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A study covering analytical, numerical and experimental aspects of the phenomena 
related to the formation and development of sediment bars in straight and meandering 
channels is reported. The emphasis of this research has been placed on laboratory 
observations with the goal of obtaining experimental evidence to veri@specific aspects of 
recently developed analytical theories on the subject. 

The analytical study consists in a revision of the linear theory for stabilityof alternate 
bars in a straight alluvial channel, with the objectiveof deriving relationships to estimate the 
conditionsfor the formation of alternatebars and their geometrical properties. In particular, 
the influence of using different resistance and bedload relationships on the results obtained 
through this analysis is explored. 

The numerical study consists in the development of a simplified model for the 
two-dimensional flow and bed deformation in meandering channels, mainly with the aim of 
understanding the principal characteristics of the physical processes involved in this 
phenomenon. 

The experimentalstudy consistsof a set of laboratory experiments conducted with the 
help of two tilting flumes that can recirculate sand-water mixtures located in the 
Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign. These 
experiments involve the observation and measurement of alternate bars in straight as well 
as in meandering channels of different geometries. The laboratory observations are used to 
analyze recently developed linear and nonlinear theoretical models for the formation, 
geometrical properties, and migration characteristics of alternate bars. The theoretical 
predictions are found to be in good agreement with the observations of height, wavelength, 
and celerity of alternate bars. The theoretical conditions for which the suppression of 
migrating bars in meandering channelstakes place, seem to agree qualitativelywell with the 
experimental observations made in the laboratory. 
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1. INTRODUCTION. 

. . 

Under widely occurring circumstances flow in a straight alluvial channel with erodible 
bottom is unstable and various types of sediment waves may develop, depending on flow and 
sediment conditions. These wavy bed configurations can be classified into two categories 

(Kuroki and Kishi, 1985), such as: Bed Configurations of Micro-scale, characterized by 

ripples, dunes and antidunes, and Bed Configurations of Meso-scale, characterized by 
alternate bars and linguoidal bars or braids. While the former configurations have dominant 
influence on the hydraulic resistance to the flow, the latter have been usually related to the 

meandering of rivers. 

The alternate bar configuration, which corresponds to the main subject of the research 

work reported herein, can be described as formed by migrating bedforms characterized by 
a sequence of steep consecutive diagonal fronts with deep pools at the downstream face and 

gentler riffles along the upstream face. The horizontal scale of the bedforms is typically of 
th.e order nf several channel widths, while the vertical scale is of the order of the depth of 
flow. These alternate bars have been observed to form spontaneously under rather shallower 
water flows than the micro-scale configurations, even though these types of bedform may also 
coexist under certain flow conditions. Fig.l.1 shows a photograph of a typical bar unit, 

obtained in one of the laboratory experiments made as part of the present investigation, and 

also a schematic view of the meandering thalweg typical of this kind of bedforms. 

The formation of alternate bars in straight channels has been the subject of several 

investigations in the last two decades (see River Meandering, Ikeda and Parker eds., 1989), 

for different purposes. From an engineering point of view, the zones of deoosition associated 

with them may severely affect many aspects of river management, such as navigation, and 

operation of intake structures, among others. Likewise, the zones of scour interact with river 

banks inducing bank erosion and variation of channel alignment, and also with structures 

such as bridge piers, river protection works, and others, inducing the risk of failure of those 

structures. 

From a more mechanistic point of view, alternate bars have been studied with the 

purpose of improving the level of understanding of river morphology. This motivation comes 

from the idea that alternate bars, giving rise to a sinuous migrating thalweg within the initially 
straight banks, might somehow evolve into meanders provided channels banks be also 
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(Tubino and Seminara, 1990). This idea, which has been supported by both laboratory (see 

for example Anderson et al., 1975, and Fujita and Muramoto, 1982) and field observations 



(see for example Fig.l.2,in which an artificially straightened reach of Los Angeles river 
evolved into a meanderingflow during the flood of 1938)-is the basis for most of the present 
analytical research on the river meandering phenomenon. 

Fig.l.1 Photograph of a Bar Front and Scheme Showing the Meandering Thalweg. 

Recent arialyh'cal theories developed mainly by Professor Seminars's group in Italy 
and Professor Yarker's group at the University of Minnesota (see River Meandering, Ikeda 
and Parker eds., 1989), have contributed to attain a consistent level of understanding on the 
various phsnornena involved in the initial process of meander foxmation. The so d e d  
'resonanze theory' of river meandering, which constitutes the basis for such understanding, 
was &'st developed by Blondeaux and Seminara (1985) and later verified by Parker and 
Johmesson (1989). This theory predicts that if the wavelength of an incipient meandering 
channel conesponds to the wavelength of a natural alternate bar mode characterized by 



vanishing rate of growth and migration speed, then a resonant phenomenon occurs, in which 
a sharp increase in the flowand bed topography response is obtained. Under such conditions, 
the migrating alternate bars lock into place with the point bars formed in the channel bends, 
giving rise to a steady bed deformation which promotes the bank erosion process and thus 

the meander amplification. 

Fig.l.2 Los Angeles River in Flooding of 1938. 

Even though recent attempts to verify the Resonance theory through carefully 
designed laboratory experiments have been successful to some extent (Colombini et al. 1990), 

still remain several aspects of the theory that need to be further investigated empirically. In 
particular, the interactions between alternate migrating bars and fixed point bars formed in 

channel bends and the conditions for the suppression of the former, which were studied 

analyticallv- bv- Tubino and Seminara (1990), represent a subject that requires further 



experimental research, being the study of Kinoshita and Miwa (1974) the only experimental 
precedent available. 

According to what has been exposed above, the present investigation has been aimed 
at providing experimental evidence that allows for a verification of specific aspects of recently 
developed analytical theories on the alternate bar and meander phenomena. Given this 
objective, a set of laboratory experiments has been conducted with the help of two tilting 
flumes that can recirculate sand-water mixtures in the Hydrosystems Laboratory of the 
University of Illinois at Urbana-Champaign. A channel with vertical walls, having a movable 
bed consisting of sand of 0.5 mm of diameter, and a width of 0.4 m, was inserted inside the 
wider tilting flumes. Different platforms were tested ranging from a straight, 15 m long 
channel, to three different meandering channels having a length of approximately 25 m. llvo 
different curvatures and two wavelengths were used for the meandering channels, which were 
modeled as simple sine waves. Both the influence of the channel width to depth of flow ratio 
and the slope on the bed deformation were investigated, and variables such as bar height, 
wavelength, and celerity were computed from the data collected. For the meandering 
channels, the location of maximum scour and the conditions for the suppression of migrating 
bars were also documented. The experimental conditions for the set of experiments 
described above were carefully selected as to match the analytical conditions under which 
the theories to be tested were derived, and also to cover the ranges within which the different 
processes to be studied experimentally should occur as predicted by those theories. 

Finally, the motivation for the experimental work reported herein comes also from 
the perception that it is necessary not only the development of new and more sophisticated 
analytical theories, but also of laboratory and field evidence to truly advance the present 
frontier of knowledge of a such a fascinating subject as river mechanics. 



2. LITERATURE REVIEW 

2.1 Generalities 

The most recent 'state of the art' reference on the alternate bar and river meandering 
phenomena corresponds to the AGU publication: River Meandering, edited by Ikeda and 
Parker (1989). This monograph is a collection of papers on different aspects related to the 
formation and development of alternate bars and river meanders, approached from 
mathematical, numerical and experimental points of view. Among those aspects, the one with 
which this research is mainly concerned is the so called 'resonance phenomenon' in 
meandering channels. The papers by Johannesson and Parker (1989), Parker and 
Johannesson (1989) and Seminara and Tbbino (1989a) in that monograph, therefore, 
constituted the first motivation for the research work reported herein. 

As it is pointed out by Seminara and Tubino (1989a), the level of understanding of 
the river meandering problem and related phenomena has evolved in the last two decades, 
from a state of a mainly descriptive empirical knowledge to the gradual development of 
analytical models. Theoretical attempts to give a mechanistic explanation of fluvial 
meandering concentrated first in the analysis of the alternate bar phenomenon. The works 
by Callander (1969), Hansen (1967), Hayashi (1970), Sukegawa (1971), Engelund and 
Skovgaard (1973), Parker (1976) and Freds~e (1978), constitute examples of increasingly 
refined linear stability theories aimed at explaining the basic mechanism underlying the 
process of formation of the alternate bar structure, and to predict the threshold conditions 
for such process as well as the wavelength and speed of the unstable configurations obtained 
through stability analysis. The basic idea behind those theories is the recognition that under 
certain flow conditions, a flat bed of non-cohesive sediment may loose stability due to a 
spatial perturbation characterized by a growing amplitude and a downstream migration 
speed, whose lengthscale is of the order of several channel widths. The bed perturbations 
tend to form an alternating sequence of deep and shallow reaches, in which the flow develops 
a sinuous thalweg. Because of this pattern, the alternate bar mode of instability was 
interpreted as the precursor of meandering (Seminara and Tubino, 1989a). 

A different approach to the meandering problem was undertaken by Ikeda, Parker 
and Saw& (1981), who associated the meander formation with a planimetric instability 
triggered by bank erosion due to secondary flow induced by ch:laniielsinuosity. me basic idea 

behind the so called 'bend theory', is the recognition that under certain flow conditions a flat 
bed of non-cohesive sediment may loose stability to a perturbed configuration of the channel 
axis. The analysis of Ikeda et al. (1981) led to the conclusion that the wavelength of the 



meandering perturbations obtained, is close to that predicted by the 'bar theory' for the 

migrating alternate bar structures. This was take^ as supporting the idea that the initial 
instability leading to the alternate bar formation would proceed into the planimetric 
instability leading to the meander formation. The 'bend theory' by itself, however, is not 
able to explain the mechanism by which relatively fast migrating alternate bars would trigger 
the development of the much slower process of bank erosion on which the planimetric 
instability depends. 

Blondeaux and Seminara (1985), a few years later, unified the bar and bend theories. 
By analyzing the dispersion relationship of the Bar theory, they found a class of bar 

perturbations characterized by nearly vanishing growth rate and migration speed. This class 
of perturbations, however, does not correspond to a natural response of the bed in a straight 
channel configuration. Nevertheless, when the forcing effect of curvature of the channel axis 
is taken into account, it was found that the bed response corresponds exactly to the 
quasi-nonmigrating, quasi-nonamplifymg bars, thus leading to a quasi-resonance 
phenomenon. The wavelengths selected by the resonance mechanism were found to be about 
three times larger than those predicted by the Bar theory, and in agreement with laboratory 

and field observations. The Resonance theory, therefore, provides the mechanism by which 

initially migrating bars can reduce their speed as a response to the curvature of the channel 
axis, in order to approach the time scale needed by the bank erosion process leading to the 
growth and development of meanders. 

The resonance phenomenon discovered by Blondeaux and Seminara was also 

confirmed by Parker and Johannesson (1989), through a linear analysis which differs slightly 

from the previous one. Parker and Johannesson also related the resonance phenomenon to 

the 'overdeepening' effect discovered by Struiksma et al. (1985), according to which 

pronounced outside scour may be observed at the entrance of a bend contiguous to a straight 

reach upstream. 

Even though the Resonance theory seems to provide satisfactory explanation to the 
meander problem, it is only valid under a number of assumptions, namely, uniform sediment, 

steady flow, no transport in suspension, etc., which are closer to laboratory conditions than 
to an actual river situation. Moreover, the linear models of Blondeaux and Seminara (1985) 

. . . 
or Parker and Johannesson (1989), break down in the vicinity of the resonance conditions, 

since the expansions utilized by the models are not longer valid in that region. Thislimitation, 
as it is pointed out by Tubino and Seminara (1990), may be overcome by the development 

of nonlinear theories of resonance. Also, linear theories do not account for the coexistence 



of migrating and fixed bars. a situation that has been observed in laboratory experiments by 
Gottlieb (1976) and Kinoshita and Miwa (1974). 

Tubino and Seminara (1990), using a weakly nonlinear approach developed a theory 
that accounts for the coexistence of migrating and fixed bars, and predicts curvature and flow 
conditions under which the migrating, also called free, bars are suppressed, giving place to 
the existence of only fixed, also called forced, bars in the meandering channel. The conditions 
for maximum suppression of the free bars were found to coincide with the resonance 
conditions, and to occur for rather small values of the curvature of the channel. 

More recently, Tubino (1991) developed a theory on the growth of alternate bars in 
unsteady flow, thus moving towards a modeling of the finite amplitude of alternate bars which 
is closer to the the actual river conditions than the first steady flow analysis made by 
Colombini, Seminara and Tubino (1987). 

According to Seminara and Tubino (1989b), a consistent picture of the various 
phenomena involved in the initial process of meander formation in alluvial channels can be 
derived from the theories described above. An originally straight channel with a 
non-cohesive, uniform sediment bed, subject to a steady flow may undergo an instability 
process under proper conditions, which leads to the formation of migrating perturbations, 
alternate free bars. in a relatively short time scale. These bars reach a finite amplitude 
through a process that can be described by the theory of Colombini et a1 (1987). On a larger 
scale of time, the channel widens and undergoes a second instability process, which 
corresponds to the planimetric one. As the sinuosity of the channel develops the resonance 
phenomenon as described by Blondeaux and Seminara (1985) or Parker and Johannesson 
(1989) and the interactions between free and forced bars as described by Tubino and 
Seminara (1990), result in the suppression of the migrating perturbations, leaving only forced 
bars to induce bank erosion which in the end leads to the meander growth. 

Even though numerous experimental studies on meandering and related phenomena 
have been made in the past, see for example Kinoshita (1957), Ikeda (1973), Kinoshita and 
Miwa (1974), Hooke (1975), Gottlieb (1976), Fujita and Muramoto (1982, 1985), etc., the 
validation of the theoretical findings described above through the existing experimental data 
is not possible since they refer to different experimental conditions and are not systematic. 
Colombini, Tubino and Whiting (1990) made a set of experiments carefully designed as to 
provide the data that would allow such validation. They built a series of meandering channels 
of sinusoidal shape and fixed walls, using different wavelenghts and identical maximum 
curvature in a range that cover the resonant conditions as predicted by the theories described 
above. In particular they selected a curvature large enough as to preclude the coexistence 



of free and forced bars but at the same time small enough as to satisfy the conditions for 
which the theories were derived. Their main conclusion is that the experimental observations 
strongly support the idea that the resonance does not operate in the form predicted by the 
linear analysis. Rather than exhibiting a sharp peak within the resonant range, the bed 
response was found to follow a more smoothed trend, which still exhibits a maximum for 
values of meander wavelength which are typically smaller than those predicted by the linear 
theory. 

The study of Colombini et al. was the first attempt to validate the Resonance theory 
through experiments, however, it did not cover some aspects of the theory that still remain 
to be further investigated in the laboratory. In particular, the phenomenon of coexistence 
of free and forced bars and the conditions for the suppression of the former appear to be an 
interesting topic, of which the only experimental precedent available in the literature 
corresponds to the qualitative observations made by Kinoshita and Miwa (1974). 

The research work reported herein has been aimed as to provide experimental 
evidence to validate some aspects of the analytical models described above, specially those 
that have not been investigated in previous laboratory studies. Experimental conditions were 
selected as to cover the resonance range, as well as to allow for the coexistence of free and 
forced bars and the suppression of the former. The results obtained in the present 
investigation, therefore, should add elements that help to improve the existing theoretical 
models, thus improving the present level of understanding of the meander problem and 
related phenomena. 
a a 7 m-L.---
L.L Dar lneury 
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subject of numerous theoretical analyses, and can be considered as qualitatively solved after 
Fredsge (1978). Nevertheless, more recent analyses like the ones by Kuroki and Kishi (1985) 
and Blondeaux and Seminara (1985), have improved some specific aspects of that model. 

Basically, the theory consists in the use of the shallow water wave equations in two 
dimensions coupled with a continuity equation for the sediment. Linearizing the equations 
while assuming that the quasi-steady approximation is valid, and adding small 
double-periodic perturbations to the mean values of the flow and bed variables, a dispersion 
relationship is obtained, which relates the wavelength, celerity and growth rate of the 
perturbations, to flow and sediment parameters. 

By specifying perturbations with different modes in the transverse direction a phase 
diagram can be obtained, which allows to separate regions in which a) no bars are present 
(even though ripples, dunes, antidunes, etc., can exist); b) alternate bars are present; or c) 



braids and multiple rows bars are present. A diagram like this, given by Kuroki and Kishi 
(1985), is presented in Fig.2.1, which specifies the bed regime as a function of the 
dimensionless bottom shear stress, 8, the slope of the channel, S, and the ratio between 
channel width, 2 ~ * ,and depth of flow D*. 

Fig. 2.1 Kuroki and Kishi's Regime Criteria for Meso-scale Configurations. 

When the alternate bar mode is selected, the dispersion relationship allows to build 

a neutral curve as a function of the wavenumber and channel width to flow depth ratio, which 

corresponds to perturbations with zero rate of growth. This curve typically exhibits a 

minimum, which is found to correspond to critical or threshold conditions for the formation 

of alternate bars. For values of the wavenumber or the width to depth ratio larger than the 

critical ones, the rate of growth is positive, implying that any perturbation is going to grow 

exponentially in time. Examples of these curves can be found in Colombini et al. (1987), 
Parker and Johannesson (1989), Seminara and Tubino (1989), and in Fig.3.2 of the next 

chapter. Also, this analysis is presented in more detail in Chapter 3, exploring the effects that 

the use of different resistance and bed-load relationships may have over the results obtained. 

One of the shortcomings of the linear theory is that it predicts an exponential growth 

of the unstable perturbations, therefore no finite equilibrium amplitude of the bars can be 
deduced from this analysis. On the other hand, it has been found experimentally that under 



steady flow conditions alternate bars do eventually reach an equilibrium amplitude, which 
is of the order of the flow depth. Ikeda (1984), developed relationships aimed at predicting 
the equilibrium amplitude and also the wavelength of alternate bars, based on his own set 
of experimental data, as well as on an extensive number of other Japanese authors data. 

Colombini et al. (1987) developed a weakly nonlinear analysis that allows to predict 
a finite amplitude of the alternate bars in a straight alluvial channel. This kind of analysis 
typically leads to the development of an amplitude equation, which as the time tends to 
predicts an exponential growth of the amplitude, in agreement with the linear theo~y, but as 
the time tends to + W  it predicts that the amplitude tends asymptotically to an equilibrium 
value. The theory of Colombini et al. provides a simple equation for the equilibrium 
amplitude of the alternate bars as a function of a small parameter E, which is defined as 
E=(P-P~)/P~(where P is the ratio between half the channel width and the flow depth, and PC 
is the critical value of p for the formation of alternate bars). The equilibrium amplitude in 
that equation is also a function of the bottom shear stress and the sediment size to flow depth 
ratio. This theoretical dependency of the bar finite amplitude on the bottom shear stress is 
important, because it was not taken into account by the experimental relationships of Ikeda 
(1984). The equilibrium amplitudes predicted by this theory are valid only for small values 
of the parameter E,nevertheless, a comparison of these results with experimental data showed 
a good agreement between them, even beyond the expected limits of validity of the analysis. 

As it was pointed out before, the linear stability analysis for alternate bars provides 
relationships for the rate of growth and celerity of the perturbations as functions of the 

wavenumber and width to depth ratio, and also of the bottom shear stress and sediment size 
to flow depth ratio. If curves representing zero rate of growth and zero celerity of the 
perturbations are plotted as functions of the wave number and the parameter (3 defined 
above, two characteristic points are found. The first one corresponds to the minimum of the 
zero raie of growth curve, which as was explained before, is related to the critical conditions 
for the formation of alternate bars and also defines the value of the most probable bar 
wavelength selected in a straight channel configuration. This point is located in the region 
of positive celerity, implying that any unstable perturbation of the alternate bar type in a 
straight channel is going to migrate in the downstream direction. The second point 
corresponds to the intersection of the neutral curves, and therefore represents a perturbation 
of vanishing rate of growth and celerity, which being one of the possible natural responses 
of the flow and bed topography does not develop 'spontaneously' in a straight channel 



configuration. An example of these curves is presented in Fig.3.2 in the next chapter, and 
can also be found in Parker and Johannesson (1989).- 

Blondeaux and Seminara (1985), discovered that as the forcing effect of the curvature 
of the channel axis is taken into account, the response of the linearized system exhibits a sharp 
peak for meander wavenumbers in a range of values that coincides with the range of bar 
wavenumbers for the quasi-nonrnigrating, quasi-nonamplifylng perturbations. Therefore, 
if the wavenumber of the meandering channel falls within the latter range, the alternate flow 
and bed pattern originated by curvature reinforces a natural tendency of the system for steady 
perturbations, which leads to a quasi-resonance phenomenon that tends to maximize bend 
erosion and thus meander amplification. The wavelengths of the steady 'forced' 
perturbations selected by the resonance mechanism were found to be on the order of three 
times larger than the wavelengths of the 'free' alternate bars selected by the Bar theory. A 
comparison of the meander wavenumbers predicted by the Resonance theory with 

experimental data and with values predicted for alternate bars showed that the observed 
wavenumbers are in better agreement with the values predicted by the Resonance theory than 
with those characteristic of alternate bars, which appears to support the idea that a 'bend' 
rather than a 'bar' mechanism prevails in the selection of the incipient meander wavelength. 

