
University of Illinois at Urbana-Champaign 

Air Conditioning and Refrigeration Center      A National Science Foundation/University Cooperative Research Center 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Three-Dimensional Computational Modeling  
of Augmented Louver Geometries 

for Air-side Heat Transfer Enhancement 
 

D. K. Tafti and J. Cui 
 
 

 ACRC TR-228 May 2004 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For additional information: 
 

Air Conditioning and Refrigeration Center 
University of Illinois 
Mechanical & Industrial Engineering Dept. 
1206 West Green Street  Prepared as part of ACRC Project #114 
Urbana, IL  61801  Three-Dimensional Computational Modeling Of Augmented  
 Louver Geometries for Air-side Heat Transfer Enhancement 
(217) 333-3115 D. K. Tafti, Principal Investigator 



 
 
The Air Conditioning and Refrigeration Center was 
founded in 1988 with a grant from the estate of 
Richard W. Kritzer, the founder of Peerless of 
America Inc.  A State of Illinois Technology Challenge 
Grant helped build the laboratory facilities.  The 
ACRC receives continuing support from the Richard 
W. Kritzer Endowment and the National Science 
Foundation.  The following organizations have also 
become sponsors of the Center. 
 
Alcan Aluminum Corporation 
Amana Refrigeration, Inc. 
Arçelik A. S. 
Behr GmbH and Co. 
Carrier Corporation 
Copeland Corporation 
Daikin Industries, Ltd. 
Delphi Thermal and Interior 
Embraco S. A. 
Fujitsu General Limited 
General Motors Corporation 
Hill PHOENIX 
Honeywell, Inc. 
Hydro Aluminum Adrian, Inc. 
Ingersoll-Rand Company 
Lennox International, Inc. 
LG Electronics, Inc. 
Modine Manufacturing Co. 
Parker Hannifin Corporation 
Peerless of America, Inc. 
Samsung Electronics Co., Ltd. 
Sanyo Electric Co., Ltd. 
Tecumseh Products Company 
Trane 
Visteon Automotive Systems 
Wieland-Werke, AG 
Wolverine Tube, Inc. 
 
For additional information: 
 
Air Conditioning & Refrigeration Center 
Mechanical & Industrial Engineering Dept. 
University of Illinois 
1206 West Green Street 
Urbana, IL  61801 
 
217 333 3115 
 

 



 iii

Table of Contents 

Page 

List of Figures .............................................................................................................. iv 

Chapter 1. Three-Dimensional Flow and Heat Transfer Characteristics .................. 1 
Abstract ................................................................................................................................................. 1 
Nomenclature........................................................................................................................................ 1 
1. Introduction....................................................................................................................................... 2 
2. Numerical Formulation and Computational Details...................................................................... 4 
3. Validation of Numerical Results...................................................................................................... 5 
4. Results............................................................................................................................................... 6 

4.1. Coherent Vorticity Dynamics...................................................................................................................7 
4.2. Unsteady Heat Transfer Characteristics .................................................................................................13 
4.3. Mean Flow and Heat Transfer................................................................................................................17 

5. Conclusions .................................................................................................................................... 21 
6. References ...................................................................................................................................... 21 

Chapter 2. Fin-Tube Junction Effects on Flow and Heat Transfer 
Characteristics ............................................................................................................ 23 

Abstract ............................................................................................................................................... 23 
Nomenclature...................................................................................................................................... 23 
1. Introduction..................................................................................................................................... 24 
2. Numerical formulation ................................................................................................................... 26 
3. Description of four louver geometries ......................................................................................... 26 
4. Results............................................................................................................................................. 27 

4.1 General Flow Features.............................................................................................................................28 
4.2 Pressure and Friction Drag on Louver and Tube.....................................................................................31 
4.3 Time-averaged Heat Transfer Coefficient ...............................................................................................33 
4.4 Overall Friction and Heat Transfer Coefficient for Flat Tube Louvered Heat Exchanger ......................36 

5. Conclusions .................................................................................................................................... 38 
6. References ...................................................................................................................................... 39 

Chapter 3. Modified Louvers ...................................................................................... 41 



 iv

List of Figures 

Page 
Figure 1.1.  (a) Computational domain consisting of one louver representing an infinite array of louvers put 

together in the streamwise and cross-stream directions; (b) computational mesh in a z- plane; (c) grid 
distribution in the spanwise direction along the fin height, more grid points are distributed at the junction 
between the angled louver and transition region, and between transition region and flat landing; (d) 
Temporal evolution of the spatially averaged Nusselt number.  The flow has adjusted to the mean pressure 
gradient and reached a statistically stationary state; (e) Comparison of calculated j-factors with CW 
correlation. 1200Re =

pL corresponds to the calculation reported in this paper.................................................3 

Figure 1.2.  Temporal evolution of coherent spanwise vortices represented by λi,z contours in the z-plane at z = 
-1.46.  Contour levels are in steps of 2 ranging from 0 to 40.  Vortices shed from the leading edge, 
combine with wake vortices and also interact with upstream shed vortices. .........................................................8 

Figure 1.3.  (a) Trajectory of vortices shed from a single louver as derived from Figure 1.2; (b) contours of λi,z 
at time t = 0.00 in the z- plane at z = -0.122, just before the start of the transition region. Vortices are 
diffuse and weaker than at z = -1.46; (c) temperature signal and (d) frequency spectrum at plane z = -1.46 
in the angled louver portion.  The monitoring location is near the middle of louver and is 0.065 in normal 
distance from the louver top surface; (e) temporal evolution of temperature on the top and bottom surface 
of the louver corresponding to the vortex shedding cycle shown in Figure 1.2.....................................................9 

Figure 1.4.  (a) Volume-averaged vortical strength distribution along the fin height at an arbitrary instant; (b) 
surface contours of λi = 30 at the bottom of the louver in the transition region. There is periodic formation 
and detachment of vorticity from the leading edge region; (c) instantaneous streamtubes injected near the 
leading edge of the louver near the junction with the flat landing, seen from louver bottom..............................11 

Figure 1.5.  Signal analysis at plane z = 0.243 near the middle of the transition region (a) temperature signal (b) 
temperature frequency spectrum. The monitoring location is near the middle of louver and is 0.060 in 
normal distance from the louver top surface; similar signal analysis at plane z = 0.424 near the flat 
landing; (c) temperature signal (d) temperature frequency spectrum. The monitoring location is near the 
middle of louver and is 0.052 in normal distance from the louver top surface....................................................13 

Figure 1.6.  Temporal evolution of surface averaged Nusselt numbers from z = 0.25 to 0.5 in the transition 
region near the flat landing.  The low frequency events on the top and bottom surface are correlated. ..............14 

Figure 1.7.  (a)  Instantaneous velocity vectors and (b) temperature contours on the top surface in a z- plane at z 
= 0.424 in the transition region near the flat landing at time t = 3.5; (c) instantaneous velocity vectors and 
(d) temperature contours at the same location at time t = 4.5.  The accelerating flow on the top surface 
increases heat transfer. Arrow shows scaling of vectors. ....................................................................................15 

Figure 1.8.  (a) Side view and (b) bottom view of instantaneous surface contours of λi = 30 in the transition 
region, and (c) the temperature contours on the louver bottom surface at time t = 1.5; (d) side view and (e) 
bottom view of the instantaneous surface contour of λi = 30 in the transition region, and (f) the 
temperature contours on the louver bottom surface at time t = 4.5.  The heat transfer on the bottom surface 
is closely related to the dynamics of the vortex jet. .............................................................................................16 

Figure 1.9.  Time mean velocity vectors at four z- planes, (a) on the angled louver; (b) at the middle of the 
transition region; (c) near the flat landing; (d) on the flat landing.  The acceleration in the transition region 
is clear. Arrow shows scaling of vectors. ............................................................................................................18 

Figure 1.10.  Mean thermal fields in four z- planes, (a) on the angled louver portion; (b) at the middle of the 
transition region; (c) near the flat landing; (d) on the flat landing.......................................................................19 

Figure 1.11.  Mean thermal field distribution (a) on the top and (b) bottom surface of louver; (c) time averaged 
mean Nusselt number distribution along the fin height averaged over time 4.5-9. .............................................20 



 v

Figure 2.1.  Computational domain for four louver geometries: (a) periodic louver; (b) straight louver; (c) 
transition without landing; (d) transition with landing.  Shaded areas are the louver and tube surface...............25 

Figure 2.2.  Temporal evolution of the spatially averaged Nusselt number for four louver geometries at 
Reynolds number of 1,100.  All flows have adjusted to the mean pressure gradient and reached a 
statistically stationary state.  Similar plots at Reynolds number of 600 and 300 also show that the flow has 
reached a stationary state. ....................................................................................................................................27 

Figure 2.3.  Instantaneous volume-averaged vortical strength distribution along the fin height at Reynolds 
number of 1,100 at an arbitrary instant for (a) periodic louver; (b) straight louver; (c) transition without 
landing; (d) transition with landing. ....................................................................................................................30 

Figure 2.4.  Mean drag force distribution along the fin height as a fraction of the total losses: (a) periodic 
louver; (b) straight louver; (c) transition without landing; (d) transition with landing at Reynolds number 
of 1,100................................................................................................................................................................31 

Figure 2.5.  Mean drag force distribution along the fin height as a fraction of the total losses for transition with 
landing at Reynolds number of (a) 1,100; (b) 600; (c) 300. ................................................................................32 

Figure 2.6. Fractional contribution of friction on tube surface to overall pressure loss...............................................33 
Figure 2.7.  Mean thermal field distribution on the louver top surface at Reynolds number of 1,100 for (a) 

periodic; (b) straight louver; (c) transition without landing; (d) transition with landing. ....................................34 
Figure 2.8.  Mean thermal field distribution on the louver bottom surface at Reynolds number of 1,100 for (a) 

periodic; (b) straight louver; (c) transition without landing; (d) transition with landing. ....................................35 
Figure 2.9. Average Nusselt number versus the Reynolds number. (a) On the louver surface; (b) On the tube 

surface. ................................................................................................................................................................36 
Figure 2.10. (a) Friction coefficient, f for equivalent louvered duct; (b) Nusselt number for equivalent louvered 

duct. Diamond: straight louver; delta: transition no landing; square, transition with landing. Empty 
symbols: Nusselt number based on louver surface; filled symbols: Nusselt number based on louver and 
tube surface..........................................................................................................................................................37 

Figure 2.11. Comparison of calculated f- and j- factors with available correlations. Vertical lines establish 
limits of experimental data from which the CHLW and CH correlations were constructed. ..............................38 

Figure 3.1.  Definition of modified louver geometry. Schematic shows a single louver with line segments FA 
and CD lying on the tube surface. α is the angle between the flow direction and line LAF , LBE or LCD;  
θ is the sweep angle for   LAB and  LBC in the plane ABC; β is  the angle between the plane ABC and 
plane ABEF (or BCDE); ϕ is the angle between the plane ABEF and BCDE, where ABEF and BCDE are 
two half louvers. Fin height is 5 louver pitches, same as the base louver............................................................41 

Figure 3.2: Nusselt number distribution for modified louvers compared to a straight unmodified louver..................42 



 1

Chapter 1. Three-Dimensional Flow and Heat Transfer Characteristics 

Abstract 
This study presents computational results in a complex three-dimensional louver geometry.  The three-

dimensionality occurs along the height of the fin, where the angled louver transitions to the flat landing and joins 

with the tube surface.  The transition region is characterized by a swept leading edge and decreasing flow area 

between louvers.  The results show that for Reb = 1100, the flow on the angled louver is dominated by spanwise 

vortex shedding, which is weakly three-dimensional.  On the other hand, the flow in the transition region exhibits 

strong three-dimensionality. A high-energy compact vortex jet forms in the vicinity of the louver junction with the 

flat landing and is drawn under the louver.  The top surface experiences large velocities in the vicinity of the surface 

and exhibits high heat transfer coefficients.  Although the flow slows down at the flat landing, the large induced 

velocities on the top surface increases the heat transfer coefficient on the tube surface. 

