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Abstract: A diffusion tensor models the covariance of the Brownian motion of water at a voxel and
is required to be symmetric and positive semi-definite. Therefore, image processing approaches,
designed for linear entities, are not effective for diffusion tensor data manipulation, and the existence
of artefacts in diffusion tensor imaging acquisition makes diffusion tensor data segmentation even
more challenging. In this study, we develop a spatial fuzzy c-means clustering method for diffusion
tensor data that effectively segments diffusion tensor images by accounting for the noise, partial
voluming, magnetic field inhomogeneity, and other imaging artefacts. To retain the symmetry and
positive semi-definiteness of diffusion tensors, the log and root Euclidean metrics are used to estimate
the mean diffusion tensor for each cluster. The method exploits spatial contextual information and
provides uncertainty information in segmentation decisions by calculating the membership values
for assigning a diffusion tensor at one voxel to different clusters. A regularisation model that allows
the user to integrate their prior knowledge into the segmentation scheme or to highlight and segment
local structures is also proposed. Experiments on simulated images and real brain datasets from
healthy and Spinocerebellar ataxia 2 subjects showed that the new method was more effective than
conventional segmentation methods.

Keywords: diffusion tensor; fuzzy c-means; non-euclidean metrics; K-means; Corpus Callosum

1. Introduction

Brain image classification and region segmentation methods are crucial components in
medical applications. The Corpus Callosum (CC) is a great fibre bundle in the white matter
of the brain that connects the two hemispheres of the brain. A change in the size and shape
of the CC can be indicator of a brain abnormality [1-3], and hence an accurate segmentation
of the CC is important in the diagnosis of disease and for surgical planning. Automating
the production of accurate segmentations is a crucial step in saving a significant amount of
clinician time in practice by removing the need for manual segmentation.

Diffusion Tensor Imaging (DTI) is an advanced magnetic resonance imaging technique
that measures the Brownian displacements of water molecules in each voxel in the brain [4],
providing unique information about biological tissues in the brain. A diffusion tensor (DT)
is a 3 x 3 real positive semi-definite covariance matrix [5] that describes the mobility of
molecules in each direction. Therefore, the dimensions of a DTI dataset are five for 2D
images and six for 3D images (i.e., including the spatial location dimensions). Analysing
the DTI data itself, as 4D or 5D, retains all the information from the data with no loss of
diffusivity information.

The space of positive semi-definite covariance matrices arises in many applications,
such as in image and longitudinal data analysis, and thus methods developed for covari-
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ance matrices are more widely applicable than medical imaging. To measure distance in
the space of positive semi-definite covariance matrices, various non-Euclidean metrics [6,7]
have been proposed as alternatives to the Euclidean metric to avoid violations of the
positive semi-definiteness criterion in the course of extrapolation, for example, and since
Euclidean averaging is prone to swelling (i.e., inflation of the determinant [7]).

Computing a mean using certain non-Euclidean metrics (e.g., Procrustes and Rieman-
nian) require numerical solutions to be solved, whilst other non-Euclidean metrics (e.g., log
Euclidean, root Euclidean, and Cholesky) do not; not requiring numerical methods tends to
be computational faster, which is an important criterion for practical medical applications
due to the large data sets. Diffusion Tensor indices, such as Fractional Anisotropy (FA)
and Mean Diffusivity (MD), are sensitive to brain abnormalities; the FA values of the CC
have been reported to be decreased and MD values to be increased in abnormal brains as
compared to healthy brains [8-10].

Spinocerebellar ataxia 2 (SCA2) is a particular hereditary neurodegenerative disor-
der [11] caused by progressive dysfunction of the cerebellum and the brain stem, and it is
characterized by progressive problems with movement. DTI has been found to be useful
for assessing microstructural changes in the brain white matter, which are associated with
SCAZ2 [12-14]. The authors in [15] used FreeSurfer software for the segmentation of the
cerebrum and the brainstem-cerebellum, and performed a histogram analysis of the DTI
indices of FA, MD, radial diffusivity (RD), axial diffusivity (AX), and mode of anisotropy
(MO). The FA and MO values were decreased whilst the MD, RD, and AX values were
increased in SCA2 subjects compared to healthy brains. Thus, all of these indices can be
used for disease diagnosis from suitably segmented images.

Traditional image processing methods use scalar and vector-valued data for data
analysis. In particular, spatial fuzzy c-means (SFCM) improves the segmentation of im-
ages (in comparison with K-means) by using the neighbouring information to minimize
the effect of noise [16]. The standard sFCM algorithm uses Euclidean distance and the
Euclidean mean to cluster sets of vectors and needs adaptation to be applicable for use
with matrix-based data. To cluster sets of covariance matrices, such as diffusion tensors,
a K-means algorithm was adapted for use by the authors in [17]; using a single manually
segmented image as ground truth, the log Euclidean and Riemannian metrics were found
to provide the most accurate segmentations of the CC (using accuracy and specificity as
performance measures).

As a significant step forward, a spatial fuzzy c-means (sFCM) clustering method for
covariance data (so that we do not loose information from the diffusion tensors), which
effectively segment DT images by accounting for the noise, partial voluming, magnetic
field inhomogeneity, and other imaging artefacts, was developed in the paper. To retain
the non-Euclidean nature of DTs, the efficiently computable log and root Euclidean metrics
are used to estimate the mean DT for each cluster.