Parker and Johannesson (1989), by means of a slightly different approach confirmed 
the Resonance theory first proposed by Blondeaux and Seminara. In particular they derived 
a simplified linear theory which, however, seems to retain most of the essential features 
exhibited by the complete theory. Parker and Johannesson proposed simple relationships 
that allow to predict the resonance condition given the width to depth ratio, the bottom shear 
stress and the sediment size to depth ratio. Figures showing these relationships are presented 
in the next chapter. 

As it is pointed out by Blondeaux and Seminara (1985) and also by Tubino and 
Serninara (1990) the perturbation scheme used by the linear theories described above breaks 
down in the vicinity of the resonance range because the asymptotic expansions utilized to 
linearize the system of equations are not longer valid in that range. Colombini et al. (1990) 
commenting on recent findings of Professor Seminards group in Italy, explain that a 
nonlinear analysis of the resonance conditions showed that within the resonance range 
nonlinear effects are able to smooth out the infinite peak of the linear solution and shift the 
maximum response, associated with maximum bend growth, towards smaller values of the 
meander wavelength. This seems to be confirmed by the experiments made by Colombini 
et al. as already mentioned. 



Furthermore, the linear theories are not able to describe the coexistence of migrating 
free bars and fixed forced bars, which, however, has been reported as possible in laboratory 
experiments. The interactions between these free and forced bars appear to be responsible 
for some nonlinear effects that affect the bed topography in sinuous channels, and has been 
analyzed by means of a weakly nonlinear theory by Tubino and Seminara (1990), as discussed 
below. 

2.4 Interactions Between F h e  and Forced Bars 

The coexistence of migrating and fixed bars in a meandering channel has been 
observed in laboratory experiments by Kinoshita and Miwa (1974), Gottlieb (1976) and Fujita 

and Muramoto (1982). However, the most interesting of these studies from the point of view 
of the interactions between free and forced bars is the one conducted by Kinoshita and Miwa. 
These Japanese researchers made an extensive set of experiments using a 13 cm wide 
meandering channel covered by a mobile bed of coal with a mean diameter of 1.7 mm. The 
meandering channel was modeled as a set of straight segments forming an angle o! to each 
other, such that the resulting wavelength was either equal to, or a fraction of, the free bars 

which had been previously found to form in a straight channel with identical flow and 

sediment characteristics. Two different regimes were detected depending on whether the 
value of a was greater or lower than a critical value which was found to be in the range 
of 20" to 40°, and to depend on the meander wavelength. For a! <q,migrating alternate bars 

coexist with point bars formed in the channel bends. As the bars migrate downstream 
different states can be observed, in which the alternate bar train is in phase with, or in 

opposition to the meandering tendency of the channel. In particular it was observed that 

whenever the alternate bar train is out of phase with respect to the meandering of the channel, 

the meandering tendency of the flow tends to weaken and bars tend to flatten out. For a >q, 
free bars cease migrating. 

The results obtained in their experiments allowed Kinoshita and Miwa to build a curve 

relating the critical angle %with the meander wavelength to channel width ratio. Such curve 

is presented in Fig.2.2. Kinoshita and Miwa explained their results from a rather geometrical 
point of view, stating that for the suppression of migrating bars it is necessary for the channel 
curvature to be large enough so as to allow the thread of highest flow velocity, which 
corresponds also to the zone of highest sediment transport, to strike the opposite bank before 

another change of direction of the channel axis. It is also necessary the presence of 

subsequent changes of direction, one for each bar, in order that every bar in the channel is 

subjected to a similar stabilizing influence that promotes the stability of the entire train. 



Fig. 2.2 Kinoshita and Miwa's Critical Meander Angle for the Suppression of Migrating 

Bars. 


Tubino and Seminara (1990), interpreted Kinoshita and Miwa's results from a 
different point of view. For them, those results suggest that it is the interaction between the 
migrating free and steady forced bars which is responsible for the suppression of the former 
perturbations, and furthermore, for suppression to occur, the amplitude of forced bars, which 
increases with (2,must exceed a threshold value dependent on the meander wavelength. 
A r r n r A n a  t ; ~these authors 2 theoretka! int~,_.r?r~,t.rion~f this orncess r e ~ u i r e s  a finiteI A W W V A  U A A .  5 A A * 

amplitude representation not only of free bars, which was already obtained by Colombini et 
al. (1987) as a function of the small parameter E defined before, but also of forced bars, which 
should be expressed in terms of some small parameter v measuring curvature effects. 

Tubino and Seminara (1990), developed a weakly-nonlinear theory to analyze the 
interactions between free and forced bars. In particular they derived an amplitude equation 
which allow to  identify different regimes for the equilibrium solution of the free and forced 
perturbations. Two critical values of the small parameter v, defined as the ratio between half 
the channel width and twice the minimum radius of curvature of the channel (or half the 
maximum curvature), were found :vcl and va. The following regimes appear to be possible: 
i) If vcl <vd, free bars are damped and slowed down for v <vcl, and are suppressed for v >v,l.. 
ii) If vcl >vd, free bars are damped and slowed down but migrate downstream for v <va, are 
damped and migrate upstream (though possibly at a very low rate) for vn <v <vcl, and are 
suppressed for v> vcl. According to these criteria, suppression of migrating bars can be 



expected in a meandering channel provided its curvature v is greater than the critical value 
vcl. The theory provides a simply expression for vcl, as a function of the small parameter E 

defined before: v,l= bl E~ =b1((P-P~IP,)~,where the parameter k1is a function of the 
ratio between the meander wavelength and the critical wavelength of the alternate bars as 
obtained from the neutral curve, the bottom shear stress, and the sediment size to flow depth 
ratio, and can be obtained from Fig.9 in Tubino and Seminara's paper. The dependence of 

v,l on p as predicted by the above formula is fairly strong but wuld not be detected by 
Kinoshita and Miwa who designed their experiments so that P was held constant. No simple 
expression is provided for v d .  

According to the results obtained by Tubino and Seminara, the minimum conditions 
for the suppression of migrating bars are attained within the resonant wavenumber range of 
Blondeaux and Seminara (1985),which is not unexpected, since close to resonance the forced 
bar exhibits a peak which implies that lower sinuosities are sufficient to damp free bars. A 
comparison of these results with Kinoshita and Miwa's observations, showed a favorable 
agreement, which was taken as a confirmation of the physical ideas underlying the theory. 



3. LINEAR ANALYSIS OF STABILITY PROBLEM 

3.1 Introduction 

In what follows a revision of the linear theory for stability of alternate bars in a straight 
alluvial channel as derived by Blondeaux and Seminara (1985) and Colombini et al. (1987) 
is made. The critical or threshold conditions for the formation of alternate bars are derived 
in terms of the wavelength, channel width to depth of flow ratio, and celerity of the unstable 
perturbations. The behavior of the critical values of such variables is obtained as a function 
of the bottom shear stress and the sediment size to depth of flow ratio. In particular, the 
influence of using different resistance and bedload relationships on the results obtained 
through this analysis is explored. 

Likewise, the analysis is extended as to obtain graphical relationships for the resonant 
conditions as described in the preceding chapter. A comparison of this conditions with the 
predictive relationships derived by Parker and Johannesson (1989) is also made. 

3.2 Linear Stability Theory 

The following derivation is adapted from the papers by Blondeaux and Seminara 
(1985) and Colombini et al. (1987). Their analysis is extended with the aim of exploring the 
effects that the use of different resistance and bedload relationships has on the results 
obtained. 

mi_ a d r &  nn*l n e  flow in a straight aiiuviai channel havinga constant wutlL a  and non-erodible 
banks covered by a non-cohesive sediment bed is considered. The width of the channel is 
taken as large enough for the flow to be modelled as two-dimensional. Therefore, the flow 
is described everywhere except for the layers adjacent to the walls where vertical velocities 
cannot be neglected. Even though only depth-averaged values of the transverse velocity are 
considered, account is taken of the influence that the secondary flow has on sediment 
transport. Fig. 3.1 shows a sketch of the channel under consideration in which variables 
utilized in the analysis presented below are defined. In that figure, a bed deformation of the 
alternate bar type is assumed and the wavelength L*of the bedform is also defined. 

The analysis of Colombini et al. utilizes the St. Venant equations for shallow water 
flow in a straight channel, assuming the quasi-steady approximation to be valid for a slowly 
varying erodible bottom, coupled with the Exner equation for continuity of sediment, 
assuming only bedload mode of sediment transport. These equations are written in the 
following dimensionless form. 



Fig.3.1 Sketch of the Channel and Definition of Variables. 

In (3.I), (U,V) are the dimensionless depth-averaged velocity components in the axial 

and transverse directions, respectively, 7, and 7, are the dimensionless bottom shear stresses, 

H is the dimensionless water surface elevation, D is the dimensionless local depth, Qs and 
Qnare the dimensionless volumetric sediment flow rate per unit width components in the 

axial afid transverse directions, respectively, and Fois the unperturbed Froude number of the 
flow. Also, Qois the ratio between the scale of sediment discharge and the flow rate and P 
is the channel ~ d t hto depth of flow ratio, given by: 

where p, and d,* are the density and diameter of the uniform sediment, p is the water density, 

g is the gravitational acceleration, and p denotes sediment porosity. Likewise, uo*and Do* 



- are average velocity and depth for the uniform unperturbed flow, respectively. In (3.1) the 
variables have been made dimensionless in the form: . -

In order to close the system of equations formed by (3.1), both resistance and sediment 
transport relationships are needed. Let express the bottom shear stress vector T in terms of 
a friction coefficient C defined by the relationship: 

T - ( T , ,  r n ) = ( U , V ) ( U 2 + V 2)$c ( 3-4 ) 

The dependence of C on flow parameters is not known for general flow conditions 
as those defined by alternate bars, however, since the flow to be studied is only slightly 
perturbed from the case of steady flow in straight channels, the friction coefficient C is 
evaluated using the Engelund-Hansen resistance equation, for the appropriate bed regime, 

as follows: 

Flat Bed : 

Dune-covered Bed : 

In (3.5),0 is the Shields parameter defined in terms of the unperturbed bottom shear 

stress T~' and 8' is the fraction of 9 associated with grain resistance. Also, d, is a dimensionless 

sediment diameter defined as d, =d,*/ D~'. 

The sediment transport is assumed to be mainly in the bedload mode. Special 
attention is paid to the modeling of the effect that the secondary flow and transverse bed slope 

exert on the direction and intensity of the bedload motion. The model of Parker (1984) based 

on previous work by Engelund (1981), is used, for which: 

Q = ( Qs , Qn ) = ( m s d  sin6 ) (3*6a) 

where, corresponds to a function describing the bedload transport in the unperturbed 

uniform flow and S denotes the angle between the particle velocity and the axial direction. 



Also, the value of the parameter r in (3.6b) is taken as 0.3 following the arguments given by 
Colombini et al. 

Two different bedload relationships are used to evaluate cP,namely, Meyer-Peter and 
Muller and Engelund-Hansen formulas. 

3 
Meyer-Peter and Muller : Q , = 8 ( 0 - 0 , ) T  , 0,=0.047 (3.7a ) 

Engelund-Hansen : Q,--
0.05 0 75 

(3-7b )C 

The linear theory analyzes the conditions under which the unperturbed uniform flow 
loses stability to small double periodic perturbations, in the s and n directions. The following 
linearization of flow parameters is performed, where A represents a small parameter. 

In (3.8), Co and Qo denote the friction coefficient and bedload transport of the 
unperturbed uniform flow, respectively. By substituting (3.8) into the system of equations 
(3.1) and performing a linearization, the following homogeneous differential problem is 
obtained, 

where, ~ ~ 1 ,  Tnl, Qsl and Qnl are expressed in the form: 

with, 

s l  = 2 ( 1-cT ) - I  ~2 = CD ( 1-cT ) - l  



In (3.1I),O0 is the Shields parameter of the unperturbed uniform flow, and c ~ ,  Qrc ~ ,  
and aDare defined as: 

and can be evaluated from the relationships (3.5) and (3.7). 

Now, the perturbed quantities are assumed to be represented in wave form by a 
double periodic translating sine function of exponentially variable amplitude. The 
wavelength of the perturbation in the transverse direction is assumed to correspond to twice 
the channel width, thus selecting perturbations of the alternate bar type. Note that selecting 
smaller wavelengths in the transverse direction, perturbations of the multiple row bar type 
can be analyzed in the same fashion. The perturbation can be written as: 

where, c.c denotes complex conjugate, and the growth rate of the perturbation. S(n), C(n) 
and E(s,t) are defined in the following form: 

where A and w are the wavenumber in the axial direction and angular frequency of the 
perturbations respectively. Substituting (3.13) and (3.14) into (3.9) and (3.lo), the following 
linear homogeneous algebraic system is obtained: 

with, 
a l , = ( i r l + ~ C o s l ), a 1 2 = D  , a 1 3 = i A  , a 1 4 = B C o ( s 2 - 1 )  (3 . ih  j 

The homogeneous algebraic system (3.15) has a non trivial solution only if the 
determinant of the matrix formed by the coeEcients aij is zero. This condition defines the 
following dispersion relationship: 



where, 

and 

with 

From (3.17) relationships expressing the growth rate and angular frequency of the 

perturbations are obtained as follows: 

It can be concluded from the preceding set of equations, that and o depend only 
on four parameters, namely, h, P, 80 and ds, since sl, sz, fl, fi,Fo,Co,Qoand Qoare functions 
of e0 and d, only. Therefore, given fixed values of 80 and d,, (3.20) and (3.21) define 

parametric relationships for P as a function of h, depending on the values of i2 and o. In 
-n -- 2 - .-A '- A' -- - - ---- L--- L--- Xff---- A - - - -&-I  ------- ---pariicuiar, setting ~qua~lullb, e l l ~I ~ G U L Idl GUI vt:s art:lDy -u anu w -u 111 ~ n u s ~  LWU ulllt;~ 

obtained in the plane (A, P), for which the growth rate and angular frequency of the 

perturbations vanish. 

An example of those neutral curves is presented in Fig. 3.2, for the following 

conditions: 80=0.3; ds= 0.01; Meyer-Peter and Muller bedload relationship (3.7a ), and the 



flat bed Engelund-Hansen resistance equation(3.5a). Thiscorrespondsto the sameexample 
presented by Colombini et al. (1987) and also by Parker and Johannesson (1989). In that 
figure, any point located inside the growth rate neutral curve (SZ =0) has a positive rate of 
growth and therefore corresponds to an unstable perturbation. Likewise, any point located 
to the right of the angular frequency neutral curve (o=0) has a positive angular frequency 
and therefore corresponds to a perturbation that migrates in the downstream direction. 

, 
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Fig.3.2 Neutral Curves for Alternate Bars-Linear Theory (go=0.3; d, =0.01). 

Also, in Fig. 3.2 two characteristicpoints are distinguished. The first one corresponds 
to the minimum of the growth rate neutral curve, which as was discussed in the preceding 
chapter defines the critical or threshold conditions for the formation of alternate bars. The 

second point corresponds to the intersection of both neutral curves, defining a perturbation 

of vanishing rate of growth and angular frequency, which as was also discussed in Chapter 

2, corresponds to perturbations of the resonant type, provided the channel is a meandering 

channel of the adequate wavelength. This last characteristicpoint is not a possible response 

of the system if the channel is straight, therefore incipient perturbations of the alternate bar 



type have always a positive angular frequency, or in other words, they migrate in the 
downstream direction. 

.. . 

In what follows, graphical relationships are derived relating the values of X, P and o 

of incipient alternate bars at the critical point, as functions of 80 and d,. 

3 3  Critical Conditions for the Formation of Alternate Bars 
By setting i2 =0 in (3.20), the following equation is obtained, which for £ked values 

of 80 and ds allows to compute the growth-rate neutral curve in the plane (A, P). 
a 3 L 6 + a 2 A 4 + a l L 2 + a o = 0  ( 3.22 ) 

where, 

This neutral curve has a minimum, as can be observed in the example of Fig. 3.2, which 
defines the critical values h,and PCfor incipient alternate bars. By substituting X, and PCin 

(3.21) the corresponding value w, is obtained, which as X, and PC depends not only on the 

values of 8, and d,, but also on the bedload and resistance equations selected. Three different 
combinations of the equations (3.5) and (3.7) are used in what follows with the aim of 
analyzing the effect of different resistance and bedload equations on the threshold conditions 
for the formation of alternate bars. 

By combining the Meyer-Peter and Muller bedload equation (3.7a) with the flat-bed 
Engelund-Hansen resistance relationship (3.5a), the following expressions for the 

parameters sl, s2, fl and f2 are obtained: 

With these relationships, the values of PCand )r,are computed from (3.22) as functions 
of €I0and d,, using the definitions (3.18), (3.19) and (3.23). The results obtained are presented 

in Figs. 3.3 and 3.4, respectively. 

By combining the Engelund-Hansen bedload equation (3.7b) with the flat-bed 

Engelund-Hansen resistance relationship (3.5a), sl, s2, fl and f2 can be expressed as: 

As before, with these expressions the values of PCand X, are computed from (3.22) 

as functions of O0 and d,, using the definitions (3.18), (3.19) and (3.23). The results obtained 

are presented in Figs. 3.5 and 3.6, respectively. 



Fig.3.3 PCas a function of €lo and d,. Linear Theory. Meyer-Peter and Muller Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 


Fig.3.4 & as a function of €lo and d,. Linear Theory. Meyer-Peter and Muller Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 




Fig.3.5 PCas a function of Bo and d,. Linear Theory. Engelund-Hansen Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 


Fig.3.6 h, as a function of 80 and d,. Linear Theory. Engelund-Hansen Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 




By combining the Engelund-Hansen bedload relationship (3.7b) with the 
Engelund-Hansen resistance equation for dune-covered beds (3.5b), sl, sz, fl and fi can be 

. -expressed as: 

where, 

Again, with these relationships, the values of PCand X, are computed from (3.22) as 

functions of e0and d,, using the definitions (3.18), (3.19) and (3.23). The results obtained 

are presented in Figs. 3.7 and 3.8, respectively. 

Fig.3.7 f3, as a function of and d,. Linear Theory. Engelund-Hansen Bedload 

Relationship; Dune-bed Engelund-Hansen Resistance Equation. 




Fig.3.8 )r,as a function of go and ds. Linear Theory. Engelund-Hansen Bedload 

Relationship; Dune-bed Engelund-Hansen Resistance Equation. 


As it can be concluded from Figs. 3.3 to 3.8, the use of different resistance and bedload 
relationships has important influence on the results obtained for PCand &, as predicted by 
the linear theory. Comparing Figs. 3.3 and 3.5, it is clear that the bedload equation selected 

has major incidence not only on the values but also on the behavior of PCas a function of 

80, specially for values of this parameter lower than 0.20. In fact, while for the Meyer-Peter 

and Muller formula PCincreases with €I0 in that range, for the flat-bed Engelund-Hansen 
equation that behavior is exactly the opposite. On the other hand, from Figs. 3.4 and 3.6, 
it can be noticed that the critical wavenumber X, is less sensible to the bedload equation 

selected than PC,showing a slightly different behavior in one case or the other. This behavior, 

however, becomes more markedly different in the range Bo <0=10=Comparing Figs. 3.5,3.6, 
3.7 and 3.8, it can be concluded that the hydraulic resistance to the flow also has major 

influence on the results obtained for PCand )r,, as it is reflected by the use of a flat-bed or 

a dune-bed resistance equation. In general terms, much lower values of PCare obtained for 
LL-me dune-bed formula than for the flat-bed equation, while much larger values of X, result 

from the use of the dune-bed equation than from the use of the flat-bed formula. 

In order to get an idea of the order of magnitude of the migration speed of the 

incipient alternate bar perturbations, the critical angular frequency o, was computed by 



replacing the values of PCand X, as functions of and d,, into 3.21. The Engelund-Hansen 
bedload formula and the flat-bed Engelund-Hansen resistance equation were used in the 
computation. The results obtained are presented in Fig. 3.9. 