Nomenclature 
b non-dimensional fin thickness (b*/Lp

*)  
f non-dimensional characteristic frequency (f*Lp

*/uτ
*) 

∗
pF  dimensional fin pitch 

Fp non-dimensional fin pitch (Fp
*/Lp

*) 

j Colburn factor 
4.0PrReb

Nuj =  

Lp
* dimensional louver pitch (characteristic length scale) 

Nu Nusselt number, 
κ

)T/(Tq''L
Nu

*
ref

*
s

**
p −

=  

Pr Prandtl number 
∗q''  heat flux 

Reτ Reynolds number (uτ
*Lp

*/ν) 
Reb Reynolds number (ub

*Lp
*/ν) 

pLRe  Reynolds number )/( ν∗∗
pc LV  

∗
sT  surface temperature 
*
refT  reference temperature, integrated mixed mean 

T non-dimensional temperature, )//( κ∗∗∗= pLq''TT  

t non-dimensional time, t = t* uτ
*/Lp

* 
uτ

* friction velocity  
ub

* bulk velocity 
∗

cV  maximum bulk velocity based on nominal flow area in louver bank 
x,y,z non-dimensional coordinates, x = x*/Lp

*, y = y*/Lp
*, z = z*/Lp

* 

Greek symbols 
α thermal diffusivity 
κ thermal conductivity 
ν kinematic viscosity 
θ fluctuating non-dimensional temperature about the mean 
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Superscripts 
* dimensional quantities 

1. Introduction 
Multilouvered fins are used extensively in the automobile and Heating, Ventilation and Air-Conditioning 

(HVAC) industries for enhancing air-side heat transfer in compact heat exchangers.  They can be manufactured by 

high-speed production techniques and are more economical than other interrupted fin geometries.  Researchers from 

universities and from the HVAC and automotive industries have published considerable amount of experimental 

visualizations and measurements, empirical correlations, and numerical simulations in this area.  A review of past 

experimental and computational work can be found in Tafti et al. [1,2]. 

The heat transfer in multilouvered fins is influenced by three factors: a) duct versus louver directed flow 

[3,4]; b) thermal wake interference [5]; c) flow instabilities and transport of coherent vorticity in the vicinity of the 

louver surface [6]. These three phenomena can be captured with good precision in two-dimensional unsteady 

simulations. Factors (a) and (b) are primarily dependent on the two-dimensional geometrical parameters. The onset 

of unsteadiness is primarily a two-dimensional phenomenon, which can either be classified as a wake or Kelvin-

Helmholtz instability [7], and can be resolved with accuracy in the initial stages of development. However, there is 

evidence [8,9,10], that as the Reynolds number increases beyond 
hDRe  (based on hydraulic diameter) of about 

2000-2500, secondary three-dimensional instabilities may be important. The intrinsic three-dimensionality, which 

develops in the flow field, cannot be resolved with two-dimensional simulations. It has the effect of reducing the 

coherence of the vortical structures, hence reducing their effectiveness in enhancing heat transfer.  

Other than the intrinsic three-dimensionality that could develop at high Reynolds numbers, additional 

three-dimensionality is inherent in the multilouvered geometry near the junction of the louver with the tube surface, 

along the height of the fin in flat tube heat exchangers. The angled louver transitions to a flat landing, which extends 

to the tube surface as shown in Figure 1.11. The extent of the transition region is estimated to be 0.5 ∗
pL  [11]. A 

consequence of the manufacturing process is that the leading and trailing edges of the louver in the transition region, 

instead of being normal to the flow direction, exhibit a “sweep” angle to the flow direction. In addition to this effect, 

the open flow area between two subsequent louvers is restricted as the louvers approach the flat landing. 

The objective of the present study is to perform high-resolution time-dependent simulations in the three-

dimensional louver geometry by explicitly taking into account the transition region from louver to the tube surface, 

and to identify to what extent this junction affects the flow field and heat transfer, both locally and globally. In 

corrugated fins, the flow in this region is also important from the point of view of condensate management and 

carryover [12]. 

                                                           
1 In corrugated fins, the “flat landing” in not flat but curves at the junction with the tube. For current purposes we 
assume that the landing is flat. 
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Figure 1.1.  (a) Computational domain consisting of one louver representing an infinite array of louvers put 
together in the streamwise and cross-stream directions; (b) computational mesh in a z- plane; (c) grid distribution 
in the spanwise direction along the fin height, more grid points are distributed at the junction between the angled 
louver and transition region, and between transition region and flat landing; (d) Temporal evolution of the 
spatially averaged Nusselt number.  The flow has adjusted to the mean pressure gradient and reached a 
statistically stationary state; (e) Comparison of calculated j-factors with CW correlation. 

1200Re =
pL corresponds to the calculation reported in this paper. 



 4

The paper is organized as follows: in the next section, a brief description of the numerical and 

computational method is given, followed by validation of the computational results. The results are presented by 

first introducing the unsteady dynamics of flow and heat transfer, followed by the mean time-averaged effects.  

2. Numerical Formulation and Computational Details 
The governing flow and energy equations are non-dimensionalized by a characteristic length scale, which 

in this case is taken to be the louver pitch, *
pL , the friction velocity, /ρ∆pu *

x
*
τ =  as the velocity scale, and 

/κLq'' *
p

*  as the temperature scale.  Here, *
x∆p  is the mean pressure gradient in the streamwise direction, *q''  is 

the specified dimensional constant heat flux on the louver and tube surface, and κ  is the thermal conductivity of the 

fluid.  The above non-dimensionalization results in a Reynolds number based on the friction velocity 

Reτ /νLu *
p

*
τ= , and Prandtl number Pr ν/α= , where ν  and α  are the kinematic viscosity and thermal diffusivity 

of the fluid, respectively. 

For computational purposes, fully developed flow and thermal conditions are assumed in the multilouvered 

fins.  The louvered fin geometry is approximated by an infinite array of louvers in both streamwise and cross-stream 

directions, which results in a simpler system with periodic repetition of the basic unit.  The fully developed flow and 

heat transfer regime is experimentally observed to be attained by the second row in the streamwise direction for 

parallel-plate fins [13], and by the third or fourth row for louvered fins [14].  The unit computational domain for the 

base louver geometry has a dimension of 1 (normalized by louver pitch *
pL ) in streamwise (x) direction, fin pitch 1 

(in this particular case, fin pitch *
pF  is same as *

pL ) in cross-stream (y) direction, and 2.5 in spanwise (z) direction, 

as shown in Figure 1.1(a).  Along the spanwise direction, the louver can be divided into three parts: angled louver 

(length is 1.75), transition part (length is 0.5), and flat landing (length is 0.25).  A linear transition profile is 

prescribed between the angled louver and the flat landing [15]. The thickness of the louver is 0.1 with 25° louver 

angle.   

Periodic boundary conditions for velocity, modified pressure and temperature are applied in the streamwise 

and cross-stream directions since the flow is assumed to be both hydrodynamically and thermally fully developed 

without any entrance or exit effects.  The application of periodic boundary conditions in the streamwise direction 

requires that pressure and temperature be re-formulated as in Patankar et al. [16]. No-slip, no-penetration boundary 

conditions for velocity and constant heat flux conditions are enforced on the louver surface and the tube surface. 

Along the fin height at a distance of 2.5 from the tube wall, it is assumed that the flow is sufficiently removed from 

the extrinsic three-dimensional effects of the transition region and is nominally two-dimensional. This facilitates the 

application of symmetry boundary conditions. Our results show that this assumption is well justified. 

The governing equations for momentum and energy are discretized with a conservative finite volume 

formulation using a second-order central difference scheme.  A non-staggered grid topology is adopted.  The 

Cartesian velocities, pressure, and temperature are calculated and stored at the cell center, whereas contravariant 

fluxed are stored and calculated at the cell faces.  For the time integration of the discretized continuity and 
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momentum equations, a projection method is used [17].  The temporal advancement is performed in two steps, a 

predictor step, which calculates an intermediate velocity field, and a corrector step, which calculates the updated 

velocity at the new time step by satisfying discrete continuity.  The energy equation is advanced in time by the 

predictor step. 

The computational mesh consists of 98 zones in ξ - and η - directions, respectively, and 128 zones in ζ - 

direction along the fin height.  The grid is clustered in the vicinity of the louver, in the transition zone and tube wall 

region for better resolution.  The mesh is partitioned into sixteen blocks in the spanwise direction.  Each block 

(98×98×8) is assigned to a processor in a distributed programming environment.  The calculations are performed on 

16 processors of SGI-Cray Origin 2000.  The Reynolds number, Reτ, is 400, which gives a bulk Reynolds number 

Reb, based on the calculated bulk velocity and louver pitch, of approximately 1100. This lies at the high end in 

typical applications.  The time step used in the computation is 5×10-5.  Initial conditions are obtained from an 

analogous two-dimensional simulation over the angled louver.  The two–dimensional solution is duplicated in the 

spanwise direction along the height of the fin.  Since the flow rate adjusts to the imposed pressure gradient, it is 

much more economical to run a separate two-dimensional simulation, which gives a fairly good estimate of the bulk 

flow velocity to begin with, than to simulate the same transient process in the three-dimensional calculations.   

The flow at this Reynolds number is also time-dependent. Hence the flow not only has to adjust to the 

mean pressure gradient but also reach a statistically stationary state. Time series data of field variables are carefully 

monitored and stationarity is claimed when these data show a near constant mean value or a quasi-periodic 

fluctuation in time.  Figure 1.1(d) shows the stationary time evolution of the spatially averaged Nusselt number 

calculated on the louver surface for the last 9 time units of the simulation. Stationarity is well established with a 

mean value around 22.7 with a maximum fluctuation within 5% of the mean value.  Unless otherwise noted, all 

mean quantities are obtained by averaging over the last three non-dimensional time units (from time t = 6-9).   

