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ABSTRACT 


The Saint-Venant equations consist of a continuity equation 


and a well-known dynamic wave equation. The dynamic wave equation 


is actually a simplification of a more complicated exact momentum 


equation obtained by assuming some coefficients as constants and 


neglecting some terms involved in the exact momentum equation. In 


this study, a systematic and comprehensive investigation is 


conducted to detect the sensitivity of flood-routing models to the 


variations of the coefficients and terms in the exact momentum 

equation. 


This study is divided into two aspects. The first one 


considers the impacts of the coefficients (8,k, and kf) on the 


solutions of the equations. These impacts can be obtained by 


comparing the solutions of the Saint-Venant equations ( R  = k = k v  

= 1) with those of the exact momentum and continuity equations ( R ,  

k, and kqhave  various values). 

The second aspect is concerned with the relative contributions 


of the terms in the exact momentum equation (such as local and 


convective accelerations, pressure, channel slope, friction slope, 


and internal stresses) under various flow and downstream boundary 


conditions. In addition, the contribution of each term due to the 


variations of the coefficients (8,k, and kg)is also detected. 


In both aspects, different downstream boundary conditions are 


tested in order to investigate the downstream backwater effect 


which has been generally ignored by other researchers in their 


study of unsteady flow simulations. 






The results investigated in this study show: (a) The 

importance of the coefficients is in a descending order as k, k g ,  

and R e  (b) T h e  impacts of t h e  coefficients on %he solutions of t h e  

equations are greatly influenced by the channel slope and 

downstream Bsoundaq condition. (c) The contributions of the terms 

are closely related to the downstream boundary condition, and 

slightly influenced by the variations of the coefficients. (d) The 

pressure term is significant for either convectively decelerating 

or accelerating water surface profiles. 4@ Based on the results, 

criteria for proper selection of the equations (the exact momentum 

and continuity equations or the saint-Venant equations) as well as 

the lower level approximations (the noninertia or kinematic wave 

model) are proposed, 


iii 
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1. INTRODUCTION 


Unsteady flow is characterized by the time dependence of the 


flow. It is one of the most frequently encountered types of flow 


in nature. Unsteady flow problems cover a wide range of phenomena 


including flood movement and surge in rivers, channels and sewers, 


overband surface punoff, and tidal motion. 


Flood movement, i.e., the propagation of flood waves along 


rivers or channels, is a widely investigated classical subject. 


The process of tracing the movement of a flood wave is known as 


flood routing. The literature shows that engineers have been 


concerned with the behavior sf flood waves and tried to route them 


down rivers or channels for at least the past hundred years. 


Flood routing generally is an unsteady flow problem. The 

solution and simulation of flood routing can commonly follow two 

approaches, L e e ,  hydrologic approach and hydraulic approach. 

While both hydrologic and hydraulic approaches utilize conservation 

of mass, the hydraulic approach explicitly considers dynamic 

effects of flow, whereas the hydrologic approach does not and 

simply regards the volume of water in a channel reach as a single- 

valued function of discharge. Over the years different models in 

both groups have been developed along separate lines. In general, 

models which result from the hydrologic approach are numerous and 

simple in flood routing, but they are less precise in their 

physical description of the phenomenon. With the development of 

high speed computers and advancement in numerical techniques, 

models which result from the hydraulic approach have become 
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increasingly popular and reached a high level of sophistication. 


one-dimensional unsteady flow can be mathematically 


represented by a pair of nonlinear hyperbolic-type first-order 


partial differential equations which are derived from a 


consideration of the consemation of mass and momentum. These 


equations are generally referred to as the Saint-Venant equations 


which include a well-known dynamic wave equation and a continuity 


equation. Currently, there exist a number of models for the 


solution of these equations. Most proposed models are based on 


finite difference numerical techniques. In addition to one-


dimensional modeling, there are many two-dimensional and three- 


dimensional models for various unsteady flow problems. These two- 


dimensional and three-dimensional modelings are useful, but often 


not necessary, since for many problems only the one-dimensional 


solution is needed. 


- Over the years -maBy iavmtigxtors h%%e-ktudied frood-

problems. They set up various models, developed or impraved 

numerical schemes, investigated their solutions and applied these 

models to specific field problems. However, there is a basic 

problem which is seldom considered, namely, all the models are 

based on the Saint-Venant equations or their simplifications: but 

the so-called complete dynamic wave equation in the Saint-Venant 

equations comes from a more complicated exact momentum equation 

(Yen, 1973) by assuming constant values for some of the 

coefficients (  e  momentum flux correction coefficient, 0, and 

pressure correction coefficients, k and k t )  and by neglecting 

certain terms (such as local acceleration, convective acceleration, 
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pressure, internal stresses and lateral flow) in the exact momentum 

equation. Therefore, a question has to be asked, namely, how 

significant are these assumptions on the solution ofthe equations. 

In order to settle this question, two aspects should be 

investigated separately. The first one is the study of the 

importance of the coefficients, and the second is the contributions 

of the terms in the exact momentum equation. The objective of this 

research is to increase the understanding of the above question 

and find out the difference between the solutions of the exact 

momentum and the complete dynamic wave equations. This objective 

will be accomplished through evaluating the theory of unsteady 

flow, briefly reviewing relevant literature, processing a numerical 

procedure, and analyzing the results of the aforementioned aspects 

concerned with the coefficients and tems in the exact momentum 

equation. To investigate the importance of the coefficients, it 

should -bementidned that -forre&- flow, all the coefficients (D, 

k and kt)vary simultaneously, that means, when one coefficient 

varies, others must be influenced; but in this study a kind of 

hypothetical analysis has been performed to simplify the 


complication of real problems by changing one coefficient at a 


time. 



-- - - - -  - - - -  - 

2 THEORY
a 


Unsteady flow can be described mathematically by a continuity 

equation and a momentum equation. Historically, a fundamental 

derivation of the one-dimensional gradually varied equations of 

unsteady flow has been laid mostly by the 19th century hydrau- 

licians, Coriolis, Saint-Venant, and Boussinesq. Developments 

considering the terms reflecting turbulence effects were made by 

Xeulegan (1938) and Keulegan and Patterson (1943j . Further 

progress has been made by Strelkoff (1969), Chen and Chow (1971) 

and others. Yen (1971, 1973) performed a much more thorough 

development and derived a set of equations deseribingthe unsteady, 

spatially-varied, turbulent, free-surface flow of a viscous 

nonhomogenecus f l u i d  in a channel of a r b i t r a q  cross sectional and 

aiignment geometry with erodible boundary by integrating the point- 


f o m  -e-wationsof ihuity, -momentum, and energy over a cross- 


sectional area of the channel. 


The pair of hyperbolic-type partial differential equations 


representing mathematically. the flow of an incompressible 


homogeneous fluid in an open channel can be written in the 


following form of a continuity equation and a exact momentum 


equation (Yen, 1973) 




- - 

in which Q is discharge, t is time, x is the distance along the 

longitudinal direction, A is flow cross-sectional area 

perpendicular to x, h is flow depth normal to x as shown in Fig. 

2.1, d is the angle between the x direction and a horizontal plane, 

so is the channel slope (So = sins), Sf is the friction slope, D 
is a momentum flux correction coefficient, k is a piezometric 

pressure correction coefficient in order to account for the 

nonhydrostatic pressure distribution, k8 is a ambient piezometric 

pressure correction coefficient, T is the force due to internal 

stresses acting- - - - - - -. - to - - - is specific- - - - - - - - - - - l i q u i d ,-- normally A ,  -7 - weight-of-the -- . . 

g is gravitational acceleratian, is the l a t e r a l  flow rate per 

u n i t  length of x, and U, is the x component of the lateral flow 

velocity. 

Fig. 2.1 Open Channel Flow 




The first equation states the principle of conservation of 


mass. The three terms in this equation physically represent, in 


their order of appearance, the time rate of change of storage, the 

spatial rate of change of discharge and the lateral flow. 


The second equation states the law of conservation of linear 


momentum in the x direction. The physical meaning of each of the 


terms in this exact momentum equation will be discussed later in 


section 2 , 3 .  

Equations (2.1) and (2- 2 )  can also be written alternatively 

in the form of Q and h or V and h (V is mean velocity of flow over 

cross-sectional area, A) by defining the discharge, Q, at a channel 

section as Q = VA and carefully dealing with the derivatives of 

area, A, 

The proper expression of flow cross-sectional area, A, is 


in which r(x,Z) is a width of an irregular cross section at point 

(x,Z) (Fig. 2.2 from ~iggett, 1975). 
E x ;  ? iC , , - , e  CkA Ti i : ' ln - r . .? -a  r i l e  and assuming that the channel bedY1 UL.kyY C i l U ~ ~ ~ ~ h  

is nonerodiable, the time derivative of A is 


in which B is the channel width at the water surface. 



T h e  x-derivative of  A is slightly more complex 

The i n t e g r a l  is o f t e n  w r i t t e n  a s  

Thus, 


Fig. 2.2 	 c r o s s  S e c t i o n  of  a Channel 
o f  Arbitrary Shape 

Yen ( 1 9 7 3 )  mentioned t h a t  ( a A / a ~ ) ~0 only  i f= the fo l lowing  

a s sumpt ions  are used: t h e  channel  bed is  nonerodib le  o r  t he  time 

rate of  change of bed p r o f i l e  is s low,  and t h e  channe l  is s t r a i g h t  

and p r i s m a t i c .  Thus,  E q s .  ( 2 . 1 )  and ( 2 . 2 )  become: 



a B ~ C O S ~  1ah aT 
+ k ----- ( ~ c o s B )  + (k-k ' )  -- - = So -Sf + - -- + -~ L ~ X 

a~ A ax ?A 3~ 94 

E q s .  ( 2 . 4 )  and (2.51 are i n  the so-ca l led  consenra t ion  form s i n c e  

t h e  d i scha rge ,  Q ,  is  regarded a s  conse rva t iona l ,  and Eqs . ( 2 . 6 )  and 

( 2 . 7 )  a r e  i n  t h e  so-ca l led  nonconservation form. 

I n  t h e  e x a c t  momentum equat ion,  Eq. (2.2), the most important 

c o e f f i c i e n t s ,  which may produce an i n f l u e n c e  on t h e  s o l u t i o n s  of 

E q s .  ( 2 . 1 )  and ( 2 . 2 ) ,  a r e  8, k and kf. 



- -- -- - -- 

- - - 

The momentum flux correction coefficient or Boussinesq 

coefficient, 0, refleets the extent of the nonuniform distribution 

of velocity over a cross-section. In 1877, Boussinesq first 

proposed it. It is defined as 

in which u is the local point velocity, A is the cross-sectional 

area and V is the mean velocity over A .  

Yen (1973) defined D as a tensor and expressed it a s  

in which pa is the cross-sectional mean fluid density, ui and u 
j 

are the instantaneous local velocity component along the ith or jth 

direction, Vi and V. are the mean velocity component along the ith 
3 

or jth direction, and the quantities with bar, p ,  ui, u represent
j 


temporal averaging over turbulent fluctuation. 


The value of B can be obtained from measured velocity 


distribution. It is obvious that when the velocity distribution 


is strictly uniform across the channel section, the value of B is 


equal to unity. 


Kolupaila (1956) suggested the values of D for practical 


purposes as listed in Table 2.1. 




T a b l e  2.1 Values of R for Various Channels 

Regular channel, flumes, spillways %,83 1v05 Ie07 

Natura l  streams and torrents 1.05 1.10 1,14 

Rivers under ice cover 

River valleys, overflooded 1,17 Pv25 1.33 

Chow (1959) wrote that for channels with regular cross 

section and fairly straight alignment, the effect of nonunifom 

velocity distribution on the computed velocity head and momentum 

is small. Therefore, D is often assumed to be unity. In general, 

the value of B for fairly straight prismatic channels varies 

approximately from 1.01 to 1.12. For channels with complex cross 

section B may exceed 1.2 and can vary quite rapidly from section 

to section in case of irregular alignment. In addition, A is 

usually greater in steep channels than in mild channels. 

Henderson (1966)mentioned that the value of D is never less 

than unity, and the further the flow departs from uniform, the 

greater the value of D becomes, 

Yen (1973) gave the value of D as follows: (a) D = 1 for 

constant density and uniform velocity distribution over A or for 

two-dimensional flow with uniform velocity distribution and 

linearly varying density over depth. (b) D = 1.20 for a parabolic 

velocity distribution. (c) I3 = 1.33 for linearly varying velocity 

over depth. 
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In addition, for extremely nonuniform velocity distribution 

B can reach a very large value. An example is a channel with 

narrow and deep cross-sectional shape and large roughness. Because 

of the influence of resistance of the sides and bed of the channel 

on the flow velocity and low location of the maximum velocity, the 

velocity distribution becomes very nonunifom, thus, the value of 

B may be much greater than le33. 

2.2.2. Piezornetric Pressure Correction Coefficient . 

The piezometric pressure correction coefficient, k,accounts 


for pressure variation on the flow cross section. It is a function 


of pressure distribution and the cross-sectional shape and is not 


a function of velocity distribution. 


Yen (1973) defined it as 


in which h is the mean depth of flow and averaged over turbulent 

fluctuation, 7, is the cross-sectional average specific weight of 

&-~ n ef l u id ,  P is the local piezometric pressure, and 8 is the angle 

between the channel bed and a horizontal plane. 

Chow (1959)wrote that the application of the hydrostatic law 


to the pressure distribution in the cross section of a flowing 


channel is valid only if the flow filaments have no acceleration 


components in the plane of cross section. This type of flow is 


theoretically known as parallel flow. uniform flow is a parallel 


flow. Gradually varied flow is not this kind of flow, but it is 
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so mild that the streamlines can be assumed to have neither 

appreciable curnature nor divergence. Therefore, for practical 

purpsses ,  the hydrostatic law of pressure distribution is 

applicable to gradually varied flow as well as uniform flow. For 

curvilinear flow, the pressure distribution over the section 

deviates from the hydrostatic. Thus, the hydrostatic law of 

pressure distribution is not valid. For example, in concave flow 

the centrifugal forces are pointing downward to reinforce the 

gravity action; so the resulting pressure is greater than the 

hydrostatic pressure of a parallel flow. In convex flow the 

centrifugal forces are acting upward against the gravity action; 

the resulting pressure is less than the hydrostatic pressure of a 

parallel flow. In order to account for this deviation from 

hydrostatic, the piezometric pressure correction coefficient, k, 

is introduced as a correction for cunrilinear flows. It can easily 

be seen that the value of k is greater than 1.0 for concave flow, 

less than 1.0 for convex flow, and equal to 1.0 for parallel flow. 

Yen (1973) gave the value of k as follows: (a) k = 1 for 

constant density fluid and hydrostatic pressure distribution over 

A or constant piezometric pressure over A. (b) k = ph/p, for 

constant piezornetric pressure over A, in which pa is the cross-

sectional mean fluid density and ph is the mean fluid density along 

the depth of flow, h. 

Chow (1959) introduced a simplified formula to calculate the 


piezometric pressure correction coefficient as 




in which Q is discharge, A is flow cross-sectional area, u is the 

local point velocity of flow, V is the mean velocity, h is depth 

of flow, g is gravitational acceleration, rk is the radius of 
1 

curva ture  of channel bottom, and c is the pressure-head correction 
I 2with a dimension of length (c is defined approximately as hu /grk 

and is positive for concave flow, negative for convex flow, and 

zero for parallel flow). From Eq. (2.11) the value of k can be 

roughly estimated. The relationship between k and the radius of 

curvature for different mean flow velocities is demonstrated in 

Fig. 2.3. In general, the closer to unity the value of k, the 

Fig. 2.3 Reiationship between k and Radius of Curvature 
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l a r g e r  t h e  magnitude of t h e  r a d i u s  of c u r v a t u r e  of channel  bottom, 

i.e. , t h e  flatter t he  channel bed. Furthermore, t h e  v a l u e  of k 

d e v i a t e s  appreciably from u n i t y  when t h e  f low v e l o c i t y  is high. 

F i g u r e  2 . 3  shows t h a t  f o r  the same radius of curvature, the l a r g e r  

the flow v e l o c i t y ,  the further t h e  v a l u e  of k departs from u n i t y .  

From F i g .  2 . 3 ,  i f  t h e  mean v e l o c i t y ,  V, is assumed a s  6 ft/sec, t h e  

r a d i u s  of  cu rva tu re ,  rk, corresponding t o  t h e  c a s e  of k = 1 . 0 5  (or 

0.95) and the case of k = 1 .01  ( o r  0.99) is  equal  t o  2 2 . 5  f t  and 

1 1 1 . 9  f t ,  r e s p e c t i v e l y .  The va lues  of rk r e f l e c t  t h a t  t h e  cases  

o f  k = 1 . 0 5  and 0 .95  can be encountered only  i n  unusual s i t u a t i o n s ,  

f o r  example, sp i l lways  o r  channels wi th  s h a r p l y  curved bottom, 

whereas t he  cases of k between 1 . 0 1  and 0.99 a r e  more common. 

2.2.3. 	Funbient Piezometric Pressure Correc t ion  Coefficient 

The ambient piezometr ic  p r e s s u r e  c o r r e c t i o n  c o e f f i c i e n t ,  

kvnif reflects the effect of the ambient p r e s s u r e  when t h e r e  is  a 

spatial change i n  flow cross s e c t i o n ,  i .e . ,  nonun i fom flow. 

Yen (1973) de f ined  it a s  

a ax: ax, 

i n  which is the per ime te r  bounding c r o s s - s e c t i o n a l  a r e a  A ,  r is  

t h e  normal displacement  of CY with r e s p e c t  t o  space  o r  time, and PI 

and r 1r e p r e s e n t  t h e  t u r b u l e n t  f l u c t u a t i o n  of P and r wi th  r e s p e c t  
-

t o  i t s  	mean va lue ,  P and r ,  r e s p e c t i v e l y .  



For constant density and hydrostatic pressure distribution 

over nonfluctuating A and 0, the value of kv is equal to uni ty .  

2 2 . 4 .  F u r t h e r  R e m a r k s  

From the preceding sections 2.2.1 to 2.2.3, it is realized 


that only for some special situations D, k and k g  are equal to 


unity or can be approximated as unity, and at this time the exact 


momentum equation becomes the well-known dynamic wave equation if 


the internal stresses and lateral flow are not considered. For 


complicated cases, 8,k and k t  are not equal to unity. Therefore, 


two questions arise: if there exists a difference in the solutions 


between the exact momentum equation and the complete dynamic wave 


equation with simplifying assumption of B, k and kt being unity, 

and, if yes, how much is the difference. 


In addition, it should be considered that the variations of 


D, k and kt are simultaneous, i. e., while one coefficient varies 


other coefficients must vary. For example, Figure 2.4 shows that 


a free overfall occurs where the bottom of a flat channel is 


discontinued. The velocity distribution is uniform and pressure 


3 1  - L - - . ! ' I  - -L!  _ -alsr;rlaur;lon is hydrostatic at the position very far from the 

downstream brink. However, as the flow approaches the brink, the 

pressure distribution becomes nonhydrostatic, and the value of k 

should be less than unity. Finally, at the brink, the pressure 

distribution is a bow because the free overfall enters the air in 

the form of a nappe and the pressure on the upper or lower surface 

of the nappe should be equal to zero. Thus, k varies from unity 

to a magnitude less than unity along the channel. At this time, 
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because of the free overfall the velocity of flow increases along 


the channel from upstream to the brink, and the value of D should 


become gradually greater than unity. Therefore, this example shows 


that in this study, only varying one coefficient while keeping 


other coefficients constant is only a hypothetical and fundamental 


investigation. 


velocity distribution (af<b'e c'1 

Fig. 2.4 Example for Variations of D and k 


2.3. Physical Meaninq of Terms Involved in Exact Momentum Equation 

There are seven terns in the exact momentum equation, Eq. 

(2.2). They are the local acceleration, convective acceleration, 

pressure tern, channel slope, friction slope, internal stress terin, 

and lateral flow. In addition, the variables aB/ax and ak/ax will 

also be discussed in this section. 

2,3.1. Local Acceleration 


The local acceleration, aQ/at, represents the rate of time 


change of momentum flux. For steady flow, this term is equal to 




zero. For unsteady flow, if an acute change occurs in Q during a 

short period of t i m e  this term may reach a large value. For 

example, when flow controlling structures are quickly operated, 

when a dam is broken down, and when a heavy rain falls cn a small 

watershed this term is significant. 

2 . 3 2 .  Convective Acceleration 

The convective acceleration, a (oQ~/A)/ax, represents the 

rate of spatial change of momentum flux. The value of this term 

is equal to zero for uniform flow. For gradually varying flow, 

since the change in depth is gradual and the streamlines are nearly 

parallel, i.e., the curvature of streamlines is mild, the value of 

this tern could be small. But, for spatially rapidly varying flow 

the curvature of streamlines can be very large and the flow profile 

may become virtually discontinuous. Therefore, the flow depth, the 

flow velocity and the velocity distribution may significantly vary 

in a short distance and the value of this term may become very 

large. Examples include flow over a weir or dam, flow in curved 

or bent rivers and channels, propagation of surge or bore due to 

dam break or other reasons, and flow in nonprismatic channels, 


particularly, with sudden contractions or expansions vertically, 


horizontally, or both. For such cases, the sudden change of flow 


depth and flow velocity will lead to significant convective 


acceleration. 




2-3.3, Pressure Term 

The pressure term, a(khcos8)/ax + [(k-kt)hcosO/A]aA/ax, is 

composed of two portions: a (khcosd)/ax + (khcos~/A)a A / a x  represents 

the rate of spatial change of the piezometric pressure acting on 


the cross section; (kfhcosd/A)aA/8x represents the component of the 


force due to the mean and fluctuating ambient piezometric pressure 


acting on the boundary surface. 


The  value sf this term is zero for steady uniform flow. For 

gradually varied flow, since the pressure distribution is assumed 

to be hydrostatic, the flow depth, the pressure distribution, and 

two correction coefficients, k and kt,do not change very signifi-

cantly in a short reach, so the value of this term could be small. 

For rapidly varied flow, the situation is just opposite, therefore, 

the value of this tern becomes large. The value of the pressure 

term is also related to the channel slope and downstream boundary 

condition. Under certain conditions, for example, when the channel 

slope is relatively mild and there is a downstream backwater 

effect, this pressure term may become more important. 

As to a comparison of values of the aforementioned three 

terms, generally speaking, the magnitude of the local acceleration 

is of the same order as that of the convective acceleration and 

their signs usually are opposite; while the two acceleration terms 

are smaller than the pressure term. In this study, because the 

values of the coefficients, D, k and kt, are considered not 

necessarily equal to unity, the magnitudes of the convective 

acceleration tern and the pressure term could vary with the values 

of D, k and k L  It is possible that for a certain combination of 
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8, k and k v  the convective acceleration term becomes relatively 


important when compared to the pressure tern. 


The channel slope, SO, represents the component of the 

gravitational force. With the x direction defined along the 

channel bed, the angle between the channel bed and a horizontal 

plane is 8, and SO = sine. In general, SO is variable for rivers 

and natural conveyance channels. But it is conventionally assumed 

that So is independent of t. Its value can be obtained by direct 

measurement. In this study, the choice of the value of So obeys 

the following rule: the flow remains subcritical. The reason is 

that for supercritical flow, because the velocity of flow is very 

high the free water surface in the channel becomes very unstable, 

and supercritical flow will break into a series of roll waves or 

slugs, known as pulsating flow. However, the exact momentum and 

continuity equations do not contain terms specifically considering 

the phenomenon of pulsating flow. 


2.3,5. Friction Slo~e 


The friction slope, Sf, accounts for the resistance due to 

external boundary shear stresses in the x direction. It is defined 

as (Yen and Wenzel, 1970 and Yen et al., 1972) 



which the effective boundary shear stress the 

direction, specific weight of the f l u i d ,  the hydraulic 

r a d i u s  and 0 is the perimeter bounding the cross-sectional area A. 

From the expression is clear that the boundary shear  

stress, directly measured computed from the  velocity 

profile in the inner-law region and if R is known, the value of S, 

can be calculated. However, rx is usually not available and Sf has 

to be estimated by other means. In common practice, the frictional 

resistance is assumed to be the same as that of the steady uniform 

flow at the same depth and velocity, assuming Sf is equal to 

S in each of the following Manning, Chezy, and Weisbach resistance 

fomulas  

in which n is Manning's factor, C is Chezy8s factor, and f is 


Weisbachfs coefficient. 


These formulas are based on the assumption of steady uniform 


they not truly represent the actual slope. 


However, satisfactory methods of evaluating the value of Sf have 


not yet developed. Thus, using the slope in the above three 


only approximation. Approximations are 
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sometimes available. For example, Rouse (1965) mentioned that the 


effects and errors due to using the slope in the Manning, Chezy, 


and Weisbach equations as Sf are probably negligible when the flow 


is gradually varied. Yen and WenzeP (1970) studied steady 


spatially varied flow and demonstrated that for a certain given 


rainfall if the direct effect of the lateral flow in the momentum 


equation is negligible and if the assumption that D is constant can 


be justified, Sf can be approximated by the Manning, Chezy, or 


Weisbach fornula, 


The  values of Manning's n and Weisbachfs f and the 

relationship between them have been well established for steady 

uniform flow of a homogeneous incompressible fluid. Yen (1973) 

wrote that from a theoretical viewpoint the Weisbach coefficient, 

f, is probably the most suitable in hydraulic analysis since f is 

dimensionless and can be found from theMoody diagram as a function 

06 the Reynolds n er and the relative boundary roughness. 

However, the validity o f  using the Moody diagram values for cases 

other than steady uniform flow has always been subject to question. 

Baltzer and Lai (1968) showed a variation of Manning's n obtained 

from a natural channel (Fig. 2.5) . From Fig. 2.5, it is obvious 

that the value of n gradually tends to a small range as Reynolds 


number becomes large. Yen (1975 and 1986) suggested that for flows 


with sufficiently large Reynolds number over a rigid boundary with 


a given surface roughness in a prismatic channel, Manning's factor, 


n, is nearly constant over a wide range of depth. Thus, the 


Manning equation is introduced to represent friction slope, Sf, and 


n is treated approximately as a constant in this study. 




Fig. 2.5 	Manning n vs. Reynolds Number for Three- 

mile Slough near Rio Vista, California 

(From Baltzer and Lai) 


2.3.6. Internal Stresses 


The internal stress term, (l/7A)dT/ax, represents the rate 


of spatial change of the internal deformation stresses of the mean 


motion acting on the cross section. Yen (1973) defined the force, 


Tij, due to internal stresses as 


-
Tij = JA 7i.j dA 	 (2.17) 

in which rij is the deformation stresses and the bar indicates 


averaging over turbulence. 


The value of this term is related to the ratio between 


viscous stresses and Reynolds stresses. For fully developed 


turbulence, the internal stresses may be large. But, for most open 


channels the variation of the internal stresses with respect to the 


flow direction x, aT/ax, is relatively small. Therefore, the term 


is often neglected conventionally. 




2.3.7. Late ra l  Flow 

The lateral flow term, qLUx/gA, represents the momentum 

influx of the lateral flow. The value of qL is positive for 


lateral inflow and negative for lateral outflow. 


Lateral flow is an important phenomenon. It changes the 


discharge in the flow direction and alters the velocity distribu- 


tion in the main flow section. But, due to time limitation this 


term is not considered in this study. 


2.3.8. R a t e  of Spatial Chanse of J3 and k 

The term, aB/ax, represents the rate of spatial change of 

the velocity distribution along the flow direction and it is a 


portion of the convective acceleration term. 


According to section 2.2, the value of D is probably related 

to the shape of the cross section, roughness of the channel (bed 

and banks), alignment of the channel (straight or curved), channel 

slope, sediment concentration, and depth of flow. Therefore, if 

any of these quantities has an abrupt change in a short distance, 

for example, the cross-sectional width of a channel is suddenly 

expanded or contracted, the value of B varies and the variation 

leads to a significant magnitude of aB/ax. In this study, for a 

one-dimensional, rigid, straight and prismatic open channel, the 

value of D may be closely related to the flow depth if So and n are 


approximately regarded as constants, and if the effect of sediment 


concentration is not considered. In addition, this study focuses 


on the gradually varying flow, i.e., the depth of flow varies only 






gradually, thus, the change of the value of B is also gradual. 


Therefore, BB/ax is small or negligible. 


