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Abstract
According to the extant literature, improving the leanness of a production system boosts a
company’s productivity and competitiveness. However, such an endeavor usually involves
managing multiple, potentially conflicting objectives. This study proposes a framework that
analyzes lean production methods using simulation and data envelopment analysis (DEA)
to accommodate the underlying multi-objective decision-making problem. The proposed
framework can help identify the most efficient solution alternative by (i) considering the
most common lean production methods for assembly line balancing, such as single minute
exchange of dies (SMED) and multi-machine set-up reduction (MMSUR), (ii) creating and
simulating various alternative assembly line configuration options via discrete-event sim-
ulation modeling, and (iii) formulating and applying DEA to identify the best alternative
assembly system configuration for the multi-objective decision making. In this study, we
demonstrate the viability and superiority of the proposed framework with an application case
on an automotive spare parts production system. The results show that the suggested frame-
work substantially improves the existing system by increasing efficiency while concurrently
decreasing work-in-process (WIP).
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1 Introduction

Companies shape their business strategies around competitive forces such as threats of sub-
stitutes and new entrants, bargaining power of buyers and suppliers, and the existing rivalries
(Porter, 1989). Environment dynamics, including the increasingly competitive landscape,
changing market conditions, recent developments in technology, variability in customer
demands, and shorter product life cycles, are forcing manufacturing firms to adapt to these
shifting trends rapidly. Firms are focusing more on flexibility and productivity to prevail
under such unstable market dynamics. Within manufacturing, flexibility refers to (i) adap-
tation capability to accommodate different product mixes, (ii) varying production volumes,
(iii) being capable of manufacturing a new product, (iv) being able to accommodate varying
delivery-time requirements (Suarez et al., 1995). Productivity, on the other hand, is a measure
of efficiency that draws attention to internal factors such as production rate, econometrics,
and time aspect of manufacturing. Flexibility abilities are necessary but not sufficient for
the firms to remain competitive. Productivity and flexibility are both sine qua non for all
manufacturing firms (Gustavsson, 1984). Productivity is one of the critical determinants of
competitiveness in the manufacturing landscape (Nicholas, 2015). Lean manufacturing or
lean production (LP, in short, from here onwards) is defined as a management philosophy
that simultaneously focuses on improving productivity and minimizing waste. Besides pro-
ductivity, LP also requires flexibility in labor as well as machinery & equipment usages
(Chauhan & Singh, 2011).

LP emerged at Toyota as a modus operandi aiming to eliminate all kinds of non-value-
added activities (Ohno, 1988). Waste, “muda” in Japanese, refers to all sorts of redundancies
such as overproduction, delay, excess inventory, unnecessary movements, process wastes,
among others. For example, in their earlier and seminal work, Naylor et al. (1999) showed
an application of LP principles on a personal computer (PC) supply chain, wherein by elim-
inating non-value-added activities, they significantly improved the value chain efficiency.

According to Womack and Jones (1997, p. 10), there are five key principles of LP: pre-
cisely specify values by specific products, identify the value stream for each product, make
value flow without interruptions, let customers pull value from the producer, and pursue per-
fection. During the last few decades, researchers have developed a variety of techniques to
achieve leanness. Expectedly,many LP techniques originated in Toyota as a part of the Toyota
Production System (TPS). The Kanban and Just-in-Time (JIT) production introduced to the
US by Monden (1984), Total Productive Maintenance (TPM), mistake proofing/Poka Yoke,
shop floor organization/5S, changeover reduction Single-Minute Exchange of Dies (SMED),
analyzing current state using Value Stream Mapping (VSM), Total Preventive Maintenance
(TPM) to name a few. Although initial applications of LP were in the automotive industry, it
has then been successfully applied to a variety of other sectors, including aerospace, ceram-
ics, construction, electronics, information management, textile, finance, and services (Doğan
& Unutulmaz, 2016).

LP can also be considered as a management paradigm, in which that it requires an orga-
nization such as a production system to undergo significant changes in terms of both culture
and infrastructure (Kull et al., 2014). Applying LP tools and techniques in manufacturing
environments requires a redesign, continuous adjustments, and reconfigurations (Greinacher
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et al., 2016). These continuous adjustments take place by migrating from the current state
VSM of a production system to a leaner VSM corresponding to a leaner system (Rahani
& Al-Ashraf, 2012). For example, the adjustments can bring about improvements in terms
of work-in-process (WIP) levels (Rahani & Al-Ashraf, 2012), process cycle times (Biswas
& Sarker, 2008; Rahani & Al-Ashraf, 2012), improved equipment replacements (Sullivan
et al., 2002), optimizing batch quantities (Biswas & Sarker, 2008), minimized the number of
defects (Dhafr et al., 2006), reduced waiting times (Gijo & Antony, 2014), reduced transport
times (Villarreal et al., 2017), improved motion time study results (Meyers & Stewart, 2002),
among others.

