UT calculation. Finally, the design method is detailed, presenting the relationship
between quadrature’s nodes and weights and the quantizers parameters. This design is applied to
a case study simulation, for validation of theoretical calculations.

RESUMO

Esta tese visa propor um novo método para projeto de quantizadores não lineares conservadores
de momentos estatísticos, baseado na quadratura de Clenshaw-Curtis. Os conceitos básicos de
Conversores Analógico Digital são definidos para contextualização do problema discutido e para
servir de base para o entendimento dos parâmetros de quantizadores. Então, uma definição formal
da Transformada da Incerteza - Unscented Transform (UT) - é proposta para o contexto deste
trabalho, e os conceitos básicos de quadratura são aplicados como uma ferramenta matemática para
cálculo da UT. Finalmente, a metodologia de projeto do quantizador é detalhada, apresentando a
relação entre os nós e pesos de uma quadratura com os parâmetros de quantizadores. O projeto é
então aplicado a uma simulação de estudo de caso para verificação dos cálculos teóricos.
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Introduction

In the context of the modern digital world, one can be assured that computers play a major
role in facilitating people’s lives. In fact, computers act in a myriad of different contexts, from
bringing the comfort of calling and texting anyone with another cellphone device in the world, to
launching rockets to space, expanding the frontiers of human knowledge of the universe.

Every time a computer has to interact with the real world, it does that through sensors (of
light, sound, temperature, pressure, etc). All these sensors will capture information in a format
that we call Analog signal, which is a mathematical abstraction of real life events. However, the
computers do not understand these kinds of information, they only work with bits ("zeros" and
"ones", "yes" and "no"), and this we call Digital signals or digital information.

Therefore, one can already notice the always present need of a device that converts from
one kind of information to another. Those are called Analog-to-Digital and Digital-to-Analog
Converters (ADCs and DACs, respectively). These devices exist in the context of technology
since the dawn of the first computers in the early 20th century and have been through a series of
modifications and updates. Yet, even with all these different and complex advances, the ADC can
be divided in three major processes: the sampling phase, the quantization phase and the coding
phase. All these processes are going to be better and formally detailed in Chapter 1. This thesis,
however, focus its attention on the quantization process.

Motivation and Problem Statement

The quantization is an essential process for any kind of ADC. But in fact, most of the quantizers
used (the linear quantizers) are not optimized for the extremely complex and precise operations
in which they are required. Complex operations generally present extremely nonlinear behaviours,
context in which linear quantizers, by definition, fail to present optimal results.

Moreover, quantization is a delicate process of the conversion for yet another reason. Differently
than the other two parts, it always inserts errors/distortions into the system. That is, we necessarily
have some loss of information every time we try to implement an ADC, because of the quantization
process, and the reasons for that are going to be better explained along Chapter 1.
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Proposed Solution

This work thrives to tackle the presented problems by proposing a novel design for nonlinear
quantizers. For that, we will work on the intersection of apparently unrelated fields, such as ADCs,
Moment Preserving transformations and Numerical Quadratures.

The design itself consists in a generic methodology for calculating the quantizer’s constructive
parameters (its output levels and input thresholds) for arbitrary signals, but that at the same
time adapts itself to different input behaviours. This sounds contradictory, but it only means that
the method for calculating the parameters does not have to change based on the signal input,
consequently the architecture itself is the same for every signal, but it actually collects information
from the input and calculates the quantizers parameters based on those measures, adapting its
characteristic curve (thus its general behaviour) for different signals.

With that abstract idea in mind, let us introduce the specifics of the methodology being pro-
posed. The information measure for the signal, for instance, is not going to be directly its am-
plitude, but the input signal’s statistical moments. It can be proven that a signal’s mean and
variance measures (the first and second moments) carry information about the signal itself, the
same way as the other higher moments. Therefore, if we inted to solve the fact that quantization
is an error inducing process, then we need to find a way of preserving the signal’s moments during
the conversion process.

The idea of preserving statistical moments leads to an important mathematical framework
named the Unscented Transformation (UT). It was an idea proposed in 1997 in the context of
control systems designs to avoid approximating complex systems through their linearization. This
mathematical framework proposed to discretizate a continuous signal, in order to diminish the
calculations complexity. As one can already observe, this is exactly what we are aiming for when
dealing with conversion processes of highly nonlinear signals, therefore this transformation comes
quite in hand for reasons we will better clarify during Chapter 2.

The UT has many different algorithms implementations in the context of control systems, but
they tend to be very specific for this kind of problem. We then propose a different approach that
was very little explored in digital processing chains context throughout the last decade or more.
This approach consists of using some mathematical tools known as Numerical Quadratures, by
means of orthogonal polynomials use. These apparently unrelated field are going to be connected
to the UT context in Chapter 3.

And finally, with all these tools at disposition, we can develop the design of a quantizer, in
which its quantization levels (or output levels) are related to the nodes of a quadrature calculation,
and the input thresholds are related to the quadrature’s weights. This terms and what they mean
are going to be formally defined along this thesis and in Chapter 4 a refined explanation of the
design proposed is going to be given.

2



Objectives

To sum it all up, we can state that the main objectives of this thesis are:

1. Propose and validate a novel methodology for designing signal-generic nonlinear quantizers
based on Clenshaw-Curtis quadrature methods;

2. Verify in simulation environment if the designed quantizers present better results than the
linear one;

We follow by presenting a brief introduction on the Electronics of ADCs.
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Chapter 1

Topics in Analog to Digital Converter

This chapter is the outer layer of this thesis and it is intended to introduce some basic concepts
of Analog-to-Digital Converters (ADCs) for a better understanding of the main application of the
presented methodology. First, we start by defining the main processes of the ADC, which are the
sampling, quantization and coding, Figure 1.1 shows a block diagram which illustrates well the
signal flow during the conversion process. After that, we present some of the main metrics used
to characterize ADCs functionality and a new metric proposed for analyzing specifically nonlinear
moment preserving converters.

1.1 Sampling

Any analog signal is an abstraction of natural events, i.e., they are a mathematical represen-
tation of what happens in the real world. Such a representation many times takes the form of a
function fanalog(t), such that fanalog : R 7→ R and the Domain t of this function is the time. That
being said, one can observe that an analog signal is continuous on both its Domain and Codomain,
which means that it can assume any value (of amplitude, for example) on any given time. Sampling

Figure 1.1: Block Diagram for general ADC showing sampling, quantization and coding
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Figure 1.2: Continuous Signal and its sampled counterpart

is the process responsible for the discretization of the Domain of this analog signal, transforming
the former fanalog(t) into a

fsampled : Z 7→ R,

such that, fsampled[n] = f(n · T ), where n ∈ Z and T is the sample period. This means that the
new function fsampled assumes the same values as the former fanalog, but it is not defined for every
value of time, it is only defined for integer amounts of periods T .

One would be led to believe that there is loss of information after this process, since we no
longer have the information of this signal for any given time, but only for a finite amount of
samples. However, based on the theory of Fourier analysis, Nyquist and Shannon proved that if
the sample time T ≤ 1

2B , where B is the highest frequency of the signal spectrum, the analog
signal fanalog can be completely reconstructed from its discrete-time counterpart fsampled [1][2].
This is know as the Nyquist Criterion. However, as we will see on the following section, an analog
criterion does not exist for the quantization process, which causes information losses in every case.