The tern, ak/ax, represents the rate of spatial change sf 

the pressure distribution of flow along the flow direction, and it 

is a portion of the pressure tern.  From the description of section 

2 2 ,  the value of k reflects the pressure distribution on a cross 

section. If the pressure distribution has an abrupt change in a 

short distance, for example, if the radius of curvature of the 

channel bottom is suddenly varied, the magnitude of ak/ax could be 

large and not negligible. But,  similar ts B, when one-dimensional, 

rigid, straight and prismatical channel and gradually varied flow 

are considered, the importance of ak/ax is relatively small. 

2.3,9, Further R e m a r k s  

According to the description of the preceding sections 2.3.1 

through 2.3.7, it is without question that for various special 

situations some of the terns in the exact momentum equation can be 

safely neglected as compared to others. Many investigators studied 

the terms and provided valuable infomation. But, all the previous 

studies assumed 8 ,  k and k g  as unity. Therefore, it is necessary 

to compare the contributions of all the terms for other cases where 

B,  k and kff  cannot be considered as equal to unity. 

2.4. 


2.4.1. Saint-Venant Eauations 


Since the exact momentum equation is too complicated to 


solve and requires a considerable amount of detailed data, most 
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i n v e s t i g a t o r s  have conveniently assumedthe c o e f f i c i e n t s  considered 

i n  the exact momentum equat ion t o  be constants ,  i m p l i c i t l y  o r  

e q l i c i t l y  involving t h e  following assumptions: 

(a) The p ressure  d i s t r i b u t i o n  over A is hydrostatic, hence 

k = k' --- 1. 

(b) The cross-sec t ional  v e l o c i t y  d i s t r i b u t i o n  remains 

unchanged along t h e  x d i r e c t i o n ,  implying t h e  momentum f l u x  

c o r r e c t i o n  coefficient, D, remains a constant .  Often it is assumed 

t h a t  the v e l o c i t y  d i s t r i b u t i o n  is uniform, hence D = 1. 

(c) The s p a t i a l  g rad ien t  of the fo rce  due to i n t e r n a l  

stresses is small ,  hence t h e  aT/ax tern is neg l ig ib le .  

(d) The angle between t h e  x d i r e c t i o n  and a hor izon ta l  

plane, 8, is constant  and independent of x, hence cosd is constant .  

(e) There is no lateral, flow, hence qL = 0. 

The r e s u l t  is t h e  well-known dynamic wave equat ion  which can 

be expressed i n  terms of either discharge,  Q, o r  flow cross-

sectional average ve loc i t y ,  V, 

One of Eqs. (2.18) and (2.19) toge ther  with t h e  con t inu i ty  

equa t ion  i n  e i t h e r  of t h e  following two types  



form a pair sf equations which are customarily referred to as the 


Saint-Venant equations and also called shallow water wave equations 


because flood-routing problems generally involve shallow waves, 


namely, the whole cross section of the body of water is disturbed 


by the shallow-water wave movement, 


It is clear that these assumptions simplify the equations 


for solutions. But they do not precisely reflect the flow process. 


2 , 4 , 2 .  

Although the complete dynamic wave equation, Eq. (2.18) or 


Eq. (2.19), is simpler than the exact momentum equation, it 


together with the continuity equation and appropriately specified 


initial and boundary conditions, is still rather tedious and 


computationally costly to solve. Therefore, many investigators 


have tried to find alternative solution methods and acceptable 


simplifications of the complete dynamic wave equation. 


There are different levels of approximation to the complete 

dynamic wave equation. By referring to E q s .  (2.18) or (2.19), if 
the local acceleration, aQ/at or aV/at, is relatively small as 

compared to other terms, and hence dropped, the approximation is 

called a quasi-steady dynamic wave. If both the local and 

convective acceleration terms are dropped, the approximation is a 

noninertia model. If, in addition to dropping both inertia terms, 
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the pressure term, ah/ax, is also dropped by comparing it with the 

channel slope and friction slope the approximation is known as 

kinematic wave. All the approximations are illustrated in F i g .  

2.6, 

1 a~ I a Q~ ah- 1__1__ + - - ( > + - - (So  - Sf) =- 0 
g~ at g~ ax w ax 

1 - Kinematic -
wave 

-..---- Noninertia -----
-..)-....-..--- Quasi-steady dynamic wave ------

~ ~ ~ ~ - - - - ~ - ~ - ~  complete dynamic wave --------------

Fig. 2.6 Simplifications of Saint-Venant Equations 


% e 4 , 2 . 1 ,  


The kinematic wave approximation is based on neglecting 

the acceleration and pressure terms in the complete dynamic wave 

ewation. According to the finite difference form of the 

continuity equation, i.e., linearized or nonlinearized form, the 

kinematic wave approximation can be classified into a linear 

kinematic wave approximation and a nonlinear kinematic wave 

approximation. The kinematic wave is the simplest among the 

different approximations of the Saint-Venant equations. It 

requires only one boundary condition in addition to the initial 

condition. The lone boundary condition is specified at the 

upstream boundary, hence it enables the solution to disregard the 




28 

downstream boundary condition. The biggest disadvantage of the 


kinematic wave approximation is its ignorance of the downstream 


backwater effect. 


In order to explain the disadvantage of the kinematic wave 


approximation, a prismatic channel is considered and a water 


surface stage, 2, which is equal to hcos8 + zd (zd is the elevation 

of the channel bottom above a datum plane) is introduced herein, 


then the continuity equation can be written as 


If the Chezy equation or the Manning equation is used to describe 

the friction slope, the kinematic wave approximation, i.e., (Sf -
SO) = 0, can be written as 

in which R is the hydraulic radius, C is Chezy factor, and n is 

Manning resistance factor. The two equations can be used to 

determine the rate of change of velocity with respect to water 

surface elevation, i.e., dV/dZ. Furthermore, the continuity 

equation can be written as 



and the total differential sf water surface elevation can be 


considered as 


Thus, an expression of the kinematic wave speed can be obtained 


and the characteristic form of the kinematic wave equation can be 


derived as 


Whereas the Saint-Venant equations possess two characteristic 


directions (Chow, 1959, pp. 587-588; Henderson, 1966, pp. 288-289), 

the kinematic wave equation possesses only one characteristic 


direction. Therefore, it is clear that kinematic waves can travel 


only downstream and, consequently, the kinematic wave approximation 


cannot consider the influence of any downstream control. 


Furthermore, the kinematic wave approximation has no 


mechanism to attenuate the flood peak. Results of numerical 


solution often indicate attenuation and distortion of a flood wave, 


however, this apparent attenuation and distortion is actually due 


to inaccuracy of the finite difference approximation. In other 


words, it is a numerical damping rather than a physical damping of 


the flood waves, 




2.4.2.2. Noninertia Ap~roximation 


The noninertia approximation, a more appropriate name 

than the o f t e n  used misnomer diffusion wave, neglects only the two 

acceleration terms, so it is a significant improvement over the 

kinematic wave approximation. It allows the specification of a 

boundary condition at the downstream to account for t he  backwater 

effect, Therefore, the noninertia approximation has wide 

application potential. Xeefer (1974) compared the noninertia 

model with the complete dynamic wave model and confirmed that the 

two models produce similar results, but the noninertia model is 

simpler than the complete dynamic wave model. Akan and Yen (1977 

and 1981) also demonstrated that this model is nearly as accurate 

as the dynamic wave model and as efficient in computer time as the 

kinematic wave model for routing flow in open channels. In 

addition, A)caii and Yen (1977 and i 9 i i i j  and Katopodes (1982) 

demonstrated that the noninertia model possesses the ability of 


accounting for the downstream backwater effect. 


The advantage of the noninertia approximation accounting 

for the downstream backwater effect can be explained by considering 

a prismatic channel and introducing a water surface stage, 2 = 

hcos8 + zd. The continuity equation and momentum equation can be 

written respectively as 
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By writing first the sum, and then the difference, of Eqs. 


(2 .29 )  and (2.30), two new equat ions are obtained: 

By comparing E q s .  (2.33) and (2.34) with the basic 

equations of partial differentiation, namely 

e-qress i~ns=f t ~ . 7 - ----;kl- ---------b w v  rV331U~=W Q V ~speeds can be obtained as 



--- 

Physically, this means that a disturbance will propagate in both 


the upstream and downstream directions. Theref ore, this 


approximation is closer to reality than the kinematic wave for 


which the disturbance propagates only along the cf direction 


downstream. 


2.4.2,3, 


The quasi-steady dynamic wave approximation ignores the 


local acceleration term in the Saint-Venant equations. It differs 


from the noninertia approximation by including the convective 


acceleration tern in the momentum equation. Under certain 


conditions the convective acceleration tern is important, such as 


long duration, small amplitude flood waves propagating in highly 


nonuniform open channels where the local acceleration is small as 


compared to the convective acceleration and hence it can be 


neglected, whereas the convective acceleration cannot be ignored. 


2.4.2.4. 3 


In order to f u r t h e r  understand the afore~entionedvarious 

approximations, some major features of a theoretical comparison of 

the quasi-steady dynamic wave, noninertia and kinematic wave models 

are depicted in Table 2.2 (Yen, 1986). Based on this table and the 
description of the skctions 2.4.2.1 through 2.4.2.3, the noninertia 

model appears to be simpler than the complete dynamic wave, more 

realistic than the kinematic wave and more accurate than the quasi- 

steady dynamic wave. 



Table 2.2 Theoretical Comparison of Approximations 
to Complete Dynamic Wave E q u a t i o n  

Boundary condition 
rewired 

Account for down-
stream backwater 
eff ect and flaw 
reversal 

YES YES 

Damping sf flood 
peak 

YES YES 

Account for flow 
acceleration 

NO Only convective 
acceleration 

Solution accuracy Depend can 
Ax and ~t 

used 

Usually less 
accurate than 

noninertaba 



3 .  BRIEF LITERA REVIEW 

The exact momentum equation together with the continuity 


equation describes the propagation of flood waves more exactly than 


the Saint-Venant equations. However, because the exact momentum 


equation is very complicated and was proposed relatively recently, 


no work has been done towards its solution. Since the beginning 


of the century, many investigators working in this area have 


contributed to solving the Saint-Venant equations. Now to 


efficiently, accurately, and economically solve Saint-Venant 


equations is always an important research subject. Therefore, it 


will be helpful to review previous work in the field. Because 


related literature abound (e.g., Miller and Yevjevich, 1975) only 


selected studies are mentioned here, 


Due to the nonlinear nature of the Saintevenant equations it 


is impossible to obtain an explicit analytical solution to the 


flood propagation problem. Therefore, various methods to acquire 


approximate solution have been attempted. These methods can be 


divided into two categories: 


(a) analytically applying a linearized form of t h e  equaticns 

and simplified boundary conditions; 

(b) numerically applying the finite difference approximations 


of the nonlinear form of the equations by using digital computers. 


3,10 Analvtical Solutions 


All the methods of analytical solutions proposed by previous 


investigators used the Saint-Venant equations as the basic 
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equations, and often assumed D = 1 and k = k v  = 1. They also 

involved at least the following assumptions (Sevuk, 1973) to reduce 

the Saint-Venant equations to a mathematically amenable form: 

(a) linearization of the Saint-Venant equations by using a 

reference flow condition, for example, Vo or qo and ho of a steady 

uniform condition, and by introducing small perturbations in the 

velocity V = Vo + V v  or the discharge q = qo + q f ,  and the flow 

depth h = ho + hf: 
(b) relaxation of the downstream boundary condition; 

(c) assumption of a constant resistance factor for Manning's 


n, Weisbachvsf or Chezyus C: 


(d) a constant cross section of the channel, usually wide 


rectangular. 


With these assumptions, after the Saint-Venant equations are 

linearized, the equations can be reduced to a second-order linear 

partial differential equation which can be integrated analytically. 

The attractiveness of.an analytical solution is that quantities can 

be obtained directly from the analytical solution. The disadvan- 

tages of an analytical solution are the severe limitations on the 

conditions fe r  which the solution is valid and results from the 

analytical solution of the simplified equations can only be 

regarded as approximate. Thus, analytical methods are not used to 

solve the exact momentum equation in this study. But they are 

r t a r ' ? . C ~ ~ < - r ; .  GGULCL;L;QIuse fu l  iE - Q-k=; ----a%---? s ~ l u t i o n s  for some special 

conditions. 



3.1.1. 	Complete Dynamic Wave Model 

T h e  Saint-Venant equations wi thou t  l a t e r a l  flow can be 

written as 


The friction slope, Sf, is related to the discharge by 


in which Cf is a factor and m is an exponent. When the Chezy 

formula is used, Cf = C (Chezy factor) and m = 0.5. When the 

Manning formula is used, Cf = 1.486/n (n i s  Manningvs resistance 

-factor) and rn = 2/3. When the Weisbach formula is used, Cf -
(8g/f)" (f is Weisbachgs coefficient) and m = 0.5. 

For a w i d e  rectangular channel with small channel slope, the 

discharge per unit width q = Q/B and area A = Bh, where B is the 

width of the cross section at the free surface. Furthermore, the 

hydraulic radius, X, can bc apprvxiwated by the depth h when the 

channel is wide rectangular. Hence, E q s .  (3.1) and (3.2) can be 

written for a unit width as 
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By assuming Cf independent of t and x, differentiation of 

Eq. (3.5) with respect to t i m e  t, aided with Eq. ( 3 4 ,  yields a 

nonlinear second-order partial differential equation as follows: 

(gh - v2) -	a2q 
- 2 v -

a 2 q  - - a 2 q  - 3gS0 --
a q  

-
(6m-3)gv2 -aq 

ax2 axat a t 2  ax 3c, h2m ax 

( 3 . 6 )  

By linearizing Eq. (3.6) about a referenee discharge qo, a 

reference velocity Vo and a reference depth ho, confining attention 

to a small range of fluctuations, q v ,  i ., q = qo + q v )  and 

assuming qo = constant, Eq. (3.6) can be reduced to the following 

linearized form 

in which ho and Vo indicate the values at the linearization dis- 


charge, qO, and Fo is equal to Vo/JghO. 




The a n a l y t i c a l  so lu t i on  of t h e  second-order l i n e a r  p a r t i a l  

d i f f e r e n t i a l  equat ion  is of ten  r e f e r r e d  t o  a s  t h e  complete 

l i n e a r i z e d  s o l u t i o n  and was f i r s t  obtained by Lighthill and Whitham 

(1955) and later genera l ized  by Harley (1967). 

Their  s o l u t i o n s  i nd i ca t e  t h a t  t h e  c e n t e r  of mass of the  

f l ood  wave t r a v e l s  a t  a  wave v e l o c i t y  equal t o  ( l+m)Vo .  The f ron t  

of  t h e  dynamic wave t r a v e l s  a t  a v e l o c i t y  Vo + mOand t h e  dynamic 

wave i s  r ap id ly  damped out  exponent ia l ly  a t  a rate [1 - (v0/2Jgxo) "j 

(gSO/VO). The s o l u t i o n  i s  v a l i d  f o r  t h e  s i t u a t i o n  of a wide 

r ec t angu la r  channel,  b u t  e r r o r s  w i l l  be c r ea t ed  i f  it is  used f o r  

a n a t u r a l  r i v e r  o r  o the r  channel shapes. 

3,1,2, Noninert ia  Model 

If the inertia terms i n  Eq. ( 3 . 2 )  are neglec ted ,  t h e  

momentum equation is s impl i f i ed  as 

When Eqs. ( 3 . 4 )  and ( 3 -9) are t r e a t e d  i n  t h e  same method of 

t r e a t i n g  Eqs. ( 3 . 4 )  and ( 3 . 5 )  , a nonl inear  second o rde r  partial 

differential equat ion  is obtained 

B y  assuming t h e  l i n e a r i z i n g  re fe rence  d i scharge  qo o r  t h e  

r e f e r e n c e  depth ho t o  be constant ,  Eq. (3 .lo) is reduced t o  t h e  

fo l lowing l i n e a r i z e d  form 



in which ( l + m ) V o  and qO/2S0 are designated as k1 and k2 and defined 

as a wave celerity and a wave dispersion coefficient, respectively. 


In general, kl = (3/2)V0 if Chezy formula is used and kl = (5/3)Vo 

if the Manning formula is used.  

Equation (3.12) can also be derived in the following way: 


according to Eq. ( 3 . 9 ) ,  the discharge for a wide channel can be  

expressed as 


Thus, differentiating Eq. (3.13) yields 


By substituting Eq. (3.14)  i n t o  Eq.  (3 .1)  , Eq. (3 .15)  is obtained 

as 

If (So  - ah/ax) is approximately considered as so and h = ho + hg 

is introduced (h, is assumed as constant) , Eq. (3.15) becomes Eq. 
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The model, which was first formulated by Hayami (1951), was 


also called the diffusion wave and E q .  (3.10) was known as the 


diffusion-convection equation. However, Lighthill and Whitham 


- ( 1955)-derived the --same--type-of- -di-ffusion-convect-i-on-equation--from 

the kinematic wave approximation. Therefore, for the sake of 


clarity, Yen (1986) suggested that the approximation of dropping 


both inertia terms of dynamic equation should be called the 


noninertia approximation. 


Tingsanchali and Manandhar (1985) considered effects of 


channel irregularities and lateral flow and expressed the non-

inertia equation as: 


in which Kd is diffusivity due to channel irregularities (Kd = 0 

f o r  a rectangular channel), V is flaw mean velocity and is assumed 

to be equal to C[h(So - ah/ax) J ~ ' ~ ,C is Chezy roughness factor, 

qL(x,t) is l a t e r a l  discharge per unit length of the tributary and 

per unit length of the main channel. 

Tingsanchali and Manandhar (1985) developed the analytical 

noninertia model for flood routing with backwater effects and 

lateral flow. The noninertia equation is linearized about an 

average depth of (h,+h,,) , in which h, is uniform flow depth at the 

initial condition and hua is the average height of the water level 

above hU, and solved by using boundary conditions which take into 

account t h e  effects of backwater and lateral flow. The 
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applicability of the model is limited to slowly rising floods in 

which the effects of flow acceleration can be neglected, and to the 

flow case in which the Frcude number is less than one-half. They 

found their result checked well with that obtained by the finite 

difference method using an implicit numerical scheme based on the 

Saint-Venant equations for unsteady open channel flow. 

Wang and Yen (1987) expressed the noninertia equation for 


a wide rectangular channel as: 


They further considered various cross sections, such as 


rectangular, trapezoidal and circular cross sections, and derived 


the different forms of the noninertia equation as follows: 


For flow in a rectangular channel with width B 


(3.18) 


in which Q E  is a small perturbation discharge. For flow in a 


+-wbAapezoidalchannel with bottom width B and side slope z 



For flow in a circular channel with diameter D 


in which 4 is central angle (in radians) of the free surface, qg 

and are reference discharge and corresponding central angle. t#O 

Wang .and Yen (1987) considered an initial condition of a 


steady uniform flow and different boundary conditions, task the 

Laplace transformation of E q s .  (3.17) through (3.20) , used means 
of convolution theorem, and obtained the analytical solutions of 

the model for various cross sections. The solutions are applicable 

to situations where the downstream backwater effect is significant, 

but are not applicable ta supercritical flow. 

3.1.3. Kinematic Wave Model 


If both the inertia and pressure terms in Eq. (3.2) are 

neglected, the momentum equation is reduced to a kinematic wave 

equation 



Equation (3.21) c l e a r l y  demonstrates t h e  distinguishing 

characteristic of t h e  kinematic wave model, namely, instantaneously 

the discharge is always equal to the normal discharge, Qn, and is 

thus a single-valued function of depth. 

By combining E q s .  ( 3 . 3 1 ,  ( 3 . 4 )  and ( 3 . 2 1 )  a nonlinear 

partial differential equation for a wide rectangular channel is 

obtained 

Furthermore, by linearizing and assuming qo or ho = constant ,  a 

linearized form of the equation is 

Equation ( 3 . 2 4 )  can also be derived i n  the fol lowing way: 

from Eq. ( 3 . 2 1 )  , t he  discharge for a wide r ec t angu la r  channel is 

expressed as 

Thus, d i f f e r e n t i a t i n g  Eq. ( 3 . 25 )  y i e ld s  
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By substituting Equ (3.26) in Eqo (3.1) and using h = ho + h 9 , Eq. 

(3.24) is obtained, 


For the special case with initial condition 


h t(x,0 )  = sin ux (-a < x < 
OD) 


the solution of Eq. (3-24) is 


h v(x,t) = sin ~ ( x- kit) 

The solution clearly indicates that the propagation of a sine wave 


with the kinematic-wave velocity or wave celerity kl, will not 


produce any attenuation, In other words, a kinematic wave 


propagates downstream without dissipation and without considering 


the downstream boundary condition. Thesef ore, the model is 


applicable only to situations where the downstream backwater effect 


is insignificant. 


The model was first introduced for flood-routing problems 


by Lighthill and Whitham (1955). Despite its deficiency of being 


unable to account for the downstream backwater effect, the 


kinematic wave model is the most extensively studied among the 


different approximations of the Saint-Venant equations. 


3 2 .  Numerical Soiutions 

3.2.1. 


Almost all the numerical models proposed by previous 


investigators are based on the Saint-Venant equations as a start. 


Numerical solutions of the Saint-Venant equations or their other 


simplified forms can be attempted by using various finite 


difference schemes which can be broadly classified into direct 


methods and characteristic methods. In the direct methods, finite 
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difference representation is based directly on primary equations. 


The direct methods can be classified into explicit and implicit 


methods. In the characteristic methods, the Saint-Venant equations 


are first transformed into a characteristic form, which is then 


used to develop the finite difference representation. The 


characteristic methods also can be classified further into explicit 


and implicit methods. 


3.2.2. ~irect Explicit Finite Difference Method 


Isaacson et al. (1956) applied the direct explicit method 


to the movement of floods in the ,Ohio River. Subsequently, there 


have been many papers which used various computational schemes to 

solve various unsteady flow problems. 


The explicit finite difference method is characterized by 


transforming the Saint-Venant equations into algebraic difference 


equations from which the unknowns are expressed explicitly as 


functions of known quantities, and are solved directly. According 


er and position of the grid points used in expressing 


the finite difference to approximate the derivatives, there are 


many different explicit schemes, for example, the unstable scheme, 


the diffusive scheme, L-shaped scheme, Leap-Frog scheme, Lax-


Wendroff scheme, and Dronkerqs scheme. Details of some common 


schemes have been summarized by Lai (1986), 


In general, explicit schemes are relatively easy to 


understand, easy to formulate, and easy to program. They provide 


the most direct solution, Unfortunately, they are also 


computationally highly inefficient because of numerical instability 
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problems. Even if a scheme is numerically stable, the solution may 


vary with the value of At/Ax used, and often the accuracy is in 


doubt. To minimize the numerical instability most investigators 


have chosen their computational space and time intervals based on 


the Courant stability criterion 


which does not necessarily guarantee the method to be stable. 


Because of the limitation on ~t for a selected ax, the method 


becomes costly and thus impractical in routing long duration flood 


waves through a channel which has rapid variations in geometry 


requiring small distance increments Ax. 


3,2,3, 


In the direct implicit finite difference method the Saint- 

Venant equations are transformed into a set of simultaneous 

algebraic difference equations and the unknowns are solved 

simultaneously by using an appropriate solution technique. The 

first detailed description of the implicit method was published by 

Richtmyer (1957). He applied an implicit scheme to heat 

propagation problems. Later, different implicit schemes, including 

four-point central scheme, non-central scheme, wide flange scheme, 

Tee scheme, Preissmann scheme, Vasilier scheme, and Abbott scheme, 

were developed. Various schemes for flood routing were discussed 


by Liggett and Cunge (1975) and Lai (1986). 


~mplicit schemes are more popular and generally preferred 


over explicit schemes because they allow large time steps and 
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reduce the computational effort. They are relatively more 

difficult and complicated to formulate and program, and require 

many mere computations, but if done properly and carefully they can 

be computationally very efficient and stable. The f i n i t e  

difference computational grid sizes AX and At, namely, space and 

time increments, can be chosen independently. But, there always 

is a numerical error as any finite difference approximation is 

applied and the error is a function of the space and time 

increments. In order to obtain the most accurate result from the 

implicit schemes, Price (1974) and Wormleaton and Kamegam (1984) 

suggested a criterion for selecting values of AX and ~t when 

routing in a natural river, i .e . ,  AX/A~ = the monoclinal wave 

velocity, Vw, which is approximately given by Vw = 3Q/2A if the 

Chezy formula is used, or Vw = 5Q/3A if the Manning formula is 

used. Price also gave a simple argument to demonstrate this 

criterion. Price (1985) further introduced a quantity, namely, 

constant attenuation parameter, II, designated constant wave speed 

as U, and summarized that for rivers ~t is usually defined such 

that Ax > n/w and for flood waves in artificial channels and stom 

c ! ? b V . . . Z d ' ) r h  4 - k ~-LA:-- ~f At  may force L\lr to be considerably less than GcncLa & A 1 5  C~~~~~~ 

D/w, so it is necessary to avoid inappropriate values of Ax and at. 


Implicit schemes are often quoted as numerically unconditionally 


stable. This statement is based on the linearized differential 


equation. For a nonlinear differential equation the numerical 


stability is, strictly speaking, not unconditional (Yen, 1986). 


For the case of extremely long reach in an open channel, even 


though the implicit scheme is stable it may converge to a wrong 
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answer because of an inaccurate representation of nonlinear terms 


(Wylie, 1970). 


Among the numerous implicit schemes, Amein5s four-point 

implicit scheme (Amein, 1968; Amein and Chu, 1975; Amein and Fang, 

1970; Fread, 1971) has been shown to have the advantage of economy 

in computer time, accuracy, and stability under a wide range of 

time increments (Price, 1974; Ponce et al., 1978) and it has been 

applied to branched channels (Quinn and Wylie, 1972), surges in 

open channels (Chaudhry and Contractor, 1973), and rivers with 

tributaries (Fread, 1973). In this scheme the weighting factor, 

@, which is used for time weighting, has been found to be important 

in the stability of numerical solutions. Its value ranges from 

zero to unity. Quinn and Wylie (1972) investigated the selection 

of e and found that the numerical solution is strongly stable for 

values of e given by 0.6 s e s 1.0. Amein (1975) realized that the 

box scheme, i .e. ,  e = 0.5, is accurate and stable for slawly 

varying flows. However, the box scheme produces numerical 

oscillations under certain transient conditions. Ponce (1978) 

pointed out that the weighting factor e = 0.5 is the 'theoretically 

betterr value; however, it is impractical from the stability 

viewpoint. Joliffe (1984) wrote that experience has shown that for 

some flow simulations it is necessary to increase 8, from its lower 

limit, to ensure numerical stability. Amein (1975) presented a 

numerical model based on using e = 1 which makes the finite 

difference equations much simpler than those for $ = 0.5. In a 

word, when the four-point implicit scheme is employed 6 should be 

selected carefully. 



3.2.4, Characteristic Method 


In the characteristic method the Saint-Venant equations 

are transformed into four ordinary differential equations known as 

the characteristic equations 

dV - Fdh = d(V-2~)= g ( S o  - Sf)dt 

in which F is equal to jm; c is equal to JCJA/B; and c' and c-

are the forward and backward characteristics, respectively. 

The ewations can be transfomed into a finite difference 

form and solved numerically by using either implicit or explicit 
__ _ _  _ _ _ _  - - - -_---- - - - - - --

schemes wfth ~ L A- L - L - - - - 2  grid or a fixed rectangularA: -L--- --I- -I
= A L A J ~ T  LLL~Z. G I I Q L ~ G L ~ T L S Z ~ C  

grid. Presently, there are many different numerical schemes, but 


only some basic schemes are mentioned in next several sections. 


Furthermore, for the subject of the characteristic grid and a fixed 


rectangular grid, Wylie (1980)made an itemized comparison between 


them and summarized their advantages and disadvantages. 