This paper presents SMED,multi-machine set-up reduction (MMSUR), and line balancing
techniques in conjunction with simulation modeling and data envelopment analysis (DEA)
to analyze and suggest productivity improvements in a manufacturing system. Accordingly,
a simulation-enhanced LP case study for a Turkish automobile spare parts company is con-
ducted. In this study, we use SMED andMMSURmethods to decrease setup times, assembly
line balancing to balance workflow, Monte-Carlo simulation to assess the current system and
generate alternative scenarios, and DEA to evaluate these scenarios and choose the best one
for LP improvements.We believe that this study contributes to the literature by systematically
combining several established techniques (e.g., SMED, MMSUR, Monte-Carlo simulation,
and DEA) synergistically and by providing a generalized framework to solve similar LP
improvement problems within manufacturing systems.

The organization of this paper is as follows. In the next section, we briefly introduce
the background. In Sect. 3, the case and problem description are provided, and the proposed
methodology is explained. Section 4 presents and discusses the findings of the study. Section 5
provides the summary and concluding remarks.

2 Background

Manufacturing systems are dynamic and complex systems that comprise interconnected
sub-processes with both predictable and unpredictable variabilities. Improving such systems
with LP may therefore lead to unforeseen issues and complexities. Hence, studies using
quantitative techniques to achieve the LP objectives need to be designed to address such
issues. These issuesmay arise because of (i) having to dealwithmultiple conflicting objectives
pertaining to the LP problem, (ii) the need to assess the “leanness” of a system and/or its
alternatives, (iii) dealing with overly complex objective functions to achieve LP goals.

(i) Conflicting objectives: multiple objectives may emerge when decision-makers face
multiple lean measures or various alternatives that conflict with each other. These con-
flicting alternatives can be evaluated by creating a viable multi-objective optimization
problem and solving it using multi-criteria optimization techniques (Gurumurthy &
Kodali, 2008).

(ii) Leanness assessment: assessing different LP improvements or measuring/monitoring
the “leanness” may not be trivial. Studies use statistics for monitoring/measuring
(Markarian, 2004), or fuzzy logic to assess “leanness” (Li et al., 2020; Susilawati
et al., 2015; Vinodh & Balaji, 2011). Studies also compare different LP design alter-
natives or VSMs applying techniques such as group decision making (GDM) with
fuzzy approach (Vinodh & Chintha, 2011; Wu et al., 2016), or DEA (Azadeh et al.,
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2017; Meza & Jeong, 2013) besides others. DEA is a linear programming-based, non-
parametric deterministic method of measurement where the production function can
assume any form (Zaim et al., 2008).

(iii) Complexities in optimization: using optimization techniques including linear or mixed-
integer programming is among the viable approaches in LP (DeMatta et al., 2001; Kilic
& Durmusoglu, 2013; Mao et al., 2019). As the complexity of the systems increase,
finding closed-form analytical solutions for such systems may become unworkable
via formal mathematical models. Optimizing the objective functions within reasonable
times by a computational system may become impossible. Therefore, in the cases
of complex objective functions, heuristics (Monkman et al., 2008) or meta-heuristics
(Agarwal et al., 2006; Ohlmann et al., 2008) may be used.

Another popular approach in dealing with overly complex systems is to use simulation
modeling. Based on initial conditions and system control parameters, simulation modeling
has proven to be instrumental for systems analysis taskswhere no solutionwith afinite orman-
ageable number of mathematical expressions (a.k.a., a closed-form solution) can be found.
Because of the highly complex nature of the manufacturing systems, simulation modeling
is one of the most widely used analytics tools to design, reconfigure and critically ana-
lyze complex dynamic manufacturing systems (Negahban & Smith, 2014; Robinson, 2004).
Monte-Carlo simulation is among the most popular quantitative techniques used in the LP
literature. Within LP, researchers have used simulation techniques in different domains such
as healthcare (Baril et al., 2016; Barnabè & Giorgino, 2017; Doğan & Unutulmaz, 2016),
management and services (Ahlstrom, 2004; Jordon et al., 2019; Zarrin & Azadeh, 2017),
manufacturing (Diaz-Elsayed et al., 2013; Greinacher et al., 2016; Yang et al., 2015) suc-
cessfully. For more applications of simulation in manufacturing system design and redesign,
interested readers may refer to Esmaeilian et al. (2016).

