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The objective of this  study j s  
-
- -- t o  develop a mathematical model * -- - A- --- 

-

t o  simulate the steady flow f i e ld  and associ ated concentration distribu-

= - t ions resulting from a round,- turbulent j e t  injected i-nto a crossing - - --- -- 
-

-

pipe flow. -The j e t  may be e i ther  buoyant or nonbuoyant. . T The tracer  i s  
--

conservative. In t he  developed model, the flow f i e ld  i s  divided in to  
-

three regions and each region treated separately. The three regions 

are flow establishment region,-near f i e ld  region, and f a r  f ie ld  region. 

Basically, the flow i s  treated as a jet-% a crossflow i n  the f i r s t  

two regions, and as the diffusion o f  a pass i ve  conservative t racer  in 

the f a r  f i e ld  region. 
-.
lhe nonuniform velocity distribution of t he  

crossing pipe flow i s  considered by le t t ing  the pipe flow velocity 

vary across the pipe according t o  a power law. The turbulence of . .. 

-

. 

i 

i 

* 

? 

crossflow i s  also taken i n t o  account by the consideration of a f a r  
- -

- -

f i e ld  region. Also, thee f fec t s -o f -p ipe  turbulence i n  the near-f ield 

- -  

-

' i 

t 
i 

region are inherently-r e f l e c t e d  by the ly  eval uat-d-en= - - - - - 

trainmen t and drag coef f i  c i en t s  . -

-

The accuracy of the proposed model - has been checked with 

the experiments. I t  has been found tha t  by dividing ai-klysis into 

regions a good .representation 9-f 
. - - - - *- -

the .;I ow fi,eld and :assqci ated 
= -

concen- i 

. -
_ I  . _  I 

-
': 
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t r a t i  on dis-t r i  butions--was -. achieved.: T h e  near  fie1 d region in .which .-- --. ---
-

' -
- "  -

j e t  i s  active represent<-a very small fraction ( le is  than 2 percent) 

-- 

-- 

- - *-

of the total mixing distance, which i s  defined as the flow distance 
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- .-	 _ _  --. 
- - 1. I-. Definition -of =the Pr~b*lSm " 

Several of the possible means of discharge measurement in a 
- - - -	 - --.-

pipe -require e i t he r  a--s ignif icant  head lois or  interruption o f  -service .  

- The techniques which produce-a head loss may not be economical since a 
-

- portion of the:available headis wasted. On the other hand, i t  may not 

-	 be feas ib le  to interrupt  service very often-, so t ha t  techniques requir- 

ing t h i s  interruption could be used only occasionally, T h u s ,  a measure- 

ment technique which i s  econimical and which requires no interruption of 

flow was needed. T r a c e r  techhiques were introduced -because they meet 

both requirements [Clayton, e t  a1 ., 19681. 

The basis o f - the  tracer-technique with a continuous, steady 
-

in ject ion r a t e i s  the mass balance of the t racer  which i s  injected in to  

the flow. By knowing-the mass injection r a t e ,  PIIN3 and measuring the i
i 

concentration a t  a section a f t e r  the t racer  becomes-"uniformly" rnj-yed- j 
-	 ; 

i
with the flow, the discharge Q-in the pipe can be determined [Bureau of 

~&clamation,19661: 

-
'IN - M O ~ ~ 	 (1-1 

2.-
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apply equally t o  in ject ions  for discharge measurements or for  any other -

purpose. - - 	 -. 

-. 

- -- - -- - .- - - - - -- .- --- -- - --- - - - - - - 	 . - - - - - . -- -

1. I  .2. Type of 1nj6ction 
-

-
- . - - - - T. I 

- - I nere have been several- a n a l y t i c a l  a i id  latoraioi;j i  invesiiga-

- - t i o n s ~ f o r  some inject ion systems i n  s t r a igh t  pipes w i t h  fully-established 

t u r b u l e n t  p i p e  f l ow  (Chapter 2 ) .  For some s i tua t ions ,  these studies 

-	 [Clayton, e t  a1.,1968; Clayton and Evans, 1967; Evans, 1968; Filrner and 


Yevdjevich, 19661 allorv an accurate prediction of -the mixing distance.  


in ject ion a t  - t h e  p i p e  wall and a s ing le -po in t  sampling, a l so  a t  the. z 


pipe wall. However, fo r  a "simple source" a t  the wall, the mixing 
s - -

distance i s  approximately 200 pipe diameters f o f a  smooth pipe . . and a 	 t 
-. 	 - -

sburcel' i s  used to  re fe r  t o  

a t r ace r  source issuing into the pipe flow w i t h  no i n i t i a l  mixing.) Any 

~ e y n o l d s  number -of a b o u t  100~000.  ( " ~ h ~ l e  



treduction in  the mixing distance may increase the appl icabi l i ty-of  t racer  , 

techniques in discharge measurements and provide a greater opportunity 

f o r  using segments of exist ing pipes f o r  accomplishing mixing. A 

turbulent  j e t ,  with or  without buoyancy, located a t  the wall of the pipe, 

ra ther  than a simple source, may be used to i n j ec t  the t racer  (or  other 

substance) and thereby reduce the mixing distance. A j e t  perpendicular 

t o  the  pipe wall will transport the injected f lu id  away from the wall 

and cause some i n i t i a l  mixing. This i n i t i a l  mixing and the transport  

of the  injected f lu id  away from the pipe wall decrease the amount of 

mixing which must be accomplished by the pipe flow and therefore reduce 

the mixing bi stance. 

I f  the behavior of the j e t  i s  par t ia l ly  governed by a density 

d i spar i ty  between the j e t  and the ambient f l u i d ,  the j e t  i s  sa id  to  be 

buoyant. A convenient parameter to assess the importance of buoyancy 

in j e t  flows i s  the j e t  densimetric Froude number IFd defined as :  

where uo i s  the j e t  injection velocity,  Ap i s  the density dispar i ty  

between the j e t  and the ambient f l u id ,  pa i s  the ambient density,  g i s  

the local acceleration of gravity,  and d i s  the diameter of the injec- 

t ion hole. For l a rgeEd  ( > > I ) ,  the j e t  i s  considered to be i n e r t i a l l y  
I


dominated with negl i g i  ble influence o f  buoyancy. For IFd near unity 
I 
1 

Cbuoyancy becomes the dominating aspect of  the flow.-- Should IFd be in the 
I 

order of unity a t  the injection point, i t  would be h-ard to  consider the f 
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Ix-

por t -~he-- jn j -ec~$d-- ' f lu~-a&yf r o m  t h e  p i p e ~ a f 1 ,thin-the % j ' a g x ~  

should be made ver t ica l ly  from the-top o f  the pipe i f  the injected f lu id  -

i s  heavier than the ambient or  ver t ica l ly  from the bottom-if the injected 
a -- -- - - -

- -
f l u i d  i s  l igh te r .  -

- . - L.. - - - -	 . % 

- -- -. . 

.-1 . 2 .  The Objectives of This S9d.y -
- -. -- - -

- -- -
- ----	 - - - - -.-- --- . -- -
-	 - - - - - - .  .------ -- --

- The general objective o f  t h i s  study was t o  -investigate the be-

" havior of a f l u id  injected as a turbulent j e t ,  w i t h  o f  without buoyancy, 
-

perpendicular to the pipe wall into ful ly-establ  ished turbulent flow i n  
-

-
- a pipe. 'The r e su l t s  were  used to  eva? uate the -use of turbulent -Tets as 

t r ace r  sources-for discharge measurements i n  pipes and as means for  

accomfli s h i i f  mixing w i t h i n  a pipe flow. More s p e c i f i i a j y ,  the- indi-  
~ 

" - - 	 - - - - - - -
Iv i d u a ~ob jec t - i~esare  - -


-

4 - - - - - -	 1 

1 .  	To develop a mathematical model which would provide a-

solution -- --	 - fo r  the behavior of the injected f l u i d  (Chapter 
- -	 - - - - - - - "  -

3) * 	 - - 4-

-
- 2. To conduct experiments to  check the accuracy of the math-

-

ematical model (Chapters 4 and 5 ) .  

3 .  To experimentally observe and evaluate the reduction i n  

mixing distance du_e_to use of a j e t s  w i t h  o r  without I 

. --	 3 

buoyancy, i n  comparison to  mix ing  distapce due to other 	 1 
t 

a 
- "_ _ % _  > -

- -- -_ - I_ - - . _ . ._ - -- " -	 - - _--..._,_  __ I 
- * -- types o f  jn jec t ion  systems (Chapter 5 )  .- . - . -

-
- - I 

-

4. To make recommendations f o r  use of t h i s  injection technique 

. i n  f i e l d  applications (Chapter 6 ) .  



- - 

- - 

2 .  	PHYSICAL PROCESS AND LITERATURE REVIEW 
- - ;  

I 

2 . 1  General Description of the Flow Field 

2.1.9 Similari ty t o  J e t  in a Crossflow 

-. 

The behavior of e i ther  a nonbuoyant or  a buoyant j e t  injected 

perpendicularly from the pipe wall in to  a crossflow in a pipe i s  s imilar  
-

in many respects to  tha t  of a j e t  injected into  a uniform, unconfined 

crossflow. The differences result ing from the existence of the confining 

boundary ( the  pipe wall ) are 

1 .  	 The pressure gradient along the pipe axis .  

2 .  	 The nonuniform velocity dis t r ibut ion of the crossflow in 

a pipe. 

3. 	 The ambient turbulence. 

4. 	 The limited supply of ambient flow for  potential entrain-

ment by the j e t .  

2.1.2 The Flow Field 

As a j e t  enters a crossflow in a pipe, the  j e t  behaves i n i -  

t i a l l y  as i f  i t  were in a stagnant ambient f lu id  since the crossflow 

velocity i s  small in comparison with the j e t  velocity. However, as the 

IIj e t  penetrates into  the crossflow, the interaction of the j e t  and the -
- f 

crossflow causes the j e t  to  be deflected in the direction of the cross-
I 
I 

flow. The ra te  of deflection i s  dependent on the net e f f ec t  of momentum 
i 

and buoyancy of the j e t ,  the pressure force on the j e t ,  and the entrain- 

ment. 



- - 

2.1.2.1 pressure Force 

stream side of the j e t ,  the crossflow i s  pa r t i a l l y  stagnated. On the 

downstream side some separation of the ambient flow takes place. Thus, 
-

the  pressure around the j e t  continuously decreases from the upstream 

s ide  of the j e t  to  the downstream side.  This change i s  in addition t o  

any pressure gradient impressed by the ambient flow. Due to  both e f -  

f e c t s ,  there i s  a net pressure force on the j e t .  Normally, the drag- 

type pressure force i s  larger than tha t  associated with the ambient 

pressure gradient. 

2.1.2.2 Entrainment 

The shearing between the crossflow and the j e t  causes entrain-

ment of crossflow by the j e t .  As the j e t  def lec t s ,  there will be a 
1 

component of crossflow velocity along the j e t  axis and another component 

normal t o  the axis .  The velocity difference between- the j e t  velocity 

and the component of the crossflow velocity in  the direction of the j e t  

axis gives r i s e  t o  a f r ee - j e t  type entrainment. On the other h a n d ,  the 

normal component of the crossflow velocity generates a vortex pair  in 

the  wake behind the j e t  and disturbs the j e t  boundary. This produces 

strong mixing and causes fur ther  entrainment of ambient f lu id .  

The existence of the pipe wall places a potential l imi t  on 

the supply of ambient flow for  entrainment by the j e t .  However, as long 

as the volume flux of the j e t  i s  small compared to  the ambient volume 



f l u ,  t h i s  1 imitation on the supply of ambient flow i s  probably not 

s ign i f f  cant. 

2.1 . 3  Three Principal Flow Regi ons 

For a round turbulent j e t ,  with or  without buoyancy, discharg- 

i n g  through a c i rcu la r  hole a t  the wall in to  a fully-established tur-

bulent pipe flow, three principal regions can be distinguished in the 

j e t  flow (Fig. 1 ) .  In the present work, these regions are  ident i f ied 

as ( a )  the flow establishment region, ( b )  the near f i e ld  region, and 

( c )  the f a r  f i e l d  region. Basically, the transport  of the t racer  can 

be t rea ted  as a j e t  in a crossflow in the flow establishment and near 

f i e l d  regions, and as the turbulent diffusion of a passive t racer  in a 

pipe flow in the f a r  f i e ld  region. The general character is t ics  of each 

region are discussed below. Quantitative def ini t ions  fo r  each region 

a re  given in Chapter 3 (Sections 3.2.3, 4 ,  5 ) .  

2.1.3.1 The Flow Establishment Region 

As the j e t  penetrates in to  the fully-es,tablished turbulent 

pipe flow, a diffusion zone i s  formed around the periphery of the j e t  

by the shear between the j e t  and ambient f l u id .  This diffusion zone 

grows both inward toward the j e t  axis and outward. Eventually a t  some 

distance along the j e t  axis the diffusion zone reaches the j e t  ax is ,  

a f t e r  which the j e t  centerl ine velocity s t a r t s  t o  decrease. The region 

between the j e t  ou t le t  and the j e t  cross section where the diffusion zone 

reaches the j e t  axis i s  called the flow establishment region. The main 
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- . ?  -the- j e t  6 ~ h a v i o r '  in  3the fii.s t two regi ons-l- The bghavi or  of.the--traSer - '-" --
2 + 

- . - -- A - -

--i n--;he f a r  f i e l d  r e g i o ~  i s  governed by the veloci t i  and the t u r b u ~ e n t - ~ .  --I-'' _ _  - c  - w Y -- - - -"-- - - - - _ - _ 
-diffusion of the pipe flow; Due to  turbulent mixing in the pipe flow, 

the variation iij  concentration of t r ace r  within a pipe cross section 
-

continual ly decreases along the pipe axis and eventual ly  the adequate-- - -

- . --

mixing i s  achieved. -- The length of t h j s .  region i s  much -greater  than tha t  

I 

- f 
I 

i 

-

- -- -- -- ---- - "  -

- of the other two regions, as will be-=seen i n  Section 5.4.5.  - * 

-

2.1.4 J e t  penetration and ;he -~ i x i n gDistance 
& -

Since, in the f a r  f ield-region3- the  transport  -of the t r ace r  i s  

governed solely by t h e p i p e  flow c h a ? ~ c t e r f s t ~ c s .  the length of t h i s  

region f o r  a given flow is-  dependent solely  upon the dis t r ibut ion of the 

t racer  concentration a t  tFe - b e g i n d n g  of the region. In other words, the 

1 ocatiof-of the .  j e t  --center re) a t i  ve - toythe pipe center a t  the end of the 
. -

- - A 

a; . .Inear  f i=- id rogioii -iafpriiiiai-y- i n p a i - t a ~ ~ e  f a r  a; the magnitude of -:r-

the mixijg distance i s  concerned. For j e t  centers located close to the 
E


pipe wall, one ~ o u l  d expect 1onge.r -mi xing distances as compared to  the  
r - - -" 

-= 

j e t  center c l o s e  t o  the pipe center based on t h i  d i f fe ren t  mixing dis-  
-

tances f i r  simple sources loiated a t  the pipe k i l l  as compared to the 
-

case fo r  those on the pipe centerl ine (~ec - t i on  5.5) .  Defining the j e t  

character is t ics  on the mixing distance. In Chapter 5 (Section 5.4.1) 



- - 

- the-dependence of the  j e t  penetration on both the j e t  and- the pipe flow 


- cha rac t e r i s t i c s  i s  discussed. 


2 . 2  J e t s  in Crossflow 

Most  o f - the  studies [Baines and Prat te ,  1967; Fan, 1967; 

7 n r nKe$fe-+, 
I Y O Y ; Abraham, 1969; Keffer and Baines, I Y O J ;'"'" Motr- and i3eiied-ic t ,  


1970; Lin, 1971; Chan and Kennedy, 19721 on turbulent j e t s  in uniform, 


unconfined crossflows are semiempirical in nature. A summary of pre- 


vious work i s  given by Fan [I9671 and Chan and Kennedy [1972]. Some 


parts of the 1 i t e ra ture  review given here have been abstracted from 


these previous reviews . 

The mathematical models given in the l i t e r a t u r e  [Fan, 1967; 

Abraham, 1969; Motz and Benedict, 1970; Chan and Kennedy, 19721 a re  

Morton Type [Morton, 19591 integral  approaches which require experimental 

determination of some unknown parameters such as the entrainment coe f -
' - 1[ 

f i c i e n t  (Section 2 . 2 . 2 )  and the drag coefficient (Section 2 .2 .3 ) .  These 
L 

mathematical models assume similar velocity excess prof i les  and density 

dispar i ty  prof i les  ( i f  any) in the j e t  and resul t ,  in a s e t  of simultan- 

eous di f ferent ia l  equations. Solution of these equations gives the t ra -  

jectory of the j e t ,  the decay of both the velocity excess and the den- 

s i t y  dispar i ty ,  and the variation i n  t h e  n~rnina? radius c~ft h e  j e t .  The - , 
- , 

nominal radius of the j e t  i s  normally assumed to  be the point whew the 
i 

I 

J 

j e t  velocity excess i s  some arb i t ra ry  fraction of the  j e t  center l ine  
I 

velocity excess. The same type of def ini t ion i s  adopted in t h i s  study. ,-
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- -

profi les  for -ve loc i ty  excess and density dispar i ty  
-

-

d i s t r i b u t i o n s h a v e o f t e n b e e n u s e d i n  t h e a n a l y t i c a l - t r e a t m e n t o f  the 
-

-

- . f l o w  of a j e t ,  a f t e r  an appropriate system a_f coordinates was chosen -
- -

- - - - -. - - -- - - - - - - -- - -- -- - --
- - - - - - - k- - - ----

. - -- .  

[Baines and Pra t te ,  1967; Fan, 1967; Keffer, 1959; Chan and Kennedy, 
-

- - - ---- - - - -
- - -

- - - _ h b - - - -

1 9 7 2 ; - ~ i r s t ,i9721; - However, two inherent -features bf the flow, namely 
- - - - - A  - - - - - *-- - - - -- ;iT- -- - - - - - - -- -- - - - - - - - --. - - - - --

noniniforrn crossflow and the vana t ion  in the entrainment around the 

periphery of a j e t  cross section,  make the:assumption of  simi l a r i t y  

prof i les-- not s t r i c t l y  valid. Nevertheless, in t h i s  - study,- sirnil a r i t y  --

profi les  are  assimed since i t  has been shown in previous s tudies  that  
--

s imi la r i ty  assumptions produced reasonably good agreement between theo-
- -" - ~ 

- - - - - -

re t ica l  predi i t ion; and experimental data. The most commonly- used simi -
. - . - - -- " 

.- -- - ---
-- - - - - -

7I d r- _ : L . .l L y  p r u T ,2 2  1, i - the ~~~~~ian d i  s t r j b u t i o n  - [ F ~ ~ ,-Irims j / - m - . - -In ~ n .  
[ Y O /  h e T T t ? r  3 I Y O Y ;  

-
* J - -

- .  
- * " - -

- e - --- - 4 - - - 4 a-

Keffer and ~ a i n e s ,1963; Chan and-Kennedy, 19721, although there  js a t  
- - - - - u3- - -. 

% . - - -- - - - .. -- &- - - - 3 

l e a s t  one case in which a "top-hat"- prof i le  has been used [Carter,- - 19691. I 

-- - - .  
- - -- - - - <  - -

i 

, ",?* - - -- -

7-Z.2.22,Representationof ~ntrainmenf 1 -' .- -- - - .  

- - - - - -
- - * 

- - -- - - - = 
-.- - - - -

- - - - " - _ - - - - *  

Entrainment, E ,  i s  the change in the volume flux in the j e t- * "- - - - *. 
-

along the j e t  t ra jectory:  

dQE = - J - - . - - - - -
- -- - - - -

- dxl ( 2 -1 )  - I 

- - - -- " 4 - - - - - - --
i- - - - a 

- - -- - - -
- --

- - . * - - . - ? - - . - - - -

where Q .  i s  t h e  discharge of volume f l u x  in the j e t  and x i s  t h e  coor-
1 

- . - - .J- -- I- - - - - - 1 - - .: - .-
- ._ _ - __ - - _ I  .". - --i - -"- " ~ *  - - - - -

.dinate along the j e ~ r a j e c t o r ~ .- = The gradient dQ ./dxl has frequently- -
-- --- - - - - - - - - - - .- - --- ..- 2 -- s 

- - - - - r  J 
- *-. - -

- .-. - --
-- - . . -A -- .-- -

I 
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where b i s  the nominal radius of the j e t ,  which i s  defined quantita- 

t i v e l y  in Section 3.2.3. Thus, by combining Eq. 2-1 and E q .  2-2, the 
-

entrainment process can also be represented in terms of the representa- 

t i v e  entrainment velocity [Morton, 19591, u e ,  as 

1 

2.2.2.1 Entrainment Velocity i n  the Case of Stagnant Ambient Fluid 

For the case of a f ree  j e t  in an unbounded stagnant ambient 

f l u i d ,  i t  i s  well established [Morton, 19591 tha t  

-

where u j  i s  the j e t  c e n t e r l i n e  v e l o c i t y  and a, i s  an entrainment coe f -

f i c i e n t .  Since the ambient f l u id  i s  stagnant a t  i n f in i ty ,  u i s  also a 
j 

measure of the velocity difference between the j e t  and ambient f lu id .  

I 

2.2.2.2 Entrainment Velocity i n  the Case of Interacting Crossflow 

For the case of a j e t  i n  a crossflow, Eq. 2-3 i s  normal ly as- 

q l l m ~ c !  to s t i l l  he va l id j  b u t  the f o r ~ u l a t f o n  nf the entrainmefit ve!ncity5 - -...-

u has been the subject of much speculation. Even with a l l  t h i s  specu- e 
la t ion  and attention t o  u e ,  the detailed mechanisms of entrainment are  

among the leas t  understood aspects of the j e t  i n  a crossflow. 