A number of papers have appeared in the past, in which 

characteristic methods were used for flood routing. The best known 

early characteristic method is the fixed mesh explicit method that 

was applied by Stoker (1953) to river flow problems. Later, the 

explicit characteristic method was applied to estuary flows by Lai 

(1965) and Baltzer and L a i  (1968), and to the propagation of long 
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waves by Amein (1966). The implicit characteristic method was 

applied to streamflow routing by Amein (1968) and Fletcher and 

Hamilton (1967), and to overland flow by Liggett and Woolhiser 

(1967). L a i  (1986, 1988) made a complete summary of the 

characteristic methad- 

The cha~acteristicmethod is often considered to suit to a 

wide range of unsteady flow problems. It is more accurate than 

other numerical methods (Liggett and Woolhiser, 1967; Medowell, 

1976). It deserves special attention because the close relationship 

between physical and mathematical properties makes this method a 

basic concept and tool in analyzing and understanding the complex 

problem of unsteady flow (Lai, 1986). It seems to handle 

relatively rapidly changing flows more effectively than other 

numerical methods ( L a i ,  1986). However, the characteristic method 

requires a large amount of interpolation and places a heavy demand 

-- n camput-er--re ~ g i ~ ~ - a ~ - ~ - - ~ ~ ~ r - e f i s s O ~ ~979).- -0 - ~-o-u~c~~-~-- -1 

3.2.4.1. 	Courant Scheme 


The scheme was first mentioned by Courant and Friedricks 


(1948). In this scheme a rectangular grid is imposed on the x-t 

plane as shown in Fig. 3.1. The value of the grid points A,  M and 

Fig. 3.1 Rectangular Computation Grid 




B at a time t is known either as given initial values or as the 


results from previous computations. I? is a grid point at time t 


+ 	at where the solution will be sought. 

The difference equations of E q s .  (3.28) and (3.29) are 

It has been assumed that ~t is sufficiently small so that 


the characteristics PR and PS can be approximated by straight 


lines 


Generally speaking, the computative procedure is 

-

--	 -- ~ a - ) - - ~ s  ne-txev~aluesOffS;-Kp1d < by US ing ECJ. ( 3 . 3 o ) . 
(b) Compute the values of VR, hR, VS and hs by using 


linear interpolation between the adjacent grid points. 


For point R and S ,  if U is used to represent the variables 

V or h the computative formulas are 

and 
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If the flow condition is supercritical, Eq. (3.33) will 


become 


(c) Obtain the unknown values of the Vp and hp by using 

3,2,4,2, F i r s t - o r d e r  Characteristic Scheme 

The scheme was first described by Lin (1952) and Hartree 

(1952). ' Later, Lister (1960) made a more detailed description. 

It is an improvement over the Courant scheme. In this scheme the 

slopes are evaluated at the points R and S (Fig. 3.1). 

The difference equations of E q s .  (3.28) and (3.29) are 

In computation of this case, xR and xS can no longer be 

obtained directly from Eq. (3.35), they will be computed by using 

iterative computation. 

Generally speaking, the cornputative procedure is as 

follows 

(a) Obtain the first estimates of xR and xs by using Eq. 



(b)  Subs t i t u t e  t h e  es t imates  i n t o  Eqs. (3 .32 )  , (3 .33)  o r  

(3.34) t o  compute VR, hRR VS, hS, (V + elR and (V - c ) ~ .  

(c) Obtain t h e  second es t imates  of xR and xS by us ing Eq. 

( 3 . 3 5 1 ,  t hen  s u b s t i t u t e  them back i n t o  Eqs. (3 .32) ,  (3.33) o r  

(3.34) u n t i l  t h e  d i f f e r ence  between t h e  values  of success ive  

e s t i m a t e s  reaches a spec i f i ed  to le rance .  

(d)  Using t h e  ca lcu la ted  values  of VR, hR, VS and hS, the  

Vp and hp can be obtained from Eq. (3.36)  . 

3.2.4.3. Second-order C h a r a c t e r i s t i c  Scheme 

The scheme also was f i r s t  described by Har t ree  (1952) and 

later was d e t a i l e d  by L i s t e r  (1960).  Sewk (1973) made further 

medification. I n  t h i s  scheme the t r apezo ida l  rule is app l ied .  The 

d i f f e r e n c e  equat ions of Eqs. (3.28) and (3.29)  a r e  

I n  t h i s  scheme quadra t i c  i n t e rpo l a t i ons  a r e  used i n  eva-

l u a t i n g  VR, hR, VS and hS. I f  U is used t o  represen t  t h e  va r i ab l e s  

of V and h, t h e  i n t e rpo l a t i on  equat ions f o r  p o i n t s  R and S a r e  



The predictor-corrector method can be used to obtain the unknown 

values of Vp and hp. 

3 , 2 , 4 , 4 .  Other Schemes 

There are many other schemes for solving the characte- 

ristic equations. They are mostly variations to the aforementioned 

schemes. For example, the specified interval scheme (Jolly and 

~evjevich,1974); various specified time interval schemes which 

include implicit scheme (Schmitz and Edenhofer, 1980, 1983), 

implicit time-line interpolation scheme (Goldberg and Wylie,1983), 

spatial reachout scheme (Chang and Richards, 1971), and temporal 

reachback scheme (Wylie, 1980); specified distance scheme 

(Sivaloganathan, 1978); and multimode scheme (Lai, 1988) which 

combines the four specifiedtime interval schemes (implicit scheme, 

temporal reachback scheme, spatial reachback scheme, and classical 

scheme) into one which possesses all the advantages of each scheme. 

Further details of all the schemes can be obtained in the cited 

l iterature . 



3,2,5,  

Because so many schemes have been proposed for solving the 


Saint-Venant equations numerically, many investigators have been 


concerned with identifying the best scheme or developing a good new 


scheme for the solutions of the equations. A number of papers have 


been published on comparison of numerical schemes. There have been 


comparative studies of different numerical schemes by Liggett and 


Woolhiser (1967), Strelkoff (1970), Yevjevich and Barnes (1970), 
Sevuk and Yen (19731, and Price (1974). The comparison tests of 


the accuracy and efficiency of the schemes are based on either 


results from a physical prototype or results from an exact 


analytical solution of the basic equations used to describe the 


flow of simple conditions. 


Strelkoff (1970) examined the numerical stability of the 


characteristic and direct forms of the Saint-Venant equations. He 


indicated that the explicit numerical schemes, which are simple, 


but require small steps in time because of stability problems, are 


contrasted with implicit schemes that permit numerical solution 


over large time steps but require the solution of large sets of 


simultaneous algebraic equations at each step. 


Yevj evich and Barnes (1970) studied two explicit schemes, 


namely, a diffusive scheme and a Lax-Wendraff scheme for routing 


subcritical open-channel flow through a single pipe and found them 


less suitable than the method of characteristics in Courant form 


using a fixed rectangular grid. 
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Building upon the work of Yevjevich and Barnes, Sevuk and 


Yen (1973) compared five schemes for flood routingthrough circular 


channels, Four of these schemes are method-of-characteristics 


schemes with fixed rectangular grids, and one is a four-point, box, 


noncentral direct implicit scheme. The first characteristic 


scheme is a scheme with the characteristic equations in canonical 


form, the second is a first-order semiexplicit scheme of linear 


characteristics, the third is a second-order semiimplicit scheme 


solved by a predictor-corrector method, and the fourth is a scheme 

in Courant form. For the last three characteristic schemes the 

Courant stability criterion was used to select h t  and AX. They 

found that all the five schemes work reasonably well and are 

stable. Since the true solution of the differential equations is 

unknown they used the flood volme consemation as an error measure 

and found that the second-order characteristic scheme is most 

accurate but also most costly, roughly requiring twice as much com-

puter time as the other schemes, while the Courant characteristic 

scheme has the largest error among the five schemes investigated. 

Price (1974) compared four of the more important numerical 

second-order finite difference schemes, i . e . ,  leap-frog explicit 

scheme, two-step Lax-Wendroff explicit scheme, four-point implicit 

scheme, fixed mesh implicit characteristic scheme, for flood 

routing with exact analytical solutions for the monoclinal wave. 

He concluded that (a) the implicit method of Amein (1970) is most 

accurate when AX/A~ is approximately equal to the speed of the 

monoclinal wave, (b) the fixed mesh implicit characteristic method 


is most accurate when ~x/At is slightly smaller than the Courant 
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speed, (c) the implicit method is computationally faster than the 


other methods for a similar accuracy, (d) the greater the 


difference between the monoclinal wave speed and the Courant speed, 


the greater the advantage in using the implicit method, and (e) the 


time step for the implicit method must be chosen with caution if 


there are large differences in speeds for different parts of the 


flood wave, i.e., flooding over an extensive flood plain associated 


with the river. Price considered that the four-point implicit 


method is the most efficient method for flood routing problems. 


The behavior and comparison of the numerical schemes can 


also be found in many other articles and books (Mahmood and 


Yevjevich, 1975; Miller and Yevjevich, 1975; Abbott, 1979; and 


Cunge et al., 1981). According to these previous investigations 

described in section 3.2., it is observed that the direct implicit 


method is a better means and the four-point finite difference 


scheme is a better scheme. Therefore, this scheme has been chosen 


for this study. 


The kind of study concerned with the applicability and 

sensitivity o f t h e  assumptions involved in simplifying the momentum 

equation from the exact form to the complete dynamic wave form has 

not been found. Few investigators have studied the importance of 

the coefficient, 8, and none of k or kt. Although many 

investigators have compared the significance of each term in the 

complete dynamic wave equation, none of them have taken account of 

the backwater effect when calculating the contribution of each of 
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the terms. Some useful studies on the importance of the 


coefficient, D, and tems in the momentum equation are discussed. 

Yevjevich and Barnes (1970) made a sensitivity analysis on the 


effect of the momentum flux correction factor, B, on computed 

results. Their investigation showed that the effect of D appears 


to be small when the Saint-Venant equations are employed for 


routing typical flood waves through storm sewers. 


Yu and McNown (1964) investigated the importance of the terms 


in the Saint-Venant equations and showed that when runoff 


measurements on airfield surfaces near Los Angeles were held, the 


two acceleration tems and the pressure term were each less than 


1/100 of the So or Sf term. 

Ragan (1965) found that if local inflows are a significant 


part of the total flow, the conveeive acceleffatisw tern could not 


be neglected. Otherwise the error produced by ignoring this term 


becomes great and reduces the general computational accuracy. 


Henderson (1966) gave the following values for 'an actual 


river in steep alluvial countryt and a 'very fast-rising floodv as 


7Term So' - -
9 

ax g ax' 


Value, ft/mile 


It is shown that even in this case which should involve relatively 

large acceleration terms, the last three terms are very small 

compared to So. 

Harder and Armacost (1966) mentioned that when a Missouri 

River flow was increased almost instantaneously from 24,000 cfs to 
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104,000 cfs, the acceleration terms were only about five percent 


of the friction tern, 

Iwasaki (1967) concluded by investigating actual flood records 


on the Kitakami River in Japan that the local and convective 


acceleration tems were at most one and a half percent of the 


pressure term, 


From these studies, Miller and Cunge (1975) suggested that 


for many unsteady channel flows the acceleration te 


relative to other terms and thus may be ignored without appreciable 


error. However, the resistance term must still be dealt with. 


Henderson (1966)gave several rough expressions to reflect the 

relative ratios between the terms in wide rectangular channels for 

a given inflow hydrograph q = q (t). Based on an assumption, SO 

= Sf, he obtained that 

ahlax terms characteristic of the 
cc s o m 5 l 3  I 1 

So inflow hydrograph alone 

He concluded that (a) the pressure term must become small as SO 

increases, (b) the local and convective acceleration terms are of 

the same order of magnitude, and (c) the two acceleration terms 

are of no higher order than the pressure term, unless Fr 2 (Fr is 

Froude number) >> 1. Thus, Henderson provided a criterion using 
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So as a parameter to estimate the magnitudes of the local 

acceleration term, convective acce le ra t icn tem,  and pressure term. 

For intermediate slopes the magnitudes of the three terms are 

relatively large and they cannot be neglected, i.e., flood waves 

are best described by the complete dynamic equation. For gentle 

slopes the L i o  acceleration tems are negligible but the pressure 

term is important, i.e., flood waves are best described by the 

noninertia equation. For steep slopes the three terms are not 

important and can be neglected, i . e . ,  flood waves are best 

described by kinematic wave equation. 

Some other researchers used Froude number, F,, or kinematic 

flow number, n, as dimensionless parameters to assess the 

magnitudes of the local acceleration, convective acceleration and 

pressure terms. For example, Miller and Cunge (1975) gave Fp = 2 

(Chezy@sfomula was used) or Fr = 1.5 (Manning's fomula was used) 

as a criterion to determine that the three terms should be kept or 

omitted. As F r =  2 (or 1.5), the dynamic and kinematic waves have 

the same celerity, i . e . ,  both waves are of equal importance. So, 

the kinematic wave model is absolutely valid. Woolhiser and 

Ligget t  (1967) used the kinematic flow number as a criterion to 

judge the validity of the kinematic model. They presented that as 

K > 20 the kinematic model is very good. Overton (1972) reported 

that when n > 10, the error in the kinematic approximation is 

decreasing rapidly and the aforementionedthree tems can be safely 

neglected, i.e., the dynamic wave solution approaches the kinematic 

wave solution. 
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Jolly and Yevjevich (1974) investigated the contribution of 


each of the terms in the momentum equation. Unfortunately, among 


the three momentum equations cited and utilized in that article, 


only one is proper. Therefore, their conclusions and results are 


rather doubtful. More detailed so 


be found in Martin and Wiggert (1975) and Yen and Sevuk (1975). 


Ponce and Simons (1977) applied the theory of linear 

stability to the Saint-Venant equations in wide channels of 

rectangular cross section. They calculated the propagation 

characteristics of various shallow water waves in open channels, 

namely, kinematic, diffusion (strictly speaking, it should b'e 

denoted as noninertia), steady dynamic, dynamic, and gravity waves. 
The propagation characteristics, i.e., the celerity and attenuation 

function, are expressed as a function of the steady uniform Froude 

m u a e r  and the dimensionless wave n era They that $he 

entire wave number spect is divided into three bands: (a) a 

gravity band corresponding to the range of large values of the wave 

number; (b) a kinematic band corresponding to small wave number; 

and (c) a dynamic band corresponding to midspectrum values of the 

wave number. According to the analysis, the various approximate 

wave models can be compared to each other, and the accuracy of the 

kinematic model and the so-called diffusion wave model can be 

assessed. 

Ponce et al. (1978) further investigated the applicability of 


kinematic and diffusion wave models for a sinusoidal shaped wave 


in a wide channel. They concluded that the channel slope and wave 


period are two important physical characteristics in determining 
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the applicability of the approximate models. The so-called 


diffusion madel is shown to be applicable for a wider range of 


channel slopes and wave periods than the kinematic model. They 


indicated when the channel slope and wave period exceeds a certain 


limited range, only the complete dynamic wave model can be used to 


simulate the physical phenomena of the unsteady open channel flow. 


They gave the following inequalities as criteria to distinguish if 


the kinematic or diffusion model is valid 


in which T, is the time-of-rise of the inflow hydrograph, SO is 

the channel slope, g is gravitational acceleration, Vo and ho are 

the steady uniform flow velocity and depth, and the recommended . 

values of N and M are 85 and 15, respectively. Ponce (1989) wrote 

that if the first inequality is satisfied a wave is a kinematic 

wave, and the greater the left side of the second inequality, the 

more likely it is that the wave is a diffusion wave. 

Ponce (1990) derived a generalized so-called diffusion wave 


equation with inertial effects on the basis of the linear analogs 


of the Saint-Venant ewations and summarized four types of 


diffusion wave models, i.e., full inertial, local inertial, 


convective inertial and noninertial models. The definition of each 


of these models is dependent on whether the inertia terms (local 


and convective) are excluded from or included in the formulation. 


By comparing the hydraulic diffusivity of each of the four types 
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of models, Ponce concluded that for low Froude number, the 


noninertial model is shown to be a better approximation to the full 


inertial model than either local or convective models. 


Fread (1979) also presented two inequalities as criteria to 

quantify the acceptable range of application for the kinematic and 

so-called diffusion models, The criteria are developed by 

estimating the magnitudes of the terms in the momentum equation. 

All the terms are normalized with the channel slope, and these 

ratios are further expressed with hydraulic variables, for example, 

channel slope, peak discharge, Manning n, time-of -rise of inflow 

hydrograph, cross-section parameters. The criteria are more 

complicated than those provided by Ponce et al., but, they are 

applicable for a wide range of practical channel shapes and typical 

inflow hydrograph shapes. Fread also concluded that the diffusion 

criterion permits a much larger range of channel characteristics 

and inflow hydrographs to be treated with the so-called diffusion 


model than with kinematic model for the same level of error index. 


Ball (1988) investigated the importance and contributions of 

the terns in the momentum equation. He considered only the terms 

in the Saint-Venant momentum equation when it is applied to open 

channel flow in pipes. Ball concluded that as the almost full-pipe 

Froude number, increases, the magnitude and the importance of 

the pressure term, the convective acceleration term, the local 

acceleration tern, and the lateral inflow acceleration term, 

decrease. This decrease in magnitude was of particular importance 

in consideration of the pressure term. It was found that the bed 

slope is the most important and the pressure term is the next most 
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important factor. For cases where lateral inflow was considered, 


it was found that the lateral inflow acceleration term, although 


significant in respect to other terms, did not have a substantial 


influence on the hydrograph propagation. 


Price (1985) made a magnitude scale analysis of the Saint-

Venant equations to see if some of the terms in the equations may 

be more important than others. He selected some typical scales in 

UK rivers: Q a 500 m3/s; A a 300 m2; h a 5 m; So a g = 9.81 

m/s2 and 5 a lo5 s. Here, the imposition of a 'bar-' denotes the 

scale for the variables, where Q, c,and are the bankfull dis- 

charge, cross-sectional area, and depth, respectively, a n d 5  is the 

duration of the flood. According to the continuity equation, the 

length scale x of the flood wave is 
-
x a Q~/Aa 1.7 * m = 170 km 

From the complete dynamic wave equation the ratios between the 

tems can be obtained as 

Furthermore, Price introduced two parameters: E = h/xSo which is 

the ratio of the characteristic surface gradient to the bed gra- 

dient, and r = Q ' / ( ~ . A-2- h) which is the square of the Froude number 

of the flow. He further rewrote the complete dynamic wave equation 



in which the 'double primeg denotes the dimensionless form of the 

variables. For example, Qn = Q/I,AM = A/& hIB= hfi, S u O= S0/% 0' 
S W f = sf/?+,, xu = x / x  and tw = t/f. From these ratios and the 

equation, price concluded that the first two inertia terms in the 

I I K m e n t ~ mCq-U2ti~nare significantly smaller than the.pressureterm, 

and the pressure term is significantly smaller than SO or Sf, 

generally for rivers with subcritical flow r 5 E 5 1. 

All the previous investigations provided very helpful 


knowledge about the importance of the coefficient, 8, and the 


contribution of each term in the momentum equation. Based on the 


inf omation, the two subj ects, namely, the importance of the 


coefficients and the contributions of the terns involved in the 


exact momentum equation, are further examined in this study. 




4. DESCRIPTION OF RICAL PROCEDURE 


In order to investigate the importance of the coefficients and 


the contributions of the tems in the exact momentum equation, Eq. 


(2.21, this exact momentum equation together with a continuity 


equation is applied to flood routing for an open channel with 


specified conditions. The solutions are compared with those of the 


Saint-Venant equations by using the same numerical procedure, and 


the magnitudes of the tems in the exact momentum equation are 


analyzed. Fromthe comparison and analysis performed in this study 


the sensitivity of the coefficients and terms in the exact momentum 


equation to the soPutions can be realized. 


4.1. 


In order to obtain a general picture of the sensitivity of the 

coefficients and terms in the exact momentum equation, it would be 

helpful to convert the continuity equation, E q s .  (2.1) or (2.4) or 

(2.6), and the exact momentum equation, Eqs. (2.2) or (2.5) or 

(2.71, into a nondimensional form. The nondimensional equations 

are solved numerically by applying an implicit finite difference 

method, 


We define 
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in which quantities with an asterisk subscript are dimensionless 

and those with the subscript 0 are quantities at a certain 

reference condition, i.e., Lo is defined as a reference length, Vo 

is the steady uniform flow velocity, ho is the depth when the flow 

is steady uniform, A o ,  Bo and Ro are the cross-sectional area, 

width of cross section at the free surface and hydraulic radius 

corresponding to the depth ho, respectively, no and To are Manning 

resistance factor and internal stresses for the steady uniform flow 

condition, and to = LO/Vo is the time required to travel the 

distance Lo with speed Vo. 

Accordingly, the following expressions can be written, 


ah hOvO ah, ah ho ah"a+ 

- -
P - p . i -

a t  a t ,  6% L~ ax, 

av V~ 2 av, w TJ- RTY* 
- =---.I- - - 5 -

0 
P 

'" 
P 

Thus, if lateral flow is neglected, the equations of continuity and 

momentum, E q s .  (2.1) and ( 2 . 2 )  and E q s .  ( 2 . 4 )  through ( 2 . 7 ) ,  can 

be written nondimensionally as 



at* A, 3% A, a% A,' ax, 

c o ~ s h ~ ~ ~  cose COSB ah*ah, ak 
-6 gk - kt) h*B* -- + - 2 &,A, - + - 2 m* --

F ~ ' ~ A ~  a w ,  FO ax* ax* 

ah* A* av* ah* 
P + - - - +V,- = o  
at, ~~h~ B, ax, a% 

a h  2 a~ av* ~~h~ v,'B, ah,
+ v, - + (28 - 3.1 v, - + ( a - - ~ > - --
at* ax, ax* A, ax* 

C O S ~BOhO ~ * h ,  ah, cose a ~ c  cost9
+ (k - k') ---- --- + - 2 h* - + - k-

ah* 
2 2

Fo A. A* ax* Fo ax* Fo ax* 



in which Fo = VO/JghO is the Froude number based on reference 

quantities, Vo and hot and n = = is theg ~ O ~ O / ~ O Zs ~ L ~ / F ~ ~ ~ ~  

- -K-iinemat-ic--wa e-.-- -- '-up - -- - - - - -- -ve-nu~ - ----. 
In Eqs. (4.1) through (4.6) the Manning formula is introduced 

to represent frictisn slope, Sf. As described in section 2.3.5, 

using the Manning formula has an advantage. The value of Manning's 

roughness factor, n, is nearly constant over a wide range of depths 

for flows with sufficiently high Reynolds number over a rigid 

boundary with a given surface roughness in a prismatic channel. 

Therefore, n, = 1 and this will simplify the equations. 

Equations (4.1) through (4.6) contain three different sets of 

dependent variables. They are Q and A, Q and h, and V and h, 

respectively. The three sets of ewations have similar 

mathematical properties. But there is no guarantee, and it is most 

unlikely, that the influences of the coefficients and the 

contributions of the terms on the solutions of the three sets of 

equations are identical because of the different dependent 

variables. Therefore, it is desirable to compare the numerical 

results of E q s .  (4.1) and (4.2) versus Eqs. (4.3) and (4.4) and 

E q s .  (4.5) and (4.6) . However, since t h e  investigative t i m e  has 

been limited, this study focuses only on the comparison of E q s .  

(4.3) and (4.4) versus E q s .  (4.5) and (4.6). 

4.2. Nondimensional Equations Considerina Different Channel S h a ~ e s  

In this study only the condition of a prismatic channel is 


simulated. The effect of the channel cross-sectional shape is 


investigated by using a hypothetical 54-mile long channel with wide 
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rectangular, rectangular or trapezoidal cross sections. The 

selection of a 54-mile length for the channel is referred to an 

example used by Chow (1952,---ppa 596-6001 . For-channelshaving-- -

these cross-sectional shapes, the nondimensional form of the exact 

momentum and continuity equations is shape dependent. Hence, the 

importance of the coefficients and terms in the exact momentum 

equation to the solutions of the equations could be different for 

different shapes. For different cross-sectional shapes of the 

channel, Eqs. ( 4 . 3 )  and ( 4 . 4 )  can be written as the following 

nondimensional equations in terns of the general nondimensional 


cross-sectional geometry functions, GI, G2 and Gj, 


ah, 1 aQ,
- + = - - - - = 0 
at, G~ ax, 

aQ* Q * ~ao 	 G ~ B Q , ~~ B Q *  a ~ ,  ah,
- + -	------ + - - - -
at, G2 	 ax* G2 8% G~~ ax, 

COSB ah, case ak COSB 
+ 	(k - ks)-2 Glh, - + - 2 GZh* -- + - 2 kG2 --

ah* 

Fo ax* Fo ax* Fo ax* 

For wide rectangular and rectangular channels, GI = B, = 1, G2 = 

3 


B,h, = h, and G3 = rBohOL/To. For trapezoidal channels with bottom 

width b and side slope z ,  



in which b, is defined as b/bo representing the longitudinal 


variation of the channel width where bo is a reference bottom 


width. The value of b, is equal to unity when the channel is 


prismatic for which the value of bo is taken equal to that of b, 


and b, is equal to B, when the side slope z approaches zero, i.e., 

the trapezoidal channel becomes the rectangular channel. 

Likewise, E q s .  (4.5) and (4.6) can be written as follows 

ah, h, av,
- 4 " - - C V , -
ah* 

= O  

at, G~ ax, ax* 


COSB ah, toss ak C O S ~  ah* 

4- (k -- k g )-2 G4 - + - 2 h* - + -

2 
k-


Fo ax* Fo a** Fo ax* 

in which G4 and G5 are nondimensional geometry functions. For wide 

rectangular and rectangular channel G4 = 1, G5 = =~ B ~ B , ~ ~ ~ / T ~  


Y~Oh02/~0. For trapezoidal channel 




Based on the depiction in section 3 2 . 3 ,  the Amein1s four- 

point implicit method is selected and applied to this study because 

of its economics and accuracy. In order to make the numerical 

solution strongly stable, the time weighting factor, 8, is taken 

equal to 0.6. The finite difference quotients are 

- = - (f* + f* - f* - f*, 1; 

at, 2 ~ t ,  i+l i 14-1 1 


af* €3 j+l j+l 1-8 j j- 3 1 - (f* -f, ) + - (f*, - f** 1 ; 
ax, AX, i+1 i fi* n+l 1 

in which f represents a variable, A, h, Q or V; the superscript 

denotes time discretization and subscript spatial discretization. 

Thus, the nondimensional continuity and momentum equations, 

E q s .  (4.1) and (4.21, can be written in finite difference form as 



j+I j+l j j j+I j+l j j
+ 6 ?  [B(A* + A* )+(I-8) (A, + A,j][ejh, - h* )+(l-@) (hA - h+)]-

l-tl i i+l i i-i-1 i I+-1 a 

j+l j+l j j 
= A t *  n KWA, + A , ,  ) ( ( A +A*)]

i+a  1 i+l 1 



A t *
in which r ,  = 4 8  - , 

Cost9 A t ,  
s l = k - ---- Q 

F~~ Ax, 

Likewise, E ~ s .  (4 .7 )  and (4.8) can be written as 



= At, n 

Similarly, from E q s .  (4.12) and (4.13) one has 

j+l j+l j j 
[Wh* + h*)+(l-@) (h* + h,)l 

2~t, i+l i i + a  a 
+ -

Ax* j+l j+l j j 



in which r2 = (2D - 1) --
At* 

(8 - 1) At* 
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~ n i t i a land Boundary Conditions 

T h e  i n i t i a l  f low cond i t ion  is  determined by computing t h e  

steady-flow water s u r f a c e  p r o f i l e s  throughout t h e  channel .  The 

f low t r e a t e d  i n  t h i s  study is i n  t h e  s u b c r i t i c a l  regime. Hence, 

t h e  i n i t i a l  cond i t ion  e i t h e r  decelerating 

p r o f i l e s  (M1 and S1 types) o r  convect ive ly  a c c e l e r a t i n g  type 

p r o f i l e s  (M2 type)  a 

F o r  t h e  upstream boundary cond i t ion ,  one p o s i t i v e  phase of a 

s i n u s o i d a l  wave is  in t roduced ,  and t h e  form is, f o r  example, h = 

h,[1 - c o s ( 2 ~ t / t , ) ]  i n  which h, i s  wave ampli tude and t, is 

d u r a t i o n .  I f  a dimensionless  form i s . t aken ,  t h i s  expression 

becomes h, = hw,[l - cos (2nt,/tw,] i n  which h,, t,, and to a r e  

equal t o  \/hQr tJtOand LQ/VO r e s p e c t i v e l y .  The introduced 

s i n u s o i d a l  wave is shown in Fig.  4 . 1 .  

Fig. 4.1 Inflow Stage Hydrograph 



For the downstream boundary condition, three different cases 


are selected: 


(a) no downstream boundary restriction, i.e., no backwater 


effEc-t; 

(b) hd = constant, i.e. , the flow depth at downstream boundary 

does not change; 

(c) hd = f(t), i.e., the flow depth at downstream boundary is 

a prescribed function of time. 