Assembly or production lines are widely used in manufacturing systems for mass produc-
tion. Unbalanced assembly lines often cause the formation of bottlenecks. These bottlenecks
impede LP by causing excess levels of WIP, longer waiting times and delays, and overpro-
duction of intermediate parts and components. LP aims at minimizing waste. Line balancing,
therefore, has been an important research topic of LP in manufacturing (He et al., 2020;
Scholl et al., 2009; Soroush et al., 2014).

3 Problem description andmethodology

3.1 Problem description

Since its introduction in the 1940s, LP techniques such as VSM, SMED, MMSUR, TPM
have been widely used to achieve leanness in manufacturing facilities. These techniques
are used jointly or independently. Measuring the leanness of a production facility itself
is a difficult problem. While there are widely used measures such as product cycle time,
work-in-process levels, and lead time, measuring the leanness using such metrics that often
correlate or conflict with each other has been proven to be difficult (Hopp & Spearman,
2000). While the reconfiguration of production systems to achieve LP is a smart practice,
frequently doing so with the actual system is drawn-out and costly. Therefore, simulation
under different production reconfigurations, using alternative production scenarios, may be
used. In addition to simulation, herein, we propose using DEA to choose the most productive
alternatives that are associated with a variety of inputs and outputs.

123



Annals of Operations Research

In this study, we offer a blueprint methodology to combine LP techniques with simulation
andDEA.Wedemonstrate our approach via an application of process improvementswithin an
automotive spare parts manufacturer. Themanufacturer was founded in 1968 and is located in
Turkey. The company, among other products, manufactures armrests for automobiles shown
in Fig. 1.

In the existing system, the armrest production line includes six major stations (Fig. 2).
In the first station, injection machines print all parts using Acrylonitrile–butadiene–styrene
(ABS). Dimensional stability is important for the subsequent processes. Therefore, the parts
coming out of the injection machine are measured prior to the next process, polyurethane
(PU) coating. The third station is for the adhesive (gluing) application process for skin surface
coating. The parts are then left to dry in the oven for ten minutes before moving to the fourth
station, where bending and folding operations take place. The hinge is mounted, and the

Fig. 1 The left armrest produced by the manufacturing system

Fig. 2 The production flow of the left armrest
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Fig. 3 The general framework of the applied approach

bottom part is screwed in the fifth station. Finally, the part is moved to the packaging station
upon inspection.

Using the time study method on the armrest production line, we concluded that cooling
times and unnecessary robot apparatus movements are over-extending the production times
of parts in the injection machine. We also detected unbalanced operator workloads in the
assembly line that were impeding productivity. We also found that the flexibility of the
assembly line can be improved by reducing the in-between distances of the stations and
enabling operators to perform more than one task at a time. Our study, therefore, suggested
applying SMED,MMSUR, and line balancing techniques as lean tools and then, use different
simulation scenarios coupledwithDEA to analyze and evaluate the productivity improvement
alternatives.

3.2 Methodology and analysis

For the current study, we propose a five-phased framework. These phases are (i) time study
(SMED and MMSUR), (ii) cycle-time reduction, (iii) assembly line-balancing, (iv) simulat-
ing alternative scenarios, and (v) employing DEA for the alternative selection. We illustrate
the proposed framework in Fig. 3.

3.2.1 Phase 1: time study, SMED, and MMSUR

Shorter setup (i.e., changeover) times are vital in LP. Shortening setup times can make
smaller-lot production feasible, decrease setup scrap and setup labor cost, increase production
flexibility, and reduce product lead times andmanufacturing costs (Singh&Khanduja, 2010).
SMED was initially applied by Shingo (Dillon & Shingo, 1985) at Mazda to reduce setup
times. The primary purpose of the technique is to shorten equipment setup operations to
under 10 min. SMED is a three-step procedure. In the first step, we label setup activities as
internal or external. External activities are those that can be performed while the machine
is still operational. Internal activities, however, can only take place when the machinery is
not running. The second step identifies internal activities that can be converted to external
activities via small, inexpensive changes (Trovinger & Bohn, 2005). The third and final
step involves streamlining all setup activities, both internal and external, using techniques
like method study, VSM, cause-and-effect analysis, or Pareto charts (Hines & Rich, 1997).

