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ABSTRACT

A study covering analytical, numerical and experimental aspects of the phenomena
related to the formation and development of sediment bars in straight and meandering
channels is reported. The emphasis of this research has been placed on laboratory
observations with the goal of obtaining experimental evidence to verify specific aspects of
recently developed analytical theories on the subject.

The analytical study consists in a revision of the linear theory for stability of alternate
bars in a straight alluvial channel, with the objective of deriving relationships to estimate the
conditions for the formation of alternate bars and their geometrical properties. In particular,
the influence of using different resistance and bedload relationships on the results obtained
through this analysis is explored.

The numerical study consists in the development of a simplified model for the
two—dimensional flow and bed deformation in meandering channels, mainly with the aim of
understanding the principal characteristics of the physical processes involved in this
phenomenon.

The experimental study consists of a set of laboratory experiments conducted with the
help of two tilting flumes that can recirculate sand-water mixtures located in the
Hydrosystems Laboratory of the University of Illinois at Urbana~Champaign. These
experiments involve the observation and measurement of alternate bars in straight as well
as in meandering channels of different geometries. The laboratory observations are used to
analyze recently developed linear and nonlinear theoretical models for the formation,
geometrical properties, and migration characteristics of alternate bars. The theoretical
predictions are found to be in good agreement with the observations of height, wavelength,
and celerity of alternate bars. The theoretical conditions for which the suppression of
migrating bars in meandering channels takes place, seem to agree qualitatively well with the
experimental observations made in the laboratory.
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1. INTRODUCTION

Under widely occurring circumstances flow in a straight alluvial channel with erodible
bottom is unstable and various types of sediment waves may develop, depending on flow and
sediment conditions. These wavy bed configurations can be classified into two categories
(Kuroki and Kishi, 1985), such as: Bed Configurations of Micro-scale, characterized by
ripples, dunes and antidunes, and Bed Configurations of Meso-scale, characterized by
alternate bars and linguoidal bars or braids. While the former configurations have dominant
influence on the hydraulic resistance to the flow, the latter have been usually related to the
meandering of rivers.

The alternate bar configuration, which corresponds to the main subject of the research
work reported herein, can be described as formed by migrating bedforms characterized by
a sequence of steep consecutive diagonal fronts with deep pools at the downstream face and
gentler riffles along the upstream face. The horizontal scale of the bedforms is typically of
the order of several channel widths, while the vertical scale is of the order of the depth of
flow. These alternate bars have been observed to form spontaneously under rather shallower
water flows than the micro-scale configurations, even though these types of bedform may also
coexist under certain flow conditions. Fig.1.1 shows a photograph of a typical bar unit,
obtained in one of the laboratory experiments made as part of the present investigation, and
also a schematic view of the meandering thalweg typical of this kind of bedforms.

The formation of alternate bars in straight channels has been the subject of several
investigations in the last two decades (see River Meandering , Ikeda and Parker eds., 1989),
for different purposes. From an engineering point of view, the zones of deposition associated
with them may severely affect many aspects of river management, such as navigation, and
operation of intake structures, among others. Likewise, the zones of scour interact with river
banks inducing bank erosion and variation of channel alignment, and also with structures
such as bridge piers, river protection works, and others, inducing the risk of failure of those
structures.

From a more mechanistic point of view, alternate bars have been studied with the
purpose of improving the level of understanding of river morphology. This motivation comes
from the idea that alternate bars, giving rise to a sinuous migrating thalweg within the initially
straight banks, might somehow evolve into meanders provided channels banks be also
erodibie. In other words, the formation of alternate bars would imply incipient meandering,
(Tubino and Seminara, 1990). This idea, which has been supported by both laboratory (see
for example Anderson et al., 1975, and Fujita and Muramoto, 1982) and field observations



(see for example Fig.1.2, in which an artificially straightened reach of Los Angeles river
evolved into a meandering flow during the flood of 1938), is the basis for most of the present
analytical research on the river meandering phenomenon.

Fig.1.1 Photogravh of a Bar Front and Scheme Showing the Meandering Thalweg.

Recent analytical theories developed mainly by Professor Seminara’s group in Italy
and Professor Tarker’s group at the University of Minnesota (see River Meandering, Ikeda
and Parker eds., 1989), have contributed to attain a consistent level of understanding on the
various phenomena involved in the initial process of meander formation. The so called
’resonance theory’ of river meandering, which constitutes the basis for such understanding,
was first developed by Blondeaux and Seminara (1985) and later verified by Parker and
Johannesson (1989). This theory predicts that if the wavelength of an incipient meandering
channel corresponds to the wavelength of a natural alternate bar mode characterized by



Qanishing rate of growth and migration speed, then a resonant phenomenon occurs, in which
asharp increase in the flow and bed topography response is obtained. Under such conditions,
the migrating alternate bars lock into place with the point bars formed in the channel bends,
giving rise to a steady bed deformation which promotes the bank erosion process and thus
the meander amplification.

Fig.1.2 Los Angeles River in Flooding of 1938.

Even though recent attempts to verify the Resonance theory through carefully
designed laboratory experiments have been successful to some extent (Colombini et al. 1990),
still remain several aspects of the theory that need to be further investigated empirically. In
particular, the interactions between alternate migrating bars and fixed point bars formed in
channel bends and the conditions for the suppression of the former, which were studied
analytically by Tubino and Seminara (1990), represent a subject that requires further



experimental research, being the study of Kinoshita and Miwa (1974) the only experimental
precedent available.

According to what has been exposed above, the present investigation has been aimed
at providing experimental evidence that allows for a verification of specific aspects of recently
developed analytical theories on the alternate bar and meander phenomena. Given this
objective, a set of laboratory experiments has been conducted with the help of two tilting
flumes that can recirculate sand-water mixtures in the Hydrosystems Laboratory of the
University of Illinois at Urbana—Champaign. A channel with vertical walls, having a movable
bed consisting of sand of 0.5 mm of diameter, and a width of 0.4 m, was inserted inside the
wider tilting flumes. Different platforms were tested ranging from a straight, 15 m long
channel, to three different meandering channels having a length of approximately 25 m. Two
different curvatures and two wavelengths were used for the meandering channels, which were
modeled as simple sine waves. Both the influence of the channel width to depth of flow ratio
and the slope on the bed deformation were investigated, and variables such as bar height,
wavelength, and celerity were computed from the data collected. For the meandering
channels, the location of maximum scour and the conditions for the suppression of migrating
bars were also documented. The experimental conditions for the set of experiments
described above were carefully selected as to match the analytical conditions under which
the theories to be tested were derived, and also to cover the ranges within which the different
processes to be studied experimentally should occur as predicted by those theories.

Finally, the motivation for the experimental work reported herein comes also from
the perception that it is necessary not only the development of new and more sophisticated
analytical theories, but also of laboratory and field evidence to truly advance the present
frontier of knowledge of a such a fascinating subject as river mechanics.



2. LITERATURE REVIEW

2.1 Generalities

The most recent ’state of the art’ reference on the alternate bar and river meandering
phenomena corresponds to the AGU publication: River Meandering, edited by Ikeda and
Parker (1989). This monograph is a collection of papers on different aspects related to the
formation and development of alternate bars and river meanders, approached from
mathematical, numerical and experimental points of view. Among those aspects, the one with
which this research is mainly concerned is the so called 'resonance phenomenon’ in
meandering channels. The papers by Johannesson and Parker (1989), Parker and
Johannesson (1989) and Seminara and Tubino (1989a) in that monograph, therefore,
constituted the first motivation for the research work reported herein.

As it is pointed out by Seminara and Tubino (1989a), the level of understanding of
the river meandering problem and related phenomena has evolved in the last two decades,
from a state of a mainly descriptive empirical knowledge to the gradual development of
analytical models. Theoretical attempts to give a mechanistic explanation of fluvial
meandering concentrated first in the analysis of the alternate bar phenomenon. The works
by Callander (1969), Hansen (1967), Hayashi (1970), Sukegawa (1971), Engelund and
Skovgaard (1973), Parker (1976) and Fredsge (1978), constitute examples of increasingly
refined linear stability theories aimed at explaining the basic mechanism underlying the
process of formation of the alternate bar structure, and to predict the threshold conditions
for such process as well as the wavelength and speed of the unstable configurations obtained
through stability analysis. The basic idea behind those theories is the recognition that under
certain flow conditions, a flat bed of non-cohesive sediment may loose stability due to a
spatial perturbation characterized by a growing amplitude and a downstream migration
speed, whose lengthscale is of the order of several channel widths. The bed perturbations
tend to form an alternating sequence of deep and shallow reaches, in which the flow develops
a sinuous thalweg. Because of this pattern, the alternate bar mode of instability was
interpreted as the precursor of meandering (Seminara and Tubino, 1989a).

A different approach to the meandering problem was undertaken by Ikeda, Parker
and Sawai (1981), who associated the meander formation with a planimetric instability
triggered by bank erosion due to secondary flow induced by channel sinuosity. The basicidea
behind the so called 'bend theory’, is the recognition that under certain flow conditions a flat
bed of non-cohesive sediment may loose stability to a perturbed configuration of the channel
axis. The analysis of Ikeda et al. (1981) led to the conclusion that the wavelength of the



meandering perturbations obtained, is close to that predicted by the ’bar theory’ for the
migrating alternate bar structures. This was taker as supporting the idea that the initial
instability leading to the alternate bar formation would proceed into the planimetric
instability leading to the meander formation. The ’bend theory’ by itself, however, is not
able to explain the mechanism by which relatively fast migrating alternate bars would trigger
the development of the much slower process of bank erosion on which the planimetric
instability depends.

Blondeaux and Seminara (1985), a few years later, unified the bar and bend theories.
By analyzing the dispersion relationship of the Bar theory, they found a class of bar
perturbations characterized by nearly vanishing growth rate and migration speed. This class
of perturbations, however, does not correspond to a natural response of the bed in a straight
channel configuration. Nevertheless, when the forcing effect of curvature of the channel axis
is taken into account, it was found that the bed response corresponds exactly to the
quasi-nonmigrating, quasi-nonamplifying bars, thus leading to a quasi-resonance
phenomenon. The wavelengths selected by the resonance mechanism were found to be about
three times larger than those predicted by the Bar theory, and in agreement with laboratory
and field observations. The Resonance theory, therefore, provides the mechanism by which
initially migrating bars can reduce their speed as a response to the curvature of the channel
axis, in order to approach the time scale needed by the bank erosion process leading to the
growth and development of meanders.

The resonance phenomenon discovered by Blondeaux and Seminara was also
confirmed by Parker and Johannesson (1989), through a linear analysis which differs slightly
from the previous one. Parker and Johannesson also related the resonance phenomenon to
the ’overdeepening’ effect discovered by Struiksma et al. (1985), according to which
pronounced outside scour may be observed at the entrance of a bend contiguous to a straight
reach upstream.

Even though the Resonance theory seems to provide satisfactory explanation to the
meander problem, it is only valid under a number of assumptions, namely, uniform sediment,
steady flow, no transport in suspension, etc., which are closer to laboratory conditions than
to an actual river situation. Moreover, the linear models of Blondeaux and Seminara (1985)
or Parker and Johannesson (1989), break down in the vicinity of the resonance conditions,
since the expansions utilized by the models are not longer valid in that region. Thislimitation,
as it is pointed out by Tubino and Seminara (1990), may be overcome by the development
of nonlinear theories of resonance. Also, linear theories do not account for the coexistence



of migrating and fixed bars, a situation that has been observed in laboratory experiments by
Gottlieb (1976) and Kinoshita and Miwa (1974).

Tubino and Seminara (1990), using a weakly nonlinear approach developed a theory
that accounts for the coexistence of migrating and fixed bars, and predicts curvature and flow
conditions under which the migrating, also called free, bars are suppressed, giving place to
the existence of only fixed, also called forced, bars in the meandering channel. The conditions
for maximum suppression of the free bars were found to coincide with the resonance
conditions, and to occur for rather small values of the curvature of the channel.

More recently, Tubino (1991) developed a theory on the growth of alternate bars in
unsteady flow, thus moving towards a modeling of the finite amplitude of alternate bars which
is closer to the the actual river conditions than the first steady flow analysis made by
Colombini, Seminara and Tubino (1987).

According to Seminara and Tubino (1989b), a consistent picture of the various
phenomena involved in the initial process of meander formation in alluvial channels can be
derived from the theories described above. An originally straight channel with a
non-cohesive, uniform sediment bed, subject to a steady flow may undergo an instability
process under proper conditions, which leads to the formation of migrating perturbations,
alternate free bars, in a relatively short time scale. These bars reach a finite amplitude
through a process that can be described by the theory of Colombini et al (1987). On a larger
scale of time, the channel widens and undergoes a second instability process, which
corresponds to the planimetric one. As the sinuosity of the channel develops the resonance
phenomenon as described by Blondeaux and Seminara (1985) or Parker and Johannesson
(1989) and the interactions between free and forced bars as described by Tubino and
Seminara (1990), result in the suppression of the migrating perturbations, leaving only forced
bars to induce bank erosion which in the end leads to the meander growth.

Even though numerous experimental studies on meandering and related phenomena
have been made in the past, see for example Kinoshita (1957), Ikeda (1973), Kinoshita and
Miwa (1974), Hooke (1975), Gottlieb (1976), Fujita and Muramoto (1982, 1985), etc., the
validation of the theoretical findings described above through the existing experimental data
is not possible since they refer to different experimental conditions and are not systematic.
Colombini, Tubino and Whiting (1990) made a set of experiments carefully designed as to
provide the data that would allow such validation. They built a series of meandering channels
of sinusoidal shape and fixed walls, using different wavelenghts and identical maximum
curvature in a range that cover the resonant conditions as predicted by the theories described
above. In particular they selected a curvature large enough as to preclude the coexistence



of free and forced bars but at the same time small enough as to satisfy the conditions for
which the theories were derived. Their main conclusion is that the experimental observations
strongly support the idea that the resonance does not operate in the form predicted by the
linear analysis. Rather than exhibiting a sharp peak within the resonant range, the bed
response was found to follow a more smoothed trend, which still exhibits a maximum for
values of meander wavelength which are typically smaller than those predicted by the linear
theory.

The study of Colombini et al. was the first attempt to validate the Resonance theory
through experiments, however, it did not cover some aspects of the theory that still remain
to be further investigated in the laboratory. In particular, the phenomenon of coexistence
of free and forced bars and the conditions for the suppression of the former appear to be an
interesting topic, of which the only experimental precedent available in the literature
corresponds to the qualitative observations made by Kinoshita and Miwa (1974).

The research work reported herein has been aimed as to provide experimental
evidence to validate some aspects of the analytical models described above, specially those
that have not been investigated in previous laboratory studies. Experimental conditions were
selected as to cover the resonance range, as well as to allow for the coexistence of free and
forced bars and the suppression of the former. The results obtained in the present
investigation, therefore, should add elements that help to improve the existing theoretical
models, thus improving the present level of understanding of the meander problem and
related phenomena.

2.2 Bar Theory

The problem of alternate bar formation in straight alluvial channels has been the
subject of numerous theoretical analyses, and can be considered as qualitatively solved after
Fredsge (1978). Nevertheless, more recent analyses like the ones by Kuroki and Kishi (1985)
and Blondeaux and Seminara (1985), have improved some specific aspects of that model.

Basically, the theory consists in the use of the shallow water wave equations in two
dimensions coupled with a continuity equation for the sediment. Linearizing the equations
while assuming that the quasi-steady approximation is valid, and adding small
double-periodic perturbations to the mean values of the flow and bed variables, a dispersion
relationship is obtained, which relates the wavelength, celerity and growth rate of the
perturbations, to flow and sediment parameters.

By specifying perturbations with different modes in the transverse direction a phase
diagram can be obtained, which allows to separate regions in which a) no bars are present
(even though ripples, dunes, antidunes, etc., can exist); b) alternate bars are present; or c)



braids and multiple rows bars are present. A diagram like this, given by Kuroki and Kishi
(1985), is presented in Fig.2.1, which specifies the bed regime as a function of the
dimensionless bottom shear stress, 6, the slope of the channel, S, and the ratio between
channel width, 2B°, and depth of flow D".
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Fig. 2.1 Kuroki and Kishi’s Regime Criteria for Meso-scale Configurations.

When the alternate bar mode is selected, the dispersion relationship allows to build
aneutral curve as a function of the wavenumber and channel width to flow depth ratio, which
corresponds to perturbations with zero rate of growth. This curve typically exhibits a
minimum, which is found to correspond to critical or threshold conditions for the formation
of alternate bars. For values of the wavenumber or the width to depth ratio larger than the
critical ones, the rate of growth is positive, implying that any perturbation is going to grow
exponentially in time. Examples of these curves can be found in Colombini et al. (1987),
Parker and Johannesson (1989), Seminara and Tubino (1989), and in Fig.3.2 of the next
chapter. Also, this analysis is presented in more detail in Chapter 3, exploring the effects that
the use of different resistance and bed-load relationships may have over the results obtained.

One of the shortcomings of the linear theory is that it predicts an exponential growth
of the unstable perturbations, therefore no finite equilibrium amplitude of the bars can be
deduced from this analysis. On the other hand, it has been found experimentally that under



steady flow conditions alternate bars do eventually reach an equilibrium amplitude, which
is of the order of the flow depth. Ikeda (1984), developed relationships aimed at predicting
the equilibrium amplitude and also the wavelength of alternate bars, based on his own set
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Colombini et al. (1987) developed a weakly nonlinear analysis that allows to predict
a finite amplitude of the alternate bars in a straight alluvial channel. This kind of analysis
typically leads to the development of an amplitude equation, which as the time tends to —o
predicts an exponential growth of the amplitude, in agreement with the linear theory, but as
the time tends to + e it predicts that the amplitude tends asymptotically to an equilibrium
value. The theory of Colombini et al. provides a simple equation for the equilibrium
amplitude of the alternate bars as a function of a small parameter €, which is defined as
e=(B-B.)/B. (where B is the ratio between half the channel width and the flow depth, and 3,
is the critical value of 8 for the formation of alternate bars). The equilibrium amplitude in
that equation is also a function of the bottom shear stress and the sediment size to flow depth
ratio. This theoretical dependency of the bar finite amplitude on the bottom shear stress is
important, because it was not taken into account by the experimental relationships of Tkeda
(1984). The equilibrium amplitudes predicted by this theory are valid only for small values
of the parameter €, nevertheless, a comparison of these results with experimental data showed
a good agreement between them, even beyond the expected limits of validity of the analysis.

2.3 Resonance

As it was pointed out before, the linear stability analysis for alternate bars provides
relationships for the rate of growth and celerity of the perturbations as functions of the
wavenumber and width to depth ratio, and also of the bottom shear stress and sediment size
to flow depth ratio. If curves representing zero rate of growth and zero celerity of the
perturbations are plotted as functions of the wave number and the parameter 3 defined
above, two characteristic points are found. The first one corresponds to the minimum of the
zero rate of growth curve, which as was explained before, is related to the critical conditions
for the formation of alternate bars and also defines the value of the most probable bar
wavelength selected in a straight channel configuration. This point is located in the region
of positive celerity, implying that any unstable perturbation of the alternate bar type in a
straight channel is going to migrate in the downstream direction. The second point
corresponds to the intersection of the neutral curves, and therefore represents a perturbation
of vanishing rate of growth and celerity, which being one of the possible natural responses
of the flow and bed topography does not develop ’spontaneously’ in a straight channel
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configuration. An example of these curves is presented in Fig.3.2 in the next chapter, and
can also be found in Parker and Johannesson (1989).

Blondeaux and Seminara (1985), discovered that as the forcing effect of the curvature
of the channel axis is taken into account, the response of the linearized system exhibits a sharp
peak for meander wavenumbers in a range of values that coincides with the range of bar
wavenumbers for the quasi-nonmigrating, quasi-nonamplifying perturbations. Therefore,
if the wavenumber of the meandering channel falls within the latter range, the alternate flow
and bed pattern originated by curvature reinforces a natural tendency of the system for steady
perturbations, which leads to a quasi-resonance phenomenon that tends to maximize bend
erosion and thus meander amplification. The wavelengths of the steady ’forced’
perturbations selected by the resonance mechanism were found to be on the order of three
times larger than the wavelengths of the ’free’ alternate bars selected by the Bar theory. A
comparison of the meander wavenumbers predicted by the Resonance theory with
experimental data and with values predicted for alternate bars showed that the observed
wavenumbers are in better agreement with the values predicted by the Resonance theory than
with those characteristic of alternate bars, which appears to support the idea that a "bend’
rather than a ’bar’ mechanism prevails in the selection of the incipient meander wavelength.

Parker and Johannesson (1989), by means of a slightly different approach confirmed
the Resonance theory first proposed by Blondeaux and Seminara. In particular they derived
a simplified linear theory which, however, seems to retain most of the essential features
exhibited by the complete theory. Parker and Johannesson proposed simple relationships
that allow to predict the resonance condition given the width to depth ratio, the bottom shear
stress and the sediment size to depth ratio. Figures showing these relationships are presented
in the next chapter.

As it is pointed out by Blondeaux and Seminara (1985) and also by Tubino and
Seminara (1990) the perturbation scheme used by the linear theories described above breaks
down in the vicinity of the resonance range because the asymptotic expansions utilized to
linearize the system of equations are not longer valid in that range. Colombini et al. (1990)
commenting on recent findings of Professor Seminara’s group in Italy, explain that a
nonlinear analysis of the resonance conditions showed that within the resonance range
nonlinear effects are able to smooth out the infinite peak of the linear solution and shift the
maximum response, associated with maximum bend growth, towards smaller values of the
meander wavelength. This seems to be confirmed by the experiments made by Colombini

et al. as already mentioned.
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Furthermore, the linear theories are not able to describe the coexistence of migrating
free bars and fixed forced bars, which, however, has been reported as possible in laboratory
experiments. The interactions between these free and forced bars appear to be responsible
for some nonlinear effects that affect the bed topography in sinuous channels, and has been
analyzed by means of a weakly nonlinear theory by Tubino and Seminara (1990), as discussed
below.