To characterize the heat transfer, we define a local instantaneous Nusselt number. The surface-averaged 

Nusselt number is obtained by integration over the louver surface. In this paper, reference to the surface-averaged 

Nusselt number refers to the entire louver surface (excluding tube surface), whereas locally surface-averaged 

Nusselt number refers to the average Nusselt number in each computational block. 

More details of the numerical algorithm, treatment of the boundary conditions, verification of the computer 

program and domain decomposition for parallel computing can be found in Tafti et al. [1,2]. 

3. Validation of Numerical Results 
Numerical accuracy and resolution are crucial issues in time-dependent calculations in complex geometries. 

More often than not, quantitative validation of the calculation is challenging because of the lack of detailed three-

dimensional experimental data, the expense and inability to perform grid independency studies, and by the lack of a-

priori knowledge of the flow field. The three-dimensional louver geometry has the potential for generating highly 

complex and three-dimensional flow and thermal fields.  Hence, a-priori, the grid must be designed intelligently 

such that energetic eddies are appropriately resolved. To do this we have drawn on our experience with two-

dimensional unsteady simulations [6], where we have established through grid refinement studies, that a mesh 

resolution of 96×96 computational cells in the z- plane surrounding a louver is sufficiently fine to capture all the 
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important dynamics of flow oscillations. Figure 1.1(b) shows the computational mesh in a z- plane in the angled 

louver portion. The grid is clustered in the vicinity of the louver with the first grid point above the louver surface at 

0.0019 (in non-dimensional unit), which falls between 0.1 and 0.3 in local wall units2 based on the local shear stress.  

In the region with the highest shear stress (in the transition region), there are five grid points within 10 wall units 

normal to the surface, with the first one at 0.3. Attention has also been given to the grid distribution in the 

streamwise and spanwise directions.  Along the streamwise direction, the grid is nearly uniform with spacing of 5-7 

wall units.  Along the fin height or spanwise direction, the mesh distribution is clustered in the transition region and 

the tube surface. Figure 1.1(c) shows the spanwise grid distribution ∆z versus z.  The mesh is coarsest in the two-

dimensional region of the geometry with the maximum spacing of 60 wall units and finest at the beginning and end 

of transition, and near the tube wall with the spacing around 3 wall units.  This gives us confidence that the 

boundary layers on the louver and tube surface are very well resolved. Since most of the energy is adequately 

resolved, there is no need to use any subgrid-scale stress models. 

Another validation is to check the force balance on the louver.  In the current simulation, a mean pressure 

gradient is imposed in the streamwise direction to drive the flow.  Consequently, this pressure force should be 

balanced by the sum of the form (pressure) drag force and friction drag force from the louver surface and the friction 

drag force from the tube surface.  The form drag acting on the louver surface is nearly three times the friction drag, 

which is fairly typical of louver geometries.  The force balance between the imposed force and the forces from the 

louver and tube surface is verified (with an error at 0.6%).  This validates the numerical formulation and the 

adequacy of the time averaging sample size. 

Finally we compare the calculated overall Colburn j-factor (louver + tube) with the correlation of Chang 

and Wang [18] (CW). This is a general correlation developed from experimental data available for different types of 

louver geometries. The following geometrical values are used in the correlation (all lengths are normalized by louver 

pitch): Fp = 1, θ = 25 degrees, b = 0.1, fin height = tube pitch = 5, tube depth = 15, and louver length = 4.53. Figure 

1.1(e) plots the j- factor for three calculated Reynolds numbers, from which the largest corresponds to the 

calculation reported in this paper. Also plotted are upper and lower bounds of the experimental data from which the 

CW correlation was derived. The calculated j-factors are well within experimental scatter, and in fact compare quite 

well with the correlation. 

4. Results 
The imposed pressure gradient of unity and Reτ = 400, give a calculated bulk Reynolds number Reb of 

approximately 1100. In general the flow is unsteady with self-sustained flow oscillations. The flow oscillations 

manifest themselves as spanwise vortices, which are nominally two-dimensional in nature with weak three-

dimensionality across the fin height. In the transition region, the flow exhibits strong three-dimensionality with 

                                                           
2 This is calculated a-posteriori by extracting the time mean wall shear stress from the calculation. For reference, a 
fully turbulent channel flow calculation is adequately resolved by the current procedure with 5 grid points within 10 
wall units normal to the wall, and a resolution of approximately 30 and 10 wall units in the streamwise and spanwise 
directions, respectively. 
3 Tube depth is used in the same context as flow depth. In our calculations, the flow depth is infinity. So a typical 
value of 15 is used.  
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additional unsteady phenomena. For the most part, the flow encountered at this Reynolds number, lie in the unsteady 

laminar to chaotic regimes.  

First, the unsteady phenomenon governing flow and heat transfer are discussed and then their effect on the 

mean flow and thermal fields is presented. 

4.1. Coherent Vorticity Dynamics 
 To characterize the unsteady nature of the flow and the associated vorticity dynamics, the ∇u [19] vortex 

identification technique is used.  The method has been used by a number of researchers in extracting coherent 

vorticity [10,20]. This frame-invariant method identifies vortical structures as regions of large vorticity, where 

rotation dominates over strain to cause the rate-of-deformation tensor ∇u (velocity gradient tensor) to have complex 

eigenvalues (one real and two conjugate complex eigenvalues).  The complex eigenvalues imply that the local 

streamline pattern is closed or spiral, thus correctly eliminating near-wall shear layers. This methodology can also be 

separately applied in the x-, y-, or z- planes in order to identify streamwise, cross-flow, and spanwise vortices [10], 

respectively.  The strength of the vortex is measured in terms of the imaginary part of the eigenvalue of the velocity 

gradient tensor and is denoted by λi.  The strength of its three subsets, streamwise, cross-flow, and spanwise vortices 

is measured in terms of the imaginary part of the eigenvalue of the velocity gradient on the x-, y-, and z- planes, 

respectively, and is denoted by λi,x, λi,y, and λi,z, respectively. 

Figure 1.2 displays the temporal evolution of spanwise vortices represented by λi,z contours in the z- plane 

at the angled part of the louver at z = -1.46. For presentation purpose, the vortices are labeled by letters, and a “+” 

sign implies vortices shed from the bottom surface of the leading edge and a “–” sign implies those shed from the 

top louver surface.  The numbers denote the magnitude of λi,z at the vortex center.  At time t = 0.00, Figure 1.2(a), 

vortex shedding from both top and bottom surface at the leading edge is clearly evident, in spite of the flow not 

being completely aligned with the louver. Near the leading edge, vortex A- and I+ have the same strength and I+ is 

about to shed another vortex.  However, comparison of the strength of vortices shed from the top and bottom surface 

(vortex B- and J+, vortex C- and K+) show significant differences.  The vortices shed from the top surface are a factor 

of 2-3 stronger than those shed from the bottom edge4.  We also see strong interactions between leading and trailing 

edge vortices.  The trace of vortex K+ in Figure 1.2(a-c), J+ in Figure 1.2(d-f), and C- in Figure 1.2(b-e), suggests 

that vortices shed from the leading edge shear layer, merge with vortices at the trailing edge and pick up strength 

before convecting into the wake.  

                                                           
4 The vortices shed from the leading edge of the bottom surface are weak and are difficult to sense without isolating them 
from the background vorticity. 
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Figure 1.2.  Temporal evolution of coherent spanwise vortices represented by λi,z contours in the z-plane at z = -
1.46.  Contour levels are in steps of 2 ranging from 0 to 40.  Vortices shed from the leading edge, combine with 
wake vortices and also interact with upstream shed vortices. 

Because of the periodicity, vortices leaving the domain, re-enter the domain again (see vortex D+, H-, G- 

and K+). The corresponding spatial interpretation of vortex trajectories shed from a louver is shown in Figure 1.3(a). 

In the snapshot at t = 0.0, the immediate wake of the louver is represented by the alternating vortices (K+, L-, M+, H-
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), which convect further downstream to become (D+, E-, F+, G-). The vortices have a spatial life span of 

approximately 3 to 4 louvers pitches from the time they are generated at the leading edge. 
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Figure 1.3.  (a) Trajectory of vortices shed from a single louver as derived from Figure 1.2; (b) contours of λi,z at 
time t = 0.00 in the z- plane at z = -0.122, just before the start of the transition region. Vortices are diffuse and 
weaker than at z = -1.46; (c) temperature signal and (d) frequency spectrum at plane z = -1.46 in the angled 
louver portion.  The monitoring location is near the middle of louver and is 0.065 in normal distance from the 
louver top surface; (e) temporal evolution of temperature on the top and bottom surface of the louver 
corresponding to the vortex shedding cycle shown in Figure 1.2. 

Vortex-vortex interactions are also observed on the top surface of the louver. At time t = 0.05, Figure 

1.2(b), vortex I’+ is shed from the shear layer on the bottom surface. Vortex B- begins to interact with vortex E- (from 
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the wake of a previous louver) as both move downstream. As they approach the trailing edge, at t = 0.20 in Figure 

1.2(e) they separate again. Similar interactions can also be observed in Figure 1.2(f) between A’- and H-. We also 

take note of the fact that a vortex is always shed from a leading edge shear layer in the presence of a vortex of 

opposite sign from the wake of a previous louver. For instance, vortex A’- is shed in the presence of D+, whereas I’+ 

is shed in the presence of G-.  

The vorticity dynamics observed in Figure 1.2 is present throughout the angled portion of the louver, which 

is dominated by the periodic shedding of spanwise vorticity. Figure 1.3(b) plots contours of λi,z in the z- plane at z = 

-0.122, just before the louver starts its transition, at one instant in time, t = 0.00. The vortices are much more diffuse 

and weaker in this region. However, in spite of this there is a good correlation with Figure 1.2(a), and the flow is 

still preferentially two-dimensional with weak three-dimensional effects. 

Figure 1.3(c-d) shows the time history and corresponding frequency spectrum, respectively, of the 

temperature signal at the angled louver close to the plane of symmetry.  The monitoring location is above the top 

louver surface and at the middle of the louver.  The time signals exhibits a nearly periodic pattern, which is 

consistent with the periodic vortex shedding from the leading edge on the louver top surface observed from the flow 

animations.  The frequency spectrum shows a clear peak at f ≈ 5.2, which corresponds to the frequency of vortex 

shedding observed in Figure 1.2.  Based on louver pitch and the bulk velocity, the characteristic non-dimensional 

frequency is 1.87.  This value compares well with the value of 2 obtained in previous two-dimensional calculations 

[6] of developing flow and heat transfer in multilouvered fins. 