In practice, however, this information preserving sampling process can never be achieved, since
baseband signals with a finite spectrum (also know as band-limited signals) do not exist in nature,
neither does the ideal sampler (which would be the impulse train, referred in [3]). We can nonethe-
less achieve an almost distortion-free sampling process considering the use of oversampling1 and
pre-processing techniques such as anti-aliasing filters, high order Low Pass Reconstruction Filters
and Equalizers, but those techniques are also out of the scope of this work.

1usually it is the use of a sample rate 5 times the Nyquist Sample Rate (fnyquist = 2B)
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1.2 Quantization

If the sampling is responsible for discretizing the Domain of fanalog, the quantization is the
one responsible for the discretization of its Codomain. This process limits the value possibilities
of fanalog from a range of continuous real values to a finite number of possible values by "rounding
off" those real values to the nearest so called quantization level. This approximation is what causes
the quantization to always insert error in the system (also called quantization error or distortion
∆qe) and it is the main reason why this process should be given the proper attention, in order to
mitigate this distortion as much as possible.

As shown in Figure 1.1, normally the quantization is represented as the process that follows
the sampling. That being said, we can define a function fdigital, which is the resulting function
that represents a signal sampled and quantized:

fdigital : Z 7→ Z.

The error associated with this process is defined in terms of the number of different quantization
levels of a given ADC, which is known as the ADC’s resolution. For that, we will define L = 2N ,
given that N is the number of bits of the ADC and L as the number of its different levels. In a
linear quantizer, those levels are equally distributed over a certain interval [XQ−min, XQ−max]2with
a step of ∆ =

XQ−max−XQ−min

L , such that the threshold levels thn are defined as:

thn = XQ−min + n ·∆, {n = 0, 1, 2, ..., L} (1.1)

and the values to which the analog inputs fsampled are going to be mapped to are defined by:

fdigital[n] =
thn + thn−1

2
(1.2)

This means that every input value of fsampled[n] ∈ [thn−1, thn] is going to be mapped to an
output quantization level fdigital[n], defined by equation 1.2. The error itself is defined as3:

∆qe = fsampled[n]− fdigital[n] (1.3)

However, these definitions presented by equations 1.1 and 1.2 are only valid for uniform quan-
tizers. For nonuniform (or nonlinear) quantizers this input-output mapping can be done by means
of any arbitrary function. For instance, in biomedical applications a logarithmic function is often
used instead of a simple mean value between the threshold levels to define the quantizer behaviour
(see [4],[5] and [6] for research examples in this area). As we will deeply explain in the following
sections, this work proposes a trigonometric distribution of threshold levels (specifically, a distri-
bution equal to the Chebyshev nodes), and a mapping definition based on the Moment-Preserving
UT.

2XQ−max and XQ−min are parameters of the quantizer, not of the signal; If max(fanalog) > XQ−max or
min(fanalog) < XQ−min, the quantizer is said to be overloaded (or saturated).

3Note that this definition for the ∆qe is independent of whether or not the quantizer is linear
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Figure 1.3: Signal Domains and Definitions
Source: Image taken from [7], with author’s consent

To sum it up, we will refer to the Figure 1.3, in order to illustrate the context in which each
signal is defined and what they represent for a better comprehension of this and prequel sections.
(Note that fdiscrete time is another nomenclature for the defined fsampled function.)

1.3 Coding

The coding process is the association of every quantization level to a different symbol (normally
a group of n binary digits) which is going to be transmitted via telecommunication systems or pro-
cessed in a CPU. The evolution of studies and techniques in this process became another good
reason why the digital systems started to take over the place of analog applications. These tech-
niques help to detect or even correct distortions in the signal via redundancy, cyclic, convolutional
and Hamming codes. For a far more in-depth discussion refer to [3].

1.4 ADC’s Metrics

Here in this section it is going to be presented a couple standard metrics used when analyzing
general ADC’s functionality. For a more detailed explanation, refer to [8], [9] or manufacturer’s
data sheets. Figures 1.4 and 1.5 illustrate some of the following definitions:

• Static Parameters:

– Differential nonlinearity (DNL) is the maximum deviation from one output level
to the next. The ideal value would be of one least significant bit (LSB), which is the
further most bit to the right.

7



Figure 1.4: Representation of ADC’s Static Parameters

– Integral nonlinearity (INL) is the maximum deviation of the so called ADC’s in-
put/output characteristic from the reference straight line (represented in the Figure 1.4
as the dashed diagonal line which passes through the characteristic’s end points). The
difference between the ideal and actual characteristics will be called the INL profile.

– Offset is where the ADC’s characteristics curve actually intercepts the vertical line (the
Digital Output axis in the example’s case).

– Gain error is the deviation of the slope of the reference (dashed) line from its ideal
value (usually unity).

• Dynamic Parameters:4

– Latency is the total delay from the time the input changes to the time the output has
settled within a specified value (inside a threshold band around its final value).

– Signal-to-noise ratio (SNR) is the ratio of the signal power to the noise power signal,
normally modeled as an Additive-White-Gaussian Noise or just AWGN (see [3] for a
more detailed explanation on this).

– Signal-to-noise and distortion ratio (SINAD) is the ratio of the signal power
to the total noise plus harmonic distortions at the output. In this work’s application
this distortions are mostly caused by the quantization, then called quantization spurs.
This ratio is also sometimes referred as Signal-to-(noise+distortion) ratio (SNDR). See
Figure 1.5 for a graphic representation of the difference between this and SNR ratios.
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– Spurious-free Dynamic Range (SFDR) is ratio of the signal power to the maximum
noise/distortion power in the output. In Figure 1.5 it is shown as the region between
the signal’s peak and the noise/distortion peak (it is in fact the difference between these
two values for the graphic’s scale is in dB, which results in a ratio between the absolute
power values in Watts).

Figure 1.5: Representation of ADC’s Dynamic Parameters

All of these parameters are widely used as means of measuring ADC’s and DAC’s real behaviour
and their deviation from theoretical/ideal behaviour. However, all of those consider that the
converter being analyzed is a linear one, which is not the case sometimes (including the one being
proposed by this thesis). As already stated in the works of Santos et.al [10], a different figure of
merit (FOM) has to be proposed as a mean to analyze this nonlinear behaviour not as a flaw but
as an expected/desired one. That is, the characteristic curve of a nonlinear converter is not going
to be a straight line (by definition), but there has to be a way of measuring deviations from this
expected nonlinear curve.

We propose such a FOM on Chapter 4 based on the conservation of statistical moments of the
input signal. Since the converter is designed to conserve the input signal’s higher order moments,
the output signal’s moments can be calculated and a relative error used as a deviation parameter.
The actual use of this parameter is going to be clarified in the simulations chapter, where the
designed ADC’s behaviour is going to be analyzed via this method.

4there are other standard Dynamic Parameters like Glitch impulse area and Settling Time, which are commonly
used to analyze linear DAC’s behaviour as well.
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Chapter 2

Topics in Unscented Transform

In the previous chapter we discussed about the basic concepts of an ADC, its main processes
and metrics used to evaluate its performance. This was all to give the context in which the
rest of the thesis is going to be applied, whereas this chapter aims to provide some fundamental
mathematical framework that is going to be used for the nonlinear quantizer design. This consists
on the presentation of the Unscented Transform.

For a more complete comprehension on each of these topics, we provide some background on
basic Probability and Statistics concepts which will later turn to be useful. Moreover, we present a
definition for the UT and why is it of interest for the context in which this thesis is inserted. Then,
we present an example case of UT application for a better understanding of the given definitions.

2.1 Probability Theory

The probability theory deals with average of occurring events. The purpose of this theory is
to describe and predict such averages in terms of probabilities of events [11]. Based on the Set
Theory, we will expose the following definitions.