2.4 Interactions Between Free and Forced Bars

The coexistence of migrating and fixed bars in a meandering channel has been
observed in laboratory experiments by Kinoshita and Miwa (1974), Gottlieb (1976) and Fujita
and Muramoto (1982). However, the most interesting of these studies from the point of view
of the interactions between free and forced bars is the one conducted by Kinoshita and Miwa.
These Japanese researchers made an extensive set of experiments using a 13 cm wide
meandering channel covered by a mobile bed of coal with a mean diameter of 1.7 mm. The
meandering channel was modeled as a set of straight segments forming an angle o to each
other, such that the resulting wavelength was either equal to, or a fraction of, the free bars
which had been previously found to form in a straight channel with identical flow and
sediment characteristics. Two different regimes were detected depending on whether the
value of o was greater or lower than a critical value oy, which was found to be in the range
0f20° to 40°, and to depend on the meander wavelength. For o < o, migrating alternate bars
coexist with point bars formed in the channel bends. As the bars migrate downstream
different states can be observed, in which the alternate bar train is in phase with, or in
opposition to the meandering tendency of the channel. In particular it was observed that
whenever the alternate bar train is out of phase with respect to the meandering of the channel,
the meandering tendency of the flow tends to weaken and bars tend to flatten out. For o> oy,
free bars cease migrating.

The results obtained in their experiments allowed Kinoshita and Miwa to build a curve
relating the critical angle o, with the meander wavelength to channel width ratio. Such curve
is presented in Fig.2.2. Kinoshita and Miwa explained their results from a rather geometrical
point of view, stating that for the suppression of migrating bars it is necessary for the channel
curvature to be large enough so as to allow the thread of highest flow velocity, which
corresponds also to the zone of highest sediment transport, to strike the opposite bank before
another change of direction of the channel axis. It is also necessary the presence of
subsequent changes of direction, one for each bar, in order that every bar in the channel is
subjected to a similar stabilizing influence that promotes the stability of the entire train.
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Fig. 2.2 Kinoshita and Miwa’s Critical Meander Angle for the Suppression of Migrating
Bars.

Tubino and Seminara (1990), interpreted Kinoshita and Miwa’s results from a
different point of view. For them, those results suggest that it is the interaction between the
migrating free and steady forced bars which is responsible for the suppression of the former
perturbations, and furthermore, for suppression to occur, the amplitude of forced bars, which
increases with o, must exceed a threshold value dependent on the meander wavelength.
According to these authors a theoretical interpretation of this process requires a finite
amplitude representation not only of free bars, which was already obtained by Colombini et
al. (1987) as a function of the small parameter € defined before, but also of forced bars, which
should be expressed in terms of some small parameter v measuring curvature effects.

Tubino and Seminara (1990), developed a weakly-nonlinear theory to analyze the
interactions between free and forced bars. In particular they derived an amplitude equation
which allow to identify different regimes for the equilibrium solution of the free and forced
perturbations. Two critical values of the small parameter v, defined as the ratio between half
the channel width and twice the minimum radius of curvature of the channel (or half the
maximum curvature), were found : v.; and v,. The following regimes appear to be possible:
i) If vo; < vy, free bars are damped and slowed down for v < vy, and are suppressed forv > v; .
ii) If v; > v, free bars are damped and slowed down but migrate downstream for v <v, are
damped and migrate upstream (though possibly at a very low rate) for v, <v <v;, and are
suppressed for v>v.;. According to these criteria, suppression of migrating bars can be
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expected in a meandering channel provided its curvature v is greater than the critical value
vc1. The theory provides a simply expression for vy, as a function of the small parameter ¢
defined before: v.;=k¢1 €”=k1 ((B-B.)/Bc)*, where the parameter k; is a function of the
ratio between the meander wavelength and the critical wavelength of the alternate bars as
obtained from the neutral curve, the bottom shear stress, and the sediment size to flow depth
ratio, and can be obtained from Fig.9 in Tubino and Seminara’s paper. The dependence of
Ve on B as predicted by the above formula is fairly strong but could not be detected by
Kinoshita and Miwa who designed their experiments so that 8 was held constant. No simple
expression is provided for ve.

According to the results obtained by Tubino and Seminara, the minimum conditions
for the suppression of migrating bars are attained within the resonant wavenumber range of
Blondeaux and Seminara (1985), which is not unexpected, since close to resonance the forced
bar exhibits a peak which implies that lower sinuosities are sufficient to damp free bars. A
comparison of these results with Kinoshita and Miwa’s observations, showed a favorable
agreement, which was taken as a confirmation of the physical ideas underlying the theory.

14



3. LINEAR ANALYSIS OF STABILITY PROBLEM

3.1 Introduction

In what follows a revision of the linear theory for stability of alternate barsin a straight
alluvial channel as derived by Blondeaux and Seminara (1985) and Colombini et al. (1987)
is made. The critical or threshold conditions for the formation of alternate bars are derived
in terms of the wavelength, channel width to depth of flow ratio, and celerity of the unstable
perturbations. The behavior of the critical values of such variables is obtained as a function
of the bottom shear stress and the sediment size to depth of flow ratio. In particular, the
influence of using different resistance and bedload relationships on the results obtained
through this analysis is explored.

Likewise, the analysis is extended as to obtain graphical relationships for the resonant
conditions as described in the preceding chapter. A comparison of this conditions with the
predictive relationships derived by Parker and Johannesson (1989) is also made.

3.2 Linear Stability Theory

The following derivation is adapted from the papers by Blondeaux and Seminara
(1985) and Colombini et al. (1987). Their analysis is extended with the aim of exploring the
effects that the use of different resistance and bedload relationships has on the results
obtained.

The flow in a straight alluvial channel having a constant width 2B and non-erodible
banks covered by a non-cohesive sediment bed is considered. The width of the channel is
taken as large enough for the flow to be modelled as two-dimensional. Therefore, the flow
is described everywhere except for the layers adjacent to the walls where vertical velocities
cannot be neglected. Even though only depth-averaged values of the transverse velocity are
considered, account is taken of the influence that the secondary flow has on sediment
transport. Fig. 3.1 shows a sketch of the channel under consideration in which variables
utilized in the analysis presented below are defined. In that figure, a bed deformation of the
alternate bar type is assumed and the wavelength L’ of the bedform is also defined.

The analysis of Colombini et al. utilizes the St. Venant equations for shallow water
flow in a straight channel, assuming the quasi-steady approximation to be valid for a slowly
varying erodible bottom, coupled with the Exner equation for continuity of sediment,
assuming only bedload mode of sediment transport. These equations are written in the
following dimensionless form.
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Fig.3.1 Sketch of the Channel and Definition of Variables.

In (3.1), (U,V) are the dimensionless depth-averaged velocity components in the axial
and transverse directions, respectively, 7, and 7, are the dimensionless bottom shear stresses,
H is the dimensionless water surface elevation, D is the dimensionless local depth, Qg and
Q) are the dimensionless volumetric sediment flow rate per unit width components in the
axial and transverse directions, respectively, and Fy is the unperturbed Froude number of the
flow. Also, Qg is the ratio between the scale of sediment discharge and the flow rate and 3
is the channel width to depth of flow ratio, given by:

1

_di[(e/o-D)gd |2 B (3.23,b)

= c—

(1-p) Ds Uy ' Dy

Qo

where p;and d,” are the density and diameter of the uniform sediment, p is the water density,
g is the gravitational acceleration, and p denotes sediment porosity. Likewise, Uy and Dy’

16



are average velocity and depth for the uniform unperturbed flow, respectively. In (3.1) the
variables have been made dimensionless in the form:

(U, v)=t,(U,v) , (H,D')=D,(FHD) (3.33,b)
(s )=B (sn) , (thm)=eU; (te7) (33¢,d)
(0L =d [(@le-DEed F(Q.Qn) r'=%t (3.3¢,1)

In order to close the system of equations formed by (3.1), both resistance and sediment
transport relationships are needed. Let express the bottom shear stress vector T in terms of
a friction coefficient C defined by the relationship:

T=(1,5)=(UV)(U+V23C (34)

The dependence of C on flow parameters is not known for general flow conditions
as those defined by alternate bars, however, since the flow to be studied is only slightly
perturbed from the case of steady flow in straight channels, the friction coefficient C is
evaluated using the Engelund-Hansen resistance equation, for the appropriate bed regime,

as follows:
Flat Bed : Ctmig+ 250 (=2 3.5
t Bed: = ; n(2.5d,) (3.5a)
Dune-covered Bed : (_'9___ )';'=6+2.5 In ( 6 D ) (3.5b)
6 C 2.50d,
0 <006+0462 |, f-—=%m (3.5
(e:-0) g d: .

In (3.5), 6 is the Shields parameter defined in terms of the unperturbed bottom shear
stress 7o' and ©’is the fraction of 8 associated with grain resistance. Also, d,is a dimensionless
sediment diameter defined as d;=d, / Dy’

The sediment transport is assumed to be mainly in the bedload mode. Special
attention is paid to the modeling of the effect that the secondary flow and transverse bedslope
exert on the direction and intensity of the bedload motion. The model of Parker (1984) based
on previous work by Engelund (1981), is used, for which:

Q=(0:, 0.)=(cosd, sind ) @ (3.6a)

r_ 9(F-D)
ﬁg‘%‘ on

sind =V (U2+V? )77 - (3.60)

where, @ corresponds to a function describing the bedload transport in the unperturbed
uniform flow and 8§ denotes the angle between the particle velocity and the axial direction.
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Also, the value of the parameter r in (3.6b) is taken as 0.3 following the arguments given by
Colombini et al.

Two different bedload relationships are used to evaluate ¢, namely, Meyer-Peter and
Muller and Engelund-Hansen formulas.

Meyer-Peter and Muller : ©®=8(0-6, )% ; 6. = 0.047 (3.72)
Engelund-Hansen : @ = 9—'{%‘1 0% (3.7)

The linear theory analyzes the conditions under which the unperturbed uniform flow
loses stability to small double periodic perturbations, in the s and n directions. The following
linearization of flow parameters is performed, where A represents a small parameter.

(U;V;DyH)':(lsO;l;HU)+A(U1sV1$D1!Hl) (383)

(1’,, Tn s Q.t$ Qn)z(cﬂv 0’ q:'o- U)+A(rslvrnl’Q:ls Qn.l) (38b)

In (3.8), Cp and @, denote the friction coefficient and bedload transport of the
unperturbed uniform flow, respectively. By substituting (3.8) into the system of equations
(3.1) and performing a linearization, the following homogeneous differential problem is
obtained,

-‘%{-jl+%+ﬁ(r,l—DlCn)=0 (3.9a)
aa—I:+-%%+ﬁrm=0 (3.9b)
LR L L B (39¢)

ds on das
Fgaa—‘t?-aa—li‘+go[%ﬂ+%]=0 (3.9d)

where, 751, Tn1, Qg1 and Qp; are expressed in the form:

Tu=C (s, U +s,D) T =GC V) (3.10a)
Q=@ (fU+LD) , Qu=%(V-R(FEZL D) (3.100)
with,
si=2(1-¢cr)! . sa=cp(l-cr)! (3.11a)
fi=2®;(1-¢cr)!' , fi=@®p+cp®r(l-cr)' R=ﬁ;_1_ (3.11b)
E
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In (3.11), 6 is the Shields parameter of the unperturbed uniform flow, and cr, cp, $
and ®p are defined as:

1 aC 6, aC 1 % _ 6, 30

PR, B L B B8 S R (3.12)

s C ?
GCo 3D | p, Co 9 |, @, D | ,, @, % |,

and can be evaluated from the relationships (3.5) and (3.7).

Now, the perturbed quantities are assumed to be represented in wave form by a
double periodic translating sine function of exponentially variable amplitude. The
wavelength of the perturbation in the transverse direction is assumed to correspond to twice
the channel width, thus selecting perturbations of the alternate bar type. Note that selecting
smaller wavelengths in the transverse direction, perturbations of the multiple row bar type
can be analyzed in the same fashion. The perturbation can be written as:

(U,D,H,V, )=exp(Qt)(S(n)u,, S(n)d,, S(n)h,, C(n)v,)E(s,t)+cc (313)

where, c.c denotes complex conjugate, and Q the growth rate of the perturbation. S(n), C(n)
and E(s,t) are defined in the following form:

5(n')=sin(%m) , C(n)=c05(%:rn) (3.14a,b)
E(st)=ep (i(As-wt) (3.14c)

where \ and o are the wavenumber in the axial direction and angular frequency of the
perturbations respectively. Substituting (3.13) and (3.14) into (3.9) and (3.10), the following
linear homogeneous algebraic system is obtained:

a; u1+a,g V1+a,'3 h1+ﬂ“ dl = 0 s (i= 1,2,3,4) (3.15)
with,

a11=(il+ﬁcl)sl) » ﬂu""'n ’ ala:iﬁv s au=ﬂc|)(52—1) (3163)
G =0 , an=ii+8GC , an=% . Gu=0 (3.16b)

. n ;
ﬂ31=ll » 332':-'5' ’ 03,3‘0 ’ 034=Il (316(:)

. E 1 n? ;

ay=ilQy® fi , ﬂ41='Qn¢oE ’ 043=F3(Qc¢oTR+Q“Iﬂ’) (3.16d)
a“=QG¢n(flﬁ~"T‘R)-g+faj (3.16¢)

The homogeneous algebraic system (3.15) has a non trivial solution only if the
determinant of the matrix formed by the coefficients a;; is zero. This condition defines the
following dispersion relationship:
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(Q-iw) _ AA+IAHA+A4A+i A A+ 4

0, @, By+iB,A+ByA+i B, A° (327)
where,
2 R’
a=(hh) » A= T (R-1)+(hF)GCP (3.18.b)
2 ] r
A3=EZ-(1—13—C0R—FSCDR (5:-5-2)) (3.18)
7?2 ' x? Rr
Aa“"4— ((F%CER +Co)(51-51'1)f3"T ?—Co(ﬂ(-":-l)“slfi)ﬁ) (3.184)
x? '
A5="'(‘4_ )2 CoS:R (3-183)
and
w2 z?
Bu=—T Cos: B ’ B, =F; G (5,-5,-1) B* _T (3.19,b)
Bo=CoBf (F(si-52+2)-1) , By=(F-1) (3.19,d)
with
R =L
6,7

From (3.17) relationships expressing the growth rate and angular frequency of the
perturbations are obtained as follows:

(A A*+ A; A%+ As ) (Bo+ By A% )+ (A A%+ A A) (B, A+ Bs A% )
(Bo+B, A2 ¥+ (B, A+ By A° )

Q=-0, 9 (320)

(A A3+ A A) (Bo+By A% )=( Ay A*+ A; A%+ As ) (B, A+ B;s A% )
(Bo+ By A% P+ (B, A+ By A° )

o= 0, P (3.21)

It can be concluded from the preceding set of equations, that Q and w depend only
on four parameters, namely, A, 8, 6p and dg, since sy, s, 1, f5, Fy, Cp, $g and Qg are functions
of 6y and d; only. Therefore, given fixed values of 6y and d,, (3.20) and (3.21) define
parametric relationships for B as a function of A, depending on the values of Q and w. In
particular, by setting Q=0 and w=0 in those equations, two different neutral curves are
obtained in the plane (A, B), for which the growth rate and angular frequency of the
perturbations vanish.

An example of those neutral curves is presented in Fig. 3.2, for the following
conditions: 6p= 0.3; ds=0.01; Meyer-Peter and Muller bedload relationship (3.7a ), and the
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flat bed Engelund-Hansen resistance equation (3.5a). This corresponds to the same example
presented by Colombini et al. (1987) and also by Parker and Johannesson (1989). In that
figure, any point located inside the growth rate neutral curve (2 =0) has a positive rate of
growth and therefore corresponds to an unstable perturbation. Likewise, any point located
to the right of the angular frequency neutral curve (w=0) has a positive angular frequency
and therefore corresponds to a perturbation that migrates in the downstream direction.
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Fig.3.2 Neutral Curves for Alternate Bars-Linear Theory (6p=0.3; d;=0.01).

Also, in Fig. 3.2 two characteristic points are distinguished. The first one corresponds
to the minimum of the growth rate neutral curve, which as was discussed in the preceding
chapter defines the critical or threshold conditions for the formation of alternate bars. The
second point corresponds to the intersection of both neutral curves, defining a perturbation
of vanishing rate of growth and angular frequency, which as was also discussed in Chapter
2, corresponds to perturbations of the resonant type, provided the channel is a meandering
channel of the adequate wavelength. This last characteristic point is not a possible response
of the system if the channel is straight, therefore incipient perturbations of the alternate bar
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type have always a positive angular frequency, or in other words, they migrate in the
downstream direction.

In what follows, graphical relationships are derived relating the values of A, B and w
of incipient alternate bars at the critical point, as functions of 8 and d..

3.3 Critical Conditions for the Formation of Alternate Bars
By setting Q=0 in (3.20), the following equation is obtained, which for fixed values
of 6y and d; allows to compute the growth-rate neutral curve in the plane (A, B).

adl®+a, ' +a, AP +a =0 (3.22)

where,
a,=AsBy, , @, = A, By+ As B, + A, B, (3.233,b)
a; = A, By+ A; B+ A, B, + A, B ; ay, = A, B, + A; Bs (3.23¢,d)

This neutral curve has a minimum, as can be observed in the example of Fig. 3.2, which
defines the critical values A\ and {3, for incipient alternate bars. By substituting A; and 8. in
(3.21) the corresponding value w, is obtained, which as A; and B. depends not only on the
values of 6. and d;, but also on the bedload and resistance equations selected. Three different
combinations of the equations (3.5) and (3.7) are used in what follows with the aim of
analyzing the effect of different resistance and bedload equations on the threshold conditions
for the formation of alternate bars.

By combining the Meyer-Peter and Muller bedload equation (3.7a) with the flat-bed
Engelund-Hansen resistance relationship (3.5a), the following expressions for the
parameters S;, Sp, f; and f; are obtained:

3 6,
6y -6, ’

i=2 , $=-5G% , fi= (3.24a-d)

With these relationships, the values of 8, and A, are computed from (3.22) as functions
of 6 and d,, using the definitions (3.18), (3.19) and (3.23). The results obtained are presented
in Figs. 3.3 and 3.4, respectively.

By combining the Engelund-Hansen bedload equation (3.7b) with the flat-bed
Engelund-Hansen resistance relationship (3.5a), sy, s, f; and f; can be expressed as:

=2 , s=-5GT fi=5 , f=-75C1 (3.252-d)

As before, with these expressions the values of 3. and A\, are computed from (3.22)
as functions of 6y and ds, using the definitions (3.18), (3.19) and (3.23). The results obtained
are presented in Figs. 3.5 and 3.6, respectively.
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Fig.3.3 B, as a function of 6y and d,. Linear Theory. Meyer-Peter and Muller Bedload
Relationship; Flat-bed Engelund-Hansen Resistance Equation.
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By combining the Engelund-Hansen bedload relationship (3.7b) with the
Engelund-Hansen resistance equation for dune-covered beds (3.5b), sy, s, f; and f; can be
expressed as:

Sl=2(1—67)-] 3 51=Cp(l-fr)'l i fl‘(s-'sz)(l—(:r)-l (3-263—(3)
fi=co((25-cr)(1-¢r)"'-1) (3.26d)
where,
' '
90 1 -08&‘04 60) 90 1
s NN ik . 2

Cp (60 Cu)2 Cr (%.9"}*0.460)(14-5(99 Ca)z) (3 73.,b)

O . 1 0.06 1 .
(g Gl =[6+25Mn ((=+046)55=)] (3.27¢)

Again, with these relationships, the values of 8; and A, are computed from (3.22) as
functions of 6y and dg, using the definitions (3.18), (3.19) and (3.23). The results obtained
are presented in Figs. 3.7 and 3.8, respectively.
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Fig.3.7 B. as a function of 6y and d,. Linear Theory. Engelund-Hansen Bedload
Relationship; Dune-bed Engelund-Hansen Resistance Equation.
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Relationship; Dune-bed Engelund-Hansen Resistance Equation.

As it can be concluded from Figs. 3.3 to 3.8, the use of different resistance and bedload
relationships has important influence on the results obtained for B, and A, as predicted by
the linear theory. Comparing Figs. 3.3 and 3.5, it is clear that the bedload equation selected
has major incidence not only on the values but also on the behavior of {8 as a function of
B, specially for values of this parameter lower than 0.20. In fact, while for the Meyer-Peter
and Muller formula B increases with j in that range, for the flat-bed Engelund-Hansen
equation that behavior is exactly the opposite. On the other hand, from Figs. 3.4 and 3.6,
it can be noticed that the critical wavenumber ). is less sensible to the bedload equation
selected than 3., showing a slightly different behavior in one case or the other. This behavior,
however, becomes more markedly different in the range 63 < 0.10. Comparing Figs. 3.5, 3.6,
3.7 and 3.8, it can be concluded that the hydraulic resistance to the flow also has major
influence on the results obtained for B. and A, as it is reflected by the use of a flat-bed or
a dune-bed resistance equation. In general terms, much lower values of 3. are obtained for
the dune-bed formula than for the flat-bed equation, while much larger values of A result
from the use of the dune-bed equation than from the use of the flat-bed formula.

In order to get an idea of the order of magnitude of the migration speed of the
incipient alternate bar perturbations, the critical angular frequency w, was computed by
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replacing the values of 3. and A, as functions of 6y and dg, into 3.21. The Engelund-Hansen
bedload formula and the flat-bed Engelund-Hansen resistance equation were used in the
computation. The results obtained are presented in Fig. 3.9.