- -  

-

-

I 

1 
I 
i 
i 
I 

1 
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-- A S  -me%t-S-ii3f-earlier3- the entrainment process in the  case of 

an i n t e % c t ~ n gcro~ssflowcan be viewed as consist ing of two par ts ;  

one part  i s  due to the difference between the j e t  velocity and the com-

ponent of the crossflow paral le l  to  the j e t ,  the other i s  due to the 

normal-- component o f t h e  crossf l  ow. 
-

-

Fan 119671 represented E in terms of the magnitude of the 

vector di fference between the two charac te r i s t ic  veloci t ies  : 

where u i s  the j e t  center l ine  velocity vector, ua  i s  the crossflow 
j - -

velocity vector and a i s  an entrainment coeff ic ient  (which i s  not nor-

mally the same as a, in Eq. 2-4) .  He therefore had a s ingle  entrainment 

coeffi  ci ent representing the combined e f fec t  of both aforementioned 

types of entrainment. In t h i s  study, the entrainment mechanism i s  de-
- .  - -

fined according- t o- Eq. 2-5 fcrl i owing Fan [I  9671.  T h i s  clio-i ce f s due 

merely to  the conienience of the form and the success which Fan had for  

the s i tua t ions  which he investigated. 

Other investigators have used other representations for  u e .  

For example, -Keffer and Baines [I9631 expressed u, in terms of the scalar  

difference of the j e t  center l ine  velocity,  u and the ambient velocity,
j 

Others [Lin,  1971; Platten and Keffer, 1968; Keffer, 1962; Houltua 
e t  a1 ., 19691, expressed ue  i n  terms of a 1inear combinati on of the axial 

. "- - -.*- --. -

and normal components of the  vector difference between the j e t  and the 

crossf l  ow Teloci t i e s .  Thus, they ended u p  with two coeff ic ients  repre--

senting the f r ee - j e t  type and crossflow-type entrainments. Hirst [I9721 



l a t e r  assumed that  the entrainment into  the j e t  in a  crossflow depends 
-

on the local densimetric ~ r o u d e  number. He obtained a  re la t ion for  ue 

involving four entrainment coeff ic ients ,  

The tendency in the past work has been t o  consider the entrain- 

ment coeffi  cients as constant a1 ong the j e t  t ra jectory.  Abraham [I 9651 

argued tha t  the entrainment coefficient could not be assumed constant, 

par t icu la r ly  in solving buoyant j e t  problems. He pointed out t ha t  the 

behavior of the vertical  buoyant j e t  in a homogeneous stagnant environ- 

ment was i n i t i a l l y  l i ke  a  nonbuoyant j e t  and l a t e r  a  plume. Since j e t s  

and plumes have d i f fe ren t  entrainment coef f ic ien ts ,  he suggested an ap-

proximate method to  account for  t h i s  variation in the entrainment coef- 

f i c i e n t .  Fan and Brooks [I9661 l a t e r  showed tha t  the use of a constant 

entrainment coeff ic ient  produced as good a f i t  t o  data as the use of 

Abraham's method. In t h i s  study, therefore,  the entrainment coeff ic ient ,  

a ,  i s  assumed t o  be constant a long the j e t  t ra jec tory .  

2.2.3 Drag Force on the J e t  

Several of the investigators c i t ed  above in, 1971; Platten 

and Keffer, 1968; Keffer, 1962; Houl t e t  a l . ,  19691 have not considered 

the influence of the  drag in t he i r  solutions for  the behavior of the j e t  

in a  crossflow. Their main argument fo r  omitting i t  was tha t  there i s  

no s ignif icant  e f fec t  of the drag on the j e t  a f t e r  i t  becomes nearly 

para1 le l  t o  the crossflow.-
-

Some investigators [Fan, 1967; Abraham, 1969; Motz and Benedict, 

1970; Chan and Kennedy, 19721, on the other hand, d i d  include the e f fec t s  



- - -- --- - 

-- - - 

of both the drag and the entrainment in theiranal-ysisz?T-~hey treated 
- ..--

t h e  j e t  as an obstruction in the crossflow. The drag the6-was repre- 

sented as 

-

where dF i s  an increment of drag force acting on-the elemental j e t  vo l -

ume with a nominal radius b and thickness dx, along the j e t  axis ,  pa i s  

the ambient density, ua i s  the ambient velocity, and C t  i s  the drag 

coefficient.  

Abramowich [I9631 also treated the j e t  as an obstruction i n  

the crossflow and used the same type of definition fo r  the drag as 

given in E q .  2-6. B u t ,  unlike other investigators, he did not include 

the effect  of entrainment in his treatment. Therefore, he obtained drag 

coefficients which are much larger t h a n  those coefficients observed by 

others because the drag coefficients in h i s  representation also ref lect  

the i f f e c t  of entrainment. 

In th is  study, the concept of a j e t  being an obstruction i s  

employed. Furthermore, C t  in E q .  2-6 i s  replaced by C D  sin2 8 a f t e r  

Abramowich [1963], where 8 i s  the je t  deflection angle (Fig. 1 )  and C D  

i s  a drag coefficient which i s  assumed to be constant along the trajec- 

tory of the j e t .  Thus, the following relation for the drag force is  

used: --

The quantity ua sin 9 i s  the component of the ambient flow normal t o  the 
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-

-	 j e t  ax is .  The form of Eq.  2-7 assures t ha t  d F  approacheslero as the 

j e t  becomes aligned with the ambient flow. This f a c t  and the p r e v i . 0 ~ ~ -  :-

success w i t h  the use of expressions such as  Eq. 2-7 by other invest i -  

gators are the reasons tha t  Eq. 2-7 will be used in t h i s  study. 

- .  - _ --_ 

....- - -2 - 


. 	 -

- - - .-- - .--

. -2.3 Turbulent Mass Diffusion in Pipe Flow 

- -Considerations in t h i s  section r e l a t e  to  the f a r  f i e l d  region 

and a re  therefore concerned with pipe flow. None of the considera-- 

t ions  r e l a t e  t o  the mechanics of j e t s  injected into  the flow. -

General treatment of the subject  of turbulent diffusion may -

be found in Bird e t  a l .  [1960], Hinze [1959], and Monin and Yaglom 

[1972], among others.  The mass transport  equation fo r  a t racer  i s  o 

tained from considering the mass balance of the t racer  For the case o f - - - P - - . 

steady, established turbulent pipe flow of an incompre jble f l u id ,  the - I  

mass balance equation i n  cylindrical coordinates for  a steady s t a t e  

t r ace r  dis t r ibut ion becomes [Hinze, 19591 

where u i s  the axial velocity, c i s  the concentration of the t racer  

(mass/volume), and e l ,  e2, and e3 are  the turbulent mass d i f fu s iv i t i e s  
I 	 -

in 	x1 ( longi tudinal) ,  x2 ( r a d i a l ) ,  and x (circumferential) di rect ions ,  - -3 	 . -. - i 

The nonuniform nature of diffusion coefficients and the axial velocity 

-

j	 i ---
.- -- - - -

causes d i f f icu l ty  in analytical l y  sol ving E q .  2-8 fo r  appropriate bound- 

ary conditions. 
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2 - in g- - -	 = t 

-- - - - Many invest-i&tors have solved E q .  2 - 8 ,  ~ h ~ k h - i ~ e l ~ l i p t i c -- -
1 . 1  	 - r p  --- - A r i  - -- --- --4- ia 

- -
-. - - -	 z i-nLa3ditionto _ t h ~ s e - i n h k k e n t ~ ~ ~ t h e  bna-ture, -by-making-assumpt-i~ns 	 e3Ga--	 - - - r-

e 	 3-

- -- - 7 - E 
t i  on. Most investigators consider the axisymmetrical case which-reduces -

-
Eq. 2-8 * t o  -

- -- - - - - - --	
7 - - - - --- - - --

-- - - -. - -
-

a - a  ac 1 a ac --(cu) = -(e -) + --(e x -) 	 (2-9) - - -
- axl-	 2 2 a ~- - -

-	 axl laxl  _;x 2  axr  - 2 -. -- -- -- -	 - -
- * - --. " - - --" - - -.. - < 

1 

4 -
- -E= -

r EIri Cars1avi arid J aege r  [ f965]  'an-d Crank [I  9641, several anal-!ti c a l cGl  u- ;- - --
-r 
-

- t ions  t o  Eq.  	 - t ions2-9 have been presented fo r  various boundary-condi -

-
- ,

u s i n g  t h e  assumption of isotropy ( i . e m ,  el  = e2)  constant  t i  ffusion 

coef f ic ien ts ,  and uniform velocity d i s t r ibu t ion .  These assumptions 

- l imi t  the-potent ia l  applicabi 1i t y  of the solutions for-use i n  practical  -

- -	 - -.- - - -- - Iproblems. 

- - Neglecting the e f f e c t - o f a x i a l  -diffusion for  steady s t a t e-8 

--
b 

+-	 . conditions, E q .  2-9 i s  fur ther  reduced t o  - -- - f 
,." rF 


- > - - - . 
= 

a - " 
= 

1 -
-

-(ea x -)ac 	
- - -- - a -

( 2 - 1 0 )  
. 

-

-- i 

-(Cu) X 2  ax2  2 2ax2 	
ce 

- - -.- --- ax1 . 	 f 
j 

Jordan [1161] and, Bernard and Wi 1helm: [19501 ,,among others;: solled the 	 . 
fE 
F 


- -	 above equation. for  a conti nuous:center?i ne- p o j ~ tsourc;? 5 n-a-fulTy- --

established pipe flow. They assumed the velocity u and diffusion coef- - - -

f i c i e n t  e2 as constant and obtained - -

b 


-- -	 - .  - .-

a e a2x J 5 ( a n x 2 / ~ )  
- - - .- . . .  t 

- - - c = 1 +.Iexp ( - 2 n 1 )  
2 

--- - .  (2-11) " & 
. n= 1- ~ ' 3  J ~ ( u ~ ) .  	 i-	

m -

- - .- = 
-

- - --
-
* --

-. * 
. :t 

where c i s  the c6ncentrat-io n Aof the t r ace r  normal ized wi t f i  respect to  the ---
i 

-
cross-sectional average concentration c ,  u i s the  cross-secti onal average 



-- 

- - -  

- - 
- - -  

-- - - - 

- - 
- - 

- -  - 

-
- --- f- - _ I

.veloci ty;  R i s  the pipe y a d i ~ s , ~ a n d  the n - t h  - - 7
a n i s  posit ive root of . * 

- I-
* - v 

I - -
Jo(aR) = 0 ( 2 - 1 2 )  

Equation 2-12 i s  derived from the boundary condition tha t  there be no 

radial  mass t ransfer  across the pipe wall. For large x l  values ( x l  > 60R), 
-

the f i r s t  term of the se r ies  in E q .  2-11 approximates the se r ies  sum with -

-more than 99 percent accuracy. Therefore, fo r  xl > 60R, neglecting a1 1 

b u t  the  f i r s t  term of the se r ies ,  Eq. 2-11 reduces t o  

2 
e a2 1x1)  Jo(a,x21R) 

c = l + exp ( - (2-1 3)
R2; 7 2 ,

J o w l  ) 

Jordan [I9611 also solved E q .  2-10 f o r  a continuously emitting 


a x i symmetri ca1 ring source. Assuming uniform velocity and d i f fus iv i ty ,  


he obtained 


2 C 

cn e2an" ) J0(anx22I) Jo(anRo/R) 
c = 1 + l exp ( - (2-14) I 

n=l R ~ ;  ':(an 

Lwhere Ro i s  the radius of the injection ring. 

As mentioned ea r l i e r ,  analytical  integration of Eqs. 2-9 and 

2-10 i s  normally not possible except when uniform velocity a n d  diffusiv-

i  t i e s  are assumed. T h u s ,  several inves t iga tors  used numerical integra-
- ,--

. t ion techniques t o  obtain sojutions of Eqs-. 2-9 and 2z-10: Fahien and - , 

- ,rjSmith [I9551 solved E q .  2-10 numerically, allowing both the velocity and 
I 


-the radial  d i f fu s i f i t y  t o  vary with radial position. They considered a - - - = i 

ce r t e r l  ine injection into  a ful ly-establ ished pipe flow. Evans [I9661 



- 
- 
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- - - 
- - 

-- - - 

- -- - 

-- 

- - - a-=-

- - - *  -9 - - <  --
e1at-r numeri ?y soTv@dE q ;  2-9 :.for - je&-6na f ~ e c t e d . i 2 n c j n  !&-$6-zi --fir1 If-

>- -
- -- - - - -i 

-es fap i i s@dl j ipe- f low.  H e  found-that the effect-of- the-  t e r m - : ~ ~ ~ 6 ~ 2 $ ~e l -- -- - - - - ' i  

-
i n  Eq. 2-9 i s  small compared to  other terms-for steady s t a t econd i t i bns  -

- and thus can be- negl.ected for  the range o f  Reynolds number (4  x 103 
to  -

II107 ) which he considered. ,Seagrave [1960],r using a dif ferent  mathematical I 
-" - -- -- --.--- - ---- - ,-- - -. 

itechnique -arrived a t  the same conclusion. However, a t  small Reynolds 
--- - - i 

r 
-- - 3 _ - - - - - - -
-

- - -
-

numb& (4x Rol ey [I 9601 figs shown-thit- the mag~itid&~of-th$'~axi 
- .  

-:To , a1 -

di f f c s i  on becomes -cdmparable w i  t k  the magni tude of the convecti ve  trans-
- -" " 

port and therefore the axial diffusion term cannot be neglected. Since 

t rans i t ion  from laminar to - turbulen t  flow normally takes place a t  Reynolds 

numbers of approximately 2 x 1 0 ~ ~  this-range of turbulent flows for  which 


a x i a l  diffusion must be included in i s  re la t ive ly  insignif icant  in many 


i t y  -have been compared with data as discussed below. 

Using the logarithmic velocity dis t r ibut ion and the 1 inear 

shear s t r e s s  variation in the - r a d i a l  di rect ion,  i t  can be shown 
- -

, . 

-

- -  

[ ~ c h lich t ing ,  -1 ~681t h a t - t h e  ~ d d ivisc6sTty ( o r  turbulent 'momintim7dif- .-
7-- - . s 

A - ' 

f u s i v i t y ) ,  E, i s  
- -

* - - - - - -- - - -.. - -7. - - - - -
- - - - --

- - --- 
- -  -- - - - -  - - 

- # . .-
. 

& 

F 

f 

E 
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c ross - sec t iona l  average value of E ,  i s  used: 

S u b s t i t u t i n g  
- LL

/ 

where i s  t h e  c ross-sec t ional  average ve loc i ty  and f i s  the  Darcy-

Weisbach f r i c t i o n  f a c t o r ,  and assuming K = 0.4 ,  E q .  2-16 becomes 

--
E = 0.0236 8 R (2-18) , 

The t u r b u l e n t  Schmidt number h r ep resen t s  t he  r a t i o  of turbu-

l e n t  d i f f u s i v i t y  of  momentum E t o  tu rbu len t  d i f f u s i v i t y  of mass e 2 ,  i . e . ,  

(2-19)X = c /e2  

Thus, from Eqs. 2-15, 2-16> and 2-19, one ob ta ins  

-

-

f 

i 

f 

-" 

i 

e2 = 
Ku,R x 2 X2T(T)(1 - (2-20) 

and 

(2-21- )" 

Evans [I9661 experimental 1y observed t h a t  the t u r b u l e n t  Schmidt 

number, X ,  increased from 0.65 a t  a Reynolds number of 10,000 t o  approxi-

mately uni ty  a t  Reynolds numbers of 50,000 and 100,000. Bonin e t  a l .  
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- [1957]zalso f~u~p~$~atl_th~turbule~tlSChmidt=%um~ee%a-s-01;~-at-~~ey~~~d~-~~'-
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- - J -

- - n u m b e r  of 1~,000. However, $6; highest val ue observed by tkem$as= 8 - - --	 , 
- - --	 3 

- - - --
-

a t  Reynolds number about 56,000. 

Evans [I 9661 used a parabol i c  d i  ffusi vi t y  distribution across --. . 

- the-piperadius (Eq-2-20)=with-A-=- 1 t o  mmeri-c_alllyA=ca-lrculat~conce~tra-

-	 t iondis t r ibut ions .  W.hen,he compared these-with some measurements, he i 


-

found some discrepancies near the injector  a t  t h e  pi pe cent-er; He- then 

-oncl uded t h a t  a - parabolic diffusivi ty i s  present i n  the- outer half of 

the pipe radius b u t  i n  the inner half ,  e2 f a l l s  	t o  some positive value 

rather than decreasing t o  zero. a t  the pipe center1 ine, a s  would be pre-

dicted by E q .  2-20. This conclusion-is i n  good 	agreement with the varia-

,Equation- 22 gjves a nonzero value for e2 a t  the centerline. Equation 2-23 L 


t 

- 1  -was sel ected,so, tfiat-:thez magni tude-:bf-&. a t  the centerline -(@;-I5 i s  	 - - iI 
I 

i.in agreement-wi t h  that  obtained from Ni kuradze's data. The average 
I 

Ivalue z2 from Eq.- 2-22 i s  



- - 

I 
I 

-- 1 
e2 = 0.0251 ;TR/A - - -- - - - (2-24) 

- -

- *  

-

' 

- 1-

- -. - . 

- j
2.3.2  Turbulent Mass Diffusivity i n  Circumferential Direction 

Because of the lack of knowledge on the turbulent momentum 
I 

d i f fus iv i ty  in thecircumferent ia l  direction in pipes, theanalogy between 
II 
I 

the  turbulent t ransfer  of mass and momentum cannot be d i rec t ly  used t o  I i
i
I 

-re1 a t e  the turbulent mass dif fusivi ty in the ci rcumferenti a1 direction 

t o  flow character is t ics .  I t  will be assumed tha t  turbulent mass dif fusiv-

i t i e s  in the radial and circumferential directions have simi l a r  spa t ia l  

var ia t ions .  Thus, introducing a constant of proportionality (0), these 

two d i f fus iv i t i e s  will be related as 
! 

" . 
where e, and e3 are the radial and circumferential d i f fu s iv i t i e s ,  respec-

L 


t i v e l y .  The proportionality constant was evaluated experimentally as 

discussed in  Section 5 .3 .2 ,  
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vection and -can therefore be negle;dted.-; - - :---"no 
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Other assumptions are- presented below where they enter in to  the presen- 

t a t i  on. 
-

--
- -- - --.- - - - - -- - -- - -- . - -- - -- -- -

--- -

3.2.2 Mass and Densi t y  Disparity conservation -
-. -- - - = - -

Mixing of the j e t  with the pipe-flow can be considered ass- -

- , %  - -- - v J + . *  .. i - -- - -

-

binary mixing process. - Thus, f o r  the j e t  -component- of the  m-ixtbre;-the -

fol lowing continui-ty equation may be written [Bird e t  a l  . , 19601 

* -

2 -
v i ( u i p J )  = e.v.pI I J  - (3-1 

where Vi i s  the i - th  component of V operator;ui i s  the i - t h  component of-

mass a veraged velocity vec tor ,  p J  i s  the mass of j e t  component p e ~  ufi t 

vo 1 ume of the mixture, and ei i s  the d i f fus iv i ty  along the i - th  direction 
-

and is assumed to be constant. T h e - densi t y - p  of-  the mixture is- - r 

P = PJ ' PA - (3-2)- * -

Z- -- --
-

-with 

PA = (1-x)p - - - - - - - - - - (3-4) - -a 
- - * - - - - m 

c .  
- - --- * --i - _ _ - _  - - - .- - - -- - - - - - - .,..* " - -

where pA i s  the mass o f  ambi~nt  component per unit  volume of  the mixture, 
..- - - \. - - - - - - - - - " - . - - * -r - - - - - - -

- - - - - - - - - . -- - - . - - -- %- - -
-=the mass of j e t  component per unit volume of the mixture, pa i sPJ i s  --- h - - - -

- - < - t 

the ambient density, and x i s  the by weight fraction of the j e t  f l u id  
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unit  normal- vector along the j - t h  direction.  There i s  expe_rimental 

evidence [Fan, 1967; Kef f e r ,  19691 t ha t  the e f f e c t  o f  curvature o f  the 

j e t  t ra jec tory  may be neglected. Therefore, the fol l owing conversion 

formulae may be used: 

where A i s  the cross-sectional area of V a t  any x, and 0 i s  the peri- 
1 

phery of V a t  any axial position. The radius of V i s  taken large enough 

so tha t  Ap = 0. Thus, using the above conversion formulae, E q .  3-9 can 

be rewrit ten,  

x1+nit1 xl +Axl1 Apuj" jddx1 + \ AwldAIx = 0 (3-12) 
1A 

where the term involving e l  has been dropped in accordance with the pre- 

vious assumption. Dividing Eq. 3-12 by Axl and taking the l imi t  as Axl 

approaches to  zero, one obtains 

-
- -

t 

' i 

I 

I 

i 

I 
- A 

i 

1 
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Since Ap i s  assumed t o  diminish t o  zero on o ,  Eq. 3-13 reduces t o  

the length of the f l o w  establishment region along the t ra jec tory .  
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FIGURE 2 :  D e f i n i t i o n  sketch f o r  flow establishment r e g i o n  
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self-simi l a r .  Since there are  indications t h a t  the Gaussian function 

closely approximates the velocity excess and density dispar i ty  profi l es  
-

-7 

[Abrahap~:l969>-Fzrn, 1967; ~ i r s t ,1972; Keffer, 1969; Motz-and lf&edl'ct, 


1970; Naudascher, 19671, 
--
the  following re la t ions  are  used (assuming a 


- - - - - - - .-a 

5- -

turbulent "~chmidtnumber of unity) : -= - -

Z
n 

u1 - ua cos a = us exp ( - x2 

where u, i s  the j e t  velocity a t  any radial distance x2 from the j e t  


center l ine ,  8 i s  the  angle o-f deflection measured r e l a t i r e  t o  the pipe
. 
-

axis ,  u l  - u, cos e i s  the velocity excess, us i s  the centerl ine velocity-

excess, Ap i s  the density dispar i ty  ( i  . e . ,  the absolute value of the 


density a t  -any point in the j e t  minus the- -- ambient density)-, Aps i s  the-

C - " - -

nter l ine  density d i spar i ty ,  and b i s  the nominal radius of the j e t .  
f- " 4 -- , - -

The nominal radius of the j e t ,  b ,  i s  defined as be-ing equal t o  a -

where o i s  the standard deviation of the velocity excess dis t r ibut ion.  

Thus, neglecting the variation in the  ambient velocity ua with x2 a t  a 

given falue of x l ,  and using the f ac t  t ha t  us = uo and Aps = Ap0 a t  

- = x ( i . e . ,e 

- 3-16 -becomes 
-

a t  theb-endof t h e  undisturbed - c o f e - & ~the jctp9-Eq.--:'{ 
- - . - - - - .  --- _ _ -

d - - -- * - . --- - - - -- - --* 

- .  
- - --- - - -- L?- - --
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-
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-
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Substi 

l  e t t i n  

where k i s  the ra t io  of the i n i t i a l  j e t  velocity uo to average pipe veloc- 

i t y  u , 8, and i s  the angle of deflection a t  the end of the near f i e l d  

region. 

