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FOREWORD

The optimization of operating policies of multiple-unit and
multiple-purpose water resources systems by traditional dynamic programming
with the use of high-speed digital computers encounters two major diffi-
culties: excessive memory requirements, and tremendous amounts of computer
time vequirements. This report describes an iterative method named dis-
crete differential dynamic programming (DDDP) which can ease the above
difficulties considerably. The method starts with a trial trajectory
satisfying a specific set of initial and final conditions and applies
Bellman's recursive equation in the neighborhood of this trajectory. At
the end of each iteration step a locally improved trajectory is obtained
and used as the trial trajectory in the next step. It 18 shown that the
method 18 particularly effective in the case of so called "invertible'
systems. The merits of the proposed approach are demonstrated through

ite application to two four-unit, two-purpose water resources systems.
To save computer time the examples are restricted to deterministic hydrologic

inputs.

This study was performed as part of a research project on "Advanced
Methodologies for Water Resources Planning'' sponsored by the U.S. Deparitment
of the Interior as authorized under the Water Resources Act of 1964,

P.L. 88-379 Agreement No. 14-01-0001-1899. A major portion of the work
performed by the first author was financially supported by the Illinots State
Ge-logical Survey. The authors wish to thank those, particularly Dr. Petar
V. Kokotovié, who have contributed valuable comments on this study.
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1. INTRODUCTION

1-1. The General Problem

The development and usage of water resources systems consist of
three basic phases: (1) the planning phase in which the location and extent
of the different system components are determined, (2) the allocation phase

in which the proportion of resources to be allocated to each purpose is
determined, and (3) the operation phase in which the operation of the system

is specified for achieving the allocation of resources in order to satisfy

particular demands during particular time periods. The operating policies

of a multiple-unit and multiple-purpose water resources system play a major
role in the overall productivity of the system. A wrong planning approach
in the first phase may jeopardize the efficiency of the allocation and oper-

ation phases. An unrealistic allocation of water to some purpose may contra-

dict the planning and operating rules. Attempts to find the best operating

rules, subject to severe physical and allocation constraints set in the

planning and allocation phases, may lead to results which do not project

the true potential of the system as a whole. In brief, consideration of

only one of these phases for optimization may lead to sub-optimization.

Therefore, an optimization of the system must incorporate all three

phases simultaneously.

In such an optimization, the basic questions are: where to start,

i.e., which phase in conjunction with the results of the other two phases

must be considered first, and, since the nature of these phases differ from

each other, which optimization technique must be used for each phase?



It is perhaps reasonable to assume that the answer to the first
question is that the third phase can be more easily carried out with regard
to the results of the other two phases. Therefore, one may start by assuming
results for phases one and two, and using them in phase three. Then, based
on the results of phase three, it is possible to improve on the results of
the first two phases and repeat the last phase again. Continuing in this
manner, a set of effective results may be obtained for the three phases.

The answer to the second question must depend on the characteristics
of water resources systems. Some of these characteristics are: (1) the
stochastic nature of inflow data; (2) the existence of relatively severe
constraints; (3) the non-linearity of objective functions; and (4) the
multiple-stage nature éf the operation procedure of the systems, Therefore,
an optimization technique which can handle the above characteristics properly
must be selected for the analysis of the systems. Optimization techniques
such as the conjugate gradient [Fletcher and Powell, 1963; Fletcher and Reeves,
1964] and the second variation method [Bryson and Ho, 1969] may be adopted to
search among a sequence of feasible decisions for the optimal set of decisions.
However, these techniques require a sufficiently differentiable objective
function, cannot handle constraints without creafing difficulties, and require
a major modification of the algorithm in order to incorporate the stochastic
disturbances.

In constrast, dynamic programming does not have the above limita-
tions. When expreésed in discrete form, its_recursive equation can even
handle functions defined by tables. Constraints on states and decisions
reduce the computation efforts, and stochastic disturbances may be incor-

porated with little modificatfion in the algorithm except with an increase
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in computer time. It is a technique specifically designed for analysing

multiple-stage processes.

1-2. Objective of the Study

Several attempts have been made to determine the optimum operating

rules for water resources systems using Bellman's principle of optimality

[Chow and Meredith, 196%9a]. The choice of this principle seems to be a logi-

cal one. However, in using Bellman's principle of optimality, which is a
powerful optimization technique for low-dimensional systems, the investi-
gators have generally concluded that with the present state of computer tech-
nology a rigorous analysis of multiple-unit and multiple-purpose systems is
not possible. This conclusion results from the need for large high-speed
computer storage requirements for the solution of the reﬁursive equation of
dynamic programming.

In spite of this prohibitive limitation, dynamic programming is
found to be useful for the analysis of many water resources systems. There-

fore, techniques based on this principle must be sought to overcome the

above difficulty. Several investigators, including Bellman [1969], have

attempted to develop modified algorithms of dynamic programming which could

curb what Bellman [1957] calls the "curse of dimensionality.' Some of the

attempts have been rather successful [Mayne, 1966; Larson, 1968; Wong and
Luenberger, 1968; Jacobson, 1968a, b, c; and Lee, 1969]. However, the
application of these modified algorithms to water resources systems has beqn
made only by Larson [1968] and Larson and Keckler [1967, 1969].

Therefore, the objective of this study is to develop an approach

based upon the dynamic programming technique which can be used to determine



the optimum operating policies for multiple-unit, multiple-purpose, discrete

water resources systems using available computer facilities.

1-3. Scope of the Study

The approach proposed for the analysis of discrete water resources
systems may be considered an extension of the differential dynamic program— |
ming approach that Mayne [1966] and Jacobson [1968a, b, c] have developed
for continuous systems. First, the advantages and limitations of dynamic
programming are reviewed along with the available techniques for overcoming
some of the limitations. Second, the discrete differential dynamic program-
ming technique and the computation steps of the pfoposed approach are given.
The approach is then employed to obtain the best operating policies of two
multiple-unit and multiple-purpose water resources systems whose solutions
cannot be determined with regular dynamic programming. The first system is
a hypothetical case which was formulated by Larson [1968] and for which the
exact solution has been found by linear programming and by successive approxi-
mation dynamic programming. The other system is the Clearwater River System
presented by Maass, et al. [1962], and is considered much closer to a real
system than the first case. In order to save computer time these systems
are analysed deterministically. The possiblity of extending the proposed
approach to stochastic systems 1is discussed. It is demonstrated that the
proposed approach can substantially reduce the high speed computer storage

and computer time requirements,




2. A REVIEW OF DYNAMIC PROGRAMMING

2-1. Dynamic Programming

Bellman [1953] published the first formal presentation of an opti-
mization technique called dynamic programming. The principle of dynamic
programming, its advantages, and its disadvantages for analysing water re-

sources systems and attempts to reduce the disadvantages are reviewed below.

2-1-1. Definitions

| Dynamic programming is a tool for optimizing mathematical represen-
tations of multiple-stage processes. The formulation of dynamic programming
is based on Bellman's principle of optimality [Bellman, 1957] which states:
"An optimal policy has the property that whatever the initial state and
decision are, the remaining decisions must constitute an optimal policy with
regard.to the state resulting from the first decision.'" Before formulating
the functional equation on the basis of the principle of optimality, some
definitions are necessary. These definitions can be given by describing
the features which characterize the problems to which the dynamic programming

approach can be applied. These four features are:

(1) The problem must be one which can be divided into stages with a

decision required at each stage. The stages may represent different points

in space, as for example in selecting a route for a new pipeline, or they

i
H
L,
B
i
i
i
1
i
4
i
¥
-3
]
1

may represent different points in time, as for example in determining the

SR o

optimal releases each month from a reservoir.

(2) Each stage of the problem must have a finite number of states

associated with it. The states describe the possible conditions in which

A

the system might find itself at any stage of the problem. In reservoir
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operation studies, the states may represent the amount of water stored in
the reservoir at that stage.

(3) The effect of a decision at each stage of the problem is to trans-
form the current state of the system into a state associated with the next
stage. The decision may représent how much water to release from the reser—
voir at the current time, and this decision will transform the amount of
water stored in the reservoir from the current amount to a new amount for
the next stage. Associated with each potential state transformation is a
return, a benefit or a cost, which indicates the effectiveness of the
transformation.

(4). For a given current state and stage of the problem the optimal
sequence of decisions is independenf of the decisions made in previous stages.
A policy is a set of decisions which contains one decision for each state
variable for each stage. A policy may alsoc be called a decision trajectory.
;The set of states which results from the application of a policy is called a
state trajectory or simply trajectory. An optimal policy is the set of deci-
sions that optimizes the objective function which is a measure of effective-

ness of the state transformations and hence the policy.

2-1-2. Development of Recursive Equation and Computational Procedures

In most discussions bf dynamic programming computational procedures,
the computations begin at the finai time and work backwards toward the initial
time. This process is known as the backward dynamic programming algorithm.

It is possible to start instead with the initial time and work towards the
final time using a procedure called forward dynamic programming. By inter-

preting the computations in a suitable manner, it can be shown that this




procedure is more useful in water resources system studies than the backward
method. We shall confine ourselves to the forward algorithm which is.given
below.