Finally, with the aim of obtaining graphical relationships that allow an easy
comparison with the experimental results obtained in the present research, the values of the
celerity c.” and wavelength L’ of the alternate bars at the critical point, computed as:

" o, 2
c=U,— , L:=B— 3.28,b
° 7 7 ( )

are presented in Figs. 3.10 and 3.11 respectively. In preparing those figures, the
Engelund-Hansen bedload formula and the flat-bed Engelund-Hansen resistance
relationship were used.
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Fig.3.9 o, as a function of 8y and d;. Linear Theory. Engelund-Hansen Bedload
Relationship; Flat-bed Engelund-Hansen Resistance Equation.

3.4 Resonance Conditions

In what follows, an analysis similar to that presented in the preceding section is
developed with the aim of obtaining graphical relationships for the conditions associated with
the resonance phenomenon as described in Chapter 2.
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As it can be observed in Fig. 3.2, one of the possible responses of the flow-sediment
system to the linear stability analysis performed in 3.2, corresponds to perturbations of zero
rate of growth and zero migration speed. These perturbations however do not develop
naturally in a straight channel, since in that situation the most probable perturbations to
develop correspond to those associated with the critical point analyzed in 3.3 (Blondeaux and
Seminara, 1985). Nevertheless, if the channel is not straight but has a small sinuosity, such
that its wavenumber falls within the range of the vanishing rate of growth and celerity
perturbations, then according to the analysis of Blondeaux and seminara (1985), the forcing
effect of the curvature of the channel axis does select such kind of perturbations, thus leading
to the resonance phenomenon discussed in Chapter 2.

By setting w=0 in (3.21), the following equation is obtained, which for fixed values
of 83 and dg allows to compute the angular frequency neutral curve in the plane (A, B).

@ A%+ ay A+ a, Al+ag =0 (3.29)

where,
Go = As Bi-Ay By ., @y = Ay B + As By~ A; Bo-Au B, (3.30a,b)
az; = Al .81 + A3 Bj,"AZBZ s a = A] BS (3-3‘0C,d)

If the system of equations formed by (3.29) and (3.22) is solved simultaneously, then
the resonant point (Agr, Br) is obtained, for which w=Q=0. This resonant point, as the
critical point derived in 3.3, is a function of 6y and d; and also of the bedload and resistance
equations used in its derivation.

Figs. 3.12 to 3.15 present the results for Ag and Bg, obtained by solving the system
formed by (3.29) and (3.22). In those figures the resonant variables are plotted as functions
of 6pand d,. Figs.3.12 and 3.13 show the results corresponding to the use of the Meyer-Peter
and Muller bedload formula (3.72) and the flat-bed Engelund-Hansen resistance equation
(3.5a). Likewise, Figs. 3.14 and 3.15 present the results corresponding to the use of the
Engelund-Hansen bedload relationship (3.7b) and the flat-bed Engelund-Hansen
resistance equation (3.5a).

As can be observed in those figures, the bedload equation utilized in the analysis plays
an important role in the results obtained for the resonant values of 8. While Meyer-Peter
and Muller formula gives values of Bg in the range 10-100, Engelund-Hansen relationship
generates values of that parameter in the range 7-16. This extremely different range of values
is not so unexpected, since as can be observed in the example of Fig. 3.2, the slope of the
neutral curve Q=0 in the resonant zone is very steep, and therefore any small variation in
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the neutral curve w =0, can lead to extremely different values of Bg. On the other hand, Figs.
3.13 and 3.15 show that the bedload equation utilized in the analysis affects only slightly the
results obtained for the resonant wavenumber Ar, which in both of the analyzed cases is in
the range 0.10-0.15. By comparing this range with the range of values of the critical
wavenumber A; as obtained in Figs. 3.4 and 3.6 for flat-bed conditions: 0.3-0.5, it can be
concluded that the resonant wavelength, which is associated with incipient meandering
wavelength after Blondeaux and Seminara (1985), is two to three times larger than the
wavelength of incipient alternate bars.

As was mentioned in Chapter 2, Parker and Johannesson (1989) derived explicit
predictive relationships for the resonant conditions of alternate bars, which however are not
expressed in terms of (Ar, Br). In the following, their conditions are translated to the
nomenclature utilized in the analysis presented above, in order to allow an easy comparison
of the results.

The linear analysis of Parker and Johannesson (1989) leading to the resonant
conditions for alternate bars is basically the same as that derived herein, however differences
in treating the governing equations and in the simplifications introduced make both
approaches slightly different. Using the Engelund-Hansen bedload formula and the
Engelund-Hansen resistance equation for flat-bed conditions, the resonant values of 8 and
A, as predicted by Parker and Johannesson (1989), can be written as:

5.5 o 2 (0522+1) 1
. = 6.41 In (== b e R, T 3.31
s (GG —m (331a)
AR=1.4S(—S° )-%(m(‘zs))-l (3.31b)

Figs. 3.16 and 3.17 show Bgr and Ay given by (3.31), plotted as functions of 8y and d;.
In those figures 2 constant value of 6. =0.05 was used in order to avoid the introduction of
an independent expression for this parameter.

As it can be observed in Figs. 3.16 and 3.17, the values of Br and AR predicted by the
theory of Parker and Johannesson are larger than those presented in Figs. 3.14 and 3.15 for
the same bedload and resistance equations. Typically, values of Br predicted by Parker and
Johannesson are in the range 15-30, which correspond to about twice the magnitude of the
values obtained in the present analysis. Likewise, the values of Ag predicted by Parker and
Johannesson are in the range 0.15-0.30, which also correspond to about twice the magnitude
of the values obtained in the present analysis. As it was pointed out before, the resonant
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wavenumbers obtained in the present analysis are in the range 0.10-0.15, which led to the
conclusion that the resonant wavelength is of the order of two to three times the wavelength
of incipient alternate bars. Following the analysis of Parker and Johannesson, that conclusion
is relatively well supported, as the resonant wavelengths obtained through this analysis are
still of the order of two times the wavelength of incipient alternate bars.


http:0.10-0.15

4. NUMERICAL MODEL FOR FLOW AND BED DEFORMATION IN MEANDERING
CHANNELS

4.1 Introduction

In the present chapter some numerical results obtained with a simplified
two—dimensional numerical model for the flow and bed deformation in meandering channels,
are presented. The numerical model was developed based on models available in the
literature, particularly on that of Shimizu and Itakura (1989a). The main objective of the
application of the model is two fold. In the first place it will help to understand the principal
characteristics of the physical processes involved. In the second place, it will provide an
opportunity to evaluate how well does the set of governing equations commonly used in
analytical and numerical studies of flow and bed deformation in meandering channels do in
the modeling of such phenomena, by providing numerical data to be compared with the
experimental results obtained in the present research.

4.2 Governing Equations

Different sets of governing equations have been used in analytical and numerical
studies on the modeling of flow and bed deformation in meandering channels (see for
example River Meandering, Ikeda and Parker eds., 1989), however the most successful
attempts have considered at least the use of momentum equations in axial and transverse
directions coupled with continuity equations for both water and sediment, making use of the
quasi-steady approximation for a slowly varying erodible bottom. In general, the assumption
that the channel width and radius of curvature are large compared to the flow depth is valid,
which allows to neglect vertical components of velocity and also to consider the hydrostatic
pressure distribution as valid. These assumptions, clearly break down in the vicinity of the
channel banks, however these defects are local in nature and have a small effect on the overall
flow pattern. Accordingly, most of the studies use vertically~averaged equations (Smith and
McLean, 1984; Blondeaux and Seminara, 1985; Shimizu and Itakura, 1989a), even though
the use of the non-averaged form for some of the governing equations has also been
considered in the literature (Parker and Johannesson, 1989; Nelson and Smith, 1989). Since
the use of vertically-averaged equations precludes the adequate modeling of the transverse
sediment transport, some of the studies revised have included explicitly the effect that the
component of secondary flow with zero vertical average has on the direction and intensity
of the bedload motion. The models of Parker (1984) and Hasewaga (1981) are typically used
with this purpose (Blondeaux and Seminara, 1985; Shimizu and Itakura, 1989a; Parker and
Johannesson, 1989).
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The channel under consideration has a constant width 2B, non-erodible banks,
non-cohesive uniform sediment bed, and a variable curvature along its axis. Most of the
models revised utilize intrinsic coordinates (s,n) to express the governing equations, where
s denotes the axial coordinate, usually measured along the centerline of the channel, and n
denotes the transverse coordinate. Some of the models express the governing equations in
terms of the local value of the radius of curvature r, although most of them use the centerline
value of this parameter, R, usually written in terms of the centerline curvature C, where
C=1/R. Fig. 4.1 shows a scheme of the channel, defining the system of coordinates and other

variables used in the analysis.

Fig. 4.1 Scheme of the Channel and Definition of Variables.

Of the models revised, the numerical model of Shimizu and Itakura (1989a) is the one
that makes use of the most complete form of the two-dimensional depth-averaged set of
governing equations. This set of equations is written as:

U W UV 8H T, F) U 3 oU
RS, 7 it =—pg—- +2— (€e— )+— (e — i
Vo T m ¥ &5 oD~ bEg Ity Legd Cdila)
1% vV U? 8H 1, 3 1% 3 F1%4
— 4+ V——=—g—-———4+— (e— )+2— (e—
Uas+ én r gan eD as(eas) zan(ean) (4.1b)
qUD) 13arvVD)_, (4.1c)
as r on
L/ W (4.1d)

a 1-p as r an
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where, (U,V) are the depth averaged velocity components in s and n directions respectively,
7s and T, are the bottom shear stresses, H is the water surface elevation, D is the local flow
depth, Qs and Q,, are the volumetric sediment flow rate per unit width components which are
assumed to correspond mainly to bedload transport, p is the water density, g is the
gravitational acceleration, p is the sediment porosity, r is the local radius of curvature and
€ is a depth-averaged diffusion coefficient for fully turbulent flow.

As it is pointed out by Shimizu and Itakura, the diffusion terms are accounted for in
their model because of numerical stability reasons, and not due to their actual physical
importance. If e=01in (4.1), then the set of equations used by Blondeaux and Seminara (1985)
in their analytical study is obtained. Parker and Johannesson (1989), also in a theoretical
analysis, used a set of equations similar to (4.1), however they derived a non-depth-averaged
version of the transverse momentum equation (4.1b). Smith and McLean (1984) also
assumed € =0, however they did not take into account the bed variation in their analysis, thus
neglecting the sediment continuity equation (4.1d). These authors also derived a simplified
form for the transverse momentum equation based on order of magnitude considerations.

Neglecting € in (4.1) and expressing the equations in terms of the centerline curvature
C, the following system of equations is found:

ol aU C dH

ZE b P e TR o 4.
Uas+ an+(1+nC)U gas oD (4.22)
v W _ € o %

s an (1+nC) Ean oD (420)
aUD) 1 3(1+nC)H)VD) _
s (1+nC) an . (426
a1 a0, 1 (W(1+nC) Q) _ (4.2d)
b—_ (== )=0
o 1-p “ 8 (1+nC) an

where s denotes the local value of the axial coordinate and not the value associated with the
centerline of the channel. Smith and McLean (1984) (see also Dietrich and Whiting, 1989
and Nelson and Smith, 1989) using scaling arguments showed that (4.2b) can be reduced to:

C aH (4.3)

2=g_.--

(1+nC) an

equation which has also been used by Shimizu and Itakura (1989b).

From Fig. 4.1, the following relationships can be derived:
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where 1 denotes bed elevation. This variable can be expressed in terms of the mean slope
of the channel such that:

n=1-Ss+7 (4.52)
a r
_rf-m_so+£?._ 4 ﬂ:i—q.— 5 ﬂ=i??_. (‘st"'d)
as as an on ot at

where 1o denotes the value of the mean bed elevation at s=0, Sy is the slope of the channel
and n’ denotes the local deviation of the bed elevation with respect to the mean value defined
by the slope of the channel. Fig. 4.2 shows a sketch for the definition of these variables.

Fig. 4.2 Sketch for the Definition of Variables.

Using relations (4.5) and expressing momentum equations in flux form, which is useful
for the development of the numerical scheme presented in the next section, the system (4.2)
can be rewritten as follows:

a(Ua:D)+(1+1nC) a((1+n§n)UVD)=_gD(%?_SU+E&%: _% (4.6a)
E(T))*(HIRC)a«]”ai)vzm'(wim(UzD)z'g(%+%)_% s
a((;sD)+(1+]nC)a((1+naf)VD)=0 (46c)
%%:+'1_i;(6a_%+(1+1n6‘)6((1+:1'3C)Qn))=0 (46d)

Following Smith and McLean (1984), (4.2b) can be reduced to:
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C 2 g (2R, (4.7)

In order to close the set of governing equations in any of the forms written above,
resistance and bedload relationships are needed to express bottom shear stresses and the
components of sediment transport rate as functions of flow and sediment parameters.
Following Shimizu and Itakura (1989a), Manning’s equation is used in what follows as
resistance relation, assuming the wide channel approximation to be valid, such that:

2 2
L8 uui+viyr |, &% yprep? )2 (4.8a,b)

¢ D3 e pi
where np, denotes Manning’s coefficient. This coefficient is calibrated using the experimental

data collected in the experimental study made as part of the present research, thus reducing
the sources of error introduced by the selection of the resistance relationship.

To model the sediment transport rate in the axial direction, Qs, the Engelund-Hansen
bedload formula is used, which as will be discussed in following chapters represents
adequately the sediment transport measured in the experiments made as part of the present
research. This formula is written as:

Q,=((9’—é'—‘-’-)gdi)%¢ (49)
with @ given by:
=£)_.5; 25 o=t -2 - %
® z 6 . G (6+m(2_5d, ) , 6 TETSIT] (4.10a—)

where ps and d; denote density and diameter of the uniform sediment, Cy is a friction
coefficient and 6 represents the Shields parameter.

The modeling of the transverse sediment transport is perhaps the most crucial point
in the whole analysis of bed deformation in meandering channels. Since only the
depth-averaged value of the transverse velocity is considered in the governing equations
special attention is given to introduce explicitly the effect of the secondary flow with zero
depth-average in the model for the lateral sediment transport component. Also, this variable
is affected by the component of gravity due to the transverse slope of the bed developed
because of the curvature of the channel axis. In general both aspects discussed above have
been modeled by different authors by using the equation developed by Parker (1984) based
on previous work by Engelund (1981) or the one derived by Hasewaga (1981), (see Blondeaux
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and Seminara, 1985; Parker and Johannesson, 1989 and Shimizu and Itakura, 1989a). The
version of Parker’s equation used herein is written as:

0. V c roong
JEE. s 2 s 5 s 411
0. U 7(1+nC)D g3 on ( )

where r is a coefficient which has been given different values by different authors. For
instance, the following values has been used in the literature: 0.30 (Blondeaux and Seminara,
1985), 0.37 (Shimizu and Itakura, 1989a), 0.60 (Parker and Johannesson, 1989). In the
numerical model derived herein, this coefficient will be taken as a parameter.

4.3 Numerical Scheme

In deriving the numerical scheme, the set of governing equations (4.6) is utilized, in
which the transverse momentum equation (4.6b) is replaced by its simplified version (4.7).
This system poses a boundary value problem for the flow variables (U,V,D) and an initial
value problem for the bed deformation n’. This is because the quasi-steady approximation
has been used, which assumes that the time scale of the flow response to bed changes is much
smaller than the time scale of those changes. In other words the momentum and water
continuity equations are solved for (U,V,D) each time step assuming the bed is fixed, and then
the sediment continuity equation is used to carry on the bed deformation in time using the
values of the flow parameters just computed.

Herein, the set of governing equations is solved using an explicit finite difference
scheme, such that U is obtained from the axial momentum equation (4.6a), D is computed
from the transverse momentum equation (4.7) starting from the centerline value, which is
adjusted such that the water discharge is constant along the channel, and V is solved from
water continuity equation (4.6c). With flow parameters known, )’ is solved at each time step,
also explicitly, from sediment continuity equation (4.6d).

Only one wavelength of the meandering channel is considered in the numerical
modeling. As initial conditions, uniform flow and flat bed (n’=0) are assumed in the whole
channel length. Likewise, at each time step periodic boundary conditions are applied for flow
parameters and bed deformation. The computation is carried on until the bed deformation
reaches an equilibrium in time.

In what follows, the discretization of the governing equations is presented.
4.3.2 Discretization of Axial Momentum Equation

Equation (4.6a) is discretized using the staggered grid shown in Fig. 4.3. Following
Patankar (1980), an upwind scheme is utilized to compute the fluxes in axial and transverse
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directions and the source term represented by the right hand size of the equation is linearized
as a function of U. 7 is expressed in terms of flow parameters by using (4.8).

The finite difference form of the axial momentum equation can be written as:

KiUj=K Uj 1+ K U +1j+ K Ui_1j+ K + K ( Djj-1-Djj ) (4.12)
where,
K,=F, , K=|-F,0] , Kk=|F,0] , K=B , K=A (4.13a-¢)
E=KE+KE+K+C (4.13f)
j=1 ] j+1 ' ] j+1
i-1 i-1
\ 4 An
S C;
i —’ . > 1 . nj
Asjj
An
i+1 |
‘.
®p;, Pu Vv
Fig. 4.3 Staggered Grid used by the Numerical Scheme.
and,
F.=2U; Uj-1 (Uj+ Uj-1 )™' An Dij_q (4.14a)
¥V woap Viw gien (Dij+Djj-1+Di+1j+ Di+1j-1)
F, = As;i_1+ As; +15- 4.14b
(Vi+]j+Vi+lj-1)( u-1 F+1-1) 4 ( )
Vi Vii-1 (Dj+ Djj.1+ Di-1j+ Di_15-1)

Fo=e———"—— (As;_1j-1+ As;_1 4.14c
(Kj"'vﬁ-l)( i-1-1 i ) 4 ( )
A=gAnh (4.14d)

n,? U.® Asj_1 An Pt
B=gS Asj_1 AnD.+g—7 . T - (%ij-7%ij-1) g &An D. (4.14¢)
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n,?
=g—"— As;i_1 An
C gD.% -1 (4.14f)

1 1 :
D-="5(D=}+ij-1) , U.=U; , V-=;(Vg-1+fo+K'+1j-1+V}+1j) (4.14g-1)

with | a, b |, in (4.13), denoting the maximum value between a and b.
4.3.2 Discretization of Transverse Momentum Equation

Using the staggered grid of Fig.4.3, the finite difference form of (4.7) can be written

as:
v C. An Ui+ Uj+1+ Ui+ Uim1j+1
i-1; = Dy + ii—Ni-1i ) — 4 4.15
D; 1j ;"'(7171 i Ij) g(1+n-1C-)( 2 ) ( a)
v C. An Ui+ Uj+1+t Ui+ 1+ Uit 1541
Disoqr® Digh { tomiiose 1) 2 4.15
i+ 1j ij ('?j TI+1_;) g(1+n,C.) 4 ) ( )
with,
1 1 1
C-='5(Cj+c_j_1) 3 rz-,=5(nf+n,'-1) ; ’1-2=E(ﬂi+ﬂ:‘+1) (4.16a-c)

where (4.15a) is used to compute values from the centerline to the left bank and (4.15b) is
used to compute values from the centerline to the right bank.

4.3.3 Discretization of Water Continuity Equation

Based in the same staggered grid of Fig. 4.3, the finite difference form of the water
continuity equation (4.6c) is written as follows:

1”;‘+1j=% V:}"’% Ug-% Ui+1 (4.17)
where,
A’ =% (Dijj+ Dit1j) (Asiyqj-1+ As; 415+ Asjjo1 + Asjj ) (4.182)
B' =-} (Dyj+Di-1j) (Asj_1+ Asj + Asi1j-1 + Asi_1 ) (4.180)
C' = (Dj+Dj-1) &n (4.18)
D' = (Dj+Dj+1) M (4.184)

In computing the transverse velocity V from (4.17), the impermeability of channel
walls to lateral water flow is imposed as an extra boundary condition.
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4.3.4 Discretization of Sediment Continuity Equation

Sediment continuity equation (4.6d) is discretized using the staggered grid shown in
Fig. 4.4. This equation is written in finite difference form as follows:

At
i+l o g
Ty T ¥ T (1-p) A Mn

[M(Q¢E+1‘Qs%)+(m'1 Qn?+1j"ﬁs*2Qn3)] (4'19)

with,
1 20a
As.=5(13-'-‘:j+mij—1) (4200
1 20b
Asey = 7 (Asij+ Asiyj+ Bsijo1 + Asi4 1j-1) (4210)
1
Asy = = (Asij + Asi_1j + Asjj_1 + Asi_3j-1 ) (420)

where the superscripts n and n+1 in (4.19) denote time level. In solving (4.19), the
impermeability of channel walls to transverse sediment transport is imposed as an extra
boundary condition. The values of the sediment transport rate components Qg and Qy, are
evaluated using equations (4.9), (4.10) and (4.11) presented above.

i-1 j j+1 j j+1
i-1 i-1
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'

Fig. 4.4 Staggered Grid used by the Numerical Scheme.
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4.4 Numerical Simulation of Flow in Curved Channel

With the objective of checking the reliability of the numerical model described above
in the simulation of two-dimensional flow in curved channels with fixed bed, a comparison
between the results obtained from the application of the model with the classic experimental
results of Rozovskii (1957) is presented next.
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The experimental setup corresponds to a fixed bed rectangular channel having a width
of 0.8 m and describing a 180° curve with a radius of curvature of 0.8 m. The water discharge
is 12.3 I/s and the slope of the channel is zero. Fig. 4.5 presents the numerical results for the
velocity distribution along the channel axis at different cross sections obtained for values of
Ax=0.25 m and Ay=0.1 m, together with the corresponding experimental measurements
made by Rozovskii. Fig. 4.6 shows the numerical results obtained in terms of the values of
water depth along three different axis along the channel, namely left wall, centerline and right
wall, plotted together with the corresponding experimental results of Rozovskii.
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Fig. 4.5 Numerical Results for Flow in Curved Channel. Comparison with Rozovskii’s
Experiment.