Using the experimental ly  established f ac t  t ha t  the density -

I 
- 1 

, 
. r 

dispar i ty  does not play an important role  in the dynamics of the flow in - .  

the'*"?$gi on of flow establ ishment for  buoyant j e t s  [Stoy and Ben-Haim, 

1973; Nece and L i t t l e r ,  19731, the data o f  Fan [1967], and Motz and 

t 

_ Ii 
f 

! 

Benedict [I9701 for  nonbuoyant j e t s  i n  crossflows can be usCd t o  evaluate 

B e ,  giving 
_ I 

= eo (0.9 - 0 . 7 / k )  (3-21 )'e 

where O o  i s  the i n i t i a l  angle o f  def lect ion,  which i s  a/2 for  the pre- ; 

sen t  s tudies .  The negl igible  influence of buoyancy also means t h a t  
-

* -

-
: 

I 

- 1 
i 
! 

- ?  j 
I 

I 
" 

! 

these relationships fo r  the flow establishment region are valid for  any 1 

inclination of the pipe axis with respect t o  the horizontal. 



small e r  

than the ambient 

f l u ids  due t o - t h e  increased entrainment of the  ambient f lu id  when a 

crossflow e x i s t s  [ F a n ,  1967; Keffer, 1969; Nece and L i t t l e r ,  19731. A 

study of t h e  data from the same sources [Fan,-- 1967; Keffer, 1969; Nece, 
-

19731 has fur ther  shown tha t  Ay =-3d and Ax <-5d, where Ay and  Ax are  

the projections of xe as shown in Fig. 2 .  A distance of Ax = 5d i s  neg- 

1 ig i  bly small compared with the to ta l  mixing distance and thus Ax will 

be taken as  zero; Ay i s  t aken  as 3d.  Since the dimensions of  the j e t  

near the injection location i s  small compared to  the pipe radius, the 

above values obtained for injections from the f l a t  surfaces are  taken 

as f ixed values. Thus, the calculations for  the near f i e l d  region are 

begun a t  Ay = 3d and Ax = O with be and Be given by Eqs. 3-20 and 3-21 

respectively and the velocity and density dispar i ty  dis t r ibut ions  given 

by Eqs. 3-17 and  3-18. 

3 .2 .4  Near Field Region 

A def ini t ion sketch for  the near f i e l d  region i s  shown in Fig. 

3. The equations used in t h i s  region are conservation of  volume flux 

( E q .  3-22), conservation of density dispar i ty  flux ( E q .  3-15), and con- 

servation of  momentum flux (Eq .  3-28). To overcome the d i f f i cu l t i e s  met 

in solving - these equations- simultaneously, integral  type equations are  

derived, resul t ing in  a s e t  of ordinary d i f fe ren t ia l  equations which can 
-

be integrated numerical ly.  This 1 a t t e r  s e t  of equat-ions has been shown 

[Fan ,  1967; Keffer, 19691 t o  be a good approximation t o  the original  s e t  
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-- - =.--- - - * - - --. 
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=e $of - poi& equations- (Eq&. ~2~----15,-~2:, m&3131); I-Tf thk Mzr~f&r$y&~i
-

?% + 
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-9 
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. - - -- ----
-- - - the coordinate- axes (%-;'X~-;-:X~;:F:~<.-I-.-I-~)--$F~ - -. d ~ f i % k 6 ~ f f f & n ~ t i $ ~ f h m ~ ~  

-

- those i n  the flow establishment region considered in the previous set-

' 

t ion.  For the near f ie ld  region x.,
I 

x p  and  x3 are a rectangular s e t  o f  -

- - - - - - - - - - - - - T 

+coordinates.: --The analytical- considerations presented below assume%hat 
-

-,the effect  of~curvature o f  the j e t  t rajectory-- is  neg-li-gible oha-theydy- - -
- -A - ,  . - - 4- = =  

- - - - - - --. 
-r-

- - - - - - A---namics of the  flow. - -- -- - - - - - -- .-- -
- L 

-- i 
The general conservati on-of vol ume f l ux may be written as-a 

V i u i  = 0 (3-22) 
* * 

- Consider the control vol ume defined in the- preceding section. Inte- -



- " Y -
= -

In Eqs. 3-23, 3-24, and 3-25, theprevious definitions for S, 8 ;  and a I -
= : I- -

L 

- -  

I 

s t i l l  apply. After rearranging E q .  3-25 and-dgf;fining u, = - t u n  
J J" 

-

the -

2 -
-

-- -..--
..% .: 
-

-- 

--

result. i s  

where ue i s  the component of velocity vector normal to the periphery o 

of the cross-sectional area A ,  u l  i s  the component of the velocity vec- 

t o r  a l o n g  the j e t  trajectory, and E i s  the entrainment. The periphery 

o i s  assumed to  be circular in shape, and the radius of the c i rc le  for  

the integration over o i s  a rb i t r a r i ly  chosen t o  be d? b ,  as i s  the normal 

practice [Fan, 1967; Hirst, 1972; Motz and Benedict, 19701. 

qua ti on 3-26 i s  the one dimensional form of conservation o f  

volume flux; the rate  of change of volume flux within the j e t  along the 

t rajectory i s  equal t o  the  la teral  inflow or entrainment, i. I 

The integral form o f  conservation of  density disparity flux 

derived previously ( E q .  3-15) i s  also applicable i n  the near f i e ld  

region; in the derivation no restr ict ions were made t o  l imit the appli- 

cabi l i ty  of the equation in the near f i e ld  region. Thus, from E q .  3-15, 

where 



-- 

- - - - - - - - -  - 

- - -  - 

Equation 3-27 merely expresses the -fact tha t  the density disparity flux -
- - - "-' - - % -- -- = _  - - --. -- - - -

w i t h i n  the j e t  i s  i n ~ a i i a n F 6that-thk'mi-ss flux must b e ? $ n s ~ f ~ g d l  
-A -

- -. - - - - -- - - - - - -
" 

The steady itate-m&entuni equitionLmay b e - y i  tien as [Oinze, -

-. - -

19591 
I - .. 

where f ;  i s  the component of body force a1 ong xi, p i s  the pressure, 



T h e  x3-momentum equation in integral form vanishes because of the as- . 

sumed symmetry c o n d i t i o n  which implies t h a t  t h e  net momentum f l u x  vector 

i s  in the plane of symmetry (Fig. 3) .  
i


I t  i s  convenient t o  consider the conservation of momentum along I 


the x- and y-directions where x i s  parallel t o  t h e  p i p e  a x i s ,  and y i s  


orthogonal t o  x and i s  i n  the plane of the centerline trajectory of the 


j e t  (Fig. 3) .  T h e  two coordinate systems, namely, ( x1 '  x2, x3) system 


and the (x,y) system, are related t o  each other by the deflection angle 


0 so that  


= s i n  0 

T h e  x - and y-momentum equations in integral form can then be written from I 


I 


Eqs. 3-32 and 3-33 as 

x-component 

- I 

I 

- ( pnldS)  cos 0 + ( 1 pn2dS) sin 0 
i 

I 


's 5 
 1I . L 

i 


I I I I 


+ ( -pu g.n.dS) cos 6 - (1-pu u.n.dS) sin 0 
i 

I 1 J J ~ J J (3-36) 1 

S S 



- ( ( pn, dS) s i n  8 -- ( ( pn,dS) cos 

pu u.n.dS) s i n  e + ( pu u n , 1 J J  1- 2 i j  

where fx and f are components o f  body fo rce  i n  x and y d i r e c t i o n s ,
Y 

respec t i ve l y .  Using Eqs. 3-10 and 3-1 1, and then d i v i d i n g  by Axl and 

tak ing  t h e  1i m i t as Ax, appraoches t o  zero, t h e  i n t e g r a l  form o f  the  x-

momentum equat ion reduces t o :  

-
2 21 p(ul+ui ) cos 8 dA = -p(ul cos e - ux s i n  8 ) u . n . d ~  

dxl J JA o 

- I p cos 8 dA -
A 0 

I I I I 

t 1[-Pu, !~~"  cos 8 - (-pu u - ) n  s i n  8]da2 5  j 
CT 

where u1 i s  g iven by Eq. 3-17, and 

The angle 4 i s  t he  angle between p ipe  a x i s  and the  h o r i z o n t a l  def ined as 



- - 

shown in Fig. 3. Substituting Eqs. 3-28 and 3-39 into the f i r s t  term on 

the r i g h t  hand side o f  E q .  3-38, and dropping uli2 from the right hand side 
2since 7i s  much smaller than u l  [Naudascher, 1967; Robertson, 19651, 

E q .  3-38 reduces to 

where 

+ j [ - p u  d.n cos + pu u . n  sin e]da 
1 - J  j 2 ~ j 

Fx contaains the terms which cannot be evaluated independently because of 

insufficient information. Fx represents the x component o f  the total  

drag force exerted by the ambient flow on the j e t .  Equation 3-41 i s  

further simplified by assuming the value of ua  on the periphery a can be 

replaced by the ambient velocity which would have existed on the center- 

l ine trajectory i f  the j e t  had not been there: 

In a similar fashion, the integral form of y-momentum equation becomes 



-- - - - 

where 

"^' A 
d~ - p sin 8 do 

d' 

CT 

-+ (-pulupjs i n 8  - pulq j"  cos e)da 

CT 

F represents the y component of the total  drag force exerted on the 
Y 

j e t .  

The simp1 i f ied  equat ions  o f  conservation (Eq.  3-26, 3-27, 

3-43, and 3-44) together with corrdinate transformation relations (Eqs. 

3-34 and 3-35) constitute the system of equations t o  be solved simul- 

taneously t o  define the flow f i e ld .  These equations are essentially the 

same ones which were used by several investigators [Fan, 1967; Chan-and 

Kennedy, 19721 previously. However, i n  the  present work, the effect  o f  

the pipe velocity distribution on ua i s  i'ncluded i n  the analysis. ' 

The number of unknowns i n  the above s e t  of equations i s  greater 

than the number o f  equations by two. T h i s  lack o f  closure necessitates 

the use of some kind of phenomenological relationships for the entrain- 

ment and drag terms, E and F respectively. W i t h  reference t o  the defini- 

tions of E and F which were introduced in the preceding Chapter (Eqs. -- -

2-5 and 2 - 7 ) ,  the following relationships were defined: 
-
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t i o n  of us, b, Aps, and cs and g ives  t h e  t r a j e c t o r y  o f  t h e  j e t .  Equat ion 
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3-53, wi t h  app - rop r i a t e - i~ i  (Section 3.2.4. I ) ,  rqGy&. used =-+-- - -:---- -ti$& conhi t ions  
* 
. 
A * a  

- - -- - - - - *.---? 

-- . - - "-1 
t o  el irninate Aps in Eqs. 3-54 and 3-55. Thus, there -are only f ive un - --- - - - -A = 2==--: 

- - - - -- * - - = - - -- - -
-? , v  

knowns ( u s ,  b, 8, x, and y )  remaining in the system of f ive  si-mufianeous 

ordinary d i f fe ren t ia l  equations (Eqs. 3-52, 3-54, 3-55, 3-57, 3-58). 

- However, cc and C d  must be obtained- empirical ly  (Se-ction 5.4-3) yl After = -

f
i 

- - 'f = 

solving t h i s  system, Aps and cS can be obtained Prom Eqs. 3-53:and 3-56 -:-i 
1-
a=-
-

- with the  appropriate i n i t i a l  conditions (section 3.2.4.1) .- - - - .- -

-

--- -
F 

-

3.2.4.1 In i t i a l  and Boundary Conditions 

The i n i t i a l  conditions given a t  the end of the flow establish-
. . 

ment region are - -
II 
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zero a t  the boundary. This second condition will be called the reflec- ,-
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t ive  nature of themboundary. - ~ ~ + - G a s : t h e - j e f  c-Ghterline- - nstaj&:?ritffe-;- - -
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1 

-than 3 b / n  ( 3 0 )  away from the-pipe wall, these boundary conditions are- . i 
7 , - c-
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- -- - -:-2 - i 

.-
3 ? L ,  : .  - 9-

- - - -, tude"of_ 'both' -not v i  o]zted?id nce-a t  a rad-i-a--&stfatide- off':3bln;--=the= mag&- - - , 

- 3 

-velocity excess and the concentration can be considered as  diminished t o  - -

zero. -e -

The fac t  that  the wall confines the flow f i e ld  impases another 

constraint,  namely - that  the totalKdischarge past successive cross -sec- -

tions along the pipe axis must be constant downstream of the j e t .  As 

the jef;entiains-'the ambient f lu id ,  the discharge in the j e t  inc-r*<ies. --
-

. " 

-This increase in the j e t  discharge will be compensated by a reduction i n  
-

- r 
the dis-charge- - outside the jet .  - For a l l  the cases investigated experi--..-I:--. . 1 i 

" I  f 

mentally i n  this  work, the reduction i n  the discharge i s  always less than ..; -
-

6 
i 

F 

F
-0.5 pdrceit of the undisturbed-pipe f Tow here-fore in formulating 

the mathematical model for  the near f i e ld reg ion ,  the reduction -in the a - I 

- - - - . -
pipe discharge -is neglected. - - - -

3.2.4.2 The Definition of the End of the Near Field Region
-

-

--- -% - - 
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- - - ; 1
density dispai-i ty, i f  any, i s  l ess- than or--equal $0- 1- perceiit-of:T.h~x-l -

-

-

--

- - FIII 

1 -- 1 

- origina'l value- a t  the  injection point,  prohided t h a t  the  j e t  center- - !, -. - /I 

l i n e  i s  more than 3 b / n  distance away from the pipe wall. The condition 

on the  location of the j e t  centerl ine will be met in many cases of prac-
I 

i-. 
- - I 
r I1t i c a l  i n t e r e s t .  If i t  i s  not met for  some g i v e r  s e t - o f  parameters;-that 

. . - - - /i- .  

par t icu la r  case cannot be analyzed by the mathematical model presented-
-

; 
I

1. -

8 

: g 

Iin t h i s  work. (For j e t s  with a dens i ty  dispari-ty, a local densimetric 
- .  

Froude number defined as IFd = ua/Jdps g b/pa could have been used t o  

define the point a t  which any density e f f ec t s  have disappeared ra ther  

than using the 1 percent cr i ter ion s ta ted  above. However, since there i s  

no data to  indicate the appropriate c r i t i c a l  value of such a Froude num-
_ I  

ber,  the  1 percent value on Ap was used instead.)  

3.2.4.3 Method of Integration 

-* 

I ne s e t  of applicable equations nave no exp l i c i t  solut ion;  a 


numerical integration i s  required. The equations were f i r s t  normal ized 


by using i n i t i a l  or average values t o  give dimensionless parameters -as 


fol lows : 




.The,distribution o f  u, i s  given - i n  Eq. 3-76. The-set of  equations (Eqs. 
- -- . ..- 

- - -
-- ---- - -- - -- -- -- -

-

"---a- - - - a - _-- -= - -- -- -

;3z52;-3-54,-3-55,..3-77, 
--

a n d  2-58). were :then) transformed into ammo* con- .-*-
-- - 

- =---- - 

ypnipnt.zfnrm 

- - -

f~y.-n~mer'jcal,inte?~atioe::-:I--
-

- -A ---A >- 4- --- . 
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-- 

-- -- - -  - - 

- - -  - 

2 2R3 = D c o s - + - . - C D U a B s i n  e , c o s e  ...- - -. -- - I-- '(3-70) 

- - - a -- - - - - - . - . 

D = ( g  Ap, b,/(opa i 2 ) )( 2 ~ ~  - (3-71 )c i s  €I + U S )  

G & 

The i n i t i a l  conditions a t  s = 0 are  
- - * 

--

where k i s  the r a t i o  of i n i t i a l  j e t  velocity t o  ambient velocity,  i . e . ,  

Equations 3-61 t o  3-65 were integrated numerically on an IBM 360/75 

d i g i t a l  computer using a subroutine [Ger and Holley, 19741 which i s  s imilar  

in s t ructure  t o  the subroutine "RKGS" of IBM [I9721 and which i s  based on 

the fourth order Runge-Kutta formulae with the modification due t o  Gills  

[IBM, 1972; Collatz, 1960; Milne, 19701. The accuracy and  the step s ize  

are  automaticaily~contr~iled~The i n t e g r a t i o n  s t o p s  a t  t h e  terminal po in t -

of the near f i e l d  region. 

! 

i 1 
i 
I 

I 

!- 1 

. . 

: 1 
I 

- i 

- I 

I 

I II 

-
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- - 

- - 

- - 3.2.5 Far Field Region 
-- * 4  ., 
- - -  

In the f a r  f ield region, the study of the behavior i? the - - -  
- - - -  

t racer  i s  assumed t o  be the study of mixing of a passive t racer  in a 
- .  

- turbulent pipe flow. In this  region, in addition t o  the assumptions - =i. 

- - - -  --- 

ci-ted i n  Section 3.2.1, i t  i s  assumed that  there are no residual effects  - -

- - - -  - .  
- *  -

of -the j e t  and tracer from the near f ield region other t h a n-the -- dis-= -A*-= --

tribution of the tracer w i t h i n  the cross section a t  the beginning of -

t h e f a r f i e l d r e g i o n .  I n f a c t ,  t h i s a s s u m p t i o n i s t h e d e f i n i t i o n o f  
-
the far  f ie ld  region. The following assumptions ape implications of 

the definition of the far  f ie ld  region: 

1 .  There i s  no appreciable density difference between the j e t  

f luid and that flowing i n  the pipe. 

2. The pipe velocity profile i s  ful ly established and indis- 

turbed by the presence of the j e t .  

3. There i s  no change in the pressure distribution due t o  pre-

sence of j e t  upstream of the f a r  f ie ld  region. 

4. Disturbances in the turbulence structure due t o  presence 
- .- -

of the je t  upstream of the far  f ie id  region are dissipated. 

The steady s t a t e  mass transport is mathematical ly an equi 1i brium 

problem. In other words, with reference to  Fig .  4 (note that coordinate 

axes are redefined), the equilibrium distribution o f  concentration c in a 
- -

domain D, for a given in i t i a l  distribution a t  the end of  the near f ield 

region, i s  t o  be determined by solving the differential  equation.[Bird------ . : 

e t  a l . ,  1960; Hinze, 19591, 

-

-

-

12 
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3 
. -depends-only on the concentration dis t r ibut ion a t  the  beginni'ig of the2.5 &-- - ----J. A- -

" 5 - 1 
ij -

- 5 4 

fa r  f i e l d  region and the flow character is t ics  u ,  e2 ,  e3 .  .- --
>:>-, . * * - -* =g-- a".= 

I - _ _ - - -

A general treatment of e l l i p t i c  equations i s  available i n  Ames 
-. . - -

[1969], Varga [1970], among others [Crank, 1964; Carslaw and Jaeger, 
d ----

1965; Kantorovich and Kryl ov, 19641. Under certain condi t ions ,  analytical  
----- -" - " - -

-d 
- - - _ - = - - _ - - - -
solut ions  for  E q .  3-75 are possible [Crank, 1964; Carslaw and Jaeger, 

-- - - -- -. - - .-.*a* * -_ " - - - * -, 

1965; Kantorovi ch and Kryl ov, 19641. The next subsection preseffs-one -


such solution which i s  useful for  t h i s  study. 

" -

= 

3.2.5.1 An Analytical Solution for  a Wall Source 

-A-


For a continuous point source a t  the pipe wall ,  E q .  3-75 has 


an analyt ic  closed form solution i f  ambient flow character is t ics  are such 

"-" 3- . 

t ha t  
.a 


? ,  -- --
-

--
u = u = constant (3-78) 

.- -
- - - %L-

e 2 =  3 - k, = constant (3-79) 
-" '. --. -? 

Substi tuting Eqs. 3-78 and 3-79 in to  Eq. 3-75, and rearranging, one 

obtains - -

-1 -a2 c 
2 (3-80) 

X2 ax3 
L 
 -" -

.- - -

This equation wi be solved subje c t  to  the bounda a , r * , . - - - - - -a a conditions of - ---- --
- . - - ;- - = - -

unit continuous poi n t  source 1ocated a t  x, = 0, x2 R, and y3 = 0 ar-d---;-- - - -- -
" % *  - - -_ . I . " ~  4 .- -

? - - a * - + . - ----

I 
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a n d a  i s  t h e m - t h p o s i t i v e r o o t o f J , ( a ) = O .  Thus, t h e s o l u t i o n o f  
n 9 m  

Eq. 3-83, s u b j e c t  t o  t h e  aforement ioned i n i t ia1 and boundary condi  t i o n s  , 

i s  o b t a i n e d  by i n t e g r a t i n g  Eq. 3-84 over  5 f rom t o  +a: 

- .  
P 


S u b s t i t u t i n g  Eqs.  3-52, 3-85, and 3-86 i n t o  Eq.  3-88, t h e  s o l u t i o n  o f  t 

1 
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diffusion equation ( E q .  

wall and  was used for co 

tions for selection of t 

scheme- - -- used in numerical 
- -- - , - "  - - . - -

~ ~ u a t i o n3-91 i s '  an analytical solution of a simplified form of-
" -

3-80) for a continuous point source a t  the pipe 

* n with the results of numerical computa-

m u m  grid size for  the f i n i t e  difference 

integration . - - -E q .  3-75, as - - - --- -of discusseci. below.-

- - - - - - * - -

L L 


I_ / i3.2.5. &Ifhod of Numerical* 1ht-egr'ation' 
- - 2 -

' 

- * 

In the case where u ,  e2 , . and e3 are arbitrary functions of x2,  
I - . .- - " 

A - --

an analytical solution coul-d not be found. Therefore, numerical inte-
% - -

,-* -\ 1 - - -

gration was used. _ In  t h i s  study,.- an a!ternating - - direction implicit+ 

- -

f i n i t e  difference s-cheme wa5s used for  a number of reaso 
-

one being the unconditional s t ab i l i ty  of the scheme [Ames, 1969; 

Siemons, 19701. Another feature of the method i s  a reformulation of the 

f i n i t e  difference equations so tha t  the algebraic system generated i n  - - -.- - --- - -

- .& 

-
I - * 

, , 

8 . : 
I 

5- i 
2 

.! r 
6 , 

1 

L 

-- L, 

- - , 
-3 -. * -" 1 

, 
- -- !-

-

the numeri cal procedure can be eas i ly  solved. 
-

- - a --. , " - - -
convergent '[~mes; 1969; Varga, 19621.  1 - .-

-.-.,-
-. -- -- - -- -- -. . . -.=. -

- -
, --- -----

I I--. ?  