Case (a) without downstream backwater effect for subcritical 


' flows only is a hypothetical case often used by unsteady flow model 

simulators which cannot exist in reality. In such a hypothetical 

simulation the computation for a given time increment proceeds from 

upstream towards downstream and stops at the end of the channel. 

An equation is given for the channel end section to compute the 

flow variables using the information from upstream sections as well 

as that of the end section at the previous time. Depending on how 

the end section equation is formulated there are different 

versions. Nevertheless, this hypothetical case of no downstream 

backwater effect is equivalent to unsteady flow in an i n f i n i t e l y  

long channel. For practical reasons, the channel cannot be 

simulated as infinitely long. Instead, it is usually satisfactory 

to simulate over a sufficiently long channel such that additional 

length would produce insignificant differences at the end cross 

section of the channel. For the 54-mile long example channel 

adopted in this study, an additional 54 miles and an additional 162 

miles are used making it a 108-mile and a 216-mile long channel, 

respectively, for case (a). It has been found that for the flows 



79 

tested, changes of depth at the 54-mile cross section between cases 


of the 108-mile and 216-mile long channels are negligible. Thus, 


the downstream boundary is posi t ioned at 108th mile, and the 

simulated results for the first 54 miles of the 108-mile long 


channel are used as case (a) without downstream backwater effect. 


For case (b), flow depth at the downstream boundary is kept 


constant throughout time. This case is similar to that of a river 


or a channel flowing into a very large reservoir or a lake. 


For case (c), flow depth at the downstream boundary changes 

with time and four different typical situations are considered. 

First, the stage hydrograph at the downstream boundary is the same 

as that at the upstream boundary. This implies that thebrises in 

stage of the main river and tributary stream are simultaneous. 

Second, the stage hydrograph at the downstream boundary is larger 

than that at the upstream boundary, for example, twice or one and 

a half times as great as the stage hydrograph at the upstream 

boundary ( i .e . ,  the same period while twice or one and a half times 

in amplitude). This situation is similar to that of a small 

tributary entering into a large main river. Third, the stage 

hydrograph at the downstream boundary is smaller than that at the 


upstream boundary, for example, one half or two thirds of the stage 

hydrograph at the upstream boundary (i.e., the same period while 

one half or two thirds in amplitude). This implies some special 

situations, for example, due to certain reasons the peak discharge 

of the tributary stream is larger than that of the main river. 

Fourth, the stage hydrograph at the downstream boundary is entirely 

opposite from that at the upstream boundary, i . e . ,  although they 



have t h e  same period and amplitude, the times of reaching the 

minimum and peak stages are reversed. 

4,5, 


As described in section 3.2.3, the four-point implicit method 

is considered to have no stability limitations for the channel 

reach investigated, which is not very long, and this method has 

been shown to have the advantage of accuracy. ow ever, in order 
to enhance the accuracy of the simulation results, the ratio of 

A~,/Ax, is carefully selected based on the suggestions of Price 

(1974 and 1985) and Wormleaton and Kamegam (1984). The size of 

Ax, is first determined by comparing the solutions of the exact 

momentum and continuity equations in the nondimensional finite 

difference formulation for different values of a,, e.g., 0.25, 

0.5, 1 and 2, and a fixed size of At,. Generally speaking, for the 

implicit method the smaller the size of A x  the higher the 

accuracy, butthe computation time becomes long and the computation 

cost increases. Therefore, Ax, is so chosen that the difference 

between the solutions of the equations for two successive 

reductions in Ax, becomes small enough to satisfy the required 

accuracy. After Ax, is determined, the formula of the ratio of 

~t,/~x, (or the ratio of ~t/~x)described in section 3.2.3 and 

suggested by Price and Wornleaton and Kamegam, namely, ~t,/Ax, = 

3/5 (or A-~/AX = 3A/5Q) ,  is adopted to calculate the s i z e  of nt,. 



4.6, Consideration of Solution Method 


In the simulation, the channel is divided into (N - 1) 

reaches. The continuity and momentum equations are applied to each 

reach separately. For a channel of length L (in this study L = 54 

miles) having N (= 55) nodes (in this study the reference length 

Lo is taken as 1 mile) . For the (N - 1) reaches, 2(N - 1) 

e q u a t i o ~ sca_q _he w r i t t e n ,  There are 2N u ~ ~ l a i a w w r ~ a-- in t h e  flow.--I-- --

equations. If an upstream boundary condition and a downstream 


boundary condition are added, the modeling is closed and the flood 


routing problem in an open channel at every time increment can be 


completely solved using Newton's iteration method, the double-sweep 


method, or any other standard method, such as Gaussian elimination, 


or the matrix inversion. Newton's iteration method is employed in 


this study. 


Before solving the nondimensional finite difference equations 


it is necessary to determine the value of each of the coefficients 


and further estimate the importance sf each of the terms involved 


in the exact momentum equation. 


For the coefficients, the conventionally used values of D = 

1, k = 1 and (k-ke)= 0 are chosen as the basic reference, Based 

on the description in section 2.2, the impacts of D and k on the 

solutions of the equations are i~vestigated for D = 1.0, 1.33 and 

2.0, and k = 0.95, 0.99, 1.0, 1.01 and 1.05, respectively. The 

impact of k f  in term of (k-ki)is investigated for three different 

values, namely, -0.05, 0 and 0.05. Generally speaking, it is 




common in open channel problems that the value of D is less than 


1.33 and the value of k is close to unity. The reason for choosing 

the value of B as high as 2 is to consider the extreme condition 

of velocity distribution. This extreme nonuniform velocity 

distribution can be encountered in channels with narrow and deep 

cross-sectional shape and large roughness. If the effect of l3 is 

not significant under this extreme condition the impact of 13 on the 

solutions of the equations can be ignored. Similarly, the value 

of k is considered to be 0.95 and 1.05, which may occur in channels 

with sharply curved beds. Testing the impact of k under two 


extreme situations should be adequate to evaluate the importance 


As regards the tems, the channel slope, SO, and the friction 


slope, Sf, are the most important tems. Their values generally 


are much greater than those of the pressure term and the two 


acceleration terns. In the numerical tests the magnitudes of the 


channel slope, So, are chosen such that the flow remains 


subcritical throughout the entire channel. Therefore, once typical 


flow discharge and Manning resistance factor, n, are determined, 


the range can obtained using the Manning formula and the 


fornula calculating critical depth. The selected values of SO are 


equal to 0.00019, 0.00057, 0.00095 and 0.00114. In addition, 


because the flow is subcritical throughout the entire channel, the 


water surface profile is either the convectively decelerating type 


(MI and S1) or the convectively accelerating type (M2) under 


various downstream boundary conditions. 
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According to the ratios between terms of the Saint-Venant 


equations given by Henderson (19661, the pressure tern is of 


secondary importance and the two acceleration tems are even 


smaller in significance. Generally speaking, the two inertia tems 


are on an order smaller than the pressure tern, unless >z 1,
-
and the pressure term is smaller than either So or Sf. However, 


the conditions considered in this study are broader and different 


from those considered by Henderson. First, because the flow 


considered in this research is subcritical and the selected channel 


slopes are mild, the pressure term could become relatively large. 


In fact, under some test conditions the magnitude of the pressure 


term is greatly increased. Second, since O, k and kt are not 


necessarily equal to unity, the value of either the convective 


acceleration term or the pressure term in the exact momentum 


equation is changed as compared to that-in fQg -go_mLet_e dynamic- - -- - - - - - - -- - .  - -- -- -- - - - - - -

wave equation, i.e. , the convective term changes from a (Q'/A) /ax 


to a (BQ~/A)/~x and the pressure term from a (hcose)/ax to 


a (khcoso) /ax + [ (k-kv) (hcose/A)] aA/ax. Thus, the contributions 


of the pressure term and the convective acceleration term may 


become more important. Third, as discussed previously, the 


assessment of the channel slope and the friction slope being the 


most important terms is made under the condition of no backwater 


effects. If there is a backwater effect the ratios between the 


tems could be different and the magnitudes of these terms, 


especially for the pressure term, depend to a great extent on the 


downstream flow depth. Furthermore, if the water surface profile 


is of interest, comparing the pressure term only with either So or 




- -  - - -- - - - 

84 

Sf becomes unsatisfactory. A comparison between the pressure term 

and the difference, ( S o  - Sf), is usually more useful. 

Concerning the aT/ax term, it is generally considered as an 

unimportant term and often neglected conventionally. In this study 

the impact of the term on the solutions is investigated by giving 

it some suitable values, then observing the solutions of the 

equations and evaluating its importance. 

Because the contribution of each of the terns in the exact 

momentum equation is related to the downstream boundary condition, 

a nondimensional flow depth at the downstream boundary, hd, = hd/h, 

is introduced in this study and used as a variable to detect the 

relationship between the contributions of terms and the downstream 

boundary condition. Its values can be determined according to the 

following rules: (a) For the convectively decelerating type 

backwater profiles, the value of hd, should be greater than unity 

-aiid--less-fhan + rS L/h--o I - -- - - - - -- - - -- - --In order to ensure that there is no 


supercritical flow, the value of hd, used should be sufficiently 


greater than unity. Hence, the values of hd, are chosen from 1.44 


(b) For the convectively accelerating type backwater 


profiles, the values of hd, should be less than unity and greater 


than the nondimensional critical depth corresponding to a certain 


channel slope, SO. In.this study, five values of hd,, from 0.31 


to 1.0, are selected. At this time, it should be remarked that in 


a simulation run with changing time the value of hd, is not 


constant. As the unsteady inflow at the upstream is entering into 


the channel, the hydrograph of hd, at the downstream boundary will 


gradually vary from the initial given value of hd, to a certain 
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value, then return back to the given value of hd,, i . e . ,  the 

hydrograph of hd, consists of a rising limb and a receding one. 


Corresponding to a given upstream inflow, by using the critical 


depth formula, the value of hd, at each time increment can be 


calculated. 

4 , 8 .  

As just discussed, because SO and hd/hO are also independent 


variables to be investigated, in addition to the coefficients, $3, 

k and k g ,  there are five independent variables to be tested, 


namely, B, k, (k-kv),SO and hd/ho. A summary of the test ranges 


of these variables is given in Table 4.1. 


Table 4.1 Summary of Values of Variables Tested 


Variable Values 


1,44 1.66 1-80 2.02 2.53 

(for convectively decelerating type profiles) 


hd/ho 
 0.31 0.50 0.70 0.80 1.00 

(for convectively accelerating type profiles) 


From the table it can be calculated that the total number of 

combinations of these variables is equal to (3 * 5 * 3 * 4 * 5) * 
2 = 1800. Among these there are (1 * 1 * 1 * 4 * 5) * 2 = 40 cases 

where B, k and kt are equal to unity while SO and hd/ho are assumed 


to have different values, i.e., the cases of the Saint-Venant 
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equations. As mentioned in section 4.1, this study also compares 

E q s .  (4.3) and (4.4) in which the dependent variables are flow 

depth, h, and velocity, V, with Eqs. (4.5) and (4.6) in whish the 

dependent variables are discharge, Q, and flow depth, h e  Thus, the 

total number of combinations investigating the impacts of these 

coefficients, channel slope, and downstream boundary condition on 

the solutions of the equations expands to 2*1800 as the two forms 

(h, V vs. h, Q) of the equations are tested. obviously, it is 

impractical and unnecessary to perform all the 3600 test runs. 

Therefore, two strategies are carried out in this study: (a) The 

combinations of these variables are chosen efficiently and 

reasonably. First, the situations that D = 1 and the values of 

hd/ho being equal to 1.44, 1.80 and 2.53 (corresponding to the 

convectively decelerating type profiles) are selected as 

representative while different values of other variables, k, kt and 

So, are investigated for wide rectangular channels (thismeans that 

only 1 * 5 * 3 ?a? 4 .i. 3 180 6--"-LUIIP  --:'--I ByC S = ~----- be processed) .W A L L  

summarizing these results and observing a trend it is possible to 

use less 4-3--LA 180 t e s t  r u n s  to achieve the required investigations 411 

for the cases of B being equal to 1.33 and 2, for other cross- 


sectional shapes of the channel, and for the convectively 


accelerating type profiles. (b) The exact momentum and continuity 


equations in the form of h and V are regarded as primary equations, 


i.e., they are studied completely using the numerical procedure 


described above. Then, based on the results of the equations in 


the form of h and V, the exact momentum and continuity equations 


in the form of Q and h are further selectively investigated. 




5. 	 IMPORTANCE O F  COEFFICIENTS INVOLVED 
I N  E m C T  MOMEN EQUATION 

There is a large amount of results of flow depth, h, and 


flow velocity, V, or discharge, Q, generated for the sets of test 


runs described in Chapter 4. The difference between the solutions 


of the exact momentum and continuity equations and the Saint-Venant 


equations for the same flow and boundary conditions is given by 


subtracting the solution of the latter from that of the former at 


each distance-time increment. There are 55 distance increments and 


100 time increments in each run. For simplicity and convenience, 


only the maximum absolute solution difference (the maximum value 


among all the differences at different space and time points in a 


run) and the maximum relative solution difference (the maximum 


absolute solution difference divided by the corresponding value of 


the solution of the Saint-Venant equations) are chosen as indices 


for comparison and discussion, and they are designated as MASD and 


MRSD, respectively. Fromthe numerous calculations and comparisons 


the impacts of the coefficients, 8, k and kv, on the solutions of 


the equations can be detected. 


5-1. 


The results obtained from the equations in the form of flow 


depth, h, and velocity, V, for the simple case of a wide 


rectangular channel will be described in detail. The results are 


first presented for subcritical flow with an initial MI-type water 


surf ace profile. Later, the results for rectangular and 


trapezoidal channels and for initially M2-type profiles as well as 
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the results obtained from the equations in the form of h and Q will 


be depicted in two special sections and one chapter. 


The impacts of the pressure correction coefficients, k and 

kg, on the solutions of h and V of the exact momentum and 

continuity equations are s 

which two channel slopes, So = 0.00019 and 0.00095, are chosen as 

examples. The zero values of MASD or MRSD for h/hg and V/VO in the 

tables imply that the solutions of the exact momentum and 

continuity equations are essentially the same as those of the 

Saint-Venant equations. The results for the case of So = 0.00019 

are also shown graphically in Figs. 5.1 through 5.4. 

In Tables 5.1 and 5.2, k is varied from 0.95 to 1.05 while 

the values of B and kt are fixed at unity, with or without 

downstream backwater effect. In reality, it is impossible that 

only k varies while B and k v are kept constant. In natural rivers 

the three coefficients change simultaneously. However, investi- 

gating the simple situation is fundamental, i.e., first study the 

basic sensitivity of each of the coefficients, then the complex 

situations. From Tables 5.1 and 5.2, it is found that the maximum 

absolute or relative differences of w h o  are close to those of V/VO 

in magnitude as the water depth at the downstream boundary h/ho is 

small and the channel slope is large. If the downstream-boundary 

depth becomes large and the channel slope is small the distinction 


between the maximum absolute or relative differences of h/ho and 


those of V/VO increases. This indicates that the impact of k on 




Table 5.1 Impact of Pressure Correction Coefficient k 
cn Maximum S o l u t i o n  Difference of Flow Depth 

(a )  Absolute D i f f e r e n c e  

KO b a c k ~ a t e r  hd/hom 
SQ.-O. 0 0 0 ~ 9  e f f ec t  1.44 1.66 1.80 2.0% 2.53 
B-1, k"1 

Maximum absolute s o l u t i o n  difference of h/ho 

Rats of change of sofueian difference with respect to k in % 

(0.95 to 1) 4-7 -55  -1-50 +7 2 +I09 91175 
k varies 14 
(0.99 to 1) +7 - 5 2  4-51 4-72 +I07 . 9164 
_ _ - - - - - _ _ - o  


k varies 1% 
 -- - - . - .- - - .. - - - - - --
(I io r.01) +7 - 5 1  9531 973 4166 - 9159 
k varies 5% 
(1 to f,05) 4.7 -49 +5 2 972 4-103 +I50 

tTs baevCJater hd/ho' 
so-O. 00095 . effect 1.44 1.66 1.80 2.02 2 . 5 3  
5-1, kV=% 

Mavimum absolute solution difference of h/bo 

Rate of change o f  solution difference with respect to k in % 

k varies 5 %  
(0.95 to I) -4 -3 -3 -4 -4 4-13 
k varies 1% 
(0,99 t o  1) -6  -5  - 6  -6 - 9  4-22 

k varies I% 

(1 to 1.01) -3 - 2  - 3 -3 4-3 +29 

k varies 5% 

( 2 .  to 1.05) - 2  - 3  -4 -4 4-4 +22 



- - - - - - - - - - -  

Table 5.1 ( c o n t i n u e d )  

(b) Relative Difference 


M a x i m  relative solution difference of h/ho in % 

Rats of change of solution dikference with respect to k in $ 

k varies 5 %  
(0.95 to 1) +6 -29 . +45 . +63 +8 7 4-121 
k- varies 14 
(0.99 to 1) 4-6 -27 4-45 . +62 +84 +I01 
w s - - - - - O I - w  

k varies-1% - - - - -

(1 to 1.01) 4-6 -27 +46 +6 3 +84 +98 
k varies 53 
(1 to 1.05) +6 -25 + 4 6  +6 2 +8 2 +11 8  

No backdater hd/hos 
S0=o.08095 effec t  1.44 1.65 1.89 2 - 0 2  2.53 
&=I#kt-1 

relative solution difference of  h/hO in % 

Rate of change sf solution difference with respect to k in % 

k varies 5% 

( 0 . 9 5  to 1) -4  - 3  -3 -4 -4  4-10 
k varies 1% 
(0.99 to I) - 7  - 5  - 6 - 6 -9 4-20 

k varies f % 

(1 to 1.01) - 3  -1 -1 -1 +2 +2 9 

k varies 5% 

(I to 1.05) -2 - a  -2 - 2  4-3 4-2 2 




Table 5.2 Impact of k on Maximum Solution 
Difference of Plow Velocity 

(a ) Absolute Difference 

No bac'kcda~er hd/hoa 

so=O.00019 e f f e c t  1.4& 1.66 1.80 2.02 2.53 

B-1, kt=1 


Maximu a5solute solution d i f f e r e n c e  of V/VQ 

k ... 0.95 -0.0081 -0.0294 0.0244 0.0353 0.0533- 0.0998 
& = 0.99 -0.0016 -0.0057 0.0053 0.0074 0.0109 0.0224 
k - f  0.0000 0.0000 0.0000 0.0000 0.0000 0 -0000 
Ic 1.01 0.0016 0.0057 -0.0049 -0.0072 -0.0120 -0.0238 
k 1.05 0.0080 0.0275 -0.0262 -0.0374 -0.0602 -0.1169 sll 

Rate of change of solution; difference with respect to k in % 

k varies 5% 

(0.95 to 1) +16 4-59 -49 -71 -107 -200 
k varies 1% 
(0.99 to I) 4-16 4-57 -53 -74 -109 -224 
O m 0 0 - 1 1 - P - 9  

k varies 14 

(1 to 1.01) +16 +57 -49 -72 -120 -238 

k varies 5% 

(I to 1.05) +16 +55 -52  -75 -120 -234 .
' 

H a  ga_ck.Ja_r,~_1. hs/ho" 
sO=0.00095 effect 1.44 1.66 1.80 2.02 2.53 
&-IB H E 0 = %  

Haximum absolute solution difference of V/VO 

Rate of change of solution difference with respect to k in % 

k varies 5 %  
( 0 . 9 5  to 1) +I 4-3 4-3 +2 a2 -13 
k varies 1% 
(0.99 to 1) +I 4-3 +2 4-2 +2 -25  
I - - - - - - - - O I  

k varies 1% 

(1 to 1.01) 4-f 4-3 4-2 4-2 - 3  
 -29 
k varies 5 %  
(Ito l.05) +I +3 +3 +a -6 -20 



- - - - - - - - - - -  

Table 5.2 (continued) 


(b) Relative Difference 


Ko b a c k a t e r  hd/hoa 
so.=O.000l.9 effect 1.44 1.66 1.80 2.02 2.53 
&-I8 k l = l  

Haltileum rs la i iv .  solution difference of V/VO in % 

Rate of change of solut ion dif ference with respecs  t o  k i n  % 

& va r i e s  5 4  
(0.95 to I) . 4-12 929 07% -81 ;I33 -325 
k varies 1% . 

(0.99 to 1) +If +28 -77 -84 -137 -365 . 

k va r i e s  1% 

(1 to 1.01) 4-12 +28 -54 - 8 3  -150 -388 

& varies 5 %  

(1 to 1-05) 4-11 4-28 -57 - 8 5  -151 -381 


No backvater ha/hom 
sO=O.00095 effect 1.44 1.66 1.80 2.0% 2,53 
B = l p  &'=I 

re la t ive  solution di f fe rence  o f  

Rats o f  change o f  solution difference with respect  to k i n  % 

k varies 5% 

(0.95 to 1) +I +2 4-2 4-2 +2 -13 

k varies 1% 

(0.99 t o  1) +I 4-2 4-2 4-2 +2 -25 


k va r i e s  1% 

(1 to 1.01) +f +2 4-2 4-2 - 2  
 -29  
k varies 5% 

(I to 1.05) +1 -4-2 +2 +2 - 3  -20 




- - - - - - - - - - -  

- - - - - - - - - - -  

Table 5.3 Impact of Pressure Correction Coefficient k t  
on Maximum Solution Difference of Flow Depth 

(a) a s a l u t e  Differeaee 

Pi'o backdater hd/hox 
So-.O. 0OOE9 effect 1.M 1.66 1.80 2.02 2.53 

B-1, k=1 


Ha:tinw absolute solution difference of h/ho 

Rate of  change of so1ution difference w i t h  respect to kPin % 

(0.95 to 1) -4  +25 - 26  -36 .-52 -88  

k'varies 1% 

(0.99 to 1) -4 +26 - 26  -36 -53  -87, 

k'varies 1% 
(1 to 1.01) -4 +25 -26 -36 -53 -81 
k'varies 54 

No bac'ksaater hd/hCS 
so-0. 00095 effect 1.44 1.66 I.80 2.02 2.53 
&=I,k=I 

Maximum absolute solution difference of h/ho 


Rate of change of solution difference wieh respect to k'in % 

k'varies 5 %  
(0.95 to 1) +I +I 4-2 +2 -2 -9 

k'varies I% 

(0.99 to 1) +1 +I 4-2 +2 ,- 1 -14 
k'varies 1% 

(1 to 1.01) +3 4-3 4-3 4-4 4-5 -12 

k'varies 5% 

(1 to f .US) 4-2 +2 +% 4-2 +3 -9 




Table 5.3 (continued) 

( b )  Relative Difference  

No backda~er hd/hoz 
so-0 .BOO19 e f f e c t  1.U 1-66 1 . 8 0  2.02 2 . 5 3  

Haximcm ralative solution difference of h/hg in 3 

Rate sf change of ssfution difference &rich respect to k Y n  % 

k'varies 5 %  
(0.95 to 1) - 3  +13 - 2 3  - 3 1  - 4 2  - 6 1  
k'varies 1% 
(0.99 to 1) -3 +%3 -23 - 3 1  -42  -50 

k'varies 1% 

(1 to 1.01) -3 +14 -23 - 3 1  -42  -50 . 


k'varies 5% 

(1 to 1-05] - 3  +I4 .-23 -31 -43 -65 


No backdater hd/ho= 
sO;O. 00095 effect 1.44 1.66 1.80 2.02 2.53 
B=l, &=I 

H a i n r u m  relative solution difference of h/hO in % 

Rate of change of solution difference with respect to kpin 8 

k'varies 5% 

(0.95 to 1) 4-1 4-0 +l -4-1 -1 
 -9 

k'varies 1% 

(0.99 to 1) +I. +0 4-2 4-2 -1 -14 


ktvaries 1% . 

(1 to 1.01) +2 +3  +3  4-4 +6 -11 

k'varies 5 %  

(1 to 1.05) 4-2 4.2 +2 +2 4-3 
 -9 




- - - - - - - - - - -  

Table 5.4 Impact of k R  on Maximum Solution 

Dif fe rence  of Flow Velocity 

(a) m s o l u t e  Difference 

h'o backdates hd/hom 

S0"8.88019 e f f e c t  1.44 I.6 6  I.. 80 2.02 2.53 

B-1, k-1 


Maximum absolute solution difference of V/vO 

- Rate of change of solution difference wich respect to k'in % 

k'varies 5 %  

(0.95t01) : - 8 .  --28 . a25 4-37 4-53 +149 

k%aries 1% 

(0.99 to 1) -8 -28 +25 +36 +5 5 +I24 

k'varies 1% 

(I to 1.0%) -8 -28 +24 +36 +57 +%I6 

k'varles 5% 

(1 to 1.05) - 8  -29 +25 +36 +54 +I37 


No backdater 2a/30-
so-O. 00095 effect 1.44 1 . 6 6  1.80 2.02 2 . 5 3  
kl=l, k=1 

b u m  absolute solution difference of V/VO 

Rate of change of solution difference with respect to k'in % 

k'varies 5% 

(0.95 to I) -1 -1 -I -I 4-2 +17 

k'varies 1% 

(0.99 t o  I) -1 -1 -1 -1 +I +14 
e m 1 1 - 1 - - 1 0 - 


k'varies 1% 

(I to 1.01) -1 -1 -1 -1 -1 +I4 

k'varies 5% 

(1 to 1.05) -1 -1 -1 -1 -1 +10 




Table 5 . 4  ( con t inued )  

($) RePative Difference 

No bac'cc~ater h d / h ~ - 

So=0.QOQH9 effect 1.44 1.66 1.80 2 - 0 2  2 . 5 3  

&-I,k=l 


Haximu rclatzive solution difference of V / V O i n  % 

Waqe of change of solution difference with respect $0 kiinI 

k'varies 5% 

(0.95 to 1) -4 -14 +2 8 4-42 +66 +241 
k'varies 1% 
(0.99 to 1) -6 -ltb +27 1.4%. 4-69 4-202 ' 

~ - 0 - . . - 0 - 0 - 0  

k'varies 14 
( L  to 1.01) - 6  -14 4-2 6 4-41 +7"H +I89 
k'varies 5 %  

br / a -

No backvater a&d1 &A 0" 

so-0. 00095 effect 1.44 1.46 1.80 2.02 2.53 
$=I, k=1 

. Maximum relative solution difference of v p 0in I 

Rats sf change of se'lutiow difference with respect to k'in 

k'varies 5% . . 
(0.95 to 1) -0 -1 -1 -1 -4%. +17 
k'varies 1% 
(0.99 to I) -1 -1 -1 -1 +I +14 

-* - - - - - - - o - 


k'varies 1% 

(1 to 1.01) -1 - b -1 -1 -1 +I6 

k'varies 5% 

(1 to 1.05) -0 -1 -1 -1 - P +10 




(a) Absolute Difference 


Fig. 	5.1 Variation of Kaximum ~olutionDifference 
of h/ho with k and k q  for S O  = 0.00019 



(b) Relative Difference 


Fig. 5.1 (continued) 




(a) Absolute Difference 

(b) Relative Difference 

Fig. 5.2 var i a t ion  of Rate of Change of Maximum 
solution Difference of h/ho w i t h  k and k v  



Difference 

Fig. 5.3 	Variation ef Maximum Solution Difference 
of V/Vo with k and k t  f o r  S o  = 0.00019 



(b) Relative Difference 

Fig .  5.3 (continued) 



(a) Absolute Difference 


asa 

(b) Relative Difference 


Fig. 5.4 variation of Rate of Change of Maximum 
Solution Difference c f V / V O  with k and k n  
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the flow velocity, V, is more sensitive than on the flow depth, h, 

when the downstream water depth is large and the channel slope is 

small. In addition, these maximum absolute or re la t ive  solution 

differences of h/ho and V/VO for two extreme situations of 

nonhydrostatic pressure distribution (k = 0.95 and 1=C)5) are 

obviously much greater than those of near hydrostatic (k= 0.99 and 

1.01). However, the average rates of change of MASD or MRSD of 

h/hO and V/VO with respect to k are approximately the same for So 

= 0.00019 or 0.00095 with different downstream water depths, 

whether k varies 5% (from 1 to 0.95 or 1.05) or 1% (from 1 to 0.99 

81P 1.01) . 
In Tables 5.3 and 5.4, k t  changes from 0.95 to 1.05 ( i . e . ,  

k-kt from 0.05 to -0.05) while the values of D and k are kept equal 

to unity for the range tested. The results show that the effect 

of kg on the solutions of h and V is qualitatively the same as for 

k, i .e.,  the impact nf kt on the flew velocity is alincst the same 

as on the flaw depth for small downstream-boundary depth and large 

channel slope, but much greater than on the flow depth when the 

downstream-boundary depth becomes large and the channel slope is 

small. However, these maximum absolute or relative solution 

differences of h/ho and V/VO in Tables 5.3 and 5.4 are always 

roughly equal to half of the corresponding values in Tables 5.1 and 

5.2, and the average rates of change of MASD or MRSD of 

nondimensional flow depth and flow velocity with respect to k i are 


also approximately half of those of k. 