A general good agreement between simulated and observed velocity distributions is
apparent from Fig. 4.5. Maximum differences are observed for the velocities at the inner wall
in the zone of the curve, which tend to be overestimated by the numerical model. In spite
of those differences, the simplified model utilized in the simulation appears to reproduce
adequately the general tendencies of the observed velocity distribution, such as the lag in the
response to the forcing effect of the curvature. From Fig. 4.6, it can be concluded that the
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model also reproduces adequately the water depth variation along the centerline and right
wall of the channel, however it does not predict accurately the water depths along the left
wall of the channel. In fact, the model tends to overestimate the depression of the water
surface in the inner part of the curve thus generating smaller values of the flow depth in that
zone than those observed in the experiments. This defect can be attributed to the use of the
simplified form of the transverse momentum equation (4.7), which is valid for small channel
curvatures, such as those of incipient meanders in alluvial channels. From this point of view,
Rozovskii’s experiment constitutes a severe test to the numerical model developed herein.
As a matter of fact, the dimensionless curvature parameter v, defined as v=Cp,,B/2, takes
the value v=0.25 for Rozovskii’s experiment, while for incipient meanders this parameter
usually takes values in the range v < 0.05 (Colombini et al., 1990).
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Fig. 4.6 Numerical Results for Flow in Curved Channel. Comparison with Rozovskii’s
Experiment.

From the results presented above, it can be expected that for small values of v, such
as those characteristic of incipient meanders, the curvature by itself does not perturb the flow
field sensibly from the uniform flow conditions. Nevertheless, as it has been observed in
experimental and analytical studies, that perturbation appears to be large enough as to trigger
the bed deformation process, which, as a feedback, becomes the main agent driving the flow
field deformation in those channels.
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4.5 Numerical Simulation of Flow and Bed Deformation in Meandering Channels

In this section some numerical results obtained from the application of the model to
the simulation of flow and bed deformation in meandering channels are presented. One
meandering channel configuration and different flow conditions are used in the simulation,
such that all parameters are set as to reproduce corresponding experimental conditions fixed
in the laboratory experiments made as part of the research work reported herein. In this
fashion an easy comparison between numerical and experimental results is possible, although
such comparison will be presented in following chapters. Herein, just the main characteristics
of the flow and bed responses as predicted by the numerical model are presented.

As it is pointed out by Johannessen and Parker (1987), Langbein and Leopold (1966)
showed that the geometry of natural meanders often closely resembles a sine-generated
curve. Such curve has been used subsequently in numerous analytical and experimental
studies modeling meandering channels. In the present analysis, however, just a purely
sinusoidal channel axis is used, since such geometry was used, for simplicity, to build the
channels utilized in the laboratory experiments made as part of the present investigation. The
equation for the channel axis is expressed in cartesian coordinates as:

y=aBsin(A%) (421)
with,
-2 _2zB (4.22a,b)
a B 5 A I

where a- denotes the maximum amplitude of the channel centerline and Ly, represents the
meander wavelength measured along the x axis. For this channel the curvature C can be
written as a function of x in the form:

2

C=a%sin(l%)(l+a’izcosz(l%))'% (423)

from where the maximum curvature of the channel axis can be expressed in dimensionless
form as:

aA?
2

B
v = Cox 5 = (4.24)
As it is deduced from the set of equations presented above, the geometry of the
meandering channel is totally described by the parameters B, A and v. In the applications
selected herein, the meandering channel denoted as Channel 1 in the experimental work
reported in following chapters is utilized, whose values of A and v are presented in Table 4.1.
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The channel has a width 2B =0.4 m, a slope Sy=0.005 and is covered by a uniform sediment
of d;=0.5 mm. For this channel different flow conditions are simulated by fixing the water
discharge at values in the range from 1.0 to 3.0 I/s. Values of Ax=0.30 m and Ay=0.05 m
were used in the simulation.

Figs. 4.7 to 4.12 present some of the results obtained from the application of the
numerical model to the conditions specified above. The results shown in those figures
correspond to the conditions defined by a water discharge of 2.9 1/s, however they can be
taken as representative of all of the cases modeled, since they allow to describe in general
terms the main characteristics of the flow and bed deformation as predicted by the numerical
model. Values of r=0.3 and n,=0.0184, this last parameter calibrated from the
experimental results presented in next chapter, were used in those computations. Only
equilibrium results are presented, associated with the steady state of the bed deformation.

Table 4.1 Geometry of Meandering Channel utilized in the Numerical Analysis.

CHANNEL A v B(m)
1 0.20 0.030 0.20

Fig. 4.7 presents the results obtained in terms of the velocity distribution at different
cross sections along one wavelength of the meandering channel. As it can be observed
therein, the zone of maximum velocity tends to be located at the outer wall with respect to
the curves of the channel. There exists a lag between the section of maximum curvature and
the section at which a maximum deformation of the velocity profile is attained. The latter
is also the zone at which the maximum velocity occurs and as it will be shown later is also
the zone of maximum scour of the channel bed. Although the velocity vector is plotted in
Fig.4.7, very small deviation of the arrows from the axial direction can be detected, thus
indicating a small magnitude of the depth-averaged transverse velocity component. For the
particular application shown in that figure the maximum depth-averaged transverse velocity
is about 10% of the mean depth-averaged axial velocity. In spite of their small magnitude,
transverse depth-averaged velocity components are observed to be directed towards the
outer bank with respect to the curvature of the channel.

Fig. 4.8 shows longitudinal profiles of the water surface elevation along three different
axes taken over one wavelength of the channel, namely left wall, centerline and right wall.
The water surface elevation, H, was made dimensionless with the uniform flow depth, Dy.
Likewise, the axial coordinate s was made dimensionless with the wavelength of the channel,
L, measured along the channel centerline. As it can be observed in that figure, H/Dy
oscillates around 1.0 along the three longitudinal axis considered, such that the oscillations
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are lagged with respect of each other. In other words, the maximum overelevation at the
outer wall does not occur in the same section than the maximum underelevation at the inner
wall. For the particular application shown in Fig. 4.8, a lag equivalent to about 20% of the
channel wavelength between those sections is obtained.

VELOCITY DISTRIBUTION

A=0.2 ; v=0.03
Q=2.9 I/s ; Do=23.2 mm

— 0.30 (m/s)

e,

Fig. 4.7 Velocity Vector Distribution in Channel 1. Numerical Simulation.
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Fig. 4.8 Longitudinal Profile of Dimensionless Water Surface Elevation in Channel 1.
Numerical Simulation.
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Also from Fig. 4.8, it can be noticed that the maximum values of the over and under
elevation within the same curve of the channel are equal in magnitude, and that for the
particular application shown in that figure such values are on the order of 4% of the uniform
flow depth.

Fig. 4.9 shows the total bedload vector at different cross sections along one
wavelength of the meandering channel. As it can be observed in that figure the zones of
maximum bedload transport are located at the outer wall with respect to the curvature of the
channel, some distance downstream the apex, and coincident with the sections of maximum
velocity as observed in Fig. 4.7. The deformation of the bedload profile in Fig. 4.9 is more
evident than that of the flow velocity shown in Fig. 4.7, having a very small value at the inner
wall in the zone of maximum deformation. As it also happens with the flow velocity
distribution, the bedload distribution is almost uniform at the apex of the channel curves.
Very small deviation of the arrows from the axial direction can be noticed in Fig. 4.9, thus
indicating a small magnitude of the transverse component of the bedload, which however
point towards the outer bank with respect to the curves of the channel. For the particular
application shown in this figure the maximum transverse bedload rate is about 10% of the
mean value of the bedload in the axial direction.

BEDLOAD DISTRIBUTION

A=0.2 ; v=0.03
Q=2.9 I/s ; Do=23.2 mm

— 3.0 107% (m3/s/m)

MGG

Fig. 4.9 Bedload Vector Distribution in Channel 1. Numerical Simulation.
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Fig. 4.10 presents longitudinal profiles of the bed deformation along three different
axes taken over one wavelength of the meandering channels, namely left wall, centerline and
right wall. The bed elevation, )’, was made dimensionless with the uniform flow depth, Dy.
Likewise, the axial coordinate s was made dimensionless with the wavelength of the channel,
L, measured along the channel centerline. Different distinctive features of the calculated bed
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deformation are apparent from that figure. In the first place, a bar-like deformation is
observed, formed by successive zones of scour, which tend to be located at the outer wall with
respect to the curve, and deposition, which tend to be located at the inner wall with respect
to the curve. The section of maximum deposition coincides with the section of maximum
scour, and is located some distance downstream the apex of the channel curves, which for
the particular application shown therein is equivalent to about 10% of the meander
wavelength. This section also coincides with the sections of maximum velocity, as observed
in Fig. 4.7 and maximum bedload, as observed in Fig. 4.9.
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Fig. 4.10 Longitudinal Profile of Dimensionless Bed Elevation in Channel 1. Numerical
Simulation.

The magnitude of the maximum deposition in Fig. 4.10 appears to be equal to the
magnitude of the maximum scour, thus defining a very symmetric bed deformation with
respect to the channel axis. This result of the numerical model does not seem to be in
agreement with experimental observations, for example with those of Colombini et al. (1990)
who describe less symmetrical structures, and appears to be one of its shortcomings. The
improvement of this feature, however, would require an improvement in the modeling of the
direction and magnitude of the sediment transport in the meandering channel, which as was
discussed before is one of the crucial aspects of the model.
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In the particular application shown in Fig. 4.10, the bar height, defined as the sum of
the maximum scour and the maximum deposition within a wavelength of the channel, has a
value of about 1.2 times the uniform flow depth. The behavior of this parameter with flow
conditions is explored and discussed later in this section.

Fig. 4.11 presents a cross sectional plot of the bed deformation at the zone of
maximum scour together with the water surface elevation at the same section. This figure
reinforces the picture discussed above about the transverse symmetry of the bed deformation
predicted by the model. Also, Fig. 4.11 gives an idea on how small is the magnitude of the
transverse slope of the water surface elevation, as compared with the depth of flow and bed
deformation, for the particular meandering channel configuration simulated herein. As it
can be deduced from the simplified form of the transverse momentum equation, eq.(4.7), this
slope is controlled mainly by the curvature of the channel, such that it is zero in absence of
curvature. This demonstrates that for small values of the channel curvature, such as the one
used in the simulation presented here, the curvature by itself does not deform sensibly the
flow field from the uniform flow conditions. On the contrary it acts in a more subtle way,
by providing the conditions for the bed deformation which is the agent that more markedly
alters the flow conditions.
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Fig. 4.11 Transverse Profile of Bed and Water Surface Elevations in Channel 1.
Numerical Simulation.
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In order to complete the description of the bed deformation predicted by the model
for the particular conditions described above, Fig. 4.12 shows a three-dimensional plot of the
computed bed elevations within one wavelength of the channel. This figure does not show
the curvature of the channel, however the apex of the curves are marked with arrows.
Likewise, the scales in the figure are distorted in order to amplify the magnitude of the bed
deformation. Asit can be observed therein, the three-dimensional plot summarizes the bed
deformation information presented in Figs. 4.10 and 4.11, helping to visualize in better shape
some of the aspects already discussed, such as the lag in the response of the bed with respect
to the apex of the curves and the symmetry of the bar structure as predicted by the model.

0.01
(m) 0
-0.01

Fig. 4.12 Three-dimensional Plot of Bed Deformation in Channel 1. Numerical
Simulation.

Finally, the influence of flow parameters, such as the channel width to depth of flow
ratio, over the bed response is analyzed in Fig. 4.13. To build this figure, different flows
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discharges varying in the range 1.0 to 3.0 1/s were simulated for the channel configuration
corresponding to Channel 1. The figure shows the bar height, Hg, defined as the sum of the
maximum scour and maximum deposition within one wavelength of the channel, made
dimensionless with the uniform depth Dy, plotted as a function of the parameter 3, defined
as B=B/Dy. As it can be observed in Fig. 4.13, the bar height tends more or less
asymptotically to a constant value of about 1.5 times the uniform flow depth as B increases
over 15, whereas for values of {3 less than 10 it tends to decrease with a steeper slope towards
values of bar height smaller than the uniform flow depth. This particular behavior of the
bed deformation will be further examined with the help of experimental data, in following

chapters.
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Fig. 4.13 Dimensionless Bar Height as a function of 8 in Channel 1. Numerical
Simulation.

Since a very limited range of flow variables and channel configurations were
considered, the analysis of the results obtained with the numerical model developed in the
present section is by no means exhaustive. However, this exercise allowed to get some insight
on the principal characteristics of the different physical processes involved in the flow and
bed deformation phenomena in meandering channels. A comparison of some of the results
obtained from the application of the model with experimental results obtained in the
laboratory experiments made as part of the present research is reported in following chapters.
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S. EXPERIMENTAL STUDY

5.1 Introduction

The main objective of the experimental study conducted as part of the research work
reported herein, was to provide empirical evidence for the verification of specific aspects of
recently developed analytical theories on the alternate bar and meander phenomena. In this
chapter, descriptions of the experimental plan, the laboratory facilities, and the
methodologies utilized in the study are presented, together with a dimensional analysis of
the problem.

5.2 Dimensional Analysis

In the preceding chapter different forms of the set of governing equations commonly
used in analytical and numerical studies of the flow and bed deformation problem in
meandering channels were presented. In what follows the system of governing equations
(4.2) is made dimensionless with the aim of identifying dimensionless parameters involved
in such problem. The dimensionless form of (4.2) can be written as:

au aUu 1 1 ,6D an' T,
UaS+V_é_?:+R+nUV -‘Fg(?s-—ﬁSg-f'as )-ﬁD (5.1a)
v eV 1 1 ,eD  ay T
S s o tw o (S 4 Sy gl :
Uas+ an R+nU F§(6n+an ) ﬁD (3380
6(UD)+ 1 6((R+n)VD)=U (5.1¢c)
as R+n on
' 3., 1 (R+n)0,) . _
at + O ( as +R+n an ) =0 | Sad)

where (U,V) are dimensionless depth averaged velocity components in the s and n directions
respectively, 7s and T, are dimensionless bottom shear stresses, D is dimensionless local
depth, n’ is dimensionless bed elevation, Sy is the slope of the channel, Q; and Q,, are
dimensionless bedload components, Fy is the Froude number of the mean flow, and R is the
dimensionless local radius of curvature of the channel. In 5.1, Qg and 8 are dimensionless
parameters defined as:

(XT3

_ 4 ((ofe-1)gd;)
(1-p) D; s :

Qo B=— (5.2a,b)

where ps and d,” are density and diameter of the uniform sediment, p is water density, g is
gravitational acceleration, p denotes sediment porosity, and B" is half the channel width.
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Likewise, D" is flow depth averaged over one wavelength of the meandering channel and
Uy’ is the mean flow velocity defined as: Uy"=Q/(2B"Dy’), where Q denotes flow discharge.

In (5.1) the variables have been made dimensionless in the form:

(U, V)=U(U,V) , (n°,D)=Di(n,D) (53a,b)
(s, )=B(s,n) , (f,5)=0li (%, ) (5.3c,d)
(0, G)=d& ((efe-1)gd )7 (O On) (53¢)
R=BR , :‘-%: (53f,g)

where the superscript * denotes dimensioned variables.

From (5.1), the following dimensionless relationship can be written between
dependent and independent variables:

(Uv Vr D' 7}’)(3;?1,:)=ﬁ)(R,Fa, SD’ ﬁ!r:!fn- QO: Q:: Qn) (54)

However, by using closure relationships for sediment transport and resistance to the
flow such as those specified in chapter 3, for instance, equations (3.4), (3.5), (3.6) and (3.7),
T, Tn, Qs and Qy, can be expressed in terms of the following dimensionless relationships:

(t:, 1,)=T(U,V,D,d,,h 6) (5.5a)

(Q,0.)=Q(U,V,D,7.d,6,8) (5.50)

where d. denotes dimensionless sediment diameter defined as d;=d, /Dy and 6 denotes the
Shields parameter of the flow defined as in (3.5¢). This parameter can be expressed in terms
of the slope of the channel such that:

_ D S,
o= o114 (36)
Also, Qg can be rewritten in the form:
(efe-1)% 4,3
O = (5.7)

(1-p) F

Finally, the local dimensionless radius of curvature R is in general a function of the
coordinates (s,n), which is completely defined by specifying the shape of the channel axis.
If the particular equation of the channel axis given by (4.21) is used, then the dimensionless
radius of curvature can be represented by the relation:
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R(s,n)=R (4, v) (5.8)

with,

Am:::

¢nb ‘g' (59a,b)

- ¥ y - Cm:x T
3 £
where Ly,” denotes meander wavelength and Cpz denotes the maximum curvature of the
channel axis.

Therefore, using relationships (5.5), (5.6), (5.7) and (5.8), expression (5.4) can be
rewritten as:

(U, V,D,q)(smt)=fi(4m,v,e/e,P, Fo,d, 0, 8) (5.10)
or alternatively as:
(U! V,D, ?]")(S,?I,f):fz(l,n, v, Q:/Q!.P! R, d,’,sa,ﬂ) (511)

where d.’=B"/d".

In (5.11), selecting the sediment and the channel width such that p¢/p, p and d;’ are
fixed, selecting the channel configuration such that A, and v are fixed, and also fixing the slope
of the channel Sy, the following dimensionless relation results:

(U,V,D,r}')(s,n,t)“f;(Fo.ﬁ) (5'12)

where Fy and B depend basically on the flow dischafge for all the other parameters fixed. This
relation can be further simplified by assuming that Fy does not change significantly within
the experimental range of values of this parameter, such that,

(U, V,D,n)(snt)=f(B) (513)

Equation (5.13) can be used particularly to express different variables characterizing
the bed deformation n’(s,n,t), for given sediment, channel configuration and slope. For
instance, the following relationship can be written:

(Hp, S, 4,¢,0)=f(8) (5.14)

where Hg=Hpg"/Dy" denotes dimensionless maximum bar height defined as the sum of the
maximum scour and maximum deposition given by the bed deformation, S=S"/D;" denotes
dimensionless maximum scour, A=2mB"/L represents a wavenumber such that L is the
wavelength of the bed deformation, c=c"/Uj" denotes dimensionless celerity of migrating
bedforms and §=28"/L,, is the dimensionless lag between the zone of maximum curvature
of the channel and the zone of maximum scour of the bed.
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The general validity of (5.14), particularly the fact that Fj has a negligible effect on
the functional dependence described by this equation if it is kept in a relatively narrow range
seems to be validated by the experimental results of Ikeda (1984) and Colombini et al. (1990).

Equations (5.10) to (5.14) were used to develop the experimental plan as it is explained
below, and also to analyze the experimental results as it is shown in following chapters.

5.3 Experimental Plan

The main objective of the experimental plan is to define a range of values for the
parameters involved in the problem, such as those described by (5.11), in order that the
resulting experimental conditions allow to effectively observe the phenomena which are to
be investigated in the present work.

With the aim of satisfying the specific objectives of the present research, which were
explained in detail in Chapters 1 and 2, a straight channel covered by a movable bed of
uniform sediment was designed as to allow alternate bars to develop naturally. Also, a set
of three different meandering channels derived from the basic straight channel configuration,
having the same width and covered by the same sediment, were designed, as to cover
conditions ranging from those for which no migrating bars exist in the channel, to conditions
for which migrating bars coexist with fixed bars formed in channel curves. Based on what
it was discussed in preceding chapters, conditions for the suppression of alternate bars in
meandering channels require to cover the resonant range, as described in chapter 3.

From the general dimensionless relationship between dependent and independent
variables (5.11), it is concluded that by selecting the channel width and shape and the
sediment properties, just three extra parameters need to be specified, namely Fy, Sg and 8,
to totally cover the functional dependence described by such equation. Furthermore, due
to resistance considerations, once a slope and a flow discharge are selected in a given
experiment, automatically Fgand 8 take fixed values. Therefore, the parameters that actually
need to be specified for the experimental study are channel width and shape, sediment
properties and the range of variation of the channel slope and flow discharge.

In general the channel width should be as large as possible as to avoid scale effects,
however since the straight and meandering channels used in the present experimental study
were built inside of wider laboratory flumes, the selection of the channel width was made
based mainly on space requirements.

The threshold conditions for the formation of alternate bars in straight channels
depend basically on the critical value of the parameter 8, which is a function of 6 and d; as
it was discussed in the analysis presented in Chapter 3, such that alternate bars should be
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observed to form for values of 8 in the range 8 > 3.. An alternative way to determine the range
of conditions for the formation of alternate bars is to use Kuroki and Kishi’s (1985) phase
diagram for bed regime, which was presented in Fig. 2.1. This diagram allows to specify the
range of values of 8 for which alternate bars would form, such that .1 < < B¢, where B¢
corresponds to the parameter 3. in the analysis of Chapter 3 and B corresponds to the limit
conditions for the formation of multiple row bars or braids.

According to what has been explained above, the selection of the alternate bar range
of values of @ is related to the selection of the slope of the channel and also of the sediment
properties. Once the range of values of 8 is selected, a resistance relationship is needed to
relate flow depths to flow discharges. With this aim, the Engelund-Hansen resistance
equation (3.5) was used. Itisnecessary to point out here that recirculating flumes were used
in the present experimental study, so that the bed slope can be fixed externally by setting the
flume slope, and the sediment transport rate results from the natural transport capacity of
the flow. This make the difference with respect to a nonrecirculating flume in which the
sediment transport rate is to be fixed and fed externally and the bed slope results from natural
adjustments of the flow and sediment transport.