Let us consider the dynamic equation of a discrete system in the
time interwval to <t f.tf (i.e., té[to, tf]). If this time interwval-is
divided into N equal segments of small length At, and at the beginning of
each time interval, called stage, only discrete values of states and deci-

sions are considered, then the difference equation describing the dynamics

of the system is:
s(n) = ¢[{s(n-1),u(n~1),n-1] forn =1, 2, ..., N (1)

where n is the index of stage variable; s(n) is an m-dimensional state vector

at stage n; u(n) is g-dimensional decision vector at stage n which transforms

the state of the system from s(n) to s(n+l); and

s(n) €S (n)
(2)

u(n) €U(n)

where S(n) is the admissible domain in the state space at stage n; and U(n)

is the admissible domain in the decision space at stage n. From equation (1)

wWe may write:

s(n-1) = 8[s(n),u(n-1),n-1] (3)

If the state of the system at stage n = 0 is a(0), the application of a

sequence of decision vectors to this system in the time span between n = 0




and n = N will transform the state of the system to some s(N) € S(N) at stage
N and produce some measure of effectiveness of policy; i.e., a return
F[s(N),N]. If the objective criterion is to maximize the return from the

system, the objective function may be written as:

Maximize F[s(N),N] = g R[s(n-1),u(n-1),n-1] (4)
n=1

where F[S(N),N] is the sum of the returns which results from series of trans-
formations from some initial state at n = 0 to some final state at n = N; and
Ris(n-1),u(n-1),n-1] is the return from the system due to the system being in
state s(n-1) at stage n-1 and the application of a decision vector u(n-1) in
the time interval starting at stage n~1 and lasting At.

Assume that the initial values of F*[s(O),O] (the superscript *
signifies the optimum) for all s(0) € S(0) are known and that computations are

being performed for a stage representing t= t, + At, i.e., stage n = 1. The

0
*
portion of equation (4) for this time is designated by F [s(1),1] and may be

written as:

F*[s(l),l] =  max Fts(l),l] (5a)
u(0)€V(0)

= max  {R[s(0),u(0),0] + F'[s(0),0]} (5b)
(0)€V(0)

Substituting equation (3) into equation (5b) we obtain

Fletl), 1] ¢ nax {R[8,u(0),0] + F'[8,0]} (6)
u(0) €U(0)

R TR
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(4)
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which for every discrete level of state at n = 1, s(l), may be solved as a
function of u(0) only. Therefore, first the admissible state domain at n = 1,
S(1), is discretized into Li levels in the i-th component of the state vector,
i=1, 2, ..., m, and the admissible decision domain at n = Q, U(0), is
divided into Hj discrete levels in the j-th component of the decision vector,
j=1, 2, ..., a. Now, a lattice point, s(l), in the discretized state domain
may be chosen and all of the admissible discrete levels of the decision wvector
may be applied to this level of the state vector to determine which decision
vector maximizes equation (6). For each u(0) in the decision domain U(0) the
first term on the right side of equation (6) is calculated directly and the
second term is usually obtained by interpolation in F*[s(O),O]. The wvalues
of the sums obtained for the various u(0) are compared to determine the maxi-
mum. This procedure is then repeated for each discrete value of s(1).

In Figure 1, which represents the state domain for m = 1 and q = 1,

Discrete levels of

such a state lattice point at stage n = 1 is shown as cq-

¥ " %6
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Stage

FIGURE 1. Schematic Representation of Possible Decisions which bring
the State of the System to Cl at n=1, (Forward Algorithm)
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the decision vector, u(0), shown as Zys Zgs enes Zpp are applied to various
states (discrete or nondiscrete), s(0), at n = 0 such that the state of the
system is transformed to ¢, atn = 1. There may be other admissible discrete
decision levels which would bring the state of the system to ¢ but the orig-
inating state, s(0), may not be a member of the admissible state domain at
n = 0. Therefore, these decisions are excluded from the analysis, u*{cl,o]
is then the decision which causes the maximum value of F[s(1),1] when
s(l) = cg-

This procedure is then repeated for Li-l, i=1, 2, ..., m, other
discrete states at stage n = 1, and for each state, s(1)€S(1), u*[s(l),O]
and F*[s(l),l] are calculated as a function of s(l). In Figure 1 the Li—l
other states are designated by CpsCqs wevs Cpo Then, the optimum decision
vector and return calculated for each state at stage 1 is stored either as
a continuous function of s(l) or in the discrete form for further use.

Now, the calculations may be performed for stage n = 2 representing
t = t_. + 2At. This procedure consists of similar steps, except there are now

0
two decision vectors which must be considered in sequence: the decision
vector applied to the system in the time span between stages n = 0 and n = 1
and the decision vector applied between stages n = 1 and n = 2, Writing the

maximum of equation (4) for n = 2 we have

max  {R[s(1),u(l),1] + F [s(1),1]} (7a)
u(1)€u(l)

*®
F [s(2),2]

max  {R[8[s(2),u(D),1],u(D),1]
u(1)€U(1)

+F {ols (2),u(1),11,1] } (75)

10
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which for every discrete level of the state vector at m = 2 may be solved
as a function of u(l)€U(1) only. This 1s done exactly as above with n=1
and n = 2 replacing n = 0 and n = 1 respectively. In an analogous manner
we may continue the computation to n stages. Therefore, the general form

of the equation for state s(n) at stage n may be written as

F*[s(n),n} = max {R[s(n~-1),u(n-1] + F*[s(n—l),n—l]}
u(n-1)&U(n-1)
where F*[s(n),n] is the optimal return over n stages leading to state s(n).
Equation (8) is the recursive equation or functional equation of dynamic
programming.

The solution of equation (8) over N stages profides the value of
the maximum return from the system. It is only at the end of the analysis
that we are able to evaluate the entire process. We may now trace back from
stage N to stage 0 to retrieve the optimum policy which satisfies specific
initial and final states. This optimal policy is retrieved from among the
optimum decision vectors previously determined for each state of each stage.
The decision vectors of the optimum policy are then introduced into the syst

equations to obtain the related optimum states which define the optimum

trajectory.

(8)

em

The above analysis is general and assumes that the initial and final

states can be any admissible states at stages n = 0 and n = N, respectively.
If we have a system with the initial and final states fixed we can still use
the above analysis. TFor example, Eo obtain a trajectory which starts with
state a(0) and ends at state a(N) we exclude all states at n = 0 from the

admissible state domain except a(0). We, then, determine our optimum policy

11



by beginning the backward tracing at state a(N) for n = N. This allows us to

determine the optimum policy for a two point boundarv value problem.

The extension of equation (8) to processes with random elements
is a straightforward manipulation. Let us assume that the state of the
system at any stage, n, may be affected by a decision u(n-1) and a random

disturbance y(n-1). Then, the dynamic equation (1) may be written as:
s(n) = ¢[s(n-1),u(n-1),y(n-1),n-1] (9)

where y(n-1) is the discrete value of the random disturbance affecting the
system in the time increment starting at n-1. The introduction of y(n-1)
into equation (1) transforms s(n) into a random variable. Therefore, in
evaluating the criterion of equation (4) we should search for its mathe-

matical expectation. The new objective criterion may be presented by:

Maximize F[s(N),N] = E{ ? R[sfn—l),u(n-l),y(n—l),n—l]} (10)
n=1
where E{-} denotes the expected value of the terms in the bracket. Assuming
that the disturbances at stage n, n-1, and n+l are independent from each other,
and the probability density function for y(0),y(1), ..., y(N-1) are known for
V discrete levels in the range of -» to -+, the recursive equation, equation (8),

for a discrete level of state at stage n with random disturbances may be

written as:

F*[S(n),n] = max {E{RESCn—l),U(n-l),n-l]
u(n=-1)€U(n-1)
+ F [s(n-1),0-1]}} (11a)
vV
= max {I ®ty@-1),v]- R[5 (a-1),u(a-1), [y (a-1) ,v],n-1]
u(n-1)€U(n-1) ‘v=1
+ Fls(a-1),0-11} } (11b)

12



where P[y(n-1), v]is the probability of the v-th discrete value of the ran-
dom disturbance y affecting the system in the time interval starting at n-1.
For stochastic disturbances, the conditional probability density
of disturbances must replace the independent probability density in equation
(11b), and the summation must be performed twice or perhaps more.

In the application of dynamic programming to water resources
problems, it seems that the forward algorithm is more relevant than the
backward algorithm, In these systems, the events of the past, such as re-
charge or irrigation activities, usually influence the state of the system
in the current time or future. For example, a portion of a recharge into an
aquifer which took place in the time span between stages n-2 and n-1 may
affect the state of the system during the time between stages n and n+l.
Therefore, a knowledge of the past activities must be available for the
evaluation of the present state of the system. This can easily be achieved

by a forward algorithm in which activities and decisions of the past are

known or already made.

2-1-3. Applications of Dynamic Programming

Due to its flexibility and simplicity, discrete dynamic programming
has been used to investigate a variety ﬁf water resources problems. Among
these prablems the following may be mentioned? aqueduct planning, storage
design and operation of multiple-purpose reservoirs, branching multiple-stage
water resources systems, conjunctive operation of dams and aquifers, and
water quality studies. (See Chow and Meredith [1969a, b] for a more complete

list of applications of the dynamic programming approach to water resources

systems analvsis.)

13
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2-2, Advantages of Dynamic Programming

The major advantages for using the dynamic programming approach in

water resources systems analysis are summarized below.