Finally, with the aim of obtaining graphical relationships that allow an easy 
comparison with the experimental results obtained in the present research, the values of the 
celerity c: and wavelength L*of the alternate bars at the critical point, computed as: 

are presented in Figs. 3.10 and 3.11 respectively. In preparing those figures, the 
Engelund-Hansen bedload formula and the flat-bed Engelund-Hansen resistance 
relationship were used. 

Fig.3.9 w, as a function of €I0and ds. Linear Theory. Engelund-Hansen Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 


3.4 Resonance Conditions 

In what follows, an analysis similar to that presented in the preceding section is 

developed with the aim of obtaining graphical relationships for the conditions associated with 

the resonance phenomenon as described in Chapter 2. 



Fig.3.10 c,'wo* as a function of 80 and d,. Linear Theory. Engelund-Hansen Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 


Fig.3.11 L'/~B*as a function of Bo and d,. Linear Theory. Engelund-Hansen Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 




As it can be observed in Fig. 3.2, one of the possible responses of the flow-sediment 
system to the linear stability analysis performed in 3.2, corresponds to perturbations of zero 
rate of growth and zero migration speed. These perturbations however do not develop 
naturally in a straight channel, since in that situation the most probable perturbations to 
develop correspond to those associated with the critical point analyzed in 3.3 (Blondeaux and 
Serninara, 1985). Nevertheless, if the channel is not straight but has a small sinuosity, such 

that its .wavenumber falls within the range of the vanishing rate of growth and celerity 
perturbations, then according to the analysis of Blondeaux and seminara (1985), the forcing 
effect of the curvature of the channel ~s does select such kind of perturbations, thus leading 
to the resonance phenomenon discussed in Chapter 2. 

By setting w =0 in (3.21), the following equation is obtained, which for fixed values 
of go and d, allows to compute the angular frequency neutral curve in the plane (A, (3). 

where, 

If the system of equations formed by (3.29) and (3.22) is solved simultaneously, then 
the resonant point (AR, PR) is obtained, for which o=a=0. This resonant point, as the 
critical point derived in 3.3, is a function of go and d, and also of the bedload and resistance 

equations used in its derivation. 

Figs. 3.12 to 3.15 present the results for XR and PR, obtained by solving the system 
formed by (3.29) and (3.22). In those figures the resonant variables are plotted as functions 

of €I0 and d,. Figs. 3.12 and 3.13 show the results corresponding to the use of the Meyer-Peter 

and Muller bedload formula (3.7a) and the flat-bed Engelund-Hansen resistance equation 

(3.5a). Likewise, Figs. 3.14 and 3.15 present the results corresponding to the use of the 
Engelund-Hansen bedload relationship (3.7b) and the flat-bed Engelund-Hansen 

resistance equation (3.5a). 

As can be observed in those figures, the bedload equation utilized in the analysis plays 
an important role in the results obtained for the resonant values of P. While Meyer-Peter 
and Muller formula gives values of PR in the range 10-100, Engelund-Hansen relationship 

generates values of that parameter in the range 7-16. This extremely different range of values 

is not so unexpected, since as can be observed in the example of Fig. 3.2, the slope of the 

neutral curve SZ =0 in the resonant zone is very steep, and therefore any small variation in 



Fig.3.12 PR as a function of Bo and d,. Linear Theory. Meyer-Peter and Muller Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 


Fig.3.13 XR as a function of €I0and d,. Linear Theory. Meyer-Peter and Muller Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 
-



Fig.3.14 PR as a function of €I0 and d,. Linear Theory. Engelund-Hansen Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 


Fig.3.15 XR as a function of e0 and d,. Linear Theory. Engelund-Hansen Bedload 

Relationship; Flat-bed Engelund-Hansen Resistance Equation. 




the neutral curve o=0, can lead to extremely different values of PR. On the other hand, Figs. 
3.13 and 3.15 show that the bedload equation utilized in the analysis affects only slightly the 
results obtained for the resonant wavenumber hR,which in both of the analyzed cases is in 
the range 0.10-0.15. By comparing this range with the range of values of the critical 
wavenumber )r,as obtained in Figs. 3.4 and 3.6 for flat-bed conditions: 0.3-0.5, it can be 
concluded that the resonant wavelength, which is associated with incipient meandering 
wavelength after Blondeaux and Seminara (1985), is two to three times larger than the 
wavelength of incipient alternate bars. 

As was mentioned in Chapter 2, Parker and Johannesson (1989) derived explicit 

predictive relationships for the resonant conditions of alternate bars, which however are not 
expressed in terms of (AR, PR). In the following, their conditions are translated to the 
nomenclature utilized in the analysis presented above, in order to allow an easy comparison 

of the results. 

The linear analysis of Parker and Johannesson (1989) leading to the resonant 
conditions for alternate bars is basically the same as that derived herein, however differences 

in treating the governing equations and in the simplifications introduced make both 

approaches slightly different. Using the Engelund-Hansen bedload formula and the 
Engelund-Hansen resistance equation for flat-bed conditions, the resonant values of P and 

A, as predicted by Parker and Johannesson (1989), can be written as: 

00 5.5 
= 1.45 ( - )-? (ln ( z) ) - I

9, 

Figs. 3.16 and 3.17 show PR and AR given by (3.31), plotted as functions of and ds. 
=0.05 was used in order to avoid the introduction of 

an independent expression for this parameter. 

As it can be observed in Figs. 3.16 and 3.17, the values of PR and XR predicted by the 
theory of Parker and Johannesson are larger than those presented in Figs. 3.14 and 3.15 for 

the same bedload and resistance equations. Typically, values of PR predicted by Parker and 
Johannesson are in the iaiige 15-30, which coiiespoiid to about twice the magnitude of the 

values obtained in the present analysis. Likewise, the values of AR predicted by Parker and 

Johannesson are in the range 0.15-0.30, which also correspond to about twice the magnitude 

of the values obtained in the present analysis. As it was pointed out before, the resonant 

8,constant value of those figures a In 
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Fig.3.16 PR as a function of 00 and d,. Parker and Johannesson Theory. Engelund-Hansen 

Bedload Relationship; Flat-bed Engelund-Hansen Resistance Equation. 


Fig.3.17 XR as a function of 80 and d,. Parker and Johannesson Theory. Engelund-Hansen 

Bedload Relationship; Flat-bed Engelund-Hansen Resistance Equation. 




wavenumbers obtained in the present analysis are in the range 0.10-0.15, which led to the 
conclusion that the resonant wavelength is of the order of two to three times the wavelength 
of incipient altemate bars. Following the analysis of Parker and Johannesson, that conclusion 
is relatively well supported, as the resonant wavelengths obtained through this analysis are 
still of the order of two times the wavelength of incipient altemate bars. 
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4. NUMERICALMODEL FOR n o w  AND BED DEFORMATION IN MEANDERING 

CHANNELS 

4.1 Introduction 

In the present chapter some numerical results obtained with a simplified 
two-dimensional numerical model for the flow and bed deformation in meandering channels, 
are presented. The numerical model was developed based on models available in the 
literature, particularly on that of Shimizu and Itakura (1989a). The main objective of the 
application of the model is two fold. In the first place it will help to understand the principal 
characteristics of the physical processes involved. In the second place, it will provide an 
opportunity to evaluate how well does the set of governing equations commonly used in 
analytical and numerical studies of flow and bed deformation in meandering channels do in 
the modeling of such phenomena, by providing numerical data to be compared with the 
experimental results obtained in the present research. 

4.2 Governing Equations 

Different sets of governing equations have been used in analytical and numerical 
studies on the modeling of flow and bed deformation in meandering channels (see for 
example River Meandering, Ikeda and Parker eds., 1989), however the most successful 
attempts have considered at least the use of momentum equations in axial and transverse 
directions coupled with continuity equations for both water and sediment, making use of the 
quasi-steady approximation for a slowly varying erodible bottom. In general, the assumption 
that the channel width and radius of curvature are large compared to the flow depth is valid, 
which allows to neglect vertical components of velocity and also to consider the hydrostatic 
pressure distribution as valid. These assumptions, clearly break down in the vicinity of the 
channel banks, however these defects are local in nature and have a small effect on the overall 
flow pattern. Accordingly, most of the studies use vertically-averaged equations (Smith and 
McLean, 1984; Blondeaux and Seminara, 1985; Shimizu and Itakura, 1989a), even though 
the use of the non-averaged form for some of the governing equations has also been 
considered in the literature (Parker and Johannesson, 1989; Nelson and Smith, 1989). Since 
the use of vertically-averaged equations precludes the adequate modeling of the transverse 
sediment transport, some of the studies revised have included explicitly the effect that the 
component of secondary flow with zero vertical average has on the direction and intensity 
of the bedload motion. The models of Parker (1984) and Hasewaga (1981) are typically used 
with this purpose (Blondeaux and Seminara, 1985; Shimizu and Itakura, 1989a; Parker and 
Johannesson, 1989). 



The channel under consideration has a constant width 2B, non-erodible banks, 
non-cohesive uniform sediment bed, and a variable curvature along its axis. Most of the 
models revised utilize intrinsic coordinates (s,n) t o  express the governing equations, where 
s denotes the axial coordinate, usually measured along the centerline of the channel, and n 
denotes the transverse coordinate. Some of the models express the governing equations in 
terms of the local value of the radius of curvature r, although most of them use the centerline 
value of this parameter, R, usually written in terms of the centerline curvature C, where 
C= l/R. Fig. 4.1 shows a scheme of the channel, defining the system of coordinates and other 
variables used in the analysis. 

Fig. 4.1 Scheme of the Channel and Definition of Variables. 

Of the models revised, the numerical model of Shimizu and Itakura (1989a) is the one 

that makes use of the most complete form of the two-dimensional depth-averaged set of 
governing equations. This set of equations is written as: 



where, (U,V) are the depth averaged velocity wmponents in s and n directions respectively, 

7sand 7, are the bottom shear stresses, H is the water surface elevation, D is the local flow 
depth, Qsand Qn are the volumetric sediment flow rate per unit width components which are 
assumed to correspond mainly to bedload transport, p is the water density, g is the 
gravitational acceleration, p is the sediment porosity, r is the local radius of curvature and 
c is a depth-averaged diffusion coefficient for fully turbulent flow. 

As it is pointed out by Shimizu and Itakura, the diffusion terms are accounted for in 

their model because of numerical stability reasons, and not due to their actual physical 

importance. If E= 0 in (4. I), then the set of equations used by Blondeaux and Serninara (1985) 

in their analytical study is obtained. Parker and Johannesson (1989), also in a theoretical 

analysis, used a set of equations similar to (4.1), however they derived a non-depth-averaged 
version of the transverse momentum equation (4.lb). Smith and McLean (1984) also 
assumed E =0, however they did not take into account the bed variation in their analysis, thus 
neglecting the sediment continuity equation (4.ld). These authors also derived a simplified 
form for the transverse momentum equation based on order of magnitude considerations. 

Neglecting E in (4.1) and expressing the equations in terms of the centerline curvature 

C, the following system of equations is found: 

where s denotes the local value of the axial coordinate and not the value associated with the 

centerline of the channel. Smith and McLean (1984) (see also Dietrich and Whiting, 1989 

and Nelson and Smith, 1989) using scaling arguments showed that (4.2b) can be reduced to: 

equation which has also been used by Shimizu and Itakura (1989b). 

From Fig. 4.1, the following relationships can be derived: 



where 11 denotes bed elevation. This variable czin be expressed in terms of the mean slope 
of the channel such that: 

Eatl -so+- -=-ar! 87' a?av' -=- a?' 
as as ' an an ' at at 

where denotes the value of the mean bed elevation at s =0, Sois the slope of the channel 
and 11' denotes the local deviation of the bed elevation with respect to the mean value defined 
by the slope of the channel. Fig. 4.2 shows a sketch for the definition of these variables. 

Fig. 4.2 Sketch for the Definition of Variables. 

Using relations (4.5) and expressing momentum equations in flux form, which is useful 

for the development of the numerical scheme presented in the next section, the system (4.2) 
can be rewritten as follows: 

a ( m ) +  1 a(( 1+ n  c ) v20) - c ( u 2 D o ) = - a~ an' r (4.6b ) 
as ( l + n C )  an ( l + n C )  g ( x + x  9-- Q 

Following Smith and McLean (1984), (4.2b) can be reduced to: 



In order to close the set of governing equations in any of the forms written above, 
resistance and bedload relationships are needed to express bottom shear stresses and the 
components of sediment transport rate as functions of flow and sediment parameters. 
Following Shimizu and Itakura (1989a), Manning's equation is used in what follows as 
resistance relation, assuming the wide channel approximation to be valid, such that: 

where n, denotes Manning's coefficient. This coefficient is calibrated using the experimental 

data collected in the experimental study made as part of the present research, thus reducing 
the sources of error introduced by the selection of the resistance relationship. 

To model the sediment transport rate in the axial direction,Qs,the Engelund-Hansen 
bedload formula is used, which as will be discussed in following chapters represents 
adequately the sediment transport measured in the experiments made as part of the present 
research. This formula is written as: 

with @ given by: 

where p, and d, denote density and diameter of the uniform sediment, Co is a friction 

coefficient and 8 represents the Shields parameter. 

The modeling of the transverse sediment transport is perhaps the most crucial point 

in the whole analysis of bed deformation in meandering channels. Since only the 

depth-averaged value of the transverse velocity is considered in the governing equations 
special attention is given to introduce explicitly the effect of the secondary flow with zero 

depth-average in the model for the lateral sediment transport component. Also, this variable 
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because of the curvature of the channel axis. In general both aspects discussed above have 

been modeled by different authors by using the equation developed by Parker (1984) based 

on previous work by Engelund (1981)or the one derived by Hasewaga(1981), (seeBlondeaux 



and Serninara, 1985; Parker and Johannesson, 1989 and Shimizu and Itakura, 1989a). The 
version of Parker's equation used herein is written as: 

where r is a coefficient which has been given different values by different authors. For 
instance, the following values has been used in the literature: 0.30 (Blondeau and Seminara, 
1985), 0.37 (Shimizu and Itakura, 1989a), 0.60 (Parker and Johannesson, 1989). In the 
numerical model derived herein, this coefficient will be taken as a parameter. 

4 3  Numerical Scheme 

In deriving the numerical scheme, the set of governing equations (4.6) is utilized, in 
which the transverse momentum equation (4.6b) is replaced by its simplified version (4.7). 
This system poses a boundary value problem for the flow variables (U,V,D) and an initial 
value problem for the bed deformation q'. This is because the quasi-steady approximation 
has been used, which assumes that the time scale of the flow response to bed changes is much 
smaller than the time scale of those changes. In other words the momentum and water 
continuity equations are solved for (U,V,D) each time step assuming the bed is fixed, and then 
the sediment continuity equation is used to carry on the bed deformation in time using the 
values of the flow parameters just computed. 

Herein, the set of governing equations is solved using an explicit finite difference 
scheme, such that U is obtained from the axial momentum equation (4.6a), D is computed 
from the transverse momentum equation (4.7) starting from the centerline value, which is 
adjusted such that the water discharge is constant along the channel, and V is solved from 
water continuity equation (4.6~). With flow parameters known, q' is solved at each time step, 
also explicitly, from sediment continuity equation (4.6d). 

Only one wavelength of the meandering channel is considered in the numerical 
modeling. As initial conditions, uniform flow and flat bed (q'=0) are assumed in the whole 
channei length. Likewise, at each time step periodic boundary conditions are applied for flow 
parameters and bed deformation. The computation is carried on until the bed deformation 
reaches an equilibrium in time. 

In what f~llows,the discretization of the governing equations is presented. 

4.3.2 Discretization of Axial Momentum Equation 

Equation (4.6a) is discretized using the staggered grid shown in Fig. 4.3. Following 
Patankar (1980), an upwind scheme is utilized to compute the fluxes in axial and transverse 



directions and the source term represented by the right hand size of the equation is linearized 
as a function of U. T, is expressed in terms of flow parameters by using (4.8). 

The finite difference form of the axial momentum equation can be written as: 

KlU , =  K2 UG-l  + K3 U i +  y +  & U i - l j +  & + &  ( D , - l - D i j  ) ( 4.12 ) 

where, 

K 2 C F w  , K 3 = i - F s , 0 1  , & = b F n , O [  , K s = B  9 & = A  (4-13a-e) 

Dij ) Uij 'IVij 

Fig. 4.3 Staggered Grid used by the Numerical Scheme. 

and, 

F,,,= 2 Uij Uy-1  ( Uij + Uij-1 ) - I  An DQ-1 



with 11 a , b 11, in (4.13), denoting the maximum value between a and b. 

43.2 Discretization of 'Ikansverse Momentum Equation 

Using the staggered grid of Fig.4.3, the finite difference form of (4.7) can be written 
as: 

with, 

where (4.15a) is used to compute values from the centerline to the left bank and (4.15b) is 

used to compute values from the centerline to the right bank. 

43.3 Discretization of Water Continuity Equation 

Based in the same staggered grid of Fig. 4.3, the finite difference form of the water 

continuity equation (4.6~) is written as follows: 

where, 

B' = -
1 

(Di j + D i - l j )  ( AS@-1 + &ij+ h i - l j - 1  + h i - l j  )
4 

In computing the transverse velocity V from (4.17), the impermeability of channel 

walls to lateral water flow is imposed as an extra boundary condition. 



43.4 Discretization of Sediment Continuity Equation 

Sediment continuity equation (4.6d) is discretized using the staggered grid shown in 

Fig. 4.4. This equation is written in finite difference form as follows: 

with, 

1
As* =- (ASu+As+1 )

2 

where the superscripts n and n+ 1 in (4.19) denote time level. In solving (4.19), the 
impermeability of channel walls to transverse sediment transport is imposed as an extra 
boundary condition. The values of the sediment transport rate components Qsand Q, are 

evaluated using equations (4.9), (4.10) and (4.1 1)presented above. 

Fig. 4.4 Staggered Grid used by the Numerical Scheme. 

4.4 Numericai Simulation of Flow in Curved Channel 

With the objective of checking the reliability of the numerical model described above 

in the simulation of two-dimensional flow in curved channels with fixed bed, a comparison 

between the results obtained from the application of the model with the classic experimental 

results of Rozovskii (1957) is presented next. 
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The experimental setup corresponds to a fixed bed rectangular channel having a width 
of 0.8 m and describing a 180" curve with a radius of curvature of 0.8 m. The water discharge 
is 12.3 11s and the slope of the channel is zero. Fig. 4.5 presents the numerical results for the 
velocity distribution along the channel axis at different cross sections obtained for values of 
Ax= 0.25 m and Ay =0.1 m, together with the corresponding experimental measurements 

made by Rozovskii. Fig. 4.6 shows the numerical results obtained in terms of the values of 
water depth along three different axis along the channel, namely left wall, centerline and right 
wall, plotted together with the corresponding experimental results of Rozovskii. 
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Fig. 4.5 Numerical Results for Flow in Curved Channel. Comparison with Rozovskii's 

Experiment. 


A general good agreement between simulated and observed velocity distributions is 

apparent from Fig. 4.5. Maximum differences are observed for the velocities at the inner wall 

in the zone of the curve, which tend to be overestimated by the numerical model. In spite 

of those differences, the simplified model utilized in the simulation appears to reproduce 

adequately the general tendencies of the observed velocity distribution, such as the lag in the 

response to the forcing effect of the curvature. From Fig. 4.6, it can be concluded that the 



model also reproduces adequately the water depth variation along the centerline and right 
wall of the channel, however it does not predict accurately the water depths along the left 
wall of the channel. In fact, the model tends to overestimate the depression of the water 
surface in the inner part of the curve thus generating smaller values of the flow depth in that 
zone than those observed in the experiments. This defect can be attributed to the use of the 
simplified form of the transverse momentum equation (4.7), which is valid for small channel 
curvatures, such as those of incipient meanders in alluvial channels. From this point of view, 

Rozovskii's experiment constitutes a severe test to the numerical model developed herein. 
As a matter of fact, the dimensionless curvature parameter v, defined as v = G,B/2, takes 
the value v = 0.25 for Rozovskii's experiment, while for incipient meanders this parameter 

usually takes values in the range v < 0.05 (Colombini et al., 1990). 

Fig. 4.6 Numerical Results for Flow in Curved Channel. Comparison with Rozovskii's 

Experiment. 


From the results presented above, it can be expected that for small values of v, such 

as those characteristic of incipient meanders, the curvature by itself does not perturb the flow 
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experimental and analytical studies, that perturbation appears to be large enough as to trigger 

the bed deformation process, which, as a feedback, becomes the main agent driving the flow 

field deformation in those channels. 