Although typically a sine generated curve has been used to model meandering
channels (Langbein and Leopold, 1966), herein, for practical reasons, particularly for
simplicity to build the channels, a purely sinusoidal channel shape was used, such as that given
by (4.21). This channel, as it is concluded from (5.8), is totally described by specifying the
parameters B”, A, and v. The latter two parameters, which denote the wavenumber and
dimensionless maximum curvature of the channel respectively, were selected as to cover
conditions ranging from those for which migrating bars coexist with fixed bars, to conditions
for which migrating bars are suppressed. The criteria given by Tubino and Seminara (1990)
was used to determine the conditions for the suppression of migrating bars. Since this
conditions are related to the resonance phenomenon described previously, the graphical
relationships presented in Chapter 3 for the resonant range were also utilized.

The ranges of values for the experimental parameters obtained as explained above,
howevér, were taken just as a general guidance because they are precisely what the present
study seeks to check. According to that, it should be pointed out here that the definite
experimental plan was not completed until most of the experimental work was finished, since
the partial results obtained during the study were used as input for the planning of the
remaining experiments.

Taking into account all restrictions exposed above, a consistent set of experiments was
designed. As it was already explained, one straight channel and three different meandering
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channels were used in the experiments. The channel width selected was 2B =0.40 m, which
appears to be a reasonable width as compared with those utilized in similar experimental
studies. Colombini et al. (1990), for instance, used a channel width of 0.35 m. On the other
hand, just one type of sediment was selected for all experiments, consisting on a natural
uniform silica sand having a mean diameter d; =dsp=0.53 mm. A sieve analysis of this
sediment is presented in Fig. 5.1, which shows that it is in fact fairly uniform, having a standard
deviation of oy =1.25. From the adopted values of the channel width and the mean diameter
of the sediment, the resultant value of the dimensionless parameter d’ defined previously is:
dy’=377.4.
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Fig. 5.1 Size Distribution of Experimental Sediment.

The rest of the experimental conditions for the series of experiments made as part
of the present research is presented as follows. Table 5.1 shows the geometrical properties
of the channels utilized in the study, Table 5.2 presents the experimental conditions for the
series of experiments made for the straight channel and finally Table 5.3 specifies the
experimental conditions for the series of experiments made in the meandering channels.
Tables 5.2 and 5.3 show the slope Sy, the range of values of 8 and the flow discharge Q utilized
in the corresponding experiments. It should be commented here that since in general the
experimental conditions defined not so large values of the bottom shear stress, the lower limit
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of the range of flow discharges or equivalently the upper limit of the range of 8, was given
basically by the threshold conditions for the movement of sediment grains.

Table 5.1 Geometry of the Experimental Channels.

CHANNEL 2B° (m) Ly (m) Cmax (1/m) Am v
0 0.40 - 0 - 0
1 0.40 6.283 0.30 0.20 0.030
2 0.40 6.283 0.15 0.20 0.015
3 0.40 8.378 0.30 0.15 0.030
Table 5.2 Experimental Conditions in the Straight Channel.

SERIES CHANNEL So B Q(ls)
01 0 0.0056 9.4 - 26.1 0.75 - 2.98
02 0 0.0044 9.7-17.2 1.03-2.91
03 0 0.0032 9.0-13.2 1.46 - 2.86

Table 5.3 Experimental Conditions in the Meandering Channels.

SERIES CHANNEL So B Q(ls)
11 1 0.0050 8.6 - 18.0 1.04 - 2.89
12 1 0.0056 10.8 - 18.2 1.03 - 2.45
21 2 0.0050 9.5-182 1.01-2.88
31 3 0.0050 10.2 - 14.7 1.00 - 2.93

In order to provide an idea of the shape of the meandering channels utilized in the
study and to allow a comparison among them, about one wavelength of those three channels
is shown in Fig. 5.2.

5.4 Description of Experimental Facilities

The experimental study was conducted at the Hydrosystems Laboratory of the
University of Illinois at Urbana-Champaign. As it was already explained, the straight and
meandering channels utilized in the experiments were built inside of wider tilting flumes.
Two different flumes were utilized, one having a width of 0.9 m and a length of about 20 m,
and the other having a width of 1.8 m and a length of about 50 m. Both flumes have a
mechanism that allows to set slopes ranging from 0 to 2.5% for the large flume, and from
0 to 10% for the smaller one. Also, both flumes possess a hopper to collect sediment near
the tail gate, which was utilized to place the sediment traps of the built-in channels. The
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straight channel (Channel 0) was built inside the small flume and was given a total length of
14.0 m. The three meandering channels (Channels 1, 2 and 3) were built inside the large
flume and were given a total length of about 25.0 m, which corresponds to four wavelengths
for Channels 1 and 2, and three wavelengths for Channel 3.

CHANNEL 1

CHANNEL 2
E:E_____M; .......................... m—oTTT et T = v e—aar ST
- - —-'—'-"_________._———— —_—

CHANNEL 3

A= 0.15 v = 0.03

Fig. 5.2 Meandering Channels Used in the Experimental Study.

All four channels were built as recirculating circuits for both water and sediment. A
sediment trap was built inside the sediment hoppers of the bigger flumes at the downstream
end of the channels. From there, a pipe having a diameter of 2 inches takes the
sediment-water mixture, which is carried up with the help of a pump to be fed back into the
channel through a manifold installed at the head box of the channels. The sediment hopper
of the flumes was filled with water in order to create a pool that helped to stabilize the whole
system, and also allowed to control the downstream level of the flow inside the channels.
A calibrated venturi-meter was placed in the recirculating lines in order to measure the flow
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discharge. A valve located downstream the pump allowed to regulate the required flow
discharges. Figs. 5.3 and 5.4 show schematic diagrams of this facilities.

The straight channel was completely made of welded sheet-metal, however, that
material was not utilized to build the meandering channels, mainly because of their more
complicated shape. In those cases, the side walls were modeled with flexible PVC sheets and
placed over a base of plywood sheets. Silicon and duct-tape were used to seal the joint of
the walls with the wooden base, while metal brackets were utilized to give rigidity to the
channel walls helping to keep them vertical, and also to control width variations along the
channels.

A bed of sediment having a thickness of about 10 cm was formed inside the channels,
using the silica sand whose size distribution was presented in Fig. 5.1. The bed deformation
obtained as the water flows and transports sediment was measured with the help of a
bed-profiler (Kenek, model WH-201c). The particular device used in the present
investigation allows to measure three quantities, namely the bed elevation with respect to a
given datum, the water surface elevation with respect to the same datum and the depth of
flow, although not simultaneously. The apparatus consists basically of a detecting rod driven
by a motor, which at the operation of a switch gets down to the water surface, to the bed or
both, in order to make the required measurement. A digital display shows the measurement
in millimeters. Fig. 5.5 presents a photograph of both the detecting device and the control
box.

The bed profiler was mounted over a movable and rotating plate which allowed to
place the detecting rod at any point inside of the channel. In particular this plate allowed
the measurement of the bed deformations along transverse sections which were locally
perpendicular to the meandering channels axis. The plate was placed over a trolley which
ran along the flumes walls, thus allowing an easy positioning of the bed profiler along the
built-in experimental channels.

5.5 Experimental Methodology

This section describes the methods utilized in the realization of the experiments.
Basically a given experiment consisted on seven stages, namely, selection of experimental
conditions, preparation of the experiment, initiation of the experiment, development of bed
deformation, stabilization or equilibrium state of bed deformation, closure of the
experiments, and final measurements. In what follows each of those stages is explained in
detail.
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i) Selection of Experimental Conditions. For each of the series of experiments described in
Tables 5.2 and 5.3 the channel configuration and slope were predefined, therefore each of
the experiments of the series consisted in a different flow discharge, which was selected as
to cover the required range of values of the parameter 8. Recall that the flow discharge
controls the flow depth, which for a given channel width has direct incidence on the values
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ii) Preparation of the Experiment. Previous to the beginning of the experiments the channel
bed was leveled flat by using a scraper with the width of the channel running along its walls.
In this way the bed was given a slope identical to the slope of the flume in which the
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experimental channel was placed. This slope was controlled by measuring the horizontal
surface level of a constant volume of water placed inside the flume with the help of the
bed-profiler which ran over the flume walls.

Just before starting the experiments, water was fed into the flume from the
downstream end, filling first the hopper in order to create the stabilization pool described
before. After the pool was created, water was allowed to run upstream inside the
experimental channel. The reason for following this procedure is two fold. In the first place,
since the recirculating circuit is a closed system, it is necessary to have a certain volume of
water in it, in order to generate the required values of flow depth and flow discharge. In the
second place, the fact that the sediment was already wet made the starting procedure easier,
precluding the undesired deformation of the bed during the filling process.

Fig. 5.5 Detecting Rod and Control Box of Bed-Profiler Used in the Experiments.

1ii) Initiation of Experiments. The experiments were started by passing a very low discharge
over the bed to prevent its deformation during the initiation stage. The flow discharge was
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then slowly increased until the desired value of this variable was attained. The flow discharge
was measured with a venturi-meter, and controlled periodically throughout the experiment.
After the flow discharge was fixed, some adjustments to the amount of water in the system
were made, to reach a surface level of the downstream pool that allowed an initial uniform
flow all along the channel. Usually the initiation procedure did not last more than 10 or 15
minutes.

iv) Development of the Bed Deformation. After the experiment started, the bed deformation
process began to develop spontaneously. During this process, the bed deformation was
monitored periodically, taking notes, drawing sketches and measuring local values of
variables such as scour, bar height and bar length. The duration of the development process
varied with flow, slope and channel conditions, but in general was shorter for the experiments
with the straight channel than for the experiments with the meandering channels. For the
experiments with the straight channel the duration of the development process was in general
of about two hours, while for the experiments with the meandering channels that duration
was of about four to five hours.

v) Equilibrium State of the Bed Deformation. At the end of the development process,
constant or equilibrium values of the different parameters describing the bed deformation
were reached. This was easily detected for nonmigrating bedforms, such as those observed
in some of the experiments with the meandering channels. In the case of migrating bedforms
such as those observed in the straight channels, however, it was necessary to follow the whole
train of bars as it developed and migrated downstream. Once the equilibrium state was
reached, the experiment was allowed to run for at least another three or four hours.

The migration speed of the alternate bar train was measured by following the position
of successive bar fronts as a function of time. A measuring tape attached to the flume served
as the reference system for the measurements. The wavelength of the bedforms was also
measured following this procedure.

Measurements of the bed and water surface elevations were made simultaneously
after the equilibrium state was attained. Transverse profiles were taken each 0.30 m along
a control reach which varied in length depending on the channel configuration. A control
length of about 6.0 m was utilized for the experiments in the straight channel, which allowed
to characterize two or three bar units. Longer control lengths were not used in the straight
channel because of the fact that the bedforms were moving. Even though the migration speed
of the bedforms was small, longer control reaches, which are associated with longer
measuring times, would have introduced important errors in the characterization of the bed
deformation. A control length equivalent to 1.5 meander wavelengths was used for the

66



experiments in the meandering channels, which corresponds to lengths of about 10.0 m or
about 12.5 m depending on the channel configuration considered. Since very small migration
rates or not migration at all was observed in those ch;innels, this longer control reaches did
not affect the accuracy of the measurements.

Five point measurements were taken for each of the transverse bed profiles. This
points were not equispaced, but had the spacing shown in Fig. 5.6. The transverse profiles
were taken along lines that are locally perpendicular to the channel axis.

30 46 124 124 46 30
Distances in mm

Fig. 5.6 Location of Point Measurements along Transverse Profile.

A second measurement of the bed deformation was taken once the experiment was
finished.

For the experiments of the Series 03 in the straight channel (Channel 0), the total
sediment transport rate was measured, by simply placing a collecting box inside the sediment
trap at the end of the channel. No sediment transport rates were measured during the
experiments in the meandering channels.

vi) End of the Experiments. After the flow depth and bed deformation measurements were
completed, the experiments were finished by turning off the pump. This generated a rapid
recession of the flow inside the channel, with almost no sediment transport associated with
it, which prevented the deformation of the existing bedforms. Preserving the bedforms was
important since in most cases a second measurement of the bed elevation was taken after
the experiment was finished. The volume of water inside the system was large enough as to
assure that the downstream part of the channel was still covered by water under no flow
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conditions, which prevented the dissection of the sideslopes of the bars and consequent filling
of the pools. Although, some small erosion of the sideslopes of the bars was produced in the
upstream part of the channel which was not under water, that deformation was still very small
to affect the measurements, given the resolution of the sampling grid employed.

vii) Final Measurements. In most of the cases, a second measurement of the bed deformation
was taken after the experiment was finished. The methodology utilized was the same as that
explained in v).

5.6 Experimental Results

In this section a summary of the results obtained in the experiments described
previously is presented. No analysis of the experimental data is attempted at this point, and
only the basic variables extracted from the data collected are shown in the Tables presented
below.

Fig. 5.7 shows schematically the definition of the variables used to describe the bed
deformation obtained in the experiments. Basically they correspond to the set of variables
included in the dimensionless relationship (5.14). In what follows variables with the
superscript * denote dimensioned parameters, while values without this superscript denote
dimensionless parameters.
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Fig. 5.7 Sketch for the Definition of Variables.
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In Fig. 5.7, the depth of flow and the maximum scour are defined with respect to the
mean bed elevation. This variable was computed from the data collected by making a
numerical integration over the whole reach surveyed. A parabolic interpolation was utilized
to compute the cross sectional area of each transverse profile measured. The depth of flow
was computed by obtaining first a mean value of the water surface elevation along the
channel, and then subtracting the mean bed elevation from this value. Since in general the
deformation of the flow surface was very small, the mean water surface elevation was
computed simply by averaging over the whole set of data collected.

Some researchers (e.g. Ikeda, 1984) define two different characteristic values of the
bar height. One of those values is given by the variable defined in Fig. 5.7, which corresponds
to the difference between the maximum and minimum bed elevation at the section of
maximum scour. The other parameter usually employed is the maximum bar height, defined
as the difference between the maximum and minimum bed elevation within a wavelength,
which do not necessarily coincide at the same cross section. Herein such differentiation is
not made because in all cases observed, the maximum bar height occurred precisely at the
section of maximum scour.

The rest of the parameters characterizing the bed deformation, such as L*, 8*, etc,
were computed directly from the data collected, such that mean values, characteristic of each
experiment, were computed as simple averages over the available data.

Tables 5.4, 5.5 and 5.6 present the results obtained for the experiments in the straight
channel (Channel 0), corresponding to Series 01, 02 and 03, respectively. In those tables the
dimensioned values of the flow discharge and depth for each experiment of the series are
shown, together with 3, 6 and the associated dimensionless values of the bar height, maximum
scour, alternate bar wavelength, bar celerity, and the Reynolds and Froude numbers of the
flow.

The Reynolds number of the flow, defined as Re = q p/p, where q is the flow discharge
per unit width, and p and p are the dynamic viscosity and density of the water, has been
included therein even though the dimensional analysis performed before did not predict any
effect of this parameter in the functional relationship derived (see for instance (5.11)).
Evidently this parameter did not appear asrelevant in the problem since a fully turbulent flow
was assumed, for which no viscous effects are present. Herein the experimental values of the
Reynolds number has been used as to define whether the observed flows were effectively
turbulent.
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Table 5.4 Experimental Results in Channel 0 - SERIES 01.

Q(Us) |D*(mm)| B [ Hp E L*/2B* | cx10 | Re Fo
0.750 7.7 2608 | 0049 | 3.69 271 8.75 1.2 1953 0.89
1.011 10.1 1982 | 0065 | 3.15 2.36 9.80 42 2633 0.80
1.370 13.0 1534 | 0.084 | 245 1.73 9.14 7.8 3568 0.74
1.523 142 | 1408 | 0091 | 236 177 | 10.00 6.9 3966 0.72
1.890 16.9 11.86 | 0108 | 171 1.30 9.00 6.6 4922 0.69
2.107 17.3 1155 | 0111 | 175 1.33 9.25 9.6 5487 0.74
2.510 19.6 1020 | 0126 | 1.55 1.32 8.75 10.2 6536 0.73
2.950 20.4 9.83 | 0.130 | 1.49 1.12 8.75 6.3 7682 0.81
2.981 21.3 939 | 0.136 | 140 1.06 8.00 6.9 7763 0.77

Table 5.5 Experimental Results in Channel 0 - SERIES 02.

Q(ls) |[D*(mm)| B ) Hp S L*/2B*| cx10¢ | Re Fo
1.033 11.6 1724 | 0058 | 1.08 0.91 9.00 = 3003 0.66
1.494 13.8 1453 | 0069 | 2.03 1.52 9.13 5.0 4343 0.74
1.972 16.5 1212 | 0083 | 1.58 1.11 9.15 9.1 5733 0.74
2.509 19.1 1050 | 009 | 1.21 091 8.60 9.3 7294 0.76
2.905 20.6 971 | 0104 | 1.19 0.97 8.40 8.6 8445 0.79

Table 5.6 Experimental Results in Channel 0 - SERIES 03.

Q (l/s) | D*(mm) B 2 Hp S L*/2B*| cx10* | Re Fo
1.741 15.0 1330 | 0.055 | 0.80 - - % 4946 0.75
1.961 17.2 11.66 0.063 117 0.76 9.14 7.0 5571 0.70
2.266 18.7 10.71 0.068 | 090 0.66 9.73 6.1 6438 0.71
2.491 19.9 1006 | 0073 | 0.80 0.57 8.13 7.4 7077 0.71
2.861 22.1 904 | 0081 | 0.80 0.60 8.50 6.7 8128 0.69

Table 5.7 presents the bedload measured in the experiments of Series 02. In that table
the values of the discharge, depth of flow and bedload are shown, together with the
dimensionless parameters ® and d;, where @ is the Einstein dimensionless sediment transport
rate defined as:
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O:
d; ((e/e-1)gd; )2
and Qg  is the total volumetric sediment transport rate per unit width.

q):

Table 5.7 Bedload Measurements in Channel 0 - SERIES 02.

Q(Us) D* (mm) Qs* (gr/s) 1/ds ®
1.095 11.0 0.406 20.8 0.003
1.432 14.0 1432 26.4 0.011
1972 16.5 2.559 31.1 0.020
2.431 18.5 1.905 34.9 0.015
2.774 20.5 2.431 38.7 0.019

Tables 5.8, to 5.11 present the results obtained for the experiments in the meandering
channels (Channels 1, 2 and 3), corresponding to Series 11, 12, 21 and 31, respectively. In
those tables the dimensioned values of the flow discharge and depth for each experiment of
the series are shown, together with 3, 6 and the associated dimensionless parameters
characterizing the bed deformation and the Reynolds and Froude numbers of the flow.

In the experiments made in Channel 1, no migrating bars were observed. Therefore
the scour and bar height presented in Tables 5.8 and 5.9 correspond to that of the fixed bars
formed at channel curves. In those tables, the dimensionless parameter 8 defined previously
to characterize the lag between the zone of maximum scour and the apex of the curves is also

presented.
Table 5.8 Experimental Results in Channel 1 - SERIES 11.

Q(l/s) | D* (mm) B 6 Hg S 5 Re Fo
1.040 11.1 18.00 0.063 3.29 2.72 0.00 2955 0.71
1.454 12.9 15.54 0.074 3.27 2.59 0.05 4131 0.80
2.046 16.4 12.21 0.094 2.61 1.88 0.14 5813 0.78
2.479 18.4 10.88 0.105 2.48 1.78 0.19 7043 0.79
2.890 23.2 8.62 0.133 2.04 1.46 0.29 8210 0.65

Table 5.9 Experimental Results in Channel 1 - SERIES 12.

Q(l/s) | D* (mm) B 0 Hgp S 5 Re Fo
1.033 11.0 18.21 0.070 3.14 2.40 0.00 2869 0.72
1.523 13.5 14.78 0.086 2.71 1.97 0.10 4231 0.77
2.450 18.5 10.81 0.118 2.38 171 0.19 6806 0.78
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In all of the experiments made in Channel 2, migrating bars were observed to develop,
coexisting with fixed bars formed at the channel curves. Accordingly, variables as wavelength
and celerity of the migrating alternate bar train were measured in the same way done in the
experiments in the straight channel. Also, two different characteristic bar heights and scour
can be defined, depending on whether the migrating bar train is in or out phase with respect
to the channel curvature. Larger heights and scours were observed for bars that at a given
time are in phase with respect to the channel curves, i.e., when the migrating bars melt with
the fixed bars. In Table 5.10, dimensionless values of the measured bar heights for in and
out of phase conditions are shown, together with the maximum scour defined by the fixed
bars, and the wavelength and celerity of the migrating bedforms.

Table 5.10 Experimental Results in Channel 2 - SERIES 21.

Q 3 g B ] Hp S L*/2B*| ¢x10*| Re Fo
(Vs) | (mm) 1 2

1.011 11.0 18.18 | 0.063 2.89 2.05 228 | 11.88 0.3 2872 | 0.70
1.474 13.7 14.58 | 0.078 2.51 2.04 1.93 12.07 - 4188 0.73

1.957 16.3 12.24 | 0.093 2.08 1.77 1.51 13.73 2.2 5560 0.75
1.980 16.0 12.54 0.091 2.26 1.76 171 14.52 20 5625 0.79

2.467 184 10.87 0.105 1.81 - 1.33 15.32 2.7 7009 0.79
2.879 21.1 9.48 0.121 1.47 133 1.05 14.03 4.1 8179 0.75
Hgl: Bars in Phase Hp2: Bars not in Phase

Migrating bars were observed to develop in only one of the experiments made in
Channel 3, corresponding to the maximum value of B of that series. For lower values of (3
only fixed bars were observed, similar to those observed in the experiments in Channel 1.
In Table 5.11, the bar height in the experiments with fixed bars and the maximum bar height
(in phase) in the experiment with movable bars are presented, together with the maximum
scour and the observed values of the parameter § for the experiments with fixed bars.