2-2-1. Analysis of Multiple-Stage Processes

Dynamic programming is especially suitable for the analysis of multiple-

stage processes and most water resources systems can be viewed as multiple-stage

processes.

2~2-2, Incorporation of Stochastic Disturbances

One of the advantages of dynamic programming is that it offers a way
of solving deterministic and stochastic problems without significant changes
in the algorithm. This universality is particularly important in setting up
large problems where the deterministic algorithm with slight modification can
be applied to a problem with stochastic disturbances. The derivation of the
probabilistic recursive equation from a deterministic one has been demonstrated
in Section 2-1-2. Furthermore, it was mentioned that this derivation may be
extended to problems which contain conditional probability distributions. This
extension 1is particularly applicable to wéter resources Systems whe;e the prob-
ability distribution of runoffs during two consecutive time periodé may ‘best be
represented by a joint probability distribution from which the conditional
probability distribution of each event may be calculated.

It should be noted, that the incorporation of stochastic disturbances
in other optimization models is either impractical or substantial modifications
must be made in the deterministic model. A recent study by Gablinger and
Loucks [1970] indicates that for a singlie-state water system a stochastic
linear programming problem requires 20 times-as much computer time as a sto-
chastic dynamic programming problem (2 hours vs. less than 5 minutes). However,
the authors concluded that the cost of developing a dynamic programming computer
program as opposed to the already available linear programming routines, such
as IBM MPS, should be considered in such comparison.

14




72-2-3, Incorporation of Constraints

The solution of dynamic programming problems is usually presented

in numerical form. Due to the fact that at every stage the range and

quantized levels of states and decisions may easily be predetermined or a
test may be performed to see if a constraint is violated, handling con-

straints raises no mathematical or computational difficulties.

The treatment of constraints in other optimization techniques is
by no means trivial. In some techniques a penalty function is introduced
in the objective criterion of equation (4). The Lagrange multiplier, A,

is frequently used to append the constraints and, thus, create an equivalent

optimization problem without constraints which can be solved directly as a
function of A. Eveleigh [1967].presents the theoretical foundation of this
approach based on Lagrange's work. He also presents techniques for handling

equality and inequality constraints in the steepest ascent technique.

2-2-4, Incorporation of Nonlinearity

In the development of the recursive equation, equation (8), there

was no mention of the nature of the objective function. This is because its

nature is of no consequence to this development. Therefore, this equation

used for linear as well as non-linear objective functions. Since in

may be
linear problems the optimum values lie at the extreme points of the convex
policy set, the knowledge of linearity may be effeciently used in dynamic

programming to search only for extremities of linear constraints.

2-3. Disadvantages of Dynamic Programming

The disadvantages of the recursive equation, equation (8), are

discussed below.

15
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2-3-1. Dimensionality

The dimensionality requirement of dynamic programming is the amount of
high-speed computer storage memory which is required to solve the recursive equa-
tion, equation (8), for a state vector of m dimensions and a decision vector
of q dimensions. In order to perform the calculations required for this
equation at stage n one must have at least ready access to storage locations

associated with the following terms:

=

F [s(n),n] for all lattice points s(n)€S(n);
* ;

F [s(n~-1),n-1] for all lattice points s(n-1)€S(n-1); and
*

u [s(n-1),n-1] for all lattice points s(n-1)€S(n-1).

Assuming that s(n) and s(n-1) are quantized with Li quantization levels in
cocordinate i, i = 1, 2, ..., m, then the total storage, LT, required for the

above terms is
L =3101L (12)

This storage requirement grows geometrically with the dimension of the state
domain, m, and the quantized levels of states, Li' For example, for a water
resources system consisting of four reservoirs (four state variables, i.e,,

4), if each state is quantized into only 15 quantized levels (i.e., Li = 15,

il

m

1,2,3,4) then at least a total of 151,875, (3(15)4), highspeed storage

I

i
memory units is required. It should be mentioned that for most reservoirs

dividing the active storage into only 15 levels will not give conclusive re-
sults. Even if we could satisfy ourselves with such unreliable results, the

required amount of storage is beyond the capacity of available computers.
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2-3-2., Computer Time Requirements

This disadvantage may even be more severe than the previous one.
Computer time requirements for a realistic high-dimensional system can put
a severe restraint on the budget allocated for system analysis.

The savings gained by dynamic programming as compared to direct
enumeration increases as the number of stages increases. Bellman and Dreyfus
[1962] demonstrate this point by the following example. Ccnsider an N stage
process with q decision variables and m state variables per stage. If each
state and decision variable is divided into 10 quantized levels, i.e.,

i =H, =10 fori=1, ..., mand j =1, ..., q, then by direct enumeration
the objective criterion must be evaluated lon-q+m times. The same problem

by dynamic programming requires the evaluation of the objective criterion

o 10-1)q
N-109 times, which is by a factor of —x — more efficient than direct

enumeration. It should be noticed that és N increases the value of the above
factor increases more rapidly than N.

The comparison of the efficiency of dynamic programming with direct
enumeration, although rather impressive, does not tell the full story. The
optimization by traditional dynamic programming can indeed be computer time
consuming and expensive. Assume that iﬁ the above example N = 100, and
q=m= 4. Since for each lattice point four operations must take place in
equation (8) for every set of decisions, namely; calculation of the first
term on the right-hand side, retrieval or interpolation to obtain the sécond
term on the right-hand éide, addition of these two terms, and comparison df
the sum with the results of the previous set of decisions, a total of
100-4-108 operations must be performed by dynamic programming. At the rate

of about 106 operations per second for the IBM 360/75, this optimization would

17
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require about 11.2 hours of computer time. The optimization by direct
enumeration would require an astronomical amount of time., However, 11.2

hours of time on the IBM 360/75 is not considered feasible for many projects.

2-4. Techniques to Reduce the Dimensionality of Dynamic Programming

The prohibitive dimensionality of dynamic programming for multiple;
dimensional systems with small grid sizes has been discussed previously.
Some of the attempts to reduce the dimensionality of dynamic programming are
reviewed below. In addition to the techniques reviewed here Bellman and
Kalaba [1961], Roberts [1964], Wong and Luenberger [1968], Lee [1969], and

Hall et al. [1969] have suggested other techniques.

2-4-1. Successive Approximation

Larson [1968] has presented an algorithm for Bellman's [1961]
successive approximation, which has been shown to be very efficient both in
high-speed memory and in computer time requirements. The basic approach in
this algorithm is & mposition of alproblem with an m-dimensional state
vector and a g-dimensional decision vector into a series of problems with
only one decision variable., Larson found that this approach works best when
m = q.

Assume a discrete system such as the one described by equations
(1) and (8). The optimization starts with the selection of any trial tra-
jectory which satisfies all constraints imposed upon the system. Since the
order of the system is m, the order of the trial trajectory will be m. Now,
one of the members of the state vector is éelected and; while the other m-1

state variables in the state vector are kept constant, it is allowed to vary

within its admissible range. This constraint on m-1 state variables imposes

18




an equality constraint on m-1 decision variables and only one decision variable

will be subject to an inequality constraint. Having reduced the problem to a

one-dimensional problem, a regular one-dimensional dynamic programming problem
is solved for the performance criterion with the selected state variable and

its respective decision variable as variables, and the rest of the state wvari-

ables are kept equal to their trial values. This optimization leads to an

improvement of the trajectory of the selected state variable. Then, another

state variasble is selected and the above steps are repeated. The selection

of the state variables continues until no more improvement can be made as a

result of optimization.

The structure of the above technique indicates a linear increase

of the storage and computer time requirements with an increase in m, the

number of components in the state space. For a regular dynamic programming

problem the storage and computer time requirements increase exponentially.

Korsak and Larson [1970] have given convergence proofs of this

technique for three types of problems: (1) problems in which the states are

bounded, the decisions are unbounded, and the elimination of decisions

(using the invertibility of the equations) produces an objective function which

is convex and a function of the states; (2) problems in which the decisions are

e

bounded, the states are unbounded, and the elimination of states results in a

R

convex objective function of decisions (and initial state); and (3) problems

e

in which both the states and the decisions are bounded, and the objective

it

funection is quadratic.

The convergence to the global maximum for other types of problems

Larson [1968] proposed several tech-

o

cannot be guaranteed by this technique.

i i) 3

niques for arriving at a set of trial trajectories which are close to the true

R T BT
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optimal trajectories. The use of these trajectories will improve the chances

of obtaining the global optimum.

Using this technique, a problem with four states and four decision

variables is solved. This problem is presented in Chapter 4.