The results are compared with a baseline of K-means to the suitably adapted sFCM
algorithm for clustering sets of covariance matrices. Simulation studies are designed to test
the performance of the algorithms and the metrics in the face of increasing noise levels,
which is an important aspect of automated segmentations in this domain; since simulations
ensure that the CC as ground truth is determined, performance measures (the accuracy,
specificity, sensitivity, precision, Gmean, and F-measure) can be calculated, and sFCM with
the efficiently computable metrics compared to the baseline K-means algorithm with the
same metrics.

The findings indicate that sFCM is better than K-means with the same metric for
almost all noise levels and performance measures; almost always sFCM with the root Eu-
clidean metric is the preferred option. To further explore use in practice, the segmentation
method is also applied to the CC for real brain data from healthy and Spinocerebellar
ataxia 2 (SCA2) subjects. This is unannotated real data (i.e., the CC has not already been
annotated/indicated by a clinician), and thus one can make use of the fact that the CC is
known to be a well-connected single white tract in order to determine the efficacy of the
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segmentation method in practice; since there should not be extra small regions or outliers
appearing in the same cluster, disconnected voxels in the segmentation results can be
considered as noise.

The findings indicate that the number of voxels that are incorrectly labelled as be-
ing within the CC is significantly smaller using sFCM versus K-means in this real data
application. The paper also presents additional results that point to future utility and
developments, such as: the determinant can be used to distinguish healthy and SCA2
subjects, the determinant can be used as a DTI index, which distinguishes between healthy
and SCA2 subjects and is sensitive to ageing effects, and that the method can be used for
more general classification tasks.

In terms of presentation, the base algorithms FCM and sFCM, adapted for covariance
matrices, are described in Section 2. Basic matrix operators of a positive definite covariance
matrix are described in Appendix A. The main content of the set-up and results obtained
using the simulation studies and real brain data experiments are presented in Section 3.
A block diagram indicating an overview of the processing steps and software used is
presented in Appendix B. Our conclusions are presented in Section 4.

2. Materials and Methods

In this section, the non-Euclidean metrics used in the paper are described, and the
adaptation of K-means for use with covariance matrices from [17] is recalled. Clustering,
grouping a set of objects, can be hard or soft (fuzzy). In hard clustering, each object
belongs to only one cluster whereas objects can belong to more than one cluster in soft
clustering. The most common used methods for hard and soft clustering are K-means and
FCM, respectively.

Recall that a covariance matrix is a square, symmetric, positive semi-definite matrix.
Let D(Aj, A;) represent the distance between the covariance matrices A; and A; where A;
is the weighted mean of the covariance matrices in the cluster i. The distance D(A;, A))
and weighted mean A of the set A using Euclidean, log Euclidean, and root Euclidean
metrics [6] are presented in Tables 1 and 2, with details on how to compute the power, log,
and exp relegated to Appendix A.

These metrics are the ones considered in this paper since the computation of their mean
is faster (since there is no need to use numerical solutions) in comparison to non-Euclidean
metrics (Procrustes and Riemannian) that do need numerical solutions. The computation of
numerical solutions can be very time consuming, especially when processing large datasets,
which violates a key requirement for most medical applications (i.e., efficiency).

Furthermore, the Log Euclidean metric provides similar results to Riemannian [18]
and the root Euclidean metric provides similar results to Procrustes [7]. The Cholesky met-
ric is another standard non-Euclidean metric; however, its use is omitted because, whilst
the computation of the Cholesky mean does not need numerical solutions, the Cholesky
metric is not as reliable as the others due to not being invariant under orthogonal transfor-
mations [7].

Table 1. Distance D(A;, A;) using the Euclidean, log, and root Euclidean.

Metric Distance
Euclidean HAj —A;
Log Euclidean Hlog(A]-) —log(A;) ‘

Root Euclidean )’A}/Z _ A}/ZH
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Table 2. Weighted mean A using the Euclidean, log, and root Euclidean.

Metric Mean
Euclidean L Wi
R
Log Euclidean 121 wtlog A,
exp | &&—
Z wi”,’

-
. 1/2 7 1/2
Root Euclidean E w§7A1/ E w,7A1/
_): w;}’ _): w;}’
i=1 i=1

2.1. Hard Clustering for Covariance Matrices

One of the most commonly used hard clustering algorithms is the K-means algorithm,
which aims to minimize the within-cluster sum of squares (WCSS). For a set of covariance
matrices A = {Ay,..., A}, the WCSS is given by [19]:

Mﬁ:fimw&ﬂ (1)

j=1i=1

The K-means algorithm for clustering covariance matrices is shown in Algorithm 1.