4.5 Numerical Simulation of Flow and Bed Deformation in Meandering Channels 

In this section some numerical results obtained from the application of the model to 
the simulation of flow and bed deformation in meandering channels are presented. One 
meandering channel codiguration and different flow conditions are used in the simulation, 
such that all parameters are set as to reproduce corresponding experimental conditions fixed 
in the laboratory experiments made as part of the research work reported herein. In this 
fashion an easy comparison between numerical and experimental results is possible, although 
such comparison will be presented in following chapters. Herein, just the main characteristics 

of the flow and bed responses as predicted by the numerical model are presented. 

As it is pointed out by Johannesson and Parker (1987), Langbein and Leopold (1966) 

showed that the geometry of natural meanders often closely resembles a sine-generated 
curve. Such curve has been used subsequently in numerous analytical and experimental 
studies modeling meandering channels. In the present analysis, however, just a purely 
sinusoidal channel axis is used, since such geometry was used, for simplicity, to build the 
channels utilized in the laboratory experiments made as part of the present investigation. The 
equationfor the channel axis is expressed in artesian coordinates as: 

with, 

where as denotes the maximum amplitude of the channel centerline and L,represents the 

meander wavelength measured along the x axis. For this channel the curvature C can be 

written as a function of x in the form: 

from where the maximum curvature of the channel axis can be expressed in dimensionless 

form as: 

As it is deduced from the set of equations presented above, the geomew of the 
meandering channel is totally described by the parameters B, A and v. In the applications 

selected herein, the meandering channel denoted as Channel 1 in the experimental work 

reported in following chapters is utilized, whose values of A and v are presented in Table 4.1. 



The channel has a width 2B =0.4 m, a slope So=0.005 and is covered by a uniform sediment 
of d, =0.5 mm. For this channel different flow conditions are simulated by fixing the water 
discharge at values in the range from 1.0 to 3.0 l/s. Values of Ax= 0.30 m and Ay= 0.05 m 
were used in the simulation. 

Figs. 4.7 to 4.12 present some of the results obtained from the application of the 
numerical model to the conditions specified above. The results shown in those figures 

correspond to the conditions defined by a water discharge of 2.9 lls, however they can be 

taken as representative of all of the cases modeled, since they allow to describe in general 

terms the main characteristics of the flow and bed deformation as predicted by the numerical 
model. Values of r=0.3 and n,=0.0184, this last parameter calibrated from the 
experimental results presented in next chapter, were used in those computations. Only 

equilibrium results are presented, associated with the steady state of the bed deformation. 

Table 4.1 Geometry of Meandering Channel utilized in the Numerical Analysis. 

CHANNEL h V B ( m )  

1 0.20 0.030 0.20 

Fig. 4.7 presents the results obtained in terms of the velocity distribution at different 
cross sections along one wavelength of the meandering channel. As it can be observed 
therein, the zone of maximum velocity tends to be located at the outer wall with respect to 
the curves of the channel. There exists a lag between the section of maximum curvature and 

the section at which a maximum deformation of the velocity profile is attained. The latter 

is also the zone at which the maximum velocity occurs and as it will be shown later is also 

the zone of maximum scour of the channel bed. Although the velocity vector is plotted in 

Fig.4.7, very small deviation of the arrows from the axial direction can be detected, thus 

indicating a small magnitude of the depth-averaged transverse velocity component. For the 

particular application shown in that figure the maximum depth-averaged transverse velocity 

is about 10% of the mean depth-averaged axial velocity. In spite of their small magnitude, 
transverse depth-averaged velocity components are observed to be directed towards the 

outer bank with respect to the curvature of the channel. 

Fig. 4.8 shows longitudinal profiles of the water surface elevation along three different 

axes taken over one wavelength of the channel, namely left wall, centerline and right wall. 

The water surface elevation, H, was made dimensionless with the uniform flow depth, Do. 
Likewise, the axial coordinate s was made dimensionless with the wavelength of the channel, 
L, measured along the channel centerline. As it can be observed in that figure, HIDo 

oscillates around 1.0 along the three longitudinal axis considered, such that the oscillations 



are lagged with respect of each other. In other words, the maximum overelevation at the 
outer wall does not occur in the same section than the maximum underelevation at the inner 
wall. For the particular application shown in Fig. 4.8, a lag equivalent to about 20% of the 
channel wavelength between those sections is obtained. 

VELOCITY DISTRIBUTION 

X=0.2 ; v=0.03 

Q=2.9 i/s ; Do~23.2mm 

Fig. 4.7 Velocity Vector Distribution in Channel 1.Numerical Simulation. 
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Fig. 4.8 Longitudinal Profile of Dimensionless Water Surface Elevation in Channel 1. 

Numerical Simulation. 




Also from Fig. 4.8, it can be noticed that the maximum values of the over and under 
elevation within the same curve of the channel are equal in magnitude, and that for the 
particular application shown in that figure such values-are on the order of 4% of the uniform 
flow depth. 

Fig. 4.9 shows the total bedload vector at different cross sections along one 
wavelength of the meandering channel. As it can be observed in that figure the zones of 
maximum bedload transport are located at the outer wall with respect to the curvature of the 
channel, some distance downstream the apex, and coincident with the sections of maximum 

velocity as observed in Fig. 4.7. The deformation of the bedload profile in Fig. 4.9 is more 
evident than that of the flow velocity shown in Fig. 4.7, having a very small value at the inner 
wall in the zone of maximum deformation. As it also happens with the flow velocity 

distribution, the bedload distribution is almost uniform at the apex of the channel curves. 
Very small deviation of the arrows from the axial direction can be noticed in Fig. 4.9, thus 
indicating a small magnitude of the transverse component of the bedload, which however 
point towards the outer bank with respect to the curves of the channel. For the particular 

application shown in this figure the maximum transverse bedload rate is about 10% of the 

mean value of the bedload in the axial direction. 

BEDLOAD DISTRIBUTION 

X=0.2 ; v=0.03 

Q=2.9 i/s ; Do=23.2 mm 

Fig. 4.9 Bedload Vector Distribution in Channel 1.Numerical Simulation. 

Fig. 4.10 presents longitudinal profiles of the bed deformation along three different 

axes taken over one wavelength of the meandering channels, namely left wall, centerline and 

right wall. The bed elevation, 11'. was made dimensionless with the uniform flow depth, Do. 
Likewise, the axial coordinate s was made dimensionless with the wavelength of the channel, 

L, measured along the channel centerline. Different distinctive features of the calculated bed 
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deformation are apparent from that figure. In the first place, a bar-like deformation is 
observed, formed by successive zones of scour, which tend to be located at the outer wall with 

respect to  the curve, and deposition, which tend to be located at the inner wall with respect 
to the curve. The section of maximum deposition coincides with the section of maximum 
scour, and is located some distance downstream the apex of the channel curves, which for 
the particular application shown therein is equivalent to about 10% of the meander 
wavelength. This section also coincides with the sections of maximum velocity, as observed 
in Fig. 4.7 and maximum bedload, as observed in Fig. 4.9. 
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Fig. 4.10 Longitudinal Profile of Dimensionless Bed Elevation in Channel 1. Numerical 
c;-1119+;fim
UIIII UIQLIUII. 


The magnitude of the maximum deposition in Fig. 4.10 appears to be equal to the 
magnitude of the maximum scour, thus defining a very symmetric bed deformation with 
respect to the channel axis. This result of the numerical model does not seem to be in 
agreement with experimental observations, for example with those of Colombini et al. (1990) 
who describe less symmetrical structures, and appears to be one of its shortcomings. The 
improvement of this feature, however, would require an improvement in the modeling of the 
direction and magnitude of the sediment transport in the meandering channel, which as was 
discussed before is one of the crucial aspects of the model. 



----------- 

In the particular application shown in Fig. 4.10, the bar height, defined as the sum of 
the maximum scour and the maximum deposition within a wavelength of the channel, has a 
value of about 1.2 times the uniform flow depth. T'he behavior of this parameter with flow 
conditions is explored and discussed later in this section. 

Fig. 4.11 presents a cross sectional plot of the bed deformation at the zone of 
maximum scour together with the water surface elevation at the same section. This figure 
reinforces the picture discussed above about the transverse symmetry of the bed deformation 
predicted by the model. Also, Fig. 4.11 gives an idea on how small is the magnitude of the 

transverse slope of the water surface elevation, as compared with the depth of flow and bed 
deformation, for the particular meandering channel configuration simulated herein. As it 
can be deduced from the simplified form of the transverse momentum equation, eq.(4.7), this 

slope is controlled mainly by the curvature of the channel, such that it is zero in absence of 

curvature. This demonstrates that for small values of the channel curvature, such as the one 
used in the simulation presented here, the curvature by itself does not deform sensibly the 
flow field from the uniform flow conditions. On the contrary it acts in a more subtle way, 
by providing the conditions for the bed deformation which is the agent that more markedly 

alters the flow conditions. 
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Fig. 4.11 Transverse Profile of Bed and Water Surface Elevations in Channel 1. 
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In order to complete the description of the bed deformation predicted by the model 
for the particular conditions described above, Fig. 4.12 shows a three-dimensional plot of the 
computed bed elevations within one wavelength of the channel. This figure does not show 
the curvature of the channel, however the apex of the curves are marked with arrows. 
Likewise, the scales in the figure are distorted in order to amplify the magnitude of the bed 
deformation. As it can be observed therein, the three-dimensional plot summarizes the bed 
deformation information presented in Figs. 4.10 and 4.1 1,helping to visualize in better shape 
some of the aspects already discussed, such as the lag in the response of the bed with respect 
to the apex of the curves and the symmetry of the bar structure as predicted by the model. 

Fig. 4.12 Three-dimensional Plot of Bed Deformation in Channel 1. Numerical 

SimuIation. 


Finally, the influence of flow parameters, such as the channel width to depth of flow 
ratio, over the bed response is analyzed in Fig. 4.13. To build this figure, different flows 



discharges varying in the range 1.0 to 3.0 l/s were simulated for the channel configuration 
corresponding to Channel 1. The figure shows the bar height, HB,defined as the sum of the 
maximum scour and maximum deposition within one wavelength of the channel, made 
dimensionless with the uniform depth Do, plotted as a function of the parameter P, defined 
as p=B/Do. As it can be observed in Fig. 4.13, the bar height tends more or less 
asymptotically to a constant value of about 1.5 times the uniform flow depth as P increases 
over 15, whereas for values of P less than 10it tends to decrease with a steeper slope towards 
values of bar height smaller than the uniform flow depth. This particular behavior of the 
bed deformation will be further examined with the help of experimental data, in following 
chapters. 

Fig. 4.13 Dimensionless Bar Height as a function of P in Channel 1. Numerical 

Simulation. 


Since a very limited range of flow variables and channel configurations were 
considered, the analysis of the results obtained with the numerical model developed in the 
present section is by no means exhaustive. However, this exercise allowed to get some insight 
on the principal characteristics of the different physical processes involved in the flow and 
bed deformation phenomena in meandering channels. A comparison of some of the results 
obtained from the application of the model with experimental results obtained in the 
laboratory experiments made as part of the present research is reported in following chapters. 



5. EXPERIMENTAL STUDY 

5.1 Introduction 

The main objective of the experimental study conducted as part of the research work 
reported herein, was to provide empirical evidence for the verification of specific aspects of 
recently developed analytical theories on the alternate bar and meander phenomena. In this 
chapter, descriptions of the experimental plan, the laboratory facilities, and the 
methodologies utilized in the study are presented, together with a dimensional analysis of 
the problem. 

5.2 Dimensional Analysis 

In the preceding chapter different forms of the set of governing equations commonly 
used in analytical and numerical studies of the flow and bed deformation problem in 
meandering channels were presented. In what follows the system of governing equations 
(4.2) is made dimensionless with the aim of identifying dimensionless parameters involved 
in such problem. The dimensionless form of (4.2) can be written as: 

where (U,V)are dimensionless depth averaged velocity components in the s and n directions 
respectively, 7, and 7, are dimensionless bottom shear stresses, D is dimensionless local 
depth, 7' is dimensionless bed elevation, So is the slope of the channel, Qs and Q, are 
dimensionless bedload components, Fois the Froude number of the mean flow, and R is the 
dimensionless local radius of curvature of the channel. In 5.1, Qoand P are dimensionless 
parameters defined as: 

where p, and dS8 are density and diameter of the uniform sediment, p is water density, g is 
gravitational acceleration, p denotes sediment porosity, and B' is half the channel width. 



Likewise, DO*is flow depth averaged over one wavelength of the meandering channel and 

U< is the mean flow velocity defined as: uo*= where Q denotes flow discharge. 
Q/(~B*D~*) ,  

In (5.1) the variables have been made dimensionless in the form: 

where the superscript * denotes dimensioned variables. 

From (5.1), the following dimensionless relationship can be written between 

dependent and independent variables: 

( u , v , D v ' )  (s ,n, t)=fo( R ,FO, So , B y rs , r n  Q o ,Qs , Q n )  ( 5.4 

However, by using closure relationships for sediment transport and resistance to the 

flow such as those specified in chapter 3, for instance, equations (3.4), (3.9, (3.6) and (3.7), 
7,,7,,Qsand Qn can be expressed in terms of the following dimensionless relationships: 

where d, denotes dimensionless sediment diameter defined as d, =d , * / ~ ~ *and 8 denotes the 

Shields parameter of the flow defined as in (3.52). This parameter can be expressed in terms 

of the slope of the channel such that: 

Also, Qo can be rewritten in the form: 

4 Y 

Finally, the local dimensionless radius of curvature R is in general a function of the 

coordinates (s,n), which is completely defined by specifying the shape of the channel axis. 

If the particular equation of the channel axis given by (4.21) is used, then the dimensionless 

radius of curvature can be represented by the relation: 



R ( s 9  n ) = R ( L ,  v )  

with, 

where b*denotes meander wavelength and G, denotes the maximum nwature  of the 
channel axis. 

Therefore, using relationships (5.9, (5.6), (5.7) and (5.8), expression (5.4) can be 
rewritten as: 

or alternatively as: 

where ds' =~'ld,'. 

In (5.11), selecting the sediment and the channel width such that p,/p, p and 4' are 
fixed, selecting the channel configuration such that A, and v are fixed, and alsofixing the slope 
of the channel So,the following dimensionless relation results: 

where Foand f3 depend basically on the flow discharge for all the other parameters fixed. This 
relation can be further simplified by assuming that Fodoes not change significantlywithin 
the experimental range of values of this parameter, such that, 

Equation (5.13) can be used particularly to express different variables characterizing 
the bed deformation q9(s,n,t),for given sediment, channel configuration and slope. For 
instance, the following relationship can be written: 

where HB=H ~ * / D ~ *denotes dimensionless maximum bar height defined as the sum of the 
. . 
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dimensionless maximum scour, h=2?r~*/Lrepresents a wavenumber such that L is the 
wavelength of the bed deformation, c =  c * ~ ~ *denotes dimensionless celerity of migrating 
bedforms and 8=2 8 ' ~is the dimensionless lag between the zone of maximum curvature 
of the channel and the zone of maximum scour of the bed. 



The general validity of (5.14), particularly the fact that Fohas a negligible effect on 
the functional dependence described by this equation if it is kept in a relatively narrow range 
seems to be validated by the experimental results of Ikeda (1984) and Colombini et a1. (1990). 

Equations (5.10) to (5.14) were used to develop the experimental plan as it is explained 
below, and also to analyze the experimental results as it is shown in following chapters. 

53Experimental Plan 

The main objective of the experimental plan is to define a range of values for the 
parameters involved in the problem, such as those described by (5.11), in order that the 
resulting experimental conditions allow to effectively observe the phenomena which are to 
be investigated in the present work. 

With the aim of satisfying the specific objectives of the present research, which were 
explained in detail in Chapters 1 and 2, a straight channel covered by a movable bed of 
uniform sediment was designed as to allow alternate bars to develop naturally. Also, a set 
of three different meandering channels derived from the basic straight channel configuration, 
having the same width and covered by the same sediment, were designed, as to cover 
conditions ranging from those for which no migrating bars exist in the channel, to conditions 
for which migrating bars coexist with fixed bars formed in channel curves. Based on what 
it was discussed in preceding chapters, conditions for the suppression of alternate bars in 
meandering channels require to cover the resonant range, as described in chapter 3. 

From the general dimensionless relationship between dependent and independent 
variables (sell),it is concluded that bv ---- r 2nd theselecting the channe! width 2nd s h a ~ e  
sediment properties, just three extra parameters need to be specified, namely Fo,Soand p, 
to totally cover the functional dependence described by such equation. Furthermore, due 
to resistance considerations, once a slope and a flow discharge are selected in a given 
experiment, automatically Foand P take fixed values. Therefore, the parameters that actually 
need to be specified for the experimental study are channel width and shape, sediment 
properties and the range of variation of the channel slope and flow discharge. 

In general the channel width should be as large as possible as to avoid scale effects, 
however since the straight and meandering channels used in the present experimental study 
were built inside of wider laboratory flumes, the selection of the channel width was made 
based mainly on space requirements. 

The threshold conditions for the formation of alternate bars in straight channels 
depend basically on the critical value of the parameter P, which is a function of 0 and d, as 
it was discussed in the analysis presented in Chapter 3, such that alternate bars should be 

- J  



observed to form for values of P in the range f3 >PC.An alternative way to determine the range 
of conditions for the formation of alternate bars is to use Kuroki and Kishi's (1985) phase 
diagram for bed regime, which was presented in Fig. 2.1. This diagram allows to specify the 
range of values of f3 for which alternate bars would form, such that Pclc f3 <pn, where pCl 
corresponds to the parameter PCin the analysis of Chapter 3 and Pc2corresponds to the limit 
conditions for the formation of multiple row bars or braids. 

According to what has been explained above, the selection of the alternate bar range 
of values of f3 is related to the selection of the slope of the channel and also of the sediment 
properties. Once the range of values of P is selected, a resistance relationship is needed to 
relate flow depths to flow discharges. With this aim, the Engelund-Hansen resistance 
equation (3.5) was used. It is necessary to point out here that recirculating flumes were used 
in the present experimental study, so that the bed slope can be fixed externally by setting the 
flume slope, and the sediment transport rate results from the natural transport capacity of 
the flow. This make the difference with respect to a nonrecirculating flume in which the 
sediment transport rate is to be fixed and fed externally and the bed slope results from natural 
adjustments of the flow and sediment transport. 

Although typically a sine generated curve has been used to model meandering 
channels (Langbein and Leopold, 1966), herein, for practical reasons, particularly for 
simplicity to build the channels, a purely sinusoidal channel shape was used, such as that given 
by (4.21). This channel, as it is concluded from (5.8), is totally described by specifying the 
parameters B*, X, and v.  The latter two parameters, which denote the wavenumber and 
dimensionless maximum curvature of the channel respectively, were selected as to cover 
conditions ranging from those for which migrating bars coexist with fixed bars, to conditions 
for which migrating bars are suppressed. The criteria given by lhbino and Seminara (1990) 
was used to determine the conditions for the suppression of migrating bars. Since this 
conditions are related to the resonance phenomenon described previously, the graphical 
relationships presented in Chapter 3 for the resonant range were also utilized. 

The ranges of values for the experimental parameters obtained as explained above, 
% 

however, were taken just as a general guidance because they are precisely what the present 
study seeks to check. According to that, it should be pointed out here that the definite 
experimental plan was not completed until most of the experimental work was finished, since 
the partial results obtained during the study were used as input for the planning of the 
remaining experiments. 

Taking into account all restrictions exposed above, a consistent set of experiments was 
designed. As it was already explained, one straight channel and three different meandering 



. channels were used in the experiments. The channel width selected was 2 ~ *=0.40 m, which 
appears to be a reasonable width as compared with those utilized in similar experimental 
studies. Colombini et al. (1990), for instance, used a channel width of 0.35 m. On the other 
hand, just one type of sediment was selected for all experiments, consisting on a natural 
uniform silica sand having a mean diameter d,*= dso=0.53 mm. A sieve analysis of this 
sediment is presented in Fig. 5.1, which shows that it is in fact fairly uniform, having a standard 

deviation of og= 1.25. From the adopted values of the channel width and the mean diameter 

of the sediment, the resultant value of the dimensionless parameter ds' defined previously is: 
&'=377.4. 

0s (mm) 

Fig. 5.1 Size Distribution of Experimental Sediment. 