There is considerable evidence in Figure 1.2 that vortex shedding from a louver does not proceed in 

isolation but is influenced by other louvers as well, until a characteristic “louver bank” frequency is established. This 

agrees with the experiments of Mochizuki and Yagi [21] and also our two-dimensional numerical studies [6].  

Mochizuki and Yagi [21] in their experiments with staggered fin arrangements, found that multiple frequencies were 

observed for arrays which were less than 8 columns deep, however, once the depth of the array increased beyond 

this point, single characteristic frequencies were found, thus indicating that vortex shedding in large arrays was 

influenced by factors other than individual plates. Tafti and Zhang [6], in two-dimensional developing flow in 

multilouvers also reached similar conclusions. They found that the characteristic frequencies did not scale with 

louver thickness, as it would in the case of isolated plates, but scaled with a length scale associated with the fin 

pitch, and postulated from this that the interaction of convecting vortices played a major role in fixing the 

characteristic frequency. 

The flow takes on added complexity in the transition region. It is strongly three-dimensional and the flow 

dynamics are quite different. To illustrate this, Figure 1.4(a) plots the distribution of volume averaged λi,x,y,z as a 

function of fin height at an arbitrary instant in time. Only the volumes with non-zero eigenvalues are included in the 

volume averaging.  On the angled louver, λi essentially maintains a constant value, with a dominant contribution 

from spanwise vorticity. However, in the transition region, λi increases, with increasing contributions from 

streamwise and cross-stream vorticity, with a drop in contributions from spanwise vortices. λi reaches a maximum in 

the center of the transition region and then decreases as the louver approaches the flat landing and the tube surface.  
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Figure 1.4.  (a) Volume-averaged vortical strength distribution along the fin height at an arbitrary instant; (b) 
surface contours of λi = 30 at the bottom of the louver in the transition region. There is periodic formation and 
detachment of vorticity from the leading edge region; (c) instantaneous streamtubes injected near the leading 
edge of the louver near the junction with the flat landing, seen from louver bottom. 

Figure 1.4(b) plots the surface contours of λi = 30 at the bottom of the louver in the transition region. This 

includes all components of coherent vorticity. An agglomeration of coherent vorticity is found at the leading edge of 
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Louver trailing edge 
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the louver at all time instances. This is mostly spanwise vorticity which is formed by the interaction of the flow with 

the leading edge. The elongated zone of vorticity near the junction with the flat landing mostly consists of 

contributions from streamwise and cross-stream vorticity and is the coherent core of a “vortex jet” which forms in 

this region. The decreasing flow area between two adjacent louvers, adds considerable translational energy to the 

flow between louvers. Part of the flow accelerates over the top surface, while the remaining part is drawn 

underneath the louver. The sweep angle of the leading edge in turn adds rotational energy to the flow which is drawn 

underneath the louver. This results in a region of concentrated streamwise vorticity, which forms the core of the 

vortex jet. In general the vortex jet follows a trajectory away from the tube surface and towards the angled louver.  It 

also moves away from the louver surface. We also observe that the core, which is made up of the elongated zone of 

vorticity, periodically forms and detaches from the leading edge on a time scale of about t = 0.2.  

Figure 1.4(c) plots a snapshot of instantaneous stream tubes injected in the leading edge region of the 

louver. A region of intense rotation can be identified near the leading edge. In spite of the small spatial extent of the 

core, the intense rotational energy entrains fluid from the surroundings ⎯ it grows and quickly loses its coherency 

within half a louver length.  

Figure 1.5(a-d) plots the time signals of temperature, and the respective spectra at two locations in the 

transition region. One location is in the middle of the transition region at z = 0.243 and the other nearer the flat 

landing at z = 0.424, both on the top surface of the louver. The signals are more chaotic and exhibit a higher energy 

content than their counterparts in the vicinity of the angled louver. There is no clear indication of a characteristic 

frequency as in Figure 1.3. However, at both locations there is considerable low frequency energy in the signal. The 

strong low frequency content is quite pronounced in Figure 1.5(c-d) at the location near the flat landing, at a 

frequency of approximately 0.3. This is also present in Figure 1.5(a-b), but is not as well defined. Similar 

observations are made at the bottom of the louver, for both temperature and velocity fluctuations. The discussion on 

the cause of the low frequency oscillation and its dynamics and effect on heat transfer is deferred to the next section. 

In summary, the periodic shedding of spanwise vortices dominates the flow field on the angled part of the 

louver. Because the flow is nearly aligned with the louver direction, vortices are shed from both the top and bottom 

leading edges, however, the vortices shed from the top are 2-3 times stronger. There is considerable interaction 

between vorticity shed from the leading and trailing edge of louvers, and also between louvers. The dynamics of 

vortex shedding in this region is nominally two-dimensional. In the transition region, the flow is strongly three-

dimensional. It is dominated by an unsteady vortex jet, which flows underneath the louver, and strong flow 

acceleration. The region is characterized by nearly equal contributions from all three components of coherent 

vorticity, with a net increase in overall magnitude. Time signals and spectral plots indicate a quasi-periodic low 

frequency oscillation in this region. 
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Figure 1.5.  Signal analysis at plane z = 0.243 near the middle of the transition region (a) temperature signal (b) 
temperature frequency spectrum. The monitoring location is near the middle of louver and is 0.060 in normal 
distance from the louver top surface; similar signal analysis at plane z = 0.424 near the flat landing; (c) 
temperature signal (d) temperature frequency spectrum. The monitoring location is near the middle of louver and 
is 0.052 in normal distance from the louver top surface. 

4.2. Unsteady Heat Transfer Characteristics 
Here we evaluate the effect of the unsteady flow field on the instantaneous heat transfer on the louver 

surface. On the angled louver, the heat transfer is dominated by the impinging flow on the bottom of the louver 

surface and the spanwise vortices on the top surface. It has been established in previous studies [10] that spanwise 

vortices act as large-scale mixers. The augmentation in heat transfer depends on the strength of the vortex and its 

location with respect to the surface [10]. Vortices embedded at the edge of the boundary layer, through their 

rotational energy bring in free-stream fluid in the vicinity of the heat transfer surface. The induced fluid mass then 

picks up heat from the surface and is ejected back into the free-stream. Figure 1.3(e) plots the temporal evolution of 

temperature on the top and bottom surface of the louver corresponding to the vortex shedding cycle shown in Figure 

1.2. The measurement locations are located at z = -1.46 near the middle of the louver and are shown in Figure 1.2. 

The temperature variation with time corresponds to the passing of vortex B- and then A’- on the top surface and 

vortex J+ and I’+ on the bottom surface. On the downstream side of the vortex, free-stream fluid is induced towards 

the louver, resulting in the low temperature valley at t = 0.15 corresponding to vortex A’-. As the vortex convects 

downstream of the measurement location a peak in temperature results as the heat carrying fluid is ejected out back 
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into the free-stream. This occurs at t = 0.10 after the passage of vortex B-. The passage of vortices on the bottom 

surface do not have a large effect on heat transfer. 

Figure 1.6 plots the temporal evolution of local surface averaged Nusselt numbers from z = 0.25 to 0.5 in 

the transition region near the flat landing. Both, the top and bottom surface of the louver show large quasi-periodic 

variations in Nusselt number at intervals of approximately 2 to 3 non-dimensional time units. The Nusselt number 

on the top surface is characterized by short bursts of intense activity in the region near the flat landing, with 

relatively long periods of calm. Activity is more frequent and less intense on the louver bottom surface. The events 

which lead to the fluctuations in Nusselt number occur around the same time on both the top and bottom surface 

indicating that the two are correlated.  
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Figure 1.6.  Temporal evolution of surface averaged Nusselt numbers from z = 0.25 to 0.5 in the transition region 
near the flat landing.  The low frequency events on the top and bottom surface are correlated. 

To understand what causes the large increase in the local Nusselt number on the top surface, Figure 1.7(a-

d) plots the instantaneous velocity vectors and temperature contours on the top surface in a z- plane (z = 0.424) near 

the flat landing. The vectors are plotted at three locations along the length of the louver. At t = 3.5, when the Nusselt 

number on the top surface is high, the flow velocity in the vicinity of the louver is very high, which significantly 

reduces the thickness of the thermal boundary layer and leads to very high heat transfer. The resulting effect on the 

temperature of the louver surface is shown in Figure 1.7(b). A low temperature zone exists (high heat transfer) in the 

region near the flat landing, which extends throughout the length of the louver. Whereas at t = 4.5, the flow velocity 

is not as energetic and subsequently its effect on louver heat transfer is not quite that strong. We note that even in its 

non-energetic state, the high velocities near the top surface provide enhanced heat transfer compared to the angled 

portion of the louver. 
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Figure 1.7.  (a)  Instantaneous velocity vectors and (b) temperature contours on the top surface in a z- plane at z = 
0.424 in the transition region near the flat landing at time t = 3.5; (c) instantaneous velocity vectors and (d) 
temperature contours at the same location at time t = 4.5.  The accelerating flow on the top surface increases heat 
transfer. Arrow shows scaling of vectors. 

The dynamics of Nusselt number fluctuations on the bottom surface is related to the dynamics of the vortex 

jet and its effect on the flow. Figure 1.8(a-f) plots instantaneous surface contours of λi = 30 in the transition region at 

t = 1.5 and t = 4.5, corresponding to a peak and valley, respectively, in Figure 1.6. At t = 4.5, the vortex jet is 

dominant in the leading edge region and its proximity to the surface induces a recirculation zone underneath it in the 

leading edge region. Hence during this state the jet has a detrimental effect on heat transfer which can be surmised 

from Figure 1.8(f).  A region of high surface temperature and low heat transfer correlates roughly with the location 

of the vortex jet. On the other hand at t = 1.5, the vortex jet has detached from the leading edge region and the core 

that remains attached has a different spatial location and orientation. Again, we find that the instantaneous 

temperature contours on the surface correlate with the location of the jet. However, unlike at t = 4.5, the 

temperatures are much lower, not only in the vicinity and underneath the jet but also in the vicinity of the trailing 

edge of the louver. The substantially lower temperatures near the trailing edge is due to increased flow velocity, 

which is caused by the formative vortex jet at the leading edge of the louver downstream. 

 t = 3.5 

t = 4.5 
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Figure 1.8.  (a) Side view and (b) bottom view of instantaneous surface contours of λi = 30 in the transition 
region, and (c) the temperature contours on the louver bottom surface at time t = 1.5; (d) side view and (e) 
bottom view of the instantaneous surface contour of λi = 30 in the transition region, and (f) the temperature 
contours on the louver bottom surface at time t = 4.5.  The heat transfer on the bottom surface is closely related 
to the dynamics of the vortex jet. 