Algorithm 1: K-means Algorithm

Input: set of n covariance matrices A, number of clusters ¢ € N, and an initially
empty vector y to store cluster labels.
Output: the final cluster centres A;, and cluster labels y;

1 Randomly initialize the centres of the clusters ASO). Letr =0.

2 while y 75 y] ) do

3 Setr =r+1.

Calculate D(Aj, A;), forie{1,...,c},andj € {1,...,n} (using Table 1).
5 Assign each A; to its nearest centre; store cluster label of A; in y;-

6 Update the centres A (usmg Table 2).

7 Return A; and y; values.

'

2.2. Soft Clustering for Covariance Matrices

In soft clustering, data points can belong to more than one cluster with a specified
membership for each cluster. One of the most widely used algorithms for soft clustering is
Fuzzy c-means (FCM). The FCM algorithm aims to minimize the sum of weighted square
distances within each cluster (WCSS). For a set of vectors x = {xy, ..., Xy }, this is defined
as follows [19]. Let m € R with m > 1 be the fuzzification parameter. Then,

WE—ZZwW —x?

j=li=1

where ||x|| = 1/ trace(xTx), 2)

®)
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The membership (or weight) w;; represents the probability of x; belonging to cluster i,
i€{l,...,c} and it satisfies 0 < w;; < 1and };;_; w;; = 1. The K-means algorithm can be
recovered from FCM by appropriately setting the membership w;; values to 0 s or 1s.

In this paper, the natural generalisation is proposed for the use of covariance matrices,
by replacing the vectors x = {xq, ..., X, } with covariance matrices A = {Ay,...,A,} and

using D(A;, A;)? in place of ||xj — X; z

WCSS = Z Z me A A)) 2, where 4)
j=li=

i)
Zk 1( D(A; Ak))

The sFCM algorithm [16] uses the neighbouring information to improve clustering
and reduce noise. The current paper’s generalised version for covariance matrices is
provided directly. If A; is the covariance matrix for a voxel v, then let NB(A;) denote the
set of covariance matrices of v’s neighbouring voxels. Define h;; as follows [16]:

hij= ), Wi (6)

kENB(A,)

Therefore, h;; represents the sum of the memberships of the neighbouring voxels
NB(A,). The size of the neighbourhood can vary. For 2D segmentation, a reasonable choice
isto take NB(A;) as either a3 x 3ora5 x 5 window around A;, whilst, for 3D segmentation,
takea3 x 3 x 3 orab x5 x5 window. Next, the membership w;; in Equation (4) is replaced
with the spatial membership z;; as follows:

WCSS = Z szD (A, A) 2, where (7)
j=li=
Phq
Zij = = ®)
Y1 wphfy

Here, the parameters p and g enable the fine control of the influence of the membership
function w;; and the function ;;, respectively. For example, in noisy regions g can be
increased to increase the influence of neighbouring voxels. When the clustering region is
homogenous, z;; has similar value to w;j, whilst z;; is smaller than w;; if A; is considered
‘noise’ (i.e., it is not actually a member of the cluster /). FCM can be recovered from sFCM
by choosing p = 1 and g = 0. The sFCM adapted for covariance matrices is described in
Algorithm 2.

The stopping condition P

the change in spatial members{up values has become suitably small. An alternative stop-
ping criteria that can be used in Step 2 of the sFCM algorithm would be D(Agr), Afrfl)) <g,
capturing instead that the change in cluster centres has become suitably small, whilst taking
account of the use of non-Euclidean metrics. The value of ¢ should be taken to be very
small (e.g., it should be smaller than 0.1 x 108, which is a possible value of diffusion in a
given direction).

Additionally, the paper presents a regularisation model for sFCM. The WCSS for the
regularisation model is defined as

zj 2=V H < ein Step 2 of the sCFEM algorithm captures that

n C C
RWCSS =) )" ziiD1(Aj, A;))" + A Y Dy(A},A)", 9)
j=1i=1 i=1
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Algorithm 2: sFCM Algorithm

Input: set of n covariance matrices A, number of clusters ¢ € N, fuzzification
parameter m € [1,00), spatial parameters p, g € R, and the error ¢ > 0.
Output: the final cluster centres A;, and spatial membership z;;.

1 Initialize the centres of the clusters AEO) (this can be done randomly; alternatively

one could use the output A; from K-means). Let r = 0.
2 while ’ 5;) - zf;_l)
3 Setr =r+1.
4 | Calculate wjj, fori € {1,...,c},j € {1,...,n} using Equation (5).
5 | Calculate spatial value h;; using Equation (6).
6 | Calculate spatial membership z;; using Equation (8).

z

H<£d0

N

Update the cluster centres Al@ (using Table 2, but substituting z;; for wij)-

8 Return A; and z;; values.

Here, A > 0 is a regularisation parameter, 71,72 > 0, and A; is a reference tensor
representing the prescribed diffusion information for cluster i. Users of the technique
have the option to either define their own reference tensor for cluster i with the expressed
diffusion behaviour or choose a representative tensor from the cluster as the reference tensor.
The proposed regularisation model allows the user to integrate their prior knowledge into
the segmentation scheme or to highlight and segment local structures. Note that D1 and D,
need not be the same and can be non-Euclidean. When r; =2, A = 0, RWCSS simplifies,
reducing to be equivalent to sFCM in [16].

In this work, after experimentation with the effects of varying the initial parameter
values on segmentations of the CC, m =2, p =2, g = 1.5 and A = 0 (for simplicity) with
a 3 x 3 window for 2D segmentation and a 3 x 3 x 3 window for 3D segmentation were
chosen; these values yielded are used consistently for both the simulation studies and the
real data experiment in the following sections.

Finally, whilst Tables 1 and 2 show only the Euclidean, log, and root Euclidean
distances and means, any other suitable distance and mean (i.e., Cholesky, Riemannian, or
Procrustes) can be used with the algorithm.