Further, the method"i s  
-

-r- ,~. -- - ,  . =. . -
,<-

%- -- -" 
I- :r 

-,. :..* . -a  :- .+-

- - - - - -- " - -3 - , - ------ - 4 

In an a1ternati  ng direction implicit -mefhod, the di s t r i bufion 

a t  x i s  used to calculate the distribution a t  the next downstream
1 , k  
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In E q .  3-103, when j = 1, j - 1 i s  replaced by Gaxand w h e ~ . < j=-jmax, ! 
--s. 


-2 


A 7
_ --_ - -_ - - 3 

-

- - j-+-I is replaced by -1in order t o  c l a i e  t& c i r c l e  i n  -the~xj-di&cti&,:- - -, 
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' - - A * - --- - - < -- - --. ". .-.--*- -I 

region was selected as one pipe radius. As x increased, the Axl s tep 



- - 
- - 

- - - 

- - 

-

s i ze  was doubled when-.the range of c values within a given cross--section - ---
- ? 

f 

- ---~ f, 
A - ebecame ha1f of the range for  which the current -Axl was establ ished. The - s - -

s tep  s i ze s  fo r  x p  and x3 axis were selected as described below. Inte- - -

grations were carried out until a predetermined degree of uniformity 
- -within a pipe cross section was obtained. 
- .".  
- I 

3.2.5.3 Selection of the Optimum Grid configuration 	 -
-	 - .  =- - - -- -"-

# 

The optimum grid configuration i s  the one for  which a reason-

able amount of computer time i s  used t o  numerically produce concentra-

t ion d i s t r ibu t ions  which are within an acceptable tolerance of the t rue 
i -

solut ions .  The optimum grid configuration must be selected empirically. 

Experimental l y  recorded concentration dis t r ibut ions  cannot be used 
-

f o r  t h i  s procedure s i nce the ci rcumferenti a1 di f fusi  vi t y  i s  not known 

a p r io r i .  Therefore, the optimum grid configuration was selected so 
! 

t h a t  t he  concentration dis t r ibut ions  obtained by the numerical in te-
ti 

rgration of E q .  3-80 (simplified form of Eq.  3-75) were-within anLac- = 
-- -

-
-

ceptable tolerance of  the analytical  solution given by E q .  3-91. Close-

ness of numerical and analytical solutions were checked by 
b 

1. 	 Comparison of the standard deviations, 0,  of the concen-

t ra t ion  dis t r ibut ions  within various cross section along 

the pipe axis ,  
-	 L i  

2. 	 The cumulative loss mR,  in to ta l  mass flux in the numerical - -- F- .= 

-

i ntegrat ion, and 	 - -=d -

= Y3. 	 The -standard e r ror  of discrepancy, Sd, between the - I 
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T h e  following definitions were used: - -

- - - - - - . - ,-- - < - -
a _ - - - i _, --- - - = - - - - -4 


i = X,/ZR ' - (3-113) 
- - - 7 - - 1 '  - * _ - -

where c i s  the cross-sectional average concentration , -A  i s  the cross- I 
r i 

sectional area, i and j are the indices -describing the location of the - -
i 

- grid poi A,c ( "  )and a r e .  the toncentrations obtained numerically
i , j  


(superscript n)  and analytically (superscript a ) ,,and ai , j  i s  area re-

+ 

presented by the grid point. This area is-defined by theperpendicular . 

bisectors of the l ine segments between the g r i d  point and the neighbor-

ing points. 

- - - F o r  pipeReynolds number of:1OO~OOO,-fo~rdifferentgrid:s izes 
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There a re  no significant differences among the different grid sizes as I 

f a r  as the variation in standard deviation along the pipe axis i s  con-

cerned (Table 1 ) .  However, as shown in Table 2 and Fig. 7 ,  the cumu-

la t ive  loss in total mass flux for the numerical integration i s  highly 

dependent on the number of grid points along the radial direction; for 

the larger number of  points, there is  less total mass loss. Furthermore, 

when the variation in the standard error  of discrepancy i s  studied 

(Table 3 and Fig. 8),  the same conclusion relat ive to  the number of radial 

-
-

, 
I 
i 

grid points i s  reached. The optimum was selected as 10 and 32 grid 

-points along the radial and circumferential directions ( i  . e . ,  Ax2 -

R/9.5 and Ax3 = 7/16)  and this  arrangement was used in a l l  further numer-

-. -

i 

I 
I 

I 

I 
1 

ical computations. The length of required computer time i s  shown in 

Table 4. 

3.3 Further Remarks 
I 

,/ 

round, 

-

The proposed model t o  describe the general flow f ie ld  o f  a 

turbulent je t  in a crossing . . pipe flow differs from the past work -- -

= 

-

-
= 

,
* 

E: 
I 

i1 
on the je ts  in a crossflow in three primary ways: 





Dimensionless 1 ongitudinal distance,  L 

FIGURE 7 :  	 Variation of cumulative loss of mass w i t h  L 
and number of g r i d  points 



Tab le  3 


Variation in Sd with L 


Table 4 
- - -  

Approximate Time o f  Computation f o r  Mixing Distance 
of 164 Pipe Diameter 

- h 

No, o f  Grid Points t 

5 x 16 4-0 sec. 

200 sec. 

80 sec, 

----- - -- -



No. of grid points 

Dimensionless distance, L ., 

FIGURE 8: Variation of Sd with L and  number of grid points 



- - - -  -- - - --- 

- - - - - 

-

-

-. 

1:'-The applicable-equations- (Eqs. 3-52 through 3-58) for the 

near f i e l d  region were derived from the basic governing 

point equations so tha t  the meaning of each term i s  more 

c lear ly  defined. 

2 .  	 The nonuniform velocity d i s t r ibu t ion  of the crossing pipe 

flow i s  considered by l e t t i n g  ua in Eqs. 3-52 t h r o u g h  

3-58 and 3-80 vary across the pipe according t o  a power 

law. 

3. 	 The turbulence of crossflow i s  taken into  account by the 

consideration of a f a r  f i e l d  region. Also, the e f fec t s  of 

the pipe turbulence in the near f i e l d  region a re  inherently 

ref lected by the experimentally evaluated entrainment and  

drag coeff ic ients  presented in  Section 5.4.3. 

There i s  no precise point a t  which the change between the near 

f i e l d  and f a r  f i e l d  regions takes place. There ex i s t s  a t ransi t ional  

regime between those two regions in which both the j e t  character is t ics  

and the pipe flow turbulence have some influence on the mixing of the 

t r ace r  with the ambient flow. A1 t h o u g h  there i s  no experimental ver i f i -

cation,  i t  i s  assumed in t h i s  study tha t  the jet-induced turbulence loses 

i t s  significance a t  the end of the near f i e l d  region. T h u s ,  no t rans i -

t ion region i s  considered. The end of the near f i e l d  region defines the 

beginning of the f a r  f i e ld  region. In other words, any jet-induced 

turbulence o r  d i s r u p t i o n  of t he  p i p e - f l o y  \ ~ e l o c i t yd i s t r i b u t i o n  i n  t h e  
--

f a r  f i e l d  region i s  assumed t o  be negligible. 
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F I G U R E  9 :  Schematic diagram of  t h e  
=hydraul i c ci  rcui t -



tanks were used in calibrating the flowmeter. Each tank had been cal- 
-

ibrated in 1000 1b increments from 1000 ib through 20,000 l bs us ing  dead 

weight l oading. The read-out was accurate t o  220 l bs. 

A flow straightener was included in the system t o  suppress any 

swirl resulting from elbow C3 ( F i g .  9 ) .  The flow straightener consisted 

of 

1. 	 Four vanes placed in the el bow C3, 

2.  	 Seven 10-ft long, 1 -1/4 in.  IPS galvanized steel pipes 

(Fig. 9 )  inserted inside the 6 i n .  pipe immediately down- 

stream of the elbow, and 

3. 	 A stack of five pieces of 5/16 i n .  flattened expanded 

metal placed 6 i n .  apart. 

The length'of s t raight  pipe between the end of the expanded metal and 

the injection point was 76 pipe diameters and was sufficient for  decay 

of the additional turbulence due t o  disturbances of the el bow and flow 

straightener and for establishment of fu l ly  developed turbulent pipe flow 

before the injection point [Dryden, 1942; Laufer, 19541. 

Sampling stations downstream of the injection point were 

located 20 pipe diameters (10 f t )  apart. Accessibility to any point i n  

the cross section a t  these sampling stations was provided by the support 

and the traversing system shown in Fig .  10. The probe (Section 4.2.4.2) 

could traverse the ent ire  pipe diameter and i t s  location relat ive to the 

p i p e  	wa? cou ld  be Lu -- ~ L L U ~ Q L ~- - I ,  o f  0.001 ft. The suppo r t i ng  p i p e+n - - s t  

could be rotated a fu l l  revolution about the pipe centerline. This 





- - 

- - 

I 
B 

-;.- rotation. was ~ch-i&d-sjCnpj~Lb~ p4pe-. threads53 ~ t a t e d  -
= - - :=frbtat i  ng-on _ t h ~ l  -

- - 4  
- I-

- by T i n  Fig: 10. In other Rordsj- t h e  pro<e axis: tould be, set: to any;: - 7 j  
I 

angle w i t h  the vert ical .  To move to  a new sampling station, the 5 f t  
I 

long measurement section was disconnected a t  point 5, the required addi- 
. -

- tional length of pipe- was added, the measurement section was-reattached I 


-

T

a t  the end of the pipe, and the discharge was reset to  the desired value. - -
+ 
-2
- = 

The sections were connected by sxandard screw-on flanges. -
- ! 

Care was taken-to ensure that the inner surface of the pipe a t  the joints 


was as smooth as possible by threading the pipe ends so that  the gap a t  


the jo in ts  was a t  most 1/8 in.  Also, each time that  pipe sections were 


added, care was taken to align the inside surface of the pipes. 


The hydraulic roughness of the pipe wall was determined empir- 
-

i t a l l y  by measuring the head loss over a 90 ft length of pipe a-nd~measmr- - -
I 
,I 
4 

= i 

f 


i n g  the corresponding discharge. The relat ive wall roughness was found iI 

i 
to  be 0.00001 ( F i g  I ) .  Thus, flow was assumed to be i n  hydrau-lically I 

f 

smooth regime. The possible aging of the wall was also checked; no - L 

i 

change in the wall roughiess was observed during an 18 m o n t h  period 
I 

(F ig .  11).  i -A 


During the 24-month period of testing, the temperature of the i 
. ,  _ I 

water varied between 20°C and 24°C. This variation was caused by a com- 
i 
i 

bination of factors: the pipeline was exposed to a i r ,  the water was re- - ; 
" -- t 

-- circulated, there was heatingassociated w i t h  the- pumps, .and :there - i;rw&e + 
i r' 

i 
changes.in t h e  temperature o f  -the: sump water.-.. One- effect of- t h e  -va:da- 5 - =,.= [, 

- LE 

tion in temperature was to change the .  viscosity- of water and- hence the - i 
Reynolds number corresponding t o  a given measured flow rate.  With the - -
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FIGURE 12 : Typical measured velocity distributions 



- - 

- - - 

I 

4 .2.3 Tracer Injection 

f4.2.3.1 Selection of Tracer 
I- I 

I 

. IL 

- In p?evious- experimental determi nations of mixing distance due E 


t o  di f f e r e n t  injection systems, several t racers  have been used. Radio-
. 

ac t ive  t racers ,  fluorescent t racers  and sal t are  the most common1 y used 


t r ace r s .  The radioactive t racers  (which mostly have re1 at ivel  y short  


half-1 if e )  require a storage of  r a d i o a c t i v i t y .  The use o f  fluorescent 


t r ace r s ,  on the other hand, require the use of  detection equipment which 


was not available.  Therefore, i n  t h i s  study, sodium chloride (Mac]) was 


used a s  a t racer  material ; i t  was inexpensive and eas i ly  accessible,  and 


i t s  ionizing nature made i t  eas i ly  detectable. In what follows, sodium 
 1 

chloride will be called simply " s a l t . "  

4.2.3.2 Tracer Preparation 

The s a l t  was dissolved in the laboratory sump water i n  prepar-


ing the injection f lu id .  I f  s a l t  were the only solute used, the density 


of the  solution would always be greater than tha t  of the laboratory 
 r , 

I 
L Iwater. However, fo r  nonbuoyant j e t s  the density of  the injection sblu- i 

- .  , 

t ion was to be equal t o  tha t  of the laboratory water. Thus, methanol I 

- - j 
- 1 -

was added t o  make the density of the injection solution equal t o  the: 
-- - -- . ' i1- j 

density of the laboratory sump water. For buoyant j e t s ,  on the other 



--- - 

--- 

- - 

- hand;-sugar - was- used t o  obtain a heavier injection solution whenever the 

inc rease in  thehens i ty  due to  s a l t  alone was not enough. The density-

o f  injection solution was measured to  within three significant decimal 

digi t s  by a Westphal specific gravity balance (Fischer Scient if ic ,  

catalog #2-150). 

a - Since t racer  conductivity was the distinguishing property to 

be measured during the experiments, the conductivities of the consti- 

tuents of the tracer solution were measured w i t h  a standard conductivity -

probe. I t  was found that  methanol and sugar were essent ial ly nonioniz- 

i n g .  This meant that  the increase in conductivity d u r i n g  an experiment = 

was due only to the s a l t .  

4 .2 .3 .3  Tracer Injection System 

Figure 13 i s  a schematic diagram of the t racer  injection system. 

The tracer solution ( j e t  f lu id)  wasastored i n  a reservoir (18 x 18 x 

18 in 3) .  There were two injection c i rcui t s .  Circuit Cl was used w i t h  
- * -

valve ~ ~ - c o m ~ l e t e l ~  open (and pump P off and valve VM closed). In  

c i r cu i t  C1, the tracer flow ra te  was controlled by the metering pump PM 

(Chemcon, Series 1140-PVC-135) w i t h  the capacity of 50 GPH. The pump PM 

was a diaphragm pump which providad al ternate suction and discharge 

strokes a t  a rate  of 90 per minute. Therefore, the closed surge tanks 

were introduced into the c i rcui t  to damp o u t  the fluctuations i n  the flow 

associated-with-the pump characteristics.  The pressure gauge attached . 

to  the secondzcl"osed surge tank was used to check the steadiness of the 

Metz Referenes 3.009 
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-- 

- - 
- -- 

.-
--.-.-

flow. I t  was assumed that  the flow was steady when the pressure f l u ~ ;  
- =-

tuations became less than 1 percent of  the average pressure/-(~he re-

sul t i n g  j e t  was visual ly observed and appeared t o  be steady. ) For flow 

ra tes  greater than 300 rnllrnin, the transient period was shor t  enough 

( l e s s  than 10 min..) to use th is  c i rcui t .  However, flow rates  less  than 

3 A n  m 7  / m < n
I ,  I the t r a n s i e n t  pe r iod  was t o o  long t o  use c i rcu i t  C! . T h e n ,4"" =, 

the c i rcu i t  C2 was used. (An arbi t rary time 1imit was imposed to pre- 

vent p u t t i n g  large quantit ies of s a l t  into- the pipe flow and the sump 

while waiting for a steady condition to be reached.) Circuit C2 was 

used w i t h  the valve VA closed. The tracer  flow rate  from the constant 

head tank was controlled by the use of a metering valve VM. (This 

c i r cu i t  was not used for  a l l  flows because of the higher head require- 

ments for  flows greater than 300 ml/min.) 

The flowmeter, FM, was a  t r i f l a t ,  variable area flowmeter 

(FP-318-25-G-5, Fischer and Porter Company). I t  was calibrated by = -

-

measuring the discharge collected i n  a  calibrated beaker. I t  was found 

that  within the range of the change in temperature of the injection f luid 

(1 "C a t  most) observed from one experiment to another and within the 

sens i t iv i ty  (0.5 percent accuracy) of the flowmeter, a  sing1 e- cal i  bration 

curve was adequate for  a series of experimental runs. A new curve was 

developed 
-

1. When the density of the injection solution was changed, 

2 .  When switching between the two injection c i rcui t s  pre- 
- -

= 
- -\ 

-viously d~i~%tjed.  - -
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The de t a i l s  of the i n j ec to r  used f o r  jFt ii-Fijestioas a r e  a s L z -  --. -;--;-- ;- --a 

=- * 

shown i n  Fig. The length H i  --
- - - - - -14. of the @jector yas chosen to_beLlong' .-

enough ( H i / ~  > 40) t o  have fully-established flow when  - t he  j e t  entered h -

3 -. 

the pipe. The flow inside the injection tube was always turbulent;- A 
--

pressure tap 1 ocated opposite t o  the injection hol e -vas  used-to-~i.sual l y  
%check the alignment o f  the j e t  w i t h  the j e t  discharging into  an empty 

- s3 z -

pipe. 
--- -. .-- -- - c  

-
- -

-
- " - - - - - - - - - - -

- " _ _  _ - - - - - - - - -

z z  - - '-In Fig. 15 ,  the injector  used for  wall source i s  -showna. The *, " 

*- i 

-t r ace r  solution was released exactly from the same location as the je t ' . .  

in jec t ion .  The alignment of wall source probe was checked visually.  - - -

-

4.2 .4  Concentration Detection Equipment 

- -* --

4.2.4.1 The Overall System 
---A -

- " - "  

Conductance of a f lu id  changes as the concentration of ionizing 
a 


- I -

agent (sal t )  changes. Thus, concentration di s t r i  butions pf an ionizi ng - . -
-

- T 

. SL . - - , * " 

agent can be obtained from the measured conductivity d i  s t f l  butions. he 
- - * ? 

-
" 

7 -

" - .  _ - -I 


concentration detection equipment (Fig. 16)  - f o r  the 1 aboratory measure- --

ments consisted essen t ia l ly  of a conductivity probe which formed a p a r t  

of a Wheatstone bridge c i r cu i t .  
L -

" -

- . - ,  -. -
j -
# - 44 . 2  The Conducti v i  ty  Probe -- - - - 4 - - - - - - -

- < - - - -----<-- ---- - - - - - - - -
--SF- --- ----. - ---- - _ -- 4 - ,  -- - -- - - - - ----f 

The conductivity probe ( F i g .  17) constructed for  this '  study 
- - -- - k - - - - - - a 

- - 5 - - - - -~ - - .. - - - - ;-. - - ;  - - - - --A - - - - - - -' 

consi s t ed  of two platinum electrodes of 1/8 i n . - x  1/8 in . -x  17192 in .  
< _ _ _ -

- - - r , 

----- -- -- - _  _ _  - -
- _  
-- --- --

_ 
-- -- ---- --

pl ac ed 1/8 i n  . apart  a t  the base of a glass tube (corning Pyrex Brand 



FIGURE 15: Schematic d iag ram of simple wall source 







- - -  

" - 17740) o f  8 mm-outside diameter (Fig. 18). A platinum wire, 0.65 mm i n  
- -

-- f 
I 

Idiameter, was f la t tened a t  the one end to  1/192 in .  thickness t o  obtain 

the e lectrodes .  The unflattened ends of the platinum wires were b u t t -

welded by plasma arc t o  copper wires of the same outside diameter to  
-

form t h e  leads from the electi-odes. These leads,  then, were isolated 

from one another by giass tubing (Corning Pyrex Brand 7740) of 3 rnm out-

side diameter, and 3 mrn glass tubing was evacuated. The probes had a - -

to ta l  length of approximately 18 in .  

Before f i r s t  use, and l a t e r  whenever readings become e r r a t i c  

each probe was cleaned and platinized according to  a standard chemical 

method as described by Glover [I 9701. (See Appendix 1. ) The probes I 

were stored in d i s t i l l e d  water when not in use. 

4 .2 .4 .3  Bridge Circuit  

-
%The probe was connected to  the bridge c i r c u i t  by a two con- 

ductor shielded cable. As shown in F i g .  1 9 ,  the preamplifier supplied , 

the exci ta t ion Voltage for  the bridge (4 .5  vol ts ,  2400 Hz) and received 

the input signal of the probe through the bridge c i r cu i t .  The probe was 

Iconnected across the third  leg of the bridge. The variable condenser 

connected to  the leads A and B and the 2 Kf i  variable potentiometer in 

the t h i r d  leg of the b r i d g e  c i r c u i t  offered f l e x i b i l i t y  i n  the i n i t i a l  

balancing of  t he  bridge c i r cu i t .  A vol trneter was connected t o  the 

bridge c i r c u i t  as shown in Fig. 4 t o  check the i n i t i a l  balancing of 

the bridge. Furthermore the 10 KG variable potentiometer and 5 W1 

r e s i s t o r  connected across the bridge as shown in Fig. 19 provided the 
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1: El ectrodes ( P I  a t i  n u m )  

FIGURE 18: Details o f  the probe 





: 
I 

possibi l i ty  to  vary the sensi t ivi ty of the probe when desired.-The - - -

bridge was connected to the preampl i f i e r  via the signal and excitation 

leads (a four conducted shielded cable).  

When a probe was immersed in flow with ionized s a l t  in a 

grounded pipel i ne, the potential difference between the pipe1 ine ground 

and instrument ground induced a ground loop. To eliminate th is  problem, 

an isolation transformer was installed in the signal c i rcui t  o f  the 

bridge as shown i n  Fig. 19.  The bridge and the isolation transformer 

were grounded a t  the guard shield of the signal and excitation leads. 

-:-- - -

4.2.4.4 Recording Equipment 

A two-channel Sanborn Recorder (Model 296) was used. The 

signal output from the preamplifier was continuously recorded on a 

s t r i p  chart.  An averaging switch was also available so that  the signal 

output could be averaged over a one-second period i f  desired. 

Using the R (resistance) and C (capacitance) balance knobs of 

the preampl i f  i e r  f i nal bal anci ng of the overall bridge preamp1 i f  i er  -

c i rcu i t  was accomplished. A voltmeter was connected t o  the preamplifier 

output as shown in Fig. 19 to check the final balancing. 