We postulate a scenario in which the dynamics of the vortex jet underneath the louver affects the 

movement of fluid on the top surface of the louver or vice versa. The location, state, and strength of the vortex jet 

affects the trajectory of fluid on the top surface. From the evidence we have seen, it seems that a strong attached 

vortex jet at the bottom pushes the high velocity fluid on the top surface away from the louver surface and limits the 

heat transfer augmentation.  When the vortex jet destabilizes, detaches and starts forming again, high velocity fluid 

on the top surface is drawn to the vicinity of the louver surface which results in high heat transfer.  At the same time, 

the detached jet and its subsequent formation also increases heat transfer on the bottom surface. In addition to this 
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occurring on a long time scale (t = 2-3), the jet also destabilizes and forms on a much shorter time scale of t = 0.2-

0.3, as seen in Figure 1.4. Correspondingly, the extent of the high velocity region in the vicinity of the top louver 

surface also oscillates. This can be clearly discerned from flow animations. However, the fast time scale variations 

are not as strong and sustained as the long time scale variations. 

4.3. Mean Flow and Heat Transfer 
Figure 1.9(a-d) shows the time mean velocity vectors at four z- planes.  At the angled louver part (Figure 

1.9(a)), the vectors are quite parallel to the louver surface, indicating the flow is essentially louver-directed at this 

Reynolds number and louver angle.  Near the leading edge on the louver top surface, a mean recirculation zone can 

be identified which is a result of the separated shear layer at the leading edge.  Away from the surface, the flow 

recovers quickly and a velocity overshoot represents the separated shear layer. At the middle of the louver, flow 

reattaches to the louver surface and a boundary layer starts to develop.  The boundary layer grows as the flow moves 

downstream toward the trailing edge.  At this location, the vectors far away from the louver surface show a 

downward motion as the flow approaches the leading edge of the downstream louver.  On the louver bottom, the 

flow remains attached and the boundary layer grows as the flow proceeds downstream.  The wake of the upstream 

louver is visible at the first two locations and recovers gradually as the flow moves further downstream  

In the transition region, the flow field is quite different (Figure 1.9(b)).  This z- plane is at the middle of the 

transition zone and the louver angle has decreased from 25° in the angled louver part to 10.4°.  Although not 

represented in Figure 1.9(b), the flow is three-dimensional with substantial momentum transport occurring along the 

fin height or spanwise direction. On the top surface, near the leading edge and at the louver middle, the velocity 

distribution appears to be nearly uniform with large defects in the vicinity of the louver. At the last station, the 

velocity profile has recovered, most likely from spanwise and cross-stream momentum transfer, as the flow near the 

louver is drawn down into its wake. On the other hand, flow away from the louver surface flows over the leading 

edge of the downstream louver. The first profile on the bottom of the louver captures the initial core of the vortex jet 

before it moves out of the plane. As explained in the previous section, the jet forms as a consequence of the 

translational and rotational energy imparted to the fluid in this region. The strong shear layer of the jet produces a 

recirculation zone underneath it on the louver surface.  

Figure 1.9(c) shows similar profiles at a location near the flat landing at z = 0.424. Large fluid velocities are 

evident on the top surface of the louver particular in the region immediately following the leading edge. This plane 

is in the region where the shear stress reaches a maximum and the velocity profiles are closest to that in a turbulent 

flow over a flat plate. In this region, the flow area between louvers narrows considerably. Hence flow from the top 

surface of the louver is not drawn underneath in its wake. Consequently, it impinges on the leading edge of the 

following louver and accelerates over the top surface. The flow at the bottom of the louver also moves in the 

streamwise direction at the trailing edge and impinges on the bottom surface of the downstream louver as seen in 

Figure 1.9(c).  
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Figure 1.9.  Time mean velocity vectors at four z- planes, (a) on the angled louver; (b) at the middle of the 
transition region; (c) near the flat landing; (d) on the flat landing.  The acceleration in the transition region is 
clear. Arrow shows scaling of vectors. 

On the flat landing (Figure 1.9(d)), as we approach the tube surface at z = 0.716, the velocity decreases 

considerably as it is engulfed in the boundary layer on the tube surface. However, we find that the velocity in the 

vicinity of the top surface is higher than at the louver bottom. This is due to the residual effect of the strong flow 

velocities in its vicinity. Although, the profiles imply that the flow is laminar and steady, flow animations show that 

the boundary layer on the tube surface, although laminar, is not steady and undulates on a long spatial and temporal 

wavelength in response to the flow dynamics adjacent to it in the transition region. 

Figure 1.10(a-d) shows thermal fields at the angled louver portion, transition zone, and flat landing. One of 

the consequences of the louver flattening out is that the thermal wake of the louver starts interfering with the bottom 

surface of the louver immediately downstream of it.  Hence in this region, the combination of the thermal wake 

effect and the recirculation zone induced by the vortex jet reduces the heat transfer coefficient on the lower surface 

of the louver. On the other hand, the high velocity on the top surface and its close proximity to the louver surface 

increases the heat transfer coefficient. This can be surmised by the relatively thin thermal boundary layer on the top 

surface in the transition region. In the angled part of the louver, the thermal boundary layer on the top surface is 

thicker than that on the bottom surface of the louver.  Generally, the effect of the large-scale vortices is to shorten 
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the mean recirculation region and enhance heat transfer downstream of it.  On the bottom surface, because the 

oncoming flow impinges near the leading edge, the thermal boundary layer is thinnest in this region and increases 

downstream.  At the flat landing, temperatures are much higher since the flow is engulfed in the louver as well as the 

tube thermal boundary layer.  However, we find that the thermal boundary layer on the top surface is much thinner 

than that on the lower surface.  
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Figure 1.10.  Mean thermal fields in four z- planes, (a) on the angled louver portion; (b) at the middle of the 
transition region; (c) near the flat landing; (d) on the flat landing. 

Figure 1.11(a-b) plots the time mean thermal field on the top and bottom surface of the louver. A high 

surface temperature implies low heat transfer. On the top surface of the angled louver, the temperatures are lowest in 

the leading edge region, and increase as we travel downstream up to the mean reattachment line which occurs at 

about x = 0. Downstream of the mean reattachment line, the temperatures decrease due to the enhancement provided 

by spanwise vortices. On the lower surface, the temperatures are lowest in the vicinity of the leading edge and 

increase downstream. In the transition region, the mean temperatures follow the major unsteady flow features, 

outlined in the previous section. The high heat transfer region on the top surface near the flat landing is caused by 

the flow acceleration in the vicinity of the louver surface. On the other hand, a low heat transfer region is formed on 

the bottom surface due to the presence of the vortex jet. The low heat transfer region near the leading edge is a result 
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of a mean recirculation zone formed underneath the jet. On the flat landing, near the tube surface, the mean heat 

transfer is much higher on the top surface than the bottom surface.  
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Figure 1.11.  Mean thermal field distribution (a) on the top and (b) bottom surface of louver; (c) time averaged 
mean Nusselt number distribution along the fin height averaged over time 4.5-9. 

Figure 1.11(c) plots the variation of local mean Nusselt number across the fin height. The results are 

averaged from t = 4.5 to 9. The Nusselt number is fairly constant on the angled louver up to the beginning of 

transition. As expected, in this region the Nusselt number is higher on the bottom surface, because of flow 

impingement and the absence of a mean recirculation region. In the transition region, the Nusselt number drops 

gradually on the lower surface but increases sharply on the top surface to more than twice its value. On the flat 

landing the Nusselt number drops to 4.1 and 7.3, respectively, on the bottom and top surface of the louver near the 

tube.  

The mean Nusselt number integrated over the part of the louver simulated in the current study was found to 

be 22.7.  On the tube surface the corresponding mean Nusselt number was calculated to be 7.2. Although, the 

transition region does provide some augmentation of heat transfer on the louver surface, its overall impact on louver 

heat transfer is limited because of its small spatial extent. However, the transition geometry does have a positive 

impact on tube heat transfer. In a separate calculation, which extended the angled louver to the tube surface, and 
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which excluded the transition and flat landing, found that the Nusselt number on the tube surface was lower by a 

factor of 1.5. 

5. Conclusions 
The flow and heat transfer in a three-dimensional geometry of a multilouvered fin is studied. The geometry 

includes the angled part of the louver and its transition to the flat landing along the fin height. Although the results 

shown here correspond to one Reynolds number for a given geometry, we believe that qualitatively the flow and 

heat transfer will show similar characteristics for other geometries as well.  

The flow on the angled louver is characterized by spanwise vortex structures which are shed from the 

separated shear layers on the top and bottom surface of the louver. The flow is nominally two-dimensional with 

weak three-dimensionality. There is considerable interaction between vorticity shed from the leading edge of the 

louver and that formed in the wake of the louver. There is also strong evidence of interactions with vortices shed 

from upstream louvers. Vortices shed from the leading edge have a spatial life span between 3-4 louver lengths 

before they dissipate.  

In the transition region, the flow is strongly three-dimensional and unsteady. It is characterized by strong 

streamwise flow velocities in the vicinity of the top louver surface near the junction with the flat landing and the 

formation of a vortex jet underneath the louver. There is evidence that the temporal evolution of the two are 

correlated. Both the high velocity region and the vortex jet oscillate on a short as well as a long time scale. However, 

the long time scale or low frequency oscillations are much stronger and persist for a longer time. It is suspected that 

both time scales are related to the formation and detachment of the vortex jet from the leading edge region. The flow 

characteristics isolated in the transition region will play a potentially important role in condensate carryover because 

of the high induced shear stresses. 

In spite of the high heat transfer in this region, the overall effect on louver mean heat transfer is small 

because of the small spatial extent of the transition region. But, the strong acceleration near the junction with the flat 

landing does improve tube surface heat transfer by over 50 % when compared to a geometry in which the angled 

louver extends all the way to the tube surface.  
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Chapter 2. Fin-Tube Junction Effects on Flow and Heat Transfer Characteristics 

Abstract 
Three-dimensional simulations of four louver-tube junction geometries are performed to investigate the 

effect on louver and tube friction and heat transfer characteristics. Three Reynolds numbers, 300, 600 and 1100, 

based on bulk velocity and louver pitch are calculated. Strong three-dimensionality exists in the flow structure in the 

region where the angled louver transitions to a flat landing adjoining the tube surface, whereas the flow on the 

angled louver far from the tube surface is nominally two-dimensional. Due to the small spatial extent of the 

transition region, its overall impact on louver heat transfer is limited, but the strong unsteady flow acceleration on 

the top louver surface augments the heat transfer coefficient on the tube surface by over 100%.  In spite of the 

augmentation, the presence of the tube lowers the overall Nusselt number of the heat exchanger between 25-30%. 

Comparisons with correlations derived from experiments on full heat exchanger cores show that computational 

modeling of a small subsystem can be used reliably to extract performance data for the full heat exchanger. 