The rest of the experimental conditions for the series of experiments made as part 

of the present research is presented as follows. Table 5.1 shows the geometrical properties 

of the channels utilized in the study, Table 5.2 presents the experimental conditions for the 

series of experiments made for the straight channel and finally Table 5.3 specifies the 
experimental conditions for the series of experiments made in the meandering channels. 

'lhbles5.2 and 5.3 show the slope So, the range of values of pand the flow discharge Q utilized 

in the corresponding experiments. It should be commented here that since in general the 

experimental conditions defined not so large values of the bottom shear stress, the lower limit 



of the range of flow discharges or equivalently the upper limit of the range of P, was given 
basically by the threshold conditions for the movement of sediment grains. 

Table 5.1 Geometry of the Experimental Channels. 

CHANNEL 2B' ( m )  &'(m) (&ax ( l/m) km u 

0 0.40 - 0 - 0 

1 0.40 6.283 0.30 0.20 0.030 

2 0.40 6.283 0.15 0.20 0.015 

3 0.40 8.378 0.30 * 0.15 0.030 

Table 5.2 Experimental Conditions in the Straight Chamel. 

Table 5.3 Experimental Conditions in the Meandering Channels. 

In order to provide an idea of the shape of the meandering channels utilized in the 
study and to allow a comparison among them, about one wavelength of those three channels 

is shown in Fig. 5.2. 

5.4 Description of Experimental Facilities 

The experimental study was conducted at the Hydrosystems Laboratory of the 

University of Illinois at Urbana-Champaign. As it was already explained, the straight and 

meandering channels utilized in the experiments were built inside of wider tilting flumes. 

Two different flumes were utilized, one having a width of 0.9 m and a length of about 20 m, 

and the other having a width of 1.8 m and a length of about 50 m. Both flumes have a 
mechanism that allows to set slopes ranging from 0 to 2.5% for the large flume, and from 

0 to 10% for the smaller one. Also, both flumes possess a hopper to collect sediment near 

the tail gate, which y . ~ s  utilized to place the sediment traps of the built-in channels. The 



straight channel (Channel 0) was built inside the small flume and was given a total length of 
14.0 m. The three meandering channels (Channels 1 ,2  and 3) were built inside the large 
flume and were given a total length of about 25.0 m, which corresponds to four wavelengths 
for Channels 1and 2, and three wavelengths for Channel 3. 

CHANNEL 2 

CHANNEL 3 

A,= 0.15 v = 0.03 

Fig. 5.2 Meandering Channels Used in the Experimental Study. 

All four channels were built as recirculating circuits for both water and sediment. A 
sediment trap was built inside the sediment hoppers of the bigger flumes at the downstream 
end of the channels. From there, a pipe having a diameter of 2 inches takes the 
sediment-water mixture, which is carried up with the help of a pump to be fed back into the 

channel through a manifold installed at the head box of the channels. The sediment hopper 
of the flumes was filled with water in order to create a pool that helped to stabilize the whole 

system, and also allowed to control the downstream level of the flow inside the channels. 

A calibrated venturi-meter was placed in the recirculating lines in order to measure the flow 



discharge. A valve located downstream the pump allowed to regulate the required flow 
discharges. Figs. 5.3 and 5.4 show schematic diagrams of this facilities. 

. -

The straight channel was completely made of welded sheet-metal, however, that 
material was not utilized to build the meandering channels, mainly because of their more 
complicated shape. In those cases, the side walls were modeled with flexible PVC sheets and 
placed over a base of plywood sheets. Silicon and duct-tape were used to seal the joint of 
the walls with the wooden base, while metal brackets were utilized to give rigidity to the 
channel walls helping to keep them vertical, and also to control width variations along the 

channels. 

A bed of sediment having a thickness of about 10 cmwas formed inside the channels, 
using the silica sand whose size distribution was presented in Fig. 5.1. The bed deformation 

obtained as the water flows and transports sediment was measured with the help of a 
bed-profiler (Kenek, model WH-20lc). The particular device used in the present 
investigation allows to measure three quantities, namely the bed elevation with respect to a 
given datum, the water surface elevation with respect to the same datum and the depth of 
flow, although not simultaneously. The apparatus consists basically of a detecting rod driven 
by a motor, which at the operation of a switch gets down to the water surface, to the bed or 

both, in order to make the required measurement. A digital display shows the measurement 

in millimeters. Fig. 5.5 presents a photograph of both the detecting device and the control 

box. 

The bed profiler was mounted over a movable and rotating plate which allowed to 
place the detecting rod at any point inside of the channel. In particular this plate allowed 
the measurement of the bed deformations along transverse sections which were locally 

perpendicular to the meandering channels axis. The plate was placed over a trolley which 

ran along the flumes walls, thus allowing an easy positioning of the bed profiler along the 

built-in experimental channels. 

5.5 Experimental Methodology 

This section describes the methods utilized in the realization of the experiments. 

Basically a given experiment consisted on seven stages, namely, selection of experimental 

conditions, preparation of the experiment, initiation of the experiment, development of bed 

deformation, stabilization or equilibrium state of bed deformation, closure of the 

experiments, and final measurements. In what follows each of those stages is explained in 

detail. 



i) Selection of Experimental Conditions. For each of the series of experiments described in 
Bbles 5.2 and 5.3 the channel configuration and slope were predefined, therefore each of 
the experiments of the series consisted in a different-flow discharge, which was selected as 
to cover the required range of values of the parameter P. Recall that the flow discharge 
controls the flow depth, which for a given channel width has direct incidence on the values 

of p. 

FLUME SEDIMENT 

COLLECTOR HOPPER 


FUEXIBLE 
PIPE 

Fig. 5.3 Plan View of Experimental Facility for the Straight Channel Configuration. 



Fig. 5.4 Plan View of Experimental Facility for the Meandering Channel Configuration. 

ii) Preparation of the Experiment. Previousto the beginning of the experiments the channel 
bed was leveled flat by using a scraper with the width of the channel running along its walls. 
In this way the bed was given a slope identical to the slope of the flume in which the 



experimental channel was placed. This slope was controlled by measuring the horizontal 
surface level of a constant volume of water placed inside the flume with the help of the 

.. .bed-profiler which ran over the flume walls. 

Just before starting the experiments, water was fed into the flume from the 
downstream end, filling first the hopper in order to create the stabilization pool described 

before. After the pool was created, water was allowed to run upstream inside the 
experimental channel. The reason for following this procedure is two fold. In the h tplace, 
since the recirculating circuit is a closed system, it is necessary to have a certain volume of 
water in it, in order to generate the required values of flow depth and flow discharge. In the 
second place, the fact that the sediment wasalready wet made the starting procedure easier, 
precluding the undesired deformation of the bed during the filling process. 

Fig.5.5 Detecting Rod and Control Box of Bed-Profiler Used in the Experiments. 

iii) Initiation of Experiments. The experiments were started by passing a very low discharge 

over the bed to prevent its deformation during the initiation stage. The flow discharge was 



then slowly increased until the desired value of this variable was attained. The flow discharge 
was measured with a venturi-meter, and controlled periodically throughout the experiment. 
After the flow discharge was h e d ,  some adjustments to the amount of water in the system 
were made, to reach a surface level of the downstream pool that allowed an initial uniform 
flow all along the channel. Usually the initiation procedure did not last more than 10or 15 
minutes. 

iv) Development of the Bed Deformation. After the experiment started, the bed deformation 
process began to develop spontaneously. During this process, the bed deformation was 
monitored periodically, taking notes, drawing sketches and measuring local values of 
variables such as scour, bar height and bar length. The duration of the development process 
varied with flow, slope and channel conditions, but in general was shorter for the experiments 
with the straight channel than for the experiments with the meandering channels. For the 

experiments with the straight channel the duration of the development process was in general 
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was of about four to five hours. 

v) Equilibrium State of the Bed Deformation. At the end of the development process, 
constant or equilibrium values of the different parameters describing the bed deformation 
were reached. This was easily detected for nonmigrating bedforms, such as those observed 
in some of the experiments with the meandering channels. In the case of migrating bedforms 

such as those observed in the straight channels, however, it was necessary to follow the whole 

train of bars as it developed and migrated downstream. Once the equilibrium state was 

reached, the experiment was allowed to run for at least another three or four hours. 

The migration speed of the alternate bar train was measured by following the position 

of successive bar fronts as a function of time. A measuring tape attached to the flume served 
as the reference system for the measurements. The wavelength of the bedforms was also 

measured following this procedure. 

Measurements of the bed and water surface elevations were made simultaneously 

after the equilibrium state was attained. Transverse profiles were taken each 0.30 rn along 
a control reach which varied in length depending on the channel configuration. A control 

length of about 6.0 m was utilized for the experiments in the straight channel, which allowed 
to characterize two or three bar units. Longer control lengths were not used in the straight 

channel because of the fact that the bedforms were moving. Even though the migration speed 

of the bedforms was small, longer control reaches, which are associated with longer 

measuring times, would have introduced important errors in the characterization of the bed 

deformation. A control length equivalent to 1.5 meander wavelengths was used for the 



experiments in the meandering channels, which corresponds to lengths of about 10.0 m or 
about 12.5 m depending on the channel configuration considered. Since very small migration 
rates or not migration at all was observed in those c h k e l s ,  this longer control reaches did 
not affect the accuracy of the measurements. 

Five point measurements were taken for each of the transverse bed profiles. This 
points were not equispaced, but had the spacing shown in Fig. 5.6. The transverse profiles 
were taken along lines that are locally perpendicular to the channel axis. 

30 46 124 l24 46 30 

Distances in mm 

Fig. 5.6 Location of Point Measurements along Transverse Profile. 

A second measurement of the bed deformation was taken once the experiment was 
finished. 

For the experiments of the Series 03 in the straight channel (Channel O), the total 
sediment transport rate was measured, by simply placing a collecting box inside the sediment 
trap at the end of the channel. No sediment transport rates were measured during the 
experiments in the meandering channels. 

vi) End of the Experiments. After the flow depth and bed deformation measurements were 
completed, the experiments were finished by turning off the pump. This generated a rapid 
recession of the flow inside the channel, with almost no sediment transport associated with 
it, which prevented the deformation of the existing bedforms. Preserving the bedforms was 
important since in most cases a second measurement of the bed elevation was taken after 
the experiment was finished. The volume of water inside the system was large enough as to 
assure that the downstream part of the channel was still covered by water under no flow 



conditions, which prevented the dissection of the sideslopes of the bars and consequent filling 
of the pools. Although, some small erosion of the sideslopes of the bars was produced in the 
upstream part of the channel which was not under water, that deformation was still very small 

to affect the measurements, given the resolution of the sampling grid employed. 

vii) Final Measurements. In most of the cases, a second measurement of the bed deformation 
was taken after the experiment was finished. The methodology utilized was the same as that 

explained in v). 

5.6 Experimental Results 

In this section a summary of the results obtained in the experiments described 
previously is presented. No analysis of the experimental data is attempted at this point, and 

only the basic variables extracted from the data collected are shown in the Tables presented 

below. 

Fig. 5.7 shows schematically the definition of the variables used to describe the bed 
deformation obtained in the experiments. Basically they correspond to the set of variables 
included in the dimensionless relationship (5.14). In what follows variables with the 
superscript * denote dimensioned parameters, while values without this superscript denote 
dimensionless parameters. 

/ Bar ~ r o n t \  

Fig. 5.7 Sketch for the Definition of Variables. 



InFig. 5.7, the depth of flow and the maximum scour are defined with respect to the 
mean bed elevation. This variable was computed from the data collected by making a 
numerical integration over the whole reach surveyed. A parabolic interpolation was utilized 
to compute the cross sectional area of each transverse profile measured. The depth of flow 
was computed by obtaining first a mean value of the water surface elevation along the 
channel, and then subtracting the mean bed elevation from this value. Since in general the 
deformation of the flow surface was very small, the mean water surface elevation was 
computed simply by averaging over the whole set of data collected. 

Some researchers (e.g. Ikeda, 1984) define two different characteristic values of the 

bar height. One of those values is given by the variable defined in Fig. 5.7, which corresponds 
to the difference between the maximum and minimum bed elevation at the section of 
maximum scour. The other parameter usually employed is the maximum bar height, defined 

as the difference between the maximum and minimum bed elevation within a wavelength, 
which do not necessarily coincide at the same cross section. Herein such differentiation is 

not made because in all cases observed, the maximum bar height occurred precisely at the 
section of maximum scour. 

The rest of the parameters characterizing the bed deformation, such as L*, ti*, etc, 
were computed directly from the data collected, such that mean values, characteristic of each 
experiment, were computed as simple averages over the available data. 

Tables 5.4,5.5 and 5.6 present the results obtained for the experiments in the straight 
channel (Channel 0), corresponding to Series 01,02 and 03, respectively. In those tables the 

dimensioned values of the flow discharge and depth for each experiment of the series are 
shown, together with P, 8 and the associated dimensionless values of the bar height, maximum 

scour, alternate bar wavelength, bar celerity, and the Reynolds and Froude numbers of the 

flow. 

The Reynolds number of the flow, defined as Re =q p l ~ ,where q is the flow discharge 
per unit width, and + 2nd p are the dynAamici s c o s i ~--*- u"--UAC of the water, has beenJ 2nd A ~ n c i t y  

included therein even though the dimensional analysis performed before did not predict any 

effect of this parameter in the functional relationship derived (see for instance (5.11)). 
Evidently this parameter did not appear as relevant in the problem since a fully turbulent flow 

was assumed, for which no viscous effects are present. Herein the experimental values of the 

Reynolds number has been used as to define whether the observed flows were effectively 

turbulent. 



Thble 5.4 Experimental Results in Channel 0 - SERIES 01. 

Table 5.5 Experimental Results in Channel 0 - SERIES 02. 

Table 5.6 Experimental Results in Channel 0 - SERIES 03. 

Table 5.7 presents the bedload measured in the experiments of Series 02. In that table 
the values of the discharge, depth of flow and bedload are shown, together with the 

dimensionless parameters @ and d,, where @ is the Einstein dimensionless sediment transport 

rate defined as: 



and Q ~ 'is the total volumetric sediment transport rate per unit width. 

Table 5.7 Bedload Measurements in Channel 0 - SERIES 02. 

Q ( 11s ) D*(mm) Q s *  ( 11ds CP 

1.095 11.0 0.406 20.8 0.003 

1.432 14.0 1.432 26.4 0.011 

1.972 16.5 2.559 31.1 0.020 

2.431 18.5 1.905 34.9 0.015 

2.774 20.5 2.431 38.7 0.019 
* 

Tables 5.8, to 5.11present the results obtained for the experiments in the meandering 
channels (Channels 1 , 2  and 3), corresponding to Series 11,12,21 and 31, respectively. In 
those tables the dimensioned values of the flow discharge and depth for each experiment of 
the series are shown, together with P, 8 and the associated dimensionless parameters 
characterizing the bed deformation and the Reynolds and Froude numbers of the flow. 

In the experiments made in Channel 1, no migrating bars were observed. Therefore 

the scour and bar height presented in lhbies 5.8 and 5.9 correspond to that of the fixed bars 

formed at channel curves. In those tables, the dimensionless parameter S defined previously 
to characterize the lag between the zone of maximum scour and the apex of the curves is also 

presented. 

Table 5.8 Experimental Results in Channel 1- SERIES 11. 

Table 5.9 Experimental Results in Channel 1- SERIES 12. 



In all of the experiments made in Channel 2, migrating bars were observed to develop, 
coexisting with fixed bars formed at the channel curves. Accordingly, variables as wavelength 
and celerity of the migrating alternate bar train were measured in the same way done in the 
experiments in the straight channel. Also, two different characteristic bar heights and scour 
can be defined, depending on whether the migrating bar train is in or out phase with respect 
to the channel curvature. Larger heights and scours were observed for bars that at a given 
time are in phase with respect to the channel curves, i.e., when the migrating bars melt with 
the k e d  bars. In Thble 5.10, dimensionless values of the measured bar heights for in and 
out of phase conditions are shown, together with the maximum scour defined by the Gxed 
bars, and the wavelength and celerity of the migrating bedforms. 

n b l e  5.10 Experimental Results in Channel 2 - SERIES21. 

H B ~ :Bars in Phase HB2:Bars not in Phase 

Migrating bars were observed to develop in only one of the experiments made in 
Channel 3, corresponding to the maximum value of P of that series. For lower values of P 
only fixed bars were observed, similar to those observed in the experiments in Channel 1. 

In Table 5.11, the bar height in the experiments with fixed bars and the maximum bar height 
(in phase) in the experiment with movable bars are presented, together with the maximum 
scour and the observed values of the parameter 6 for the experiments with fixed bars. 

Table 5.11 Experimental Results in Channel 3 - SERIES 31. 



6. ANALYSIS OF EXPERIMENTAL RESULTS 

6.1 Introduction 

Herein the analysis of the experimental results presented in the preceding chapter is 
made. Section 6.2 presents the analysis of the results corresponding to the experiments in 
the straight channel (Channel 0), Series 01,02 and 03, while Section 6.3 presents the analysis 

of the results corresponding to the experiments in the meandering channels (Channels 1 ,2  

and 3), Series 11, 12,21 and 31. 

The analysis of the experimental results is based mainly on the dimensional analysis 
developed in the preceding chapter, particularly on the dimensionless relationship given by 

(5.14). This relationship expresses that for given sediment properties, fixed values of the 
channel width, shape and slope, and if the Froude number is restricted to a narrow band, any 
parameter describing the bed deformation should be only a function of 6. 

In order to compare the experimental results with theoretical developments, use is 

made of some of the theories on the alternate bar and river meandering phenomena 
discussed in Chapter 2. 

6.2 Analysis of Results in the Straight Channel 

6.2.1 Generalities. The first step of the analysis is to verify in general terms how the results 
obtained herein compare with the results of similar experimental studies. With this aim, the 

relationships proposed by Ikeda (1984), based in an extensive set of experimental data from 

different investigations, are used. Ikeda (1984) proposed the following relationships for the 

dimensionless bar height HBand wavelength L*/~B*: 

This relationships are plotted in Figs. 6.1 and 6.2, together with the experimental data 
of the present study. In those figures, the dashed lines indicate the scatter of the data utilized 

by Ikeda. From that figure it appears that most of the data of the present study fall relatively 

well within the expected scatter range as defined by Ikeda. This leads to the conclusion that, 

in general terms, the data obtained herein do not present important scale effects that may 

have made them not comparable to other data sets. 



Fig. 6.1 Comparison of Experimental Values of Dimensionless Bar Height with Ikeda 

Relationship. 


It is necessary to point out here, however, that it is apparent that the relations 

proposed by Ikeda do not adequately predict the physical behavior of the parameters 
describing the dimensions of the observed alternate bars. In fact by comparing the 
dimensionless parameters involved in (6.1) and (6.2) with those of equations (5.10) or (5.11), 
it is clear that Ikeda's relations do not consider the effect of the channel slope, or 

alternatively, the dimensionless bottom shear stress. Besides, they put some restrictions over 
the Froude number only in the prediction of the wavelength. At least, the latter supports the 
argument given for the derivation of (5.14), in which the Froude number was neglected. This 

conclusion may be valid, however only for a restricted range of variation of this parameter. 

From Tables 5.4 to 5.6 it can be concluded that the range of variation of the Froude 

number in the present experiments is in fact very narrow, being bounded by the values 0.70 
and 0.80 approximately. This fact allows to neglect Froude number effects in the following, 

thus supporting an analysis of the experimental data based in (5.14). 



Fig. 6.2 Comparison of Experimental Values of Dimensionless Bar Wavelength with Ikedz 
Relationship. 

From Tables 5.4 to 5.6 it can also be concluded that the variation of the Reynolds 

number in the present experiments is in the range 2000 to 8000. This indicates that the 

observed flows were effectively turbulent, although since the lower limit of that range is not 

so high, some influence of the viscosity may not be disregarded a priori, at least in the 

experiments covering the lower range of Reynolds numbers. On the other hand, the relative 

roughness of the flows, which can be measured by the dimensionless parameter d, = ID ID*, 
was relatively high, varying in the range 0.025 to 0.070. By estimating the Reynolds number 

of the sediment particle as R% =u* d,*l (plp), where u*=(g D*so)", it can be shown that in 
the present experiments R% varied in the range 11to 18, which indicates that the sediment 

bed was in the transition regime between hydraulically smooth and hydraulically rough wall 

According to what was explained above and the relatively good agreement of the 

present results with previous experimental data as observed in Figs. 6.1 and 6.2, it can be 

expected that viscous effects did not play an important role in the overall pattern of the 

'observed bed deformation. 