Definition 1 Given an experiment preformed n times, the event A is a subset of S1which includes
a number of experimental outcomes ζi that occur nA times. Then, for n sufficiently large, we can
say that P (A) (the probability of occurrence of the event A) is associated with the relative frequency
of occurrence of A. In other words:

P (A) =
nA
n
, (2.1)

for n large enough.

The next definitions are actually axioms that defines the probability theory as a mathematical
representation of physical phenomena.

Definition 2 Let A and B be any two events of the space S, then:

P (A) ≥ 0 and P (B) ≥ 0 (2.2a)
1S is called the certain event

10



P (S) = 1 (2.2b)

If A ∩ B = ∅ then P (A ∪ B) = P (A) + P (B) (2.2c)

As a consequence of these 3 axioms, it can be shown also that the probability of the empty set (∅,
also called the impossible event) is zero:

P (∅) = 0

There is another important condition, besides Axioms 2.2a - 2.2c, that determine the set of
properties obeyed by all probabilities, which is:

Definition 3 Given that the class of all subsets of S is a Borel Field2, if we consider infinitely
many subsets Ai of S, such that A1 ∩ A2 ∩ ... = ∅, then:

P (A1 ∩ A2 ∩ ...) = P (A1) + P (A2) + ... (2.3)

This last definition is important to determine probabilities not only to a finite union and
intersection of set, but also to their limits [11] (which will be important later on when we talk
about probabilities of continuous random variables). The condition determined by 2.3 is known as
the axiom of infinite additivity.

In the context of this thesis, it is important to define probabilities and events for a set S as the
set of all real numbers. It can be shown that it is impossible to assign probabilities to elementary
events3of S that satisfy all axioms defined by 2.2a - 2.2c and 2.3. For that, we will define an event
as being a set {x | x1 ≤ x ≤ x2}, given that x1 and x2 are any real number [11].

2.1.1 Random Variables, Cumulative and Density Functions

Definition 4 A Random Variable (RV) x is an arbitrary function which maps every outcome ζ
of an experiment to a number x(ζ). These functions satisfies only two conditions:

I The set {x ≤ x} for every x;

II The probabilities of the events {x =∞} and {x = −∞} are equal to zero, i.e.,

P{x =∞} = 0 and P{x = −∞} = 0

RVs can be defined for any real or complex values, but in this whole thesis we will consider only
x ∈ R, or in other terms x ∈ (−∞,∞). As such, the probabilities of the events in the extremes of
the Domain of x are considered impossible.

2A Borel Field, in a short explanation, is an algebraic field that can be infinitely partitioned. For more details
on that, refer to [11] or [12].

3Those are events that contain a single experimental outcome, i.e., an event A = {ζi}. The probability of such
an event is denoted by P{ζi} = pi ≥ 0
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Definition 5 The Cumulative Distribution Function (CDF) of an RV x is a monotonic non-
decreasing function (Fx(x) ≥ 0, ∀x ∈ R) defined by the following equation:

Fx(x) = P{x ≤ x}, (2.4)

which represents the probability of the RV x This function fully describes the distribution of prob-
ability of its associated RV. Also, note that, by definition (and based on the probability’s axioms),
we can define the following two equalities:

lim
x→−∞

Fx(x) = 0 and lim
x→∞

Fx(x) = 1 (2.5)

For disambiguation purposes, note that x is any real number, whereas x represents the RV
which maps an event to this number. This convention will be maintained throughout the rest of
the thesis.

Definition 6 The Probability Density Function (PDF) of an RV x is defined in terms of the CDF
associated to the same RV, such that:

px(x) =
dFx(x)

dx
, (2.6a)

for every x ∈ (−∞,∞). It is also possible to define the PDF in integral terms, such as:∫ x

−∞
px(τ)dτ = Fx(x). (2.6b)

It is also important to state an important condition (that can be derived from the axioms 2.2a-2.2c)
for the PDF to be meaningful in the context of probability, which is the fact that

∫∞
−∞ px(x)dx = 1,

always.

2.1.2 Continuous and Discrete Distributions

Based on these definitions, we can now define important RV types, such as continuous and
discrete distributions.

Definition 7 An RV is called continuous if and only if its CDF is continuous, i.e.,

Fx(x+) = Fx(x−) = Fx(x), for any real x,

where Fx(x+) and Fx(x−) are defined as:

Fx(x+) = lim
ε→0+

P{x ≤ x+ ε} and Fx(x−) = lim
ε→0+

P{x ≤ x− ε}

Thus, we can show that:
P{x = x} = 0, ∀x ∈ R

Definition 8 An RV is called discrete if and only if its CDF follows a staircase pattern as shown
in Figure 2.1, thus presenting at least one point xi of discontinuity, such that Fx(x+i ) 6= Fx(x−i ).
Hence, we can show that:

Fx(xi)− Fx(x−i ) = P{x = xi} = pi

12



Figure 2.1: Staircase pattern for discrete RV CDFs

2.1.3 Statistical Moments

We will follow by defining the expected value or mean value for both discrete and continuous
RVs, and then generalize these definitions for high order moments.

Definition 9 The mean value of a continuous RV x is defined in terms of the expectation (oper-
ator) E(.) of x:

E{x} =

∫ ∞
−∞

xpx(x)dx . (2.7)

This is also known as the First Moment of the RV x for a given density distribution px(x).

Definition 10 The mean value of a discrete RV x is defined in terms of its elementary probabilities
P{x = xi} = pi and the operator E(.):

E{x} =
∑
i

xipi . (2.8)

This definition can also be mathematically deduced from Definition 8 and 9 (for more details on
that refer to [11]).

As a generalization of the previous two definitions we can now define higher order moments.

Definition 11 The quantities:
mn = E{xn} (2.9)

are defined as the n-th order moment of an RV x, such that:

E{xn} =

∫ ∞
−∞

xnpx(x)dx for x continuous, (2.10a)

E{xn} =
∑
i

xni pi for x discrete (2.10b)
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2.2 The Unscented Transform

In this section, it will be presented the main theory which motivated the reasoning used to
tackle the problems mentioned at the Introduction Chapter, specifically presenting the framework
with which we are going to work: the Unscented Transform.

In the context of control systems, the researches done by Julier and Uhlmann became more
and more relevant in the academical community, to the point that one of their most famous works
[13] has more than a thousand citations and eight thousand reads4. They presented various im-
plementations of nonlinear filtering methods known as Unscented and Extended Kalman Filters
(respectively UKF and EKF) and developed this theory as basis for a variety of different applica-
tions (refer to [14] for references on those many employments).

The UT itself was first proposed in 1997 [15] as an efficient method for computing means and
covariances of transformed random vectors, which played an important role in applications of the
UKFs. However, the context in which this thesis is going to be based is more related to works done
by Menezes et al. [16][17], in which the UT is presented as a way to model continuous probabilities
distributions by discrete ones (see Figure 2.2), while conserving its statistical moments up to any
desired order.

Figure 2.2: Graphic interpretation of the UT
Source: Image taken from [7], with author’s consent

This approach is justified by the fact that is easier to simulate the behaviour of an arbitrary
nonlinear application over a discrete set of points than over a continuous one, and that the signal’s
statistical moments contain information about the signal itself. Hence, the interest in efficiently
approximate the signal’s PDF conserving as many moments as possible.