4.2.4.5 Calibration of Probes 

Calibration of probes i s  required to obtain the relationship 

between the recorder o u t p u t  and the corresponding tracer concentration. 
- -
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and the mass~dens.ity p . Since; i n  th is  i n v e ~ t i ~ a t ~ o n , ~ o n l ~ ; ~ i ~ e sw i t h  a 
a s ingle relat ive roughness are considered, the surface- roughhess'of- -

I 

a ? 

the pipe i s  n o t  l i s ted  among the significant pipe flow parameters. The 

j e t  flow, on the other hand,can be characterized by the injection hole 
--

diameter d ,  the injection velocity uo3 and the difference in-specif ic  

weight Ay between the j e t  fluid and the ambient f l u i d .  The geometry and 
-

. 

> 

P 

-
I 

the orientation of the injection hole are not cited as significant para- 

meters since only one type of injection hole (a circular one perpendicular 

to  the pipe wall ) was used throughout th is  investigation. In addition 

to the j e t  and pipe flow characteristics,  the mixing distance depends on 

the degree of completeness of mixing of the t racer  which i s  considered 

as adequate. The standard deviation a of the concentration measurements 

a t  a given cross section i s  used as a measure of  degree of completeness 
t 

of m i x i n g .  ( A  more complete discussion of completeness of m i x i n g  and CJ 

i s  given in Section 4.3.2.) Thus, the relationship among the variables 

can be indicated as t 

- : 
i 

- x 

t 

By application of Buckingham's a theorem and some further manipulations, 

E q .  4-1 can be reduced t o  a simpler form: 
= -

where L i s  the dimensionless mixing distance, 



-

A=-

-

-- 

W =  pa 
1-I 

U 

- -

(4-7) - -  . 

. -
g i s  t h e g r a v i  tationa12akceleration, and Apo - i s  'the in i t i a l  density 

i 

disparity between j e t  and pipe flow. 
i 

Experiments were conducted i n  f l o w s  covering a range o f  con-
k 

ditions with different  Dr, k and IFd for  IR = 60;000. The dependence of- 
- ? 

I t 

i on 
, 

Reynolds number wi l l  be discussed in Chapter 5. ' 

- -
The range of - con-

- -  - -  

F 

d i  t ions covered in this  investigation are as shown i n  Table 5. 

4.3.2 Measure of Degree of  
Mixing) 

Completeness of the  Mixing  (Adequacy of 
. ... - A - -

* 

-

-- - - - 7 - 7- - - - -, - - .  - s- - - ,  

As defined ea r l i e r  - ( ~ h a ~ t e r  I ) ,  the mixing distance i s  the 
-

- 4 -

distance between the injection point and some downstream location where ' 

- - - -  - -  - -  - -  - -  

T 

, 
-

& -
i 

i 

P 
-- 
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- - 

- - - - 

d -
- -~ 

.-
- - - adequate-mixi ng. has' ta ken place 2: dev ia t i an~o  - + cbn-~h&-standard": .of'--the 

-
. - - - -1 - --A 

distributions sectionalcentyatio? ----- normalized with respect to the crbis T - --

average cbncentration a t  each measui-ement s tat ion were used to eval ~ a t e  

the degree of completeness of the mixing. A t  a given -section represented 
.-

by the i,pdex k, the standard deviation ok was - - ly bycalculated numerical -

with 

ere i -  and j are the indices describing the position o f - the ~easurernent -

poin t ,  ck ?j--i s  the normalized concentration, wi , j  i s  the weighting 

coefficient which ref lects  the nonuniformi ty  of velocity .distribution-
- .  > 

and uneven distribution of the observation points acrois ' a  cross section, -

ui , j  
i s  the velocity a t  the point ( i  , j ) ,  ai 

,j 
i s  the area defined by t h e  

perpend~cula r  b i  sectors of the l i ne segmenti bet 
' - - 4 , , :  

the neiihbiiing points, 'and Q i's the flo@ $ate the pipe.x 

A value of zero for the standard deviation ik-.- wo~ldv';ndicate 

complete mixing. Theoretically, th i s  ultimate value- of zero i s  ap- 

proached asymptotical ly ,  meaning that  an inf in i te ly  long pipe would be 
-

required for complete mixing t o  take -place. (Experimentally, ok ap-

proaches some constant value which i s  governed by experimental errors .)  
& -

. 
-
-. 

<- - * - - - - - -- C - - - -' -7 

For pra-&i cdl purpo&s ,'adequate mix i  ng i s  defined tom>a$e <;curred when 
- ,  - -x --: ~ 

"---.-I ---" --- -r-- , -7 ..c.;5 y=-- - - - -I t - = &-L- -
7 

- 1 - = _ - ' 
1 . " - - - - - * ,* -%:a , L-7 - - = . - - - -

the s t g ~ d a a ' d e v i 8 t i o n  ak" ~ i s " ~ ~ ~ l l e % -  value; -than soi&speciff&d for 

exampl e 0.01 . 
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4.3.3 Procedure for  "a ~ y p i c a t  Run - I 
1 

Fi r s t  t h e  desi fed t e s t  condi tiotis ( k  ,'D,, IFd) were determined. 

From these parameters plus IR = 60,000, the required Ape, injection ra te ,  
I 

- . 
- Land pipe discharge could be calculated. 

-
The tracer  solution was pre- t 

pared to  give a concentration a t  the l a s t  measurement station which -

! 
-would be large enough to be measured accurately. The sump was mixed to  i; 

el imi nate fluctuations in background conductivity and temperature. A 

calibrated probe was placed in the traversing support and inserted into 

the pipe flow such that  the-flow continuously flushed the volume between 

the electrodes (i. e . ,  the electrodes were parallel to the pipe axis ) .  - - I -
L 

I 

The concentration detection c i rcui t ,  i . e . ,  the bridge c i rcu i t ,  was 
I 

balanced a t  the background concentration of the sump. Then the- tracer - iI . > 

i s  injected continuously a t  the predetermined constant rate .  ~ f t e r  1L 

allowing ten minutes for  establishment of a steady s t a t e ,  tracer con- e 

F 

. ccentrations w i t h i n  the cross section were recorded. The distribution sf 
- i 

measurement points within a cross section was governed by an estimate of : 

what part  of the cross section would be occupied by the tracer.  - (Al1 
L 

of the data i s  available separately [Ger and Holley, 19741.) After 

the measurements were completed a t  the f i r s t  cross section, the flow was 
I 

i 

stopped using valve A shown in Fig. 9 ,  the measurement section was re- i 


- : 
z I 

moved, the required additional pipe length was added being careful t o  . a 

- f 

align the inner pipe surfaces, the measurement section was-placed a t  I 

* .  , >  

the end of the pipe, valve A was reopened, and the probe c i rcui t  was 1
-

rebalanced a t  the (new) background concentration. The change in the 





- - - length of the pipe l i ne  d i d  not s ign i f ican t ly  a f f ec t  the overall headloss < - , - , - ~--

i n the  hydraulic c i r c u i t  and therefore d i d  not a l t e r  the discharge. 

A typical data record i s  shown in Fig. 21. The averaging 

switch of the preamp1 i f i e r  permitted the fluctuations i n  the signal t o  

be automatically.averaged over a one-second period. This smoothed record 

of concentration was used to obtain the time-mean concentration c as  

discussed below. F i r s t ,  the area beneath the record wbs determined by 

counting squares. Then, the apparent time-mean deflection of s ty lus ,  
* 

6 , was obtained by dividing the area beneath the record by the time 

span over which recording was made. Since the laboratory water was 

recircul  ated,  the sal  t content of the 1 aboratory water i ncreased s l  owl y 

during a r u n  so tha t  i t  was necessary to  make a correction in the back- 
* 

ground reading. Therefore 6 was reduced to  the time-mean deflection 6 

corresponding to the t racer  concentration by the formula 
I 

where tr i s  the time of recording, tb i s  the time a t  which the bridge 

was balanced, te i s  the time of recording the background concentration 

a t  the  end of a s e t  of measurements, and A i s  the deflection of s tylus  

due t o  net change i n  the background concentration d u r i n g  the r u n .  This 

correction was applied separately for  each run. This correction assumes 

a l i nea r  variation of the background reading w i t h  time. This i s  

equivalent to a l inear variation of  background concentration. The 

l a rges t  change in the background concentration for  any . t e s t  was 1 mg/% 

or 2 percent of 6*. For any point, the time-mean concentration c 

was then computed by -



where at i s  the recorder attenuation used during the measurement and K i s  

the cal ibration factor to convert from m-def l  ection a t  attenuation 10 

t o  mg/% concentration of sal t .  

The temperature of the flow did not vary more than 0.5OC dur- 

ing any r u n .  This temperature d i d  not significantly af fec t  the con-

ductivity measurements since a  change 0.5OC gives the same conductivity 

change as 0.5 mg/E o f  tracer and 0.5 mg/% i s  the l imit  of accuracy of 

the probe c i rcui t  (Section 4.2.4.5). 

4.3.4 Coding of the Experiments 

Since experimental numbers will be used l a t e r  to refer t o  

t e s t  conditions, the code for  identification of the runs i s  given here. 

The run was designated by two numbers. The f i r s t  number refers to  a  

particular se t  of injection and pipe flow characteristics as summarized 

in Table 5, and the second number refers to the distance, i n  pipe dia- 

meters, between the injection p o i n t  and the section a t  which concentra- 

tion distributions are recorded. For example, Run 13-044 refers t o  the 

measurements made a t  44 pipe diameters downstream of the injection point 

fo r  Dr = 192, k = 16, IFd = a, and R = 60,000. (See Table 5.)  



- - - - - - -- - -- - - 
- - -- 

5. PRESENTATION A N D  DISCUSSION OF RESULT 

5.1 Objectives 

.The primary objective of the experimental- work was t o  evaluate - -

-.the mixing distance due to  a j e t  located a t  the wall of the pipe issuing -

-

perpendicularly in a crossing, fully-establ ished turbulent pipe flow. In - - - - - 1 

t h i s  chapter,  experimental findings a n d  the resu l t s  of the  mathematical 

model a re  presented and discussed. The evaluation of empirical coef-

f i c i e n t s  used in the  theoretical  analysis i s  also provided. The experi- 

mental and numerical resul ts  are compared with those previously obtained 

for  d i f fe ren t  inject ion systems by other investigators.  

5.2 Centerline Injection 

5.2.1 	 A Relation for  Mixing Distances due to  a Simple 
Source 

As mentioned ea r l i e r ,  the diffusion equation ( E q .  3-75 has an 

analyt ical  solution for a simple, nonbuoyant centerl ine source emitting 

continuously into  a fully-established pipe flow i f  uniform velocity and 

radial  d i f fus iv i ty  assumptions are  made. In Chapter 2 (Eq .  2-11), the 

analyt ical  solution which i s  applicable for  axial distances longer than 

30 pipe diameters 

where symbols are as previously defined for  Eq.  2-11, 



- -  - - 

- - 

'iI 

The def ini t ion of standard deviation,  0,when the veloci ty-  . - -

i s  uniform, i s  -
- -  -

-- -  -

-where A i s  the cross-sectional area and  c i s  the cross-sectional aver-

age concentration. Using E q .  5 - l ' t o  evaluate a,-one obtains : 

where 

Equation 5-3 gives the longi tudin'al variation of o with the axial dis-  

tance fo r  a given s e t  of conditions. Numerical evaluation of the inte- 

gral in E q .  5-3 gives 

2j 5; J0(a1:I dc  = 0.0735 (5-5) 
0 


Furthermore, in Section 2.3.1, i t  has been shown tha t  the turbulent mass 

d i f fu s iv i ty  e2 can be expressed in terms of mean flow charac te r i s t ics ,  -
.- - - - - - - -

for turbulent Schmidt number of unity, as 
-* -

. . 



where f  i s  the Darcy-Weisbach f r i c t i on  coeff ic ient .  Using Nikuradze's 

data [Schl i chting, 19681, the fol  lowing power law type expression can 

be established for  the f r i c t i on  factor  f  by curve f i t t i n g  for  Reynolds 

numbers varying from 10 4 to 106 and fo r  smooth pipes : 

Substi tution of Eqs. 5-5, 5-6, and 5-7 into  Eq .  5-3 yields  

or rearranging 

L = 6.80 log (-)2 3 7  R0.104 
0 


In E q .  5-9, the pipe i s  assumed to  have smooth w a l k  Evans 

[I9661 has observed tha t  the mixing distance in a rough pipe i s  less  

than t h a t  i n  a smooth p i p e  a t  the same flow ra t e  by the r a t i o  of 

Jfsrnooth / f rough9 as previously shown by Taylor [1954]. This i s  in 

agreement with the argument of the exponential function in E q .  5-3 

which shows that  L should vary inversely with e2 for a  given o ,  or t ha t  

L should vary inversely with fi since e2 i s  proportional to  fl ( E q .  

5-6).  Thus, E q .  5-9 can be rewritten including the e f fec t  of pipe 

roughness or  variable f  fo r  10 4 
5 W < 106 as 

L = 6.80 log (-)2 
o 
37 W0,104 

Jfsmoo t h / f 

where f  i s  the actual f r ic t ion  coeff ic ient .  
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hof the d i f f i cu l ty  in obtaining perfectly axisymmetric conditions.: For - -
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Dimensionless longitudinal distance; L 

F IGURE 2 2 :  	 Variation of mixing with dimensionless 
longitudinal distance for a simple 
centerline source 
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cat;,-tha-t the deviations from the = theo r i  can be a t t r ibuted-  to  the 
-" 

f a c t  t ha t  the wake behind the arm supporting the inject ion tube-might -- 1 
-

-- - - . - -+. 

- -
- -.- -.have caused the bulk- b f  thetFacer  t o  move i n t o  the ykK Thus, in =. - -

-- L&%& 

-
-z5 "' <

e i  ther  case ,-:the tohceKt.i-ati bn- ^di*stribii%iohsare f a r  from being >xi syi-  

nietric and the experimental mixing distances should. therefore ~ e = e x -  - : 

pected to  be greater than those ^calcula?ed from E q .  5-10. --The-mdxing 

distances experimentally observed by Evans [I9661 are  very close t o  

those of E q .  5-10. The s l i gh t  deviations, however, are  probably due 



- - 

with 
1 

w = n 
2 

The def ini t ions  of symbols are as given-for E q .  3-91. The standard de-- f 

viat ion a ( E q .  5-2) becomes 

1 

IIn the analytical  evaluation of the integral in E q .  5-13 a d i f f i cu l ty  
: 
ta r i s e s ,  since,  unlike the centerl ine injection case,  more than one term 

-
I 
1 

. .  .o f  the se r ies  mustbe taken into account even for  large L and the en t i r e  

expression within the inner brackets must be squared before integrating.  
I 
$ 

Therefore, rather than carrying out the integration in Eq.  5-13, i t  was FI 

t 


assumed tha t  the general form of the relationship among L ,  p and R f o r  	 1 

i 

a simple edge source injection remains the same as the centeri-ine- injec- 
t 

-Lion9 L e a ,  	 rs 

! 
c 

L = A I
(;)log R n JfsmoothIf 

i 
/ , 

where A ,  I and n are constants ye t  to  be evaluated, as discussed in 
-

I --, - = . 

I 

- - 1 

the fol  1  owi ng paragraphs. 
I 
! 

The factor  lRn~fSmooth / f  in E q .  5-14 represents the variation - i. 
- - i 

- 5; 
I 

of the f r i c t i on  factor  and the turbulent diffusion coeff ic ient  with 
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A- -- ---	 --a - --
I - Reynoids number 	 t-was-ass-umed~~ha%:k 

4 -

, 

- A 

,and-wall, mughness. 5 ~ h e r e f ~ r - & - >  - A 

- - -- 3 - i-

. - should be independent of -the location of the  so]Fce;-- I n - gtker. words, 

' in- E q .  5-14, n was assumed t o  have a value 0 f ~ 0 . 1 0 4a s  in E q .  5-10. 
-

I n  Fig:- - 23, experimentally observed mixing-distances- -

^ + 

. - due 
-	 -%= 

- - --to: 	 the--wall .-o-f- the  p i p e  ax:-shown.a- simple so~rce: 'injector ~ f o c a t e d ~ a t  

-;-In t h i s  f igure ,  &was ca lcu la ted~foc- thedata -using E q .  4--ID.>-.The gen--
I----	 -. - - " ----* 	 --" . - -
-. , - -I 

-- --, 	 --
-	 era1 vmia t i  on of  the  data p@intssubs tan t ia tes  the logari thmic-depen- -

- -J 

dence o f  L on -oas indicated i n '  E q .  5-14. (Equation -5-14 i s  an eeua-
-

t ion of a s t r a igh t  1i n e i n  -the "log 0" vs. " L ' i  plane. ) U s i n g  the data 
-

i n  F i g .  23, the otkier unknown constants ( K  and I of E q .  5-14) were 
' . - -	 -- -

evaluated as follows: I i s  --the intercept of t h e  s t r a igh t  1i n e - a t  L = 

0 .  Using the avai lable  data as shown in Fig. 23, I was found to be 
i 

2 . 4 0 .  .--=Subst i tut ing- the val-ue--of :I in to  E q .  5 -14  with n = 0.104, A 	 , 
. -	 - , 

was evaluated t o  be 20.5 by l e a s t  square f i t .  	 / f  i s  the ,( ~ 6 ~ - i n ~ f ~ ~ ~ ~ ~ ~
- - - -	 1- C f _  -	 L 

slope of a 1ine in the l o g  o vs. L plane. ) Furthermore, taking the empi -
,=E 
i 


1:.-	 r i  cal- nature of the rel-ation intd account, the power n in Eq. 5-14 was . . , 

- - <  	 . -
i 	 . i I .  ,

J I 1 

L 


roundid off t o  0.10. The r e su l t  i s  	 j 
,-

, 	 . - - -

12.40, ,0,10 I r  	-!I?\i 	 = 20.5 iog  \-- 1 K f'f smooth'f \ 3 - 131 
0 

-

Because of the empirical nature of E q .  5-15, the agreement-be-

tween the -theory and experiments -(Eig. -23) i s  good. However, any use 

~- of  5-1 5--outs idethe R-eyholdsnumber range -of 5,000 t c ~Eq.  	 500,000 waul-a 

i: 	irivdlve extrapolation which has not been ver i f ied.  -

--t - -ii 31 " 
, -- < + - 	 F-* 

-

-
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FIGURE 23 : 	 Variat ion o f  m i x i n g  w i t h  dimensi on1 e s s  
longi tudina l  d i s t ance  for  a simple wall source 



- - 

-- 

- - 

- - 
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5.3.2 Evaluation of q 

,
As sta ted e a r l i e r ,  i f  the d i f fu s iv i t i e s  e2 and e3 a re  not9-=-
=.a = 

equal and uniformly d is t r ibu ted ,  obtai ning an analytical  sol ut i  on of 
- 7 -

the diffusion equation ( E q .  3-75) becomes complicated or perhaps impos- - -

. -

s i b l e ,  depending on the functional form of e2 and e3. Therefore, i t  i s  


more convenient t o  solve the diffusion equation ( E q .  3-75) by numerical 

- . -- --

methods. However, a pri ori know1 edge of both the circumferenti a1 -mass 

d i f fus iv i ty  (e3)  and the radial mass d i f fus iv i ty  ( e2 )  i s  essentia-1 for  

the numerical integration of the diffusion equation. I t  has been as-

sumed ( E q .  2-25) t h a t  there i s  a l inear  re la t ionship between e and eg 
2 

such tha t  e3/e2 = q. 


The r a t i o  n was determined by matching t h e  numerical solution 

a .-

(10 grid points along x 2 ,  32 grid points along x3; Section 3.2.4.3) and 
-

I 

experimental resu l t s  for  normal i zed concentration d is t r ibu t ions  lusi ng 


data from both the present work and from Filmer and Yevdjevich [1967]. 


The normalization was with respect to  the average concentration obtained 


from the numerical solution fo r  each measurement s ta t ion .  The numerical 


computations were carried o u t  u s i n g  the experimentally observed concen-


t r a t i on  dis t r ibut ion a t  the f i r s t  sampling s ta t ion  as the upstream 


boundary condi t i  on. For the present experiments, the f i r s  t sampl i ng 


s t a t i on  was a t  four pipe diameters downstream the injection point;  fo r  
A 


Filmer -and Yevdjevich [1967], i t  was a t  27.4 diameters. For d i f fe ren t  q 

stream 1 ocati ons corresponding to other sampl i ng s ta t ions  . I t  was as-


sumed tha t  the best  q value was the one fo r  which the standard error  o f  


--=.-



discrepancy, S d ,  between the numerical a n d  experimental normal ized 

concentration dis t r ibut ions  was minimum. The standard discrepancy i s  

defined as 

where w i s  the weighing coeff ic ient  as defined previously ( E q .  4-9),
i 9J" 

c ( ~ ?and ci ( P ?, are  the normalized measured a n d  predicted concentrations, 
i ,j 

respectively.  

The variation i  n the standard discrepancy w i t h  longi tudi nal 

posit ion and with various assumed values of n i s  shown in Figs. 24', 25 

and 26.  As i s  seen, the best I-I value i s  not constant, b u t  rather tends 

to increase with distance ( L ) .  This tendency i s  possibly due to  the 

type of functional relationship ( E q .  2-22)  used in representing the spa- 
-

t i a l  variation of d i f fu s iv i t i e s .  / h i s  conclusion i s  supported by the 

observation t h a t  the parameter  q shou ld  depend only on  the flow charac- 

t e r i s t i c s ,  and thus should not vary with longitudinal position i f  the 

actual spat i  a1 variations were used. Nevertheless, an average II value 

can be obtained by taking the arithmetic means of the minimum I-J values 

(Table 6 ) .  This gives q = 1.35. Furthermore, when the variation in the 

standard deviation of the numerical ly obtained concentration di s t r i  bu-

t ions are  compared with the experimentally observed variations (Figs. 

27 and 28), i t  i s  seen tha t  rl values in the range of 1 .2  to  1 . 5  provide 

good agreement between calculations and data. Therefore, the q value 

was selected as 1.35 fo r  use in the mathematical model for  the f a r  f i e ld  

regi on. 