TR

2-4-2, State Increment Dynamic Programming

Larson [1968] has proposed state increment dynamic programming as
a means of reducing the amount of computer storage memory required because
of the dimensionality of dynamic programming. This technique is based on
determining increments of time St at stage n, which, when used to evaluate
the effect of decisions on the states, the transformed state at stage n + 1
will not be more than one lattice point above or below the state at stage m.
This may be formulated as follows:

Given a continuous system with a set of non-linear time-varying

differential equations:
s = ¢[s,u,t] (13)

where s is an m-dimensional state vector; u is . a q—dimensional decision
vector; t 1s a continuous variable denoting time; ¢ is an m-dimensional

; s ds ; : 5%
vector functional; and s = Fr Let it be required to maximize a performance

criterion such as

tf )

F[s(t.),t.] = {f R[s(n),u(n),nldn} (14)
t

o

where F[s(tf),tf] is the sum of the returns due to transforming the system

from some initial state at time t0 to some final state at time tf;

20




t_ dis the initial time; tf is the final time; R is the return function per

0
unit time; and n is a dummy variable representing time. Equation (l&)Iis

subject to:

6
u.

i

i

£

o s (£)€8(t) - (15a)
k

5 u(t)€u(t) (15b)
e

E t€lty,t.] (15¢)

hras

where S(t) is the admissible state domain at time t; and U(t) is the
admissible decision domain at time t, WNote that this is the continuous
form of the problem defined previously. Thus the solution to it is a
continuous decision vector u*(t), tE[tO,tf], and is called the optimal
policy.

In state increment dynamic programming it is assumed that u(t),

té[to,tf], is piecewise constant over an increment of time 8t. Therefore,

equation (13) may be approximated by:

et

b
% s(t+8t) = s(t) + ¢[s(t),u(t),t]st (16)
g

;

ol

% The performance criterion, equation (14), for time interval t to
gl t + 6t may be written as:

Fls(t),t] = R[s(t),u(t),t]ot | 17y

R R R WL

- A e e

Now if we were dealing with traditional dynamic programming, &t would remain

constant over the entire time horizon, i.e., the time horizon would be di-

vided into N time intervals of At, (At = 8t). In state increment dynamic

21
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programming these two time intervals are calculated separately. At is
defined as in tradiational dynamiec programming. But &t is the interval of
time less than or equal to At which any of the m state variables requires
to change at most by one increment As (interval between two adjacent state
lattice points), with each decision applied. In effect this technique states
that, instead of applying a decision over time increment At, it should be
applied long enough, &t, to transform the state of the system by at most 4s.
To demonstrate this, let us assume that a system with m = 1 and
q =1 at time t-At and t can be at states C1s Cps Cg and €5 €55 €4 respectively,
If the admissible decision domain is divided into 4 levels, Zys wevs 2y and
if we want to reach state e, at time t, then the application of the 4 levels

of decision to the system may be as shown in Figure 2. 1In this figure appli-

cation of each decision is continued long enough to create a change of one

As or less.

< At ————]
G
3 ~ S
. . i
02 > f"’_-,-l;/u;ez_..._F
] CI ! P e
b4 I et {1
™ 3t
i e
813
t-4at t

Stage (time)

FIGURE 2. Determination of &t for State Increment Dynamic
Programming (Forward Algorithm)
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Therefore, decisions zq and z, are continued for time increments

6tl and 6t2 respectively, and decision Z, and zq are continued for a time

increment 6t3 = At.

Writing equation (8) for state e, we have:

Fle,,t] = max {Rle,,z,] + Fls, , t-At]} (18)
]
where j is the index of zj, i=1, 2, 3, 4; and St—ﬂt is any one of the
possible states at t-At. Assuming that F*[St—ﬁt’t—ﬂt] for three
possible states at t-At have been calculated in the previous optimization
stage, application of zj, i=1, 2, 3, 4 wiil provide the first term on the

right side of equation (18), i.e., R[ez,zj] and perhaps the second term on

#*
the right side; namely, F [st—&t’ t-At]. For the decisions shown in Figure 2

application of z, provides both terms on the right-hand side of equation (18),
but the application of 2y 24, 0T 2, provides R[ez,zj] only. Therefore, the
second term, F*[s't_&t,t—&t], (whére the prime sign indicates that the state
is not one of the quantized states) has to be obtained by interpolation among
the neighboring quantized states at t-At and t-2At.

This is the basic idea behind the state increment dynamic programming.

The advantage of it is that at every state, such as e, only the maximum re-

turns of the three discrete states at t-At, and perhaps t-2At have to be

stored. This reduces the computer storage requirements for dynamic program-

ming to a point that high-dimensional systems can be handled. Larson [1968]

has presented an algorithm of this technique which can handle up to four state
variables. He concludes that it reduces the storage requirements of a

6
4-dimensional state vector with 100 quantized levels in each state from 10

words to 799 words and reduces the computer time required substantially.
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Perhaps it should be mentioned that the accuracy of the interpola-
tion for a multiple-dimension state variable cannot be guaranteed. Also the
time required for such interpolations can be substantial.

Hall et al. [1969] have applied the concept of incremental dynamic
programming to water resources problems. This approach is based on the sug-
gestion by Larson [1968] for state increment dynamic programming. However,
the theoretical anlaysis for state incremental dynamic programming was not
presented and the effectiveness of the conergency of this apprecach was not

satisfactorily demonstrated.

2-4-3., Differential Dynamic Programming

Differential dynamic programming is a successive approximation tech-
nique for determining the optimal policy for nonlinear systems. ihis technique
reduces the computer storage requirement such that large systeﬁs can be_ana—
lyzed on available equipment (IBM 360/75). Therefore, the technique was chosen

for application to water resources systems analysis and is presented in

Chapter 3.
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3. A DISCRETE DIFFERENTIAL DYNAMIC PROGRAMMING (DDDP)

APPROACH FOR WATER RESOURCES SYSTEMS ANALYSIS

3-1. Differential Dynamic Programming

Differential dynamic programming is a successive approkimation
technique for determining the optimal policy for nonlinear systems. It was
first introduced into optimal control theory by Mayne [1966] and was, then
further developed by Jacobson [1968a, b, c¢] and Jacobson and Ma?ne [1970].
The approach presented in this chapter is a.discrete differential dynamic
progrémming (DDDP) approach for water resources systems.analysis. It is the

extension of the work of Mayne and Jacobson.

3-1-1. Differential Dynamic Programming-Theory

Fel'dbaum [1965] presents a formal derivation of Bellman's partial
differential equation from the principal of optimality for continuous systems.

The equation is a first order non-linear partial differential equation of the

form

%*
. 5

2 fs(0),e] = max  (RIs(e),t] +<F [s(e), e],00s(e) u(e) D} (19)
u(t)EU(t) _
i * %
% where Fs [s(t),t] is the gradient of the function F [s(t),t] and is equal to
!s’fe ® b %*
i (BF G v EE—J and the notation (,) signifies the scalar product of two
s le’ 852’ asm

vectors which have m components. For example:

e

P (Y,2) = 'Z ¥i2, (20)
E .
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%
Equation (19) may be solved with a boundary condition to determine F [s(t),t]

£6F a1l te[to,tf] [Bryson and Ho, 1969].

Differential dynamic programming is a technique based on equation (19)

in which the return function is not considered globally.

Consider the continuous system presented in equation (13). Let it
be required to maximize the performance criterion of equation (14) subject to
equations (15a,b,c).. In the development of equation (19) the major assumption
is that the optimal return function F* has continuous partial derivatives with
respect to all state variables. Now, let us assume a trial policy u(t),
t€[to,tf] which satisfies equation (15b). Introduction of this policy into
equation (13) will provide a trial trajectory s(t), té[to,tf], which either
must satisfy equation (15a) or u(t) must be changed. The return from the
system, due to u(t) and s(t), calculated by equation (14) and denoted by |
F(s,t.) may not be the optimal return. When a given policy such as u(t), is
applied, the system can only occupy the states defined by the trajectory s(t).
If we now permit the policy to vary by dSu(t), té[to,tf], then a new policy

given by
u(t) = u(t) + Su(t) (21)
will influence the tfajectory through equation (13). The new trajectory will
be given by:
s(t) = s(t) + 68s(t) (22)

where 6u(t) and Ss(t) are changes in the trial policy and the trial trajectory
respectively for té[to,tf]. Introduction of equation (21) and (22) into equa-

tions (13), (14), and (19) will produce a set of equations such as:
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2 %
BE o o = ke .
equal to (EETEET3 i, j=1, 2, ..., m) evaluated at s(t); Fss[s,t]ﬁs is an
1 37
m-dimensional vector; and h.o.t. stands for higher order terms. Similarly

N
Fs[s+55,t] may be expressed by
B[ P e, t] + F [s,t]és + h -
r.ls s,t] = S[s,t] SS[s,t] & .0.t. (28)

Substituting equations (26), (27), and (28) into equation (25) and, for the

sake of compactness, dropping [E}t] wherever possible

= *
F * OF oF
- .BE o ac - s \ }_ / 58
at 3t ot 168/ 7 (s, ( 5t )GS> h.o.t.
= — Lk % _ _
= max{Blatde, wiu;t] + (B, Sethoocte), dlerdesuhiu,t])) (29)
Su

%
The solution of equation (29), if possible, will provide du (t), tE[tO,tf],
which is the amount that the trial policy must be incremented at time t to

obtain the optimum policy. Thus,

] (30)

* = %
u (t) = u(t) + Su (t), for té[to,tf

where u*(t) is the optimum policy. But, the solution of equation (29) re-
quires '"possibly infinite computing time aﬁd storage requirements for the
parameters of the-power—series expansion' [Jacobson, 1968b].

In order to make the solution of equation (28) possible, Jacobson
[1968b] proposes truncation of the higher order terms. This propesal can
only be justified 1if §s is small enough to make these terms negligible.