Nomenclature 
∗
HD  Hydraulic diameter of equivalent duct 

Fd
* Flow depth 

Fp non-dimensional fin pitch (Fp
*/Lp

*) 
Lp

* dimensional louver pitch (characteristic length scale) 

Nu Nusselt number, 
κ

)T/(Tq''L *
ref

*
s

**
p −

 

hDNu  Nusselt number, 
κ

)T/(Tq''D *
ref

*
s

*
h −∗

 

Pr Prandtl number 
∗q''  specified heat flux 

Re Reynolds number (ub
*Lp

*/ν) 

pLRe  Reynolds number ( ν/∗∗
pc LV ) 

hDRe  Reynolds number ( ν/∗∗
HDVc ) 

∗
sT  louver or tube surface temperature 
*
refT  reference temperature, domain integrated mixed mean 

t non-dimensional time 
ub

* mean bulk velocity 
∗
cV  maximum mean flow velocity 

x streamwise coordinate, along louver pitch 
y cross-stream coordinate, along fin pitch 
z lateral coordinate, along fin height 

Greek symbols 
γ mean temperature gradient in the streamwise direction 
κ thermal conductivity 
ν kinematic viscosity 
θ non-dimensional modified temperature. Also louver angle 
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Superscripts 
* dimensional quantities. 

1. Introduction 
Flat tube corrugated multilouvered fins are used in many compact heat exchanger applications to enhance 

the air-side heat transfer performance. Louvers reduce the average thermal boundary-layer thickness by interrupting 

its growth and by enhancing mixing through large-scale instabilities, hence increasing the average heat transfer 

coefficient. Previous experimental and numerical studies have established that the heat transfer in multilouvered fins 

is influenced by three factors: a) flow direction [1,2]; b) thermal wake interference [3]; c) flow instabilities and 

transport of coherent vorticity in the vicinity of the louver surface [4].  These three mechanisms have mostly been 

studied with a louver-centric view, i.e, heat transfer enhancement on a nominally two-dimensional louver, with the 

assumption that louvers contribute a significant portion to the overall heat transfer surface. For the most part this 

assumption is well justified. However, in exchangers with large fin pitches and small fin heights or tube pitch, the 

tube surface can contribute substantially to the total heat transfer. For example for a fin pitch of 1.5-2.0 times the 

louver pitch, and a tube pitch of 5 louver pitches, the tube surface area contributes between 20 to 30 percent of the 

total heat transfer area. This, coupled with the fact that the tube is the primary heat transfer surface with the largest 

potential for heat transfer, requires that attention be paid to the heat transfer from the tube surface.  

Our specific geometry of interest is a flat tube multilouvered exchanger with corrugated rectangular 

channels. In order to gain some insight into what influences tube heat transfer, in this study we focus our attention 

on the region of the louver near the junction with the tube surface. In this region, along the height of the fin, the 

louver transitions from an angle θ to 0 degrees into a flat landing adjoining the tube surface as shown in Figure 

2.1(d)5.  Cui and Tafti [5] numerically investigated the geometry in Figure 2.1(d) at a Reynolds number of 1,100, 

based on louver pitch and bulk velocity.  They found that although the flow on the angled portion of the louver was 

nominally two-dimensional with self-sustained flow oscillations characterized by spanwise vortices, the flow was 

strongly three-dimensional and unsteady in the transition region. An energetic unsteady vortex jet formed at the 

leading edge, which was drawn under the louver. The jet was complemented by a region of strong unsteady flow 

acceleration in the vicinity of the top louver surface.  Evidence was presented that the temporal evolution of the two 

was correlated, which had a significant impact on local heat transfer coefficients.  In spite of the high heat transfer in 

this region, the overall effect on mean louver heat transfer was found to be small because of the small spatial extent 

of the transition region.  However, it was found that the strong acceleration near the junction with the flat landing 

had a significant effect on tube heat transfer.  

                                                           
5 The corrugated fin curvature near the tube wall is neglected. 
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Figure 2.1.  Computational domain for four louver geometries: (a) periodic louver; (b) straight louver; (c) 
transition without landing; (d) transition with landing.  Shaded areas are the louver and tube surface. 

Our research objective is to study the three-dimensional flow and temperature fields generated in compact 

heat exchangers and to determine whether these largely unknown characteristics can be used to further augment heat 

transfer by slight modifications to the base geometries. The objective of this paper is to extend the previous three-

dimensional unsteady simulations to study three Reynolds numbers, 1,100, 600 and 300.  In addition to the 

Reynolds number effect, simulations are carried out on four variations of the transitional louver geometry to study 

the incremental effect of geometry at the junction with the tube. The heat transfer and friction results are presented 

separately for the louver and tube, and combined to estimate the overall effect. Comparisons are also made with 

existing louver-and-tube correlations in the literature to determine whether computational modeling of a subsystem 

can be used reliably to predict full heat exchanger core performance. 

The paper is organized as follows: the numerical and computational method is presented briefly in the next 

section, followed by the description of the louver geometries.  In the section on results, the general flow features, 

louver and tube friction and heat transfer characteristics are discussed. Finally comparisons are made with 

experimental correlations. This is followed by concluding remarks. 



 26

2. Numerical formulation 
We solve the non-dimensional, time-dependent, incompressible Navier-Stokes and energy equations in 

conservative form in generalized curvilinear coordinates.  The governing equations for momentum and energy are 

discretized with a conservative finite volume formulation using a second-order central difference scheme on a non-

staggered mesh.  The Cartesian velocities, pressure, and temperature are calculated and stored at the cell center, 

whereas contravariant fluxes are stored and calculated at the cell faces.  A projection method [6] is used for the time 

integration of the discretized continuity and momentum equations. 

The louvered fin geometry is approximated by an infinite array of louvers in both streamwise and cross-

stream directions, which results in a simpler system with periodic repetition of the basic unit.  Periodic boundary 

conditions for velocity, modified pressure and temperature are applied in the streamwise and cross-stream directions 

since the flow is assumed to be both hydrodynamically and thermally fully developed without any entrance or exit 

effects. No-slip, no-penetration boundary conditions for velocity and constant heat flux conditions are enforced on 

the louver and tube surface. 

More details of the numerical algorithm, treatment of the boundary conditions, verification and validation of 

the computer program and strategies for parallel computing can be found in Tafti et al. [7,8,9] and Cui and Tafti [5].  

3. Description of four louver geometries 
Four louver geometries are considered in this paper (see Figure 2.1): (1) periodic louver; the louver is 

assumed periodic in the spanwise direction with no tube. This simulation isolates any intrinsic three-dimensional 

effects brought about by secondary three-dimensional instabilities [10]; (2) straight louver; the angled louver 

extends all the way to the tube; this serves as a baseline case to study the effect of louver geometry transition; (3) 

louver with transition without landing; the angled louver directly transitions to the tube surface; (4) louver with 

transition and flat landing, which has been studied in detail by Cui and Tafti [5] at Re=1100. Comparison of (3) and 

(4), highlights the role of the flat landing. 

For all four geometries, the unit computational domain has a dimension of 1 (normalized by louver pitch 
*
pL ) in streamwise (x) direction, fin pitch 1 (in this particular case, fin pitch *

pF  is same as *
pL ) in cross-stream (y) 

direction, and 2.5 in spanwise (z) direction along the fin height.  Along the spanwise direction in geometry 4 

(hereafter referred as transition with landing), the louver can be divided into three parts: angled louver (length, 

1.75), transition part (length,  0.5), and flat landing (length, 0.25).  A linear transition profile is prescribed between 

the angled louver and the flat landing with a small radii of curvature at the junction with the louver [11].  For 

geometry 3 (hereafter referred to as transition without landing), the angled louver part is extended to a length of 2.0, 

and the transition part is unchanged, but the flat landing between the transition and the tube surface is removed.  

Geometry 2, referred to as a straight louver, has a spanwise extent of 2.5. Finally, geometry 1 is referred to as a 

periodic louver and has a spanwise extent of 2.5. 

In all cases, the thickness of the angled louver is 0.1 times the louver pitch with 25° louver angle.  For the 

last three geometries, symmetry boundary conditions are imposed at a distance of 2.5 from the tube surface along 

the fin height, assuming that the flow is sufficiently removed from the extrinsic three-dimensional effects of the tube 

wall region and is nominally two-dimensional.  This also assumes implicitly that the fin height is 5.0 louver pitches. 
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For the periodic louver, periodic boundary conditions are implemented in the spanwise direction since the flow is 

homogeneous along this direction. 

The computational domain surrounding each louver is resolved by 98x98x128 computational cells in the x-, 

y- and z- directions, respectively for the transitioning geometries. For the periodic and straight louver, 96 

computational cells are used in the z- direction along the fin height. A very fine, nearly orthogonal mesh, is used in 

the vicinity of the louver and tube surface, and in the transition region [5]. A-posteriori extraction of the mean wall 

shear stress for Re=1100 shows that the first grid point near the louver surface falls between 0.1 and 0.3 in local wall 

units based on the local shear stress.  In the region with the largest shear stress (in the transition region), there are 

five grid points within 10 wall units normal to the surface, with the first at 0.3. Along the streamwise direction, the 

grid is nearly uniform with spacing of 5-7 wall units.  Along the fin height or spanwise direction, the mesh is 

coarsest in the two-dimensional region of the geometry with the maximum spacing of 60 wall units and finest at the 

beginning and end of transition, and near the tube wall with spacing around 3 wall units.  Spectral analyses show 

that the spatial and temporal resolution is fine enough to capture all the relevant scales in these calculations [5]. 

4. Results 
In each of the calculations, a mean non-dimensional pressure gradient of unity is imposed in the streamwise 

direction to drive the flow.  As the calculation proceeds, the flow rate, in response to the frictional and pressure drag 

losses in the calculation domain, adjusts to the mean pressure gradient and reaches a stationary (or steady state, in 

the case of low Reynolds number steady flow). Time signals of flow variables are recorded and a stationary flow is 

assumed when a near constant mean value or a quasi-periodic fluctuation in time is observed.  Figure 2.2 shows the 

temporal evolution of the spatially averaged Nusselt number for four louver geometries at a nominal Reynolds 

number of 1,100.  It is clear that all flows have adjusted to the mean pressure gradient and reached a statistically 

stationary state.  Similar plots at nominal bulk Reynolds number of 600 and 300 also show that the flow has reached 

a stationary or steady state. 
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Figure 2.2.  Temporal evolution of the spatially averaged Nusselt number for four louver geometries at Reynolds 
number of 1,100.  All flows have adjusted to the mean pressure gradient and reached a statistically stationary 
state.  Similar plots at Reynolds number of 600 and 300 also show that the flow has reached a stationary state. 
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To characterize the heat transfer, we define a local instantaneous Nusselt number over the louver/tube 

surface based on the louver pitch as 

κ
)T/(TqL

Nu refs
*''*

p
∗∗ −

=  

In terms of non-dimensional quantities the above can be re-written as 

refs θθNu
−

= 1  

where sθ 6 is the modified non-dimensional surface temperature and refθ  is the reference modified non-

dimensional bulk temperature, which is defined as : 

∫∫
∫∫=

x

x
ref dAu

θdAu
θ  

The surface-averaged Nusselt number is obtained by integration over the louver or tube surface as: 

∫∫

∫∫

Ω

Ω

Ω−

Ω
=

d

d
Nu

refs )( θθ
 

where Ω denotes the louver or tube surface.  The Colburn j factor as a measure of heat transfer is calculated as: 

4.0PrRe
Nuj =  

The Fanning friction coefficient is calculated as: 
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where ∗
hD  is the hydraulic diameter, 

∗∗∆ dFp / is the prescribed pressure gradient across the calculation domain 

(unity non-dimensional value in present calculations), and ∗
cV  is the calculated maximum mean velocity. 