123



Annals of Operations Research

Table 1 Operator-time analysis

OPERATOR 1 OPERATOR 2 OPERATOR 3

Time (s) Perc. (%) Time (s) Perc. (%) Time (s) Perc. (%)

Internal setup time 68.38 3 37.0 1 510.1 19

Unnecessary time 680.01 25 168.7 6 173.4 6

External setup time 613.68 23 1188.3 44 202.5 8

Idle time 1337.97 50 1306.0 48 1814.1 67

The initially proposed version of SMED is effective with setups involving a single-machine.
This was later generalized to MMSUR technique by Van Goubergen (2008). MMSUR relies
on the creation of a multi-activity diagram both for operators and machines. The diagram
depicts each successive machine or process in a column. All activities are then plotted along
the time axis vertically, in their individual blocks, under their corresponding columns. A
multi-person activity diagram shows who is doing what and when. If the diagram reveals
setup time improvements, the activities are rearranged by repositioning the respective activity
blocks. Because of the complexity of multi-machine systems, the rearrangements are carried
out iteratively. At each iteration, the bottleneck machine is identified and targeted to reduce
setup times.

In our manufacturing system, we replace the molds after one job order on each of the ten
injection machines every 8 h. There are three separate setup operators for this mold-changing
process. We give the internal and external activity times for each of the operators in Table 1.
The table revealed operators were mostly idle.

Using root-cause analysis, we identified the causes as:

• High setup times in the injection machine
• Unscheduled and unbalanced operator workloads during the setup process
• Some external activities were carried out as if internal
• The operators initiated all mold-changing operations after stopping the machines.

Our root-cause analysis suggested:

• Assign existing workloads to the operator’s idle times according to process priorities,
• Complete external activities such as raw material transportation, prior to stopping the
injection machines,

• Standardize internal activities via the 5S method,
• Remove screw use during lock exchange.

In the light of the suggestions above, unnecessary waits and operations were eliminated, and
a multi-activity diagram for the current system was produced. The changes achieved a 40.9%
reduction in setup times (from 2700 s down to 1594 s). The current multi-activity diagram is
provided in Appendix Table 8.

3.2.2 Phase 2: reduction of cycle times

Reducing the cycle time improves the productivity (i.e., throughput) of a process. Reduced
cycle times may also improve quality by creating time buffers to help workers avoid unnec-
essary rushing to prevent making mistakes.
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Fig. 4 Closed (left) and open (right) states of the injection mold

Fig. 5 Ejector pins and the mold

In our case, the removal of the part from the injection machine depends on the spacing
of the molds (Fig. 4). That is, the gap must be just wide enough to insert the robot apparatus
into the mold that separates the male part from the female part. By minimizing the gap, we
reduced the cycle time by 5 s (from 48 down to 43).

After the use, molds required a significant time to cool down. We found the cooling time
to be longer than necessary (43 s). Upon conducting quality tests, we reduced the cooling
time by 4 s. Ejection pins are used to start the removal of parts from molds (Fig. 5). In the
original setup, ejection pins stood by as the robot apparatus is inserted into the mold. The
ejector pins were then pulled out. We improved the cycle time by an additional 4 s by pulling
out ejector pins immediately.

3.2.3 Phase 3: assembly line balancing

When tasks are not evenly distributed over workstations in a production system, bottlenecks
and idle capacities arise. Leveling the workload by reconfiguration is often achieved by
reducing the number of workstations. Many studies in the literature suggested using a variety
of techniques when leveling the workload, such as optimization, exact solution procedures,
meta-heuristics, mixed integer programming depending on the objectives and the assembly
line type. Boysen et al. (2008) offer an excellent reviewof the types of assembly line balancing
problems and models to solve them.

In our manufacturing facility, the assembly line is comprised of polyurethane coating,
outer coating, folding, screwing, and packing stations. The stations were positioned too far
apart fromeach other, limiting operators’ ability to performmultiple tasks simultaneously.We
reconfigured the assembly layout and rebalanced the line using the ranked positional weight
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method suggested by Helgeson and Birnie (1961). The general idea behind their method is
to prioritize the tasks that have long chains of succeeding tasks (Rekiek et al., 2002). The
method assigns tasks to workstations according to their ranked positional weights by taking
processing times and precedencies into account. Our assembly line comprised 110 tasks.
Table 2 shows the predecessors and processing times for tasks. Following Becker and Scholl
(2006), we calculated the minimum number of required workstations (n) and line efficiency

E(%) as: n =
∑ j

i=1 ti
c = 449.5

180.3
∼= 3, and E(%) =

∑ j
i=1 ti
n×c = %83.1 respectively (where ti is

the completion time for task i , j is the number of tasks, and c stands for the cycle time). The
results suggested balancing the 5-station assembly line by redesigning it with 3 stations.