Therefore, the following six points can be concluded based 


on these tables and figures. First, the impact of k or k n  on the 
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flow velocity, V, is greater than on the flow depth, h, when the 


downstream-boundary depth is large and the channel slope is small. 


Second, the impact of k on the solutions of the equations is about 


twice as large as that of kt. Third, the impacts of k and kt on 


the solutions are closely related to the downstream boundary 


condition. When there is no downstream backwater effect the 


impacts of k and kg on the solutions of the exact momentum and 


continuity equations are insignificant. With increasing downstream 


boundary water depth the impacts of k and k g  on the solutions of 


the equations become more important and the Saint-Venant equations 


gradually become a less satisfactory approximation of the exact 


momentum equation. Fourth, in Tables 5.1 and 5.2 or Tables 5.3 and 

5.4,  it is shown that the impact of k or k f  is channel-slope 

dependent. The impact is smaller for a steeper channel than for 

a milder one. Fifth, since the values of MASD or MRSD of h/ho and 

V/VO are very small as k is equal to 0.99 and 1.01, it is safe to 

assume that within this range the exact momentum and continuity 

equations can be replaced by the Saint-Venant equations. However, 

for the extreme nonhydrostatic pressure distributions (e.g., the 

cases of k = 0.95 and 1.05) such as the channels with sharply 

curved bed, the substitution using the Saint-Venant equations could 

create some errors. Finally, based on Figs. 5.1 and 5.3, a larger 

solution difference is related to k, the downstream-boundary depth 

and channel slope. As the channel slope is very small and the 


downstream water depth is very large, it is possible that there is 


a large error even though the value of k is close to unity, i.e., 


the pressure distribution is almost hydrostatic. 
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MASD and MRSD of the nondimensional flow depth, h/ho, and 


velocity, V/VOr for various channel slopes, downstream-boundary 


water depths and combinations of k and k f  are presented in Tables 


5.5 and 5.6. The two tables are based on B = 1 and only selected 

as representative to display the relationships between either k 

(or k u) and the channel slope or k (or k u )  and the downstream 

boundary condition. If B = 1.33 or 2, the relationships among k 

(or kt),SO and hd/ho are similar to those reflected in Tables 5.5 

and 5.6 and they are not listed here. 

From Tables 5.5 and 5.6, it is observed that for wide 


rectangular channels with identical channel slopes and downstream 


boundary conditions, but completely different combinations of k and 


kt,the values of either MASD or MRSD of h/ho or V/VO are the same. 

For the coefficient values tested, there are three groups of 


coefficient combinations. The first is the case of .6 = 1, k = 

0.95, k f  = 0.95 and the case of B = 1, k = 1, k v  = 1.05. The 

second is the case of B = 1, k = 1, k g  = 0.95 and the case of = 

1, k = 1.05, k v  = 1.05. The last is the case of B = 1, k = 0.95, 

kv = 0.9 and the case of B = 1, k = 1.05, k v  = 1.1. In the last 

group, the meaning of zero value of either MASD or MRSD is that the 

solutions of the exact momentum and continuity equations and the 

approximate Saint-Venant equations are essentially the same, as has 

been mentioned previously. 

his outcome indicates two facts. The first is that for a 


wide rectangular channel, although the flow conditions reflected 


by k and k f are different, the solutions of the exact momentum and 


continuity equations are the same in each group. The reason can 




Table 5.5 Maximum Difference of h/h between Solutions 
of Exact Momentum and continuity E p a t i o n s  
and Saint-Venant Equations 

(a) Absolute Difference 


Charnel sfope = 

& = I  0.88019 0.00057 0.00095 0.00114 
Value hd/ho
o f  k & k' 

Maximum absolute  solution difference of h/ho 



Table 5.5 ( c o n t i n u e d )  

(b) Relative Difference 

& = I  
Value 
of k Bc k' 

Channel slope 
0.00019 0.00057 0.00095 0.00114 

hdiho 

Maximum relative solution difference of h/ho in % 



Table 5.6 	Maximum Difference of V/V between Solutions 
of Exact  Momentum and continuity E q u a t i o n s  
and Saint-Venant E q u a t i o n s  

(a)  Absolute Difference 

Value 
of k ti k' 

Maximum absolute solution difference of v/vo 



Table 5.6 (continued) 


(b) Relative Difference 


Chamel s l o p e  -
1 3 = 1  0.00019 0.00057 0 .0009% 0 .00114  

Value 
o f  k & k" 

Maximum relative solution difference of V/VO in $ 



be found by inspecting Eq. (4.12). For a wide rectangular channel 


with B = 1, the coefficient of the term ah,/ax, in Eq. (4.12) is 

(2k - k t )cosB/Fo. If the values of k and k g  involved in each of 

the aforementioned three groups are substituted in the expression 


of (2k - kt) , it is found that the values of (2k - kt) corres-

ponding to the three groups are equal to 0 . 9 5 ,  1.05 and 1, 

respectively. .This implies that for different combinations of k 


and k v  as long as the value of (2k - kt)is equal to a certain 

value the solutions of the exact momentum and continuity equations 


are always the same. The second observation signifies that for 


wide rectangular channels, there is no difference between the 


solutions of the exact momentum and continuity equations and the 


Saint-Venant equations under certain flow conditions, namely, D = 

1 and (2k - k u) = 1. Under this condition, the Saintevenant 

equations can safely replace the exact momentum and continuity 


equations without loosing accuracy. However, in reality, it is 


difficult to satisfy this condition because for viscous liquid in 


a channel, B is always greater than unity. 


The impact of k en the solutions is approximately twice as 

large as that of kf. Therefore, k is an important coefficient for 

determining what kind of equations, i. e. , the exact momentum and 

continuity equations or the Saint-Venant equations, can be used. 

It is obvious that for channels with extremely nonhydrostatic 

pressure distribution, small channel slope, and large downstream- 


boundary water depth, the difference between the solutions of the 


two sets of equations appears to be significant. For this 


condition, use of the exact momentum and continuity equations 




provides more reliable results. 


5.1.2, 


The impact of the momentum correction coefficient D on the 

solutions of the equations is presented in Tables 5.7 and 5.8, and 

also shown in Fig. 5.5 for an example with the channel slope, So 

= 0.00019. Tables 5.7 and 5.8 are similar to Tables 5.1 and 5.2 

and Tables 5.3 and 5.4, i. e., only D varies while k and kb are kept 

equal to unity (as mentioned in section 5.1.1, varying B alone is 

a fundamental study). The two tables and the figure demonstrate 

that as B increases by 33%,  from 1 to 1.33, and by 50%, from 1.33 

to 2, respectively, the average rates of change of MASD or MRSD of 

h/hg and V/Vo with respect to D are very small for various 

downstream water depths. Therefore, the impact of B on the 

solutions of the equations is much weaker than that of k or kr. 

From Tables 5.7 and 5.8, it is similarly shown that, when 

there is no downstream backwater effect, the impact produced by 

changing the value of B on the solutions becomes very small and 

can almost be completely ignored. When there is the downstream 

backwater effect the values of MASD or MRSD of h/ho or V/Qo 

decrease with increasing downstream boundary water depth. This 

result is exactly opposite to that of k or ku. The reason is when 

the downstream water depth increases, the subcritical flow in a 

channel converts gradually from a less convectively decelerating 

condition to a more convectively decelerating one. From section 

5.1.1, it seems that the solution difference is a function of the 



Table 5.7 	Impact of Momentum Correction coefficient D 

on Maximum Solution Difference of Flow Depth 


(a) Absolute Difference 


No b a c b a t e r  	 hd/hOs
SO=P. 00019 e f f e c t  1 . 4 4  1.66 1.80 2.02 2.53 

Haximum absolute solution difference of h/ho 

Rate of change of solution difference with respect to B in % 

B varies 

33% from 

1 to 1,33 -49.2 a2 +I +0.8 -0.4 -0.7 


B varies 
. 50% from 
1.33 to 2 =+0.2 +2 4-1 +0.9 . -0.4 -0.7 

(b) Relative Difference 


. - - - Nii bachater hd/hos 

Sg=O. 00019 effect 1.44 1.66 1.80 2.02 2 .53  


Haxiurn rolotive s o l u t i o n  difference of h,*O f x ~5 

Rate of 'change of solution difference with respect to B in % 

B varies 
33% from 
P to 1.33 +0.2 +I +O. 7 +Q.4 -0.3 -0.4 

B varies 

50% from 

1.33 to 2 



Table 5.8 Impact of D on Maximum Solution 
Difference of Flow Velocity 


(a) u s ~ l u t eDifference 

Ks backdater hd/ho'

So=O. 00019 eff e e t  1.44 1 . 6 6  1.80 2.02 2 . 5 3  


Zc==I., &'-I 

Maxirnuzi absolu~e solution d i f f e r a n c r  of V/Vo 

Rate of change of solution difference with respect to 8 in % 

B varies 

33% from 

1. to 1.33 +I - 3  - 2  -1 +I +1 

..---..yo--., 


B varies 

50% from 

1 2 3  to 2 +I -3 -2  -1 +I 91 


(b) Relative Difference 


No backirater hd/ho=
SO=O.0003.9 effect 1.44 f .66 1.80 2 .02  2 . 5 3  

Maximum rolative solution differenca of V/VO in % 

Rate of change of solution difference with respect to B in % 

B varies 

33% f r o m  

1 to 1.33 +0.5 -1 -Oe9 -0.6 +O.8 +O. 8 


- - - - . v * - - - -

B varies 

50% from 

1.33 to 2 +0.7 +I -0.9 -0.6 +0.8 +0. 8 



(a)  Absolute Difference 

F i g .  	5.5 variation of Maximum Solution Difference 
of h/ho and V/VO with B f o r  So = 0.00019 



(b) Relative Difference 


Fig. 5.5 (continued) 




extent of the convective deceleration, i.e., the greater the extent 

of the convective deceleration (or the stronger the backwater 

effect), the larger the solution difference. However, B is a 

momentum correction coefficient for a given channel, it is closely 

related to the convective acceleration, and its value decreases 

with flow deceleration. In other words, the impact of B on the 

solutions is opposite to that of the convective deceleration. It 

is likely that the effect of D on flow is stronger than that of the 

convective deceleration for the less convectively decelerating con-

dition. Therefore, for D, the solution difference increases with 

lowering downstream-boundary water depth. In addition, from Tables 

5.7 and 5.8, it is obvious that similar to k and kt,the impact of 

D on the flow velocity is also greater than on the flow depth. 

Of course, the impact of D on the solutions of the equations 

exists, since the values of MASD or MRSD of the nondimensional flow 

depth, h/ho, and flow velocity, V/VO, become large with increasing 

values of A as shown in Tables 5.7 and 5.8. In addition, when k 

is not equal to unity the combined impact of D and k on the 

solutions of the equations is more significant. The results are 

listed in Tables 5.9 and 5.10. From the two tables, it is obvious 

that when k = 0.95 or 1.05, the values of MASD or MRSD of h/ho and 

v/Vo increase greatly with increasing values of D for any 


downstream water depth tested. Therefore, it can be concluded that 


in flow simulation, for channels having very mild slope, large 


downstream-boundary water depth, extremely nonhydrostatic pressure 


distribution and extremely nonuniform velocity distribution it is 


very necessary to select flow equations with caution. 




Table  5.9 	~smbinedImpact of B and k on Maximum 
Solution Difference of Plow Depth 

(a) Absolute p i f f  erence 

hd/ha" 
S0=0.00019 1 . 4 4  1.66 1.80 2.02 2 . 5 3  

k"1 

k-0.95 Maximum absolute solution difference of h/ho 

k-1.05 Maximum absolute solution difference of h/ho 

(b) Relative Differ,*rice 

%e-0.95 Maximum relative solution difference of h/ho in % 

k-f .05 Maximum. relative solution difference of h/ho i n  r 



Table 5.10 	Combined Impact of B and k on Maximum 
,Solution Difference of Flow Velocity 

( a )  a s o l u t e .Biffe r e n e e  

k50.95 bfaximum absolute solu~ion difference of V/VO 

k~1.05 Maximum absolute solution difference of V/VO 


(b) Relative Difference 


k=O. 95  Maximum relative solution difference of V/VO in % 

k-1.05 Haximum relative solution difference of V/Vo in % 



~ ~ 

5.1,3. 


A s  discussed in sections 5.1.1 and 5,1.2, the values of mSD 

or m S D  of the nondimensional flow depth and flow velocity are 

related to the channel slope and downstream boundary condition. 


Therefore, it is necessary to recapitulate the impacts of the 


channel slope and downstream boundary condition on the solutions 


of the equations. 


For various combinations of D, k, k f  and downstream water 

depth, the values of either MASD or MRSD of h/ho and V/VO always 

decrease with increasing values of the channel slope. Tables 5.11 

and 5.12 illustrate this impact of SO on the solutions of the 

equations, For B = 1 and hd/ho = 1.80 with different combinations 

of k and ks,the value of the channel slope is reduced only by 40% 

and 808, respectively, but the values of MASD or MRSD of h/ho and 

V/Vo increase sharply by several orders of magnitude. Therefore, 

it can be deduced that for channels with large bed slope the Saint- 


Venant equations can be safely applied to solve open channel 


problems. Without significant downstream backwater effect or for 


n * 3 - 9 9 ,  q q - 4  4=,..- 41LIVw,h * T  &L-
L~lS 

-I-.----1 
~ can be~ ~ ~dAsQrll L L V ~ C  lUdLILVLLL1 b 

--I---
~ expressed as a ~ 

function of the flow Froude number or Kinematic wave number; hence 

the steeper the channel slope, the greater the values of the Froude 

nuwer,  F,, and kinematic wave number, n. It can be further 

deduced that the Saint-Venant equations can replace the exact 

momentum and continuity equations under the condition of high flow 

Froude number or kinematic wave number. It is valuable to 

investigate in what ranges of Froude number and kinematic wave 



Table 5.11 	Impact of So on Maximum Solution 
Difference of Flow Depth 

( a )  $absolute Bif f erence 

k-0.95 k = l  k-f k=f.CS 
I % - 1  k'=1 kf-1.05 kP=8.95 k'-1 

hd/ho -1.83 

Increased muleiple of so%utisn diffarzace 
with respect to So 

So is rzduced 
by 40% 

from 0.00095 
to 0.00057 16 

0 0 1 ~ . X . O 1 1 n + 0 ~ 0 1  

so is reduced 
by 80s 

f rom 0.00095 
to 0.00019 20 18 20 19 

* (b) ~elativeDifference 

Piaxiaa~rilarivs solution difiersncs of h/ho in 

Increased multiple of solution difference 
vich tespzcr to So 

S, is reduced 

by 40% 


fron 0.08095 

c, n nnnr-,
LU V.UUUJI 

go is relucted 
by 80% 

fraa 0.00095 

to 0.00013 13 15 39 3 5  




Table 5.12 Impact of So on Maximum Solution 
Difference of Flow Velocity 

(a) a s o l u t e  Difference 

Pncrtassd rnulei~le of solution dlfferzncs 

with r e s p c t  to SO 

SO is raduced 
by 40% 

from 0.00095 
to 6.00057 2% 28 

0 1 1 - 0 1 - 0 - ~ 0 1 1  

SO is seduced 
. by 80% 
f r o m  0.00095 
to 0.00019 29 30 30 29 

(b) Relative Diffe~ence 

Haxlhmm ralative solution differsnce o f  V/V ia %0 

Pnerzased multiple o f  solution difference 
with res2ect to s

0 


---------..---
i-Ois rsduced 

by 80% 
from 0.00095 
to 8 .OQOL9 40 4 1  53 53 
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number the difference of the solutions between the exact momentum 


and continuity equations and the Saint-Venant equations can be 


ignored. From present results, if the initial steady-uniform-flow 

er (VO/(ghO)O w5, is greater than 0.2, the difference of 

the solutions of both sets of equations becomes very small. 


The impact of the downstream boundary condition is presented 


in Tables 5.13 and 5.14 and also shown in Fig. 5.6. In order to 


describe the problem briefly and concisely only one combination of 


D R  k and kt,i.e., D = 1, k = 0.95 and kq = 1, is selected as an 

example and eight values of hd/ho are chosen to study the change 

of the maximum solution difference as the downstream water depth 


varies. Two facts can be observed from Tables 5.13 and 5.14 and 


Fig. 5.6. One is that the values of MASD or MRSD of the 


nondimensional flow depth and flow velocity always increase with 


increasing values of hd/ho. It indicates the importance of the 


downstream boundary condition to the solutions. The other fact is 


that the influence of the downstream boundary condition on the MASD 


or MRSD of h/hO and V/VO is related to the channel slope. When the 


channel slope is small, the values of MASD or MRSD of h/hO and V/VO 

increase greatly with increasing h,/h,. But, when the channel 

U V 

slope becomes large the influence of the downstream boundary 


condition on the value of MASD or MRSD is reduced. Thus, 


indicating again that the channel slope is an important factor. 


5-2. 


The main difference between a wide rectangular channel and a 


rectangular channel is the width of the channel bottom, b, and the 




Table 5.13 	Impact of Downstream Boundary Condition on 
Maximum Solution Difference of Flow Depth 

(a) a$sslute D i f f e r e n c e  

Channel s l o p e  = 

& = I  0.00019 6.00057 0.00095 0.00114 
Value . hd/ho 
of & fL kV 

Maximum absolute solution difference of h/ho 


(b) Relative Difference 


of k & kt 	 Maximum relative solution difference of h/ho in $ 



Table 5.14 Impact of Downstream Boundary ~onditionon 
Maximum Solution Difference of Flow Velocity 

(a) U s o l u t e  Difference 

Charnel s l o p e  -
B = %  0.008%9 0.08857 0.06095 0.881P4 

Value hd/ho 
of k & k' 

$faximum absolute solution difference of V/vo 

(b) Relative Difference 

B - 1  
TJbalue 

of k & k" 
--a/h ,PFI

"'Q 

Ghamef slope -
0.00019 0.00057 0.00095 O.OOll4 

Maximum relative solution difference of V/vo in % 



Fig .  5.6 	Impact of Downstream Water Depth on Absolute 
Solution Difference of h/h and V/VO f o r  
Case of B = 1, k = 0.95 ani k v  = 1 
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existence of the banks to slow down the flow. By examining the 


numerical solutions for various combinations of the coefficients, 


channel slope and downstream water depth, it has been found that 


for a rectangular channel the impact of the coefficient, 8, k or 


k t  on the solutions of the equations is basically similar to that 


of a wide rectangular channel. Therefore, discussion of the 


impacts of the coefficients, D, k and kt, on the solutions for a 


rectangular channel are not repeated here, whereas, the impact of 


the channel bottom width, b, on the solutions of the equations is 


investigated in this section. 


The impact of b on the solutions of the equations is presented 


in Tables 5.15 and 5.16. From the experience of investigating wide 


rectangular channels, the condition of So = 0.00019, B = 1, k = 

0.95 and kf = 1 is selected as an example to explain the change of 

MASD or Z4RSifi of h/ho or V/VO with increasing values of the channel 

bottom width, b, for various downstream water depths. Three values 

of b (5000 ft, 500 ft and 100 ft), i.e., b/ho = 360, 36 and 7, are 

considered as examples. From Tables 5.15 and 5.16, as b/ho 

decreases from 360 to 7, the values of MASD or MRSD of h/ho and 

V/VO vary only insignificantly. Thus, it is shown that for the 

range of width to depth ratio tested, the impact of the channel 

width b on the solutions is not significant. 

A trapezoidal channel differs geometrically from a rectangular 


channel due to the side slope of the channel cross section, z. If 


the value of z is equal to zero, the trapezoidal channel becomes 


a rectallg-iilarchannel . For reasons discussed previously, the 

impacts of the coefficients, B, k and k v ,on the solutions of the 



Table 5.15 	Impact of Rectangular Channel 
Width b on Maximum Sohution 
Difference of Flow Depth 

(a)  Absolute Difference 

Maximum absolute solution dif ference  o f  h/ho 

(b) Relative Difference 

M~ximmrelative solution difference cf h/hg in % 

'3 r) l.k f k  ...36(3 7 1. 1. 
Y/ AAo b . 9 9  - L .  L+ -3.13 - 4 . 3 3  -6.03 



Table 5.16 Impact of Rectangular Channel 
Width b on Maximu ~olution 
Difference of Flow Velocity 

(a) a s s l u t e  Dif f e r ace  F4 

So=O. 00019 hd/hos 
B=% 1.44 1.66 1.80 2.02 2.53 
k'=l 
k-0.95 

Haximum absolute solution dif ference o f  v/vO 

(b) Relative Difference 

. ., 

. Sg=0.00019 

. B=1 l , 4 4  1.66 1.88 2.02 2.53 
k9=1 
k-0.95 

Maximum relative solution difference of V/VO in % 
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exact momentum and continuity equations for trapezoidal channels 


are not repeated in this section. The investigation here is 


focused on the impact of channel side slope, z ,  on the solutions 

of the equations. 


Tables 5.17 and 5.18 demonstrate the impact of z on the 

solutions of the flow equations. Based on the experience of 


investigating wide rectangular channels, a typical condition (So 


= 0,00019, B = 1, k = 0.95, k b  1) and two different values of the 

channel bottom width, b = 5000 ft and 100 ft (i.e., b/ho = 360 and 

71, are considered as examples. From the top portions of Tables 

5.17 and 5.18, it is shown that if the width to depth ratio of the 

channel bottom is large, increase of the channel side slope does 

not significantly affect the solutions of the equations. However, 

if the width to depth ratio of the channel bottom is small and the 

downstream-boundary water depth becomes large, a change of the 

channel side slope produces an important impact on the solutions 

of the equations, especially on the flow velocity. This result is 

displayed clearly in the bottom portions of Tables 5.17 and 5.18. 

For a given b/ho, the larger the value of z ,  the more the change 

of the flow area A for a change in the depth of the unsteady 

nonunifom flow, 


Therefore, it is concludedthat in determining which equations 


(the exact momentum and continuity equations or the Saint-Venant 


equations) are reliable for solving an open channel problem, the 


side slope and bottom width to depth ratio of the trapezoidal 


channel should be considered as contributing factors. 




Table  5.17 Impact of Side Slope z on Maximum 
Solution Difference of Flow Depth 

(a) Absolute Difference 


w 
Kaximum a 5 s o l c ~ es o l u t i o n  d i f f e r e n c e  of h/hO 

s0=0~00019 hd/ho' 
8-1 . 1.44 1 . 6 6  1 . 8 0  2 .02  2 . 5 3  

k-0.95, k'm1 
b/h0=7 ' 

Maximum absolute 
. .. difference 04 h/hg 

(b) Relative Difference 


60=0.00019 
 hd/h~m
&a 1.44 1.66 I.80 2.02 2.53  
k=0,95, k i = l  
%jh0-360 

Haximum relative solvtioa difference o f  h n Oin % 

S0=0.00019 hd/ho' 
GI. 1.44 1.66 1.80 2.02 2 . 5 3  

k-0.95, k'-l 
6/hO17 

imum relative solution difference of h/hg in I 



Table  5.18 Impact of Side Slope z on Maximum 
Solution Difference of Flow Velocity 


(a )  Absolute Difference 

- w 
Haximum absolute solution difference o f  V/VO 

~,=O.OOOl9 ha/ho= 
B=l 1 .44  1.66 1.80 2.02 2.53 

k-0.95, k'ml 
b/h0=7 

H a i r n u  absolute solution difference of V/VO
. . 

(b) Relative Difference 


k-0.95, k"-f 
b/hO-360 

Maximum relative solution difference of V/V in % 
. ,  0 

S0=0.00019 hd/ho' 
B-1 1.44 1.66 1.80 2.02 2.53 

k-0.95, k'=1 
b/h0=7 

Maximum relative solution difference of V/Vo in r 
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In addition, it should be mentioned that for rectangular 

channels, the values of either MASD or MRSD of h/ho or V/VO are the 

same for certain comfsinations of k and kg. However, this 

regularity disappears for trapezoidal channels, L e e , the values 

of either MASD or MRSD of h/ho or V/VO for each combination of k 

and k v  are different, although the difference is not very large. 

Table 5.19 for D = 1, Sg = 0.00019 and hd/ho = 2.53 is selectecl as 

an example to display the difference of MASD or MRSD of the 

nondimensional flow depth between the rectangular and trapezoidal 

channels. For trapezoidal channels, the solutions of the exact 

momentum and continuity equations are definitely different if one 


of the three coefficients, B, k and ku, is varied. 


As to the effect of an arbitrary cross-sectional shape on the 


solutions of the equations, a key point is how to express the 


cross-sectional geometry functions, i.e., various G functions 


mentioned in Chapter 4. If these G functions of an arbitrary 


cross-sectional shape can be found, the exact momentum and 


continuity equations can be solved, and the effect of the arbitrary 


shape on the solutions can be obtained by comparing the solutions 


of the exact momentum and continuity equations with those of the 


Saintevenant equations. Generally speaking, it is easy to 


represent G functions for regular shapes, for example, rectangle, 


trapezoid, triangle, circle, parabola and so on, but it is 

difficult to find the G functions for an arbitrary irregular shape. 

One method to solve this problem is to use an approximation. Since 

the G functions are a function of nondimensional flow depth, h, (h, 

= h/ho), graphs reflecting the relationships between each G 



Table 5.19 	Comparison of Maximum Solution Difference 
of Flow Depth f o r  Different Channel Shapes 

(a) U s o l u t e  Difference 

.!%=I 	 So = 0.00019, b/ho = 7 
Rectangular channel Trapezoidal channel (%=I) 

Value hd/ho 
sf k & k9 

Maximum absolute solution difference cf h/ho 


(b] Relative Difference 

B - 1  

Value 
sf k & k' 

hd/h~ 

s, 0.00019,b/hg '7 
PI-nectangula~- channel Trapez.oidal channel (z-1) 

Maximum relative solution difference of h/hQ in % 
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function and h, for various regular shapes can be made. The . 

unknown relationships between each G function of an a r b i t r a r y  shape 

and h, can be estimated using these graphs. ~ i g u r e s5.7 through 

5.11 	are graphs expressing the relationships between GI, G ~ ,G ~ ,  


G5 and h, for rectangular and trapezoidal channels (the width
G4,  

to depth ratio of channel bottom, b/ho, is equal to 7 and the side 

slope, z, is equal to 0, 1, 2 or 4), respectively. For an 

arbitrary cross-sectional shape, the G functions can be roughly 

assessed by utilizing the known family of curves. Figures 5.7 

through 5.11 are given here as a demonstration. More curves for 

different regular shapes are necessary, so that these graphs can 

Fig. 5.7 Geometry Function G1 vs.  h, for 
Trapezoidal Channels with b/ho = 7 



F i g .  5.8 G e o m e t l y  Function G2 vs. h, f o r  

Trapezoidal Channels with b/ho = 7 


Fig. 5 . 9  G e o m e t r y  Function G3 vs. h, f o r  

Trapezoidal Channels with b/ho = 7 




Fig .  5.10 Geometry Puncticn C4 vs. h, f o r  
Trapezoidal Channels with b/ho - 7 

re;@.. r s e  190 %I B 238 


G5Tq/7 

Fig. 5.11 	G e o m e t r y  Function G5 vs. h, f o r  

~rapezoidal Channels with b/ho = 7 




5.3. situation of Acceleratins T m e  Water Surface Profiles 

It is interesting to investigate if the effects of the 

coefficients and terms of the exact momentum equation for 

convectively accelerating and decelerating type water surface 

profiles are similar. The results reported in the preceding two 

sections are for the cases with hd/ho > I, i. e., at least initially 

the flow is convectively decelerating, ahlax > 0, similar to the 

M1 (or S1) type backwater curve of steady flow. Discussed in this 

section are the results of convectively accelerating flow with 

hd/ho < 1 and ah/ax 0, similar to the M2 type backwater curve of 

steady flow. 