3. Results

In this section, the results obtained from experiments in the form of two simulation
studies and one study using real brain data are described. The two simulation studies
were conducted to evaluate the performance of sFCM and K-means for segmenting the
CC, in the presence of increasing levels of noise. The CC in the simulation studies is
defined, three levels of noise are added and then the segmentation methods are used to
segment the CC with performance measures being used to evaluate the quality of the
segmentations. Considering images that are slices of a whole brain, there can be multiple
regions that makes segmentation more difficult than the consideration of a single region
(such as the CC).

In simulation study 1, images are considered with multiple regions and a low to
moderate level of noise (methods will likely degrade too much in the multiple region case
at high noise levels). In practice, clinicians may provide a manual identification of a single
region (such as the CC) and use an image zoomed-in on the region. In simulation study 2,
a real data slice with a known region of interest (the CC having been manually identified)
is used so that a single region versus background clustering instead of multiple region
clustering can be adopted, thereby, enabling the consideration of effects of moderate to
high noise levels.

The simulations have signal-to-noise ratios that are consistent with real data. Finally,
unannotated real data images are considered (i.e., the CC has not already been anno-
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tated/indicated by a clinician), drawn from healthy and SCA2 patients, and the fact that
the CC is well-known to be a well-connected single white tract is used in order to determine
the efficacy of the segmentation method in practice; since there should not be extra small
regions or outliers appearing in the same cluster, disconnected voxels in the segmentation
results can be considered as noise.

3.1. Simulation Study

This paper adopts the basic tenet of using synthetic tensors with added noise to
test the robustness of segmentation methods as in [20,21], for example. Adding noise
directly to diffusion tensors can cause the resulting matrix to not be positive semidefinite,
to ensure the matrix is positive semidefinite noise is added to the Cholesky decomposition
(see Appendix A) of each tensor instead, following [6]; that is, the noise is added to the
lower triangular matrix first using Cholesky decomposition.

Therefore, in terms of experimental design, we will select three values of noise to
be added to the Cholesky decomposition of a tensor, and compare the effects on the
segmentation of the CC. To compare the quality of segmentation methods (K-means or
sFCM), together with a choice of distance metric (the Euclidean, log Euclidean, and root
Euclidean), the standard performance measures (with contextual interpretations to follow)
of the accuracy, sensitivity, specificity, precision, F-measure, and Gmean are computed.
These measures are computed at each noise level to enable an evaluation of robustness.

Let A; = chol(D;j), be the Cholesky decomposition of tensor D;, with j € {1...n},
and let X; be a random matrix with an independent and identically distributed (i.i.d.)
normal distribution with expected value E[(X;);;] = 0 and standard deviation sd((X;)js),
foreach! € {1,2,3} and s € {1,2,3}. Thus, we have [6]:

D; = (Aj+ X;) (A +Xj)T forje {1...n} (10)

To create three levels of noisy tensors, three values of sd((X;);,) are selected for each
simulation study. The number of simulated tensors is n = 1491 (from using a 2D image
with size 71 x 21). The region of interest is then clustered into five clusters with the CC
being one of the clusters ([17] found that the best cluster size for segmentation of the
CC was 5). In order to segment the CC, cluster label 1 is assigned to the CC, whilst 0 is
assigned to the other four clusters (i.e., we take the logical image with 1 as the CC and 0 as
the background).

To evaluate the performance of the Euclidean, Log Euclidean, and Root Euclidean
metrics and the segmentation methods (K-means or sFCM) for the segmentation of the
CC, we use the performance measures of accuracy, sensitivity, specificity, precision, F-
measure, and Gmean. These are standard performances measures used in prediction [22],
that are recalled here, but to use them, the concepts of True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FIN) need to be interpreted suitably in our
context. Take TP and TN to be the numbers of voxels in the CC and in the background (i.e.,
segmented as any other cluster except the CC), respectively, that are segmented correctly.
Then, FP and FN are the numbers of tensors in the background and in the CC that are
incorrectly segmented, respectively. The basic standard measures [22] are:

accuracy = TP+ 1IN (11)
YT IPYFP+ EN+ 1IN’
e TP
sensitivity = TP+ EN/ (12)
e .. IN
specificity = m,and (13)
TP
precision = (14)

TP + FP’
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Using the interpretation given, it can be seen that: (i) accuracy is the ratio of the
correctly predicted number of tensors to the total number of tensors (i.e., the ability to select
all of the tensors in the CC and reject all the tensors that are not in the CC); (ii) sensitivity
(sometimes called recall or true positive rate) is the ratio of the number of correctly predicted
tensors in the CC to the number of all tensors in the actual CC (i.e., the ability to select all
of the tensors in the CC); (iii) specificity (sometimes called the true negative rate) is the
ratio of the number of correctly predicted tensors as being not in the CC to the number of
all tensors that are not in the actual CC (i.e., the ability to reject all of the tensors that are
not in the CC); and (iv) precision is the ratio of the number of correctly predicted tensors in
CC to the number of total predicted tensors in the CC.

These basic measures can be combined in pairs to give performance measures [22]
called the F-measure (F1 score), which takes into account both the FP and EN values (it is
the harmonic mean of precision and sensitivity), and the Gmean (Geometric mean), which
combines both the true positive rate and true negative rate. They are defined as follows [22]:

2(sensitivity * precision)
sensitivity + precision

F-measure = and (15)

Gmean = \/ (sensitivity * specificity). (16)

Those two measures are often used to evaluate performance when the dataset used is
imbalanced (i.e., the number of objects assigned to each cluster is different).