Table 2 Assembly line task data

Task
#

Time
(s)

Predecessor
task

Task
#

Time
(s)

Predecessor
task

Task
#

Time
(s)

Predecessor
task

1 1.6 – 52 1.8 51 82 2.0 80, 81

2 4.2 1 53 1.2 52 83 2.1 –

3 2.2 – 54 2.0 53 84 4.7 82, 83

4 7.9 2, 3 55 1.1 50 85 0.9 84

5 1.6 4 56 1.1 55 86 2.6 85

6 2.2 4 57 0.8 56 87 0.9 86

7 126.6 5, 6 58 1.8 57 88 1.7 87

18 1.1 7 59 1.4 54, 58 89 0.7 88

19 1.5 18 60 15.2 59 90 4.4 89

20 0.9 19 61 0.7 60 91 1.3 –

21 2.1 20 62 1.0 54,58 92 15.0 90

22 5.8 20 63 1.7 62 93 1.09 90

23 0.7 21, 22 64 1.1 61 94 7.4 93

24 17.7 23 65 3.0 64 95 4.3 92, 94

25 0.7 24 66 2.4 65 96 2.2 95

26 0.7 24 67 1.6 63 97 1.0 96

27 1.1 26 68 7.0 66, 67 98 4.3 97

28 2.2 25, 27 69 2.3 68 99 0.7 96

40 0.9 28 70 56.5 69 100 7.8 99

41 5.9 40 71 1.5 70 101 0.6 100

42 1.7 28 72 1.7 71 102 1.6 96

43 1.0 42 73 3.1 72 103 3.9 98, 101,102

44 4.2 43 74 1.4 73 104 1.3 103

45 1.3 44 75 1.3 – 105 0.8 104

46 1.2 28 76 3.4 75 106 0.7 103

47 4.4 41, 45, 46 77 0.6 76 107 1.8 106

48 0.9 47 78 0.5 76 108 1.1 107

49 0.8 48 79 3.7 77 109 0.7 105, 108

50 41.5 49 80 0.5 79 110 2.9 109

51 2.2 50 81 0.9 76
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3.2.4 Phase 4: simulating alternative scenarios

Physical reconfiguration of the production systems can be lengthy and costly. Using simula-
tions for different production reconfigurations is typically used in LP literature.

In our manufacturing system, we performed simulations to determine improvements and
to propose changes to the existing system.Wemade the following assumptions for simulation:

• The system operates 24 h a day.
• Work orders arrive every 8 h.
• No disruption of the apparatus and the injection machine.
• No repairs or daily maintenance.
• No accidents or interruptions involving the operators.

We also defined existing system components as follows:

• Raw materials (Polyurethane, ABS, Polyvinyl chloride, Polypropylene)
• Injection machine
• Oven
• Gluing, folding, screwing, and control equipment
• Injection operator (1 person)
• Assembly Operators (5 people)
• Setup Operators (3 people)
• Raw material car
• Raw material controller
• Required lower parts (screw, hinge, etc.)
• Measuring and control instruments

Using the Input Analyzer in Rockwell Arena 13.5 Simulation software, we decided the
statistical distributions of the processing times in polyurethane coating, outer coating, folding,
screwing, and packaging stations. Some examples are given in Fig. 6.

We combined 110 tasks listed in Table 2 for further simplification. Figure 7 depicts the
resulting combined tasks and the simulation model of the existing system on Rockwell Arena
13.5 simulation software. The existing system after balancing is illustrated in Fig. 8.

In order to assess the effects of each change made in the existing system, we created ten
different scenarios. The scenarios included different combinations of SMED and MMSUR,
cycle time reduction, assembly line balancing processes, and a varying number of operators
(Table 3).

We tested the scenarios by running the simulations multiple times with cross-checks, and
we validated the simulation process for both of the models. We simulated each scenario for
24-h with 100 replications in order to account for variations in process times. Tables 4 and 5
show our results.

301noitarepO:29noitarepO2:noitarepO
Distribution: Triangular Distribution: Uniform Distribution: Normal 
Expression: TRIA (2.21, 4.55, 5.4) Expression: UNIF (13.2, 16.5) Expression: NORM (4.14, 1.05) 

Fig. 6 Examples of process distribution types using Arena Input Analyzer
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Fig. 7 Simulation model of the existing system

3.2.5 Phase 5: DEA for alternative selection

The first three phases in our proposed framework involve analysis and streamlining of the
production processes. These precursor phases allow for creating streamlined, balanced, and
more efficient alternatives. We then perform several shortened and streamlined alternative
production scenarios using simulation. The last phase involves choosing the most efficient
alternative using DEA.