For unsteady flow, the convectively accelerating type water 


surface profile occurs for the following cases: (a) The elevation 


of the normal depth of the flow in a mild-slope channel, which is 


a function of time, is greater than the elevation of the water 


surface at the downstream end of the channel, e.g., in a reservoir 


or a lake. (b) The subcritical flow depth decreases along a 


channel because of the enlargement of cross section at the 


downstream end. (c) Under certain situations, the flood flow of 


the initially decelerating M1-type water surface profile may 


temporally change to the M2 type convectively accelerating profile. 


This process is not discussed here. 


According to experiences gained from investigation of the 


initially decelerating MI-type water surface profiles, the study 


of importance of the coefficients, B, k and kg, in the exact 


momentum equation to the solutions of the equations for convec- 


tively accelerating type profiles only focuses on some special 
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conditions, for example, wide rectangular channel, very mild 


channel slope, and consideration of changes of k and D. 


Tables 5.20 through 5.23 demonstrate the values of MASD or 


D of nondimensional flow depth, h/ho, and flow velocity, V/VO, 


for SO = 0.00019, D = 1, 1.33 and 2, k = 0.95 and 1.05, k v  = 1, 

with various selected downstream water depths. From the four 


tables, it is observed that the values of MASD or MRSD of h/ho and 

V/VO for various values of k and B increase with lowering the 

values of the downstream-boundary water depth, and they 


asymptotically approach a certain constant. This is because for 


a convectively accelerating type profile, there is a terminal 


depth, i .e. , the critical depth, at the downstream end. Theref ore, 

by lowering the downstream depth and gradually approaching the 


critical depth, the solution difference approaches a certain value. 


This result is opposite to that of the convectively decelerating 


+-mep r ~ f i l e sf o r  s?h-J~ht h e  solution difference is bacjrwater effeet 

dependent. For a water syrface profile of the convectively 


decelerating type, the backwater effect increases with increasing 


downstream depth. Thus, the solution difference also increases 


with increasing downstream water depth. However, for a 


convectively accelerating profile, the backwater effect increases 


with lowering downstream depth. 


Furthermore, by comparing Tables 5.20 and 5.21 with Tables 


5.1 and 5.2, and Tables 5.22 and 5.23 with Tables 5.7 and 5.8, 

respectively, it is found that for convectively decelerating type 

profiles, the values of MASD or MRSD of h/ho and V/VO corresponding 

to various values of k are always greater than those for convecti- 

vely accelerating type profiles, but for various values of f3 the 



- - - - - - - - - - -  

Table 5.20 Impact of Pressure Correction ~oefficientk on 

Maximum Solution Difference.of h/ho for Flow 
with Accelerating Type Water S u r f a c e  Profiles 

(a) A b s o l u t e  Di f ferewce 

Maximum absolute so lu t i on  difference o f  h/ho 

Rate of change of so lu t ion  dif ference with respect t o  k in $ 

k varies 5% 

(0.95 t o  1) - 9 1  -91 -91 -87 -74 

k varies 5% 

(1 t o  1.05) - 8 1  -81 -81 -77 -66 


(b) Rela t ive  Difference 

M a x i m u m  r e l a t i ve  solution dif ference o f  h/ho i n  % 

Rate of change of solution dif ference with respec t  t o  k i n  % 

k varies 5% 

( 0 . 9 5  t o  1) -47 -47' -47 -46 -40 

k varies 5% 
(I to 1 .05) -42 



Table 5.21 	Impact of Pressure Correction Coefficient k on 
Maximum Solution Difference of V/Vo for Flow 
with ~cceleratingType Water Surface Profiles 

(a) Absolute Difference 


Maximum absolute solution difference of V/V 

0 


Rate of change of solution difference with respect to k in % 

k varies 5% 

(0.95 to 1) +94 +94 4-94 +8 8 +7 9 
_ - - - _ - _ _ 0 0 0  

k varies 5 %  

(1 to 1 . 0 5 )  4-88 +8 8 +88 +8 3 +74 


(b) Relative Difference 


Maximum relative solution difference of V/vo in % 

Rate of change of solution difference with respect to k in % 

k varies 5% 

(0.95 to 1) +48 +48 +48 4-44 +3 9 
e m - - - - - - - - -

k varies 5% 

(1 t o  1 . 0 5 )  +45 +45 +45 -1-41 +36 




Table 5.22 	Impact of Momentum Correction coefficient B on 
Maximum Solution Difference of h/ho for Flow 
with Accelerating Type  Water Surface Profiles 

(a) a solute Diffe~ence 


Maximum absolute solution difference of h/ho 

Rate of change of solution difference with respect to .& in $ 

B varies 33% 
(1 to 1.33) 10 10 10 8 5 

B varies 100% 
(1 to 2.00) 11 I1 11 9 5 

(b) Relative Differenee 

M a x i m u m  relative solution difference of h/ho in % 

Rate of change of solution difference with-respect to B in % 

B varies 33% 

(1 to 1.33) 5 5 5 4 2 

I ----------

B varies 100% 

(1 to 2.00) 6 6 6 5 3 




Table  5.23 	Impact of Momentum C o r r e c t i o n  coefficient B on 
Maximum Solution Difference of V/VO f o r  Flow 
w i t h  Accelerating Type Water Surface  Profiles 

(a)  Absolute Difference 

Maximum absolute solution difference of v/vo 

Rate sf change of solution difference with respect to 8 in % 

B varies 33% 

(1 to 1.33) -10 -10 -10 -9 -5 


B varies 100% 

(1 to 2.00)' -11 


. . 
(b) Relative Difference 


_ - _ _ _ _ _ C . . _ _ _ _ . . . _ . _ _ ~ . _ _ ~  _ _______ 	 -. - - .... .-. -

Bate of change of solution difference with respect ta B in % 

%S varies 33% 

(1 to 1.33) -5 -5 -5 -4  - 3 

- - - m - m . . - - - -

B varies 100% 

(1 to 2.00) -6 -6 -6 - 5  -3 
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results become opposite. This means that the impact of k on the 

solutions for the convectively accelerating type profiles is 

smaller than that for the convectively decelerating type profiles, 

but the impact of 13 on solutions for the former becomes larger than 

for the latter. However, by comparing Tables 5.20 and 5.21 with 

Tables 5.22 and 5.23 it is obvious that for convectively 

accelerating type profiles the impact of k on the solutions of the 

equations is also greater than that of 13. Thus, it can be further 

concluded that for convectively accelerating type profiles, the 

difference between the solutions of the exact momentum and 

continuity equations and the Saint-Venant equations due to the 

variations of the coefficients, D and k, is also relatively not as 


significant as for the convectively deceleratingtype water surface 


profiles, 


5,4. 


In section 5.1 the downstream boundary condition is assumed 

to have a constant water depth for the sake of simplicity in 

discussion. In nature the downstream depth often changes with 

time. Based on discussions in previous sections, for the sake of 

brevity without losing generality, the effect of time-varying 

stream-boundary depth on the solutions of the equations is 

investigated only for one coefficient combination (D = 1, k = 0.95 

and kg = 1) and one channel slope (SO = 0.00019) of a wide 

rectangular channel. As depicted in section 4.4, four typical 

situations of time-varying downstream depth are considered here: 

(a) The depth hydrograph at the downstream boundary is identical 
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with that at the upstream boundary, i .e . ,  the same period and 

amplitude. (b) The period of the depth hydrograph at the 


downstream boundary is the same as that at the upstream boundary, 


but the amplitude of the foner is larger than the latter, either 


twice or one and a half times. (c) Similar to (b), but the 


amplitude of the former is smaller than the latter, either one half 


or two thirds. (d) The depth hydrograph at the downstream boundary 


is the same as that at the upstream boundary in both the period 


and amplitude, but the two depth hydrographs are in reverse. The 


results tested are presented in Table 5.24. 


From Table 5.24, it is observed that the difference between 

the solutions of the exact momentum and continuity equations and 

the saint-Venant equations increases with enlarging the amplitude 

difference of the depth hydrograph between upstream and downstream. 

When the depth hydrograph at the downstream boundary is the same 

as that at the upstream (i e no backwater effect) , there are 

insignificant solution differences. When the variation of the 

water depth at the downstream boundary is greater than that at the 

upstream, the flow profile is the convectively decelerating type, 

and the larger the variation of the flow depth at the downstream, 

the more important the backwater effect, thus, the difference 

between the solutions of the two sets of equations becomes large. 

When the variation of the depth at the downstream boundary is 

smaller than that at the upstream, the flow profile is the 


convectively accelerating type. At this time, the solution 


difference increases with lowering downstream-boundarywaterdepth. 


These results are basically in accord with those obtained from the 


condition of a constant downstream water depth for the convectively 




Table 5.24 	Impact of Time-varying Downstream Water 
Depth on Maximum Solution Difference  
of Flow Depth and Flow Velocity 

(a )  *solute Bifference 

Comparison of stage hydrograph at dowws$reara 

with that at upstream 


Reverse Twice One and half Equal Two thirds Half 

Maximum absolute solution difference of h/ho 

sO-O.00019 


Maximum absolute solution difference of V/VO 

(b) Relative Difference 


Comparison of stage hydrograph at donstream 
with that at upstrean 

Reverse Twice One and half Equal Two thirds Half 


Maximum relative solution difference of h/hg in % 
50-0.00019 -

B=1 
&'=I -4.90 -4.79 4 - 1 5  -1.12 1 . 7 3  2.04 
k-0.95 

Maximum relative solution difference of V/vo in % 
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d e c e l e r a t i n g  and a c c e l e r a t i n g  p r o f i l e s .  I n  a d d i t i o n ,  it is shown 

t h a t  t h e r e  is  a maximum r e l a t i v e  s o l u t i o n  difference of e i t he r  f low 

depth ,  h ,  o r  v e l o c i t y ,  V, when t h e  two depth hydrographs a t  t h e  

downstream and upstream a r e  reversed .  This  r e s u l t  impl i e s  t h a t  if 

t h e  depth  hydrographs a t  the downstream and upstream are  not 

synchronous (this s i t u a t i o n  may be more common i n  n a t u r e ) ,  the 

d i f f e r e n c e  of the s o l u t i o n s  of t h e  two sets of equa t ions  a r e  

s i g n i f i c a n t .  

Further Remarks 


From p r e v i o u s  d i s c u s s i o n s ,  it can be summarized t h a t  t h e  order  

of  importance o f  t h e  coefficients inv~lvedi n  t h e  exact momentum 

equa t ion  is k first, t h e n  kt,and B l a s t .  The importance of B,  k 

o r  k' t o  t h e  s o l u t i o n s  o f  t h e  equa t ions  is g r e a t l y  in f luenced  by 

the channel s l o p e  and the downstream-boundary wa te r  depth.  For  

channels  w i t h  v e r y  s m a l l  s l o p e  and l a r g e  downstream backwater 

effect ( t he  more convectively d e c e l e r a t i n g  o r  a c c e l e r a t i n g  

s u b c r i t i c a l  flow), the f u r t h e r  the va lue  of k d e p a r t s  from u n i t y  

and t h e  l a r g e r  t h e  v a l u e  of B e . ,  t h e  more nonhydros ta t ic  

p r e s s u r e  d i s t r i b u t i o n  and nonuniform v e l o c i t y  d i s t r i b u t i o n ) ,  t h e  

l a r g e r  t h e  d i f f e r e n c e  between the s o l u t i o n s  of t h e  exact momentum 

and c o n t i n u i t y  e q u a t i o n s  and t h e  Saint-Venant equat ions .  



6, CONTRIBUTIONS OF TERMS INVOLVED 
IN EXACT MOMEN EQUATION 

There are five terms, in addition to the aT/ax tern, in the 

exact momentum equation, namely, the local acceleration, convective 

acceleration, pressure, friction slope, and channel slope. As 

described in section 4.4, contributions of these terms to the 

solutions of the equations a rg  investigated in two aspects. One 

is to study the magnitudes of these terms at different times and 

positions of simulation for various values of D, k and k1 without 

backwater effect. The other is to study the same terms with 

domstream backwater effect, Similar to Chapter 5, the 

investigation is first focused on wide rectangular channels with 

convectively decelerating type water surface profiles. Next, 

channels with other cross-sectional shapes and, finally, the 

convectively accelerating t ype  pro f i l e s  are b r i e f l y  studied. 

6.1, 


6.1,1. No Backwater Effect 


As described in section 4, the case of unsteady flow without 

considering the downstream backwater effect is simulated through 

using a very long channel and using the result only up to x = L = 

54 miles. In order to concisely analyze the effect of the five 

main terms in the exact momentum equation for various values of 8, 

k and k g ,the situation with B = 1, k = kf = 1, and two extreme 

situations, D = 2, k = 1.05, kf = 1 and 13 = 2, k = 0.95, k t  = 1 (B 

assumes the largest value tested while k assumes the largest and 

smallest values), for only one channel slope, So = 0.00019, are 
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selected as examples. The nondimensional solution values of these 

tems and their ratios in the absolute value at different times and 

channel cross-sectional positions from the channel upstream 

entrance, x/L = 0, 10/27, 5/9, 20/27, 25/27 and 1 (L is the channel 

length investigated and it is equal to 54 miles), are presented in 

Appendices A, B and C for the case of no backwater effect, and also 

shown in Figs. 6.1, 6.2 and 6.3. In addition, Table 6.1 

demonstrates the time-average ratios in the absolute value between 

these terms, namely, the local acceleration and the convective 

acceleration terms, respectively, versus the pressure term, the sum 

of the two acceleration terms versus the pressure term, and the 

pressure term versus the friction slope and the difference between 


the friction and channel slopes, respectively. 


From these tables and figures, it is obvious that the most 

impor tan t  terms are the friction and channel slopes. The sum of 

the local and convective acceleration tems is less than 8% of the 

pressure term, and the pressure term is approximately 7% of the 

friction slope. Therefore, without downstream backwater effect the 

two inertia tems and the pressure term can often be neglected as 

compared to either the friction slope or channel slope, i.e., the 

kinematic wave model is applicable. However, it is cautioned that 


this observation is valid only for the calculation of the flow 


variables at a particular location or cross section. To calculate 


the variation of a nonuniform flow along a channel, such as the 


water surface profile variation, ah/ax, the pressure and inertia 


terms should be compared with the combination of the friction and 


channel slopes. From Table 6.1, because the ratio between the 




(a) Sections 0 and 10/27 

F i g .  6.1 Nondimensional Values of Terms f o r  
B = 1, k = k f  = 1, SO = 0.00019 
and No Backwater E f f e c t  



(b) s e c t i o n s  5/53 and 2 0 1 2 7  


Fig. 6.1 (continued) 




8 8 8  158 2 8 8  258  


NandimanaienaP Time 


(c) Sec t ions  25/27 and 1 


Fig. 6.1 (continued) 




(a) Sections 0 and 10127 


Fig. 6.2 	Nondirnensional Values of Terms for 
B = 2 ,  k = 1.05, k v = 1, SO = 0.00019 
and No Backwater E f f e c t  



(b) Sections 55/53  and 20/27 

Fig. 6.2 (continued) 



(c) S e c t i o n s  25/27 and 1 


F i g .  6.2 (cont inued)  




Ncndimonzional Time 


(a)  Sections O and 10/27 

Fig. 6.3 	Nondimensional Values of Terms f o r  
B 3 2!  k = 0.95, k v  = If SO = 0.00019 
and No Backwater Effect 
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(b) S e c t i o n s  5 / 9  and 20/27 

Fig. 6.3 (continued) 



(c) S e c t i o n s  25/27 and 1 


F i g .  6.3 (continued) 




Table 6.1 	Time-averageRatios between Terms 
in Exact Momentum Equation f o r  
Case of no Backwater E f f e c t  

Ratio i n  absolute value 

No Location 
b a c h a t e r  of cross %seal Convective Sun of two Pressure Pressure 

e f f ec t  section accele.  aecele.  accele .  vs . vs . 
vs . vs . vs . Fr i c t ion  (sf-so) 

Pressure Pressure Pres.sure s f ope  

pressure term and (Sf - S o  ) for various situations investigated 

is always in the order of one, it is implied that the pressure term 

is no longer negligible. In other words, the advantage of using 

the noninertia model which is simpler than the full dynamic wave 

model and more accurafe than the kinematic wave model is indicated. 

The values of the convective acceleration tern and pressure 

term for the case of B = 2 and k = 1.05 increase from those for 

the reference condition of B = 1 and k = 1. However, the change 
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is not significant. By comparing Appendix B with Appendix A and 

referring to Table 6.1, it is shown that the nondimensional value 

of the convective acceleration tern and the ratio between it and 

t h e  pressure tern in the case of B = 2 and k =. f.05 are about twice 

as large as that of the case of B = 1 and k = 1, but the former 

term is still much smaller than the latter (more than an order of 

magnitude). The nondimensional value of the pressure tern and the 

ratio between it and the friction slope increase only slightly in 

the case of B = 2 and k = 1.05. Furthem-ore, the other r a t i n s  

between these terms in the case of B = 2 and k = 1.05 are almost 

the same as those f o r  the case of D = b and k = 1. For another 

extreme case of D = 2 and k = 0.95, if the results given in 

Appendix C are compared with those in Appendix A, it is also 

apparent that the convective acceleration term is approximately 

twice as large as that of the reference condition of D = 1 and k 

= 1, and the pressure term is reduced, but only slightly from the 

reference case. From Table 6.1, the same conclusions can be 

obtained. 

6.1.2. With Downstream Backwater Effect 


Similar to the situation without downstream backwater effect 

discussed in section 6.1.1, only three situations (B = 1, k = kt 

= 1: B = 2 ,  k = 1.05, k 8  = 1 and B = 2, k = 0.95, kff  = 1) are 

selected to illustrate the influence of the five main terms on the 

unsteady nonuniform flow with downstream backwater effect. The 

downstream boundary condition is tested by using three constant 

downstream water depths, i.e., hd/hO = 1.44, 1.80 and 2.53, 



respect ively .  The results are shown in Figs. 6.4 through 6.12 and 

also summarized in Appendices D, E and F. similar to Table 6.1, 


the time-average ratios in the absolute value between these terms 


for the aforementioned three situations with different domstream 


water depths ape presented in Table 6.2. 


By comparing Appendix D with Appendix A or Figs. 6.4 through 


6.6 with Fig. 6.1 and examining Table 6.2, it is shown that if 


there is a downstream backwater condition the pressure term becomes 


very significant. Its magnitude may be equal to or greater than 


that of the friction slope at the cross sections near the down-


stream boundary. As the nondimensional downstream depth, hd/ho, 


increases from 1.44 to 2.53, the ratio between the pressure term 


and the friction slope increases sharply, and the cross section 


where the pressure term becomes important ( e ,  the ratio between 

it and the friction slope reaches greater than 20%) moves farther 

and farther upstream. For example, this position is at x/L = 25/27 

*ad/ a10 - & . = = I  UIIU 4-fgr h - /h = ? A A - A  IL.L is at x,/L = "n for hdjhO = 2.53 (see 

Figs. 6.4 through 6.6 and Table 6.2) . Thus, the pressure term 

cannot be ignored when the downstream backwater effect exists. 

Because the pressure term becomes s i g n i f i c a n t  and t h e  sum of two 

acceleration terms is much smaller than the magnitude of the 

pressure term (it can be seen from Table 6.2 that the ratio between 

the sum of inertia terms and the pressure term is less than 6% for 

the case of B = 1, k = k t  = 1 with hd/hO = 1.44, 1.80 and 2.53, 

less than 9% for the cases of D = 2, k = 1.05, kf = 1 and D = 2, 

k = 0 . 9 5 ,  k t  = 1 with hd/ho = 1.80 and 2.53, and less than 17% for 

the cases of B = 2, k = 1.05, k e  = 1 and B = 2, k = 0.95, k s  = 1 
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(a) Sections O and 10127 


Fig. 	6.4 Nondimensional Values of Terms for B = 1, 
k = k' = 1, So = 0.00019 and hd/ho = 1.44 



(b) Sections 519 and 2 0 1 2 7  


Fig. 6 . 4  (continued) 




(c) Sections 25/27 and 1 


Fig. 6 . 4  ( con t i nued )  




(a) Sections 0 and 10127 


Fig. 	6 . 5  Nondimensional Values of Terms f o r  B = 1, 
k = k f  = 1, SO = 0.00019 and hd/ho = 1.80 



(b) S e c t i o n s  55/53 and 70/27 

F i g .  6 . 5  (cont inued)  
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(c) Sec t ions  25/27 and 1 


Fig. 6.5 (cont inued)  
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(a) S e c t i o n s  0 and 10/27 

Fig. 	6.6 ~ondimensionaiValues of Terms f o r  B = 1, 
k = kt = 1, So = 0.00019 and hd/hg = 2.53 



(b) S e c t i o n s  5 / 9  and 20/27 

Fig. 6.6 (con t inued)  



(c) S e c t i o n s  25/27 and 1 


Fig. 6.6 (continued) 
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(a)  Sections O and 10/27 

Fig. 	6.7 Nondimensional Values of Terms f o r  B -- 2 ,  k = 
1.05, kt = 1, SO = 0.00019 and hd/hO = 1.44 



(b) S e c t i o n s  519 and 20/27 

F i g .  6.7 (continued) 



(c) Sec t ions  25/27 and I 


Fig. 6.7 (continued) 




(a) Sections 0 and 10127 

Fig. 6.8 Nondimensional Values of Terms f o r  B = 2, k =: 

1.05, k1 = 1, S o  = 0.00019 and hd\hO = 1.80 



(b) Sec t ions  5/53 and 20/27 

Fig. 6.8 (continued) 
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(c) Sect ions  25/27 and 1 


Fig. 6.8 (continued) 




(a) Sections 0 and 10/27 

Fig. 	6.9 Nondimensional Values of Terms f o r  B = 2, k = 
1.05, kt = 1, S O - =0.00019 and hd/ho = 2 . 5 3  
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F i g .  6.9 ( con t inued )  
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(c) Sections 25/27 and 1 

Fig. 6.9 (cont inued)  
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(a) Sections 0 and 10/27 

F i g .  6.10 Nondimensional Values of Terms f o r  B = 2 ,  k = 
0.95, k' = 1, So = 0.00019 and hd/hO = 1.44 
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(b) S e c t i o n s  5/9 and 20/27 

Fig. 6.10 (continued) 



(c) Sections 25/27 and 1 


Fig .  6.10 (continued) 
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F i g .  6.11 ~ond i rnens iona lValues of Terms f o r  B = 2 ,  k = 
0.95, kt = 1, So = 0.00019 and hd/hg = 1.80 



(b) Sections 519 and 20127 


Fig. 6.11 (continued) 




(c) Sections 25/27 and 1 


Fig. 6.11 (continued) 
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(a) S e c t i o n s  0 and 10127 


Fig. 6.12 Nondimensional Values of Terms for B = 2, k = 
0.95, k r  = 1, So = 0.00019 and hd/ho = 2.53 
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Fig. 6.12 (continued) 






Table 6.2 (continued) 


with hd//hg = 1.44) the two inertia terms can be ignored and the 

noninertia model is a good model to solve f lood routing problems. 

By comparing Figs. 6.7 through 6.9 or Figs. 6.10 through 

6.12 w i t h  F i g s .  6 .4  through 6.6, or Appendix E or F with Appendix 

D and inspecting Table 6.2, it is obvious that the relative 

importance of most of the terms is unaffected by the variation of 

t h e  values of B and k tested. The pressure term for the cases of 

D = 2, k = 1.05 and 0.95, kff  = I has a small change, but the change 

as compared to the reference ease of D = 1 and k = kg = 1 appears 

to be insignificant. The most important effect is the change of 

magnitude of the convective acceleration term resulting from 

variation of the value of 8. For various values of hd/ho, the 

nondimensional magnitude of the convective acceleration term and 
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the ratio between it and the pressure term for the case of D = 2, 


k = 1.05 or D = 2, k = 0.95 become about twice as large as those 


for the case of D = 1 and k = 1. 


- .. Inaddit-ion,t h e  importance -of the -conve-ctive acceleratio11 - - --

term is also influenced by the downstream water depth. For the 


case of hd/ho = 1.44 where the downstream backwater depth is 


relatively small, the nondimensional magnitude of the convective 


acceleration term at the cross sections near the downstream 


boundary ( x / L  = 25/27 and 1) f o r  various coefficient combinations 


investigated appears to be larger than that for hd/ho = 1.80 and 


2.53 (see Figs. 6.7 (c) and 6.10 (c) and Table 6.2) . At the cross 

sections, the ratio between the convective acceleration term and 


the pressure term for hd/hO = 1.44 reaches approximately 5% to 17%. 


However, -for hd/ho = 1.8D-dRd.- 2.53,- tKe Patio 2-s - only 1% to 7 % .  


This is because with lowering downstream-boundary water depth the 


unsteady flow entering the channel gradually converts from a 


convectively less accelerating nonuniform subcritical flow to a 


convectively more accelerating one; thus, the convective 


acceleration term gradually becomes more significant. 


On the basis of the above discussions, the effect of B on 


the convective acceleration term implies that using the Saint- 


Venant equations with B = 1 as a simplification of the exact 


and continuity equations could produce significant error 


if the actual distribution of the flow velocity is extremely 


nonuniform, i .e . ,  when the value of B is large. The reason is that 


the value of the convective acceleration term increases and is no 


longer unimportant whereas from the Saint- ena ant equations with D 




- - -  -- - - 
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= 1 the convective acceleration term appears to be insignificant. 

Therefore, for the extreme situation of large D (a approaches 2) 

with small downstream depth (consider the influence of the 

-	 downstream boundarp -condition on the-convect-ifre ac~elerra-timfe-m), 

the quasi-steady dynamic wave may be a more appropriate model than 

the noninertia model. Whereas in most other cases with significant 

downstream backwater effect, i.e., the convectively decelerating 

subcritical flow dominates, the noninertia model is adequate. 

Thus, it has been demonstrated that depending cn the values of the 

coefficients used, different approximations of the exact momentum 

equation or models should be selected for simulation of an unsteady 


flow problem. 


. - . - . . --

6J.3. Ii'atc?rRal Stress Term 

As described in section 2.3.6, the magnitude of the internal 

stress term, aT/ax, generally is assumed small. In order to ' 

investigate its impact, its values to be tested are estimated by 

referring to the magnitudes of the terms of local acceleration, 

convective acceleration, pressure and friction slope. According 

to the simulated results discussed in sections 6.1. l and 6.1.2, the 

nondimensi~nakvalues of the t w o  i n e r t i a  terms are ear, t h e  order of 

0.01 and those of the pressure and friction slope terms from 0.1 

to 1.0. Hence, the tested values sf the nondimensional internal 

stress term (with a coefficient, TO/7AOhOF02 ) are chosen as 0.01, 

0.1, 0.5, 0.75 and 1.0, respectively. If the impact of the aT/ax 

term on the solutions of the equations is small under this extreme 

range of conditions of aT/ax, the common practice of ignoring this 



term is justifiable. 


Only two situations, one with 13 = 1, k = 0.95 and k 9  = 1 

and the other one with l3 = 1, k = 1 and k v  = 1 (case of the Saint- 

Venant equations), are simulated for the 54-mile channel with the 

channel slope, So = Oe00019,and the downstream boundary condition, 

hd/hO = 1.80. The flow equations with and without the internal 

stress term, aT/ax, are tested. A comparison of the maximum 

absolute or relative differences of the solutions of h/ho and V/Vo, 

with and without the internal stress term in the equations, is 

demonstrated in Table 6.3. From this table, it is obvious that 

even as the nondimensional value of the aT/ax term approaches 

unity, i.e., nearly the magnitude of the friction slope, the 

maximum relative differences ofthe solutions of the nondimensional 

flow depth and flow velocity with and without the BT/ax tern are 

no more than 5%. Usually the magnitude of the internal stress term 

is much smaller and, hence, the effect of this term on the 

solutions of the flow equations is insignificant and negligible. 

6.1.4. 