4.1 General Flow Features  
In the study of the louver with transition and flat landing [5], it is shown that flow on the angled louver 

portion is characterized by periodic spanwise vortex shedding at the Reynolds number of 1,100.  The spanwise 

vortices are nominally two-dimensional in nature with weak three-dimensionality across the fin height.  The time 

signal at a location above the top louver surface exhibits a nearly periodic pattern, and the frequency spectrum 

shows a clear peak at 1.8 (non-dimensionalized by bulk velocity and louver pitch), which corresponds to the 

frequency of the spanwise vortex shedding.  At this Reynolds number of 1,100, all four louver geometries exhibit 

the same vortex shedding characteristic frequency.  Although there is considerable geometry variation near the tube 

surface, its effects on the flow field on the louver away from the tube is minimal.  Because of these similarities at the 
                                                           
6 ),,,(),,,( tzyxxTtzyxT in θγ ++= , where γ is the mean temperature gradient. 
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angled louver part, nearly identical flow and heat transfer behavior is expected for the four louver geometries. Any 

observable differences would come from the area near the tube surface.  

At Reynolds number of 600, the flow unsteadiness becomes much weaker at the angled louver part.  The 

time signals do not show a periodic pattern, and vortex shedding only occurs in an occasional manner, and there is 

no clear characteristic frequency. At Reynolds number of 300, the flow is completely steady and remains attached 

on the louver surface and there is no evidence of vortex shedding for all louver geometries. These results are in 

agreement with a previous two-dimensional investigation on the onset of instabilities for developing flow in a louver 

bank [4]. 

To facilitate our understanding of the unsteady nature of the flow and the associated vorticity dynamics, the 

∇u [12] vortex identification technique is used.  This frame-invariant method identifies vortical structures as regions 

of large vorticity, where rotation dominates over strain to cause the rate-of-deformation tensor ∇u (velocity gradient 

tensor) to have complex eigenvalues (one real and two conjugate complex eigenvalues).  The complex eigenvalues 

imply that the local streamline pattern is closed or spiral, thus correctly eliminating near-wall shear layers. This 

methodology can also be separately applied in the x-, y-, or z- planes in order to identify streamwise, cross-flow, and 

spanwise vortices [10], respectively.  The strength of the vortex is measured in terms of the imaginary part of the 

eigenvalue of the velocity gradient tensor and is denoted by λi.  The strength of its three subsets, streamwise, cross-

flow, and spanwise vortices is measured in terms of the imaginary part of the eigenvalue of the velocity gradient on 

the x-, y-, and z- planes, respectively, and is denoted by λi,x, λi,y, and λi,z, respectively. 

Figure 2.3(a-d) shows the volume-averaged vortical strength λi,x,y,z distribution along the fin height at an 

arbitrary instant at Reynolds number of 1,1007.  Only the volumes with non-zero eigenvalues are included in the 

volume averaging.  For the periodic case (Figure 2.3-a), the lines for streamwise (λi,x) and cross-flow (λi,y) vorticity 

are identically zero throughout the louver height.  The only contribution to the total vorticity is from the spanwise 

vorticity (λi,z).  Hence at Re=1,100, for the given louver geometry, the flow is strictly two-dimensional and intrinsic 

three-dimensional secondary instabilities have not developed8. For the straight louver, (Figure 2.3-b), the spanwise 

vorticity dominates. However, there are small components of both streamwise (λi,x) and cross-stream (λi,y) vorticity 

present along the louver height. This implies that the three-dimensionality introduced by the presence of the tube 

wall permeates into the flow away from the wall and introduces weak three-dimensionality in a nominally two-

dimensional flow. The spanwise vorticity (λi,z) is damped considerably by the viscous presence of the wall which is 

felt up to one louver pitch away from it, implying very thick boundary layers on the tube wall. Approaching the tube 

surface, there is a noticeable but slight increase for both streamwise (λi,x) and cross-flow (λi,y) vorticity as the 

spanwise and total vorticity decrease.  

                                                           
7 To obtain the distribution, the volume averaging is performed in domains defined by decompositions used for 
parallel computation along the fin height. 
8 The nominally 2-D flow was perturbed by 3-D disturbances to seed any intrinsic three-dimensional secondary 
instabilities, but the perturbations were not self-sustaining. 
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Figure 2.3.  Instantaneous volume-averaged vortical strength distribution along the fin height at Reynolds 
number of 1,100 at an arbitrary instant for (a) periodic louver; (b) straight louver; (c) transition without landing; 
(d) transition with landing. 

For the louver with transition and flat landing (Figure 2.3-d), on the angled louver, λi essentially maintains 

a constant value, with a dominant contribution from spanwise vorticity. However, in the transition region the flow is 

strongly three-dimensional.  λi increases, with increasing contributions from streamwise and cross-stream vorticity, 

with a drop in contributions from spanwise vorticity. λi reaches a maximum in the center of the transition region and 

then decreases as the louver approaches the flat landing and the tube surface.  The increase in the streamwise and 

cross-stream components of vorticity is related to the formation of an unsteady vortex jet under the bottom louver 

surface, which is described in detail in Cui and Tafti [5].  Not reflected in these plots, but related to the vortex jet, is 

the formation of a highly unsteady region of accelerated flow velocities on the top surface of the louver. For 

transition without landing (Figure 2.3-c), it is seen that the magnitude of coherent vorticity in the transition region is 

reduced. This is because, in the presence of the flat landing the fluid acceleration on the top surface and the vortex 

jet feed off the streamwise flow along the flat landing. In the absence of the flat landing, when the louver transitions 

directly to the tube surface, there is reduced access to fluid mass, which results in the weakening of these flow 

structures. 
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4.2 Pressure and Friction Drag on Louver and Tube 
Figure 2.4(a-d) plots the fractional variation of mean form and friction drag per unit length along the fin 

height or spanwise direction at a nominal Re = 1,1009.  For all four geometries, at the angled louver portion, the 

form drag dominates the friction drag and is almost unchanged throughout the angled louver.  This is best 

exemplified by the two-dimensional flow over the periodic louver in Figure 2.4(a), in which the form drag 

contributes 80 % to the overall pressure loss. For transition with landing (Figure 2.4-d), and transition without 

landing (Figure 2.4-c), the magnitude of pressure and friction drag is similar at the angled louver part.  For the 

straight louver, although the form drag loss is four times the friction losses away from the tube surface, which is 

similar to other geometries, the contribution to total losses is dominated by the presence of the tube. Both frictional 

and form losses increase substantially in the vicinity of the tube surface because of viscous effects. As the flow 

approaches the tube, it slows down, and the flow angle reduces substantially, which leads to the increased 

contribution to form drag. For the transitioning geometries in Figure 2.4(c) and (d), the trends are completely 

different. In the transition region, the form drag increases slightly and eventually vanishes at the flat landing. On the 

other hand,  friction drag increases sharply in the transition region and reaches its largest value near the flat landing 

due to the accelerated high velocity boundary layer in that region before decreasing again on the flat landing.  

Similar, albeit weaker, distributions at the transition region are found for the transitioning geometry without the 

landing (Figure 2.4-c). 
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Figure 2.4.  Mean drag force distribution along the fin height as a fraction of the total losses: (a) periodic louver; 
(b) straight louver; (c) transition without landing; (d) transition with landing at Reynolds number of 1,100. 

                                                           
9 The form and friction drag are plotted as a fraction of the total losses. Since the mean pressure gradient is fixed at 
unity, the integrated area under the curves should add up to approximately (barring tube frictional losses) 2.5, the 
pressure loss expressed as a force on the computational domain. 
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Figure 2.5(a-c) plots the mean drag force distribution as a function of the fin height for the transition with 

landing geometry at three Reynolds numbers: 1,100, 600, and 300.  As the Reynolds number decreases, the 

contribution of pressure drag decreases while that of friction drag increases at the angled louver part.  At a nominal 

Reynolds number of 300, the two drag forces are nearly equal.  The distribution at the transition region and flat 

landing follow the same trend as the Reynolds number decreases.  Overall the changes in Reynolds number do not 

change the salient features of the drag distribution throughout the louver.  This is also true for the other three louver 

geometries.  
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Figure 2.5.  Mean drag force distribution along the fin height as a fraction of the total losses for transition with 
landing at Reynolds number of (a) 1,100; (b) 600; (c) 300. 

Figure 2.6 plots the fractional contribution of friction losses on the tube surface to the total losses. For all 

three geometries, the contribution of the tube to overall losses is less than 8 percent of the total. The louvers with 

transition exhibit a higher contribution because of the increased shear stress on the tube surface as a result of the 

unsteady accelerating boundary layer in the vicinity. 
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Figure 2.6. Fractional contribution of friction on tube surface to overall pressure loss. 

4.3 Time-averaged Heat Transfer Coefficient 
Figure 2.7(a-d) plots the time mean thermal field (modified temperature, θ) on the top surface of the louver. 

Because the heat flux is fixed on the louver and tube surface, a high surface temperature implies low heat transfer. In 

all cases, at a nominal Re =1100, the shear layer at the leading edge of the louver separates and sheds vortices. Very 

near the leading edge, the heat transfer coefficients are high, but decrease in the recirculation zone which forms 

downstream of the leading edge. In the reattachment region, at half the louver length, the vorticity generated by the 

separated shear layer increases the heat transfer coefficient by increasing mixing. For the periodic geometry, in the 

absence of any extrinsic three-dimensionality, the surface temperature does not show any variations in the z-

direction.  For the straight louver, the thick thermal boundary layer on the tube surface dominates the temperature 

distribution on the top surface. For transition with landing, in the transition region, the low temperature/high heat 

transfer region on the top surface near the flat landing is a result of the unsteady accelerating boundary layer on the 

louver surface. Similar trends are observed for the transitioning louver with no landing. 
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Figure 2.7.  Mean thermal field distribution on the louver top surface at Reynolds number of 1,100 for (a) 
periodic; (b) straight louver; (c) transition without landing; (d) transition with landing. 