D i f f u s i v i t y  r a t i o ,  T - -

F IGURE 24: V a r i a t i o n  o f  Sd w i t h  
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Table  6 
- -

1 

-- , --
i 

Variat ion o f  q w i t h  b - -
1 

Reynolds 
Number L rl 

- 7.7 x 410 24 0.8 
---

11 44 7 .o 
7 



Dimensionless longitudinal  d is tance ,  L 
F I G U R E  27 :  Dependence o f  predicted m i x i n g  on 



Dimensionless distance, L 

FIGURE 28: Dependence o f  predicted m i x i n g  on n 
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5 .4 .1  ~ r e s ~ t a t i - o n  ~ e i u lt s  - -o f ~ ~ x ~ e r i r n e n t a ~  ' 

~o 'cen t ra t io i  dis t r ibut ions  from several fepres&ta t ive  runs 

a r e  pres-ented in- Figs,2_9-to A j - j  data-.j-s a v j a i l a b l  e i  n-t.U_1ar form - .  45 .-
.----" 

-

i n  a;supplernentary publication [Ger, and Hol ley,  19741. The .resuJ t s  a re  
"-- - - ---. ---. 

i n the form o f  normal i  zed concentrati on contours. The normal i  za t i  on 

was with respect to the average concentration for  each -measurement sta-' 

t i  on. The location of points where t racer  concentrations were measured 

i s  shown to scale  in each f igure .  Injections were made a t  the top of 
- s 

the pipe, - he injection condi t i  ens f o r  each r u n  are  given i n  -Tab1 e 5 

in  Section 4.3.1. 

- -
" --

L -

5.4.1.1 E f f e c t o f o  -

In F igs .  29 t h r o u g h  33, the development o f  mixing i s  demon-

s t r a t e d  for  one ser ies  of experimental runs ( s e r i e s  06; Table 5 ) .  

- 1 

. - - - --As-.-def i  n e t  earl i  e r ,  the standard deviation,  5 ( E q .  4-1 0 )  , of 
-3  -

a concentration dis t r ibut ion i s  a measure of the mixing; smaller values 

of o indicate more complete mixing in a given cross section.  Thus, fo r  

a given injection condition, longer mixing distances are  required in 

order --t o  achieve smaller 0 values. This i s  demonstrated in F igs .  22 --" 

and 23 fo r  a simple source. The same behavior can beseen  in Figs. 49,  

- 503 and 51--for j e t  in ject ions ,  as. disruss-ed-1 a t e r .  Tl~epretic-ally, the -
.' = - - ' . 

-. - . --- -2 .-

ultimate o value of zero corresponding to  a complete mixing requires an 

. 

--

-

-

* 



F I G U R E  2 9 :  Measured c o n c e n t r a t i o n d i s t r i b u t i o n ;  

f o r  run # 06-004 - -




FIGURE 30: Measured concentrati6on d i s t r i b u t i o n  - -

f o r  r u n  # 06-024 







' F I G U R E  33: Measured concentration" d i s t r i b u t i o n  
f o r  run- # 06-124 



- - 

monstrate the e f f ec t  of k on the penetration of the j e t  i n to  the cross- 
-.. .C - - , I  

' I  , 7 - - - -... r2 - * - I 

flow: In Figs: 34, 35, 36, and 37 th i s  i s  shown for  four k ~a l ; e s - ' f o r  

Dr = 96. In Fig. 34 ( k  = 4 ) ,  the j e t  penetration i s  so small t ha t  the 
I 

7 


j e t  i s  barely transported away from the top of the pipe. However, as k ! 

6r 

I 

jncreased to  8 (F ig .5 .35 ) ,  t o  -12 (Fig. 36) ;  and. further t o  16 ( ~ i g ;  3 7 ) ,  ' - i  
I 
T 

t h e  j e t  was transported fur ther  and fur ther  away from the top of the 

pipe. 
I 

The position of the j e t  a t  the end of the near  f i e l d  region in- 

fluences the concentration dis t r ibut ions  in  the f a r  f i e l d  region. This -

- 4 

i s  demonstrated i n  Figs. .38- t o  41. For a.-small' k value of 4 ,  the j e t  
-a 


- - -- _- - --

penetration i s  small and the maximum concentration s tays-close to the. + 1 
 L 


. - - i 

top of thepipe -along the pipe ! e ~ g t h _ ( F i g s .  3 8  fo r  L = ,  24 and -3g7for  
I 

- 1 E 
1 - . - . - ' = h . , t-- -
s 

- "  - - - A  - - - - =- - -- 2:̂ . -I----. --- - - L- . L .  _ - .̂ 1 

-

L = 84). However, f o r  a larger k value, the j e t  overpenetrates (i. e . ,  

j e t  penetration i s  greater than the optimum) and the maximum concentration 
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FIGURE 38: Measured concen t ra t i on  d i s t r i b u t i o n  
' f o r  run # 04-024 I 





FIGURE 40: Measured concentration d i s t r ibu t ion  
f o r  run # 08-024 
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Table '7 , -. c . E 

. -- - _ 
-
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I-
i 

-

Variation o f  cr w i t h  k a t  a Given B Values - A 

for  Dr = 96 - - I  

K 
- -

L -- 4 8 10 - 12 ~ 6 "  ; 
-- 

-

24 7.87 - 1.45 1.45 - 1.21 -- " 0 . 9 4  

44 - 0.75 0.28 0-23 0.1-8 - - 4 . 2 5  

64 8.035 0.022 0,061 

84 0.18 0.044 0.016 - 0.012 0.029 

124 0.036 0.019 0,809 0.007 -011 

164 0,089 u, uuw n nnc 0.005 6.007 

- - - -  Table 8 - - - -
-5=-1--

7 = *- a 
- .  ! 

k 

Varia t ion  of L with k and a f o r  Dr = 96 i 

I 

! 
I 

S e r i e s  k a = 0.01 cr = 0.02 a = 0.05 -
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--	 --- - -- --- -! 
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- * - Ii s  located a t  the bottom of the pipe along the pipe +lengthf~;g-s-. 40. fo r  - A : 
& 

-- - 2 --	 .- - -
-....-- 1-

-4 

-	 m - - - - i = 24-i;d 41 for  L = 84) .  - case where the maximum - ,- - +For any asymme~rical- -.. 
- i 

concentration i s  not on the pipe center1 ine the-maximum concentration - -
-,

A .  

wi l 1 tend to: move toward -the pi pe boundary as the - t racer .moves a1ong = . 
-:. - -

" 

-
-

the  pipe. Therefore, i t  i i  benefCcjal todhave-.- t i e  j e t  peni t ra t ion-as 
- - " -- i 

-
-

Crr C h n  = r r m m + n \ n l ;  an 
Ilcol 

---
LU 

-
Li,4 

-

-

I I a5 p ~ s s i b l ei n  order t o  m i i i m i i e  t h i s  tendency o f  
-t 

1 
-

A a -

. -- -ithe  boundary to- a t t r ac t - the maximum c ~ c e n t r a t ion. The i nf 1dence of the. 
t	 . 

1j e t  penetration (o r  k for  a given D,)- on the concentrat'ion- dis t r ibu- 1 

ticons i; more c lear ly  seen when the standard devi,ation,- - - a ( E ~ .4-10), -s 

-
of concentration dis t r ibut ions  are  compared a t  several given 1~ c a t i o n s  

-	 along -the pipe length fo rpd i f f e r en t-k values (Table 7 )  .--For the l a r g e r  

L values,  the standard deviation a decreases with increasing k until  

an 25$tiiium *k-\ial ue i s  reached. Fu?tVher increase i n  k-gi-v'es an inc6edse > -

-	 19 -

z . 

in o. Since smaller values of a-reprksent bet terrmixing,  the optimum - , 
. i 

k value f o r  which the o becomes the smallest corresponds to  the shor tes t  t 
* ! 
I ' 

f 
9 -

-	 mixing distance. I n  other words ,. there exis ts  an optimum k val ue which 
-

-i 
1 . 

.' 	 L' - I ' i ,  . - - 1 - : ; 
-	 .,-

1 I 

gives t h e --	 given D r .shor tes t  mi x i  ng di stance corresponding - t ~ ' ~ a  This 

1i s  demonstrated in  Table 8 ,  which shows tha t  fo r  Dr  = 96 the optimum k 
-	 I 

value i s  approximately 12. 

5.4.1.3 E f f e c t o f  Dr  -	 - -
- e ---	 - 7 

- = 
-	 - A..--. . "-	 /- * 

; For a g i v e n  k'ratTo-and--Tof asgiven pipe,  a decrease in D r - - _  	 - --

-'. f-
- 2 % 

? ,( i . e . ,  an 	
- - --

increase in . . 
i 

-L 
ilicrease- in injectio-k holediamet_er)---i-mpli-esa~ -

& - - -
- - - %  - ? _ _, ,  a 

.---- % 

I 

.- , - .:- - - ,+-, 	 *-- i f  
the momentum flux associated with the j e t  r e l a t i ve  to the-momentum flux - . -

I 



FIGURE 42: ~ e i s i r e d  concentration d i s t r ibu t ion  
f o r  run # 12-004-
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1 of--the-pipe f low.: - ---~hefefore- ,the;v?i'rri;ltion; in j e t  * g n e r a =a d  t h u s  

-
A 


-
- in-inixi ng-distance when- Dr  i s  decreased-fob- cbh!Ytant- k i i t f i e -samF - -

- as when k is  increased for  a-constant D . The concentration-contours -
r . . -

- a t  d i s t anceo f - fou r  pipe diameters downstream o f  the injection port, 

a 
- of Dro-n t h e  j e t  penetration. 'This '7s shown -- *"demons t r a t e~ the~e f fec t  

- 2-.- 1 .  - 3 j n  F f g  $5 ( G  = 96)-aijj-;jg.-42--(/ l f i n \  -
--I UT' K - = - I Y L  - 1~iF i g.-42-

- -- -- -- r r --- - "  -- "-

, 
a (D,- = l92) ,  the j e t  penetrati on was small ;the- jet: was' barP7ym 

:-ported away from' the top- of the pipe; Ho~ev'e?~-whenD- =- 96- (Fig.  35) 
-. 

r 
' -the j e t  was transported fur ther  away-from the top of t h e  pipe. 

-

5 .4 .1 .4  E f f e c t  of Bd -
-

For a given D, and k, an increase in density d i spar i ty ,  Ap, 
- - - . - r - r - - ^ - - , ; a * =  + "  

- naturally implies an -increase in the density dispar i ty  flux associated 1-

with the j e t .  l'hus-, as a r e s u l t  of the combined e f fec t s  of momentum - ! 
fi 

and densi ty dispari ty f l u x e s  t h 6  penetration o f  ' the' j e t  wi l 1 increase 

as Ap increases (provided, of-course ,  t ha t  the j e t  i s  oriented-so t h a t  
3 i 

r 
< . --

I , 
It h e  density--dispar i ty  f l u x  adds -towthem o m e n t u m ' f l ~ x ). The r e 1a t i v e  

A , . a - I

increase in - the  penetration of the j e t  due t o  additional e f fec t  of 

density dispar i ty  f lux i s  dependent on the r e l a t i ve  magnitudes of the 

momentum and density dispar i ty  fluxes of the j e t .  The densimetric 

Froude number ( Pd ,  E q .  4-6) i s  representative of the r a t i o  of the mo-
i--

mentum and denii ty d i sp i f i  fy - ffuxis. = AS-$ increases,+ the re la t ive  - - -d :  , - - - -
"- - --~." - _-.-_- ^ 1 - - - . s 2 ' )  

. . , , A +  -- 8 - -'- = ' - I - _ 

i i g n ificindeJof % t h e  density-dispafitY20{-- . -. de:.. the penetration of the'jet 
-- -- - - -+1 

- - - - - -. -- -- -I 

creases. ~he-concent fa t<  ~ i ~ s .b n  contours shown i n 4 3 ,  44 :=and 45 



FIGURE 43: Measured concentration distributibn 
for run # 09-004 
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-
1- an t  j e t  having a Fd of ?&(Fig.  43)---the rnaxi~murn concentrat ion i s  t?ans=-- - -- -e "i 

ported further away from-:the -top of; the pipe than for  a nonbuoyant j e t  --
Ii t :  

-* 
.. - wi*:th the same k 3 ( ~ i g .34). or- largeG densihetric Froude numbers 1 Fd 5 * 

" m 7 

s-


52 (Fig. 44,) and_F=-;- = 104 (Fig.  +-)-)I no-appreci ab7 e increase in penetra- 
- -

-- - ' 
t i  on was obseFved as compared- ;o nonbuoyant : jets  with the_ same .k (Figs. 

-

f 
-- - - - a , .k "* - -- -- - --&--
a 
 - - - - - - - - -z ----- = i - 2  

--
z - 35 ah< 37), j j l  a q u a n t i t a t i v e  comparison % - - * pene--- - - ITable 9 giy,ei o f - t h e = - j e t  

- - * - - - - .  

t r a t ' i on  for  various s7tirati 6%. -From t h i s  t i b l e ,  i t  was concluded t h a t  
1 


. a 


It h e  penetration of the j e t  i;  independent i f  the buoyancy effects-,when 
> " p. 

L ,, 
- *  

IFd i s  larger than- about 50. As can be seen from the conditions invest i -  
i 

,gated (Table 5 ) ,  there  were not enough values pf_lFd investigated t o  give 

an exact def ini t ion of the c r i t i c a l  IFd. Therefore, IFd = 50 wi 11 b e  used i 

I - "..- - - - I 
r i

.as:aniorder ofLAniagk-i for .  the "c r i t i ca l  Fd. , 
ttude inditati;; his w6~,ld '"  -

-- . I  B 1 
I 

mean - t h a t  the mixing distance i s  also. independent of the i n i t i a l  - den<ity - 1 

!r ' 

di spari ty for  densimetric Froide numbers 1 arger than 50. The experi,men- 1 
i 
I

t a l l y  observed variations of, o with L fo r  buoyant j e t s  and some cornbar- - i 
L ?,- r- , +r -

I , i 
1 

dable nonbuoyant j e t s  are  *shown in Fig; 46. The average variatiop' in 
-

I 

mi xi ng distance between the buoyant- and nonbuoyant cases i s -  more than 
* & 

2 " 

I 
10 Percent for  a densimetric Froude number of 26 (Table 10) .  However, i 

- 1 
i 

-- , ,8fo r  densimetric Froude numbers larger than 50 the variation becomes 
iI 

ins ignif icant  (Tabfe-1.0): -- -* 

--A ----- __ - -----

- t- * 

* 85.4.2 Numerical Work 
C 

r 
-- . n q . 3  *s-- - .; 

f 
i 

- 7- - . - : - ' - , - 3 . .  5 ,---...-..- . - - - - . . - - - - &  --,, I-.-r . 
- P  - I  

- A- " - - . .A - - - . .. 
i - - 7 a . - - ' A  < - i . .. . . = . . * - .- - .--- - ; . r  - ?3 

- - --
--a -- - --. -- i 

In the Case of a j e t  injected perpendicularly into  a crossing i 

p i  pe flow, an expl i c j  t analytical  solution i s  impossi ble to obtain 
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-

Table 9 - * .  -

Varia t ion  of  J e t  ~enetrationw i t h  Ifd and  k 
for  Dr = 96 

-
-

l J P  
j e t  penetration in pipe diameters 

2 ~ .refers  t o  a nonbuoyant j e t  (IFd = 
j e t  (Fd < m).  

w) and B refers  to  a buoyant 
I 

! 

I 

I 

I 

I 

I 

1 
I 



Dimensionless d i s t a n c e ,  L 


FIGURE 46: E f f e c t  o f  IFd o n  mixing 




.Table 10 

Variat ion o f  L w i t h  IFd, k, and o for Dr = 96 

Average
Deviation 

' ~ x t r a p o lated 

2~ubsc r ip t sN and B refers to nonbuoyant (IFd = m) and buoyant 
(IFd < m) j e t s ,  respectively. 



-- 

-- -
- -- . - - -- - -.> - - --- - -- - *  7 - - - -- 7 - .  - -

(Chapter 3 ) .  Thus, a mathematicaq model-, using YL=nurner-ic a l  i-nteg-fation - -
- a  

- a  - - -

schem2 was developed to*describe- the ieha i i  br of the  j e t  as discussed : -

--  - -- 

- -  -- 
- -

-

--7 

-

i n  Chapter 3. However, i n  addition to  .theA geometric and dynamic charac-

t e r i s t i c s - -o f  the j e t  and the *pipe flow a t  the injection point,  the model 
- A .- --- 

needs three empirical coeff ic ients  : &and C D  in the near f i e l d  reg ion ,  
- -- -

- -

and 17. i n  the f a r  f i e l d  region. 1 n  section 513-F~; evaluation-of :=was 
-- - -  

-- -- - - -- 

--

presented. Evaluation of a and CD i s  provided in section 5.4.3,7-below. 

For known a ,  C D ,  and -q, the mixing f o r  a j e t  of known charac-

t e r i s t i c s  can be predicted by the model. The predictions o f  the model 

f o r  several s i tua t ions  are  provided in Section 5 .5 .4  
- -

(Figs. 49, 50, 

and 51 ) , be1ow, where the numerical predicti  ons are compared with the 

experimental resul t s  . 

5 .4 .3  Determination of a and C D  
1 

i e n t  C D  

The entrainment coeff ic ient  a (Eq .  2-5) and the drag coeffic-

( E q .  2-7)  were determined by matching the theoretical  and experi-

I 

I 

mental resu l t s  f o r  the normal i zed concentration dis t r ibut ions  a t  the 
1 
1 

f i r s t  measirement s ta t ion  which was four pipe diameters downdream of 

the  injection port .  An independent evaluation of a and C D  was not pos-

s i  ble.  A two-step procedure as described below was used to  evaluate a 

and C D .  In the f i r s t  s tep ,  influence coeff ic ient  algorithm [Becker and 

Yeh, 19721 was employed to determine the a and C, 
U 

pair which yields  the 
- - F 

-

rn; mum standard error  -of discrepancy between the numerical . -and experi -
--7&- I- -I__ _- == =-=-z - ZZz- -r - ,-i=-L-----:c- =-- -- - l-z-̂  - .- -.,,;* ,  

mentaiconcentrati  on dis t r i  b u t 7  ons. In  the eval uation process, occa-
-- --- -- - - - 

-- 

s ional ly  cer ta in  a and C D  values corresponding to  the smallest error  



-
i,


would produce numerical ly calculated concentration dis t r ibut ions  which - E 
, 

were obviously not in good agreement with the measurements. Therefore, 

in evaluating a and CD, the subjective constraint  was placed tha t  the 

experimentally and numerically obtained j e t  centerl ine locations had 
I 


to  be in  good agreement for  the selected a and CD pair .  .Thus, in the i 


t o  obtain the best pair  of a and CD values in the neighborhood of the 


a and CD pair  determined in the f i r s t  step of the evaluation process. 


and C D  and because of the subject ivi ty  of obtaining the best a and CD 


pai r ,  the accuracy of th i s  procedure i s  probably a t  most two s ignif icant  , 


d i g i t s  fo r  a and CDa 


second s tep ,  a manually controlled t r i a l  and error  process was used ---- I 


Because the experiments were not designed for  the determination of a 
I 


The values of coefficient of entrainment, a ,  and drag coef- 
 I 

I 


f i c i e n t ,  CD, were obtained f o r  several injection conditions. A d i rec t  I 
i 


comparison of these values with a and CD values from past work i s  not 

8 


* Ipossible since different  definit ions of these coefficients were employed 
. / 

by d i f f e r en t  investigators.  However, some of the ava 

the l i t e r a t u r e  could be used to  calculate a and CD values in accordance 

i
with t he  technique of matching described above. The values of a and 


CD thus obtained are summarized in Figs. 47 and 48, respectively. The 


entrainment coeff ic ient  a and drag coeff ic ient  CD were both found to  - I
i

i 


varjJ with the v e l o c i t y  r a t i c  k and  t h e  ifijection dznsimatric Froude ; 


number IFd. 



li-





-- - 

The value of a varied from 0 .3  t o  0:5 for  the range of condi-

t ions  covered, These values are  considerably 1arger t h a n  the values 

used for  j e t s  in stagnant environments, which are 0.082 and 0.057 for  

simple plumes ( IF,u = 0)  and simple j e t s  ( IF,u = m) ,  respectively [Abraham, 

19691. The larger a values found here are  mainly due to the increased 

entrainment due to  interaction of the crossflow. The crossflow type 

entrainment (Section 2.1.2.2) i s  the main contributor t o  entrainment 

f o r  the j e t s  in  crossflow. I t  i s  possible tha t  the representation of 

the entrainment function ( E q .  2-5) could be changed to  reduce the range 

of u values or ideal ly  t o  give a constant a for  a l l  k and I F d  This pos- 

s i b i l i t y  was n o t  investigated as part  o f  t h i s  work since the detailed 

representation of entrainment was not the primary objective.  The value 

of u decreases as the vel oci ty r a t i o  k increases fo r  constant Fd (Fig. 

47) .  In the 1 imi t ing case when k approaches i n f in i ty  ( 1  . e . ,  f o r  a stag- 

nant ambient f l u i d ) ,  a values of 0.057 and 0.082 fo r  simple j e t s  a n d  

simple plumes respectively, appear t o  be consistent with the values ob-

tained here. The value of a also decreases s l i gh t ly  as the IFd increases 

f o r  a constant k (Fig. 47). 

5.4.3.2 Drag Coefficient 

The drag coeff ic ient  CD varies from 0.1 t o  3.2 for  the range 

of condi tions covered. C D  decreases as the velocity r a t i o  k increases 
-

and as the densimetric Froude number IFd decreases (Fig. 48) .  This 
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Dimensionless distance,  L 
FIGURE 49: Numerical and experimental resul ts  for  se r ies  1 2 ,  

13,  14, and 15 



Dimensionless d is tance ,  L 
FIGURE 50: Numerical and  experimental r e su l t s  for s e r i e s  05 ,  

06,  0 7 ,  08, 16 





Dimensionless distance, L 

FIGURE 51 : 	 Predictions o f  numerical model for  se r ies  17,  18, 
a n d  19 
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5.4.5 	 An Empirical Formula for  Mixing Distances Due to  a J e t  -

In ject i  on 

In Section 4.3.1,  i t  has been shown tha t  the dimensionless 

mixing distance L can be related to  the j e t  and pipe flow characteris-  

t i c s  by the following expression: 
. -

L = 	 f 2  ( D r >  k ,  B d >jR, a) (5-1 7) 

In reference to the experimental evidence provided in th i s  study and 

el sewhere [Nece and L i t t l e r ,  19721,  the e f f ec t  of the densimetric Froude 

number i s  ins ignif icant  unless i t  i s  smaller than 50. Thus, dropping 

Fd as a parameter for  large values of IF d >  E q .  5-17 becomes 

Any change in k fo r  a given D r  (o r  in Dr  f o r  a given k )  pro-

duces a corresponding change i n  the r e l a t i v ~  momentum f l u x  o f  thc je t .  