Assuming that §s is kept small enough so that the highest order terms in
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equation (29) are quadratic:

5

4 = aF oF
& 9F  3c _ s _ S8
i T3t 9t ( At 857 2(§S’( 3t )8s)
i
¥ = max{R[s+6s,u+bu,t] + <(FS+F5555), ¢[s+6s,utsu,t])} . (31)
H Su
where
B o= 3o gdss. ] = F [5,6] + F 88 (32)
s as ? g ss
and
-— - _ — — i ;
Fl[s+8s,t] = F[s,t] + c + (FS,65> +3 (Ss,Fssﬁs) (33)

%
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This process reduces the global optimization of equation (29) to
a local optimization, i.e., optiﬁization takes place in the neighborhood of
the trial trajectory. Therefore, solution of equation (31) is only an im-
provement over that of the trial trajectory and not an optimum one. It is
because of this that F has replaced F* in equation (31). However, if the
improved trajectory is optimized again in its neighborhood, it may provide
a still better trajectory. Continuing in this manner, the trajectory gradu-
ally converges to the optimal trajectory.

Based on equation (31) Jacobson [1968a] has set up algorithms for
second order and first order unconstrained and inequaliéy constrained problems.
The algorithm optimizes the Hamiltonian in the neighborhood of the tiral tra-

jectory. It contains a step to calculate a reasonable és which may improve

the rate of convergence.
Metz Befersncs Hoon
29 University of Illimola
B106 NCEL
208 N. Romine Street
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This technique reduces the "almost infinite" storage requirement
of equation (31) to a level which can be handled with available equipment.
This is dome by limiting the optimization process to the néighborbood of
the trial trajectory. For systems in which only certain trajectories are
to be investigated, this technique can be quite time saving from the compu-

tational point of view.

3-1-2. Discrete Differential Dynamic Programming

Let us assume that the objective function, equation (4), for the
system of equation (1) is to be optimized subject to equation (2) and that
the m-dimensional state vectors at the initial and final stages are speci-

fied such that

s(0) = a(0)
(34)
s(N) = a(N)
In the proposed DDDP approach a trial sequence of admissible
decision vectors,'a(n), n=20, 1, ..., N-1, called the trial policy, satis-

fying equation (2) is assumed and the state vectors at different stages are
determined. The sequence of values of the state vector satisfying equations
(2) and (34) is called the trial trajectory and is designated by s(n),
n=0,1, ..., N. For invertible systems which will be defined later, it is
possible to first assume an admissible trial trajectory, s(m), n=20, 1,

and then use it to calculate the trial policy G(n), n=20,1, ..., N-1.

Introducing u(n) and s(n) into equation (4) we obtain

N

F = ) R[s(n-1),u(n-1),n-1)] (35)
n=1 )
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where F is the total return due to the trial trajectory and trial policy over
the entire time horizon. ﬁ_may not be the optimum reutrn.

Now, consider a set of incremental m—-dimensional vectors

- -
6Si,l(n)
581,2(n)
Asi(n) = : (36)
6Si,j(n)
n=20,1, , N
- m
55 (n) i=1, 2, , T
X 5

whose j-th component 5si j(n), j=1, 2, ..., m, can take any one value
3
Gj " t=1, 2, ..., T, from a set of assumed incremental values of the
43 ' :
j-th state domain. Thus, assuming that from each state domain a fixed

number, T, of incremental values are considered at each stage, the total

number of ﬁsi vectors at that particular gtage is T". When added to the

trial trajectory at a stage, these vectors form an m-dimensional sub-domain

designated by D(n),

s(n) + 4s, (n) 1=1, 2, couy, TV - (37)

It should be noted that one wvalue of qj . must be zero since the trial
3
trajectory is always in the sub-~domain. In Figure 3 two such sub-domains

form=2, T=4andm= 3, T= 3 are presented. All D(n), n =20, 1, ..., i

together are called a "corridor" and designated by C as shown in Figure 4

A 0 s O e Sl L T el Sy

by the space between two solid lines for a system with m = 1, T = 3, and

N = 10.
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neighborhood of s(n) for a 2-dimensional state vector and
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\

A state sub-domain D(n) defined by 27 lattice points in the
neighborhood of s(n) for a 3-dimensional state vector and

T o 3(Gj,l = +1.0, Gj,2 = 0, Uj,3 = =~1,0 for j = 1,2,3)

FIGURE 3. Examples of State Sub-domains at Stage n

32




Ol

=N uim %o un N =10 =ut M) s] Aiojoaloar jowndo:

5 € =1 PUue T =w yiIm Emwmhw B I0J UOTIBRILIT
Ui-3 3o "D ur Axojoeleay yTewrzdp pue D Ioptaxo) Jururjeq
SetTaepunog =yl ‘Axozoalexl Teray e jo uoriejuaseiday OTIBWAYDS 4 HUNDII

(u) 8boyg
O 6 8 L 9 S € 4 _ 0
T

I T | T | | 1 | |

%9 Jopluo) jo sauppunog

33

(N)'"Esg +(N)o o | (0)' sg+(0) 0

(N) _.Nmm +(N)D &~ ....e...:..,o-..l..o..t....d....ie.lia.e..l__ .o.l...Ln. ~8-—--$(0) _.Nmm,_.ﬁowo
xu ._o_ur:oo 5 o _

() 'sg+(N)D © | v—0(0)' 'sg+(0)0

: w
t t t -4 A =1
olI'--‘10=u (u), 5| = |(u)s| Kiopalpsy |puy @
. »
i
g&?@?@%@%ﬁix@%; kg ??ﬁﬁ%.%&%%?ﬁnf e R T e e S T DS R

T R



In DDDP a corridor C is used as a set of admissible states and
the optimization constrained to these states is performed employing the re-
cursive relation, equation (8). The value of return F obtained is at least
equal to or greater than F in equation (35). If F is greater than F, the
corresponding trajectory and policy obtained from corridor C are used in the
next iteration step as the trial trajectory and trial policy. Thus the k-th
iteration step is as follows:
1. Use the results [S*(n)]k—l and [u*(n)]k_l of the (k-1)-st

iteration step as the trial trajectory and policy for the k-th

iteration step, i.e.,

@, = [s" @1,

o " (38)
[u@], = [ve @]
2. Select [Uj,l]k’ [Gj,Z]k’ SRR ng,T]k’ i=1, 2, ..., m, to define
the k=th corridor Ck’ and use equation (8) to maximize F subject to
sme€c, n=0,1, ..., N

3. In corridor Ck’ trace the optimum trajectory satisfying the boundary
conditions of equation {(34) [s (n)’]k and the corresponding optimunm

policy [u*(n)]k.

* % :

4, Determine Fk; 1f Fk - Fk—l < & where € is some prespecified con-
stant, stop the iteration, otherwise go to step 1.

Figure 5 shows the flow chart of this procedure.

Since the boundary conditions of equation (34) must be satisfied,

one may exclude from the analysis all the states in the sub~domain at stage
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n = 0 except s8(0) = a(0). If in step 3 the trajectory having a final state
a(N) is traced, the preservation of the boundary conditions of equatien (34)
is guaranteed.

Note that in the course of the iteration process, the corridor
size may be varied gradually by choosing different [gj,t]k’ L Ly 2 5555 Li
i=1, 2, ..., m, in step 2. If the corridor size is kept constant for every
iteration and little or no improvement can be achieved after the k—th.itera—
tion, it is then suggested that [Uj,t]k’ t=1,2, ..., T, =1, 2, ..., m,
to be reduced starting at the (k+l)-st iteration and the process be continued
with the new corridor size until another iteration, which behaves like the
k-th iteration, is reached. Then, the corridor size is further reduced
starting at the next iteration and the procedure is repeated until the condi-

tion in step 4 is satisfied.

3-2. Extension of the Proposed Approach to Systems with Stochastic Inflows

The above algorithm may be adapted to reservoir systems with random
or stochastic inflows. This may be accomplished in the manner described in
Section 2-1-2 which requires an interpolation technique. However, if the
invertibility of the system equations, which will be described in the next
chapter, is used the formulation of the probgbilistic recursive equation,
equation (11b), should be slightly modified.

When using the invertibility of system equations the states of the
system at n-1 and n are known. Therefore, the second term on the right-hand
side of equation (11b) becomes deterministic. The fandom disturbance in-
fluences just the first term on the right-hand side of this equation. Thus,

the recursive equation with a random component becomes

36




s i

F*[s(n) yyin) yn] =

G
g { ) Ply(a-1),v]*R[s(n-1),¢[s(n-1),s(n),y(n-1) ,v],n-1]
s(n-1) € S(n-1) v=1 N

& B Leln=1Y 0113 (39)

where P[y(n-1),v] is the v-th level of the random variable y which occurs
in the span of time between stages n-1 and n; and Y is described in Chapter 4.
For systems with stochastic disturbances the independent probability

density function in equation (39) must be replaced by the conditional proba-

bility density function as stated in Section 2~1-2.
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4, INVERTIBILITY OF SYSTEM EQUATIONS IN WATER RESOURCES SYSTEMS

As described previously, dynamic programming requires interpola-
tion to retrieve the second term on the right-hand side of equation (8).
For high~dimensional systems this interpolation usually produces inaccurate
results and requires a large amount of computer time. It can be shown,
however, that in the case of invertible systems interpolation may be

avoided in the above procedure.