Usually spatial changes of the velocity and pressure 

distributions of the flow are not rapid and, hence, the spatial 

rates, aB/ax and ak/ax, are small and negligible. Similar to 

section 6.1.3, the impacts of aB/ax and ak/ax on the solutions of 

the flow equations are investigated by giving them some 

nondimensional testing values, for example, 0.01, 0.1, 0.5, 0.75 

and 1.0, and by examining the results. The simulation results are 

presented in Table 6.4. From this table, it can be seen that if 



Table  6.3 	Impact of Internal Stress Term on Maximum 
Solution Difference of h/ho or V/VO 

(a )  msslute Diff erenee 

Nondimensisnal va lue  sf i n t e r n a l  stress term- 0.00019 0 . 0 1  0 - 1  0 . 5  0.75 1.00 
hd/ho = 1.80 

Maximum a b s o l u t e  solution di f fe rence  

& = I  
f o r  h/hO -0.0003 -0.0029 -0.0141 -0.0208 -0.0273 

k - l  
f o r  V/V0 0.0009 0.0090 0.0447 0.0669 0.0886 

kV= 1 

jb) Relative Difference 


nondirnensional value of internal stress tern- 0.00019 0.01. 0 .1  0.5 Q.75 1.00 
hd/ho '1.80 

maximum relative solution difference'fn % 

B = l  
for h/kO 

k - l  
f o r  V f l 0  

k' 1 




Table 6 . 4  	Impact of aB/ax or ak/ax on Maximum 
Solution Difference of h/ho or V/VO 

(a)  U s a l u t e  Difference 

ond dimensional value of rate of spatial changa o f  B e r  k 
So - 0.00019 0.01 0.7. 0.5 0.75 1.00 

Maximum absolute solution difference 


1 3 = 1  

for "n/*nO 0.0003 0.0027 0.0141 0.6214 0.0291 


k = 0.95 

for V/VO -0.0009 -0.0091 -0.0459 -0.0691 -0.0925 


kff = 1 


B = %  

for h/h0 0.0003 0.0029 0.0149. 0.0228 0.0308 


k l - f  
for V,T0 -0.0009 -0.0090 -0.0454 -0.0684 -0.0919 


k" 1 


(b) Relative Difference 


Nondimensional value of r a t e  o f  s p a t i a l  change o f  & e r  k 
So - 0.00019 0.01, 0.1 0.5 0 .75  1.00 
hd/ho = 1-80 

Maximum relative solution difference i n  % 

B - l  
forhfi0 0.02 0.23 1.20 1.83 2.49 

k = 0.95 
for V/V0 -0.04 -0.42 -2.12 -3.20 -4.28 

kf = I 

8 - 1  
for hpl;aQ 0.02 8-24 1.25 1.90 2.57 

k = l  
forV/VO -0.04 -0.42 -2.09 -3.15 -4.23 

k' = l 



the spatial change of the velocity or pressure distribution is 

small, the maximu absolute and relative differences between the 

solutions of the exact momentum and continuity equations (or the 

Saint-Venant equations) with and without considering aB/ax or ak/ax 

are not very large. This proves that for most flow conditions the 

two rates of spatial change of B and k can be ignored. But, if the 

velocity or pressure distribution has a rapid change along the x 

direction, such as an abrupt contraction or expansion of a channel, 

the values of t3i3/ax and ak/ax may become very large ( , much 

greater than the values tested), and the effects of the two rates 

of spatial change of D and k on the solutions should be carefully 

evaluated, otherwise the accuracy of the solutions of the 

equations could be in doubt, 

6 e 2 a  


From the preceding sections, the investigation of the momentum 

equation for flow in an infinitely wide channel provides a basic 

understanding of the relative contributions of the terms in the 

equation. The influence of the channel cross-sectional shape on 

the contributions of the terms is further studied herewith by 

considering prismatic channels with rectangular and trapezoidal 

shapes. For rectangular channels, one case with the channel width, 

b = 100 ft ( e , b/ho = 7) is investigated. For trapezoidal 

channels, only the case with the side slope, z = 4, and the channel 

bottom width, b = 100 it (i.e., b/ho = 7) is tested as an example. 

In addition, in this analysis, the situation of D = 1, k = 1, k' 
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= 1, S o  = 0.00019 and hd/ho = 1.80 is used. These results are 

summarized in Appendices G and H, respectively. 

By comparing Appendix G with the corresponding portions in 

Appendix D, it can be seen that the nondimensional values of the 

terms and the ratios between them for a rectangular channel are 

almost the same as those for the wide rectangular channel. This 

means that for a rectangular channel beyond the tested width to 

depth ratio, b/ho = 7, the channel width has no significant 

influence on the relative contributions of the terms in the exact 

momentum equation. For the situations of the width to depth ratio 

less than 7, the influence of the channel width on the contribu- 

tions of the terms should be further investigated in the future. 

By comparing Appendix H with Appendix G, it can be observed 

that the nondimensional values of the terms and the ratios between 

t h e m  for trapezoidal channels arE almost the same as those of 

rectangular channels. Thus, for this tested case, i.e., z = 4 and 

b/ho = 7, the side slope, z ,  seems to be not an important variable 

for the relative contributions of the terms in the exact momentum 

equation. However, for other cases of the value of z greater than 

4 ,  it would be valuable to further investigate the influence of z 

on the contributions of the terns, 

6.3. Situation of Acceleratincr T w e  Water Surface Profiles 

The water surface profiles investigated in section 6.1 are 


characterized by an initially convectively decelerating subcritical 


flow when the flood enters the channel. Likewise, the convectively 


accelerating type subcritical flow is simulated herein for 




~ 

t h r e e  typical cases, namely, B = 1, k, = k u = 1; B = 2, k = 1.05, 

k 1  = 1 and B = 2, X = 0 . 9 5 ,  k t  = 1, for unsteady flow in a very 

wide channel with a channel slope, So = 0.00019, in order to test 

the contributions of  the terms in the exact momentum equation to 

the solutions of the equations. The nondimensional downstream 

water depth, hd/ho = 0.7, is selected as the downstream boundary 

condition. The results are presented in Appendices I, J and K,  and 

t h e  time-average ratios in the absolute value between these terms 

in the exact momentum equation are listed in Table.6.5. 

Table 6.5 	Time-average Ratios between Terms in Exact 
Momentum Equation * f o r Case of Convectively 
Accelerating T y p e  Water Surface P r o f i l e s  

hd/ho - 0.7 	 Ratio in absolute value 
for 

convectively ~ o c a t i o n 
accelerating cf cross Local Convective SU' of two Pressure Pressure 

en= see t i on  a c c e k ,  accsle,  accele. YS . vs . 
prof iies vs . vs . vs . Friction (sf-SOl 


Pressure Pressure Pressure slope 
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By comparing Appendices I through K and Table 6.5 with the 

results of the convectively decelerating type profiles given in 

Appendices A through F and Tables 6.1 and 6.2, two observations are 

made. One is that the influences of the coefficients, B and k, on 

the contributions of the terms for the convectively accelerating 

type profiles are similar to that for the convectively decelerating 

ones. For example, for the case of B = 2, k = 1.05 or 0.95 the 

nondimensional magnitude of the convective acceleration term is 

about twice as large as that for the case of D = 1, k = 1. The 

nondimensional magnitude of the pressure term increases or 

decreases only slightly when compared to that of k = 1. The other 

observation is that there are some differences in the magnitudes 

of the terms and their ratios between the convectively accelerating 

and decelerating type profiles. First, for the convectively 

accelerating type profiles, at the cross sections near the 

downstream boundary the nondimensional value of the convective 

acceleration term is much larger than that of the convectively 

decelerating type profiles. It is approximately 20% to 37% of the 

pressure term for the various cases investigated. This implies 

that the convective acceleration term becames more impcrtant for 

the convectively accelerating type profiles. Second, based on the 

values of the ratio between the pressure term and friction slope 

for the convectively accelerating type profiles, the pressure term 

is also important and cannot be disregarded, whereas the magnitude 

of this ratio is less than that of the convectively decelerating 

type profiles. Therefore, for convectively accelerating type 

profiles, because of the importance of the convective acceleration 
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term and pressure term, the quasi-steady dynamic wave may be a more 

appropriate model than the noninertia model for solving an open 

channel problem with the convectively accelerating type water 

surface profiles. 

6 4 ,  Further Remarks 


From previous sections, it is summarized that the relative 

contributions of the tems in the exact momentum equation are 

closely related to the downstream boundary condition, slightly 

influenced by the variations of the coefficients, B and k, and 

probably insensitive to the cross-sectional shape of prismatic 

channels (based on present tested cases). 

The downstream boundary condition has an important effect on 


the contributions of the terms. For channels with small slope and 

without downstream backwater effect, the most important terms are 

the friction slope and channel slope, and other terms can be 

ignored. On the other hand, nonunifom flow with convectively 

decelerating type profiles, because of the backwater effect the 

pressure term becomes significant. In addition, under this 

decelerating situation, by lowering downstream-boundary water 

depth, the subcritical flow gradually converts from a more 

convectively decelerating condition to a less convectively 

decelerating one, the contribution of the convective acceleration 

term increases. For nonuniform flow with the convectively accele- 

rating profiles, the pressure term is also important, and since the 

convectively accelerating subcritical flow is dominant, the 

contribution of the convective acceleration t e n  increases greatly. 
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Among the coefficients, Bf k  and k g fthe variation of f3 is 

related to the contribution of the convective acceleration tern. 

When the value of B is large, i . e . ,  the distribution of flow 

velocity is excessively nonuniform in a cross section, the 

contribution of the convective acceleration tern increases, 



7. 	 SOLUTIONS OF EXACT MOMENTUM AND 
CONTINUITY EQUATIONS IN Q-h FORM 

As depicted in section 4.a, the exact momentum and continuity 

epations in the f o m  of V and h and in the f o m  of & and h have 

the same mathematical properties. However, the numerical solutions 

for the flow depth which is a common dependent variable included 

in both fcms of the equations may not be identical because the 

other dependent variable used in the equations is different. 

Therefore, the difference sf the numerical solutions between the 

two forms of the exact momenturn and continuity equations is 

investigated in this chapter. In addition, in order to test the 

sensitivity of the discharge and flow depth to the use of different 

equations (the exact momentum and continuity equations and the 

Saint-Venant equations) the solution differences of the 

nondimensional discharge and flow depth between the exact momentum 


and continuity equations in the form of Q and h and the Saint- 


Venant equations in the form of Q and h are also studied. 


7.1. 	Difference between SoPutions of TWO Forms of Exact Momentum 
and Continuity Equations 

For simplicity and convenience, among all the differences of 

flow depths at different times and locations given in the solutions 

of the exact momentum and continuity equations in the V-h form and 

Q-h form, only the maximum difference is used as a reference for 

discussion. The maximum absolute and relative solution differences 

are designated as MASDVHQH and MRSDVHQH, respectively. Similar to 

Chapter 5, variations of MASDVHQH and MRSDVHQH are investigated for 



various flow and downstream boundary conditions. Five coefficient 


combinations, D = 1, k = k q  = 1; B = 1, k = 1.05, kt = 1; R = 1, 

k = 0.95, k' = 1: B = 1.33, k =  0.95 k r  = 1 and B = 2, k = 0.95, 

k8 = 1, and three downstream water depths, hd/ho = 1.44, 1.80 and 

2.53, for a wide rectangular channel and a trapezoidal channel with 


channel slope, So = 0.00019, are investigated and the results are 

summarized in Tables 7.1 and 7.2, respectively. 


From Table 7.1, it is shown that the difference between the 


solutions of the two forms of the exact momentum and continuity 


equations for various situations considered is not very large. 


This means that for wide rectangular channels, both forms of the 


equations can be selected to solve flood routing problems without 


significant errors in the solutions of the flow depth, h. 


Furthermore, two points are observed from Table 7.1. One is 


that the magnitudes of MASDVHQH and MRSDVHQH are almost unchanged 

.with increasing D from 1 to 2, and have only a small variation with 

decreasing k from 1.05 to 0.95. In other words, varying these 

coefficients, B and k, does not generate a significant impact on 

the difference between the solutions of the two forms sf the 

equations. Thus, for wide rectangular channels, whatever the 

variations of B and k, the solutions of flow depth, h, obtained 

from the exact momentum and continuity equations in the V-h form 

or in the Q-h form are almost the same. The other point is that 

the smaller the downstream water depth, the larger the difference 


between the solutions of the two forms of the equations. Therefore, 


it should be noted that if the downstream water depth is small, 


namely, the condition of the convectively less decelerating 




Table  7.1 	 Maximum Difference of h/ho be tween  Two 
Forms of Exact  Momentum and C o n t i n u i t y  
E q u a t i o n s  f o r  Wide R e c t a n g u l a r  Channel 

(a)  Absolute Difference 

Maximum absolute solution difference of h/ho 

(b) Relative Difference 


Maximum relative solution difference of h/ho in % 



Table 7.2 	 Maximum Difference of h/ho between Two 
Forms of Exact Momentum and Continuity 
Equations for Trapezoidal Channel 

(a)  -solute Bifferewee 

Maximum absolute solution difference of h/ho 

(b) Rela t ive  Difference 

M a j z h u m  relative solution difference of h/hg in % 



subcritical flew, using the two forms of the exact momentum and 


continuity equations to solve the same open channel problem could 


lead to appreciable different solutions of flow depth. 


For trapezoidal channels, Table 7.2 demonstrates that the 


magnitudes of MASDVHQH and MRSDVHQH increase with changing channel 


shape from a wide rectangular one to a trapezoidal one. However, 


the solution differences on the flow depth, h, between the two 


forms of the exact momentum and continuity equations are also 


insignificant based on the results investigated. Thus, for 


trapezoidal channels, both forms of the equations can be used to 


calculate the flow depth. 


7.2. 


The solution differences of flow depth, h, or discharge, Q, 

between the exact momentum and continuity equations in the Q-h form 

and the Saintmyenant equations in the Q-k form at various distance- 

time increments are computed and only the maximum absolute and 

relative differences of Q/QO or h/ho are used for discussion. 

Again, the four different coefficient combinations and three 

different downstream depths considered in section 7.1 are 

investigated for a wide rectangular channel with channel slope So 

= 0.00019. The results are presented in Tables 7.3 and 7.4. In 

addition, in order to further display the distinction between the 

two different forms of the exact momentum and continuity equations, 

the maximum absolute and relative solution differences of V/VO or 

h/ho between the exact momentum and continuity equations in the V-



Table 7.3 Maximum Difference of h/ho between 
Exact Momentum and Continuity Equations 
and Saint-Venant Equations in Q-h or 
V-h Form For Rectangular Channel 

(a) Absolute Dif fe rence  

Q-h form V-fi  form 

~aximuaabsolute solution difference of h/ho 

(b) Relative Difference 


V-h form 


Haximum relative solution difference cfh /hg  in % 



Table  7.4 Maximum Difference of Q / Q  and V/VQ 
between Exact Momentum an% Continulty 
Equations and Saint-Venant Equations in 
Q-h or V-h F o m  f o r  Rectangular Channel 

(a)  Absolute Difference 

Q-h f o p s  PI-h f a n  

Maximum absoluze solution difference 
Q/Qo v/vo 

(b) Relative Difference 


relative solution difference in O 

Q/Po v/vo 
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h form and the Saint-Venant equations in the V-h form are also 


presented i n  Tables '721and 7.4. 

From Table 7.3, it is obvious that the maximum absolute and 

relative solution differences of the nondimensional flow depth, 


h/h0' between the exact momentum and continuity equations in the 

and the Saint-Venant equations in the Q-h form are almost 


the same as those between the two sets of equations in the V-h 


form. This indicates again that the two different forms of the 


exact momentum and continuity equations can be used to solve the 


flow depth, h, in open channel problems without significant errors. 


By comparing Table 7.3 with Table 7.4, it is observed that 

the magnitudes of the maximum absolute and relative solution 

differences ofthe nondimensional discharge, Q / Q o ,  are smallerthan 

those of the nondimensional flow depth, h/hor and both of the 

magnitudes of the solution differences for Q/Qn and h/hG are much 
w 

smaller than those ofthe nondimensional velocity, V/VO, especially 


when the downstream water depth is large (the condition of the 


subcritical flow with the large convective deceleration). This 


means that the flow velocity, V, is much more sensitive than the 


flow depth, h, and discharge, Q, for using different equations, 


i.e., the exact momentum and continuity equations or the Saint- 


Venant equations. Therefore, for open channel problems, if the 


discharge is considered as a solution, both the exact momentum and 


continuity equations and the saint-Venant equations can be 


selected, but if the flow velocity is required the selection of 


the equations must be done carefully. 
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Furthermore, it is found from numerous calculations that the 

impact of each of the coefficients on the solutions of the 

equations and the relative contributions of each of the terms in 

the exact momentum equation in the form of Q and h are almost the 

same as those of the exact momentum equation in the form of V and 

h. Thus, the results investigated on the effect of the 


coefficients using the Q-h form are not presented here to avoid 


repetition. 




8. EVALUATION ON IMPORTANCE OF COEFFICIENTS 

AND CONTRIBUTIONS OF TERMS 


In preceding chapters, the importance of the coefficients, D, 


k and k f ,and the relative contributions of the terms in the exact 


momentum equation are analyzed. To show the validity of the 


results obtained, it is essential to evaluate them by using certain 


theoretical methods and to compare them with those obtained by 


other investigators. In this chapter, the theory of linear 


stability applied by Ponce and Simons (1977) will be extended to 


evaluate the results on the importance of the coefficients. In 


addition, the results of the contributions of the terms obtained 


in this study will be evaluated with a method used by Price (1985). 


The exact momentum and continuity equations in the form of V 

aiid li for a wide rectangular channel without considering the 

internal stresses and two rates of spatial change of 13 and k can 

be written as 



The friction and channel slopes, Sf and SO, are written as 


in which C is the Chezy factor, n is the Manning factor, Co and no 

are Chezy and Manning factors under the steady uniform flow, ho and 


VO are the steady uniform flow depth and velocity, respectively. 


According to the theory of linear stability, the exact 

momentum and continuity equations must satisfy the unperturbed flow 

for which V = Vo and h = ho; as well as the perturbed flow for 

which V = Vo + V f  and h = ho + h f f .  The V g  or h @  represents a 

perturbation to the steady uniform flow and is assumed to be small. . 

In reality, the small perturbation is often impossible because a 

flood entering a channel will produce a large variation in the flow 

depth or velocity. Therefore, a small perturbation to the steady 

flow only 


Substituting the perturbed variables into E q s .  (8.1) and 

( 8 . 2 ) ,  neglecting all the quadratic terms (because of higher order 

of magnitude) , assuming the Chezy C, or Manning n, to be constant, 

and linearizing the two equations yield 

ahv avl ah8 - + h0 - + Vo - = 0 

at ax- ax 




(8.6) 

in which f, is a coefficient (it is equal to unity if the Chezy 

formula is used or 4 /3  if the Manning formula is used) , and al, a2' 
a3 and a4 are integers that can only take values of 0 and 1. The 

purpose of introducing them is to clearly describe the various wave 

models, 

The solutions of h u  and V f  can be postulated as 

in which h,, is a dimensionless depth amplitude function, V,, is 


a dimensionless velocity amplitude function, 0, is a dimensionless 


er, n, = n,, + in,i is a dimensionless complex propagation 

factor, and are the real and imaginary parts of the 

propagation factor, t, and x, are dimensionless space and time such 

that 



"*i = amplitude propagation factor 

in which Lt, is the wavelength of the disturbance, T,. is the period, 

L, is the reference length and it is defined as Lo = ho/So.
U 

substituting the two expressions of h f  and V f  (Eqs. (8.7) and 

(8.8)) into the linearized E q s .  (8.5) and (8.6) yields: 

in which pO2 = Vo2/gho 

Mathematically, the solution of the homogeneous system of the 

two linear equations of unknowns V,, and h,, is nontrivial. The 

determinant of the coefficient matrix of the two equations must 

vanish. Therefore, the characteristic equation of E q s .  (8.14) and 

(8.15) is 


If the values of O, k and k v  are taken as equal to unity, and 

the Chezy formula is used, i . e . ,  f , = 1 ,  Eqs. (8.15) and (8.16) 

become those derived by Ponce and Simons (1977) as follows 



[2a4 + i~~~ (a20* - ap,) JV,, + (iaj0, - a4) h,, = 0 

+ 3a40* - 2a4n* - io,n, (a, + a2)F~~ = o 

Based on the suggestion of Ponce and Simons, the dimensionless 


celerity of the disturbance and the logarithmic decrement are 


respectively defined as 


Thus, the magnitudes of the celerity and logarithmic decrement of 

the various approximate wave models can be determined. In 

addition, because the celerity and logarithmic decrement are 

functions of the coefficients, B, k and kt, the importance of the 

coefficients to the solutions of the equations can be detected by 

observing the variation of the magnitudes of the celerity and 

logarithmic decrement with the values of B, k and kf. 

(a) Kinematic wave model 


Because the inertia and pressure terms are neglected in the 

kinematic wave model, in Eq. (8.16) al = a2 = aj = 0 and a* = 1, 

which yields 



~ccordingly, n,, = n, and n,i = 0. Hence, the dimensionless 

celerity of the kinematic wave is 

and the logarithmic decrement is 

(b) Noninertia model 


In the noninertia model, only the inertia terns are neglected, 

i e e e, al = a2 = 0 and a3 = a4 = 1, Eq. (8.16) becomes 

Thus, the celerity of the noninertia wave is 


and the logarithmic decrement of the noninertia wave is 


(c) Dynamic wave model 


In the dynamic wave model, all terms are considered. 

Therefore, Eq. (8.16) with a1 = a2 = a3 = a4 = I leads to 



Thus, t h e r e  a r e  two wave propagat ions:  One t r a v e l s  doms t ream and 

it is  def ined  as 'Primary wavev with c e l e r i t y ,  c , ~ ~ ,and 

l o g a r i t h m i c  decrement, sl. The other called ' secondary wavev with 

c e l e r i t y ,  c *  ~and~ l oga r i thmic  decrement, J 2 ,  travels upstream. 

The c e l e r i t y  and a t t e n u a t i o n  func t ions  are given by 

1 

in which E = -


3 
g .FA" 


% - U 

EE = (CC - AA) 

I f  the v a l u e s  of D, k and k t  a r e  equal  t o  u n i t y  and t h e  Chezy 

formula i s  used, t h e  above express ions  of AA and CC become those 

o b t a i n e d  by Ponce and Simons (1977)  a s  follows 



In order to explicitly display the results derived, a summary 

of the propagation characteristics of the various approximations 

is given in Table 8.1, in which the celerity is the relative 

celerity, c , ~ ,and it is defined as (c* 1)7 

Table 8.1 	A Comparison of Propagation Characteristics 

of Shallow Water Waves in Open Channel 


Type of 
. " 

Relative celerity Logarithmic decrement 

Kinematic wave fc/2 


Dynamic 

Primary wave 


Secondary wave _CC1/2 


f, = 1 for Chezy fornula and f, = 4/3 for Manning formula 

Kinematic wave 1/2 	 0 


Dynamic 
Primary wave -27r [E-(CC-AA) ]/ 11+Cc1i2I 
Sec~ndary wave -t* [E+ (CC-AA)'I2 ]/ 

Note : CC = AA = ( ~ / F ~ ~ ) - E ~(1/2) ( E ~ A ~ + E ~ ) ~ / ~ + ( ~ / ~ ) A A ;  
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From Table 8.1, two points are observed. One is that if the 

values of B, k and ki are not equal to unity, the variations of the 

coefficients do not influence the kinematic wave model, nor the 

relative celerity of the noninertia model; butthey affect dynamic 

wave model and the logarithmic decrement of the noninertia model. 

The other is that for the special case of 8, k and kr being taken 

as unity and the Chezy formula is used, the results become those 

of Ponce and Simons (1977). 
In order to evaluate the results of the importance of the 

coefficients obtained in Chapter 5, seven combinations of the 

coefficients are selected as examples: (a) f3 = 1, k = k9 = 1 (case 

of the Saint-Venant equations) ; (b) B = 1.33, k = k f  = 1; (c) D = 

2, k = k g  = 1; (d) f3 = 1, k =  1.05, kt = 1; (e) D =  1, k =  0.95, 

kt = 1; ( 2 )  D = 1, k = 1, kt = 1.05; (g) D - 1, k - l, kt = 0 . 9 5 ,  

and for simplicity and convenience, only the variation of the 

relative celerity with the combinations of the coefficients is 

analyzed- The dimensionless relative celerity, c,~, versus 

dimensionless wave number, o,, with the situation of f, = 1 (the 

Chezy formula with f, = 1 is selected as an example here, the 

results considering the Manning formula with f, = 4/3  are similar) 

is shown in Figs. 8.1 (a) through (e) , respectively, for the first 
five cases. Furthermore, the variation of the dimensionless rela- 

tive celerity with dimensionless wave number for F0 (Froude number 


based on Vo and ho) ranging from 0.01 to 1 is listed in Tables 8.2 


(a) through (g). These tables include all seven cases considered. 


The reason for considering the Froude number to be less than unity 


is that the exact momentum and continuity equations do 




not contain explicitly accounting for the occurrence the 


pulsating flow for supercritical flows. 


In order to display the impacts of the coefficients, 8, k and 

k g , on the relative celerity, the rates of change of the relative 

difference of the relative celerity with respect to 8, k and kvare 

listed in Tables 8.3 (a) through (f), respectively. The relative 

difference is defined as the difference between the relative 

celerity of a specified combination of the coefficients and that 

of the reference case (D = 1, k = k v  = 1) divided by the value of 

the latter, 

From Fig. 8.1 and Tables 8.2 and 8.3, the impacts of the 

coefficients in the exact momentum equation on t h e  solutions of the 

equations for the subcritical. flow condition are verified to be in 

accordance with those obtained in Chapter 5. 