The step-by-step calculations for the following two simulation studies are summarised
in a block diagram (Figure A1 in Appendix B).

3.1.1. Simulation Study 1

Tensors in the CC have small size, horizontal diffusion direction (i.e., the water diffuses
between right and left hemisphere of the brain) and high FA. Regions nearby to the CC
consist of other white matter (WM) tissues, grey matter (GM) and cerebrospinal fluid (CSF).
Tensors in some WM regions have similar sizes and FA to that of the CC, whilst tensors in
GM and CSF have larger sizes and smaller FA than that of the CC (since the diffusion is
anisotropic in WM and isotropic in GM and CSF). Therefore, tensors are initially simulated
from multiple regions, mimicking a real brain image, with differing FA and sizes of tensors
around the CC (see Figure 1a).

Then, three levels of noise sd((X;);s) = 0.3 x 10~° (noisela), sd((X;);s) = 0.4 x 10~°
(noise2a) and sd((X;);s) = 0.5 x 10~ (noise3a) are added to the simulated (original) region
(see Figure 1b—d). The signal-to-noise ratios (SNR) of the three level of noises are 21, 18, and
15. The results of segmentation of the three noisy regions are shown in Figure 2. The figures
visibly demonstrate that sFCM improved the segmentation by reducing the background
noise as compared to K-means.

To provide more detailed comparisons, all of the performance measures considered for
the six cases are shown in Figure 3. It can be seen that sCFM with each metric (Euclidean,
log Euclidean, and root Euclidean) almost always outperformed K-means with the same
metric for all performances measures; the only exceptions are the equality of sensitivity for
log Euclidean at noise level 3a, and both root and log Euclidean at noise level 1a.

Furthermore, sCFM with root Euclidean or log Euclidean generally outperform sCFM
with Euclidean. In detail: (i) at noise level 1a, root and log Euclidean produce the same
results, and thus yield equality for all performance measures, and their measures all
outperform Euclidean except for the (equality of) sensitivity; (ii) at noise levels 2a and 3a,
root Euclidean has the highest accuracy, sensitivity, F-measure, and Gmean, whilst log
Euclidean has the highest specificity and precision. Euclidean has the lowest values for
accuracy, F-measure, specificity, and precision, but the same sensitivity as root Euclidean,
and a higher Gmean than log Euclidean.
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(a) Original tensors (b) Tensors with noisela

(c) Tensors with noise2a (d) Tensors with noise3a

Figure 1. The original tensors in comparison with the tensors having added the three levels of noise.

sFCM, root K-means, root sFCM, root K-means, root

sFCM, root K-means, root

SFCM, log K-means, log sFCM, log K-means, log sFCM, log K-means, log

sFCM, Euc K-means, Euc sFCM, Euc K-means, Euc sFCM, Euc K-means, Euc

(a) Segmentation after adding noisela. (b) Segmentation after adding noise2a. (c) Segmentation after adding noise3a.

Figure 2. Segmentation after adding three levels of noises.
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Figure 3. Bar charts of the performance measures for Simulation Study 1. Overall, sFCM yields higher values of performance
measures as compared to K-means, whilst root Euclidean yields the highest performance measures. To enable better
visualisation of the results, a scale of 45-100 for precision and F-measure and 80-100 for the rest of the measures is used.

3.1.2. Simulation Study 2

In Simulation Study 1, multiple regions with increasing noise levels were used, which
covers a low to moderate range of noise (since the detection of the regions becomes
problematic when considering high levels of noise). In Simulation Study 2, consideration
of robustness in the face of moderate to high levels of noise is enabled by simulating a
homogenous region of the CC and a background only (as per the logical image mentioned
earlier); this is because the CC is still visible in this case.

Initial tensors are simulated such that: the tensors have the same determinants (sizes),
FA values, and eigenvalues, and they only differ in their orientation (i.e., the eigenvectors);
the diffusion directions of the tensors in the simulated CC shape are parallel to y-axis,
while the diffusion directions of other tensors are parallel to x-axis. Then, the three levels
of noise chosen are: sd((X;);s) = 0.5 x 105 (noiselb), sd((X;);s) = 0.75 x 1075 (noise2b),
and sd((X;);s) = 0.1 x 10~* (noise3b).

These are added to the simulated region (see Figure 4). The signal-to-noise ratio (SNR)
of the three levels of noise are 13, 8, and 5. The results of the segmentation of the three
noisy images are shown in Figure 5. When using Log Euclidean with noise3b (in Figure 5c),
the CC is not visible. The performance measures were calculated and are shown in Figure 6.
Similar to Simulation Study 1, it can be seen that root Euclidean generally provided the
highest values of performance measures as compared to the other methods.

The findings indicated that: (i) at noise level 1b, all of the six methods yield the same
results; (ii) at noise level 2b, sFCM yields the same results using log, root, and Euclidean
(and hence the same values of all performance measures), whilst sSFCM with each metric
almost always outperforms K-means with the same metric (with exceptions that sSFCM
and K-means with the Euclidean metric have the same specificity and precision, and sFCM
and K-means with root Euclidean have the same sensitivity); (iii) at noise level 3b, the log
Euclidean metric fails to even detect the CC, whilst sSFCM with root Euclidean outperforms
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sFCM with Euclidean, and sFCM with either metric (root or Euclidean) outperforms
K-means with the same metric.