The optimum k (or  D,) fo r  a given Dr (or  k )  actual ly  corresponds t o  the 

optimum re la t ive  momentum flux of the j e t .  In other words, there ex is t s  

an optimum momentum f lux of the j e t  re la t ive  t o  the momentum flux of 

the crossing pipe flow for  which the j e t  penetration re la t ive  t o  the pipe 

diameter i s  optimum and the mixing distance i s  the shortes t .  The r a t i o  

M of the momentum f l u x  of the j e t  t o  tha t  o f  the crossing pipe flow can 

be expressed in terms of k and O r  as 

k 2 - - -

= (0) (5-19 )  
r 

-

t 
-

Il 

i 

I 

I 

I I 

I 

! 
I 

I 

I 

i 

I 

I 

I 

i 

1 

i
i 

- ;  1 
I 



- - 
-- 

Introducing-M-into Eq. 5-18, one obtains 

In E q .  5-20, M and D r  represent the e f f ec t  of the j e t  on the mixing 

distance while R.represents the e f f ec t  of turbulent transport  assoc- 

iated with the pipe flow. (Recall t ha t  the pipe roughness has been 

omitted from the dimensional analysis since only one pipe was used in 

the present experiments. ) 

For the case of simple source injections (Sections 5 .2 .1  and 

5 .3 .1) ,  i t  has been shown t h a t  E q .  5-20 assumes the following form: 

where I i s  the intercept ,  A i s  proportional to  the slope o f  the l inear  

par t  of the log a vs. L graph, and lRn i s  derived from the variation of 

the inv2r:e square r o o t  of t he  f r i c t i o ~f a c t o r ,  

For the case of j e t  in jec t ion ,  i t  i s  assumed t h a t  the general 

form o f  the function f4 ( E q .  5-20) remains unchanged, b u t  the para- 

meters A and I may be functions of M and D r .  In other words, fo r  j e t  

in jec t ion ,  i t  i s  assumed tha t  

1( M , D r )
L = R"Io~a ) Jfsmoot h /fA ( M , D , )  ( 

The logarithmic dependence of L on a i,s supported by the straight1 ine 

re la t ion between L and log a for  small 0 and large L (Figs. 49, 50, and 
--

51 ) . 



The exponent n i s  assumed to  be the same as tha t  given pre- 

viously for  simple sources (Sections 5.2.1 and 5.3.1 ) .  This assump- 

t ion i s  based on the following observations: 

1 .  	 The near f i e ld  region, where the j e t  i s  ac t ive ,  repre-

sents a re la t ively small f ract ion of the to ta l  mixing 

i ength. 

2 .  	 The major p a r t  of the  mixing i s  accomplished by t u r b u -

len t  diffusion associated with the f a r  f i e l d  region. 

3. 	 R ~ inS Eq.  5-22 to  represent the variation of the 

f r i c t i on  factor  and the turbulent dif fusivi  t y  with 

Reynolds number, and therefore should be the same with 

e i ther  simple sources or j e t s .  

(The influence of the j e t  i s  represented in the dependence o f  A and I 

on M and Dr, as explained be1 ow. ) 

To find the dependence of I on M and Dr, the intercepts of 

the s t ra ight1 ine parts of the log o vs. L curves for  a1 1 experimental 

and numerical runs were o b t a i n e d  (Table  13) from F i g s ,  49,  50, and 51 

and a re  plotted i n  Fig. 52. As an approximation, i t  was assumed tha t  

I depends only on M and tha t  t h i s  dependence could be represented by 

the curve in Fig. 52. With increasing momentum flux r a t i o  M the inter-  

cept I decreases u n t i  1 the optimum momentum f l u x  r a t i o  (M = 0.0156)  i s  

reached. Further increase in M i s  followed by an increase in the in te r -  

cept as the resu l t  o f  overpenetration of the j e t .  

Once the value of n and the relation between I and M were 

known, A could be computed using E q .  5-22 and the available data.  The 





FIGURE 52:  V a r i a t i o n  o f  I w i t h  14 and Dr 
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- I - _ _  . - _-r e su l t s  are  g i v e n i n  Table r4 and;f ig .  53. I t  c a n  be s@n -ffFon? 
--3 -> - ----- --- - - - + - - A  -- .. 

53 tha t  there i s  no evidence to  indicate-aCdependence of A on e i t he r  M -

-

= _ -
& -

- , 
-

- - 

o r  D r .  Therefore A. was assumed to  be constant. A ,  the average value of.. 
- - .  - -

A ,  was found to  be 24.70 with a standard deviation,  oA-3of 2 .15 ,  The 
4 

A + aA value i s  lWaF@r-than t h e 9 0  percent of a1 1 computed A valGei;-- --. 

-

-- - -  

- -  

. 

-

- -  
A 

-

-

2 

Therefore, to be - -on the conservative .side in -*p6edi-cting mi xi ng distances 
-~ - a 

-=1 -
associated with a j e t  in ject ion,  A + aA ra ther  than -A i s  used in Eq.  

-* 
- .  
-

=+ 

Thus, * E q .  5-22 becomes 
-

3 4 

I n  using th i s  expression the variation of the intercept  I with M i s  

obtained from the curve i n  Fig. 52. The mi xi ng-distances predicted 

by E q .  5-23 are compared with the available numerical and experimental 
- 9 

-

I 

data  as shown i n  F ig .  54. As i s  seen, the  calculated cijrvej a r e  a good E 

envelope of the points. For 90 percenf of the cases, the predict ions '  

of Eq.  5-23 are  1arger than' the numerical l orp'experimental1y obtai ned 
- - -

3 -

m i  xi ng distances. Furthermore, the cases -for which the predictions are  

t 

1 

i 

i 

I 

smaller than the observations are  of l ess  practical  i n t e r e s t  since the 
I 

momentum flux r a t i o  M i s  smaller than the optimum value. 
- - -  -- 

On the average, 

the  predicted values of L from E q .  5-'23 a re  10 percent larger than the 
- - 

m i  x i  ng distances 
- .-& - .-

t o -be -expected. 
* --- 

- - % - 5 . 5  ~o rn~a r i sonof Different -Single-Point Injection-,Schemes- - - -  >+ 
-
f 

-

i 

i 

j 

Figure 55 shows the variation of a with L fo r  three d i f fe ren t  
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Series A CT MDr 






Tab le  14 (Con t inued)  

Series A cr B M r 

'E refers t o  experiments. 

2N refers t o  numerical work. 





Momentum f l u x  ra t io ,  !,I 

FIGURE 54: 	 Comparison o f  E q .  5-23 w i t h  experimental and 
numerical resul t s  





- ,  
-

--

types of s i  ngle-point injections ,
--
namely -a center1 irie source, a wall 

* 

source,  and a j e t  perpendicular to t h e  pipe wall. For a  center l ine  

source,  the f igure  shows both a calculated curve for  a n  assumed axisym-

metrical s i tua t ion  and an empirical curve. 

The simplest t racer  source i s  a simple source located a t  the 

p i p e  wal I ,  b u t  t h i s  results i n  the j onges t  m i x i n g  distance- as compared 

to  mixing distances fo r  other injection schemes (Fig. 55).  The mixing 

distance can be reduced by using a simple centerl ine source. However, 

pract ical  d i f f i c u l t i e s  in obtaining perfectly axisymmeiric conditions 

usually cause mixing distance to be greater than tha t  calculated for  a  

center l ine  source (Section 5.2 .2) .  On the other hand, fur ther  reduc-

tions in mixing distance as compared to  a wall source can be obtained 

by using a j e t  rather than a simple source located a t  the wall of the 

pipe. I t  has been shown that  the mixing distance for  a j e t  perpendi- !f 

cular  to the wall could be minimized i f  the r a t i o  M of momentum fluxes 

of the j e t  and the pipe flow i s  optimum. I n  Fig. 55, the mixing d is -

tance for  a j e t  with optimum M i s  also shown. As i s  seen, the shortes t  

mixing distance fo r  the single-point injection considered i s  the j e t  in-

jection a t  the optimum M r a t i o .  The reduction in mixing distance of 

approximately 50 pipe diameters has been observed by using a j e t  as 

compared to  a simple edge source. The mixing distance for  the j e t  in-
t 

- 1 

jection i s  not as small as that  fo r  the calculated curve for  a  center-

l i ne  inject ion;  however, the symmetrical case i s  very d i f f i c u l t  to ob-
--
f-. 


t a in  and therefore should not enter a real i s t i c  compaii4ionof physically - I 

achievable s i  tuations for  practical appl i ca t i  ons . 
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- -> =The:_numerjcal- - mfdel- developed to rimbl a t e  the ibehavi-br of a = 
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-

buoyant or -a  nonbuoyant j e t  located- a ta t h e  pipe wal ]->an&issui ng perpen-
- A-

-- -- 

--- --  

1" 

. 

-- 

I 

/ 

I 

I 

d i  cularly in to  the crossing pipe* flow successfully predicts-+the resu l t -
-

-

i n b  mixi ng  (Section :5.5.4). ~urthermbre,it was found t h a t  8 - r e l a t i o ~  

of the form (Eq, 5-114)-- - --T ,.-- d--. 
- - .  

- - - - . -. - -- --* -
I _ 
-

-. 

- L = :  A-X--n log~-(1/0)Jfsmooth/f---

-" 

.--A 

--a 2-

. -
-
- - -=-

-- - - - (5--24] - -- 

-

can be used *in predicting the mixing distance-fora-eachof the--afore- , 

mentioned inject ion schemes. The parameters A ,  I., and..n corresponding 
I > 

t o  each inject ion scheme were e i ther  theoret ical ly  or  empirically deter-

mined and are surnmari zed in  Tab1e 15. The agreementE between E q .  5-14 --

a n d  the experimental findings a re  good f o r  a simple edge source and for  
r ,  " 

a j e t  located a t t h e  pipe wall i f  Fd > 50. As car7 be seen from Fig, 55,s -

there are  s i gni iican t  distances between t h e  theoi-eti cal c u r v e  for  a -
I 

center l ine  injection and the experimental r e su l t s .  This i s  due to t h e  i 
I 

f a c t  t ha t  the theoreti  caf represents t i  on assumes axisymmetry , .whereas 4 i: 
- i 

/- . . / I--- i 
-- -* 

t h i s  i s -pq<ct ica l ly  impossible.- to  achieve physically (as previously~men-
-.- - - -

! 

tioned in  Section 5 . 2 . 2 ) .  m heref fore, i f :  the theoretical '  values for  6 
iand I are  used in Eq. 5-24, t h e  predicted values of L are  too small-as 

compared to the data. On the other hand, i f  Eq. 5;24 i s  used to give 
I / 

empirical values o f  A and I ,  i t  i s  found t h a t  these values are  d i f f e r e n t  

f o r  d i f fe ren t  invest igators  (and d i f fe ren t  center1 ine i-njection systems). 1 1 

-
.Therefore, the-use of E q .  5-24 fw - . . _ I  L fo r  centerl ine- .-- the prediction of-

7 -- --- -. 
* - - -

- . 4 - .- 7 " j -
, 

j 
- -

. - - '.s 
_ A  
-- -- " 2 . - - - 1

i
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Constants A, I ,  a d  n o f  Eq.  5-24 -

Type of  Injection A I n 0.. 
U 

Simp1e Edge Source 20.50 2 . 4  0.10 0.10 

Simp?e Center1ine Ssurce 6.80 2.37 0.104 0.10 

J e t  I n j e c t i o n  26.85 I = I(M); 0,lO 0.05 
Figure 52 
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4 . 
-- -- Since Eq; 5-24 giies- a'"-l-inear r e l a t i o n  between L ~ n d : l &o ,  

- -> 

-- i t  cannot b e  -applied over theA f u l l *  range of L and -a values. see,-  for  
" 

example, ~ i ~ s : 2 2 , 2 3 ,  49,  50, and 5 1 .  For large o values ( i . e . ,  fo r  

small L )  E q .  5-24 cannot be applied. Table 15 gives upper 1 imi t ,  o u ,  
-

f o r  the appl.icability of E q .  5-24 for  each injection scheme. Further-& 

more, a values w6-ich are  calculated from Eq. 5-24 b u t  which a re  smaller 
. - - --

than the experimental accuracy of the concentration detection have no 

practical  value. In other words, the atcuracy o f  the measurement sets  
-* 

for th  a lower l imi t  of 0 which should be  calculated from E q .  5-24. 

I 

3 

-= -. 

I 

1 

I 

-
-

1 



6 - A P P t  ICATIONS 

Knowledge of the behavior of a  j e t  injected into a crossing,  

ful  ly-establ ished pipe flow has d i r ec t  appl ications in numerous ways. 

In t h i s  chapter, the application to  two major areas of practical  in te r -

e s t  i s  i l l u s t r a t ed .  

6.1 Use of J e t  Injections in Discharge Measurements in Pipes 

One major area in which the knowledge of the mixing distance 

fo r  a j e t  injection has d i rec t  application i s  the use of t racer  techni-

ques f o r  discharge measurements in pipes. As described earl i e r  (Chapter 

1 ) , t r ace r  techniques are  based on the mass balance of t racer  between 

the inject ion location and a  section of the pipe where the t racer  i s  

adequately mixed so tha t  measuring the concentration a t  any point in 

the cross section i s  equivalent to  measuring the average concentration. 

Wi t h  reference to discussion in Chapter 1 , the mass balance 

of t r ace r  can be written as 

C - C  
P 


,where Q i s  the unknown flow ra t e  in the pipe, q i s  the volumetric in-
I 

jection r a t e ,  c i s  the background concentration of t racer  in the pipe 
P 

flow, co i s  the concentration of t racer  in the injection solut ion,  and 	
1 

I -
c i s  the t racer  concentration in the pipe flow a f t e r  adequate mixing 1 

i 
has been achieved. Equation 6-1 assumes tha t  the t racer  i s  conse~vat ive.  i i 

' f 
If the available pipe length downstream from the injection point i s  



- - - . iongef than the mixing distance needed for  adequate mixing to  take - = 

place, Q can be obtained by measuring the concentration a t  only one 

point in the cross section.  Since the mixing distance required for  a 

j e t  injection has been shown to be shorter than tha t  fo r  a  simple source 

a t  the wall (Chapter 5 ) ,  the use of a  j e t  as a  t racer  source can in-

6.1.1 A Procedure for  Short Pipes 

If the available pipe length downstream of the injection point 

i s  too short  to  make use of a  simple source, a  j e t  injection can be used 

to  shorten the required mi xi ng distance.  The shortes t  mixing di stance 

fo r  a  j e t  injection i s  achieved when the j e t  i s  injected with optimum 

momentum flux r a t i o  (M = 0.01 56) as discussed in  Chapter 5 .  However, 

unless the flow ra t e  in the pipe i s  known, the optimum injection r a t e  

cannot be determined a  p r io r i .  Therefore an i t e r a t i v e  procedure (as  

described below) i s  needed to determine the optimum injection r a t e  and 

the flow ra t e  in short  pipes. 

Step 1 . Select  the desi red degree of completeness of mi xi ng  o. Thi s  , 

of course, influences the accuracy of determination of Q. Using the 

selected value of o ,  the design capacity (or  expected maximum flow ra t e  

in  the pipe) Qma,, the pipe diameter D ,  and the smoother end of t h e ,  

possi;ble'range fo r  wall roughness, estimate the mixing distance L ( E q .  ' 
5-26) fo r  a  j e t  injection with an assumed optimum f l u x  r a t i o  M = 0.0156. 

-

--*" 



Use Table 15 to determine the appropriate values of A ,  n,  and I to  be 

used in Eq .  5-26 in estimating L .  The mixing distance L i s  the mini- 

m u m  distance required between the injection hole and the sampling port 

t o  assure t h e  a d e q u a t e  level  o f  m i x i n g  for  t h e  en t i r e  r a n g e  o f  flows ex-

pected in the pipe. Therefore, the sampling port should be located a 

distance L or greater downstream from the injection port. The actual 

d i s t a n c e  (i1) to the s a m p l i n g  port should be as large as feas ib le .  

Step 2 .  Determine the density pa of the pipe f lu id  and the background 

concentration c
P ' 

Step 3.  Select  the r a t i o  of injection r a t e  q to  the pipe flow ra t e  Q. 

Since E q .  5-26 which i s  used in estimating mixing distances has been 

ver i f ied only for  q / Q  <0.05, q / Q  should not be greater t h a n  0.05. This 

r a t i o  wi 11, of course, ultimately influence the value of q and the re-

quired injection equipment. 

Step 4. Select  the desired value of 5 within the measurement range of 

the concentration detection device to  be used. (The value c i s  the con- 

centration of t racer  in the pipe flow a f t e r  adequate mixing has taken 

place.)  Having c selected,  the concentration co for  the injection solu- 

t ion can be determined by rearranging E q .  6-1 t o  give 

Prepare-the i  nj-ecti on solution so tha t  the concentration of t racer  in 



- - 

the  solution---is equal to  co given by Eq-. 6 -2 .  Then determine p o ,  the 

density of the injection solution.  

Step 	5. The momentum flux r a t i o  M ( E q .  5-19) can be writ ten as 

Rearranging E q .  6-3, one obtains 

Determine Dr from E q .  6-4 fo r  M = 0.0156 and  q / Q  of Step 3. Then, the 

inject ion hole diameter d i s  determined from E q .  6-5; 

Select  the c loses t  commercial pipe s i ze  to th i s  d and correct  D,, q / Q ,  

and  c values. F i r s t ,  using the selected inject ion hole diameter, ob-
0 

t a i n  D, r a t i o  from E q .  4-4. Then using th i s  D r  r a t i o  and M = 0.0156 

determine q/Q from E q .  6-3. Finally, determine c from Eq .  6-2 for  th i s  
0 

Step 	6 .  Estimate the discharge in the pipe. Call t h i s  f i r s t  estimate 

Ql i s  less than  or  equal t o  Qmax of Step 1 .  T h e n  using q / Q  of
Qi 

Step 	3 and th i s  Ql determine the f i r s t  t r i a l  injection r a t e  q l .  

Step-7.  Inject  the solution through the- inject ion hole in to  the pipe -	 - .  

flow a t  a r a t e  q, of Step 6 fo r  long enough t o  assure the concentration 



- - - 

-- 

- - -- 
- - - 

- - -  
-- - -  - - - -  

-- ?  - -- - - - -- , 'A -a t  the injection port has reached to  a steady value. Measur~c.  a t  - .;- ..; - % .  - < . - d i ; : , - - * - L  

the sampling port. This value of cl i s  not necessarily .equal to  t 

t rue c since the actual M value for  the injection may not have been - _* _ _ -,-

- .  
- 4

equal t o  the optimum value and therefore the required .degree of mixing 

rmay not have taken place. - 1 

Step 8. Replacing 7 in  E q .  6-1 by c l ,  calculate a second estimate (I2 - - -- - --
-. 

f o r  t he  flow ra te  in the pipe. Then using th i s  Q2 and-actual q ,  of 
- A  


Step 6 determine Mp from E q .  6-3. Check tha t  q1 /Q2 < 0.05 and-the densi- 

metric Froude number ( E q .  4-6) fo r  q l  i s  greater than 50. 

dStep 9 .  Calculate the mixing distance L 2  ( E q .  5-26) corresponding- t o  - -

Q2 and M3 - of Step 8. The appropriate values of constants A ,  n ,  and I -

in  Eq.  5-26 are given in Table 15. If L2 i s  less  than or  equal to C1 - - , . - - -.--A 

' 

of Step 1 ,  the prescribed degree o f  completeness o f  mixing was actual ly  

achieved and therefore Q2 i s  the true discharge. On the other h a n d , - i f  

L2 > L1 replace Q1 of Step 6 by Q2 of Step 8 and,repeat Steps 6 through- -

9 .  This can be done in as many cycles as necessary; b u t  normally o f ~ l y "  - -: 

- " 

two o r  three t r i a l  injection ra tes  a re  needed in order t o  obtain Q. ' -

The accuracy of th i s  method depends on the steadiness and ac-

curacy of q (as well as the accuracy of concentration and density deter-  

minations). Clayton e t  a l .  [I9681 give detailed consideration to - * :  -

several aspects o f  the accuracy. r -- -

- - - . - - - - , - a -
< 

- - 6An exampl e i s  provided be1 ow to  demonstrate the procedure de-s;~;, i z  - ; -= - ---

cribed above. I n  order to  provide r e a l i s t i c  numbers, the numerical 
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a vai ues -i ntce example fa~ee i the r  'taken a i  r ec t ly  from - t h e  Iacttlal- measure- 
-> -=>- *  
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I ,  

-
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-
ments - - made -- du r i ng  -eiperimenta7program 

A -
or ,are i nterpol ated--.f born khe - -.-I-a -- 

r e s u l t s  of those measurementS. 

-
* 

Range o f  wall: roughness : 
a-. < 

c -
f = 'smooth * 

-- 

Smooth t o  - -.A 

0.0001 .- heref fore 
-

I 
a 
, I  

t 
I 

k 



- - 

- 30.0 - 0.0  + o o o  -
Co - 0.001 3 - 23000 rng/R-

L 

po = 1 g /cc .  ( I n  the  experimental program, t h e  dens i ty  of 
- I 

i n j e c t i o n  so lu t ion  was con t ro l l ed  and the re fo re  po = pa. - .  

Normally t h e  dens i ty  of i n j e c t i o n  s o l u t i o n  would be 
-

g r e a t e r  .. . 

than the  ambient dens i ty  because of add i t ion  of t he  t r a c e r .  ) 

Step  5. D, = 4 0 . 0 1 5 6 ~  1/1 / 0 . 0 0 1 3 =  96 

d = O e 5  = ( I n  t h e  experimental - - - 0.052 f t  1/16 i n .  pro-
96 

gram, t h e  i n j e c t i o n  po r t  was cons t ruc ted  so  t h a t  the  in j ec -

t i o n  hole diameter was exac t ly  1/16 i n . )  

S tep  6 ,  = 0.313 c f s  < 1 . 0  c f s  

q = 0.0013 x 0.313 = 0.00041 c f s  I 

C 
i -

Step  7 .  - cl = 40.7 mgja 



mum. Thus, the j e t  actually overpenetrated and the measured cl was 



-- 

- - - - - - - 

I 

i 

. . -.	therefore  greater than-the true c since in t h i s  example, the measure- 


ment por t  was located on the opposite side of the pipe from the injec- 


tion port .  