Table 5.11 Experimental Results in Channel 3 — SERIES 31.

Q(1/s) | D* (mm) B 6 Hp S b Re Fo
1.499 13.7 14.65 0.063 2.86 2.25 - 4409 0.75
1.965 15.7 12.74 0.063 2.68 221 -0.05 5779 0.80
2.533 17.7 11.30 | 0.063 2.62 2.02 -0.01 6666 0.86
2.931 19.6 10.20 0.063 2.09 1.51 0.12 7328 0.85
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6. ANALYSIS OF EXPERIMENTAL RESULTS

6.1 Introduction

Herein the analysis of the experimental results presented in the preceding chapter is
made. Section 6.2 presents the analysis of the results corresponding to the experiments in
the straight channel (Channel 0), Series 01, 02 and 03, while Section 6.3 presents the analysis
of the results corresponding to the experiments in the meandering channels (Channels 1, 2
and 3), Series 11, 12, 21 and 31.

The analysis of the experimental results is based mainly on the dimensional analysis
developed in the preceding chapter, particularly on the dimensionless relationship given by
(5.14). This relationship expresses that for given sediment properties, fixed values of the
channel width, shape and slope, and if the Froude number is restricted to a narrow band, any
parameter describing the bed deformation should be only a function of {.

In order to compare the experimental results with theoretical developments, use is
made of some of the theories on the alternate bar and river meandering phenomena
discussed in Chapter 2.

6.2 Analysis of Results in the Straight Channel

6.2.1 Generalities. The first step of the analysis is to verify in general terms how the results
obtained herein compare with the results of similar experimental studies. With this aim, the
relationships proposed by Ikeda (1984), based in an extensive set of experimental data from
different investigations, are used. Ikeda (1984) proposed the following relationships for the
dimensionless bar height Hg and wavelength L"/2B":

g = 0.1208 ﬁls d‘l-O.CS , 3 < ﬁ <20 (6.1)

L'/2B" =176 B d;°% F, > 08 (6.2)

This relationships are plotted in Figs. 6.1 and 6.2, together with the experimental data
of the present study. In those figures, the dashed lines indicate the scatter of the data utilized
by Ikeda. From that figure it appears that most of the data of the present study fall relatively
well within the expected scatter range as defined by Ikeda. This leads to the conclusion that,
in general terms, the data obtained herein do not present important scale effects that may
have made them not comparable to other data sets.
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Fig. 6.1 Comparison of Experimental Values of Dimensionless Bar Height with Ikeda
Relationship.

It is necessary to point out here, however, that it is apparent that the relations
proposed by Ikeda do not adequately predict the physical behavior of the parameters
describing the dimensions of the observed alternate bars. In fact by comparing the
dimensionless parameters involved in (6.1) and (6.2) with those of equations (5.10) or (5.11),
it is clear that Ikeda’s relations do not consider the effect of the channel slope, or
alternatively, the dimensionless bottom shear stress. Besides, they put some restrictions over
the Froude number only in the prediction of the wavelength. At least, the latter supports the
argument given for the derivation of (5.14), in which the Froude number was neglected. This
conclusion may be valid, however only for a restricted range of variation of this parameter.

From Tables 5.4 to 5.6 it can be concluded that the range of variation of the Froude
number in the present experiments is in fact very narrow, being bounded by the values 0.70
and 0.80 approximately. This fact allows to neglect Froude number effects in the following,
thus supporting an analysis of the experimental data based in (5.14).

74



3
10 I i LENN I B I | 1 I | L L

ds ® (L°/28")
11 III

l]IlFll

101 | -"I" Lo ool I | [ BN
10° 10" 102
B

Fig. 6.2 Comparison of Experimental Values of Dimensionless Bar Wavelength with Tkeda
Relationship.

From Tables 5.4 to 5.6 it can also be concluded that the variation of the Reynolds
number in the present experiments is in the range 2000 to 8000. This indicates that the
observed flows were effectively turbulent, although since the lower limit of that range is not
so high, some influence of the viscosity may not be disregarded a priori, at least in the
experiments covering the lower range of Reynolds numbers. On the other hand, the relative
roughness of the flows, which can be measured by the dimensionless parameter dy=ds /D",
was relatively high, varying in the range 0.025 to 0.070. By estimating the Reynolds number
of the sediment particle as Rep,=u" d,"/ (1/p), where us = (g D" Sp)*, it can be shown that in
the present experiments Re,, varied in the range 11 to 18, which indicates that the sediment
bed was in the transition regime between hydraulically smooth and hydraulically rough wall
conditions.

According to what was explained above and the relatively good agreement of the
present results with previous experimental data as observed in Figs. 6.1 and 6.2, it can be
expected that viscous effects did not play an important role in the overall pattern of the

observed bed deformation.
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6.2.2 Bar Height. With the aim of analyzing the behavior of the dimensionless bar height Hg
in more detail, this parameter is plotted as a function of 8 and Sy in Fig. 6.3. Note that for
given sediment properties and channel width, (5.11) predicts that the dimensionless bar
height in the straight channel is a function only of the parameters considered above.
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Fig. 6.3 Experimental Values of the Dimensionless Bar Height as a Function of 8 and S.

Fig.6.3 reveals some interesting features of the dimensionless bar height behavior. In
general terms, Hp tends to increase as B increases, i.e. as the flow depth decreases. In the
experiments corresponding to the slopes 0.0032 and 0.0044 a limit value of 8 exists, beyond
which a sharp decreasing of the bar height is observed, such that it eventually reaches a
vanishing magnitude at a certain critical value of . For the experiments corresponding to
the slope 0.0056, such behavior is not observed within the experimental range of 8, however
the rate at which the dimensionless bar height increases with 8 tends to decrease for values
of this parameter larger than 15. The slope of the channel also appears to play an important
role in the phenomenon, such that, in general, larger values of Hp are observed for larger
values of Sg. The curves fitted to the experimental data with different slope define parallel
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tendencies, at least for values of 8 lower than the limit described above. The slope of the
channel also seems to affect the values of that limit, in that larger values of § at the vanishing
bar height limit are observed for larger slopes of the channel.

From what it is exposed above, it can be concluded that two critical values of 8 seem
to exist for a given slope of the channel. The lower limit, associated with deeper flows,
corresponds to the threshold condition for the formation of alternate bars, or in other words,
to the parameter . analyzed in detail in Chapter 3. This limit, however, was not covered
by the range of experimental conditions because it is associated with flow discharges which
are larger than the maximum given by the experimental facilities utilized herein. The upper
limit, associated with shallower flows, corresponds to the critical value of 8 at which the bar
height vanishes. This limit is associated with the threshold condition for sediment motion,
such that for larger values of 8 no movement of sediment is possible, neither is the formation
of bedforms. Obviously, being the bottom shear stresses related to the slope of the channel,
larger slopes imply larger shear stresses, which are associated with higher sediment transport
capacity and therefore with larger values of the upper limit of 3.

Last conclusion means that if large enough values of 8 had been tested in the series
corresponding to the slope 0.0056, a decreasing trend in the Hp curve should have been
observed, similar to those shown in Fig. 6.3 for the slopes values of 0.0044 and 0.0032.

Next, a comparison between the present experimental results and the theoretical
developments for the finite amplitude of alternate bars made by Colombini et al. (1987) and
discussed previously in Chapter 2, is made.

Colombini et al. (1987) by means of a weakly nonlinear analysis developed a very
simple relationship that allows to estimate the maximum bar height of the alternate bar
structure. This relationship can be written in dimensionless terms as:

Hs=b1(%ﬁ-i)'i+bz(%f-£’£

where Hg has been used here to represent the dimensionless maximum bar height since, as

) (6.3)

was already discussed, in the present experiments the bar height coincided with the maximum
bar height as defined in the preceding chapter. In (6.3), b; and b, are parameters that depend
on 6 and d,, and 8. is the critical value of B for the formation of alternate bars as defined and
analyzed in Chapter 3. Fig. 5 of Colombini et al. (1987) presents a graph that allows to
compute b; and by, such that for the range of values of 6 and d; in the present experiments,
b; takes values close to 1.0, while b; is in the range 0.7 to 0.8.

Since the present experiments did not cover the range of 8 close to 3, no experimental
values of the latter parameter are available to be used in (6.3). This parameter, however,
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can be estimated from the predictive graphic relationships presented previously in Chapter
3. Instead, in what follows 3. is calibrated as to allow a good fit between the values predicted
by (6.3) and the experimental data shown in Fig. 6.3. The calibrated values of 8. are then
compared with the theoretical predictions of Chapter 3. Table 6.1 presents the calibrated
values of (8. together with the corresponding critical values of 6 and d,, while Fig. 6.4 shows
the resultant theoretical predictions for the dimensionless bar height plotted together with
the experimental data of Fig. 6.3.

Table 6.1 Calibrated Values of ..

So Bc B(: dsc
0.0056 5.5 0.230 0.015
0.0044 6.5 0.150 0.017
0.0032 1.5 0.100 0.020
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Fig. 6.4 Comparison of Experimental Values of Dimensionless Bar Height with
Colombini et al. (1987) Predictive Relationship.

As it can be observed from Fig. 6.4, equation (6.3) describes adequately the observed
behavior of the dimensionless bar height, at least within the limits of parallel behavior of the
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experimental curves, and for the calibrated values of B.. Obviously the theory is unable to
reproduce the behavior of the curves in the neighborhood of the threshold condition for
sediment motion, since it was derived by means of an asymptotic expansion about §, the
critical condition for the formation of alternate bars. Besides, the theory is valid for small
values of (8- B.)/B.. This s clearly observed in Fig. 6.4, in the experiments with slope 0.0056,
for which theoretical and experimental curves diverge for values of {8 larger than about 15.
This, which corresponds to a value of (- B.)/B.= 1.7, however, still gives the theory a wider
range of validity than expected.

To derive a complete theoretical description of the behavior of the dimensionless bar
height, a second solution should be sought which has to be valid in the neighborhood of the
critical condition for sediment motion. An asymptotic matching between both solutions
would then complete the theoretical description. This is by no means an easy task since, as
it was observed in the present experiments, in the vicinity of the critical condition for sediment
motion, the alternate bar structure tends to evolve into elongated deformed shapes that
hardly resemble the original alternate bar pattern, and which, for sure, are controlled by
strong nonlinear effects.

Table 6.1, shows that the calibrated values of B, decrease with increasing slope, or
equivalently, with increasing dimensionless shear stress 6. In order to compare this behavior
and also the magnitudes of 8. with those predicted by the theoretical analysis presented in
Chapter 3, Table 6.2 presents three different theoretical values of 8., which were computed
from Figs. 3.3, 3.5 and 3.7, using the values of 6 and ds of Table 6.1. Those three values
correspond to the use of different resistance and bedload equations as closure relationships
in the theoretical analysis.

Table 6.2 Comparison Between Calibrated and Theoretical Values of B..

So Bc CALIBRATED Be (1) Be (2) Be (3)
0.0056 5.5 9.5 7.8 1.8
0.0044 6.5 9.2 8.7 0.6
0.0032 7.5 8.3 9.1 3.0

(1) : Meyer-Peter & Muller bedload relationship; flat bed Engelund-Hansen resistance equation.
{ 2 ) : Engelund-Hansen bedload relationship; flat bed Engelund-Hansen resistance equation.
(3 ) : Engelund-Hansen bedload relationship; dune covered Engelund-Hansen resistance equation.

From Table 6.2 it can be concluded that the values of 3, computed for flat bed
conditions tend to overestimate the calibrated values of this parameter by an average
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magnitude of about 30 to 40%, whereas the values computed for the dune covered bed,
associated with higher resistance, tend to underestimate them, being on the average about
30% of the calibrated values. On the other hand, for flat bed conditions, the values of 8.
corresponding to the Meyer-Peter and Muller bedload equation increase with increasing
slope, defining a tendency that is opposite to that exhibited by the calibrated values, whereas
the values of 3, corresponding to the Engelund-Hansen bedload relationship follow a trend
that is in agreement with that observed for the calibrated values.

The observations made above, point out that it is crucial for the adequate modeling
of the phenomenon being studied to know what relationships best describe the bedload
transport and flow resistance occurring in the alternate bar regime. From the values in Table
6.2, the Engelund-Hansen bedload relationship performs better than the Meyer-Peter and
Muller equation, in that it adequately predicts the tendency exhibited by B.. Similarly, it
seems that the flow resistance controls the magnitude of 3, such that the higher the resistance
the smaller the value of this parameter. From this point of view, the flat bed
Engelund-Hansen resistance equation appears to predict less resistance than that required
to generate values of B. close to the calibrated ones, however the dune covered bed
Engelund-Hansen resistance equation seems to predict excessive resistance, generating
values of (3. that are well under the calibrated ones.

In order to contrast the latter conclusions with the present experimental observations,
Fig. 6.5 shows a comparison between theoretical and experimental rating curves. The
Engelund-Hansen resistance equation (3.5) was used for the computation of the theoretical
rating curves, which have two branches corresponding to the flat bed and dune covered bed
conditions, respectively. The lower curve corresponds to flat bed conditions and it is
supposed to be valid for discharges smaller than the one associated with the intersection of
the two branches. Accordingly, the upper branch corresponds to dune covered bed
conditions and is supposed to be valid for discharges larger than the one associated with the
intersection of the two branches.

As it can be observed in Fig. 6.5, the flat-bed theoretical curve tends to underestimate
the observed resistance, predicting values of the flow depth that are in general lower than
the corresponding experimental values, at least for flow discharges that are larger than the
theoretical limit for flat bed conditions. On the contrary, the dune covered bed curve tends
to overestimate the resistance, predicting values of the flow depth that are in general larger
than the observed values.

The above observations are in agreement with the argument previously used to
validate the calibrated values of B.. On the other hand, they are opposed to the common
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argument expressing that being the alternate bars very long bedforms as compared with the
flow depth, the form resistance associated with them is negligible, and thus the resistance
induced by these bedforms is mainly due to grain friction. From Fig. 6.5 it is clear that this
argument is not valid in the present experiments, at least for the mean flow depth D", which,
recall, is not a uniform value but the average over a wavelength of the bed deformation.
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Fig. 6.5 Comparison Between Theoretical and Experimental Rating Curves.

A final conclusion derived from Fig. 6.5 is that even though the Engelund-Hansen

equation predicts the development of dunes for a range of conditions covered by the present
experiments, no bedforms of that kind were actually observed. This is not totally unexpected,
considering that the stability conditions for the formation of bedforms of the dune type should
be affected by the strong deformation of the flow induced by the alternate bar structure.
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Fig. 6.6 presents a comparison between the experimental values of the dimensionless
bedload @ plotted as a function of ds, together with the corresponding values predicted by
the Meyer-Peter and Muller and Engelund-Hansen bedload equations. These last values
were computed using equations (3.7a) and (3.7b) respectively, and the values of the channel
slope corresponding to the SERIES 02, in which the bedload measurements were taken.
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Fig. 6.6 Comparison Between Experimental and Predicted Values of Dimensionless
Bedload .

From Fig. 6.6, it is evident that Engelund-Hansen bedload equation predicts much
more accurately the observed values of the bedload than the Meyer-Peter and Muller
relationship. The latter equation largely overestimates the experimental values of the
bedload in almost the whole range covered by the experiments, except for the range of very
small values of 1/ds, which is close to the threshold conditions for sediment motion.

In conclusion, the experimental observations presented above support the use of the
Engelund-Hansen equation as a bedload relationship, and also suggest that the observed
resistance in the alternate bar regime exceeds that predicted by the flat bed
Engelund-Hansen equation. Both arguments tend to indicate that the calibrated values of
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B. presented in Table 6.1 are plausible of being obtained theoretically if those conditions are
included in the analysis. Accordingly, the theory for the finite amplitude of alternate bars
developed by Colombini et al. (1987) appears to predict adequately the observations made
in the present experimental study, at least within the limits of validity discussed before, and
under the recommendations for the computation of the required B; formulated above.

6.23 Scour. In order to analyze the behavior of the scour generated by the alternate bars
as compared with the bar height, Fig. 6.7 presents a plot of S as a function of Hg_ It isapparent
from that figure that a linear relationship exists between those variables such that:

S = 0.75 Hy (6.4)

This result is in good agreement with the experimental results analyzed by Ikeda (1984), who
also found the same value for the coefficient of proportionality in (6.4).
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Fig. 6.7 Dimensionless Scour as a Function of the Dimensionless Bar Height.

6.2.4 Bar Wavelength. Fig. 6.8 presents the experimental values of the dimensionless
wavelength of the observed alternate bars, plotted as a function of 8. As it can be seen in
that figure, the scattering of the experimental data is larger than in the case of the bar height
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analyzed before. It is also apparent that the effect of the slope of the channel on the
wavelength is less evident than in the bar height case, such that the experimental points do
not seem to define different tendencies for different values of that parameter. According to
this only one curve was fitted to the experimental data, just in order to define the global trend
exhibited by them.
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- Fig.6.8 Experimental Values of the Dimensionless Wavelength as a Function of B.

From Fig. 6.8, it can be concluded that the experimental dimensionless wavelength
tends to increase as (3 increases, approaching a constant value of about 9.4 for values of B
larger than 15. Thisis in agreement with the experimental results analyzed by Ikeda (1984),
which show that, in general, the dimensionless wavelength L"/2B" is roughly equal to 9.0.

Fig. 6.8 also presents the theoretical values of the critical dimensionless bar
wavelength corresponding to the calibrated values of 8. shown in Table 6.1, which were
computed from Fig. 3.11 for flat bed conditions and using the Engelund-Hansen Bedload
relationship. It can be observed therein that the theoretical predictions of the critical
dimensionless wavelength take values around 7.0, which are lower than the values of this
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parameter observed experimentally for conditions of well developed alternate bars. The
experimental trend, however, tends to approach values that are relatively close to 7.0 for
values of B lower than 10, i.e. for values of 8 approaching .. This shows that as the bar height,
the wavelength seems also to increase from its critical value as 8 increases over the critical
condition for the formation of alternate bars, although in the latter case a rapid tendency
towards a constant value of the wavelength appears to occur.

6.2.5 Celerity of Alternate Bars. With the objective of analyzing the migration speed of the
observed alternate bars, the experimental dimensionless values of this variable are shown in
Fig. 6.9, plotted as a function of 8. Even a larger scatter of the experimental data than in
the case of bar wavelength is observed, such that it is not possible to clearly define the effect
of the slope on the observed celerity of the bars. It is possible, however, to derive some
general conclusions of the behavior of the alternate bars celerity.
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Fig. 6.9 Experimental Values of the Dimensionless Migration Speed as a Function of .

As it can be seen in Fig. 6.9 the migration speed of the observed alternate bars is in
fact very small, being in general lower than 0.1% of the mean flow velocity. A curve was fitted
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to the experimental data, just to define the global trend exhibited by them. That trend
indicates that the dimensionless migration speed of the bars tends to decrease as the
parameter (3 increases. This conclusion seems to be reasonable, considering that as
increases, for a fixed value of the slope and also for a fixed sediment size, then the bottom
shear stress decreases, and so does the transport capacity of the flow. Obviously for
decreasing transport capacity, the migration speed of the bedforms, which depend directly
on it, must also decrease. Even though the flow discharge also decreases for increasing 8,
a more sharp decreasing in the celerity of the bedforms can be expected to occur, such that
a net decrease in the dimensionless speed is obtained.

In Fig. 6.9 the theoretical values of the critical dimensionless celerity of the alternate
bars corresponding to the calibrated values of 3. shown in Table 6.1, which were computed
from Fig. 3.10 for flat bed conditions and with the Engelund-Hansen bedload relationship,
are also presented. It can be observed therein that the theoretical predictions of the critical
dimensionless celerity take values in the range 0.04 to 0.15%, which appears to be wider than
the observed variation of that parameter for conditions of well developed alternate bars. For
this reason, the trend defined by the experimental data does not appear to be connected with
the corresponding theoretical critical point. However, the theory seems to predict the order
of magnitude of the measured migration speeds fairly well.

6.2.6 Fourier Analysis of the Bed Deformation. Next, in order to analyze the properties of
the bed deformation associated with the observed alternate bars, not only from the point of
view of local variables such as bar height or wavelength, but from the point of view of the
overall bed topography, a two-dimensional Fourier analysis of the measured bed elevations
is performed. With this aim, the bed elevation data are made dimensionless with the bar
height, such that:
e oey_n(sn)
n(s,n )= Hy® (6.5)
The two-dimensional Fourier analysis is based in the representation of the measured
bed deformation in a Fourier series, such that:

G Y= > S ot el (LA Embgn™) (66)
=0 mm0
with,
-2z _2z (6.7)
)'l Lo L] 2“ 4B.

where \ is the wavenumber in the axial direction, associated with the wavelength L" of the
alternate bars, A\, is the wavenumber in the transverse direction, associated with the
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wavelength of the bed deformation in the transverse direction which corresponds to twice
the channel width, i.e. to 4B, and n, are the Fourier coefficients of the series, such that
each of them represents the complex amplitude of the different wave components in which
the bed deformation is decomposed. For example, the coefficient m;; represents the
fundamental of the bed deformation, in that it corresponds to a two-dimensional wave whose
wavelengths are identical to the alternate bar axial and transverse wavelengths respectively.
Analogously, the coefficient n;; represents a harmonic which has half the wavelength of the
alternate bar in the axial direction and a transverse wavelength that is equal to the transverse
wavelength of the alternate bar. Following this interpretation, each of the coefficients can
be understood as the amplitude of a two-dimensional wave which has wavelengths in the axial
and transverse directions that are, in general, a fraction of the original wavelengths of the
alternate bar being analyzed.