To intuitively justify this last statement, let x be a continuous RV with px(x) as its PDF, and
y = g(x) the resulting RV of a smooth nonlinear application g(·) over x. The Taylor Expansion
of g(·) centered at zero results in the following series:

g(x) ≈
k∑

n=0

g(n)(0)

n!
xn =

k∑
n=0

anx
n, (2.11)

where g(n)(0) is the n-th derivative of g(·) evaluated at x = 0, and g(n)(0)
n! = an.

Since the E(.) is a linear operator [11][12], we can apply it over the Equation 2.11, resulting in:
4Estimations from IEEE Xplore Digital Library. Research done by Menegaz [14] as contextualization, see its

introduction footnote for link reference.
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E{g(x)} ≈ E{
k∑

n=0

anx
n}

⇔ E{g(x)} ≈
k∑

n=0

anE{xn}

(2.12)

Equation 2.12 shows us that knowledge of the input’s moments E{xn} = mn is sufficient
to determine the nonlinear behaviour of g(·). Moreover, the bigger the k, the more moments
information we have, and the closer this approximation gets to an equality. Note that Equations
2.11 and 2.12 also hold true for RV inputs and y = g(x).

Finally, we define the UT:

Definition 12 The α-th order Unscented Transform of a given continuous PDF px(x) will be
defined by the operator UTα(·), such that:

UTα{px(x)} = {si, wi}n, (2.13)

where {si, wi}n is a n-set of sigma-points and weights pairs, such that

E{xkq} =
n∑
i=1

skiwi =

∫ ∞
−∞

xkpx(x)dx = E{xk}, (2.14)

where k = 0,1,2...,α; xq is a discrete RV; and x a continuous RV.

Equation 2.13 means that the UT of a given continuous PDF is defined by a n-set of sigma-
points and weights pairs ({si, wi}n), which characterizes a discrete probability distribution pxq(xq).
Note that Equation 2.14 clearly states that both RVs (discrete and continuous) have the same
moments (up to the α-th order), and that the n-set pair of points that solves this system of
equations also defines a discrete approximation pxq(xq) for an arbitrary px(x).

From a specific set of sigma-points and weights pairs, one can also define the inverse operator
which would return the continuous PDF associated to it. However, this operation is not so simple
and it ends up falling into a much bigger and older problem referred in the literature as the problem
of moments which is out of the scope of this thesis (refer to [7] for a more complete presentation
of this problem and [18] for in depth discussion of it).

2.2.1 Direct Method for the UT computation

The n-set of sigma-points and weights resulted from the UT application over a continuous PDF
is the solution of a nonlinear system of equations that come from the Equation 2.14. In order to
clarify what does that mean, let us present an example case of the method proposed by Tabatabai
et al. [19] and da Costa Junior [20].5

5This example is also detailed in the works of [7].
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Let there be a PDF px(x) of an RV x that is going to be approximated to a discrete PDF pxq(x)

through the use of the UT. This discrete PDF is going to be defined by a set of 3 sigma-points
and weights {(s1, w1), (s2, w2), (s3, w3)} which satisfy the criteria imposed by Equation 2.14.

Consider also that the statistical moments of this distribution are known up to the 5th order,
then we have:

s01w1 + s02w2 + s03w3 = m0, (2.15a)

s11w1 + s12w2 + s13w3 = m1, (2.15b)

s21w1 + s22w2 + s23w3 = m2, (2.15c)

s31w1 + s32w2 + s33w3 = m3, (2.15d)

s41w1 + s42w2 + s43w3 = m4, (2.15e)

s51w1 + s52w2 + s53w3 = m5, (2.15f)

where the mi quantities are the ones defined by Equations 2.9 and 2.10a.

Note that we have 6 equations with 6 unknown values (the sigma-points and weights). It is
obviously a nonlinear set of equations, but we can use some artifacts to simplify its solution.

We can then define a 3rd order polynomial π3(x) whose roots are the desired sigma-points:

π3(x) = (x− s1)(x− s2)(x− s3) = x3 + a x2 + b x+ c (2.16)

Next, we ought to construct this polynomial from equations 2.15a-2.15d by multiplying those
equations by the coefficients a, b and c in order to get a set equations that form the right-hand
side of Equation 2.16.

c · (s01w1 + s02w2 + s03w3) = c ·m0

b · (s11w1 + s12w2 + s13w3) = b ·m1

a · (s21w1 + s22w2 + s23w3) = a ·m2

(s31w1 + s32w2 + s33w3) = m3

By adding these four equations together and putting the common factors in evidence we have:

(c+ b s1 + a s21 + s31) · w1 + (c+ b s2 + a s22 + s32)·w2 + (c+ b s3 + a s23 + s33) · w3 =

π3(s1) · w1 + π3(s2) · w2+π3(s3) · w3 =

cm0 + bm1 + am2+m3 = 0,

because, by construction the π3(x) polynomial has its zeros located in the si values.

Repeating the same process over the rest of the equations of 2.15 in groups of four equations
at a time produces the following result:

m3 + am2 + bm1 + cm0 = 0

m4 + am3 + bm2 + cm1 = 0

m5 + am4 + bm3 + cm2 = 0
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In matrix form, it would be:

m2 m1 m0

m3 m2 m1

m4 m3 m2


ab
c

 =

−m3

−m4

−m5

 (2.17)

The solution of this system of equations will give us the coefficients a, b and c. With those the
polynomial π3(x) in 2.16 can be entirely defined, so as its roots, which are by construction equal
to the desired sigma-points si.

The next step is to get back to the Equations 2.15a-2.15c, substitute the si for the calculated
roots of π3(x) and solve the equations for weights wi:

w1 + w2 + w3 = m0

s1w1 + s2w2 + s3w3 = m1

s21w1 + s22w2 + s23w3 = m2

which in matrix form become:

 1 1 1

s1 s2 s3

s21 s22 s23


w1

w2

w3

 =

m0

m1

m2

 (2.18)

This completely solves the problem of calculating the pairs of sigma-points and weights for
a given set of statistical moments. This approach has some advantages and disadvantages. One
advantage is the fact that one can use this method for calculating the UT of a given signal input
even without knowing its probability distribution function, only the statistical moments knowledge
suffice. The big disadvantage is that the problem presented by Equation 2.17 is as ill-conditioned as
the problem of Hilbert matrices inversion, as shown by Gautschi [21]. This fact causes instability
issues during numerical computation of the solution of the referred systems of equation which
makes this method impracticable for real applications.

With that in mind, this thesis proposes a slightly different approach for the Direct Method
computation, which achieves a turn around this matrix problem. The Modified Direct Method
approach is going to be presented in Chapter 4 and uses the Numerical Quadrature theory, more
specifically the Clenshaw-Curtis technique for quadrature calculations to achieve the proposed
results. Those mathematical tools are going to be presented in the following chapter.
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Chapter 3

Topics in Numerical Quadrature

At this point we already presented the main context in which this thesis is inserted (the ADC
topics), that represent the outer layer of this work, and in the previous chapter we presented
some important and more specific frameworks and concepts to begin developing ideas related to
the specific design proposed. Now, we present some mathematical background on the concepts
involving Numerical Quadratures and how this and the UT (two apparently unrelated fields)
intersect.

We will start by presenting the basic concepts on Mechanical and Interpolatory Quadratures
(based on the works of [22] and [21]), then it will already be possible to understand how these fields
intersect. Afterwards, we will define what are Orthogonal Polynomials and present one important
theorem with which we will be able to use the quadrature theory presented for some specific UT
calculations (also used in the works of Medeiros [7], for the same purpose). We then quickly present
some comparison between the CC technique and the classical Gaussian Quadrature, to justify the
use of the previous in lieu of the last (see [23]).