DEA is a non-parametric method used to measure the productivity of different organiza-
tional units called decision-making units (DMU). These units are typically associated with
incomparable inputs and outputs. DEA was proposed by Charnes et al. (1978) and is used
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Fig. 8 Simulation model after assembly line corresponding to the combined tasks

to form a “best-practice frontier” of efficient DMUs, assuming no particular shape for the
frontier. While DEA does not provide a particular function relating to inputs and outputs,
it measures the relative efficiency of DMUs based on linear programming techniques. DEA
establishes an efficient frontier by computing convex-combination of efficient DMUs and
creates an efficiency index for each non-frontier DMUs based on their distances to the fron-
tier. DEA, therefore, enables peer-group comparisons according to the “efficient frontier”
rather than making comparisons according to, say, an average performer like in the case of
OLS. DEA also can assess the relative strengths of relationships between multiple inputs and
multiple outputs for DMUs, which presents considerable advantages over other traditional
methods (Demirbag et al., 2009). Aldamak and Zolfaghari (2017) provide an excellent review
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Table 3 Scenarios for analysis

SCENARIOS

Sc1 Sc2 Sc3 Sc4 Sc5 Sc6 Sc7 Sc8 Sc9 Sc10

SMED & MMSUR ✓ ✓ ✓ ✓ ✓ ✓

Cycle time reduction in
injection station

✓ ✓ ✓ ✓ ✓ ✓

Assembly line
balancing

✓ ✓ ✓ ✓ ✓ ✓ ✓

Change in number of
operators

✓ ✓ ✓

and explanation of DEA techniques. A variety of DEA models exist in the literature. Due to
its complex decision modeling capabilities, DEA is frequently used to analyze productivity
changes in manufacturing systems and supply chains (Yang et al., 2015; Zhou et al., 2013;
Nemati et al., 2020) related operations.

The CCRmodel While there are several types of DEAs that exist, the earliest due to Charnes
et al. (1978), knownasCCR.CCRassumes constant returns to scale and is suitable to usewhen
inputs or outputs of DMUs do not vary significantly. DEA can be constructed using either
an input orientation or an output orientation. While input-oriented DEA provides insights on
how to improve input levels by keeping output levels the same, output-oriented DEA focuses
on how much the outputs can be increased without changing current input levels. In this
study, we used an output-oriented DEA model. The output-oriented DEA model proposed
by Charnes et al. (1978) is as Eqs. (1)–(4):

MaxZo = θo + ε

(
s∑

r=1
s+
r +

m∑

i=1
s−
i

)

s.t .
(1)

n∑

j=1

λ j xi j + s−
i = xio i = 1, . . . ,m (2)

n∑

j=1

λ j yr j − s+
r = θo yro r = 1, . . . , s (3)

λ j , s
+
r , s−

i ≥ 0 f or all i, j, r (4)

where θ is the corresponding efficiency score for scenario o under investigation, andλ j are the
dual variables. The scenario o generates output s by consuming input m, which are included
as xio, and yro respectively. Amounts of excess for input and the amount of deficit for output
are represented by s+

r and s−
i respectively. ε > 0 is a predefined non-Archimedean element.

Equation (2) is the constraint that the level of input i for a scenario o is equal to a linear
combination of inputs plus the excess s−

i . Equation (3) maintains that the optimal output is
also a linear combination of the outputs minus the slack s+

r . When scenario o is efficient,
the objective function yields (θ = 1) and (s+

r = s−
i = 0). Such scenarios are referred to as

members of the “reference set”, and form the efficiency frontier.
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OutputsInputs

Set-up time before the injection 
machine (mold changing)

Cycle-time of the injection 
machine

Number of operators working in 
the assembly line

Assembly line

Average number of armrests 
produced

Average number of parts 
waiting for gluing

Fig. 9 The DEA model of Assembly Line

The super-efficiency model In the CCR model, all the DMUs in the reference set are
indicated by an efficiency score of one, limiting the ability to compare DMUs in the reference
set. We refer to methods that enable ranking and comparing different efficient DMUs in the
reference sets to super-efficiency models. In this paper, we used the super-efficiency model
introduced by Andersen and Petersen (1993). For each DMU, the super-efficiency model
removes the investigated DMU from the reference set and monitors the rates of increases in
the inputs of reference set DMUs. All DMUs are then sorted based on their efficiency scores.
The super-efficiency model formulation is almost identical to the CCR model and is given
in Eqs. (5)-(8).