In order to compute the Fourier coefficients from the data collected in the present
experiments, a discrete Fast Fourier Transform algorithm given by the IMSL
MATH/LIBRARY software is used, which requires for the grid of discrete points representing
the spatial domain to be uniform, although the spacing should not necessarily be the same
in both directions. Since the grid utilized to take the bed measurements was not evenly spaced
in the transverse direction, a parabolicinterpolation is utilized to generate transverse profiles
of uniform spacing. For each experiment, all sets of data corresponding to one axial
wavelength of the alternate bars available are Fourier-analyzed, and the absolute value of
the complex coefficients obtained for each of those bedforms are averaged. In this way, a set
of averaged Fourier coefficients representing the weight of each harmonic associated with
the bed deformation is obtained for each experiment, which allows to identify the most
important harmonics and to analyze how they behave as a function of the channel slope and
the parameter f3.

From the results obtained through the analysis described above, it can be concluded
that in general, only the first three or four harmonics in each direction have relevance in the
Fourier characterization of the observed alternate bars, and even within that group only a
few contribute to most of the total bed deformation. Fig. 6.10 shows as an example a density
plot, in which the absolute value of the complex coefficient of the corresponding harmonic
is represented in relative terms by the density of the gray scale, such that black represents
a value equal to zero and white represents a value equal to the maximum observed. This
particular example corresponds to the experiment Q =2.107 I/s of the SERIES 01, however
it is representative of the whole set of results obtained. From that figure, it is apparent that
the most important harmonics correspond to 11; and ngy, which denote the fundamental and
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a harmonic with- no oscillation in the axial direction and with a transverse wavelength
equivalent to the channel width, respectively. Other less important harmonics are 13; and
131, which correspond to harmonics with axial wavelengths equal to one half and one third
of the alternate bar wavelength, respectively, and with transverse wavelengths equivalent to
twice the channel width.

Fig. 6.10 Density Plot for the Typical Distribution of Fourier Coefficients Associated with
the Experimental Bed Deformation. (Experiment Q=2.107 I/s; SERIES 01).

With the aim of analyzing how the dimensionless bed deformation corresponding to
one alternate bar unit changes with B and the slope of the channel, Fig. 6.11 shows the
absolute value of the complex Fourier coefficients corresponding to the harmonics ny1, Tig2,
T2; and 7133, plotted as a function of B, for different slopes associated with SERIES 01, 02

and 03, respectively.
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Fig. 6.11 Fourier Harmonics of Bed Deformation as a Function of 8 and S.

From Fig. 6.11 it can be concluded that in general terms the harmonics n;; and g,
are of comparable magnitude, which is of the order of twice the magnitude of the harmonics
721 and n3;. From that figure it is also apparent that while the latter do not show much
variation either with B or with Sy, the former appear to be functions of both of those
to be of higher magnitude than the fundamental by about 40% on the average. For that slope,
both 11; and ng; tend to increase as 8 decreases, however, for values of this parameter below
approximately 11.0 they exhibit a relatively sharp decrease. For the experiments with the
intermediate slope, Sp=0.0044, the fundamental is of similar magnitude as ng,. In this case
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both parameters tend to increase as (3 decreases, similarly as for the experiments
corresponding to Sp=0.0056. For the intermediate slope however, the rate of increasing is
higher than in the latter case. As for the highest slope, 1111 and ng, decrease sharply for values
of B lower than 12.0. For the experiments with the lowest slope, Sg=0.0032, the fundamental
and 7 are also of similar magnitude. Both parameters tend to increase as 3 decreases, at
a rate comparable to that for the intermediate slope, So=0.0044, however, in this case, no
decreasing of those harmonics is observed for small values of 3.

| According to what is exposed above, it can be concluded that the dimensionless
geometry of the bed deformation is a function of both, 8 and Sy, which is reflected in the
variation of its principal harmonics, 11; and 1y, with those parameters, as observed in Fig.
6.11. Comparing the qualitative behavior of those harmonics with the behavior of the
dimensionless bar height shown in Fig. 6.3, it can be concluded that the zone of increasing
values of 113 and ng; with decreasing 8, corresponds to the zone of decreasing bar height with
decreasing (3, which is bounded by the limits corresponding to the critical condition for the
formation of alternate bars and the critical conditions for sediment motion. It seems that
whenever f3 is close to any of those limits a sharp variation of the principal harmonics of the
bed deformation occurs, such that for example a sharp increase takes place as 8 decreases
from values close to the critical conditions for sediment motion, and a sharp decrease occurs
as that parameter gets closer to the critical conditions for the formation of alternate bars.

6.3 Analysis of Results in the Meandering Channels

6.3.1 Bar Height. With the aim of analyzing the behavior of the dimensionless bar height Hg
for the experiments in the meandering channels, this parameter is plotted as a function of
B in Fig. 6.12. In that figure, the results associated with each of the meandering channels
tested, which correspond to the slope So=0.005, are plotted with a different symbol in order
to analyze also the effect of the dimensionless parameters A\p, and v, characterizing the
geometry of the channel. As a reference, Fig. 6.12 also shows the curve fitted to the
experimental results in the straight channel, corresponding to the slope 0.0056.

Although the curve representing the results in the straight channel in that figure is not
totally comparable with the experimental results plotted therein, since it is valid for a larger
slope, it can be considered to be the upper limit of the expected results in the straight channel
for a slope Sg=0.005, and therefore it still can be utilized to make the comparison between
the results in the meandering and straight channels.

As it can be observed in Fig. 6.12, the dimensionless bar heights corresponding to the
experiments in the meandering channels are larger than that of the experiments in the straight
channel, even for the case of smallest channel curvature, v=0.015. In the latter case,

%



however, in which migrating bars were observed to develop in the channel, only the values
of the dimensionless bar height associated with bars in phase with the channel curves were
plotted, and therefore the previous conclusion is valid only for those bars. An analysis of the
heights of migrating bars is made later in this section.
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Fig. 6.12 Experimental Values of the Dimensionless Bar Height as a Function of B, Ay

and v.

From Fig. 6.12, it is also apparent that the dimensionless bar height appears to
increase with the dimensionless curvature of the channel, such that the experiments
corresponding to v=0.03 show larger bar heights than the experiments corresponding to
v=0.015, for the whole range of values of 8 and A\, covered in the present study. A not so
strong effect of the dimensionless wavenumber of the channel, Ay, over the bar height is
apparent from that figure for the experiments of equal curvature v=0.03. However, a
tendency exists for the values of the bar height corresponding to Ay, =0.20 to be slightly larger
than the values corresponding to A, =0.15.

This latter conclusion is crucial from the point of view of the resonance phenomenon
described in previous chapters. As it was already explained, the linear theory of resonance
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predicts that the bed response to the forcing effect of the curvature has a maximum, which
formally corresponds to an infinite peak, for a dimensionless wavenumber A, in the range
0.10 to 0.15. However, it is pointed out by Colombini et al. (1990) that a nonlinear analysis
of this phenomenon developed by Professor’s Seminara group in Italy, showed that the bed
response in this case, rather than exhibiting a sharp peak within the resonance range, is found
to follow a smoother trend, which still exhibits a maximum for values of A, that are typically
larger than those predicted by the linear theory. The results presented in Fig. 6.12 appear
to support this conclusion, in that for the experiments with the same value v=0.03, the bar
heights associated with both wavenumbers, A, =0.15 and 0.20, take similar values, which
however tend to be slightly larger for A, =0.20. Since only two different wavelengths of the
meandering channel were tested in the present research, the experimental data do not allow
to define more precisely whether the maximum bed response effectively occurs within the
range of A, covered herein. Nevertheless, the experimental results of Colombini et al.
(1990), which covered a wider range of values of A, tend to indicate that such maximum
occurs for values of the channel wavenumber in the range 0.20 to 0.25, for the experimental
conditions covered therein.

In order to compare the present results in the meandering channels with those
obtained by Colombini et al. (1990), Fig. 6.13 shows the experimental points of Fig. 6.12,
plotted together with the results of Colombini et al. corresponding to the wavenumbers
Am=0.15 and 0.20. The latter results were obtained for a dimensionless curvature v=0.05,
a slope Sp=0.006 and a dimensionless sediment size d;’=230.3, and covered a range of
Froude numbers very similar to that of the present experiments.

Even though both sets of data are not totally comparable because of the differences
in the values of the slope and the dimensionless sediment size, the experimental points of
Colombini et al. locate consistently above the experimental points corresponding to the
present study, defining, as expected for a larger curvature of the channel, larger bar heights.
As it can also be observed in Fig. 6.13, the experimental points of Colombini et al.
corresponding to A, = 0.20 define larger bar heights than those corresponding to A, =0.15,
similarly to what is observed for the present experimental results. However, in the case of
Colombini et al.’s experiments that tendency is more evident.

Next, an analysis of the bar height of migrating bars in meandering channels is made.
With this goal, the results corresponding to the experiments in Channel 2 are considered,
since in those experiments migrating bars were observed to develop for a wide range of values
of B. In the preceding chapter the distinction was made between bars in phase, which are
bars that at a given time are located at the channel curves, and bars not in phase, which are
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bars that at a given time are located away from the channel curves. This distinction was made
because as the bars continuously migrate downstream, their amplitude changes with time
such that it reaches a maximum when the bar is located at the channel curve, and a minimum
when it is away from the curve. The experimental values of the bar height associated with
barsin phase and with bars not in phase obtained in the experiments of SERIES 21 are plotted
as a function of B in Fig. 6.14.
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Fig. 6.13 Hpg as a Function of 8, Ay, and v. Comparison Between the Experimental
Results of Colombini et al. (1990) and the Present Study.

As it can be observed in Fig. 6.14, the height of bars not in phase with the channel
curves tends to be lower than that of bars in phase, however the difference between those
values appears to be a function of B, such that the difference increases as 8 increases. For
a value of 8 of about 9.0, the height of bars not in phase is about 90% of the height of bars
in phase, however for a value of 8 of about 18.0, such magnitude decreases to about 70%.
A comparison with the curve fitted to the experimental results corresponding to the straight
channel shows that while the heights of bars in phase are in general slightly larger than the
values corresponding to the straight channel as it was already discussed, the heights of bars
not in phase locate below that curve, which indicates that even though migrating bars develop
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in the meandering channel, the curvature of the channel tends to damp them so their
amplitude tends to be lower than the amplitude of the free migrating bars observed in the
straight channel.
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Fig. 6.14 Experimental Values of the Dimensionless Bar Height of Migrating Bars.
Experiments in Channel 2.

This conclusion is in agreement with the theoretical analysis made by Tubino and
Seminara (1990), which predicts that even though migrating bars are likely to develop in a
meandering channel configuration, their amplitude is damped and their celerity is slowed
down in magnitudes that depend on the values of 8, 6 and d; (or alternatively Sg and dy”) and
the geometry of the channel, and eventually, depending on the values of those parameters,
they can be totally suppressed. From Fig. 6.14 only the effect of 3 can be analyzed, however
it is apparent that more damping of the amplitude of the migrating bars occurs as 8 increases.

Finally, a comparison is made between the present experimental results and the
results obtained through the application of the numerical model developed in Chapter 4.
With this aim, Fig. 6.15 presents the dimensionless bar heights corresponding to the
experiments in Channel 1, SERIES 11, plotted as a function of B, together with the
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corresponding numerical results obtained for the same conditions as those imposed in the
laboratory experiments.
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Fig. 6.15 Comparison Between Numerical and Experimental Results for the
Dimensionless Bar Height as a Function of 8 in Meandering Channels.

As it can be seen in Fig.6. 15, the numerical results for the bar height define a curve
along which Hp increases as f3 increases, at least within the covered range of values of this
parameter. This trend is in agreement with the corresponding experimental results, however
it is evident from Fig. 6.15 that the numerical model tends to underestimate in about 50%
the observed amplitude of the bed deformation. Although there are simple ways to improve
the numerical results presented in Fig. 6.15, for example by means of an adequate calibration
of parameters, such as r in equation (4.11), for which a fixed value of 0.3 was assumed, it is
apparent from the general characteristics of the bed deformation predicted by the numerical
model, that a better modeling of this phenomenon requires an improvement in the modeling
of the direction and magnitude of the sediment transport in the meandering channel. In
particular, one of the main shortcomings of the model utilized herein is that it predicts a very
symmetric deformation in the transverse direction (Fig. 4.12), which is in clear disagreement
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with the observations made in the present study. For instance, it will be shown next that the
maximum scour defined by the observed point bars is about 75% of the total bar height,
whereas the numerical model predicts a value of 50% for this relation. This kind of features
cannot be modified by simply varying the parameters of the model, requiring a review of the
conceptual model used for sediment transport in the meandering channel.

6.3.2 Scour. In order to analyze the behavior of the scour generated by the bars observed
in the meandering channels as compared with the bar height, Fig. 6.16 presents a plot of S
as a function of Hg. The values of the scour presented therein correspond only to fixed bars
or bars that are in phase with the channel curves in the case of migrating bars. In that figure
a straight line with a slope of 0.75 is also plotted, in order to make a comparison with the
results in the straight channel which were found to be well represented by such relationship.
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Fig. 6.16 Dimensionless Scour as a Function of the Dimensionless Bar Height.

Fig. 6.16 shows that although the experimental points are located around the straight
line of slope 0.75, they tend to define a different trend, which appears to be nonlinear, such
that the ratio S/Hp takes values that are larger than 0.75 for values of Hg larger than about
2.5, and slightly lower than 0.75 for values of Hgless than 2.5. This behavior seems to indicate
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that as the bed scour increases, for example because of increasing 8 or increasing channel
curvature, its effect tends to be more local, thus defining a slightly flatter bed than in the case
of alternate bars in the straight channel. Since the area of the bed affected by scour decreases,
the mean level of the bed tends to increase, such that because of the definition of the
magnitude S, it increases its relative contribution to the magnitude of the total bar height.

6.3.3 Phase Lag of Fixed Bars. Next, an analysis of the dimensionless parameter §, defined
as the lag between the zone of maximum bed scour and the apex of the channel curves, is
presented. Obviously this analysis is valid only for fixed bars, since for migrating bars no
steady-state definition of 8 is possible. Fig. 6.17 shows the experimental values of 8§
corresponding to the experiments in Channels 1 and 3, SERIES 11, 12 and 31, plotted as a
function of B.
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Fig. 6.17 Experimental Values of the Dimensionless Lag § as a Function of .

As it can be observed in Fig. 6.17, a linear relationship fits reasonably well the data
corresponding to A, =0.20, which appears to have a negative slope, indicating that § tends
to decrease as 3 increases. Only three points associated with fixed bars are available for the
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wavenumber Ay, =0.15, therefore it is not possible to define accurately the trend exhibited
by that data. However, a straight line of slope similar to that of the points corresponding to
Am=0.20 seems to fit the data reasonably well. From those fittings it is clear that as the
wavenumber of the channel decreases, i.e. as its wavelength increases, the dimensionless lag
& tends to decrease, for constant values of  and v. Itis also apparent from the results plotted
in Fig. 6.17 corresponding to Ay =0.15, that for values of @8 larger than about 11.0, 8 takes
negative values, which means that the zone of maximum scour is located upstream of the
curve apex. This behavior can also be deduced from the tendency exhibited by the data
corresponding to A, =0.20, which allows to expect negative values of 8 for values of {8 larger
than about 19.0.
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Fig. 6.18 & as a Function of B, Ay, and v. Comparison Between the Experimental Results
of Colombini et al. (1990) and the Present Study.

Fig. 6.18 presents a comparison between the results for 8 obtained herein, which
correspond to a channel curvature v=0.03, with the results of Colombini et al. (1990) for
Am=0.15 and 0.20, which correspond to a channel curvature v=0.05. Although both sets
of data are not totally comparable because of their differences in Sy and dy’, as it was already
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explained, a relatively good agreement in the tendencies exhibited by them is apparent from
that figure. As it can be observed therein, the data corresponding to v=0.05 show lower
values of § than those corresponding to v=0.03, which indicates that as the curvature
increases it forces a faster response of the flow, such that less lag exists between the zone of
maximum velocity and bedload transport (i.e. zone of maximum scour) and the apex of the
curve, than in the case of less curvature.

Finally, the results of Colombini et al. showed that negative values of § are effectively
possible. According to the results presented in Fig. 6.18, those negative values tend to occur
either for large values of 3 or small values of A, i.e. for large wavelengths of the meandering
channels.

6.3.4 Wavelength of Migrating Bars. Fig. 6.19 presents the experimental values of the
dimensionless wavelength of the observed migrating bars in the meandering channels. These
correspond to the experiments made in Channel 2, SERIES 21, in which migrating bars were
observed to develop for a wide range of values of B. No analysis is made herein of the
wavelength of fixed bars, such as those observed in the rest of the experiments in the
meandering channels, because in those cases the bar wavelength clearly coincides with the
wavelength of the channel. In order to compare the wavelengths of the observed migrating
bars, which correspond to a channel slope of 0.005, with those obtained in the straight
channel, Fig. 6.19 also presents the data of the experiments of SERIES 01 and 02, which
correspond to channel slopes of 0.0056 and 0.0044 respectively.

Although the wavelength data of migrating bars in the meandering channel exhibit
more scatter than the corresponding straight channel data, interesting conclusions can be
derived from Fig. 6.19. In the first place, it is observed therein that the wavelength of
migrating bars in the meandering channel tends to be larger than the wavelength of the bars
in the straight channel, but at the same time smaller than the wavelength of the meandering
channel. In the second place, a strong influence of 8 on the dimensionless wavelength of the
migrating bars in the meandering channel is apparent, such that for values of 8 of about 10,
their wavelength is close to the wavelength of the channel, whereas for values of 8 of about
20 the wavelength of such bars is closer to the wavelength of the bars observed in the straight
channel.

Therefore, from above discussion it is clear that even though migrating bars can
develop in a meandering channel, the curvature of the channel tends to force a response that
exhibits longer wavelengths than those corresponding to free bars in straight channels. The
fact that the wavelength of the bed response decreases with 3, seems to indicate that the effect
of the curvature on the wavelength tends to be less strong as 8 increases, such that the
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wavelength tends to be closer to that of the free bars in the straight channel. This behavior,
however, appears to be opposite to that observed for the damping of the bar heights of the
same bars, which is more drastic for large values of B.
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Fig. 6.19 Experimental Values of the Wavelength of Migrating Bars in Meandering
Channels.

6.3.5 Celerity of Migrating Bars. In what follows, an analysis of the speed of the migrating
bars observed in the meandering channels is presented. With this aim, the celerity of the
migrating bars observed in Channel 2, SERIES 21, corresponding to the same experiments
analyzed for the wavelength in the preceding section, is plotted as a function of 8 in Fig. 6.20.
This ﬁgllre also shows the celerity data corresponding to the experiments made in the straight
channel, SERIES 01 and 02, in order to allow for a comparison between both sets of data.

As it can be observed therein, the celerity of the migrating bars in the meandering
channel is smaller than that of the free bars in the straight channel, having in general, values
that are lower than 0.05% of the mean flow velocity. A curve was fitted to the data
corresponding to the bars in the meandering channels in order to analyze the general
tendency exhibited by them and to compare it with that of the bars in the straight channel.
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That curve has a negative slope very similar to that of the bars in the straight channel, showing
decreasing dimensionless celerity for increasing §3, and is located below the latter in an
approximately constant magnitude equivalent to about 0.0003. For a value of 8 of about 18.0,
the migration speed of the bars in the meandering channels is much less than 0.01% of the
mean flow velocity, indicating a very slow migration of the bedforms, which is equivalent to
less than 10% of the corresponding bar celerity in the straight channel.
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Fig. 6.20 Experimental Values of the Celerity of Migrating Bars in Meandering Channels.

From the above discussion it can be concluded that the curvature of the channels tends
to slow down the migrating bedforms developed in the meandering channel, forcing values
of the migration speed that are typically smaller than those of the free bars observed in the
straight channel.

Therefore, summarizing the results discussed above and in preceding sections, it can
be concluded that even though migrating bedforms are likely to develop in meandering
channels for adequate conditions, the curvature of the channel forces a bed response whose
bar height and migration speed are smaller than the bar height and migration speed of the
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free bars observed in the straight channel. Likewise, the resulting wavelength of the
migrating bedforms appears to be longer than that of the free bars in the straight channel.
This behavior of the migrating bars in the meandering channel demonstrates that in fact the
curvature of the channel tends to damp and eventually suppress those bedforms, which is in
agreement with the theoretical findings of Tubino and Seminara (1990) discussed in Chapter
2. These researchers provide theoretical conditions for the total suppression of the migrating
bars, which depend on the values of the wavenumber and curvature of the channel and also
on B. A comparison between the present experimental results and those theoretical
conditions is made later in this chapter.

6.3.6 Resistance. In order to analyze the hydraulic resistance of the flow in the meandering
channels, Fig. 6.21 presents a comparison between theoretical and experimental rating curves
corresponding to the conditions of the experiments in Channels 1, 2 and 3, SERIES 11, 12,
21, and 31. The Engelund-Hansen resistance equation (3.5) was used for the computation
of the theoretical rating curves, which as it was already explained, have two branches,
corresponding to the flat bed and dune covered bed conditions respectively.

As it is observed therein, the flat bed theoretical curve tends to underestimate the
observed resistance, predicting values of the flow depth that are in general lower than the
corresponding experimental values. On the contrary, the dune covered bed curve tends to
overestimate the resistance, predicting values of the flow depth that are in general larger than
the observed values. This behavior is similar to that discussed before for the experiments
in the straight channel. In this case, however the form resistance associated with the channel
curvature has to be taken into account, being the total resistance to the flow a combination
between grain resistance given by the bed sediment and form resistance which is due to
channel curvature and bed deformation simultaneously.