8 . 8 ~  8.1 s ia l e e  lee8 

Q'* 
(a) B = 1, k = k w  = 1 

Fig. 8.1 Dimensionless Relative Celerity c,= 
versus Dimensionless Wave Number 0, 
for Froude Number Fo from 0.01 to 1 



(b) B = 1.33, k = &" 

Fig. 8.1 [cont inued)  

1 

i e e  

I 

1 

c* 

(c) B = 2 ,  k = k V  = I 

F i g .  8.1 ( con t inued )  

aee  1888 



(d) B = 1, k =  1.05, k b  X 

Fig. 8.1 (cont inued)  

( e )  B = 1, k = 0.95, kt = 1 


Fig. 8.1 (cont inued)  





Table 8.2 (continued) 

(b) B = 1.33, k =  k' = 1 

Dimension1ess 
wavs number 

1 
Froude number = 

0.9 0.5 0.1 

Dimensionless relative celerity 

0.01 



Table  8.2 ( con t inued )  

(c) D = 2 ,  k = k" 1 

Bimzns ion1e s s  
wava w w b e r  

1 
Froude number = 

0 .9  0.5 0.1 

Dimensionless  relativs celerity 

0.01 



Table  8 . 2  (continued) 

(d) B = 1, k = 1.05, k r  = 1 


Dimensionless r e l a t i v e  c e l e r i t y  



Table 8.2 (continued) 

(e) B = % ,  k = = 8 . 9 5 ,  k q = = I  

Froude n m b z r  = 

1 0.9 0.5 0.1 0.8% 

Dimensionless 

wave wmber  


Dimsnsfon%ess r s l a t i v e  celerity 


http:k==8.95


Table 8 . 2  (continued) 

(f) D = 1, k = 1, kl = 1.05 

Dimensionless 
wave n = b ~ r  

1 
Froude nuher = 

0 . 9  0.5 0.1 

Birntnsionless r e l a t i v e  c e l e r i t y  

0.01 



Table  8 . 2  (continued) 

(g) B = 1, k = 1, k" Qa95 

Biaensfonfess 
wavs number 

1 
Froudz number -

0.9 0.5 0.1 

Dimensionless  relative c e l e r i t y  

0.01 



Table 8.3 	Rate of Change of Relative ~ifferenceof 

C*r with respect to 8, k and k g  for Various 
Wave Number, 0, , and Froude Number, Fo 

(a) 	B = 1.33, k = k9 = 1 vs. B = 1, k = k v = 1 
( B  varies 33%) 

Frouch n ~ n b e r= 

1 0.9 0.5 0.1 0 . 0 1  
Dimension%ess 

wave w d a r  
Rate cf change of relatfve difference o f  dimen-
sionless r~lative celerity with respact to & in % 



Table 8.3 ( con t inued )  

(b) B = 2 ,  k = k' = 1 VS. B = 
( B  varies 100%)  

1, k = k" 1 

Bimens ionless 
wave number 

Fsouds w m b e r  
1 0.9 0.5 0. I. 0 . Q b  

Rate sf change of relatlvz difference of dimtn- 
sionless rzlative celerity with respsct eo B in % 



Table 8 . 3  (continued) 

(c) B = 1, k = 1.05, kf = 1 vs. B = 1, k = kt = 1 
(k varies 5%) 

Dimensionless 
wave number 

F r o u d ~n u ~ b e r-
1 0.9 0.5 8.1 0,Ob 

Rate o f  change sf relatiw difference o f  Cimen-
s io .n l e s s  rzlative ce le r i ty  with r e s p e c t  t o  k i n  $ 



Table 8.3 (continued) 


(d) B = 1, k = 0.95, k t  = 1 vs. B = 1, k = k v  = 1 
(k varies 5 % )  

Bimawsiowless 
vaqre nufnber 

Froudo wumbar = 

1 0.9  0.5 0.1 0 . 0 1  

Rate  of change of rzfative difference of dimen-
sionless salative celerity w i t h  respect to k in % 



Table  8 .3  (continued) 

(e) B = 1, k = 1, k g  = 1.05 vs. B = 1, k = k t  = 1 
(kfvaries 5%) 


Frouda nunber = 

1 0.9 0.5 0.2 0 .0% 
Dimens ionless 
wave number 

Rate of change of relative $if farence of dimew-
sianless ralative c e l e r i t y  with respect to kt i n  % 



Table 8.3 (continued) 

(f) B = 1, k = 1, k v  = 0 . 9 5  vs. B = 1, k = k 9  = 1 
(kvvaries 5%) 

Froude number 
1 0 .9  0.5 0 . 1  0 .01  

Dimensionless 
wave n w b e r  

Rate sf change o f  r g l a t i v e  d i f f e r e n c e  o f  dlmtn-
s i o n l e s s  r a l a t i v e  c e l e r i t y  with r e s 2 e c t  t o  k' i n  $ 
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First, by comparing Fig. 8.1 (a) with Figs. 8.1 (b) and (c) 

or Table 8.2 (a) w i t h  Tables 8.2 (b) and (c), and referring ts 

Tables 8.3 (a) and (b), the following conclusions on the effect of 

B are obsened: 

(a) For various Fo (in reality, it is an initial Froude 

number) considered, the dimensionless relative celerity increases 

very slowly with the dimensionless wave number in the range of low 

wave number, then it rises sharply from a small magnitude to a 

large one, and finally, it asymptotically reaches a constant value 

in the range of high wave n er. In general, the smaller the 

Froude number, the later the time of sharp rise, and the larger the 

rise. If the dimensionless wave number corresponding to the sharp 

rise point is designated as a dimensionless rise wave number, it 

is approximately equal to the inverse of the Froude number. For 

example, if Fo = 1, 0.5, 0.1 and 0.01, the rise wave number is 

approximately equal to 1, 2, 10 and 100, respectively. The 

variation of B does not affect the regularity of variation of the 

relative celerity with the wave n er, and it changes only the 

magnitude of the relative celerity. Obviously, based on the rise 

wave numbers, the effect of D on the relative celerity can be 

divided into two regions: (i) One is after the rise wave numbers, 

in which the values of the relative celerity for cases of B = 1.33 

and 2 are greater than those of D = 1, i.e., the relative celerity 

increases with increasing the value of B. (ii) The other is before 

the rise wave numbers where values of the relative celerity for the 

case of B = 2 are slightly greater than those of D = 1, but for the 

case of D = 1.33 the situation is opposite and the change seems to 
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be large, namely, as D = 1, the relative celerity is almost equal 

to 0.5 for various wave numbers less than the rise wave n 

but, as D = 1.33, the magnitude of the relative celerity reduces 

-_ _ --effeok--of---B-is--wave-nuYnber - ---_-t_~--O~.U_.-__-_lChese--indica-te-tha-t-the -

dependent.  

(b) The effect of D on the relative celerity is also related 

to the Froude number. With increasing Froude number, the effect 

of l3 becomes significant. For example, in Table 8.3 (b) with 

increasing D from 1 to 2, for Fo = 0.1, the rate of change of the 

relative difference of the relative celerity with respect to D is 

only 1% for high wave numbers, while it reaches 73% for Fo = 1. 

(c) For the situation of large Froude number and low wave 


er, the impact of B on the relative celerity is very 

significant. This partially explains why the impact of B on the 

numerical solutions obtained in this study appears to be 

unimportant. The numerical testing has been focused on subcritical 

flow condition with Fo less than 0.5, and the inflow considered is 

not a very slow-rising flood wave, and hence, the wave number is 

not low. Therefore, the impact of B on the solutions of the 

equations seems small. 

Secondly, by comparing Fig. 8.1 (a) with Figs. 8.1 (d) and 


(e), and Table 8.2 (a) with Tables 8.2 (d) and (e), and referring 

to Tables 8.3 (c) and (d), the following observations on the effect 
of k can be made: 

(a) Similar to 0, the variation of k does not affect the 


pattern of variation of the relative celerity with the wave number, 


and it changes only the magnitude of the relative celerity. For 
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example, f o r  k = 1.05, t h e  va lues  of t h e  r e l a t i v e  c e l e r i t y  f o r  

va r ious  Froude numbers and wave n ers a r e  g r e a t e r  than  those of 

k = 1 (des igna te  t h i s  a s  amp l i f i c a t i on ) ,  and f o r  k = 0.95, t h e  

-
- - .--values-.of- - t h e  r e l a t i v e - -  ceber-i-ty--become--less-khan-&hose-of- -k-= --1 

(de s igna t e  t h i s  as a t t enua t i on ) .  

(b) B y  comparing Table 8.3 (c) with Table 8 . 3  (d), it is  

obvious t h a t  t h e  a t t enua t ion  of the r e l a t i v e  c e l e r i t y  f o r  t h e  case 

of k < 1 is s t ronge r  than t h e  ampl i f i ca t ion  f o r  t h e  ca se  of k > 1. 

This  agrees  wi th  t h e  r e s u l t  presented  i n  Chapter 5 t h a t  t h e  

s o l u t i o n  d i f f e r e n c e s  between t h e  exac t  momentum and con t inu i t y  

equat ions  and t h e  Saint-Venant equa t ions  f o r  k = 0.95 a r e  g r e a t e r  

t han  t h o s e  f o r  k = 1.05. 

(c) The impact of k is a l so  r e l a t e d  t o  t h e  dimensionless wave 

number. There a r e  two ranges based t h e  r ise wave number: (i) 

For waves n ers g r e a t e r  than t h e  rise wave ra er,  t h e  impact of 

k is  l a r g e .  (ii)For wave numbers less than t h e  rise wave number, 

the  impact of k is small. For example, i n  Table 8.3 (c) with 

i nc r ea s ing  k from 1 t o  1.05, when Fo = 0.5,  f o r  wave numbers 

g r e a t e r  t han  2 ,  t he  r a t e  of change of t h e  r e l a t i v e  d i f f e r e n c e  of 

t h e  r e l a t i v e  c e l e r i t y  with r e spec t  to k is approximately 100%;  

whereas f o r  wave n ers l e s s  t h a n  2, t h e  r a t e  becomes much 

smal le r .  This  means t h a t  t h e  impact of k on t h e  s o l u t i o n s  of t h e  

equat ions  is important f o r  high wave n 

(d) I n  t h e  range of t h e  wave n er g r e a t e r  than t h e  r ise wave 

number, t h e  impact of k seems to be unrelated t o  Froude number, 

because a l l  t h e  r a t e s  of change of t h e  r e l a t i v e  d i f f e r ence  of t h e  

r e l a t i v e  c e l e r i t y  with respec t  t o  k a r e  approximately 100% f o r  
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various Fo considered (see Tables 8.3 (c) and (d) ) . However, in 


the range of the wave number less than the rise wave number, the 


impact of k is related to Froude n 


(e)If Tables 8.2 (d) and (e) are compared with Tables 8 - 2  (b) 


and (c), and Tables 8.3 (c) and (d) with Tables 8.3 (a) and (b), 


it is obvious that the impact of k on the relative celerity is 


greater than that of 8, especially, for the situation of small 


er and high wave number. This indicates that k is more 


important than 8. This conclusion is also in agreement with that 


presented in Chapter 5. 


Third, by comparing Tables 8.2 (f) and (g) with Tables 8.2 (d) 


and (e), and Tables 8.3 (e) and (f) with Tables 8.3 (c) and (d), 


the effect of kt on the relative celerity is similar to that of k, 


but there are two differences: 


(a)The change of the magnitude of the re la t ive  celeri ty due 

-	 to thmriation of kf-is--Qpp-o-siite-to--that-of-k-,--i.e-.-whenkg--- - -

increases from 1 to 1.05, the relative celerity decreases 

(attenuation), and when k q decreases from 1 to 0.95, the relative 

celerity increases (amplification) . 
(b) By inspecting Tables 8.3 (c), (d), (e) and (f), it is 


obvious that the effect of kf on the relative celerity is 


approximately half of that of k. This is also in agreement with 


the conclusion presented in Chapter 5. 


Evaluation of Contributions of Terms bv Usins PriceDs Method 


As described in section 3.3, Price (1985) introduced two pa- 


-2-rameters, E = E / z o  and c = a2/(gA h) where the 'bar @ denotes the 



s c a l e  of t h e  v a r i a b l e ,  and rewrote  the complete dynamic wave 

equa t ion  as 

i n  which t h e  Wouble pr imev denotes t h e  dimensionless form of t h e  

v a r i a b l e .  For example, Q" = Q/F, A N  = ~ 1 3 ,hw = h i ' ,  pO= s ~ / ~ ~ , 

S9', = Sf/ S O f  xlv = x/: and t 9 f  = t/E. 

By u s i n g  P r i c e ' s  method, t h e  e x a c t  momentum equa t ion  without  

cons ide r ing  t h e  i n t e r n a l  s t r e s s e s  term and t w o  rates of s p a t i a l  

change of B and k can be r e w r i t t e n  as fo l lows  

i n  which, i n  a d d i t i o n  t o  13, k and kt,all the q u a n t i t i e s  are t h e  
_ _ _  _____ _ ______-__ _ _ _  .. - _  _ - _ _ _  - _ -_ ---- - -- - --- - - -

same as those i n  Eq. (8.38). 

From Eq. (8.39), two points can be observed. One is that i f  

the va lues  of  B, k and k u  a r e  equal t o  u n i t y ,  Eq. ( 8 . 3 9 )  becomes 

Eq. (8.38). The o t h e r  point is  t h a t  on t h e  b a s i s  of t h e  magnitudes 

of the t w o  parameters, E and r ,  t h e  relative c o n t r i b u t i o n  of each 

of  t h e  terms in Eq. (8.39) can be es t ima ted .  For example, if t h e  

va lue  o f  .C is c l o s e  t o  zero,  t h e  c o n t r i b u t i o n s  o f  t h e  l o c a l  and 

convect ive  a c c e l e r a t i o n  terms, and t h e  p r e s su re  term in Eq. (8 .39)  

a r e  insignificant, thus, they can be neglected and Eq. (8 .39)  

becomes a k inemat i c  wave approximation. I f  on ly  t h e  value of r is 

very smal l ,  the c o n t r i b u t i o n s  of t h e  two a c c e l e r a t i o n  terms can be 

ignored,  thus Eq. (8.39) is s impl i f i ed  t o  a n o n i n e r t i a  model. 



Therefore, based on the magnitudes of two parameters, the 

results obtained in Chapter 6 can be evaluated. Four typical 

combinations of the coefficients ( B  = 1, k = kt = 1: B = 1, k == 

0.95, kt = 1: D = 1, k =  1.05, k f  = 1; and B = 2, k =  0 . 9 5 ,  k v  = 

1) forthe assigned conditions of rectangular channels with channel 

slope, SO = 0.00019, without or with downstream backwater effect 

are used as examples. The magnitudes of the two parameters E and 

obtained at the cross-sectional position, x/L = 25/27, near 

d o ~ ~ s t r e a m  f o r  i ~ a r i o ~ s  investigated are displays5bcundary cases 

in Table 8.4. 


Table8.4 Magnitudes of Parameters, c and for 
Evaluating Contributions of Terms 

ak/ax > 0 cases dh/ax < 0 cases 
No backwater 

e f f e c t  
hd/hO-1.44 1.80 2.53 0.70 


From Table 8.4, three observations can be obtained. First, 

when there is no backwater effect, the magnitude of E is close to 

zero for various situations considered. This means that the 
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pressure term and the two acceleration terms are insignificant, and 

the kinematic wave is a proper approximation for the exact momentum 

equation. Second, when the flow profiles are the convectively 

decelerating type where ah/ax > 0, the magnitude of E increases 

with increasing the downstream-boundary water depth and gradually 

develops to approach unity, but the magnitude of s decreases with 

increasing downstream water depth and gradually becomes much less 

than unity. This means that the pressure term becomes important 

and the two inertial terms (local and convective accelerations) can 

be neglected, especially when the downstream water depth is large, 

i . e . ,  the subcritical flow condition is subject to greater 

convective deceleration. Therefore, the noninertia model is a 

proper approximation. Third, for the convectively accelerating 

profiles, namely, the convectively accelerating subcritical flow, 

the magnitude of s is greater than that of e ,  but, the order of 

magnitude of c is the same as that of product of E and F .  This 

means that the contribution of the csnvective acceleration 

increases, and it is necessary to regard both the pressure term 

and the convective acceleration term. Thus, the quasi-steady 

dynamic wave model may be suitable. Therefore, Table 8.4 indicates 

that the results using the two parameters as a criterion to 

evaluate the contributions of the terms ,in the exact momentum 

equation are in agreement with those obtained in Chapter 6. In 

addition, it is obvious that the variations of the coefficients, 

13 and k, do not influence the pair of parameters because the 


magnitude of either E or is basically the same for various 


combinations of the coefficients tested. 




9. CRITERIA FOR SELECTION OF EQUATIONS 
AND APPROXIMATE MODELS 

9,1, 


The selection of equations means what kind of equations, i . e . ,  

the exact momentum and continuity equations or the Saint-Venant 

equations, will be used to solve a flood routing problem. The 

Saint-Venant equations are a special case of the exact momentum 

and continuity equations, i . e . ,  the latter with D = 1, k = k r  = 1 

and without the internal stresses term and two rates of spatial 

change of D and k. Based on the difference between the solutions 

of the two formulations, criteria can be set up on the situations 

that the Saint-Venant equations can be a good approximation of the 

exact momentum and continuity equations. 

As discussed in previous chapters, t h e  maximum absolute and 

- A 7  ..C: w e - "'2" - -- -
AI=AaLAves Sol'ilti8narrrerences between the two sets of equations 

mainly depend on: (a) the values of the coefficients, 0, k and k v; 

(b) the channel slope, S o ;  (c) the flow Froude number; (c) the 

downstream boundary condition; and (d) the solution variables, h 

and V or &. 

From Chapter 7, in general, if the solution variable is Q, 

the difference in discharge between the solutions of the exact 

momentum and continuity equations and the Saint-Venant equations 

is insignificant, therefore, the Saint-Venant equations can be 

selected as a satisfactory approximation. However, from Chapter 

5, the maximum solution differences in flow velocity V and flow 

depth h betweer, the two sets of equations are significant for some 

situations, and the solution difference in the velocity are larger 
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than that in the flow depth. Thus, it is necessary to make 


different selection criteria for the flow velocity and flow depth. 


In addition, because the maxinum solution difference is 


closely related to the channel slope and downstream boundary 


condition, how to set up a go~d indicator to describe the two 


factors is an important problem. Different downstream boundary 


conditions, i.e., with or without backwater effect, can be 


identified by using the longitudinal gradient of the water depth, 


ah/ax. Hence, ah/ax to the channel slope, So, ratio is a good and 


meaningful indicator to effectively link the two factors (the 


channel slope and downstream boundary condition). The different 


values of the ratio, (ah/ax) /So, for various downstream boundary 


conditions are shown in Fig. 9.1. For example, for uniform flow 

with no downstream backwater effect, (ah/ax)/So = 0; for the 

downstream boundary condition with convectively decelerating type 

water surface profiles where ah/ax > 0, (ah/ax)/So > 0, in which 

So is defined as -dZ/dx and Z is water surface elevation relative 

to a fixed datum; for the downstream boundary condition with 

convectively acceleratingtype profiles where ah/ax < 0, (ah/ax)/S, 

6 0 .  It is obvious that the stronger the convectively decelerating 

or accelerating subcritical flow, t h e  larger the ratio, (ah/ax)/So, 

in the absolute value. The ratio, (ah/ax)/So, is a function of 

time and location for an unsteady flow. For simplicity and 

convenience, for the channel studied, the time-average difference 

of the water depth in the last 4-mile long reach (from x/L = 25/27 

to 1) divided by the channel slope is taken approximately as the 

ratio of the longitudinal gradient of the water depth to the 



Fig. 9.1 Values of '(ah/8x)/l0 f a r  Various 
Downstream Boundary Conditions 



channel slope. 


As to the flow Froude number, the initial steady-uniform-flow 

Froude number, Fo = V0/(gho)'/2f is taken as an indicator to 

reflect the solution difference between the exact momentum and 

continuity equations and the Saint-Venant equations. Based on the 

results obtained from this study, if the initial steady-uniform-

flow Froude n er is small (eager less than 0.2), the difference 

between the solutions of the two sets of equations is large, 

otherwise, the difference is insignificant. 

Furthemore, the selection of equations also depends on the 

required accuracy. If the required accuracy is not high, such as 

greater than 10% maximum relative solution difference, the Saint- 

Venant equations can replace the exact momentum and continuity 

equations for most flow and boundary conditions, but if the 

accuracy is limited to 5% maximum relative solution difference, for 

some flow and boundary conditions, such as channels with very 

curved bed, small slope and large downstream-backwater effect , only 

the exact momentum and continuity equations can provide reliable 

solutions. 

Based on the results obtained in Chapter 5, if the 5% maximum 

relative solution difference is chosen as a required accuracy, it 

can be estimated that lah/axl/so = 0.25 and 0.35 are two demarca- 

tion points for the flow velocity and flow depth, respectively. 

This means that, if the value of li3h/axl/s0 is less than 0.25 (or 

0.35) and the solution variable is velocity (or flow depth), the 

Saint-Venant equations are a satisfactory approximation of the 

exact momentum and continuity equations, otherwise, selecting the 
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exact momentum equation is necessary. The two demarcation values 

of (ah/ax)/S, may be useful in flood routing. For unsteady flow, 

the value of (ah/ax)/So can be continuously monitored. When the 

monitored value of lah/axl/so is less than the demarcation value, 

the Saint-Venant equations can be used as a model to simulate flood 

routing; but when the monitored value of 1 ah/axl/~, becomes greater 
than the demarcation value, the exact momentum equation should be 

used. 

To sum up, the criteria for the selection of equations (simply 


designated as CSE) can be expressed as such a function 


CSE = f(8,.k, k , Fo, (ah/ax) /So, required accuracy) 

and they are shown in Tables 9.1 (a) and (b) based on assuming 5% 


maximum relative solution difference as a error limit for the flow 


velocity and flow depth, respectively. 




Tab le  9.1 Criteria f o r  S e l e c t i o n  of E q u a t i o n s  

(a) solution Variable, V 


Values 

of 


B and k 


Recommended equations 


0.98 < k < 1.02 Saintevenant Saint-Venant Saint-Venant Saint-Venant 
equations equations equations . equations 

B from 

k < 0-98 Saint-Tenant Exact momentum Saint-Venant Saint-Venawt 
k > 1.02 equations and continuity equations equatiom 

equations 

(b) S o l u t i o n  Variable, h 

Values 

0e 

B and k 


Recornended equations 


0.97 < k < 1.03 Saint-Venant Saint-Tenant Saint-Venant Saint-Venant 

k < 0.97 Saint-Tenant Exact moment- Saint-Venant Saint-Venant 
k > 1.03 equations and continuity equations equations 

equations 



- - 

9.2. Criteria for Selection of A~~roximate
Models 


The selection of approximate models is definitely related to 

the relative contribution of each of the terms, i.e., the local 

acceleration, convective acceleration, pressure, friction slope and 

sPlanne1 slope. From Chapter 6, the copl,tributions sf t h e  terms 

mainly depend on the channel slope, SO, the flow Froude number, and 

the downstream boundary condition. The downstream boundary 

condition has the most significant influence to the contributions 

of the terms. When no backwater effect exists and the Froude 

number is small, the friction slope and channel slope are the most 

important, and the other tems can be ignored. When there is a 

downstream backwater effect, i . e . ,  the flow condition is dominated 

by the convectively decelerating or accelerating subcritical flow, 


the pressure term becomes very significant. For the convectively 


accelerating type profiles, the importance of the convective 


acceleration term increases, 


in order to clearly set up criteria for the selection of 


various approximate models, Equation (8.40), which is as follows, 


is discussed again. In this equation, s is equal to the square of 

the Froude number and E is equal to (h/x)/S0. If E = &/%)/s~ is 

replaced by the ratio, (ijh/ax)/S,, on the basis of magnitudes of 

Froude number and (ah/ax)/S,, the exact momentum equation can be 
V 

transferred into various approximations. For example, if 

(ah/ax)/S, = 0, this equation is the kinematic wave approximation: 
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i f  (ah/dx)/So = 0 ,  but t h e  flow Froude number is l a r g e ,  only t h e  

p r e s s u r e  term can be neglec ted ,  t h u s  t h i s  equa t ion  becomes an 

approximation wi thout  the pressu re  tern; if lah/axl/so is l a r g e ,  

i.e., t h e  more convec t ive iy  d e c e l e r a t i n g  o r  a c c e l e r a t i n g  

s u b c r i t i c a l  f l o w  c o n d i t i o n ,  but t h e  Froude number is smal l ,  this 

equa t ion  becomes the n o n i n e r t i a  model. These a n a l y s e s  can be 

summarized i n  Table  9 . 2  t o  demonstrate t h e  c r i t e r i a  f o r  t h e  

s e l e c t i o n  of v a r i o u s  approximate models. 

Table 9 . 2  C r i t e r i a  for S e l e c t i o n  of Approximate Models 

Small Non ine r t i a  Kinematic wave Noniner t ia  

Large Complete dynamic 
-w a v e  -- -- 

Nonpressure Complete dynamic 
wave 

F i n a l l y ,  accord ing  t o  t h e  above d i s c u s s i o n s ,  one example 

r e f l e c t i n g  t h e  boundar ies  between e i t h e r  d i f f e r e n t  equa t ions  ( t h e  

e x a c t  momentum and c o n t i n u i t y  equations and the  sa in tevenan t  

equa t ions )  and v a r i o u s  approximate models can be roughly expressed 
0 

i n  Fig.  9 . 2 .  F igure  9 . 2  is given only  a s  an example. I n  order t o  

o b t a i n  t h e  a c t u a l  r e g i o n s  f o r  t h e  equat ions  and approximate models, 

f u r t h e r  i n v e s t i g a t i o n  is requi red .  



Region of Dynamic Wave Model 

Region of Noninertia Model 

use 

Sainf-Venanf Equations 

Exact Momentum and ConfinuifyEquations 

Fig. 9.2 Schematic o f  Applicable Regions f o r  
Different Equations & Approximate Models 



% O w  CONCLUSIONS AND m C O m E N D A T I O N S  

A systematic and comprehensive investigation of the 

sensitivity of the coefficients and terns in the exact momentum 

equation for unsteady subcritical flow in prismatic channels with 

fixed boundary has been conducted in this study. By analyzing the 

numerical results, the importance of the momentum flux correction 

coefficient ( D l  and pressure correction coefficients (k and k t ) ,  

and the relative contributions of the terms (local acceleration, 

convective acceleration, pressure, friction slope, channel slope, 

internal stresses) the exact for different 

cross-sectional shapes, channel slopes and downstream boundary 

conditions are s arized as follows 


(a) On the basis of the results obtained from this study, 

among the coefficients, B, k and kf, the impact of k on the 

solutions of the equations is the largest, especially when the 

channel slope is small and the downstream backwater effect is 

significant (i.e., the longitudinal gradient of the water depth, 

ah/ax, differs significantly from the channel slope, S O )  a However, 

usually the value of k is close to unity in most practical 

situations where the pressure distribution is nearly hydrostatic, 

unless the flow condition is significant convective acceleration, 


such as spillways and channels with sharply curved beds. In such 


special cases, the pressure distribution is very nonhydrostatic so 


that the value of k departs from unity. 


(b) The impact of kt on the solutions of the equations is 


roughly equal to half sf that of k. 
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(c) The impact of D on the solutions of the equations is 


relatively small as compared to that of k. However, the combined 


impact of D and k may become significant. If the flow velocity 


and pressure distributions of a real flow are extremely nonuniform 


and nonhydrostatic, the assumption of B and k equal to unity will 


lead to a significant error. 


(d) The impacts of these coefficients (D, k and k v  ) on the 

solutions of the equations are closely related to the Froude 

number, channel slope and downstream boundary condition. If the 

Froude number is small and the longitudinal gradient of the water 

depth, ah/ax, differs considerably from the channel slope (often 

associated with a significant downstream-boundary backwater effect 

where the convective deceleration or acceleration of the flow is 

strong), the difference between the solutions of the exact momentum 

and continuity equations and the Saint-Venant equations where B = 

k = k f  = 1 is significant. 

(ej The effects of the coefficients (8, k and kt) on the 


solution of the flow velocity are greater than that on either the 


flow depth or discharge. This implies that flow velocity is more 


sensitive to the variations of the coefficients than the flow depth 


and discharge. Therefore, if the velocity is the required solution 


variable, the selection of the equations (the exact momentum and 


continuity equations or the Saint-Venant equations) must be done 


carefully. 


(f) For channels with small slope and without backwater 


effect, the friction slope and channel slope are the most important 


among the terms in the momentum equation, and the two inertia terms 




and the pressure tern can be neglected. However, if there is a 

backwater effect, the relative importance of these terms is 

different. For convectively decelerating subcritical flow where 

(ah/ax)/S, > 0, the pressure term becomes very significant and its 

contribution becomes equal to or-greaterthan that of either the 

friction slope or the channel slope. For convectively accelerating 

subcritical flow where (ah/ax)/S, < 0, the pressure term is also 

important. The increase of contribution of the pressure term 

implies the advantage of using the noninertia model when there 

exists a dswnstream backsaiater effect. 

( g )  When the water surface profile is of the convectively 

accelerating type, the contribution of the convective acceleration 

term increases relatively as compared to that for convectively 

decelerating water surface profiles: 

(h) Generally speaking, the internal stress tern is not 

significant, and can be ignored, provided there is no abrupt change 

in cross section along the channel. 

(i) similar to the internal stress term, the rates of spatial 


change of D and k can be disregarded in most situations. However, 


for some special cases, such as an abrupt change of channel cross 


section or bed profile, the changes of the velocity and pressure 


distributions along flow direction are large. Hence, the two rates 


are important to consider. 


(j) From the above observations, it is clear that when the 


pressure distribution is nearly hydrostatic, i.e., graduallyvaried 


flow, the exact momentum equation can be approximated by the 
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complete dynamic wave equation. Otherwise, it is necessary to use 


the more complicated exact momentum equation. 


(k) The noninertia model can serve as a good approximation of 


the exact momentum and continuity equations in most cases since the 


two acceleration terms are relatively small. The kinematic wave 


approximation can be used only when there is no downstream 


backwater effect, 


(1)The key parameters for the selection of approximate models 


of the exact momentum and continuity equations ape the Froude 


er and (ah/ax)/S,. Alternatively, the relative celerity and 

lggarithmie decrement sf the shallow water wave can also be used 

(Table 8 lj , 

(m) The solution difference of the flow depths between the V-

h form and Q-h form of the exact momentum and continuity equations 

is mostly insignificant. This means that either form of the 

equations can be selected for solving flow depth. However, the Q-


h form is ~lightiypreferred to the V-h form, because flow velocity 

is more sensitive to the variations of the coefficients (D, k and 

k w )than the flow depth or discharge. 

(n) For a prismatic channel, the cross-sectional shape does 

not significantly affect the relative importance of the 

coefficients (D, k and k v )and the relative contributions of the 

terms in the exact momentum equation. 

According to the analyses and results of this study, the 


following subjects are recommended for further investigation: 


(a) First is to investigate the impacts of the coefficients 


and contributions of the terms for nonprismatic channels. 




(b) Second is to study the impacts of the coefficients and 


contributions of the terms for different upstream inflows, and 


other types of the downstream boundary conditions. 


(c) Third, because in reality it is impossible to change the 


value of only one coefficient while keeping other coefficients 


unchanged, further investigation of the relationships among the 


coefficients is necessary. 


(d) Finally, it is important to collect data from laboratory 


experiments and perhaps also from the field for comparison and 


verification of the numerical results obtained from this study. 
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