MinZ0 = θ

s.t .
(5)

n∑

j=1
j �=o

λ j xi j ≤ θxio i = 1, . . . ,m (6)

n∑

j=1
j �=o

λ j yr j ≥ yro r = 1, . . . , s (7)

θ, λ j ≥ 0 j �= o (8)

In line with the company’s expectations, expert opinions, and the reviewed literature, we
select three indicators as our input variables. These indicators are “setup time before injec-
tion machine (mold changing)”, “cycle-time of the injection machine," and “the number of
operators working in the assembly line," respectively.

In general, selecting a single output variable as a performance indicator is difficult. In
this study, we used “Average number of armrests produced” and “Average number of parts
waiting for gluing” as our output variables. The proposedDEAmodel and the results obtained
by solving themodel inDEAFrontier Software are given in Fig. 9 and in Table 6, respectively.

4 Results and discussion

Efficiency is often described as “output divided by input”. In complex systems, where there
are multiple inputs and outputs, the measurement of efficiency (often referred to as “Pare-
to–Koopmans efficiency”) is embedded in complex formulations within DEA analysis. The
DEA analysis requires defining and carefully selecting the input and output variables.
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We used Eqs. (1)–(4) to derive the efficiency score for each of the alternative scenarios
and the existing system. 5 scenarios (Scenarios 4, 5, 7, 9, and 10) appeared as efficient
units, as shown in Table 6. Although all the efficient units have the same conventional CCR
efficiency score of ‘1’, their super-efficiency scores, which are ‘> 1’ may be different. This
provides the motivation for discriminating between efficient units using the super efficiency
procedure. The super-efficiency method shows that there are only two scenarios with an
efficiency significantly greater than ‘1’. These are Scenarios 9 and 10 with the approximate
values of 1.364 and 1.226, respectively.

In Table 6, ‘Return-to-Scale’ is a measure of the variation of inputs according to outputs.
When constant, it translates to the marginal productivity of 1 (constant scale). The return
to scale is increasing when the variation in inputs is smaller than the variation in outputs.
Table 6 shows that, except for the existing assembly line, all other scenarios are in the stage
of increasing returns to scale. Therefore, the overall operational efficiency can further be
enhanced by expanding the production scales of the inputs.

Given the fact that there are six inefficient DMUs, there is an obvious need to further
investigate the potential source of technical inefficiencies. To this end, the input excesses
and the output deficits were individually derived for each of the inefficient scenarios. We
summarize the results of the input excesses and the output deficits in Table 7.

Table 7 shows that the two inputs, “Setup time before injection machine (mold chang-
ing)/Input 1” and “Cycle time of injection machine/Input 2”, have the highest input excesses
for the existing assembly line. The results indicate the presence of non-value-added activ-
ities in these processes. There is a significant difference between the projection value and
production value (existing system) of the output 1 (average number of armrests produced),
which are 1250.17 and 412, respectively.

Similarly, for Output 2, the projection value is computed as 40.66 compared to the exist-
ing value of 10.46. These findings suggest that the inputs have diminishing returns on the
efficiencies of inefficient DMUs. In other words, to improve the efficiency of the existing
assembly line, production planning should seek ways to reduce the inputs.

Our CCR and Super efficiency results suggest using Scenarios 9–10 as benchmarks to
improve the existing system. To this end, λ values calculated with DEA were also taken into
consideration. The positive values of the optimal λ scores for inefficient scenarios correspond
to the reference set for that particular scenario. In our case, the reference set for Scenarios
9–10 of the existing system corresponds to λ9 = 0.92 and λ10 = 0.44, respectively. This
projects that the existing scenario resides on the line that connects Scenario 9 to Scenario 10.

For Scenarios 9 and 10, the actual and projected setup durations for mold value are both
26 min. However, the actual setup time for mold in the existing assembly line is measured as
45 min, and the projection value is estimated as 32.5 min. This suggests that the production
planning department should prioritize reducing mold setup times. Similarly, while reducing
cycle times positively contribute to productivity, increasing the number of operators has
no effect on the existing system. Besides, on the output side, results point to significant
inefficiencies. Projection value for the average number of armrests produced shows three
times increased productivity given the same input values. But in this case, the projection
value of the average number of parts waiting for gluing increases by four times, which is not
desired.
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5 Conclusion

LP requires the manufacturing system to undergo significant alterations in terms of design
changes, adjustments, and reconfigurations. This study presents a five-phase approach to
combine and couple LP techniques with simulation and DEA. The method sequentially com-
bines time-study, cycle-time reduction, line balancing, and simulation techniques. Managers
and engineers may use simulation techniques to analyze various system configurations in LP
applications before implementing the new system, saving time, money, and lowering risk.
Often, there is more than one LP objective that may correlate or even conflict with each other.
In order to eliminate sub-optimal alternatives that were generated in the simulation phase,
this study suggests applying DEA to compare productivity levels of alternative scenarios
with varying levels of inputs and outputs.