From Fig. 6.21, it can be concluded that as the channel curvature increases for fixed
wavelength the total resistance also increases, as expected, since the increase in the curvature
has associated an increase in the form component of the total resistance. Similarly, as the
channel wavelength increases, i.e. the wavenumber A, decreases, for fixed curvature, the total
resistance decreases, also as expected, since an increase in the wavelength for fixed curvature
has associated a decrease in the form component of resistance per unit length. It can also
be concluded that in the case of Channel 3, having a longer wavelength, the observed
resistance is only slightly larger than that predicted by the theoretical resistance equation for
flat bed conditions, which seems to indicate that in meandering channels the form resistance
due to the bed deformation is less important than the form resistance associated with the
channel curvature. It is also apparent by comparing with the results obtained in the straight
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channel, that the bed deformation in the meandering channels has less resistance associated
with it than the alternate bars observed in the straight channels, which appears to be
reasonable considering that the bars in the meandéﬁng channels have in general longer
wavelengths and also, as it was discussed before, seem to be flatter than the alternate bars

observed in the straight channel.
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Fig. 6.21 Comparison Between Theoretical and Experimental Rating Curves.

6.3.6 Fourier Analysis of Bed Deformation. Next, a two-dimensional Fourier analysis of the
bed deformation observed in the experiments in the meandering channels is performed. The
analysis technique employed herein is the same as that explained in Section 6.2.6 for the
Fourier analysis of the bed deformation in the straight channel.

As with the experiments in the straight channel, the results obtained from the Fourier
analysis of the dimensionless bed deformation in the meandering channels indicates that only
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a few harmonics in the axial and transverse directions have relevance in the Fourier
characterization of the observed bars. The plot of the Fourier coefficients presented in
Fig. 6.10 for the bars in the straight channel is also representative of the typical results
obtained from the Fourier analysis of the bars in the meandering channels, which allows to
conclude that also in this case the most important harmonics correspond to 1;; and 1gp.

With the aim of analyzing the effect of 8 and the channel geometry over the
dimensionless bed deformation corresponding to one wavelength of the meandering channel,
Fig. 6.22 shows the absolute value of the complex Fourier coefficients of harmonics 111, Mgz,
N21 and n3j, plotted as a function of B, for Channels 1, 2 and 3, separately.
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Fig. 6.22 Fourier Harmonics of Bed Deformation as a Function of 8, Ay, and v.

From Fig. 6.22 it can be concluded that in general terms the harmonics n1; and 1,
are of comparable magnitude, which is of the order of twice the magnitude of the harmonics
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N21 and n3;. From that figure it is also apparent that in general n;; and ng; tend to increase
as B decreases, except in the case of A, =0.2 and v=0.015, for which a relatively sharp
decrease occurs for values of 8 lower than about 12.0. The latter behavior was characteristic
of the results for the experiments of equivalent slope in the straight channel, which indicates
the existence of a similarity between the bars in the straight channel and those of the Channel
2 (A\p=0.2,v=0.015). Thisis not unexpected, since in fact the bars in Channel 2 correspond
to migrating bars, like the bars in the straight channel, which seems to indicate that this
property is reflected in the geometric characteristics of the bed deformation.

As it can be observed in Fig. 6.22, the harmonics 13; and 73; also increase as 8
decreases, however, they show less variation with that parameter than mn;; and ng. Such
variation, on the other hand, appears to be larger than that observed for the bars in the
straight channel.

According to what is exposed above, it can be concluded that the dimensionless
geometry of the bed deformation in meandering channels is a function of both the channel
geometry, characterized by A, and v, and §, which is reflected in the variation of its principal
harmonics with those parameters, as it is observed in Fig. 6.22. It is also apparent from the
above analysis that migrating bars, either in the straight or in the meandering channel, have
geometric properties that are relatively different from those of the fixed bars in the
meandering channels, manifested by the different behavior of the principal harmonics of the
bed deformation observed in those cases, at least for values of 8 lower than about 12.0.

6.3.7 Critical Conditions for the Suppression of Migrating Bars. Next, an analysis of the
critical conditions for the suppression of migrating bars in meandering channels derived from
the present experimental results is made. With this aim, the theoretical predictive
relationship proposed by Tubino and Seminara (1990), which was already discussed in
Chapter 2, is employed. This relationship, derived from a weakly-nonlinear analysis that
takes into account the interactions between migrating and fixed bars in a meandering
channel, can be written in terms of a critical dimensionless curvature v, such that the
suppression of migrating bars is predicted to occur in a channel having a dimensionless
curvature v, if v> v, with v, given by:

v =k (L2 5 (68)

c

where 8. denotes the critical condition for the formation of alternate bars in a straight channel
and k. represents a coefficient that is a function of the ratio between the meander wavelength
and the critical wavelength of the alternate bars in the straight channel, and also of 6 and d;.
This coefficient can be computed from Fig.9 of Tubino and Seminara’s paper.
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According to the experimental results presented in the preceding chapter, migrating
bars were observed to occur in all the experiments in Channel 2 (\p, =0.2,v=0.015), in one
of the experiments in Channel 3 (A, =0.15, v=0.03), for instance, the one associated with
the maximum experimental value of 8 of that series, and in none of the experiments in
Channel 1 (A, =0.20, v=0.03). These results show that the conditions for the suppression
of migrating bedforms appear to be a function of the geometry of the meandering channel,
in this case represented by A, and v, and also of B. In particular it is found that migrating
bars are more likely to be suppressed as the curvature increases, the wavelength decreases
or 3 decreases.

In order to compare these results with the theoretical prediction of Tubino and
Seminara (1990), relation (6.8) is plotted as a function of R in Figs. 6.23 and 6.24, for values
of the meander wavenumber corresponding to Ay, =0.20 and 0.15 respectively. The values
of k.; employed to build the theoretical curves presented in those figures are shown in Table
6.3. Even though this parameter is a function of 6, and therefore should vary within the set
of experiments corresponding to each meandering channel tested, only one value of k.; is
used herein for each meander wavenumber, since the experimental range of variation of 6
is rather narrow and because Tubino and Seminara’s paper gives information for the
evaluation of this parameter only for a value of 6=0.1, which fortunately corresponds to a
representative value of 6 for the present experiments. In computing k.;, a value of A, the
critical wavenumber for the formation of alternate bars in a straight channel, is needed.
Herein, this parameter is computed from the theoretical curve presented in Fig. 3.6, using
the calibrated values of 6 and d; associated with the experimental critical conditions for the
formation of the alternate bars presented in Table 6.1.

Table 6.3 Values of k.; for the Theoretical Critical Condition for the Suppression of

Migrating Bars.
Am Am / A¢ k1
0.20 0.45 0.06
0.15 0.33 0.05

Figs. 6.23 and 6.24 also present the experimental values of (8 associated with each
channel curvature tested, such that white points denote experiments in which no migrating
bars were observed and black points identify experiments in which migrating bars were
observed to develop. As it can be observed in those figures, the theoretical curves do not
appear to agree with the experimental results, predicting that in general the value of the
critical curvature for the suppression of migrating bars is larger than the experimental values
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of this parameter, and therefore, that migrating bars should have formed in all of the present
experiments.
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Fig. 6.23 Comparison Between Theoretical and Experimental Conditions for the
Suppression of Migrating Bars in Meandering Channels (A, =0.20).

With the aim of improving the theoretical prediction of the conditions for the
suppression of migrating bars in meandering channels, a calibration of the values of k; is
made, in order for the curves for v, given by (6.8) to be in agreement with the experimental
results. The calibrated values are presented in Table 6.4.

Table 6.4 Calibrated Values of k.; for the Critical Condition for the Suppression of

Migrating Bars.
- k;; THEORETICAL kc; CALIBRATED
0.20 0.06 0.020
0.15 0.05 0.025

As it can be observed in Table 6.4, the calibrated values of k. are of the order of 30
to 50% of the theoretical values. Besides, they appear to increase as the meander
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wavenumber decreases, whereas the theoretical behavior is exactly the opposite. These
differences between theoretical and calibrated parameters, however, are not totally
unexpected, since as it happened before for the critical conditions for the formation of
alternate bars, the theoretical values of parameters like k;; may depend strongly on the
resistance and bedload equations employed as closure relationships in the derivation of the
theory, and therefore their validity depends on the validity of those closure relationships.
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Fig. 6.24 Comparison Between Theoretical and Experimental Conditions for the
Suppression of Migrating Bars in Meandering Channels (A, =0.15).

The resultant curves for v using the calibrated values of k.; are also presented in Figs.
6.23 and 6.24. As it can be observed therein, they seem to predict the observed conditions
for the suppression of bars relatively well which appears to validate, at least qualitatively, the
theory developed by Tubino and Seminara (1990). Those curves show that the migrating bars
tend to be suppressed for much smaller curvatures than those predicted by the original theory,
however, the basic character of the theoretical solution appears to be well supported by the
present experimental results.
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7. CONCLUSIONS

The research work reported herein has covered some different aspects of the alternate
bar and river meandering phenomena. The problem has been approached mainly from an
experimental point of view, however, an analysis of the linear stability theory of alternate bars
and a numerical model for the flow and bed deformation in meandering channels have also
been developed, which provided a better insight on the physical meaning of the experimental
observations.

As it is pointed out in Chapter 2, some recent analytical theories developed mainly
by Professor Seminara’s group in Italy and Professor Parker’s group at the University of
Minnesota, have contributed to attain a consistent level of understanding on the various
phenomena involved in the initial process of meander formation. The main contributions
to that understanding correspond to the so called ’resonance theory’ of river meandering,
developed by Blondeaux and Seminara (1985), a finite amplitude theory for alternate bars
in straight channels developed by Colombini et al. (1987) and a theory that accounts for the
interactions between free and forced bars in meandering channels, developed by Tubino and
Seminara (1990). The study of Colombini et al. (1990) was the first attempt to validate the
resonance theory through experiments, however, it did not cover some specific aspects of the
theory, particularly, the phenomenon of coexistence of free and forced bars in meandering
channels and the conditions for the suppression of the former, of which the only experimental
precedent available in the literature corresponds to the study of Kinoshita and Miwa (1974).
The experimental work reported herein was aimed as to provide experimental evidence to
validate some aspects of the analytical mod=ls described above, specially those that had not
been investigated in previous laboratory studies.

The analysis of the linear stability theory of Blondeaux and Seminara (1985) presented
in Chapter 3, showed that the closure relationships for resistance and bedload employed in
the analysis have an important influence in the results obtained for the critical conditions for
the forination of alternate bars in straight channels. For instance, it was found that the use
of the Engelund-Hansen bedload relationship instead of Meyer-Peter and Muller equation
leads to a complete different behavior of the critical value of the parameter B. The critical
value of the wavenumber A\, however, appeared to be less sensitive to the changes in the
closure relationships. The linear stability theory, on the other hand, also allows to derive the
resonance conditions for quasi-nonmigrating, quasi-nonamplifying bars. An analysis of
those conditions showed that the wavelength of resonant bars appears to be on the order of
two or three times larger than that of the bars in straight channels. A comparison with the
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resonance conditions derived by Parker and Johannesson (1989), supported the above
~onclusion, although the resonance wavenumbers predicted by the simplified theory of the
latter researchers are slightly larger than those obtained through the complete theory of
Blondeaux and Seminara (1985).

A simplified numerical model for the two-dimensional flow and bed deformation in
meandering channels was developed in Chapter 4. The model is based on one of the sets
of governing equations commonly used in the literature. Although a limited analysis of the
results given by the numerical model was made therein, it allowed to get some insight on the
principal characteristics of the different physical processes involved in such phenomena. In
fact, the model is capable of reproducing some of the main features of the bed deformation,
as compared with the present experimental results, however, it appears to predict transversely
symmetric bedforms which are not in agreement with experimental observations. Likewise,
the numerical model appears to underestimate the experimental values of the bar height.
Asitis concluded in Chapter 4, it seems that the improvement of these features would require
an improvement in the modeling of the magnitude and direction of sediment transport in
meandering channels

The dimensional analysis made in Chapter 5, based on the non-dimensionalization
of one of the commonly used sets of governing equations for the alternate bar and river
meandering phenomena, showed that any parameter characterizing the bed deformation
related to such phenomena should be a function of the sediment properties, the geometry
of the channel, the slope, the Froude number and the parameter 8, the latter characterizing
the channel width to flow depth ratio. In particular it was found that once the sediment is
selected, the bed deformation is a function mainly of the geometry and slope of the channel
and B. It appears that the effect of the Froude number can be neglected, if it can be assumed
that this parameter varies in a narrow range for a given set of experiments. The latter
assumption seems to be valid for the present experiments, in which the Froude number varied
in the range 0.70 to 0.85 approximately. A review of the conditions covered by the
experiments of Colombini et al. (1990) and by those analyzed by Ikeda (1984) shows that,
in general, the Froude numbers associated with the alternate bar phenomenon appear to be
rather large, having values greater than about 0.70 in all cases observed.

A comparison made in Chapter 6 between the experimental data obtained in the
straight channel with the empirical relationships of Ikeda (1984) for bar height and bar
wavelength showed that the present data fall within the expected limits of scatter defined by
Ikeda, suggesting that scale effects were negligible, and therefore the observations should
be comparable to other sets of data obtained under similar conditions.
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As it is concluded in Chapter 6 from the analysis of the experimental results obtained
in the straight channel, two critical limits seem to exist for the parameter §3, such that alternate
bars do not develop for values of this parameter outside the range defined by those limits.
The lower limit, associated with deeper flows, corresponds to the critical condition for the
formation of bars, whereas the upper limit, associated with shallower flows, corresponds to
the critical condition for sediment motion. It was found that the dimensionless bar height
tends to increase as [3 increases over the lower limit, however it exhibits a sharp decrease as
B gets closer to the upper limit. It was also found that the dimensionless bar height increases
with the slope of the channel.

A comparison between these results and those predicted by the theory of Colombini
etal. (1987) for calibrated values of 3., showed that the theory works relatively well for values
of the parameter (B-8.)/B. lower than about 1.7, which gives the theory a wider range of
validity than expected. The theory, however is unable to predict the sharp decrease in
amplitude of the bars as 8 gets closer to the critical condition for the sediment motion. An
analysis of the calibrated values of . showed that in general, they differ from the values
predicted by the theoretical relationships derived in Chapter 3 for the critical conditions for
the formation of alternate bars. It was found, however that the best predictions are given
by the use of the Engelund-Hansen bedload equation and the flat bed Engelund-Hansen
resistance relationship, although it seems that more resistance was present than that
predicted by such relationship. The analysis of the experimental bedload rates and rating
curves showed that, in fact, Engelund-Hansen bedload equation does much better than
Meyer-Peter and Muller relation in predicting the observed bedload rates, and also that the
alternate bar structure appears to induce more resistance than that predicted by the flat bed
Engelund-Hansen resistance equation, which however is lower than that predicted by the
dune covered bed Engelund-Hansen resistance equation.

Asit is concluded from the results obtained in the experiments in the straight channel,
a linear relationship appears to exist between the bar height and the maximum scour
associated with the alternate bar structure, such that the latter seems to be about 75% of the
former. This result is in agreement with the results analyzed by Ikeda (1984), who also found
this value for the coefficient of proportionality.

From the analysis of the wavelength of the alternate bars observed in the straight
channel it was concluded that while no clear effect of the slope of the channel on this
parameter is apparent, the dimensionless wavelength appears to be a function of §, such that
it tends to increase as B increases, approaching a constant value of about 9.4 for values of
B larger than 1.5. A comparison between the experimental values of the wavelength and the
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theoretical critical values of this parameter showed that, as the bar height, the wavelength
seems also to increase from its critical value as 8 increases over the critical condition for the
formation of alternate bars.

The analysis of the migration speed of the alternate bars observed in the straight
channel showed that this parameter took, in general, values that are lower than 0.1% of the
mean flow velocity. Even though the scattering of the experimental celerity data is larger than
in the cases of the bar wavelength and bar height, a tendency appears to exist for the
dimensionless bar celerity to decrease as 8 increases. On the contrary, no clear effect of the
slope on the experimental values of this parameter is apparent.

As it was concluded from the two dimensional Fourier analysis of the dimensionless
bed deformation observed in the experiments in the straight channel, the most important
harmonics of the Fourier decomposition correspond to m3; and mg, which denote the
fundamental and a harmonic with no oscillation in the axial direction and with a transverse
wavelength equivalent to the channel width, respectively. According with the analysis carried
out, it was concluded that the dimensionless geometry of the bed deformation appears to be
a function of both 8 and the channel slope, which is reflected in the variation of its principal
harmonics 1;; and mngy, with those parameters.

From the analysis of the bar heights observed in the experiments in the meandering
channels corresponding to fixed bars or to bars in phase with the channel curvature in the
case of migrating bars, it was concluded that the dimensionless values of this parameter
appears to increase with the dimensionless curvature of the channel. On the other hand, a
not so strong effect of the dimensionless wavenumber over the bar height is apparent.
Nevertheless, for the results corresponding to the same curvature v=0.03, a tendency seems
to exist for the values of the bar height corresponding to A, =0.20 to be slightly larger than
the values corresponding to A, =0.15. This appears to support the qualitative results
predicted by a nonlinear theory of the resonance phenomenon, in that the response of the
bed within the resonance range does not appear to present a sharp peak, but to follow a more
smoothed trend. Whether a maximum of the bed response really exists for a certain
wavenumber of the channel, however, cannot be answered from the present results because
they correspond only to two different values of Ap.

A comparison between these results, corresponding to the curvatures v=0.015 and
0.030, and the dimensionless bar heights obtained by Colombini et al. (1990), corresponding
to a curvature v =0.050, showed that the experimental points of the latter researchers locate
consistently above the experimental points corresponding to the present study, defining, as
expected for a larger curvature of the channel, larger bar heights.
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As it was concluded from the results obtained in the experiments in the meandering
channels, the values of the maximum scour induced by the bed deformation appears to
behave slightly different than the values of the scour associated with the bars in the straight
channel. In fact, a nonlinear relationship seem to exist between the scour and the bar height,
such their ratio takes values that are larger than 0.75 for values of the dimensionless bar
height larger than about 2.5, and slightly lower than 0.75 for values of this parameter less than
2.5.

The analysis of the lag observed between the zone of maximum scour and the apex
of the channel curves in the experiments in the meandering channels with fixed bars, showed
that this parameter is a function of the channel wavelength and curvature, and also of the
parameter 3, such that the dimensionless value of the lag tends to decrease as B increases,
the wavelength of the channel increases or the curvature of the channel increases. The latter
conclusion, relating the behavior of the lag with the channel curvature, was obtained by
means of a comparison with the experimental results of Colombini et al. (1990). The
experimental results also showed that negative values of the lag, which indicates that the zone
of maximum scour is located upstream the apex of the curve, are likely to occur either for
large values of (3 or large wavelengths of the channel.

As it was described in Chapter 5, migrating bars were observed to develop in some
of the present experiments in the meandering channels, in particular in all the experiments
corresponding to Ap =0.20 and v=0.015 and in one of the experiments corresponding to
Am=0.15 and v=0.03. It was concluded from the analysis of those results that even though
migrating bedforms are likely to develop in meandering channels for adequate conditions,
the curvature of the channel appears to force a bed response whose bar height and migration
speed are smaller than the bar height and migration speed of the free bars observed in the
straight channel. Likewise, the resulting wavelength of the migrating bedforms appears to
be longer than that of the free bars in the straight channel. This behavior demonstrates that
in fact the curvature of the channel tends to damp, slow down and eventually suppress those
bedforms, which is in agreement with the theoretical findings of Tubino and Seminara (1990).

From the comparison between theoretical and observed rating curves for the
experiments in the meandering channels, it seems that in the meandering channels the form
resistance due to the bed deformation is less important than the form resistance associated
with the channel planform. According to this, it was found that more total resistance occurs
for increasing curvature and decreasing wavelength of the channel, mainly because of the
variation of the channel shape resistance with those parameters. It was also concluded that
the bed deformation in the meandering channels has less resistance associated with it than
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the alternate bars observed in the straight channels, which is mainly due to the longer
wavelengths and flatter character of the former bedforms.

It was concluded from the two dimensional Fourier analysis of the dimensionless bed
deformation observed in the meandering channels, that the most important harmonics of the
Fourier decomposition correspond, as for the experiments in the straight channel, to n;; and
Tg2- According to the analysis carried on, it was also concluded that the dimensionless
geometry of the bed deformation is a function of both the channel geometry and 3, which
is reflected in the variation of its principal harmonics with those parameters. It is also
apparent from the analysis that migrating bars, either in the straight or in the meandering
channel, have geometric properties that seem to be relatively different from those of the fixed
bars in the meandering channels, which is manifested in the different behavior of the principal
harmonics of the bed deformation observed in those cases.

Finally, the experimental results obtained in the meandering channels showed that the
conditions for the suppression of migrating bedforms appear to be a function of the geometry
of the meandering channel, characterized by A, and v, and also of 8. In particular it was found
that migrating bars are more likely to be suppressed as the curvature increases, the
wavelength decreases or 8 decreases. A comparison between the present results and the
theoretical predictions for the suppression of migrating bars derived by Tubino and Seminara
(1990), showed that the theory does not appear to agree with the experimental observations,
in that it predicts that migrating bars should have been formed in all of the present
experiments, which clearly did not occur. It was found that a calibration of the parameter
k; in the theoretical condition for the suppression of migrating bars improved the theoretical
prediction, showing that, at least for the present experiments, migrating bars tend to be
suppressed for much smaller curvatures than those predicted by the original theory. This
simple correction, however, seems to validate, at least qualitatively, the theory developed by
Tubino and Seminara (1990), in that the basic character of the theoretical solution appears
to be supported by the present experimental results.
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