3.1 Mechanical Quadratures

Consider a finite or infinite interval [a, b], such that Sn is a partition of this interval defined as:

Sn : a ≤ x1 < ... < xn ≤ b.

We can define the Mechanical Quadrature as the problem of numerically calculating integrals
by determining a finite sum of nodes and weights.

Definition 13 An n-point Quadrature rule is defined by the following formula:∫
R
f(x)dλ(x) =

n∑
i=1

λif(xi) +Rn(f), (3.1)

where dλ(x) is the measure of the approximated integral with respect to x, λi are the weights, xi
are the nodes (the points in which the function f is going to be sampled) and Rn is the associated
error of this approximation process.
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Definition 14 A Quadrature rule is said to have a degree of exactness d if:

Rn(p) = 0,∀p ∈ Pd,

where P is the space of all real polynomials and Pd is the space of all real polynomials of degree less
than or equal to d. Moreover, we can say that a quadrature rule has a precise degree of exactness
d if it has a degree of exactness of d, but not of d+ 1, i.e., ∃p ∈ Pd+1;Rn(p) 6= 0.

Definition 15 Any quadrature rule 1 with degree of exactness d = n − 1 is of the interpolatory
type. Moreover, a quadrature is an interpolatory one if and only if its function f can be obtained
through interpolation, i.e.

f(x) =

n∑
i=1

f(xi)li(x), (3.2)

which is the Lagrange interpolation formula, where

li(x) =

n∏
i=0
i 6=j

(x− xi)
(xj − xi)

=
ρ(x)

(x− xi)ρ′(xi)
(3.3)

is the fundamental polynomial of the Lagrange formula. It logically follows that ρ(x) =
∏n
i=0(x−xi).

Definition 15 is valid for any function f = p ∈ Pn−1, that is, for any function equal to a
polynomial of degree up to n − 1, a set of n samples of this function is sufficient to uniquely
determine this function. This is actually an important theorem in the interpolation theory field,
and it is better detailed by Trefethen [24].

We are interested in knowing what are the necessary conditions for the quadrature rule to have
a desired degree of exactness. That is, when can we say that the integral of a given function f(·)
in an arbitrary measure dλ is exactly equal to a weighted sum of samples of this function? This
interest comes from the fact that given the special case of f(·) as a monic polynomial, one can
clearly notice the resemblance of this problem with the one of the UT calculation, from Equation
2.14, by comparing the following two equations:

∫ ∞
−∞

xkpx(x)dx =
n∑
i=0

skiwi (3.4a)

∫ b

a
f(x)dλ(x) =

n∑
i=0

λif(xi) (3.4b)

For f equals to a monic polynomial (i.e., f(x) = xk, for k ∈ Z+), and the measure dλ equals
to the probability distribution px(x)dx of the signal, both equations 3.4a and 3.4b mathematically
denote the same process and both solutions will determine the same set of nodes xi = si sigma-
point and weights which are going to be used for determining the quantizer’s output levels and
thresholds (thn) respectively2.

1in the sense of Definition 13
2Note that the quadrature denoted in Equations 3.4 is an n+1-point quadrature rule, according to definition 13.
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3.1.1 Example

To illustrate this comparison between UT and Interpolatory Quadratures, let us consider a
simple example case in which the measure of the quadrature integral dλ(x) is equal to dx. This
implies that the signal’s PDF px(x) denotes an uniform distribution of probabilities within an
interval [a, b], where it is defined. Moreover, since we are free to choose whichever nodes and
weights that satisfies both Equations 3.4a and 3.4b, let us choose the nodes xi = si equally spaced
in the interval of the partition Sn : a ≤ x1 < x2 < ... < xn ≤ b.

Within this determined conditions, we just stated the problem of the Newton-Cotes quadrature
rule, where the resulting weights λi are called Cotes numbers (see [21] for more details on this
computation). However, as discussed in Trefethen’s works (both [24] and [25]), this is a very
non-efficient method for choosing the quadrature nodes. As proved in his works and even before3,
the convergence of this finite summation when the nodes are equispaced diverges exponentially
as n grows. Aside from the instability issue, this method is also a bad choice because it is a too
signal-specific method, for it only accepts signals with a uniform distribution of probability.

With that in mind, we will propose in the following sections some more sophisticated method-
ologies for solving these problems.

3.2 Orthogonal Polynomials

To initiate this section it is important to state some new definitions which will be used through-
out the rest of this thesis as an important methodology for calculating quadratures (and hence UTs
as well). We will begin by defining orthogonality of polynomials, based on their inner products (as
used in [21] and [22]).

Definition 16 Let λ(x) ≥ 0, ∀x ∈ R, and | limx→∞ λ(x)| < ∞ and | limx→−∞ λ(x)| < ∞. Also,
assume that the induced positive measure dλ has finite moments of all orders. Then, for any two
polynomials u, v ∈ P, their inner product with respect to the measure dλ is defined as:

< u, v >=

∫
R
u(x)v(x)dλ(x), (3.5)

such that when < u, v >= 0, u is said to be orthogonal to v, for u 6= v. If u = v, then < u, u >=

||u||2, which is the squared norm of u (||u|| ≥ 0,∀u ∈ P).

As discussed by Szego [22], Gautschi [21] and many other works in the field of numerical
analysis, we can use Definition 16 to define a family of monic orthogonal polynomials, such that

< ρi, ρj >= 0, for i 6= j; i, j ∈ Z+ and

||ρi|| > 0, for i ∈ Z+,

where every polynomial ρi is a monic one and can be determined by a three-term recurrence relation.
3It is a well known result since Carl Runge demonstrated its instability in the beginning of the 20th century
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Theorem 1 Let ρi, i = 0, 1, 2, ... be a family of monic orthogonal polynomials with respect to the
measure dλ, then the three-term recurrence relation that defines them is;

ρi+1(x) = (x−Ai)ρi(x)−Biρi−1(x) (3.6a)

ρ−1(x) = 0, and ρ0(x) = 1,

where
Ai =

< xρi(x), ρi(x) >

||ρi(x)||
(3.6b)

Bi =

{
1 for i = 0

||ρi(x)||2
||ρi−1(x)||2 for i>0

(3.6c)

The proof of this theorem is stated in [21], at the section presenting the recurrence relation
itself.

Another important theorem is presented by Szego [22] (in the section presenting the Gauss-
Jacobi quadrature problem), which states that

Theorem 2 If x1 < x2 < ... < xn denote the zeros of an orthogonal polynomial pn(x) ∈ Pn, there
exists a set of real numbers λi, i ∈ [1, n], such that:∫ b

a
f(x)dλ(x) =

n∑
i=1

f(xi)λi, (3.7)

for any given f ∈ P2n−1. The measure dλ(x) and the integer n uniquely defines the set of real
numbers λi.

This theorem implies that whenever we have a set of points xi which denote the zeros of a
polynomial pn(x), they can be used as nodes of a quadrature rule determined by a given measure
dλ(x). More than that, we can have the function whose integral being is being approximated of an
order up to 2n− 1 for a set of n points. This means that if we apply this theorem in a context of
moment preserving UT calculation, we can conserve moments of the order up to α = 2n− 1 with
just n sigma-points. This case is known as the Gauss quadrature rules [21], which is a method of
quadrature implementation which maximizes the order of integration.