6.2.2 Bar Height. With the aim of analyzing the behavior of the dimensionless bar height HB 
in more detail, this parameter is plotted as a function of P and Soin Fig. 6.3. Note that for 
given sediment properties and channel width, (5.11)predicts that the dimensionless bar 
height in the straight channel is a function only of the parameters considered above. 

Fig. 6.3 Experimental Values of the Dimensionless Bar Height as a Function of P and So. 

Fig.6.3 reveals some interesting features of the dimensionless bar height behavior. In 
general terms, HBtends to increase as f3 increases, i.e. as the flow depth decreases. In the 

experiments corresponding to the slopes 0.0032 and 0.0044 a limit value of P exists, beyond 

which a sharp decreasing of the bar height is observed, such that it eventually reaches a 

vanishing magnitude at a certain critical value of P. For the experiments corresponding to 
LL

LIle slope 0.0056, such behavior is not observed within the experimentai range of P, however 

the rate at  which the dimensionless bar height increases with P tends to decrease for values 
of this parameter larger than 15. The slope of the channel also appears to play an important 

role in the phenomenon, such that, in general, larger values of HBare observed for larger 

values of So. The curves fitted to the experimental data with different slope define parallel 



tendencies, at least for values of lower than the limit described above. The slope of the 
channel also seems to affect the values of that limit, in that larger values of P at the vanishing 
bar height limit are observed for larger slopes of the channel. 

From what it is exposed above, it can be concluded that two critical values of P seem 
to exist for a given slope of the channel. The lower limit, associated with deeper flows, 
corresponds to  the threshold condition for the formation of alternate bars, or in other words, 
to the parameter PCanalyzed in detail in Chapter 3. This limit, however, was not covered 
by the range of experimental conditions because it is associated with flow discharges which 
are larger than the maximum given by the experimental facilities utilized herein. The upper 
limit, associated with shallower flows, correspondsto the critical value of P at which the bar 
height vanishes. This limit is associated with the threshold condition for sediment motion, 
such that for larger values of P no movement of sediment is possible, neither is the formation 
of bedforms. Obviously, being the bottom shear stresses related to the slope of the channel, 
larger slopesimply larger shear stresses,which are associated with higher sediment transport 
capacity and therefore with larger values of the upper limit of P. 

Last conclusion means that if large enough values of P had been tested in the series 
corresponding to the slope 0.0056, a decreasing trend in the HB curve should have been 
observed, similar to those shown in Fig. 6.3 for the slopes values of 0.0044 and 0.0032. 

Next, a comparison between the present experimental results and the theoretical 
developments for the finite amplitude of alternate bars made by Colombini et al. (1987) and 
discussed previously in Chapter 2, is made. 
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simple relationship that allows to estimate the maximum bar height of the ahernate bar 
structure. This relationship can be written in dimensionless terms as: 

where HBhas been used here to represent the dimensionlessmaximum bar height since, as 
was already discussed,in the present experimentsthe bar height coincidedwith the maximum 
bar height as defined in the preceding chapter. In (6.3), bl and b2are parameters that depend 
on 8and ds,and PCis the critical value of p for the formation of alternate bars as defined and 

~ ~ ~ n + o r3 E;m nf cnlnmhini pt a1 ( 1 9 R 7 )  presents a graph that allom toanakyteu iii ,,1ap,b1 a. A&. ,vL U,.YAA.VAAA. II -.. -,. 
compute bl and b2, such that for the range of values of 8 and d, in the present experiments, 
bl takes values close to 1.0, while b2 is in the range 0.7 to 0.8. 

Sincethe present experimentsdid not cover the range of f3 close to PC,no experimental 
values of the latter parameter are available to be used in (6.3). This parameter, however, 



can be estimated from the predictive graphic relationships presented previously in Chapter 
3. Instead, in what follows PCis calibrated as to allow a good fit between the values predicted 
by (6.3) and the experimental data shown in Fig.-6.3. The calibrated values of PCare then 
compared with the theoretical predictions of Chapter 3. n b l e  6.1 presents the calibrated 
values of f3, together with the corresponding critical values of 8 and d,, while Fig. 6.4 shows 
the resultant theoretical predictions for the dimensionless bar height plotted together with 
the experimental data of Fig. 6.3. 

Table 6.1 Calibrated Values of P,. 

Fig. 6.4 Comparison of Experimental Values of Dimensionless Bar Height with 

Colombini et al. (1987) Predictive Relationship. 


As it can be observed from Fig. 6.4, equation (6.3) describes adequately the observed 
behavior of the dimensionless bar height, at least within the limits of parallel behavior of the 



experimental curves, and for the calibrated values of PC. Obviously the theory is unable to 
reproduce the behavior of the curves in the neighborhood of the threshold condition for 
sediment motion, since it was derived by means of an asymptotic expansion about PC, the 
critical condition for the formation of alternate bars. Besides, the theory is valid for small 
values of (p- PJ/Pc. This is clearly observed in Fig. 6.4, in the experiments with slope 0.0056, 
for which theoretical and experimental curves diverge for values of f3 larger than about 15. 
This, which corresponds to a value of (P- &)/PC= 1.7, however, still gives the theory a wider 
range of validity than expected. 

To derive a complete theoretical description of the behavior of the dimensionless bar 

height, a second solution should be sought which has to be valid in the neighborhood of the 
critical condition for sediment motion. An asymptotic matching between both solutions 
would then complete the theoretical description. This is by no means an easy task since, as 

it was observed in the present experiments, in the vicinity of the critical condition for sediment 
motion, the alternate bar structure tends to evolve into elongated deformed shapes that 
hardly resemble the original alternate bar pattern, and which, for sure, are controlled by 

strong nonlinear effects. 

n b l e  6.1, shows that the calibrated values of PCdecrease with increasing slope, or 
equivalently, with increasing dimensionless shear stress 8. in order to compare this behavior 

and also the magnitudes of PCwith those predicted by the theoretical analysis presented in 

Chapter 3, Table 6.2 presents three different theoretical values of PC,which were computed 

from Figs. 3.3, 3.5 and 3.7, using the values of 0 and d, of lbble 6.1. Those three values 
correspond to the use of different resistance and bedload equations as closure relationships 

in the theoretical analysis. 

Table 6.2 Comparison Between Calibrated and Theoretical Values of PC. 

( 1 ) :Meyer-Peter & Muller bedload relationship; flat bed Engelund-Hansen resistance equation. 
(2 ) :Engelund-Hansen bedload relationship; flat bed Engelund-Hansen resistance equation. 
(3 ) :Engelund-Hansen bedload relationship; dune covered Engelund-Hansen resistance equation. 

From Table 6.2 it can be concluded that the values of PCcomputed for flat bed 

conditions tend to overestimate the calibrated values of this parameter by an average 



magnitude of about 30 to 40%, whereas the values computed for the dune covered bed, 
associated with higher resistance, tend to underestimate them, being on the average about 
30% of the calibrated values. On the o,ther hand, for flat bed conditions, the values of PC 
corresponding to the Meyer-Peter and Muller bedload equation increase with increasing 
slope, defining a tendency that is opposite to that exhibited by the calibrated values, whereas 
the values of PCcorresponding to the Engelund-Hansen bedload relationship follow a trend 
that is in agreement with that observed for the calibrated values. 

The observations made above, point out that it is crucial for the adequate modeling 
of the phenomenon being studied to know what relationships best describe the bedload 
transport and flow resistance occurring in the alternate bar regime. From the values in n b l e  
6.2, the Engelund-Hansen bedload relationship performs better than the Meyer-Peter and 
Muller equation, in that it adequately predicts the tendency exhibited by PC. Similarly, it 
seems that the flow resistance controls the magnitude of PC, such that the higher the resistance 
the smaller the value of this parameter. From this point of view, the flat bed 
Engelund-Hansen resistance equation appears to predict less resistance than that required 
to generate values of PC close to the calibrated ones, however the dune covered bed 
Engelund-Hansen resistance equation seems to predict excessive resistance, generating 
values of PCthat are well under the calibrated ones. 

In order to contrast the latter conclusions with the present experimental observations, 
Fig. 6.5 shows a comparison between theoretical and experimental rating curves. The 
Engelund-Hansen resistance equation (3.5) was used for the computation of the theoretical 
rating curves, which have two branches corresponding to the flat bed and dune covered bed 
conditions, respectively. The lower curve corresponds to flat bed conditions and it is 
supposed to be valid for discharges smaller than the one associated with the intersection of 
the two branches. Accordingly, the upper branch corresponds to dune covered bed 
conditions and is supposed to be valid for discharges larger than the one associated with the 
intersection of the two branches. 

As it canbe observed in Fig. 6.5, the flat-bed theoretical curve tends to underestimate 
the observed resistance, predicting values of the flow depth that are in general lower than 
the corresponding experimental values, at least for flow discharges that are larger than the 
theoretical limit for flat bed conditions. On the contrary, the dune covered bed curve tends 
to overestimate the resistance, predicting values of the flow depth that are in general larger 
than the observed values. 

The above observations are in agreement with the argument previously used to 
validate the calibrated values of PC. On the other hand, they are opposed to the common 



argument expressing that being the alternate bars very long bedforms as compared with the 
flow depth, the form resistance associated with them is negligible, and thus the resistance 
induced by these bedforms is mainly due to grain friction. From Fig. 6.5 it is clear that this 
argument is not valid in the present experiments, at least for the mean flow depth D*,whlch, 
recall, is not a uniform value but the average over a wavelength of the bed deformation. 

Fig. 6.5 Comparison Between Theoretical and Experimental Rating Curves. 

A final conclusion derived from Fig. 6.5 is that even though the Engelund-Hansen 
equation predicts the development of dunes for a range of conditions covered by the present 
experiments, no bedforms of that kind were actually observed. This is not totally unexpected, 
considering that the stability conditions for the formation of bedforms of the dune type should 
be affected by the strong deformation of the flow induced by the alternate bar structure. 



Fig. 6.6 presents a comparison between the experimental values of the dimensionless 
bedload @ plotted as a function of d,, together with the corresponding values predicted by 
the Meyer-Peter and Muller and Engelund-Hansen bedload equations. These last values 
were computed using equations (3.7a) and (3.7b) respectively, and the values of the channel 
slope corresponding to the SERIES 02, in which the bedload measurements were taken. 
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Fig. 6.6 Comparison Between Experimental and Predicted Values of Dimensionless 
Bedload @. 

From Fig. 6.6, it is evident that Engelund-Hansen bedload equation predicts much 
more accurately the observed values of the bedload than the Meyer-Peter and Muller 
relationship. The latter equation largely overestimates the experimental values of the 
bedload in almost the whole range covered by the experiments, except for the range of very 
small values of l/d,, which is close to the threshold conditions for sediment motion. 

Inconclusion,the observationspresentedabove support the use of the 
Engelund-Hansen equation as a bedload relationship, and also suggest that the observed 
resistance in the alternate bar regime exceeds that predicted by the flat bed 
Engelund-Hansen equation. Both arguments tend to indicate that the calibrated values of 



p, presented in Thble 6.1 are plausible of being obtained theoretically if those conditions are 
included in the analysis. Accordingly, the theory for the finite amplitude of alternate bars 
developed by Colombini et al. (1987) appears to predict adequately the obsemtions made 
in the present experimental study, at least within the limits of validity discussed before, and 
under the recommendations for the computation of the required PCformulated above. 

6.23 Scour. In order to analyze the behavior of the scour generated by the alternate bars 
as compared with the bar height, Fig. 6.7presents a plot of S as a function of HB.It isapparent 
from that figure that a linear relationship exists between those variables such that: 

S = 0.75 HB ( 6.4 

This result is in good agreement with the experimental results analyzed by Ikeda (1984), who 
also found the same value for the coefficient of proportionality in (6.4). 

Fig. 6.7 Dimensionless Scour as a Function of the Dimensionless Bar Height. 

6.2.4 Bar Wavelength. Fig. 6.8 presents the experimental values of the dimensionless 

wavelength of the observed alternate bars, plotted as a function of P. As it can be seen in 

that figure, the scattering of the experimental data is larger than in the case of the bar height 



analyzed before. It is also apparent that the effect of the slope of the channel on the 
wavelength is less evident than in the bar height case, such that the experimental points do 

not seem to define different tendencies for different values of that parameter. According to .--

this only one curve was fitted to the experimental data, just in order to define the global trend 
exhibited by them. 

Fig.6.8 Experimental Values of the Dimensionless Wavelength as a Function of P. 

From Fig. 6.8, it can be concluded that the experimental dimensionless wavelength 
tends to increase as p increases, approaching a constant value of about 9.4 for values of P 
larger than 15. This is in agreement with the experimental results analyzed by Ikeda (1984), 

which show that, in general, the dimensionless wavelength L * / ~ B *is roughly equal to 9.0. 
. .

Fig. 6.8 also presents the theoretical values of the critical dimensionless bar 
wavelength corresponding to the calibrated values of PCshown in n b l e  6.1, which were 

computed from Fig. 3.11 for flat bed conditions and using the Engelund-Hansen Bedload 

relationship. It can be observed therein that the theoretical predictions of the critical 

dimensionless wavelength take values around 7.0, which are lower than the values of this 



parameter observed experimentally for conditions of well developed alternate bars. The 
experimental trend, however, tends to approach values that are relatively close to 7.0 for 
values of f3 lower than 10,i.e. for values of papproaching PC.This shows that as the bar height, 
the wavelength seems also to increase from its critical value as P increases over the critical 
condition for the formation of alternate bars, although in the latter case a rapid tendency 
towards a constant value of the wavelength appears to occur. 

6.25 Celerity of Alternate Bars. With the objective of analyzing the migration speed of the 

observed alternate bars, the experimental dimensionless values of this variable are shown in 

Fig. 6.9, plotted as a function of P. Even a larger scatter of the experimental data than in 
the case of bar wavelength is observed, such that it is not possible to clearly define the effect 
of the slope on the observed celerity of the bars. It is possible, however, to derive some 
general conclusions of the behavior of the alternate bars celerity. 

Fig. 6.9 Experimental Values of the Dimensionless Migration Speed as a Function of P. 

As it can be seen in Fig. 6.9 the migration speed of the observed alternate bars is in 

fact very small, being in general lower than 0.1% of the mean flow velocity. A curve was fitted 



to the experimental data, just to define the global trend exhibited by them. That trend 
indicates that the dimensionless migration speed of the bars tends to decrease as the 
parameter p increases. This conclusion seems- to be reasonable, considering that as P 
increases, for a fixed value of the slope and also for a fixed sediment size, then the bottom 
shear stress decreases, and so does the transport capaciry of the flow. Obviously for 
decreasing transport capacity, the migration speed of the bedforms, which depend directly 
on it, must also decrease. Even though the flow discharge also decreases for increasing (3, 
a more sharp decreasing in the celerity of the bedforms can be expected to occur, such that 

a net decrease in the dimensionless speed is obtained. 

In Fig. 6.9 the theoretical values of the critical dimensionless celerity of the alternate 

bars corresponding to the calibrated values of PCshown in Table 6.1, which were computed 

from Fig. 3.10 for flat bed conditions and with the Engelund-Hansen bedload relationship, 
are also presented. It can be observed therein that the theoretical predictions of the critical 
dimensionless celerity take values in the range 0.04 to 0.15%, which appears to be wider than 
the observed variation of that parameter for conditions of well developed alternate bars. For 
this reason, the trend defined by the experimental data does not appear to be connected with 
the corresponding theoretical critical point. However, the theory seems to predict the order 
of magnitude of the measured migration speeds fairly well. 

6.2.6 Fourier Analysis of the Bed Deformation. Next, in order to analyze the properties of 

the bed deformation associated with the observed alternate bars, not only from the point of 
view of local variables such as bar height or wavelength, but from the point of view of the 

overall bed topography, a two-dimensional Fourier analysis of the measured bed elevations 

is performed. With this aim, the bed elevation data are made dimensionless with the bar 
height, such that: 

The two-dimensional Fourier analysis is based in the representation of the measured 

bed deformation in a Fourier series, such that: 

with, 

where X, is the wavenumber in the axial direction, associated with the wavelength L*of the 

alternate bars, k, is the wavenumber in the transverse direction, associated with the 



wavelength of the bed deformation in the transverse direction which corresponds to twice 
the channel width, i.e. to 4 ~ * ,and qlm are the Fourier coefficients of the series, such that 
each of them represents the complex amplitude of the different wave components in which 
the bed deformation is decomposed. For example, the coeilicient qll represents the 
fundamental of the bed deformation, in that it corresponds to a two-dimensional wave whose 
wavelengths are identical to the alternate bar axial and transverse wavelengths respectively. 
Analogously, the coefficient qzl  represents a harmonic which has half the wavelength of the 
alternate bar in the axial direction and a transverse wavelength that is equal to the transverse 
wavelength of the alternate bar. Following this interpretation, each of the coefficients can 
be understood as the amplitude of a two-dimensional wave which has wavelengths in the axial 
and transverse directions that are, in general, a fraction of the original wavelengths of the 
alternate bar being analyzed. 

In order to compute the Fourier coefficients from the data collected in the present 
experiments, a discrete Fast Fourier Transform algorithm given by the IMSL 
MM'HILIBRARY software is used, which requires for the grid of discrete points representing 
the spatial domain to be uniform, although the spacing should not necessarily be the same 
in both directions. Since the grid utilized to take the bed measurements was not evenly spaced 
in the transverse direction, a parabolic interpolation is utilized to generate transverse profiles 
of uniform spacing. For each experiment, all sets of data corresponding to one axial 
wavelength of the alternate bars available are Fourier-analyzed, and the absolute value of 
the complex coefficients obtained for each of those bedforms are averaged. In this way, a set 
of averaged Fourier coefficients representing the weight of each hamonic associated with 

the bed deformation is obtained for each experiment, which allows to identify the most 
important harmonics and to analyze how they behave as a function of the channel slope and 
the parameter p. 

From the results obtained through the analysis described above, it can be concluded 
that in general, only the first three or four harmonics in each direction have relevance in the 
Fourier characterization of the observed alternate bars, and even within that group only a 
few contribute to most of the total bed deformation. Fig. 6.10 shows as an example a density 
plot, in which the absolute value of the complex coefficient of the corresponding harmonic 
is represented in relative terms by the density of the gray scale, such that black represents 
a value equal to zero and white represents a value equal to the maximum observed. This 
particular example corresponds to the experiment Q = 2.107 1ls of the SERIES 01, however 
it is representative of the whole set of results obtained. From that figure, it is apparent that 
the most important harmonics correspond to 1111 and 1702,which denote the fundamental and 



a harmonic with no oscillation in the axial direction and with a transverse wavelength 
equivalent to the channel width, respectively. Other less important harmonics are q21 and 
q31, which correspond to harmonics with axial wavelengths equal to one half and one third 
of the alternate bar wavelength, respectively, and with transverse wavelengths equivalent to 

twice the channel width. 

Fig. 6.10 Density Plot for the T ical Distribution of Fourier Coefficients Associated with 
the Expenmental Bed De 'Ipomation. (Experiment Q =2.107 l/s; SERIES 01). 

.vr- . 1- _ - - - _witn tne aim of analyzing how the dimensionless bed deformation coriesponding to 

one alternate bar unit changes with P and the slope of the channel, Fig. 6.11 shows the 
absolute value of the complex Fourier coefficients corresponding to the harmonics ~ 1 1 ,qa, 

~1 and 1131,plotted as a function of P, for different slopes associated with SERIES 01, 02 
and 03, respectively. 



Fig. 6.11 Fourier Harmonics of Bed Deformation as a Function of P and So. 

From Fig. 6.11 it can be concluded that in general terms the harmonics 1111 and qo2 

are of comparable magnitude, which is of the order of twice the magnitude of the harmonics 
q21 and q31. From that figure it is also apparent that while the latter do not show much 
variation either with p or with So, the former appear to be functions of both of those 
parameters. For the experiments with the highest siope, So =0.0056, the harmonic 1102seems 
to be of higher magnitude than the fundamental by about 40% on the average. For that slope, 
both qll and 702tend to increase as P decreases, however, for values of this parameter below 
approximately 11.0 they exhibit a relatively sharp decrease. For the experiments with the 
intermediate slope, So=0.0044, the fundamental is of similar magnitude as ~ 0 2 .In this case 



both parameters tend to increase as P decreases, similarly as for the experiments 
corresponding to So=0.0056. For the intermediate slope however, the rate of increasing is 
higher than in the latter case. As for the highest slope, ~ 1 1and 1102 decrease sharply for values 
of f3 lower than 12.0. For the experiments with the lowest slope, So =0.0032, the fundamental 
and qm are also of similar magnitude. Both parameters tend to increase as P decreases, at 
a rate comparable to that for the intermediate slope, =0.0044, however, in this case, no 
decreasing of those harmonics is observed for small values of f3. 