This procedure i s  somewhat complicated in tha t  i t  may require 

the use-of  more than one - - multipleinjection r a t e  and corresponding 

measurements of cl. However, th i s  method - i s  needed only for  cases 

where the mixing distance required for  a  simple source inject ion exceeds 

the avai lable  pipe length. Of course, the potential advantages of t h i s  

method can be weighed against mul t i -point  injections [Clayton e t  a1 . 
19681 and other measurement techniques. 

6.1.2 A Procedure for  Long Pi pes 

If the available length downstream of the injection point i s  

n o t  r e s t r i c t e d ,  a  conventional simple source injection can safely  be 

used. However, t he  use of a j e t  i n j e c t i o n  may be preferred since t he  

i n i t i a l  mixing i n  the near f i e ld  region adds a s o r t  of safety factor  to 

assure complete mixing in a shorter distance as compared to  a  simple 
- 1 	 -

source inject ion.  A procedure i s  described below for  the use of a  j e t  

as a  t racer  source when there i s  no r e s t r i c t i on  on the pipe length down-

stream of the injection point. 

Step 1.  Select  the desired degree of completeness of mixing 0 .  Using 

the selected value of G ,  the design capacity (o r  expected maximum flow 
-

"ra te  in  t h e  pipe; 9max) , the; pipe-diameter D,- and the smoother end of the -

possible range for  wall roughness, estimate the mixing distance L for  a  

![ 

j 

I 

! 
I 

t 

J 

i 
1 
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i
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i 
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-- - 

I 

. . 
- , -

saurcP injection from ~ q ; .5-26. 15~ = s i i i ~ l e '  u s e  ~ z i b l g  t o  determine the 
-- > _  - --., -k r 

appropriate values o f  A ,  n ,  and I to  be used in E q .  5-26 i n  estirnatifig ---L o .  


Because L i s  the longest mixing distance to  be expected a t  al 1 flow 

ra t e s  small e r  than Qmax the compl e t e  -mi xi ng  i s -assured i t  the sarnpl i ng 
\ -

s t a t i on .  I n  other words, the sampling port should be located a t  l e a s t  -

a distance L downstream from the inject ion hole. -. 

-
-

Steps Zthrough 7 .  Follow Steps 2 through 7 of* the=.
 procedure described 

- . f o r  shor t  pipes in  the preceding section.  - ,--

Step 8. Using cl of Step 7 as T ,  calculate  Q2 as the flow ra t e  i n  the 
. . 

pipe. 

- An example i s  provided below to  demonstrate the procedure des- - w 

c r i  bed above. The -numerical values in the example are d i rec t ly  taken f 

from the measurements made during the experimental program. I 

i 

L 


Step 1 .  o = 0.01 F 

- - > --
1 r 

= 0.625 cfsQmax 

are read from Table 15. Therefore 



I 

- ( 0.625 x 0 . 5  2.4 
-

- .- L = 20.50-- -

a /4 (0 .5 ) '  x og ( m ) J f s r n o o t h  
/
-
f

smooth 
i 

L = 164 p i p e  d iamete rs  

S tep  2. 	 pa = 1 g / c c  

Step 3. 	 q/Qp = 0.0013 < 0.05 

-
t e p 4 .  	 c - - = 30.0 mg/R -

I 
S tep 5. 	 Dr = 40.0156 x 1 /1  / 0.0013 = 96 

= - -(j - U . 5  - 0.0052 f t  = 1/16 i n .96 

Step 6. 	 Q1 = 0 . 1 5 6 c f s  

q1 = 0.0013 x 0.156 = 0.00021 c f s  

-
Step 7.  c l  = 19.9mg/R 

1 1 1  23000 = 19,9
S t e p 8 .  	 Q2 = 0.00021 " '  19.9 = 0,236 c f s  

T h e r e f o r e  t h e  f l o w  r a t e  i n  t h e  p i p e  i s  0.236 c f s .  l lhen t h e  f l o w  r a t e  


ob ta ined  by t h e  p rocedure  d e s c r i b e d  above i s  compared w i t h  the  d i s c h a r g e  , 

1 

Q = 0.235 	c f s  g i v e n  by t h e  f l o w  meter ,  i t  i s  seen t h a t  t h e  d e v i a t i o n  i s  



6 . 2  Use of a Pipe Segment as a Mixing Chamber 

A second major area in which the knowledge of the mixing dis-  

tance fo r  a j e t  injection has d i r e c t  applications i s  in using a pipe 

segment as a mixing chamber. For example, chlorination of a water supply 

can be performed in  a segment of the main prior to  any branching rather 

than in a spec i f ica l ly  designed f a c i l i t y .  The length of the pipe which 

i s  required pr ior  to any branching in order t o  prevent excessive or 

def ic ien t  chlorination in branches can be determined from the present 

work. (Of course, required contact time must be considered in addi- 

+'-- t o  t he  mixing distance.)  Similarly the chemical n e u t r a l i z a t i o n  o fL, I V l l  

-

ecologically harmful waste materials from an industr ia l  plant can be 

accomplished i n  a segment of pipe. The present work can be used to  

determine the length of the pipe required before discharging into  a 

body of water or  atmosphere. In w h a t  follows a typical design procedure 

f o r  the use of a pipe segment as a mixing chamber i s  provided. 

6.2.1 A Typical Design Procedure 

This example considers a main water supply main which i s  

3.0 f t  in diameter. The maximum flow ra t e  i s  50 c f s .  

Step 1 .  Using the maximum Q, obtain the mixing distance L required for  

a j e t  in ject ion with optimum momentum f lux r a t i o  of M = 0.0156. The 

mixing distance i s  calculated by using E q .  The appropriate values - 5-26. 
- -=  != 

- - =  - - - < 

of.  A ,  n; and i = o f  E q .  5-26 as I:'-are  found from ~ a + b c f 5 -  --



- - 

- - - - 

Then s e l e c t  the required degree of completeness of mixing, say o = 0.01. -

Using the smoother end of the range of the wall roughness-determine the - - % -

f r i c t i o n  factor  of the pipe f o r , Q - =Qmax. Say, in - this  -par t icular  ex-- -
+ 

ample, tha t  smoother end of the range of the wall roughness i s  a smooth 

boundary; therefore,  se lec t  the -pipe f r i c t i on  factor  corresponding ' t o  
-

-- 

- -

the hydraulically smooth flow. For Q = 50 cfs and o = 0.01, one obtains 

L = 155 pipe diameters. - -

. -
Therefore, the f i r s t  branching should not be before 155 pipe diameters 

downstream of the injection point. For some chemicals5 a contact time 

i s  required,  so t ha t  additional distance must be provided so tha t  the 

chemical not only becomes adequately mixed b u t  also has suf f ic ien t  con-

t a c t  time before any branching. This additional distance L C  can be cal-

culated from E q .  6-7 using the required contact time tc and the average 

pipe velocity 5 ;  

--
L c = u t c / D  = Q t c / ( A D )  ( 6 - 7 )--

Say, f o r  the addit ive considered in th i s  examp!? tc i s  100 sec ,  then 
2 

- . -
. - a 

- 10 x 100 = 47 
- 7 ( 3 )2 x 3 



- - - - - - -  - 
- - -  

- - -- - 
-- - 

- - -  

-- 

- - 

- - 

--- 

- -- 

-- . ----

- --
G I + 2-1 
 --.--" -2 

---
- 4- - * 

&--
- heref fore, the in jeWioi-*p o r t  s h o u l d b e  a t  l e a s t  155 + 47.= 202 pipe ---- -- 4 -.-

-7 - -

d i  ameters upstream o f  the f i  r s t branchi n g .  . ._  - ;- - - " ,  
- a " -i__.. I--- -

.s ,-.---
-

" 

- - - - S t e p  -2. Se lec t  t h &  r a t i o  of i n j e c t i o n r a t e  q t o  the pi-p&=flow-rateQ.& --
3

" -
a-
 Since Eq .  5-26 which i s  used in  est imating L has been v e r i f i e d  only f o r  2 j 

i 

- - q l Q  < 0.05, q/QLshould be 'miller than 0.05; Say, a - t y p & l - "a166 of -

-
r-* 
- - - --* - ---=-. --

4 0.007 i s  seTected. Thus, f o r r ~= -Q,,,, -q-= 50 < 0 ; 0 0 ~= 0.E2;cfsi' -
--
* 
-

. r 
* .  z = 
- - ,  

1,--

I - 9  s i r  - - --.. - , .- .& z .  . --

- -
--- . 

Step 3. Determife- the flow densi ty  paz3 say 1 > g / c c ,  and the  background --
- -

-
-
I 

- 7 -" * ' Z  .--
--
- --- " 

concentrat ion c say 2 mg/R. Then obtain the  concentration of t r a c e r  g*- =- , ,  i 1 -P '  - - < 
-., 1 

r
i n  t he  in jec t ion  solut ion f o r  q/Q of s tep .  2 from E q .  6-2;  say c=-

- 4 -- - I- - -- t 
- .  

1 0  mg/R, then + - - - - !- . -, -

I 

--- 10 - 2 1 + - 2 ,= 8002 mg/R - -
r- - I 

f I 

Co - 0.001 . i 
- - - - . , - ,.. --. i 

~ 
1 .  . . . -4 £' : .s : fL -. .  

- AThis ca.lcu1ation imp1 i e s  t h a t  p a r t  of the necessary: doncentration F-;S ' '  -. - _  

- f 
i 

-
x 
* 

{ ,'--. . . - - ! 
being suppl ied ' by the  background concentration c Thus ,, i f - c  i s  - -. - t 

% .  P * - - P- - ,  - i 
1 

-- 1" Pv a r i a b l e ,  the minimum c
P 

shou-Id be used. ---- - f = 
--

- -
- 1 

2 - I=-
- -
-, -

i i L - 4  -I - --

5Step 4 .  Obtain the  re la t ionsh ip  between the  in jec t ion  solut ion densi ty 
r 

po and the  concentration of t r a c e r  co in  the  in jec t ion  so lu t ion ;  say I 

- - - -- i 
- -- . 
-= p a 3  (1  + f ( c  ) )  with f 6 ( c o )  = co.  hen determine- D r ,  f o rPo 6 o I 

I 

. -

M = 0.0156,=q / Q  of Step -2, and loof Step 3 from Eq. 6-4 as i 

-

-
- 4  - -

*- I 

t 

-6 

= 125n,41:- - -
y - - =- j 0 ~ 0 1 5 6(1 + 8 0 0 2 ~10 ) O.OOi -: - - -

iDr . 1 . 0  . .. L 
-- -- . ~ -- - -- - - - -

& 
- - -- - .-,; - - = - - - , ,  - . #  - - -

- -- . - --- - - -t - - L _ L 3- -I - - - - d '  - i-
_ _ - _ - ._,  . . _ _  -i- - -- 3 -

r 
--

- - -- -- -> 
F 

~Then, calc_ula$e_ the-.-injection- hole- diameter:d from Eq. 6-5 a's . . ' . - r 
- - - - " - -

" 
- -. - ---.-

- - 1 - - - - - - -- ---

d = 3/125.4 = 0.0239 f t  = 0.287 i n .  



- - 

S e l e c t  the  c l o s e s t  commercial 

vious values a s  shown below. 

pipe s i z e  t o  t h i s  d and cor rec t  a l l  pre-

The c l o s e s t  commercial pipe s i z e  i s  l / 4  in .  Using d = 0.250 i n .  = 

- 0.0208 f t ,  obtain Dr r a t i o  as I 

1 

D, = 3/0.0208 = 144 

' Then using M 

6-4 by t r i a l  

= 0.0156 and D, 

and e r r o r  as 

= 144 obtain co and q/Q from Eqs. 6-2 and 

Thus, f o r  4 = Qmax 

q = 50 x 0.00087 = 0.0435 c f s .  

Therefore,  f o r  a maximum flow r a t e  of 50 c f s  with a background concen-
I 

% -

t r a t i o n  of 2 m g / R ,  an in jec t ion  solut ion containing 9200 m g / R  t r a c e r  in-

jetted a t  a r a t e  of 0.0435 c f s  through an in jec t ion  hole of- 114 i n .  i n  

diameter wi l l  provide a flow containing 10 mg/R of addi t ive  plus a 100 

sec con tac t  time before any branching 202 or  more pipe diameters down-

! 

stream of the i n j e c t i  on port .  

This example has assumed t h a t  D i s  f ixed.  If a length of 202 

diameters i s  not ava i l ab le ,  then the determination o f  D g i v i n g  consider-

a t ion  t o  mixing and contact  time could be par t  of the design process. A 

- reduction in  D would reduce the absolute length required f o r  mixing b u t  
-. -

would increase the  distance required f o r  contact  time since a smaller D 

would give a  l a rge r  velocity f o r  a f ixed discharge. Thus, the  question 

-

. 

-

II 

t' 

i_ r 



- - 

?- 1; . 
4 

o f  whether, D,shoul d be-increased or- decreased dwends an -$-i$&9x3 mi xi n g  
-

--

z 

e 
i 

or  contact time i s  the rnajgr co-ntributor t o  the required length. 
I 

For many cases,  the discharge in the main will vary with time. 

ow eve-r, i f  the r a t e  of variation with time i s  re la t ive ly  small, the -

flow a t  a given time can be treated as- steady. Thus fo r  smaller flow 
- -- 

i 

- -  -
rates  (provided tha t  the r a t e  o f  variation i-1; discharge i s  srnafl), 

- -- -

keeping the q / ~ e r a t i oa t  the design value 'wi 11 assure t h a t  the momen-
-- 

-
-

- -- 

turn f lux  r a t i o  wi 11 always be equal t o  the opt-imum yal ue. ,TheLq/Q -

r a t i o  can be kept constant by varying the injection r a t e  q with.-varying 

flow r a t e  in the pipe. 
4 

This can be -achieved automati-cally bx measur-

i ng the flow r a t e  in the main and using an autorna<ic .control mechanism 
-

to  regulate q .  The discharge Q can be monitored by any of the standard 

hydraulic methods o r  the concentration a f t e r  mixing can be used as an 
. . 

i 

s 

indication of Q as discussed p r ~ v i o u s l y .  If the concentration i s  used, 

the  s t a b i l i t y  of the control c i r c u i t  would  have t o  be analyzed consid-

-

F 
i 

[ 

.e 

ering the possible r a t e  of change of Q and the flow ( l ag )  time between 

the injection *port and the location a t  which the concentration measire-
' . P .  7 -

ment i s  made. As i s  seen from E q .  6 -2 ,  the concentration of addit ive Y 

1 

t 

t 

in the injection solution need not be changed since co depends on q / Q  
II 

ra ther  than the absolute value of the flow ra t e ' i n  the pipe. 
I 

The power requirement -- of the pump 
-

t o  be 

inject ion solution in to , the- pi pe-can- be cajculated 

where HP i s  the required horsepower, yo i s  the specif ic  weight of the 



' in jec t ion  solution,  q .-r a t e  -corresponding-is the volumetric injection - - - - - to 

where p/y i s  the piezometric head a t  the injection port in f e e t ,  h L  i s  

the head loss in the injection c i r c u i t  in f e e t ,  and 

AH represents the additional head required to  maintain the j e t  in-

ject ion.  The increase in power associated with AH can be determined 

from E q .  6-8 by replacing H with AH. For th i s  example, the increase in -

power requirement was found t o  be 1 2 5  horsepower. I 

1 

II 

i 
i , 



- - - - - -- - - 
- - 

- - 
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-
Experimental, analytical and numerical results are s-ummarized 

- - - - - * - -

. i n  chapter 5. Based on these resul ts ,  t h e  following conclusi6ns - about 

the behavior "of a - - or nonbuoyant j e t  -injected - - - A :buoyant - - perpendicularly, - - ^ 

" - - - - - - " -7 
 - ;  

turbulent- - pipe- -.- flow---.- - drawn.i n t o  a crossing, ful ly-establ i s h e d ,- - - - - - can--be 
- .? 

. "  
 -
" * .  . -. - - " ir + 

- - -1. -The behavior of the j e t  i s  independent of the i n i t i a l  
-.  8 x - # -.- . -- -- 

-- -+ 

a . -
density disparity a t  the injection port for  j e t  densimetric 

< , *  % -
x i i - ' --- 

Froude numbers greater than about 50. (There were not 
- . - -

enough experiments to determine precisely the c r i t i ca l  
I 

-. densimetric Froude number. ) In -any event, unless the 
f 
1 

densimetric Froude number i s  close t o  unity, the  primary 
- -

governing parameter w i t h  respect t o  the j e t  behavior- - .  - - . i s  the 
- '  - -  - -  : - .  -

momentum flux ra t io ,  which i s  defined as the4ra t io  o f '  
I
I 

I 

I 

I 

momentum f l u x  of the j e t  a t  the injection p o r t  t o  the L 

t 

momentum flux o f  the ambient ff ow. 
-. 
i herefore, i n  most . 

F 

I 
* I-

I 

cases, any additional expense of al ter ing the natural 
- . -

buoyancy of  the j e t  in order to add buoyancy to the 
qI 

t 
. - % "-

momentum would not produce a significant change in.  the 

mixing distance. 
i 

I 

2. By dividing the analysis into regions a good representation 
" -

of the flow was achieved. The near f i e ld  region i n  which I 

i 
-- -  - - i 

the- j e t  i s  active represents a very small -fraction ( less  

-
. 
i 

I + 2  

-- -
' -
-$ban 2 percent) -of -the total m;x,ingdistance;' 

' I  - .ow ever, 
' 2-

La 

i- -
f; 

- %Ii 

-, 
F 

the in i t i a l  j e t  mixing and the j e t  penetration (advection 



I 
j 

of j e t  away from the wall  o f  the pipe) i n - t h e  near-Tield t 

i -. 

region are responsible for the reduction i n  the mixing 

distance. i h 2  major part of the mixing i s  accomplished by f 

turbulent diffusion associated with the f a r  f ie ld  region. 
I 
I 

t 

3. A t  a given pipe flow ra te ,  the mixing distance i s  shorter 
; 

than tha t  for a simple source injection. This reduction 

in- the  mix ing  distance associated with the use of  a j e t  
-

as a tracer source depends on the momentum flux ra t io  M. 

There exists an optimum momentum f l u x  r a t io  for which the 

reduction i n  mixing distance i s  maximized. 

4.  For momentum flux rat ios  of the order of magnitude of the 

optimum the j e t  in the near f ie ld  region does not contact 

the pipe wall.  As l ong  as the  j e t  i n  the near f i e l d  region 

does not contact the p i p e  wall, the mathematical model I, 
I 

based on t he  numer ica l  i n t e g r a t i o n  o f  conse rva t i on  o f  i 

momentum f l u x ,  conservation o f  volume f l u x ,  and conser- , 
' I 

vation o f  mass flux equations i s  capable of  describing the 

behavior of a j e t  with or without buoyancy injected into a 

fully-established pipe flow. The model can be used i n  [ 

predicting mixing distances required for both buoyant and I 

1 

wonbuoyant j e t  injections. 

5. The semi -empi rical re1a t i on 

can be used in predicting mixing distances required for  a 



simple edge source and a ionbuoyant j e t  injections. The 

symbols are defined previously (Eq. 5-74) and appropriate 

values o f  A ,  I ,  and n are g i v e n  i n  Table 15  and accompany- 

i n g  	discussion. 

6 .  	 The knowledge of the circumferential mass diffusivi ty i s  

important in many respects. Assuming t h a t  the mass 

di ffusivi t i e s  i n  radial and circumferential directions have 

simi 1ar  spatial  variations the ra t io  of circumferential 

diffusivi ty to  radial diffusivi ty was estimated t o  be 1.35. 

However, th is  resul t  i s  f a r  from being conclusive because 

of the fac t  tha t  experiments were not specifically designed 

for  evaluation of diffusivi t ies .  

Based on the results o f  th is  study the  -fol lowing investigations 

are suggested: 

1. 	 The mechanics of the interaction o f  a jet and a crossflow 

should be s t u d i e d  in a more detail  t o  b r i n g  out a bet ter  

understanding of the entrainment mechanism. 

2. 	 A more detailed study of the f a r  f i e ld  region could provide 

better information on t h e  circumferential diffusivi ty.  

3. 	 Effects of bends  and changes i n  pipe cross section in the 

f a r  f i e ld  region on the mixing distance should be studied. 

4. 	 In  some practical cases of in teres t  where a J e t  can be 

used as a tracer source the receiving flow i s  laminar. 

Therefore, the behavior of a jet injectecl into a laminar 

p i p e  flow should be studied. 
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I .  P l a t i n i z i n g  Procedure [Glover, 19701 

The c i rcui t s  for  cleaning and platinizing the electrodes are 

shown i n  Figure Al . The main difference between these two circui ts  i s  

the pol  a r i t y  of the battery. Preparation of the solutions i s  described 

a t  the end o f  th is  section. 

Preparation of the electrodes for  the platinizing-process 

consists of the following steps: 

1. Heat the platinum-foil electrode white hot, permit the 

electrode t o  cool, and then thoroughly wash i t  w i t h  

d i s t i l l ed  water. 

2. Wash t he  glass beaker and probe electrodes thoroughly w i t h  
f 

,d i s t i l  led water. 	 I 

I 
r3 .  F i j i  the  beaker w i t h  a 15 N su iphur i c  a c i d  and f 

t 
1 

place the platinum-foil electrode in the beaker. It 

4.  Adjust the variable resis tor  shown i n  Figure Ail-a-for 	 1a - 


maximum resS stance, 

5. Connect both electrodes of the probe as shown in Figure 

Al and submerge the electrodes in the solution. After the 

electrodes are submerged, adjust the variable resistance 

until the meter indicates a current of  5 milliampers. 

6 .  Continue the cleaning process for  approximately- two minutes 
- * 

I 

and then remove the electrodes and platinum-foil and wash - 1  	
i
[ 

them thoroughly with d i s t i  1led water. 
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I I I .  Preparation o f  the Chloroplatinic Acid 

Dissolve 1/8 oz. (3.45 g. )  of chloroplatinic a c i d  ( p l a t i n i c  

chloride c rys t a l )  and  20 mg. o f  lead acetate  ( c rys t a l )  i n  100 cc. o f  

d i s t i l l e d  water. The p l a t in i c  chloride c rys ta l s  must not be exposed to 

a i r  before use because they are  very hygroscopic. Similarly,  the pre- 

pared solution must be kept in  a  t i gh t ly  closed container when n o t  in 

use. 