A system is said to be invertible if the order of the state vector
is equal to the order of the decision vector, i.e., m = q, and the matrix

a¢i/8uj, i, i =1, ..., m of the system:

sl(n) = ¢1[s(n-1), u(n-1), n-1]
sz(n) = ¢2[3(n—l), u(n-1), n-1]

I}

si(n) ¢i[5(n-1), u(n-1), n-1] (40)

sm(n) ¢m[s(n—l), u{n-1), n-1]

is non-singular for every n, u(n)€U(n), and s(n)€S(n). Assuming that

equation (40) is an invertible system, the decision wvariables can be solved

in terms of the state variables:
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(n"l) = wl[S(BL S(I‘l—l), I‘l—l]'

uz(n—l) = wz[ls(n)s S(Il“‘l), U_1]

I

u (1) = 4, [s(n), s(a-1), n-1] | (41)

u (@-1) = ¥ [s(), s(a-1), n-1]

In the case of water resources systems it will be demonstrated that
the above assumption is not restrictive. The i-th component of the vector

equation (40) for a water resources system may be written as
si(n) = si(n—l) + yi(n—l) - ui(n—l) —ILi(n~l) (42)

where si(n) is the storage at stage n; yi(n-l) is the inflow during the time
period starting at stage n-1 and lasting until stage n; ui(ﬁ—l) is release
and Li(n—l) is losses due to seepage, etec, in the same time period. Since,

for a system consisting of m components such as equation (42)

3¢i

u,
A J

= -1 or non-zero i=3j=1, 2, ...y m (43)

or a¢i/3uj, i, 3, =1, 2, ..., m, is non-singular, the water resources system
is invertible. Note that invertibility is due to the fact that in most con-
trolled. reservoir systems a release is associated with each storage unit.

Ignoring the losses, ui(u—l) in equation (42) may be written in terms of in-

flow and states as

ui(n—l) = si(n—l) - si(n) + yi(n—l)
= y,[s,(a-1), s, (@), v, (@-1)] 44)
39



Assume that equation (4) is to be optimized with the forward
dynamic programming algorithm for state s(n). Instead of using the state
s(n) and a decision u(n)éU(n-1) in equation (3) to calculate s(n-1), one
may use equation (44) to calculate the decisions that would be required
for the states at stage n-1 for which F*[s(n—l),n—l] has already been cal-
culated to go forward to state s(n). These decisions can then be tested
to determine if they violate the constraints of equation (2). If the
optimization is being carried out for the states in the corridor as defined
for the DDDP, thén the use of invertibility provides T possible decisions
which when applied to the states in D(n-1) will bring the system to s(n).
Figure 6 shows the possible decisions for a system with m = 1 and T = 3,

The T" decisions then may be used in equation (8) to determine u*[s(n),n—l]
and F*[s(n),n] without interpolation to retrieve F*[s(n~l),n—l]. The same
procedure ﬁay be repeated for other states in the sub-domain D(n) as defined
in Figure 3.

Using the invertibility of the system equatiqns, equation (8) may be
written as |

F*[s(n),n] = max {R[s(n-1),y¥[s(n-1),s(m),y(n-1)1,n-1]
' s(n-1)€D(n-1) '

+ 7 ladasty st Tl (45)

where D(n-1) is the state sub-domain located in the neighborhood of the trial
trajectory at stage n-1.
It must be emphasized that the justification of this process lies

in the assumption that o, t=1, 2, ..., T, =1, 2, ..., m, are chosen

iy B2

properly. If this were not the case, most of the decisions calculated by
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equation (44) for state s(n) may be inadmissible. By keeping values of

a. within an admissible range the policy slowly converges to the optimal

Jst
one in the DDDP approach,

The use of invertibility of the systems equations eliminates the
inaccurate and time consuming interpolation required to retrieve the term
F*[s(n—l),n—l] in equation (8). This is done by forcing the trajectories
to go through the states at stage n-1 for which F*[s(n—l),u—l] has already

been calculated and stored. In case of invertible multiple-dimensional

systems the accuracy and speed of this procedure are much greater than the

interpolation procedure,
¥ s(n-1)+ 85! I(n-l)
1

— E(n—l)+852'|(n—i) §(n)+852’|(n)

State (s)

¥ 'T,-;‘(n—l)+853’l (n—1) o§'(n)+'ss'3}[(n)

I | I I

n-2 n-| n n+l
Stage (n)
FIGURE 6. Possible Decision Paths Leading to State s(n) + Gs? l(n) from
Stage n-1 for a System with m = 1 and T = 3 o
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5. APPLICATION OF THE DISCRETE DIFFERENTIAL

DYNAMIC PROGRAMMING (DDDP) APPROACH

In this chapter the DDDP approach is applied to two water resources
systems (a simplied water resources system and Clearwater River System) and
its advantages and disadvantages are evaluated. These systems are analyzeé
deterministically to avoid the high computer time demand which is beyond the

means of this study.

5-1. A Simplified Water Resources System

The following simplified system which was formulated and solved by
Larson [1968] using linear programming and successive approximation dynamic

programming was solved using the proposed approach,

5-1-1. The Problem and Its Solution by Other Techniques

The operating policy of the four-dimensional (m=4) reservoir net-—
work presented in Figure 7 is to be optimized over 12 operating.periods
(N=12). The inflows into reservoirs 1 and 2 during any operating period are
yq and Yy respectively. The outflows or releases (decisions), ui(n)
i=1,2,3, 4, n=20,1, ..., 11 from the reservoirs are used to generate
hydropower, and ua(n) after passing through tﬁe turbines is diverted towards
an irrigation project. The storages of the four reservoirs represent a four-
dimensional state vector whose constraints during any operating period were
set as:

0 g_sl(n) < 10

0 iszﬁﬂ < 10
forn=0, 1, ..., 12 (46)
0 g_sBCn) < 10

0 5_54(n) < 15
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The constraints on decisions during any operating period are:

0 g_ul(n} < 3
0 5_u2(n) < 4
forf m = 0y Ly weny 11 (47
0 f_uB(n) < 4

0 <u @ <7

The system equations expressing the dynamic behavior of each component at

any stage n are:

sl(n) = sl(n—l) + ¥y~ ul(n—l)

sz(n} = sz(n—l) + Yo = uz(n—l)

53(n) = 53(n—l) + uz(nul) - ua(n—l)
sa(n) = sa(n-l) + us(n—l) + ul(n-l) - ua(n—l) (48)
forn=1, 2, ..., 12
The inflows were set at:
vy = 2 and Yy = 3 for all time increments (49)

All the above variables and constants have units of volume.
The performance criterion to be maximized is the sum of the returns
due to power generated by the four power plants and the return from the diver-

sion of ua(n) to the irrigation project;

11 4 11 4
F= ] )] b@u@+ [ by @ + ] gls;(M,a,mM] (50)
n=0 =1 2 L n=0 i=1 Lk 1

where F is the total return from the system for the 12 time periods; bi(n)

is the unit return due to activity i, i =1, ..., 5, during a period starting
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at stage n and lasting until stage n + 1; and gi[si(N),ai(N)} is a function
which assesses a penalty to the system when the final state of the i-th
component of the system at stage N is si(N) instead of the desired state
ai(N), i=1, 2, 3, 4. Such a penalty function for traditional dynamic
programming where boundary conditions may not be satisfied is necessary.

The penalty function in equation (50} was assumed to be

~40[si(N) - ai(N)]Z if si(N) & ai(N)

gi[si(N),ai(N)] = (51)

0 Otherwise
The desired state vectors of the initial and final stages for i = 1, 2, 3, 4

were assumed to be

-5 | : _5
5 5
a(0) = and a(N) = (52)
5 5
o 7

There are a total of five activities in the above criterion: four hydro-
power generation activities and one irrigation activity. The unit return
functions of these activities bl(n), i=1, 2, ..., 5, are given in Table 1.

TABLE 1. Return Functions Used to Calculate Optimal Policies of System
in Figure 7

n bl(n) bz(n) b3(n) bq(n) bs(n)
0 1.1 1.4 L8 1.0 1.6
1 1.0 Tk 10 Lo L P4
2 1.0 1.0 12 1.8 1.8
3 1.2 1.0 1.8 205 1.9
4 1.8 1.2 2.5 2.2 2.0
5 2:5 1.8 2.2 2.0 2.0
6 2.2 2.5 2.0 1.8 2.0
7 2.0 2 1.8 252 1.9
8 1.8 2.0 2,2 1.8 1.8
9 2.2 1.8 1.8 1.4 Lol
10 1.8 2.2 g 1A " X 1.6
11 1.4 1.8 L L.8 1.5

~
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Larson [1968] solved this problem using linear programming and
successive approximation dynamic programming. The linear nature of the
objective functions of Table 1 makes the solution of a multiple-stage
linear programming problem possible, The solution by this algorithm,
according to Larson, is that of Table 2.