(a) Original tensors. (b) Tensors with noiselb.

(c) Tensors with noise2b. (d) Tensors with noise3b.

Figure 4. Original and noisy tensors before and after adding three levels of noise.

sFCM, root K-means, root sFCM, root K-means, root sFCM, root K-means, root

sFCM, log K-means, log sFCM, log K-means, log sFCM, log K-means, log

sFCM, Euc K-means, Euc sFCM, Euc K-means, Euc sFCM, Euc K-means, Euc

(a) Segmentation after adding noiselb. (b) Segmentation after adding noise2b. (c) Segmentation after adding noise3b.

Figure 5. Segmentation after adding three levels of noises.
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From both studies, it can be seen that the sSFCM method improved the segmentation
of the CC, almost always providing better performance measures than the corresponding
K-means method, especially in noisy images. One can observe that root Euclidean with
sFCM almost always outperformed Euclidean and log Euclidean in the segmentation of
the CC. With the largest level of noise (i.e., noise3b in Study 2), log Euclidean failed to
even detect the shape of CC even when the cluster size was increased. This is likely to be
because it is highly affected by outliers, as shown by the following example.

Take three examples of tensors D1, Dy, and D3 from the CC region of a healthy brain,

as follows:

0.1461 0.0329 —0.0012

Dy = 1078 x 0.0329 0.0098 —0.0066
—0.0012 —0.0066 0.0170
0.1683 0.0031 —0.0226

D, = 1078 x 0.0031 0.0169 —0.0025
—0.0226 —0.0025 0.0070
0.1152 —0.0669 0.0032

Ds = 1078 x —0.0669 0.0542 —0.0118
0.0032 —0.0118 0.0140

Specificity Precision

1000 gog 100.0 gog 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1000 100.0

500 ™ 100
955 | NN sFOM oot too 95 9.4 26 954 I SO, oot
- t I K- means, oot
90 SFCM,log
s, I K- means,jog
a1 I sFoM v
. 80 207 [ K-means,Euc
70
60
* ox 50 w1 kK
. ! ! -

noise2b noise3b. noiselb noise2b noise3b

F-measure

994 994 994
9756 982 952
=4 Sod [ sFCM,root
I K-means, oot
[—sFoM,iog
N K-means,log
825 [ sFCM Euc
[ K-means, Euc
653
I t
I

noise2b noise3b noiselb noise2b noise3b

Gmean

Figure 6. Bar charts of the performance measures. Root Euclidean using sFCM generally yields the highest values of
performance measures. Using log Euclidean, the CC is not even detectable at noise level 3b (denoted here by a *). To enable
better visualisation of the results, a scale of 45-100 for precision and F-measure and 80-100 for the rest of the measures

is used.

To calculate the log and root Euclidean distances between these tensors, the eigenval-
ues A1, Ay and Az of each tensor are needed (see Table 1 and Appendix A). The eigenvalues,
together with the FA values are shown in Table 3, and then the distances between the
tensors are shown in Table 4.
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Table 3. Eigenvalues of Dy, D,, and D3 (x 10_8).
Tensor A1 Ao As FA
Dy 0.1537 0.0192 0.000028 0.936
Do 0.1714 0.0171 0.0036 0.937
D3 0.1588 0.0206 0.0040 0.919
Table 4. The distances between the tensors.
Method Dist (D1,D3) Dist (D1, D3) Dist (D,,D3)
Euclidean 3.3689 x 10717 2.2948 x 10718 1.5564 x 10718
Log Euclidean 42.1681 51.4121 5.9165
Root Euclidean 1.2426 x 1077 4.7398 x 10~ 2.3534 x 10~°

The distances between D and D5, and D; and D3 using log Euclidean are very large in
comparison with the distance between D, and Dj3. This is due to the use of the log function
and the smaller eigenvalue 0.000028 of D; in comparison with the other eigenvalues. All
three tensors have high FA (see Table 3; recall FA ranges from 0 to 1), and hence all of
them are expected to be part of the CC. When clustering, all the three tensors are part of
the CC using the root Euclidean and Euclidean metrics, but D; is excluded from the CC
using the log Euclidean metric. This explains the holes in the CC that appear using the
log Euclidean metric. This example demonstrates that the distance between tensors with
similar FA values can be very large when using the log Euclidean metric.

3.2. Real Brain Image Data Studies

In this section, the application in practice, using real brain image data, is considered,
demonstrating that sCFM performs significantly better than K-means for the segmentation
of the CC. Subsequently, using the same data set, a brief demonstration that the methods can
be used effectively for classification as well as segmentation is provided. Furthermore, it is
demonstrated (using sFCM, which ensures robustness to noise) that existing DTI indices
(fractional anisotropy, mean diffusivity, and radial diffusivity), as well as the determinant,
are all suitable DTI indexes that can be used to distinguish between healthy and SCA2
subjects and are sensitive to ageing effects.