Those last two theorems are arguably the most important mathematical support for Gaussian
quadratures implementation, in general, and are the main support for the works of Medeiros [7],
in which this thesis is greatly based upon. They also break down the problem of UT calculation
to solving Quadrature problems finding nodes and weights. The following table presents some
important orthogonal polynomials and their respective three-term recurrence relations used for
quadrature calculations.
†This is the formulation for Gauss-Chebyshev polynomials of the First Kind, refer to [21] or [22] for more details

on the Second, Third and Fourth Kinds, which are of less importance in the context of this work.
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Table 3.1: Recurrence relations of classical orthogonal polynomials for a given measure dλ(x)

.

Name dλ(x) Ak B0 Bk, (k ≥ 1)

Jacobi (1− x)α(1 + x)βdx AJk BJ
0 BJ

k

Legendre 1dx 0 2 1
4−k−2

Chebyshev† (1− x2)−
1
2dx 0 π 1

2(k = 1), 14(k > 1)

AJk =
β2 − α2

(2k + α+ β)(2k + α+ β + 2)
∗

BJ
0 =

2α+β+1Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 1)
, BJ

k =
4k(k + α)(k + β)(k + α+ β)

(2k + α+ β)2(2k + α+ β + 1)(2k + α+ β − 1)
∗∗

It is important to state that all of the quadrature rules resulting from those measure functions
stated in Table 3.1 are defined in the interval [−1, 1], but can be extended for any interval [a, b]

with just some normalization of the integrands (see [21]).

Moreover, one can observe that the Legendre Polynomials define a quadrature rule for the same
measure as the Newton-Cotes case exemplified in the previous section. However, since the roots
of Legendre polynomials are not equispaced, they do not suffer from the same instability problems
as the Newton-Cotes, therefore presenting more accurate and efficient results for large n.

One last important comment about Table 3.1 refers to the relation between the Jacobi poly-
nomials and the Legendre and Chebyshev ones. An observant reader can note that those last
two classes of polynomials are just special cases of the Jacobi formulation: Legendre is the
case where α = β = 0 ⇔ dλ(x) = 1dx; and Chebyshev polynomials of the First kind is when
α = β = −0.5⇔ dλ(x) = (1− x2)−

1
2dx.

We are specially interested in the Chebyshev polynomials, because of their importance in
approximation theory and the efficient numerical methods existent for calculating quadratures of
this genre, first noticed by Clenshaw and Curtis in their 1960 work [26], and latter on extensively
used as basis for researches in better algorithm implementations (such as in [27] and [25]). We will
now refer to the method presented by Clenshaw and Curtis as the Clenshaw-Curtis Quadrature
rule (CC Quadrature), and present in the next section some comparisons between this method and
the Gauss-type quadratures, highly based on the analysis present by Trefethen in [23].
∗If k = 0, then the common factor α+ β in the numerator and denominator of αJ

0 should be cancelled (actually
must be if α+ β = 0)
∗∗If k = 1, then the last factors in the numerator and denominator of βJ

1 should be cancelled (actually must be if
α+ β + 1 = 0)
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3.3 Gauss Quadrature vs. Clenshaw-Curtis

Both methods (Gauss and CC) come as a better alternative than Newton-Cotes formula for
quadrature calculation, since they converge for any continuous integrand f , and do not suffer from
Runge phenomena. Gauss-type quadratures present the most efficient method regarding the order
of integration for a given set of n points. They also overcome the Newton-Cotes method (which has
a algorithm complexity of O(2n)†) by presenting an algorithm (proposed by Golub and Welsch [28])
with complexity of O(n2), acquired by calculating the eigenvalues and eigenvectors of a tridiagonal
matrix, which are related to the nodes and weights (respectively) of the quadrature.

The CC Quadrature, on the other hand, presents a family of formulas based on sampling the
integrand f at the Chebyshev points (which will be defined on the next chapter) and calculat-
ing the Chebyshev coefficients via FFT (the Fast Fourier Transform), which makes this method
implementable with a complexity of O(n · log n). However, like the Newton-Cotes method, the
CC quadrature integrates polynomials exactly of order up to n − 1 for a given set of n-points
quadrature.

For that, it seems that the CC quadrature is faster than and as robust as the Gauss, but "half
as efficient". However as pointed in the works of O’Hara and Smith [29] in 1968 (and latter on
analyzed by Trefethen in [23]), for many the integrands both methods turn out be equally accurate.
Since the number of points n of the quadrature are actually related to the number of quantization
levels of the proposed design, doubling this set of points could be done by just adding one more bit
to the quantizer (this argument will be more deeply explained in the following chapter). Therefore,
we will make use of the faster implementation of the CC quadrature which uses the FFT algorithm
for a faster and as efficient method of acquiring the nodes and weights necessary for the quantizer
design.

Finally, it is also interesting to shine a light on the fact that the Chebyshev points presents a
distribution more concentrated on the extremes of its range. As we can observe in the following
illustration. This behaviour is going to be better analyzed in the next chapter as we detail the
behaviour of the proposed design in a case study scenario.

Figure 3.1: Comparisons between distributions of nodes for different quadrature methods. On
the top, the 32 points of a Newton-Cotes distribution of points for the interval [−1, 1], and on the

bottom the distribution of Chebyshev points of 1st Kind in the same interval.

†Big O notation refers to order of complexity of algorithms, see [30] and [31] for more details.
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Chapter 4

Case Study

This chapter is the core of this work, where we present a case study and simulations regarding
the quantizer design mentioned in the Introduction. We will first detail the methodology used
for calculating the parameters of the quantizer, based on the theories presented by the previous
chapters, contextualizing the quantization process with moment preserving UT calculation by
means of Numerical Interpolatory Quadrature computation.

Then, we present the main contribution of this thesis, which is the Modified Direct Method for
sigma-points and weights calculation of the UT, utilizing the CC Quadrature technique. We follow
by better defining the FOM proposed for analyzing nonlinear moment preserving quantization
processes, mentioned at the end of Chapter 1. And finally, we present some simulation results
regarding a case study scenario of a tonal sine wave as input signal.

4.1 Quantizer Design

Designing an N-level quantizer can be broken down into defining its N output levels and N-1
input thresholds. For that, we will use as a basis the design methodology proposed by Delp in his
1990 paper [32], which was later on used also by Medeiros on his thesis [7]. This method constructs
a quantizer in which the output levels are related to UT’s sigma-points (acquired from the nodes
of a quadrature calculation), and the input thresholds are related to UT’s weights.

Differently from those previous works, however, we will use the CC Quadrature to define a priori
the nodes of the quadrature as the Chebyshev Points (Cheb-points), which will consequently pre-
define the quantizer’s output levels. This choice was made primarily to make the DAC process
independent of the input signal, thus making at least the Digital-to-Analog part of the converter
signal-generic. This was not the case for the quantizer designed by Medeiros [7], which had to
calculate specific output levels for each signal input. The specific choice of the Cheb-points was
thought in order to avoid the Runge phenomena present in equally spaced points, and finally to
match the CC quadrature used in the Modified Direct Method to calculate the signal moments.

The input threshold points thj (with j = 1, 2, ..., n− 1), however, are constructed following the
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same idea proposed by the mentioned authors. The accumulated probability of the input signal
in between the intervals of thj−1 and thj is numerically equal to the weight associated with the
sigma-point of index j. Figure 4.1 illustrates very well this constructive process by presenting the
characteristic curve of a 4-level quantizer in which its input signal is a generic sine wave, whose
PDF is equal to an arcsine distribution1denoted by px(x).

xx

x
xx

x x

x

Figure 4.1: Characteristic curve of a 4-level quantizer, denoting an arcsine probability distribution
px(x) as input, and its discrete counterpart pxq(xq) resulted from the UT calculation of px.