Temperature contours on the lower surface are shown in Figure 2.8(a-d).  For the periodic louver the heat 

transfer coefficient is a maximum at the leading edge and decreases thereafter till near the trailing edge where it 

increases again. A high temperature/low heat transfer region formed in the transition region in Figure 2.8(c-d) 

results from the presence of the vortex jet. The jet is detached from the louver surface and a stagnant recirculating 

region is formed underneath the jet. Similar to the top surface, a thick boundary layer near the tube surface exists for 

the straight louver on the bottom surface.  Comparing temperature contours on the top and bottom louver surfaces 

for both the transitional geometries in the vicinity of the tube clearly shows the positive effect of the accelerating 

boundary layer on the top surface. Temperature contours have lower values in the immediate vicinity of the tube on 

the top louver surface than on the bottom surface.  

flow 
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Figure 2.8.  Mean thermal field distribution on the louver bottom surface at Reynolds number of 1,100 for (a) 
periodic; (b) straight louver; (c) transition without landing; (d) transition with landing. 

In Figure 2.9(a-b), the average (time and spatial) Nusselt number on the louver, and tube surface is plotted 

separately. In general, the first order effect of the angled louver transitioning to zero degrees and a flat landing is to 

reduce the heat transfer coefficient. Also, the presence of the tube surface further reduces the heat transfer 

coefficient on the louver surface because of the presence of thick thermal boundary layers at the junction between 

fin and tube. These effects can either be countered or reinforced further by other non-linear effects as observed 

(unsteady boundary layer acceleration on louver top surface and vortex jet on bottom surface, separation) in the 

current study.  The unsteady boundary layer acceleration on the top surface has a positive impact on louver heat 

transfer, whereas the formation of the vortex jet at the bottom has a neutral to negative impact. The results in Figure 

2.9(a) are consistent with these observations. The periodic louver exhibits the highest heat transfer coefficient, 

whereas the straight louver and the transitioning louver with a flat landing exhibit heat transfer coefficients which 

are between 15-25% lower. The transitioning louver without a landing lies between the two extremes and is between 

6-15% lower. These results indicate that to maintain a high heat transfer coefficient on a transitioning louver, the flat 

landing should be as small as physically possible. 

flow 
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Figure 2.9. Average Nusselt number versus the Reynolds number. (a) On the louver surface; (b) On the tube 
surface. 

On the other hand, the enhancement provided by the transitioning louver with a flat landing on the tube 

surface is quite strong.  The tube Nusselt number is lowest for the straight louver because there is nothing that can 

break the thick thermal boundary layer that forms at the fin-tube junction. With the transitional louver, the unsteady 

boundary layer acceleration on the top surface and to some extent the vortex jet under the louver, help to perturb and 

thin the thermal boundary layer on the tube and increase the heat transfer coefficient. Without the flat landing, the 

unsteady nature of the flow is considerably weakened as noted in Figure 2.3, and the augmentation on the tube 

surface is not as high. Transition with flat landing provides an augmentation of over a 100% over a straight louver, 

whereas with no landing, the augmentation is reduced to between 30-40%. 

4.4 Overall Friction and Heat Transfer Coefficient for Flat Tube Louvered Heat Exchanger 
In this section, the overall heat transfer and friction factors for an equivalent duct of aspect ratio 5, bounded 

by louvered fins and the tube surface are presented. These are compared to theoretical flow results for fully 

developed laminar flow in ducts. Figure 2.10-a compares the calculated friction coefficient (f), and Figure 2.10-b 

plots the equivalent Nusselt number ( hDNu ) versus hDRe .  
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Figure 2.10. (a) Friction coefficient, f for equivalent louvered duct; (b) Nusselt number for equivalent louvered 
duct. Diamond: straight louver; delta: transition no landing; square, transition with landing. Empty symbols: 
Nusselt number based on louver surface; filled symbols: Nusselt number based on louver and tube surface. 

The friction coefficient increases by a factor between 4 and 9 when compared to a fully-developed laminar 

flow in a duct of aspect ratio 5. On the other hand the Nusselt number is augmented by factors varying from 2 to 3.5. 

The tube surface results in approximately a 25-30% reduction in the overall Nusselt number. Hence, for small tube 

pitches and large fin pitches, tube surface heat transfer becomes critical to the performance of the heat exchanger. In 

fact, in spite of the louver heat transfer being highest for the geometry without a landing, the overall Nusselt number 

is highest for the geometry with a flat landing because of a larger heat transfer coefficient on the tube surface. 

Between the three geometries, the louver with transition and flat landing exhibits the lowest friction coefficient, 

whereas the friction coefficient is highest for the straight louver. The result goes against Reynold’s analogy, but is 

consistent with the fact that losses are dominated by louver form drag, which is reduced substantially in the 

transition region and vanishes at the flat landing. This, together with the heat transfer augmentation provided on the 

tube surface with a minor increase in skin friction, is responsible for the above result. 

Finally we provide a comparison between the calculated results and previous experimental work. Both the 

calculated friction coefficient and Colburn j-factor are compared to relevant correlations available in the literature. 

This is provided to validate that in spite of the simplifying assumptions inherent in computer models, and the 

geometrical imperfections in real exchanger cores on which experiments are performed, physically consistent 

models of a subsystem of the full heat-exchanger are capable of providing realistic performance measures of the full 

system. The friction coefficient is compared to the correlation of Chang et al. [13], (referred to as CHLW) and the j-

factor to the correlation by Chang and Wang [14] (referred to as CH), and also to that of Sunden and Svantesson 

[15] (referred to as SS). The SS correlation is specific to flat tube arrangements with corrugated louvers in 

rectangular channels, whereas both the f- and j- correlations are more general in nature and include a wide range of 

multilouvered geometries [13]. The following geometrical values are used in the correlations: fin pitch = 1(all 
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lengths normalized by louver pitch), θ = 25 degrees, fin thickness = 0.1, fin height = tube pitch = 5, tube depth = 15, 

louver length = 4.5, major tube diameter = 110, and louver height as 0.5sinθ. 

Figure 2.11(a-b) plot the f- and j- factor. Also plotted are upper and lower bounds of the experimental data 

from which the CHLW and CW correlations are derived. The calculated f- factor for all three cases falls within the 

upper bounds of the experimental data. We also note that the current calculations are relevant to the type C geometry 

in Chang and Wang [14], which generally exhibits a higher friction coefficient than the other types of multilouvered 

geometries. Similarly, the calculated j-factors for the transitioning louvers fall well within the experimental bounds 

of the CW correlation but are lower than the SS correlation. In both comparisons we find that the more realistic 

louver with a flat landing agrees best with the correlations. 
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Figure 2.11. Comparison of calculated f- and j- factors with available correlations. Vertical lines establish limits 
of experimental data from which the CHLW and CH correlations were constructed. 

5. Conclusions 
In this paper, we study the flow and heat transfer in four three-dimensional geometries (Figure 2.1) of a flat 

tube corrugated multilouvered fins at three nominal Reynolds numbers: 1,100, 600, and 300.  The four geometries 

vary in the configuration of the fin at the junction with the tube face. They range from completely neglecting the 

effect of the tube surface to including the realistic transition of the angled louver into a flat landing adjoining the 

tube face. The objective is to study the impact of this region on louver as well as tube heat transfer coefficients and 

to determine whether modeling a small subsystem (a single louver) is representative of the performance of the full 

heat exchanger core. 

The results show that away from the tube surface, the flow is nominally two-dimensional with weak three-

dimensionality. For louvers that flatten out into a flat landing, conditions are created for highly three-dimensional 
                                                           
10 Tube depth is used in the same context as flow depth. In our calculations, the flow depth is infinity. So a typical 
value of 15 is used. Similarly, the calculations do not simulate flow around the tube, so a value of 1.0 is assumed as 
the major tube diameter. In any case, for flat tubes, the contribution to pressure loss from the frontal area of the tube 
is negligible. 
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and unsteady flow phenomena. Flow in the transition region is characterized by unsteady boundary layer 

acceleration on the louver top surface and a vortex jet under the louver bottom surface.  The flow acceleration has a 

large impact on louver heat transfer locally. However, its impact is minimal on the averaged heat transfer coefficient 

over the whole louver. It is concluded that for best louver heat transfer performance, the transition and flat landing 

should be kept as small as possible. On the other hand, the boundary layer acceleration generated by the 

transitioning louver with a flat landing has a large impact on tube heat transfer and increases it by over 100% over a 

straight louver which does not transition to the tube surface.  

It is found that the low heat transfer on the tube surface decreases the overall heat transfer capacity of the 

heat exchanger between 25-30%. Hence, augmenting heat transfer on the tube surface would have large payoffs in 

small tube pitch, large fin pitch, multilouvered geometries. On the other hand, there is a minimal contribution (<8%) 

of tube frictional losses to total losses.  

The agreement of calculated results with correlations derived from full core experiments validates that 

realistic three-dimensional computational modeling of a small subsystem is a viable and effective tool in generating 

performance data for heat exchangers. 
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Chapter 3. Modified Louvers 

Two types of modified louver geometries were evaluated. The definition of the geometry is shown in 

Figure 3.1. For the first geometry, only a sweep angle (θ in Figure 3.1) of 15 and 30 degrees in the streamwise 

direction was introduced.   In the second geometry, an additional angle was introduced along the fin height. For each 

geometry, flow and heat transfer at three nominal Reynolds numbers, Re=1,100, 600 and 300 are reported.  

Figure 3.2 shows the heat transfer coefficient on the louver as well as the tube surface compared to a 

straight conventional louver. Modified louvers based on imposing a sweep angle to the leading and trailing edge of 

the louver were found to be ineffectual in increasing heat transfer. 

 
Figure 3.1.  Definition of modified louver geometry. Schematic shows a single louver with line segments FA and 
CD lying on the tube surface. α is the angle between the flow direction and line LAF , LBE or LCD;  θ is the 
sweep angle for   LAB and  LBC in the plane ABC; β is  the angle between the plane ABC and plane ABEF (or 
BCDE); ϕ is the angle between the plane ABEF and BCDE, where ABEF and BCDE are two half louvers. Fin 
height is 5 louver pitches, same as the base louver. 

Model 1: 
(a) α = 25o and θ = 15o, β = 25o, ϕ = 180 o; 
(b)  α = 25o and θ = 30o, β = 25o, ϕ = 180o; 
Model 2: 
(a) α = 25o and θ = 15o, β = 25.8o, ϕ = 169.1o; 
(b) α = 25o and θ = 30o, β = 28.3o, ϕ = 152.8o. 
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Figure 3.2: Nusselt number distribution for modified louvers compared to a straight unmodified louver. 