The data consists of nine SCA2 subjects (six males and three females) and sixteen
age-matched healthy subjects (nine males and seven females). This data is taken from [23].
On the same MRI scanner, the subjects have been imaged twice: 3.6 &= 0.7 years apart (SCA2
patients) and 3.3 4= 1.0 years apart (control subjects). For more details about the data and
MRI acquisition procedures see [23]. In this work, diffusion weighted data is corrected
for eddy current-induced distortions (using FSL). Then, the diffusion tensor imaging is
fitted using a non-linear constrained estimation method [24,25] in Camino. Matlab and
SPSS are used for segmentation and data analysis respectively. The block diagram of the
calculations is presented in Figure Al in Appendix B.

3.2.1. 3D Segmentation of the CC

A volumetric region of interest (ROI) from the middle of the brain is chosen as input
to the K-means and sFCM (with parameters used p = 2 and g = 1.5) algorithms. The ROI
is clustered into five clusters, with CC being one of those clusters, using the root Euclidean
metric. To visualise the CC, the cluster labels are binarised (i.e., cluster labels for the CC
cluster are all 1 and 0 is used for labels in the other four clusters). Examples of the results of
the segmentation of the CC using K-means and sFCM are shown in Figure 7. To evaluate
how much better sFCM is in reducing the noise around the CC as compared to K-means,
the number of voxels (nv) that are considered as noise is calculated (i.e., the voxels around
the CC that have the same cluster labels as the CC but are not actually part of the CC).

The Wilcoxon Signed-Rank test is used to test the significant difference in nv values
produced by using K-means and sFCM. The results show that the nv values are significantly
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smaller using sFCM as compared to K-means (see Table 5) for both the baseline and post
baseline data. This confirms that the use of sSFCM instead of K-means significantly reduced
the amount of noise in these images.

(a) Segmentation of the CC for a healthy brain image using  (b) Segmentation of the CC for a healthy brain image using
K-means. sFCM.

(c) Segmentation of the CC for a SCA2 brain image using  (d) Segmentation of the CC for a SCA2 brain image using
K-means. sFCM.

Figure 7. Segmentation of the CC for healthy and SCA2 brain images using K-means and sFCM.

Table 5. Mean and standard deviation (Std) of nv.

Method Mean (nv) Std (nv) p-Value

K-means (baseline) 18.8696 19.4593. 0.00004
sFCM (baseline) 2.9565 4.1939

K-means (post) 31.6522 65.7285 0.00004
sFCM (post) 3.6087 5.6387

3.2.2. Generalisation to Classification of Brain Images

These new methods can be used for the more general problem of classifying a brain
image into white matter, grey matter, and cerebrospinal fluid, using a whole axial slice of
the brain image. Since the image contains both the brain and its background, the image
is clustered into four clusters for white matter, grey matter, cerebrospinal fluid, and the
background of brain (see Figure 8, where the background is shown in deep blue) using the
root Euclidean metric. The CC is not segmented here, but is included as part of the white
matter. To segment the CC, the cluster size needs to be 5 (as in Section 3.2.1); however, this
demonstrates that sSFCM can be used for classification purposes.

Figure 8. Classification of brain into white matter (green), grey matter (yellow), and cerebrospinal
fluid (blue).
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3.2.3. Clinical Applications of Segmentations with sFCM

In clinical studies, DTI indices, such as Fractional anisotropy (FA), mean diffusivity
(MD), and Radial diffusivity (RD), are used in the comparison of healthy and non-healthy
brain images (often manually segmented). The efficacy of the new methods presented in
the paper is demonstrated by using one of our automatically created segmentations (via
sFCM with root Euclidean) and demonstrating that these indices can distinguish between
healthy and SCA2 subjects, and they are sensitive to ageing effects.

This reaffirms the results in the literature [12,13,15], but with the extra knowledge that
the use of sFCM will have reduced the impact of noise. In addition to this, it can be seen
that the determinant (DET) of the tensors, which is easy to compute, can also be used to
distinguish between healthy and SCA2 subjects and is sensitive to ageing effects. That is,
DET is shown to be a viable DTI index.

First, recall the definitions of the DTI indices, which are functions of the eigenvalues
of the diffusion tensors. FA measures the deviations from isotropic diffusion of water
inside a voxel in the brain, and it is a fraction with FA equal to 1 for diffusion that is highly
anisotropic (i.e., water diffuses in one direction) and FA equal to 0 for isotropic diffusion
(i.e., water diffuses in all directions). Let A1, A; and A3 be the eigenvalues of diffusion tensor
D and assume that A, is the largest eigenvalue. Then, FA [5] can be calculated as follows:

A= | = 22?4 (Ao = A3)2 + (A3 — )2 17)
2(A2 4+ A3+ A3) '

MD measures the average water diffusivity in a voxel in the brain. It is calculated as
follows [5]:
M+ A+ Az
—
Radial diffusivity measures the perpendicular diffusion to the main diffusion of water.
It is calculated as follows [5]:

MD = (18)

Ay +Aj
2
These DTI indices, together with the DET are computed. The Mann-Whitney test is
used to test the significant difference in FA, MD, RD, and DET between healthy and SCA2
subjects at the significance level 0.05. The results of FA, MD, RD, and DET are all significant
at both baseline and post baseline. In detail:

RD =

. (19)

e  FA values in SCA?2 subjects are significantly lower than in healthy subjects (p-value at
baseline = 0.0005, p-value at post baseline = 0.0004).

e MD values in SCA2 subjects are significantly increased as compared to healthy subjects
(p-value at baseline = 0.018, p-value at post baseline = 0.035).

e RD values in SCA2 subjects are significantly increased as compared to healthy subjects
(p-value at baseline = 0.0005, p-value at post baseline = 0.0007).

e DET values in SCA2 subjects are significantly larger than in healthy subjects (p-value
at baseline = 0.001, p-value at post baseline = 0.002).