According to what is exposed above, it can be concluded that the dimensionless 
geometry of the bed deformation is a function of both, P and So, which is reflected in the 

variation of its principal harmonics, ql l  and qm, with those parameters, as observed in Fig. 
6.11. Comparing the qualitative behavior of those harmonics with the behavior of the 
dimensionless bar height shown in Fig. 6.3, it can be concluded that the zone of increasing 
values of qll and ~ 0 2with decreasing P, corresponds to the zone of decreasing bar height with 
decreasing P, which is bounded by the limits corresponding to the critical condition for the 
formation of alternate bars and the critical conditions for sediment motion. It seems that 
whenever p is close to any of those limits a sharp variation of the principal harmonics of the 

bed deformation occurs, such that for example a sharp increase takes place as P decreases 
from values close to the critical conditions for sediment motion, and a sharp decrease occurs 
as that parameter gets closer to the. critical conditions for the formation of alternate bars. 

6.3 Analysis of Results in the Meandering Channels 

63.1 Bar Height. With the aim of analyzing the behavior of the dimensionless bar height HB 
for the experiments in the meandering channels, this parameter is plotted as a function of 

p in Fig. 6.12. In that figure, the results associated with each of the meandering channels 

tested, which correspond to the slope So=0.005, are plotted with a different symbol in order 
to analyze also the effect of the dimensionless parameters X, and v, characterizing the 
geometry of the channel. As a reference, Fig. 6.12 also shows the curve fitted to the 

experimental results in the straight channel, corresponding to the slope 0.0056. 

Although the curve representing the results in the straight channel in that figure is not 

totally comparable with the experimental results plotted therein, since it is valid for a larger 

slope, it can be considered to be the upper limit of the expected results in the straight channel 
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the results in the meandering and straight channels. 

As it can be observed in Fig. 6.12, the dimensionless bar heights corresponding to the 

experiments in the meandering channels are larger than that of the experiments in the straight 

channel, even for the case of smallest channel curvature, v=0.015. In the latter case, 
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however, in which migrating bars were observed to develop in the channel, only the values 
of the dimensionless bar height associated with bars in phase with the channel curves were 
plotted, and therefore the previous conclusion is valid only for those bars. An analysis of the 
heights of migrating bars is made later in this section. 
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Fig. 6.12 Experimental Values of the Dimensionless Bar Height as a Function of P, X, 
and v. 

From Fig. 6.12, it is also apparent that the dimensionless bar height appears to 
increase with the dimensionless curvature of the channel, such that the experiments 
corresponding to v =0.03 show larger bar heights than the experiments corresponding to 
v =  0.015, for the whole range of values of P and A, covered in the present study. A not so 
strong effect of the dimensionless wavenumber of the channel, X,, over the bar height is 
apparent from that figure for the experiments of equal curvature v=0.03. However, a 
tendency exists for the values of the bar height corresponding to A, =0.20 to be slightly larger -

than the values corresponding to X, 	 =0.15. 

This latter conclusion is crucial from the point of view of the resonance phenomenon 
described in previous chapters. As it was already explained, the linear theory of resonance 



predicts that the bed response to the forcing effect of the curvature has a maximum, which 
formally corresponds to an infinite peak, for a dimensionless wavenumber Am in the range 
0.10 to 0.15. However, it is pointed out by Colombini et al. (1990) that a nonlinear analysis 
of this phenomenon developed by Professor's Seminara group in Italy, showed that the bed 
response in this case, rather than exhibiting a sharp peak within the resonance range, is found 
to follow a smoother trend, which still exhibits a maximum for values of Xm that are typically 
larger than those predicted by the linear theory. The results presented in Fig. 6.12 appear 
to support this conclusion, in that for the experiments with the same value v =0.03, the bar 
heights associated with both wavenumbers, Xm =0.15 and 0.20, take similar values, which 
however tend to be slightly larger for X, =0.20. Since only two different wavelengths of the 
meandering channel were tested in the present research, the experimental data do not allow 
to define more precisely whether the maximum bed response effectively occurs within the 
range of Am covered herein. Nevertheless, the experimental results of Colombini et al. 
(1990), which covered a wider range of values of Am, tend to indicate that such maximum 
occurs for values of the channel wavenumber in the range 0.20 to 0.25, for the experimental 
conditions covered therein. 

In order to compare the present results in the meandering channels with those 
obtained by Colombini et al. (1990), Fig. 6.13 shows the experimental points of Fig. 6.12, 
plotted together with the results of Colombini et al. corresponding to the wavenumbers 
hm=0.15 and 0.20. The latter results were obtained for a dimensionless curvature v =0.05, 
a slope So= 0.006 and a dimensionless sediment size ds'=230.3, and covered a range of 
Froude numbers very similar to that of the present experiments. 

Even though both sets of data are not totally comparable because of the differences 
in the values of the slope and the dimensionless sediment size, the experimental points of 
Colombini et al. locate consistently above the experimental points corresponding to the 
present study, defining, as expected for a larger curvature of the channel, larger bar heights. 
As it can also be observed in Fig. 6.13, the experimental points of Colombini et al. 
corresponding to X, =0.20 define larger bar heights than those corresponding to X, =0.15, 
similarly to what is observed for the present experimental results. However, in the case of 
Colombini et al.'s experiments that tendency is more evident. 

Next, an analysis of the bar height of migrating bars in meandering channels is made. 
With this goal, the results corresponding to the experiments in Channel 2 are considered, 
since in those experiments migrating bars were observed to develop for a wide range of values 
of p. In the preceding chapter the distinction was made between bars in phase, which are 
bars that at a given time are located at the channel curves, and bars not in phase, which are 



bars that at a given time are located away from the channel curves. This distinctionwas made 
because as the bars continuously migrate downstream, their amplitude changes with time 
such that it reaches a maximum when the bar is located at the channel curve, and a minimum 
when it is away from the curve. The experimental values of the bar height associated with 
bars in phase and with bars not in phase obtained in the experiments of SERIES21 are plotted 
as a function of p in Fig. 6.14. 

PRESENT STUDY 
(So-0.005 ;di-377.4) 
0 X=0.20 ; v=0.03 
A XzO.20 ; v=O.O15 

A-0.15 ; v-0.03----------- STRAIGHT CHANNEL 

Fig. 6.13 HBas a Function of 6, X, and v. Comparison Between the Experimental
Results of Colombini et al. (1990) and the Present Study. 

As it can be observed in Fig. 6.14, the height of bars not in phase with the channel 
curves tends to be lower than that of bars in phase, however the difference between those 
values appears to be a function of P, such that the difference increases as f3 increases. For 
a value of p of about 9.0, the height of bars not in phase is about 90% of the height of bars 
in phase, however for a value of P of about 18.0, such magnitude decreases to about 70%. 

A comparison with the curve fitted to the experimental results corresponding to the straight 
channel shows that while the heights of bars in phase are in general slightly larger than the 
values corresponding to the straight channel as it was already discussed, the heights of bars 
not in phase locate below that curve,which indicates that even though migrating bars develop 
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in the meandering channel, the curvature of the channel tends to damp them so their 
amplitude tends to be lower than the amplitude of the free migrating bars observed in the 
straight channel. 
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Fig. 6.14 Experimental Values of the Dimensionless Bar Height of Migrating Bars. 

Experiments in Channel 2. 


This conclusion is in agreement with the theoretical analysis made by Tubino and 
Seminara (1990), which predicts that even though migrating bars are likely to develop in a 
meandering channel configuration, their amplitude is damped and their celerity is slowed 
down in magnitudes that depend on the values of P, 0 and ds (or alternatively Soand dS7) and 
the geometry of the channel, and eventually, depending on the values of those parameters, 
they can be totally suppressed. From Fig. 6.14 only the effect of P can be analyzed, however 
it is apparent - - that more damping -- of the amplitude of the migrating bars occurs as P increases. 

Finally, a comparison is made between the present experimental results and the 
results obtained through the application of the numerical model developed in Chapter 4. 

With this aim, Fig. 6.15 presents the dimensionless bar heights corresponding to the 

experiments in Channel 1, SERIES 11, plotted as a function of f3, together with the 



corresponding numerical results obtained for the same conditions as those imposed in the 
laboratory experiments. 

0NUMERICAL RESULT 
EXPERIMENTAL POINT 

Fig. 6.15 Comparison Between Numerical and Experimental Results for the 
Dimensionless Bar Height as a Function of P in Meandering Channels. 

As it can be seen in Fig.6. 15, the numerical results for the bar height define a curve 
along which HBincreases as P increases, at least within the covered range of values of this 
parameter. This trend is in agreement with the corresponding experimental results, however 
it is evident from Fig. 6.15 that the numerical model tends to underestimate in about 50% 
the observed amplitude of the bed deformation. Although there are simple ways to improve 
the numerical results presented in Fig. 6.15, for example by means of an adequate calibration 
of parameters, such as r in equation (4.11), for which a fixed value of 0.3 was assumed, it is 
apparent from the general characteristics of the bed deformation predicted by the numerical 
model, that a better modeling of this phenomenon requires an improvement in the modeling 
of the direction and magnitude of the sediment transport in the meandering channel. In 
particular, one of the main shortcomings of the model utilized herein is that it predicts a very 
symmetric deformation in the transverse direction (Fig. 4.12),which is in clear disagreement 



with the observations made in the present study. For instance, it will be shown next that the 
maximum scour defined by the observed point bars is about 75% of the total bar height, 
whereas the numerical model predicts a value of 50% for this relation. This kind of features 
cannot be modified by simply varying the parameters of the model, requiring a review of the 
conceptual model used for sediment transport in the meandering channel. 

63.2 Scour. In order to analyze the behavior of the scour generated by the bars observed 

in the meandering channels as compared with the bar height, Fig. 6.16 presents a plot of S 
as a function of HB. The values of the scour presented therein correspond only to fixed bars 
or bars that are in phase with the channel curves in the case of migrating bars. In that figure 
a straight line with a slope of 0.75 is also plotted, in order to make a comparison with the 
results in the straight channel which were found to be well represented by such relationship. 

Fig. 6.16 Dimensionless Scour as a Function of the Dimensionless Bar Height. 

Fig. 6.16 shows that although the experimental points are located around the straight 
line of slope 0.75, they tend to define a different trend, which appears to be nonlinear, such 

that the ratio S/HBtakes values that are larger than 0.75 for values of HBlarger than about 

2.5, and slightly lower than 0.75 for values of HBless than 2.5. This behavior seems to indicate 



that as the bed scour increases, for example because of increasing f3 or increasing channel 
curvature, its effect tends to be more local, thus defining a slightly flatter bed than in the case 
of alternate bars in the straight channel. Since the area-of the bed affected by scour decreases, 
the mean level of the bed tends to increase, such that because of the definition of the 
magnitude S, it increases its relative contribution to the magnitude of the total bar height. 

633Phase Lag of Fixed Bars. Next, an analysis of the dimensionless parameter 6, defined 
as the lag between the zone of maximum bed scour and the apex of the channel curves, is 
presented. Obviously this analysis is valid only for fixed bars, since for migrating bars no 
steady-state definition of S is possible. Fig. 6.17 shows the experimental values of S 
corresponding to the experiments in Channels 1and 3, SERIES 11, 12 and 31, plotted as a 
function of p. 

Fig. 6.17 Experimental Values of the Dimensionless Lag S as a Function of P. 

As it can be observed in Fig. 6.17, a linear relationship fits reasonably well the data 
corresponding to hm =0.20, which appears to have a negative slope, indicating that 6 tends 
to decrease as p increases. Only three points associated with fixed bars are available fc8r the 



wavenumber X, =0.15, therefore it is not possible to define accurately the trend exhibited 
by that data. However, a straight line of slope similar to that of the points correspondingto 
h, =0.20 seems to £it the data reasonably well. From those fimngs it is clear that as the 
wavenumber of the channel decreases, i.e. as its wavelength increases, the dimensionlesslag 
Stends to decrease, for constant values of p and v. It is also apparent f?om the resultsplotted 
in Fig. 6.17 corresponding to Am =0.15, that for values of P larger than about 11.0,s takes 
negative values, which means that the zone of maximum scour is located upstream of the 

curve apex This behavior can also be deduced from the tendency exhibited by the data 

corresponding to X, =0.20, which allows to expect negative values of S for values of P larger 

than about 19.0. 
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Fig. 6.18 6 as a Function of P, X, and v. Comparison Between the Experimental Results 
of Colombini et al. (1990) and the Present Study. 

Fig. 6.18 presents a comparison between the results for 8 obtained herein, which 

correspond to a channel curvature v =0.03, with the results of Colombini et al. (1990) for 

h, =0.15 and 0.20, which correspond to a channel curvature v =0.05. Although both sets 

of data are not totally comparable because of their differencesin Soand d,', as it was already 



explained, a relatively good agreement in the tendencies exhibited by them is apparent from 
that figure. As it can be observed therein, the data corresponding to v=0.05 show lower 
values of 8 than those corresponding to v=0.03, which indicates that as the curvature 
increases it forces a faster response of the flow, such that less lag exists between the zone of 
maximum velocity and bedload transport (i.e. zone of maximum scour) and the apex of the 
curve, than in the case of less curvature. 

Finally, the results of Colombini et al. showed that negative values of 8 are effectively 
possible. According to the results presented in Fig. 6.18, those negative values tend to occur 
either for large values of P or small values of Am, i.e. for large wavelengths of the meandering 
channels. 

63.4 Wavelength of Migrating Bars. Fig. 6.19 presents the experimental values of the 
dimensionless wavelength of the observed migrating bars in the meandering channels. These 
correspond to the experiments made in Channel 2, SERIES 21, in which migrating bars were 
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wavelength of fixed bars, such as those observed in the rest of the experiments in the 
meandering channels, because in those cases the bar wavelength clearly coincides with the 
wavelength of the channel. In order to compare the wavelengths of the observed migrating 
bars, which correspond to a channel slope of 0.005, with those obtained in the straight 
channel, Fig. 6.19 also presents the data of the experiments of SERIES 01 and 02, which 
correspond to channel slopes of 0.0056 and 0.0044 respectively. 

Although the wavelength data of migrating bars in the meandering channel exhibit 
more scatter than the corresponding straight channel data, interesting conclusions can be 
derived fiom Fig. 6.19. In the first place, it is observed therein that the wavelength of 
migrating bars in the meandering channel tends to be larger than the wavelength of the bars 
in the straight channel, but at the same time smaller than the wavelength of the meandering 
channel. In the second place, a strong influence of P on the dimensionless wavelength of the 
migrating bars in the meandering channel is apparent, such that for values of P of about 10, 
their wavelength is close to the wavelength of the channel, whereas for values of P of about 
20 the wavelength of such bars is closer to the wavelength of the bars observed in the straight 
channel. 

Therefore, from above discussion it is clear that even though migrating bars can 
develop in a meandering channel, the curvature of the channel tends to force a response that 
exhibits longer wavelengths than those corresponding to free bars in straight channels. The 
fact that the wavelength of the bed response decreases with f3, seems to indicate that the effect 
of the curvature on the wavelength tends to be less strong as P increases, such that the 



wavelength tends to be closer to that of the free bars in the straight channel. This behavior, 
however, appears to be opposite to that observed for the damping of the bar heights of the 
same bars, which is more drastic for large valuesof P. 

t 0 STRNGHT CHANNEL 

Fig. 6.19 Experimental Values of the Wavelength of Migrating Bars in Meandering 
Channels. 
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63.5 Celerity of Migrating Bars. In what follows, an analysis of the speed of the migrating 
bars observed in the meandering channels is presented. With this aim, the celerity of the 
migrating bars observed in Channel 2, SERIES 21, corresponding to the same experiments 
analyzed for the wavelength in the preceding section, is plotted as a function of P in Fig. 6.20. 
This figure also showsthe celerity data correspondingto the experimentsmade in the straight 
channel, SERIES 01 and 02, in order to allow for a comparison between both sets of data. 
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As it can be observed therein, the celerity of the migrating bars in the meandering 
channel is smaller than that of the free bars in the straight channel, having in general, values 
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$ 

that are lower than 0.05% of the mean flow velocity. A curve was fitted to the data 
corresponding to the bars in the meandering channels in order to analyze the general 
tendency exhibited by them and to compare it with that of the bars in the straight channel. 



That curve has a negative slopevery similar to that of the bars in the straight channel, showing 
decreasing dimensionless celerity for increasing P, and is located below the latter in an 
approximately constant magnitude equivalent to about 0.0003. For a value of P of about 18.0, 
the migration speed of the bars in the meandering channels is much less than 0.01% of the 
mean flow velocity, indicating a very slow migration of the bedforms, which is equivalent to 
less than 10% of the corresponding bar celerity in the straight channel. 
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Fig. 6.20 Experimental Values of the Celerity of Migrating Bars in Meandering Channels. 

Erom the above discussion it can be concluded that the curvature of the channels tends 
to slow down the migrating bedforms developed in the meandering channel, forcing values 
of the migration speed that are typically smaller than those of the free bars observed in the 
straight channel. 

Therefore, summarizing the results discussed above and in preceding sections, it can 
be concluded that even though migrating bedforms are likely to develop in meandering 
channels for adequate conditions, the curvature of the channel forces a bed response whose 
bar height and migration speed are smaller than the bar height and migration speed of the 



fiee bars observed in the straight channel. Likewise, the resulting wavelength of the 
migrating bedforms appears to be longer than that of the free bars in the straight channel. 
This behavior of the migrating bars in the meandering channel demonstrates that in fact the 
curvature of the channel tends to damp and eventually suppress those bedforms, which is in 
agreement with the theoretical findings of 'Tbbino and Serninara (1990) discussed in Chapter 
2. These researchers provide theoretical conditions for the total suppression of the migrating 
bars, which depend on the values of the wavenumber and curvature of the channel and also 
on 8. A comparison between the present experimental results and those theoretical 
conditions is made later in this chapter. 

63.6 Resistance. In order to analyze the hydraulic resistance of the flow in the meandering 
channels, Fig. 6.21 presents a comparison between theoretical and experimental rating curves 
corresponding to the conditions of the experiments in Channels 1,2 and 3, SERIES 11,12, 
21, and 31. The Engelund-Hansen resistance equation (3.5) was used for the computation 
of the theoretical rating curves, which as it was already explained, have two branches, 
corresponding to the flat bed and dune covered bed conditions respectively. 

As it is observed therein, the flat bed theoretical curve tends to underestimate the 
observed resistance, predicting values of the flow depth that are in general lower than the 
corresponding experimental values. On the contrary, the dune covered bed curve tends to 
overestimate the resistance, predicting values of the flow depth that are in general larger than 
the observed values. This behavior is similar to that discussed before for the experiments 
in the straight channel. In this case, however the form resistance associated with the channel 
curvature has to be taken into account, being the total resistance to the flow a combination 
between grain resistance given by the bed sediment and form resistance which is due to 
channel curvature and bed deformation simultaneously. 

From Fig. 6.21, it can be concluded that as the channel curvature increases for fixed 
wavelength the total resistance also increases, as expected, since the increase in the curvature 
has associated an increase in the form component of the total resistance. Similarly, as the 
channel wavelength increases, i.e. the wavenumber A, decreases, for fixed curvature, the total 
resistance decreases, also as expected, since an increase in the wavelength for fixed curvature 
has associated a decrease in the form component of resistance per unit length. It can also 
be concluded that in the case of Channel 3, having a longer wavelength, the observed 
resistance is only slightly larger than that predicted by the theoretical resistance equation for 
flat bed conditions, which seems to indicate that in meandering channels the form resistance 
due to the bed deformation is less important than the form resistance associated with the 
channel curvature. It is also apparent by comparing with the results obtained in the straight 



channel, that the bed deformation in the meandering channels has less resistance associated 
with it than the alternate bars observed in the straight channels, which appears to be .. 

reasonable considering that the bars in the meandering channels have in general longer 
wavelengths and also, as it was discussed before, seem to be flatter than the alternate bars 
observed in the straight channel. 

Fig. 6.21 Comparison Between Theoretical and Experimental Rating Curves. 

63.6 Fourier Analysis of Bed Deformation. Next, a two-dimensional Fourier analysis of the 
bed deformation observed in the experiments in the meandering channels is performed. The 
analysis technique employed herein is the same as that explained in Section 6.2.6 for the 
Fourier analysis of the bed deformation in the straight channel. 