In the application of successive approximation dynamic programming,
which was described in Section 2-4-1, to this problem, Larson used the trial
trajectory of Table 3 (this trajectory is denoted I because later on other
trajectories will be tried using the proposed technique) with a total return
of 362.5. Using a B-5500 computer it took 30 seconds of computer time, and
9 iterations (iteration in successive approximation dynamic programming is
defined as keeping all state variables, except one, constant and optimizing

%
TABLE 2. Optimal Trajectory and Policy for System in Figure 7
Total Return = 401.3

* %* * % % * * %
si(n) sz(n) sB(n) sa(n) ul(n) uz(n) us(n) u4(n)

n
0 5 5 5 5 1 4 0 0
1 6 4 9 6 0 1 0 2
2 8 6 10 4 0 2 4 7
3 10 7 8 1 2 0 4 7
4 10 10 4 0 3 3 4 7
5 9 10 3 0 3 4 & 7
6 8 9 3 0 3 4 4 7
-7 7 8 3 0 3 4 4 7
8 6 7 3 0 3 4 4 7
9 5 6 3 0] 3 4 4 7
10 4 5 3 0 3 4 4 0
11 3 4 3 7 0 2 0 0
12 5 5 5 7

*
Note: Optimal Trajectory and policy presented in Table 12.11 of
Larson [1968] are slightly in error as noted through private
communication with R. E. Larson, 1969.
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TABLE 3. Trial Trajectory I and Trial Policy I for System in Figure 7
Total Return = 362.5 ' '

sl{n) 52(n) 53(n) s&(n) ul(n) uz(n) u3(n) uq(n)
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in the admissible domain of the wvariables state) to arrive at the optimal

trajectory listed in Table 2 with a total return of 401.3.

5-1-2. Application of the Proposed Approach to the Problem

Application of the proposed approach to this system, which is

invertible, starts with the assumption of a trial trajectory Ekn), n=20,

1, ..., 12, satisfying equations (46) and (52). When substituted in

equation (48) together with constants in equation (49) the trial trajectory

will produce a trial policy u(n), n =0, 1, ..., 11, which should be checked

for constraints of equation (47). It is considerably easier to treat this
problem as a free-end point problem, i.e., not to satisfy the initial or

final boundary condition. However, the simplicity of the system equations
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in this example makes it possible to satisfy both boundary conditions in
equation (52). The penalty function of equation (51) is therefore not
needed in the DDDP as boundary conditions of equation (52) are always
satisfied. Trial trajectory I of Table 3 was chosen and shown in

Figures 8. Next, three values .of o, . are assumed,
3

for § = Ty 25 3; 4 (53)

and a set of T" = 34 incremental vectors is formed which when added to the
trial trajectory I produces a sub-domain consisting of 81 lattice points
at each stage.

It took 7 iterations for trial trajectory I in Table 3 to converge
exactly to the optimal trajectory in Table 2. These iterations are illus-
trated in Figures 8. In iteration 1 of these figures, the trial trajectory I
of Table 3 is shown with dashed lines, the corridor defined by equation (53)
is shown in blank strips, and the improved trajectory within the corridor is
shown in solid lines. In iteration 2 the improved trajectory of iteration 1
is considered as the trial trajectory (shown in dashed lines), the corridor
defined by equation (53) is shown in blank strips, and the improved trajectory
islpresented in solid lines.

At iteration 8 it was noticed that no more improvement could be made
on the improved trajectory of iteration 7{ i.e., the improved trajectory in
iteration 8 coincided with the trial trajecotry in that iteration. There-
fore, it was concluded that the improved trajectory of iteration 7 is the

optimal trajectory and convergency had been achieved.
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5-1-3. Effect of Different Trail Trajectories

In an effort to study the effect of various trial trajectories.oﬁ
the rate of convergence to ﬁhe optimal trajectory, two other trial ﬁrajecto~
ries (II and III) were assumed and the DDDP approach repeated with the cor-
ridor defined by equation (53). All trial trajectories and the optimal
trajectory are presented in Figure 9. Trial trajectory II took 12 itera-
tions, and trial trajectory III toock 7 iterations to converge to the optimal
trajectory.

Figure 10 shows the rate of improvement of the trail trajectory

with the number of iterations for each of the three trial trajectories.

5-1-4. Expansion of Time Horizon

The time hbri;on of the operation of the system was exanded from 12
to 24 stéges to.investigate the;response of the syétem to the same inflows and
objective function over a longer period of time. The results together with the
trial trajectory IV are présented in Figure 11. Comparison of Figure 9 with
Figure 11 indicates noticable similarity between them. If Figure 9 is considered
as one cycle, Figure 11 may be considered almost two cycles of the patterns in
Figure 9.

This tentative conclusion is reached with the understanding that
all the functions to Whiéh the system responds are kept constant over the
time of analysis. This result may allow one to expand the operating periods
of the system without repeating the computations. The return due to the

optimal trajectories in Figures 11 is 810.60.

5-1-5. Effect of Change of the State Sub-Domains

In the solution of this problem the invertibility of system equa-
tions, equation (48), wereﬂused, and the width of all corridors were defined
by equation (53). Therefore, at every stage there were 3'lattice;p0ints in
each corridor. Using these data and constant inflows of equation (49) in
equation (44) to calculate the decision u, one should expect that the set of
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' decisions for a trajectory which cannot be improved further may be near opti-

=y

mum rather than optimum. This is simply due to the fact that with the above

set of constraints, the change of decision per iteration, Au, is also constant.

This change may not be the optimum change.

In order to overcome this difficulty, it is suggested that g, t'be

3

reduced at certain iterations as described below. A change in Gj . at every
5 .

iteration may not be efficient as far as the rate of convergence is concerned.

In fact, a fast change of cj & with every iteration may reduce the width of
L)

the corridor to near zero, and thus make the iteration process very insuffi-

Instead of changing o, at every iteration, one may fix the width of

cient.
- It

the corridor and continue iterating until no more improvements can be made in

a corridor of that width. This means that any more changes in decisions caused

through equation (44) by changing the state at stage n and n~1 will violate the

Now, a reduction in Uj . may be made which will not

constraints of equation (47).

affect decisions as much as the previous Uj g Again iterations are continued in-
b ]
side the corridor with new fixed widths until no more improvements can be made.

This process of reducing cj g0 at iterations beyond which no improve-
3

ments are possible, may be continued until the widths of the corridor is smaller

than some pre-specified constraint.

The reduction of corridor widths in the optimization of the example of

Figure 7 did not produce any improvement on the optimal trajectory. The reasons

are: (1) the optimal trajectory of this system follows full integer states,

(2) the trial trajectories of Figures 9 and 11 were chosen so that they follow

full integer states also, and (3) the values of Gj g2 €5 1, 2, 3, and
]

j =1, 2, 3, 4 are set at full integers.

In a separate try, trial trajectory I is subjected to the interation

process using

g, = 1.3, Gj,2 = 0, and Uj,3 = -1.3

for j =1, 2, 3, 4 (54)
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for all stages starting with iteration 1, and the idea of reducing Uj’t,
t=1, 2, 3 and j =1, 2, 3, 4 is employed. After a total of 18 iterations
in 4 corridors the states shown by solid circles in Figure 12 are obtained,
producing a return of 399.06 as compared to the optimal return of 401.3.
This leads one to conclude that when the optimal values of Gj . are not

3

known, the result may only be considered as an approximation to optimum.

5-2. Advantages and Disadvantages of the Proposed Approach

The major factors which inspired the DDDP approach are the drawbacks
which are inherent in the regular dynamic programming, namelyi storage space

and computer time requirements.

By limiting the optimization to the few lattice points around a
trial trajectory, the storage requirements appear to have been curbed sub-
stantially. To illustrate this numerically, consider the storage requirements
of the problem presented in Section 5-1.

This problem has four state variables, whose admissible ranges are
given in equation (46). With-wvalues of-cj,t given in equation (53) the DDDP
requires 243 words of computer memory while the memory requirement of tra-
ditional dynamic programming using the same grid size would be:63,888 words,
Perhaps it is relevant to mention that the storage requirements of the same
problem by successive approximation dynamic programming is even less. How-
ever, attemtps to obtain the convergence of phis problem by successive
approximation dynamic programming failed in this study.

Another major difficulty in applying traditional dynamic pfogramming
is the computer time requirement. This is' due to the number of computations
and comparisons which must be performed at each lattice point. 1In the above
example, at each stage there are 21,296 lattice points. If the domain of

the decisions given in equation (47) is divided into lattice points with

Au = 1 unit, at each state lattice point of each stage a total of
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4 x5 x5 x 8 = 800 combinations of decisions must be tested. By limiting
the optimization to the neighborhood of a trial trajectory, the number of
lattice points are reduced, and therefore, fewer tests will have to be made
per state of each stage. Furthermore, if the system islinvertible, this
efficiency may even be increased. TFor example, if T = 3 at each stage, thén
for a four-dimensional invertible problem there are only 34 = 81 possiblities
that states at stage n-1 may lead to a particular state at stage n. There-
fore, instead of 800 tests at a particular state of stage n only 81 tests

may be made.

Table 4 summarizes the computer (IBM 360/75) processing time for
the solution of the example of Section 5-1 using the DDDP approach. The number
of iterations in this table is one more than what is needed to arrive at
optimum results. The last iteration is required to confirm that the optimum
results have been reached in the previous iteratiom.