These results show that FA, MD, RD, and DET distinguish well between healthy and
SCAZ2 subjects. The rate of change can be calculated as follows:

datap,seline — Clatapost baseline
number of days in between

Rate of change = (20)

The rates of change of FA, MD, RD, and DET in SCA2 subjects are not significantly
different from the rates of change in healthy subjects.

The Wilcoxon Signed-Rank test is used to test the significant difference in FA, MD, RD,
and DET at baseline and post baseline. The results of FA, RD, and DET were all significant.
However, MD values were not significantly different at baseline and post baseline. The
details are as follows:
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*  FA values at post baseline were significantly lower than at baseline (p-value = 0.0001).

*  RD values at post baseline were significantly increased as compared to RD values at
baseline (p-value = 0.0004).

e  DET values at post baseline were significantly larger than at baseline (p-value = 0.003).

These results show that FA reduced while RD and size of tensors (DET) increased
with age.

4. Conclusions and Discussion

Manual segmentation of the CC is often done slice by slice, and hence it is very time
consuming and is also subject to intra and interobserver variability. In this paper, we
presented an automatic and accurate method for segmentation of the CC that will save time
and effort for radiologists by eliminating the need of manual segmentation. The method
uses uncertainty information in the segmentation decisions by calculating the probabilities
(membership values) of each voxel to belong to different clusters. The spatial contextual
information is exploited.

We demonstrated that sFCM outperformed K-means with the same metric for seg-
mentation of the CC and sFCM with the root Euclidean metric as the preferred option.
In this paper, the method was extended to a matrix-type of data (covariance matrix data)
and was used for DTI classification (to classify images into white matter, grey matter, and
cerebrospinal fluid).

Further research about classification of different brain regions using this method will
be carried out in future work. The CC in SCA2 subjects were compared with healthy
subjects. We demonstrated that the determinant of diffusion tensors and DTI indices can be
used to distinguish between SCA2 and healthy subjects and are sensitive to ageing effects.
Hence, the determinant of diffusion tensors is useful for the detection of abnormalities in
the CC and for surgical planning.

The non-Euclidean metrics used in sFCM were the log-Euclidean and root Euclidean
metrics as their calculations are straightforward. It would be interesting to use other
non-Euclidean metrics, although numerical algorithms may need to be used. For example,
the Procrustes size-and-shape metric may provide new segmentation results.

A regularisation model was proposed for sFCM—currently, for the smooth part, the
power parameter r; = 2, and the regularisation parameter A = 0. For various structures
in the brain, the regularisation model would still need to be carefully tuned. It would be
interesting to explore segmentation results when varying the parameters in the model.
An efficient way to determine the reference tensor with the expected diffusion behaviour is
needed for practical users.

There are regions in the brain with more than one distinct fibre orientation captured
in a single voxel. For example, two crossing fibres would need two diffusion tensors to
model the diffusion behaviour at a single voxel. Tensor field segmentation becomes more
challenging for the regions with crossing fibres. A basic and difficult question is how to
measure the dissimilarity between a pair of tensors at one voxel and a pair of tensors at
another voxel. To develop segmentation methods for DTI data containing crossing fibres is
also of interest.
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Abbreviations

The following abbreviations are used in this manuscript:

DT diffusion tensor
FCM  fuzzy c-means
sFCM  spatial fuzzy c-means

CcC corpus callosum
SCA2  apinocerebellar ataxia 2
FA fractional anisotropy

MD mean diffusivity

RD radial diffusivity

AX axial diffusivity

MO mode of anisotropy

WCSS  within-cluster sum of squares

NB neighbouring voxels
TP true positive

TN true negative

FP false positive

FN false negative

WM white matter

GM grey matter

CSF cerebrospinal fluid
SNR signal-to-noise ratio

Appendix A. Background Definitions

The spectral decomposition of a symmetric positive definite matrix A is given by
A = VAVT where V is an orthonormal matrix and A is diagonal matrix of eigenvalues
as follows:

V=I[vi ... vg (A1)
A0 0
0 Ay --- 0
A=1|. . . (A2)
0 0 - A

where A; > 0, fori € {1,...,g}. Then, A to the power k, where k € R, is obtained by:
Af = VARV, (A3)
The exponential of A can be obtained by:
exp(A) = Vexp(A)VT. (A4)
The logarithm of A is given by:
log(A) = Vlog(A)VT (A5)

where A entries are strictly positive eigen values.
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Cholesky decomposition (factorization) of the positive semi-definite matrix A is given
by A = LLT where L is a lower triangular matrix with nonnegative diagonal elements

as follows:
a 0 0
an ap - 0
L = chol(A) = (A6)
0
gl fgp -+ g
where a;; > 0, fori = 1...g. Cholesky factorization is unique for positive definite matrices
with a;; > 0.

Appendix B. Block Diagrams for Simulation Studies and Real Data Applications
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Figure A1. Block diagram for simulation studies and real data applications.
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