As with the experiments in the straight channel, the results obtained from the Fourier 
analysis of the dimensionless bed deformation in the meandering channels indicates that only 



a few harmonics in the axial and transverse directions have relevance in the Fourier 
characterization of the observed bars. The plot of the Fourier coefficients presented in 
Fig. 6.10 for the bars in the straight channel is also representative of the typical results 

obtained from the Fourier analysis of the bars in the meandering channels, which allows to 
conclude that also in this case the most important harmonics correspond to q11 and qm. 

With the aim of analyzing the effect of P and the channel geometry over the 
dimensionless bed deformation corresponding to one wavelength of the meandering channel, 
Fig. 6.22 shows the absolute value of the complex Fourier coeEcients of harmonics q11, qm, 

qzl and q31, plotted as a function of P, for Channels 1,2 and 3, separately. 

Fig. 6.22 Fourier Harmonics of Bed Deformation as a Function of P, Am and v. 

From Fig. 6.22 it can be concluded that in general terms the harmonics qll and qo2 

are of comparable magnitude, which is of the order of twice the magnitude of the harmonics 



qtl and q31. From that figure it is also apparent that in general qll and qm tend to increase 
as p decreases, except in the case of Am =0.2 and v =0.015, for which a relatively sharp 
decrease occurs for values of p lower than about 12.0. The latter behavior was characteristic 
of the results for the experiments of equivalent slope in the straight channel, which indicates 
the existence of a similarity between the bars in the straight channel and those of the Channel 
2 (h,=0.2, v =0.015). This is not unexpected, since in fact the bars in Channel 2 correspond 
to migrating bars, like the bars in the straight channel, which seems to indicate that this 
property is reflected in the geometric characteristics of the bed deformation. 

As it can be observed in Fig. 6.22,the harmonics qzl and q31 also increase as P 
decreases, however, they show less variation with that parameter than q11 and q02. Such 
variation, on the other hand, appears to be larger than that observed for the bars in the 
straight channel. 

According to what is exposed above, it can be concluded that the dimensionless 
geometry of the bed deformation in meandering channels is a function of both the channel 
geometry, characterized by Am and v, and P, which is reflected in the variation of its principal 
harmonics with those parameters, as it is observed in Fig. 6.22. It is also apparent from the 
above analysis that migrating bars, either in the straight or in the meandering channel, have 
geometric properties that are relatively different from those of the fixed bars in the 
meandering channels, manifested by the different behavior of the principal harmonics of the 
bed deformation observed in those cases, at least for values of lower than about 12.0. 

63.7 Critical Conditions for the Suppression of Migrating Bars. Next, an analysis of the 
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the present experimental results is made. With this aim, the theoretical predictive 
relationship proposed by Tubino and Seminara (1990), which was already discussed in 
Chapter 2, is employed. This relationship, derived from a weakly-nonlinear analysis that 
takes into account the interactions between migrating and fixed bars in a meandering 
channel, can be written in terms of a critical dimensionless curvature v,, such that the 
suppression of migrating bars is predicted to occur in a channel having a dimensionless 
curvature v, if v> v,, with v, given by: 

where p, denotes the critical condition for the formation of alternate bars in a straight channel 
and blrepresents a coefficient that is a function of the ratio between the meander wavelength 
and the critical wavelength of the alternate bars in the straight channel, and also of 8 and ds. 
This coefficient can be computed from Fig.9 of Tubino and Seminara's paper. 



According to the experimental results presented in the preceding chapter, migrating 
bars were observed to occur in all the experiments in Channel 2 (A, = 0.2, v =0.015), in one 
of the experiments in Channel 3 (A, =0.15, v =0.03), for instance, the one associated with 
the maximum experimental value of P of that series, and in none of the experiments in 
Channel 1 (Am= 0.20, v =0.03). These results show that the conditions for the suppression 
of migrating bedforms appear to be a function of the geometry of the meandering channel, 
in this case represented by h, and v, and also of P. In particular it is found that migrating 
bars are more likely to be suppressed as the curvature increases, the wavelength decreases 
or p decreases. 

In order to compare these results with the theoretical prediction of lbbino and 
Seminars (1990), relation (6.8)is plotted as 5 function of P in Figs. 6.23 and 6.24, for values 

of the meander wavenumber corresponding to A, =0.20 and 0.15 respectively. The values 
of b1employed to build the theoretical curves presented in those figures are shown in n b l e  
6.3. Even though this parameter is a function of 8,and therefore should vary within the set 
of experiments corresponding to each meandering channel tested, only one value of b1is 
used herein for each meander wavenumber, since the experimental range of variation of 8 
is rather narrow and because Tubino and Seminara's paper gives information for the 
evaluation of this parameter only for a value of 8 =0.1, which fortunately corresponds to a 
representative value of 8 for the present experiments. In computing kcl, a value of &, the 
critical wavenumber for the formation of alternate bars in a straight channel, is needed. 
Herein, this parameter is computed from the theoretical curve presented in Fig. 3.6, using 
the calibrated values of 8 and d, associated with the experimental critical conditions for the 
formation of the alternate bars presented in Table 6.1. 

Table 6.3 Values of blfor the Theoretical Critical Condition for the Suppression of 

Migrating Bars. 


Figs. 6.23 and 6.24 also present the experimental values of P-associated with each 
channel curvature tested, such that white points denote experiments in which no migrating 
bars were observed and black points identify experiments in which migrating bars were 
observed to develop. As it can be observed in those figures, the theoretical curves do not 
appear to agree with the experimental results, predicting that in general the value of the 
critical curvature for the suppression of migrating bars is larger than the experimental values 
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of this parameter, and therefore, that migrating bars should have formed in all of the present 
experiments. 
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Fig. 6.23 Comparison Between Theoretical and Experimental Conditions for the 
Suppression of Migrating Bars in Meandering Channels (A, =0.20). 

With the aim of improving the theoretical prediction of the conditions for the 

suppression of migrating bars in meandering channels, a calibration of the values of k1is 

made, in order for the curves for v, given by (6.8) to be in agreement with the experimental 

results. The calibrated values are presented in Table 6.4. 

Table 6.4 Calibrated Values of b1for the Critical Condition for the Suppression of 
Migrating Bars. 

I Am I k,-1 THEORETICAL I 161 C - m D  I 

As it can be observed in Table 6.4, the calibrated values of kClare of the order of 30 
to 50% of the theoretical values. Besides, they appear to increase as the meander 



wavenumber decreases, whereas the theoretical behavior is exactly the opposite. These 
differences between theoretical and calibrated parameters, however, are not totally 
unexpected, since as it happened before for the critical conditions for the formation of 
alternate bars, the theoretical values of parameters like b1may depend strongly on the 
resistance and bedload equations employed as closure relationships in the derivation of the 
theory, and therefore their validity depends on the validity of those closure relationships. 
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Fig. 6.24 Comparison Between Theoretical and Experimental Conditions for the 
Suppression of Migrating Bars in Meandering Channels (h, =0.15). 

The resultant curvesfor v, using the calibratedvalues of kClare also presented in Figs. 
6.23 and 6.24. As it can be observed therein, they seem to predict the observed conditions 
for the suppression of bars relativelywell which appears to validate, at least qualitatively,the 

theory developed by Tubino and Seminara (1990). Those curves show that the migrating bars 

tend to be suppressedfor much smaller curvaturesthan thosepredicted by the original theory, 

however, the basic character of the theoretical solution appears to be well supported by the 

present experimental results. 



7. CONCLUSIONS 


The research work reported herein has covered some different aspects of the alternate 
bar and river meandering phenomena. The problem has been approached mainly from an 
experimental point of view, however, an analysis of the linear stability theory of alternate bars 
and a numerical model for the flow and bed deformation in meandering channels have also 
been developed, which provided a better insight on the physical meaning of the experimental 
observations. 

As it is pointed out in Chapter 2, some recent analytical theories developed mainly 
by Professor Seminara's group in Italy and Professor Parker's group at the University of 
Minnesota, have contributed to attain a consistent level of understanding on the various 
phenomena involved in the initial process of meander formation. The main contributions 
to that understanding correspond to the so called 'resonance theory' of river meandering, 
developed by Blondeaux and Seminara (1985), a finite amplitude theory for alternate bars 
in straight channels developed by Colombini et al. (1987) and a theory that accounts for the 
interactions between free and forced bars in meandering channels, developed by 'Tbbino and 
Seminara (1990). The study of Colombini et al. (1990) was the first attempt to validate the 
resonance theory through experiments, however, it did not cover some specific aspects of the 
theory, particularly, the phenomenon of coexistence of free and forced bars in meandering 
channels and the conditions for the suppression of the former, of which the only experimental 
precedent available in the literature corresponds to the study of Kinoshita and Miwa (1974). 
The experimental work reported herein was aimed as to provide experimental evidence to 
validate some aspects of the analytical mod-1s described above, specially those that had not 
been investigated in previous laboratory studies. 

The analysis of the linear stability theory of Blondeaux and Seminara (1985) presented 
in Chapter 3, showed that the closure relationships for resistance and bedload employed in 
the analysis have an important influence in the result; obtained for the critical conditions for 
the formation of alternate bars in straight channels. For instance, it was found that the use 
of the Engelund-Hansen bedload relationship instead of Meyer-Peter and Muller equation 
leads to a complete different behavior of the critical valuz of the parameter P. The critical 
value of the wavenumber k,however, appeared to be less sensitive to the changes in the 
closure relationships. The linear stability theory, on the other hand, also allows to derive the 
resonance conditions for quasi-nonmigrating, quasi-nonamplifying bars. An analysis of 
those conditions showed that the wavelength of resonant bars appears to be on the order of 
two or three times larger than that of the bars in straight channels. A comparison with the 



resonance conditions derived by Parker and Johannesson (19891, supported the above 
conclusion, although the resonance wavenumbers predicted by the simplified theory of the 
latter researchers are slightly larger than those obtained through the complete theory of 
Blondeaux and Seminara (1985). 

A simplified numerical model for the two-dimensional flow and bed deformation in 
meandering channels was developed in Chapter 4. The model is based on one of the sets 
of governing equations commonly used in the literature. Although a limited analysis of the 
results given by the numerical model was made therein, it allowed to get some insight on the 
principal characteristics of the different physical processes involved in such phenomena. In 
fact, the model is capable of reproducing some of the main features of the bed deformation, 
as compared with the present experimental results, however, it appears to predict transversely 
symmetric bedforms which are not in agreement with experimental observations. Likewise, 
the numerical model appears to underestimate the experimental values of the bar height. 
As it is concluded in Chapter 4, it seems that the improvement of these features would require 
an improvement in the modeling of the magnitude and direction of sediment transport in 
meandering channels 

m-- 3.
I ne uirnensional analysis made in Chapter 5, based on the non-dimensionalization 

of one of the commonly used sets of governing equations for the alternate bar and river 
meandering phenomena, showed that any parameter characterizing the bed deformation 
related to such phenomena should be a function of the sediment properties, the geometry 
of the channel, the slope, the Froude number and the parameter P, the latter characterizing 
the channel width to flow depth ratio. In particular it was found that once the sediment is 
selected, the bed deformation is a function mainly of the geometry and slope of the channel 
and p. It appears that the effect of the Froude number can be neglected, if it can be assumed 
that this parameter varies in a narrow range for a given set of experiments. The latter 
assumption seems to be valid for the present experiments, in which the Froude number varied 
in the range 0.70 to 0.85 approximately. A review of the conditions covered by the 
experiments of Colombini et al. (1990) and by those analyzed by Ikeda (1984) shows that, 
in general, the Froude numbers associated with the alternate bar phenomenon appear to be 
rather large, having values greater than about 0.70 in all cases observed. 

A comparison made in Chapter 6 between the experimental data obtained in the 
straight channel with the empirical relationships of Ikeda (1984) for bar height and bar 
wavelength showed that the present data fall within the expected limits of scatter defined by 
Ikeda, suggesting that scale effects were negligible, and therefore the observations should 
be comparable to other sets of data obtained under similar conditions. 



As it is concluded in Chapter 6 from the analysis of the experimental results obtained 
in the straight channel, two critical limits seem to exist for the parameter P, such that alternate 
bars do not develop for values of this parameter outside the range defined by those limits. 
The lower limit, associated with deeper flows, corresponds to the critical condition for the 
formation of bars, whereas the upper limit, associated with shallower flows, corresponds to 
the critical condition for sediment motion. It was found that the dimensionless bar height 
tends to increase as p increases over the lower limit, however it exhibits a sharp decrease as 
f3 gets closer to  the upper limit. It was also found that the dimensionless bar height increases 
with the slope of the channel. 

A comparison between these results and those predicted by the theory of Colombini 
et al. (1987)for calibrated values of PC,showed that the theory works relatively well for values 
of the parameter (P-PJ/Pc lower than about 1.7, which gives the theory a wider range of 
validity than expected. The theory, however is unable to predict the sharp decrease in 
amplitude of the bars as f3 gets closer to the critical condition for the sediment motion. An 
analysis of the calibrated values of PCshowed that in general, they differ from the values 
predicted by the theoretical relationships derived in Chapter 3 for the critical conditions for 
the formation of alternate bars. It was found, however that the best predictions are given 
by the use of the Engelund-Hansen bedload equation and the flat bed Engelund-Hansen 
resistance relationship, although it seems that more resistance was present than that 
predicted by such relationship. The analysis of the experimental bedload rates and rating 
curves showed that, in fact, Engelund-Hansen bedload equation does much better than 
Meyer-Peter and Muller relation in predicting the observed bedload rates, and also that the 

alternate bar structure appears to induce more resistance than that predicted by the flat bed 
Engelund-Hansen resistance equation, which however is lower than that predicted by the 
dune covered bed Engelund-Hansen resistance equation. 

As it is concluded from the results obtained in the experiments in the straight channel, 
a linear relationship appears to exist between the bar height and the maximum scour 
associated with the alternate bar structure, such that the latter seems to be about 75% of the 
former. This result is in agreement with the results analyzed by Ikeda (1984), who also found 
this value for the coefficient of proportionality. 

From the analysis of the wavelength of the alternate bars observed in the straight 
channel it was concluded that while no clear effect of the slope of the channel on this 

parameter is apparent, the dimensionless wavelength appears to be a function of P, such that 
it tends to increase as p increases, approaching a constant value of about 9.4 for values of 
(3 larger than 1.5. A comparison between the experimental values of the wavelength and the 



theoretical critical values of this parameter showed that, as the bar height, the wavelength 
seems also to increase £tom its critical value as p increases over the critical condition for the 
formation of alternate bars. 

The analysis of the migration speed of the alternate bars observed in the straight 
channel showed that this parameter took, in general, values that are lower than 0.1% of the 
mean flow velocity. Even though the scattering of the experimental celerity data is larger than 
in the cases of the bar wavelength and bar height, a tendency appears to exist for the 
dimensionless bar celerity to decrease as P increases. On the contrary, no clear effect of the 
slope on the experimental values of this parameter is apparent. 

As it was concluded from the two dimensional Fourier analysis of the dimensionless 
bed deformation observed in the experiments in the straight channel, the most important 
harmonics of the Fourier decomposition correspond to q l l  and q02, which denote the 
fundamental and a harmonic with no oscillation in the axial direction and with a transverse 
wavelength equivalent to the channel width, respectively. According with the analysis carried 
out, it was concluded that the dimensionless geometry of the bed deformation appears to be 
a function of both f3 and the channel slope, which is reflected in the variation of its principal 
harmonics 1111 and 1102, with those parameters. 

From the analysis of the bar heights observed in the experiments in the meandering 
channels corresponding to fixed bars or to bars in phase with the channel curvature in the 
case of migrating bars, it was concluded that the dimensionless values of this parameter 
appears to  increase with the dimensionless curvature of the channel. On the other hand, a 
not so strong effect of the dimensionless wavenumber over the bar height is apparent. 
Nevertheless, for the results corresponding to the same curvature v =0.03, a tendency seems 
to exist for the values of the bar height corresponding to h, =0.20 to be slightly larger than 
the values corresponding to hm=0.15. This appears to support the qualitative results 
predicted by a nonlinear theory of the resonance phenomenon, in that the response of the 
bed within the resonance range does not appear to present a sharp peak, but to follow a more 
smoothed trend. Whether a maximum of the bed response really exists for a certain 
wavenumber of the channel, however, cannot be answered from the present results because 
they correspond only to two different values of hm. 

A comparison between these results, corresponding to the curvatures v =0.015 and 
0.030, and the dimensionless bar heights obtained by Colombini et al. (1990),corresponding 
to a curvature v =0.050, showed that the experimental points of the latter researchers locate 
consistently above the experimental points corresponding to the present study, defining, as 
expected for a larger curvature of the channel, larger bar heights. 

http:hm=0.15


As it was concluded from the results obtained in the experiments in the meandering 
channels, the values of the maximum scour induced by the bed deformation appears to 
behave slightly different than the values of the scour associated with the bars in the straight 
channel. In fact, a nonlinear relationship seem to exist between the scour and the bar height, 
such their ratio takes values that are larger than 0.75 for values of the dimensionless bar 
height larger than about 2.5, and slightly lower than 0.75 for values of this parameter less than 
2.5. 

The analysis of the lag observed between the zone of maximum scour and the apex 
of the channel curves in the experiments in the meandering channels with fixed bars, showed 
that this parameter is a function of the channel wavelength and curvature, and also of the 
parameter p, such that the dimensionless value of the lag tends to decrease as P increases, 
the wavelength of the channel increases or the curvature of the channel increases. The latter 
conclusion, relating the behavior of the lag with the channel curvature, was obtained by 
means of a comparison with the experimental results of Colombini et al. (1990). The 
experimental results also showed that negative values of the lag, which indicates that the zone 
of maximum scour is located upstream the apex of the curve, are likely to occur either for 
large values of P or large wavelengths of the channel. 

As it was described in Chapter 5, migrating bars were observed to develop in some 
of the present experiments in the meandering channels, in particular in all the experiments 
corresponding to Am =0.20 and v =0.015 and in one of the experiments corresponding to 
h, =0.15 and v =0.03. It was concluded from the analysis of those results that even though 
migrating bedforms are likely to develop in meandering channels for adequate conditions, 
the curvature of the channel appears to force a bed response whose bar height and migration 
speed are smaller than the bar height and migration speed of the free bars observed in the 
straight channel. Likewise, the resulting wavelength of the migrating bedforms appears to 
be longer than that of the free bars in the straight channel. This behavior demonstrates that 
in fact the curvature of the channel tends to damp, slow down and eventually suppress those 
bedforms, which is in agreement with the theoretical findings of Tubino and Seminara (1990). 

From the comparison between theoretical and observed rating curves for the 
experimentsin the meandering channels, it seems that in the meandering channels the form 
resistance due to the bed deformation is less important than the form resistance associated 
with the channel planform. According to this, it was found that more total resistance occurs 
for increasing curvature and decreasing wavelength of the channel, mainly because of the 
variation of the channel shape resistance with those parameters. It was also concluded that 
the bed deformation in the meandering channels has less resistance associated with it than 



the alternate bars observed in the straight channels, which is mainly due to the longer 
wavelengths and flatter character of the former bedforms. 

It was concluded from the two dimensional Fourier analysis of the dimensionless bed 
deformation observed in the meandering channels, that the most important harmonics of the 
Fourier decomposition correspond, as for the experiments in the straight channel, to 1111 and 

1102. According to the analysis carried on, it was also concluded that the dimensionless 
geometry of the bed deformation is a function of both the channel geometry and P, which 
is reflected in the variation of its principal harmonics with those parameters. It is also 
apparent from the analysis that migrating bars, either in the straight or in the meandering 
channel, have geometric properties that seem to be relatively different from those of the fixed 
bars in the meandering channels, which is manifested in the different behavior of the principal 
harmonics of the bed deformation observed in those cases. 

Finally, the experimental results obtained in the meandering channels showed that the 
conditions for the suppression of migrating bedforms appear to be a function of the geometry 
of the meandering channel, characterized by k, and v, and also of P. In particular it was found 
that migrating bars are more likely to be suppressed as the curvature increases, the 
wavelength decreases or P decreases. A comparison between the present results and the 
theoretical predictions for the suppression of migrating bars derived by Tbbino and Seminara 
(1990), showed that the theory does not appear to agree with the experimental observations, 
in that it predicts that migrating bars should have been formed in all of the present 
experiments, which clearly did not occur. It was found that a calibration of the parameter 
1, 
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prediction, showing that, at least for the present experiments, migrating bars tend to be 
suppressed for much smaller curvatures than those predicted by the original theory. This 
simple correction, however, seems to validate, at least qualitatively, the theory developed by 
Tubino and Seminara (1990), in that the basic character of the theoretical solution appears 
to be supported by the present experimental results. 
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