Source: Image taken from [7], with author’s consent

We can now mathematically write the construction statements made on the previous paragraph
as a probability equation:

P (thj−1 < x < thj) =

∫ thj

thj−1

px(x)dx = wj

⇔
∫ thj

−∞
px(x)dx−

∫ thj−1

−∞
px(x)dx = wj

⇔ Fx(thj)− Fx(thj−1) = wj

(4.1)

where P (thj−1 < x < thj) is the probability of the signal input x to assume a value in between
the values thj−1 and thj , and Fx(thj) = P (x < thj) is the signal’s CDF.

Moreover, we can state that Fx(th1) =
∫ th1
−∞ px(x)dx = w1, and by using Equation 4.1 to show

1This is a commonly known result in Probability Theory, see [11] or [12] for more details on this modeling process.
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the particular case of j = 2, we have:

Fx(th1) = w1 ⇔ th1 = F−1x (w1)

Fx(th2)− Fx(th1)︸ ︷︷ ︸
w1

= w2 ⇔ th2 = F−1x (w2 + w1)

Therefore, by induction, we arrive at the threshold expression in terms of the probability weights:

thj = F−1x

( j∑
i=1

wi

)
, (4.2)

where F−1x (Fx(x)) = x is known as the quantile function (see [11]), and it is assumed to exist for
every input signal we are going to work with.

4.2 Modified Direct Method

In this section, we present an alternative to the method priorly detailed in Section 2.2.1 of
this work. More specifically, we are now trying to avoid the problem presented by Equation 2.17,
which was proven to be extremely ill-conditioned. The proposed solution came as a consequence
of pre-defining the sigma-points si as the Cheb-points, because that matrix appeared solely to
calculate the UT sigma-points.

We now have the problem of calculating the weights associated to those sigma-points in order
to satisfy Equation 2.14. For that, let us consider, without loss of generality, the formulation
initially proposed by the Classic Direct Method in which we analyzed a set of 3 pairs of si, wi.

s01w1 + s02w2 + s03w3 = m0

s11w1 + s12w2 + s13w3 = m1

s21w1 + s22w2 + s23w3 = m2

Note, however, that now we only need to have knowledge of the first 3 moments2, since we only
have 3 variables (the weights). Writing the previous equations in matrix form leads to:

 1 1 1

s1 s2 s3

s21 s22 s23


︸ ︷︷ ︸

S3x3

w1

w2

w3


︸ ︷︷ ︸
W3x1

=

 1

m1

m2


︸ ︷︷ ︸
M3x1

(4.3)

where Sn is the Sigma matrix for an n-set of points, W and M the Weights and Moments matrices,
respectively.

2Actually, we only need to calculate the first and second order moments, since the 0-th order moment is, by
definition, equal to one.
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We now have a signal-specific solution that only involves the knowledge of the input’s statistical
moments, and a system of linear equations in order to calculate its associated UT. The moments
can be calculated numerically with only the signal’s samples as information, but, in the context of
this case study (in which we are analyzing a sine wave input), we can derive an analytic form to
calculate this moments by definition using CC quadratures.

mk =

∫ b

a
f(x)px(x)dx, (4.4)

where f(x) = xk and px(x) = 1
π
√
1−x2 , which is the PDF of a tonal sine wave (of an arbitrary

frequency) with unit amplitude (g(x) = sin(2πf0x)) defined in a generic interval [a, b], that we
will assume to be from -1 to 1.

Equation 4.4 is by definition the calculation of the k-th moment of a sine wave input signal, and
it is also a quadrature problem with measure dλ(x) = px(x)dx, which is exactly the definition we
presented in Table 3.1 of the Gauss-Chebyshev quadrature. We will solve this quadrature by means
of the CC method, which was computationally implemented and made available by Trefethen as
a MATLAB open source library code named chebfun (see [33] and [25] for more details on this
library). This formulation, however, presented numerical issues during its implementation for
Sigma matrices of order bigger than 5x5, i.e., for a quantizer design of more then 32 levels (which
would have resolution of 5 bits only). We will better detail this problems in Section 4.4.

4.3 Moment Preserving Ratio

In this section, we present the idea of a FOM capable of measuring how much the quantizer
fulfilled its purpose. That is, since we are designing a quantizer which is intended, by construc-
tion, to preserve the statistical moments of the input signal, why don’t we measure the output’s
statistical moments and compare to the ones we calculated for the input signal?

We hereby propose a simple implementation for a Moment Preserving Ratio (MPR), such that

MPRk% = 100 ·

√(
minputk −moutputk

minputk

)2

%, (4.5)

where minputk and moutputk are respectively the k-th moment of the input signal and output signal.
Figure 4.2, represents the result of a series of MPR values calculated for a linear quantizer and for
a CC quantizer, whose input signals were both a tonal unit amplitude sine wave. The graphic was
ploted in log scale to evidentiate the minimum amount of error the CC quantizer presented in this
metric for up to the 100th moment, which in linear scale would appear just as zeros.

Obviously, this FOM is not appropriated for a linear quantizer, therefore the high relative errors
compared to the results of the CC quantizer, which was already expected since linear quantizers in
general completely alter the statistical structure of the input signal [34]. Also, this plot can repre-
sent a scale of comparison, where we observed in simulation that the quantizer in fact conserved the
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moments up to the 31st order (which was the expected theoretical result for a 5-Bit quantizer) and
even more. As can be seen in Figure 4.3, the moments started to show any significant divergence
between the input and output moments only after the 400th moment, and significant divergences
(more than 10% of MPR) only after the 700th moment. That again proved the Modified Direct
Method was able to construct a quantizer model that satisfies Equation 2.14 with an even higher
level of robustness than expected (at least for the sinusoidal input simulated case).

4.4 Simulation Results

Here we present some simulations results regarding the other metrics stated in Chapter 1
(SNR, SINAD and SFDR) and the behaviour of quantizers with different resolutions until failure
resolution is achieved.

First, we present Figures 4.4(a) and 4.4(b), which demonstrate a first general comparison
between the linear quantizer and the designed one (respectively). The designed quantizer’s charac-
teristic curve shows a disposition of output levels that is concentrated on the extremes of the range
interval, as was expected both by the natural behaviour of points distribution from the Chebyshev
points function, and by the already presented result in the works of Medeiros [7]. This disposition
of points can be of use in general nonlinear application of data conversion processes, specially if
we take into consideration that the linear quantizer itself normally does not represent well the
conversions on its extreme points and our designed quantizer does present a better refinement in
these areas.
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Figure 4.3: Linear Scale representation of the MPR values for a 5-Bit Linear quantizer
(continuous curve) and for the CC quantizer designed (dashed curve).

Although the disposition of output levels are not equally spaced, one can prove that for this
special case of a sinusoidal input, the intervals between each threshold point is of the same length3.
Which does not present any advantages or disadvantages per se , but it is an interesting behaviour.

Next, we present some results based on classical dynamic metrics to reafirm the results observed
by Medeiros, which is serving in the current section of this work as a benchmark for the proposed
method results. Figures 4.5(a)-4.5(b) and Figure 4.6 show results identical to the theoretically
expected for the simulated range of resolutions, based on the cited work and considering that we
are analyzing the spectral interval of the signal until the 10th harmonic.