This research applies simulation and DEA, as well as LP techniques, to an automobile
spare parts company in Turkey. In LP, a three-phase method, which comprises SMED and
MMSUR techniques used for the setup time reduction of molds. Time study analysis is used
for cycle time reduction, and assembly line balancing is used for balancing the workflow and
the synchronization of the process. The case study results suggest significant improvements
over the existing configuration.

Production systems are highly dynamic and complex systems that involve interconnected
subprocesses with both predictable and unpredictable variations, all of which collectively
further complicate studying their inner structures. Changing the system’s input levels may
have unexpected effects on the outputs. Companies must conduct comprehensive and reliable
assessments to identify which inputs should be changed and in what direction. Although
there are techniques using simulation or DEA in the literature, this study contributes to the
literature in applying a variety of techniques (e.g., SMED,MMSUR,Monte-Carlo simulation,
and DEA) systematically and synergistically to provide an analytical framework for a class
of applications in the manufacturing. The proposed approach is open to new improvements
by continuously applying lean tools and techniques. While we keep the method presented
in this study general, more applications in manufacturing are needed to validate and further
enhance the proposed methodology.

Appendix

See Table 8.
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Table 8 Generated multi-activity
diagram

Operator
Cum.   
Time
(sec.)

OPERATOR 1 OPERATOR 2 OPERATOR 3

25,45
To disassemble the old robot 
apparatus and take it to the 

robot apparatus field

To adjust the mold hanger

To pick up the raw material sack

To go to the machine raw       
material entry area

To attach the mold hanger, to 
go down, to walk to the 

operator control area

To empty the raw material  of 
the previous mold

53,69
To get the new robot    
apparatus, make the    

necessary adjustments

To remove old mold from     
machine

75,97 WAIT

87,99 To press the hydraulic lock 
and to return

WAIT103,88 To lock the mold

206,49 WAIT

To go to the raw material    area

To remove old mold from the 
machine and to move it to the 

waiting area

To attach the appropriate   raw 
material hose and to    adjust the 

raw materials

254,3 Machine setup
To search for raw material      

controller

275,2 WAIT

To attach the crane’s hook 
to a new mold293,7 To clean the inside of the 

mold

437,83
WAIT

WAIT

WAIT

To fasten the controller

WAIT for raw material

To adjust the paint of the raw 
material

470,41 Unnecessary Movement

WAIT

739,46 WAIT
To place the new mold on the 
machine

To enter the raw material 
setting into the label machine

To remove the crane hanger 
from the new mold

761,11 To adjust the mold   with the 
controller

To wire

To walk to the car pickup   area 
for carrying raw  material and 

come back

778,88 To unscrew the mold screws

815,97
To wait for the crane control 
and to take it to the machine 

area

822,85 To make machine   heat 
adjustment

888,96
WAIT

Unnecessary

To attach the water  cables of 
the mold

To take the remained sack of 
raw materials

1098,59

To attach the right side of 
the mold and to walk to the 
side where the connecting 

cables are

To remove the piece from the 
mold

To put in the car

WAIT

To move the raw material  of the 
old mold to the raw material 

field

1279,22
To correct the wrong 

connection cables in the 
mold

Machine setup

raw material setting
1285,78 To get more raw material 

flowing from the machine

Tasks can be 
external.

This task w
as rem

oved by 
coloring the cables in the scope 

of 5S operation.
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Table 8 (continued)

1874,11 WAIT

1886,45 To control the quality of the 
first semi-product

To walk the area where 
the vans are  located and 

close the vans1914,26

1939,77 To control the mold

1989,97 To adjust the robot 
apparatus

2016 To control the semi-
product

2191,5 To enter the mold and set 
it again

2265,06 WAIT

2700 WAIT for the first semi-
product

1874,11 WAIT

1886,45 To control the quality of the 
first semi-product

To walk the area where 
the vans are  located and 

close the vans1914,26

1939,77 To control the mold

1989,97 To adjust the robot 
apparatus

2016 To control the semi-
product

2191,5 To enter the mold and set 
it again

2265,06 WAIT

2700 WAIT for the first semi-
product
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