In Figures 4.5(a) and 4.5(b), the curves in blue with triangle points represents the behaviour
resulted of the linear quantizer conversion process. The yellow line with square points represents
the theoretical calculation of the SNR based on a AWGN noise distribution over the frequency
interval of the signal plus the quantization distortions, calculated with the formula SINAD =

6.02 ·N+1.76 dB (where N is the resolution of the ADC). And the orange line with circular points
is the measured SNR of the output signal after the CC quantizer application. We can notice that
the three curves are very little apart from each other (2 dB apart at most) in both metrics, which
leads to the conclusion that at least for this range of resolution the application of the proposed
nonlinear quantizer does not present any improvements.

The most expressive improvement is presented by the SFDR curve, Figure 4.6, where we can
only start to observe some advantages for more than 3-Bit resolution. Naturally, before that, any
converter design would present too much error to even consider being used in practical terms. For 4

3see [7], section 4.3 for prove of this result
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Figure 4.4: Characteristic curves of a) Linear Quantizer and b) CC Quantizer, both with 4-Bit
resolution for better visualization of the disposition of thresholds and output levels

and 5-bit resolution, however, we can observe an improvement of around 15 dB more range without
any distortion, which is a promising result, indicating we might be able to implement design with
even higher ranges in better resolutions.
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Figure 4.5: a) Signal-to-Noise Ratio (SNR) and b) Signal-to-Noise and Distortion Ratio (SINAD)
presented for 3, 4 and 5 bit resolution quantizer analyzed up to the 10th harmonic.
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Figure 4.6: Spurious-free Dynamic Range presented for 3, 4 and 5 bit resolution quantizer
analyzed up to the 10th harmonic.

The combined interpretation of Figures 4.5(a),4.5(b) and 4.6 also showed an important be-
haviour: the quantizer did not eliminate the distortions, it just distributed them in a different
manner along the signal spectre. In fact, from the results of Medeiros work [7], we can observe
that this quantizer "pushed" the spurious harmonics to the higher frequencies.

The following set of figures demonstrate the transient curves of both the linear quantizer and
the designed CC quantizer in superposition to the test signal for a more intuitively analysis of the
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quantization process. Until we start observing the resolution issues mentioned, it is notorious that
the curve in yellow (representing the CC quantizer) clearly approximates better the test signal
than the curve in orange (which represents the linear quantizer) for the same resolution. However,
we started observing some singularities errors during the computing of the Weights matrix.

(a) 3-Bit Quantizer

(b) 4-Bit Quantizer

Figure 4.7: 3 and 4-Bit transient quantizer’s curves. In yellow the CC quantizer curves tracking
the test input signal (blue), and in orange the linear quantizer behaviour.
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(a) 5-Bit Quantizer

(b) 6-Bit Quantizer

Figure 4.8: a) 5-Bit quantizers, representing the highest resolution attained without errors with
the proposed Modified Method; and b) the 6-Bit linear quantizer tracking the test signal input,

and the CC quantizer failing on doing so after loosing reference during weight calculation.
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Theoretically, we could just invert the Sigma matrix and solve the linear problem, however
inverting matrices is a historically difficult process to compute numerically. The approach, then,
involved some series of matrices diagonalizations applied adaptatively by the operator W = S\M ,
in MATLAB. Even that could get the simulation no far than the 6-Bit resolution shown. The
problem appears to be the fact that, in the same linear system, we have matrices elements of an
increasing order of magnitude in S, whereas the elements in W are generally small (remember
that the sum of all weights is 1) and the Moments matrix itself can be very sparse depending on
the distribution of probability of the signal analyzed. A symmetrical signal, for instance, has all
its odd moments equal to 0, which makes the matrix of moments have at least all of its elements
equal to 0.

All these factors leads us to the conclusions presented in the next chapter, while still presenting
alternative ways of getting around these problems with suggested approaches.
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Chapter 5

Concluding remarks

The quantization is an extremely important process for any kind of computer to operate, since
the Digital approach actually gives computers information in a context in which they can actually
work on (bits, 0’s and 1’s). Also, in the Digital domain we have the possibility to carry complex
calculations that are not obvious on the Analog domain, plus we have the easiness to adapt the
algorithms to changing circumstances [35]. For that, nowadays analog devices are rarely the best
option, and almost everything that involves technology, from TV’s to rockets, has this kind of
conversion process involved.

This thesis provided basic concepts involving ADCs in Chapter 1, such as sampling, quanti-
zation and coding definitions and theories, and metrics for ADC’s performance evaluation. After-
wards, in Chapter 2, we detailed some crucial concepts of Probability Theory, mainly involving
probability distributions and central statistical moments classical definition. That was made in
order to formulate the definition of the Unscented Transform used throughout this work. At the
end of this chapter a method for computing UT calculation of a generic input signal was shown as
an example of possible calculation method, but that had some fundamental flaws.

In Chapter 3, we presented the concepts of Numerical Interpolatory Quadratures and how
that with orthogonal polynomials theory could be an important mathematical tool used for UT
calculation. Then, in Chapter 4, we presented the most important part of this thesis, which is the
actual Design of a nonlinear quantizer based on numerical quadratures, using Delp’s [32] idea as
basis.

The design followed a slightly different approach than Delp’s [32] and Medeiros’ [7] propositions,
but still sharing the main idea. We proposed the Modified Direct Method for that, which had some
promising theoretical advantages for practical implementations, such as being a signal generic
method, and presenting an a priori computationally easy solution. However, as shown in the Case
Study chapter, the simulation results revealed that Equation 4.3 still presented some numerical
issues for implementations of order of resolution bigger than 5 bits.

However, within the range of resolution in which this numerical problems were not significant,
the Modified Direct Method presented results that led to a nonlinear quantizer design whose
performance surpasses that of a common linear quantizer implementation. The proposed metric
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(the Moment Preserving Ratio - MPR) was also used to gauge both linear and nonlinear quantizers
behaviour, and proved to work well to evaluate this class of Moment Preserving Quantizers.

5.1 Future Work

In the end, the proposed method cannot be implemented in the current proposed form, because
of the instability issues regarding the singularities present in quantizers of 6 bits or more. To
overcome that, some new ideas can be proposed as future works.

The first, and most obvious, idea is to actually better investigate what specifically causes the
numerical approximation issues in the solution of Equation 4.3. If the issue is actually originated
from the fact that the system is working with numbers with very different orders of magnitudes,
then a possible work around would be to research in a way of mapping these elements to a math-
ematical field in which their magnitudes are closer to each other.

Another possible idea is to invest in the method proposed by Medeiros [7], but instead of
working with the Gauss-Chebyshev (or other Gauss specific) polynomials, we can try to apply the
Gauss-Jacobi quadrature, whose polynomials presented in Table 3.1 are the most generic. With
that, the real challenge is to find a mathematical expression in terms of α and β, that maps this
generic polynomial representation to any specific input signal distribution.

And finally, the last idea proposed is an actual algorithmic update in the implementation done
by Medeiros [7]. In his thesis, it was mentioned that the order of the used algorithm complexity
was exponential, mainly due to the gaussian quadrature implementation based on the eigenvalues
and eigenvectors of the Jacobi tridiagonal matrix. This method was proposed by Golub and Welsch
[28] in 1967. However, there are way more efficient and faster methods for gaussian quadrature
implementation, such as the one proposed by Glaser, Liu and Rokhlin in 2007 [36] (which appeared
as a solution in a context of differential equations). Another one is the algorithms proposed by
Hale and Townsend in 2013 [37], or the papers of Bogaert (such as [38]) which implements an
approximately O(n) algorithm using asymptotic formulas. These papers could be better studied
an analyzed to bring a similar solution to the context of nodes and weights calculations for UT
calculations.
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