TABLE 4. Computer (IBM 360/75) Time Requirements of the Proposed
Approach for the Solution of System in Figure 7

Trial Operating No. of Total Pro- Processing
Trajectories Periods Iterations cessing Time Per
Time (sec) =~ Iteration (sec)

I 12 8 35,32 4.42
II 12 13 48,39 3.72
ITI 12 8 31.04 3.88
v 24 8 68.70 8.58

The processing time of trial trajectories I and IV may be cbmpared
to arrive at an important conclusion. Trial trajectory IV is an extension
of I to 24 time periods. Therefore, one would expect that the processing
time woula double, As seen in Table 4, the processing time of trajeﬁtory v

is somewhat less than double that of I.
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The disadvantage of the proposed technique appears when it is

applied to systems with non-linear objective functions. 1In these cases, if

the oj are not chosen properly, it is possible for the improving trajec-—

H
tories to get stuck in a local minima or maxima depending on the objective

criterion. In Chapter 6 two approaches, namely; use of a trial trajectory

close to the optimum trajectory, and the choice of Uj ¢ by analytical tech-
]

niques, to limit this disadvantage will be discussed.

5-3. Application of the Proposed Approach to Clearwater River System

In this section the proposed approach is employed to investigate
the near optimal operating policy of a multiple-purpose and multiplé—

dimensional reservoir system.

5-3-1. The Selection of the System

The decision to choose a more realistic medel for further investi-
gation has to be made on the basis of the capability of the proposed technique
for handling high-dimensional problems, the budget available for computer
time, and relevance of the model.

The capability of the proposed technique as compared with the

available facilities (IBM 360/75) was roughly estimated to be from 7 to 9

reservoirs, each constituting one state variable. This means that, if there

were no constraint on the amount of computer time, this technique, it is

believed, could handle the high speed storage requirement of a 7 to 9 dimen-

TR

sional system using the IBM 360/75. However, the optimization of such a

system may require considerable amount of computer time which creates a

budgetary constraint for the study. Finally, the last criterion, i.e., the

relevance of the model, should satisfy the multiple-purpose objective of

Motz Reforencs Ras.
61 University of Iliini’ia
B10s H¥oEI,
208 W. Romine Streed
Urbana, Illinels e3gam
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this study. Based on these criteria, the following system was adopted from

Maass, et al. [1962].

5-3-2. The System

The system presented in Figure 13 consists of five streams; four
reser?oirs, two hydropower plants and a farm. This system is to be operatéd
for N intervals of time to provide irrigation water, and hydroelectric power.
The operating procedure of the system during the time interval between stage

n and n+l, (n and n+l€N), may be sumarized as follows:

yi(n) = volume of inflow into reservoir i during the time interval
starting at stage n; and
ui(n) = volume of outflow from reservoir i during time interval starting
at stage n; for
i=1,2, 3, 4andn=20, 1, ..., N-1.

The outflow from reservoir 1, ul(n), after passing through power
plant 1, PP1l, joins the outflow from reservoir 2, uz(n), and river inflowin the

reach between the two reservoirs, yq(n) to form the flow at node 1. Therefore,
FL1(n) = u, (@) + u,(@) +y,() (55)

where FL1(n) is the volume of flow at node 1 during the time interval starting

at stage n. Here and in the following mass balance equations the losses due.

to evaporation, seepage, etc, are ignored.

Depending on irrigation demand part or all of this flow, us(n), may
be diverted at node 2 towards the farm. The rest of FL1(n), if any, joins

with the irrigation water return from the farm, m(n)us(n—l), at node 3 to form
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FL1(n) - ug (n)
Farm

a(n)ug(n-1)

FL3 (n)

Y5(n)

PP2

FIGURE 13. Schematic Representation of the Clearwater River System
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the inflow into reservoir 4. Here c(n) represents the portion of the water
diverted for irrigation during the previous time interval that enters node 3

during the present time interval, Therefore, flow at node 3 is:
FL3(n) = FL1(n) - u5(n) + a(n)us(n-l) (56) .

where FL3(n) is the volume of flow at node 3 during time interval starting

at stage n; us(n—l) is the total voiume of diverted flow for irrigation during
the previous time interval; and o(n) is a constant between 0 and 1 for the
time interwval starting at stage n.

Introduction of u.(n-1) into equation (56) creates a time lag in

5 (
one of the input elements of the system. For this system a lag of one repre-
sents one month.

Outflows from reservoirs 3 and 4, u3(n) and uain), join with the

river inflow y5(n) at node 4 to form the inflow into power plant 2, PP2,.

Therefore,
FL4(n) = u,(n) + u, () + v (@) (57)

where FL4(n) is the volume of flow at node 4 during the time interval starting

at stage n. This flow, FL4(n), passes through the power plant 2, PP2, to

generate power,
It is assumed that the events and activities related to water
downstream from power plant 2 do not influence the operation of the system.

This assumption essentially isolates the system and makes the analysis

simpler.
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0 < u @ <s;(m) +y; (@

0 <u,(m) < sz(n) +y,@) 4

o
M

< u3(n)

| A

SB(H) + yj(n)

0

|A

ua(n) g_sa(n) + FL3(n)
0 < ug(n) < min.[8(n) (4.0 X 16" me. £5.; Fhiln) 1
where B(n) is the monthly irrigation demand relative to the annual irrigation

demand and is computed from Table 5; and 4.0 X lO6 ac ft is the yearly

irrigation demand.
The parameters for power generation are:
o -

E=2.,0X 107 kw hr/yr
CPP1 = 200 Mw ' (61)
CPP2 = 200 Mw

where E is the total energy to be generated per year; CPPl is the installed
capacity of Power Plant 1; and CPP2 is the installed capacity of Power Plant
Plant 2.

The total return during a time interval starting at stage n is:
R(n) = BIR(n) + BPR(n) | (62)

where R(n) is the total return from the system; BIR(n) is the gross return
from irrigation activities; and BPR(n) is the gross return from hydropower

generation.

Therefore, for N periods of operation the total return from the

system or performance criterion 1s:

N-1
F= ) R(n) (63)
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The objective of this analysis is to optimize equation (63) by
choosing a set of ui(n), i=1, ..., 4 and hence uS(n), form=0,1, ..., N-1,
where the time interval between stages is one month, subject to equations (60),
(61), and (62). As will be seen later the results of this analysis may only

‘

be considered as sub-optimum.

5-3-4, Return and Cost Functions

Most of the return and cost functions presented below are adopted
from Maass, et al. [1962]. Some of the assumptions made in the development
of these functions are not as realistic as they should be. However, since
the emphasis in this study is put on the development of an appreoach for water
resources system analysis, these assumptions do not affect the method of
analysis. For the analysis of an actual system, these functions have to be
developed by.extensive and time consuming studies énd surveys directed by

specialists in several disciplines of science and engineering.

5-3-4-1. Irrigation

Demand. One of the major activities of the system is to supply
irrigation water. The consumptive use and diversion requirements for irri-
gation were calculated from the climatiological data for irrigation practices
in the Lewiston region of Idaho [Maass, et al. 1962]. This area is considered
a semiarid area with a growing season of 205 days} The crops grown in this
area consist of alfalfa, pasture grass, sugar beets, potatoes, small grains,
and fruits. In this problem it is assumed that the crop pattern remains the
same from year to year, but the amount of land allocated to farming can vary
Maass,

depending on the annual target irrigation water and land availability.

et al. [1962] calculated the unit net consumptive use during each irrigation
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season by applying the method presented by Blaney and Criddle [1952] for
determining water requirements in irrigated areas to a fixed crop pattern

and found it to be about 2.0 feet (2.0 acre feet per acre). Then, asumming
that the consumptive use of the cropped area during the nonirrigation seasons
was equaled by the average precipitation during that part of the year, and-
assuming an average conveyance (seepage and deep perculation) loss of 30
percent of the annual diversion requirement, the unit irrigation divefsion
requirement was calculated to be 5.0 feet (5 acre feet per acre) yearly. This
unit irrigation-diversion requirement distributed bylmonths is shown in

Table 5.

TABLE 5. Assumed Monthly Distri&ution of the Annual Target Irrigation
Diversion Requirements

Percentage of
Month Target Annual Diversion
for Irrigation

April 12.4
May : 14.6
June 16.6
July 19.0
August 18.0
September 12.4
October ' 7.0
November-March 0.0
Total 100.0

*®
Source: Maass, et al. [1962]

The distribution of irrigation diversion requirements of Table 5 inherently
assumes that the marginal cost of the farm facilities, labor, and other
resources required to operate the farm aré equal to the marginal benefit of
irrigation water diversion. In brief, it is assumed that for each month of
the irrigation season the farm irrigafion system has been designed and

operated at the optimal economic point.
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Irrigation Return Flow Into the System. The irrigation return

flow may be estimated by subtracting the sum of the net consumptive use and
losses during a season from the total water diverted for irrigation during

the same season. Assuming that cut of every 5.0 feet irrigatiog diversion

40% (2.0 feet) is the net consumptive use and 30% (1.5 feet) is lost to the
adjacent basins and deep perculation, it may be estimated that during every
operating period about 30% (1.5 feet) of the total irrigation diversion of

the previous aperating period will enter the system at node 3.

In this problem a time lag of one time period (one month) was
assumed. At the expense of some high-speed memory a time lag of more than
one may easily be introduced into the system by garrying alqng_in the compu-—
tations the optimal decisions of any number of the previcus time periods
desired. A set of coefficients, specifying the percentage of allocated
waters that will return to the system, must also be available. For a time
lag of one thére is only one coefficient at every stage of computation.
Therefore in equation (56) a(n) ; <30 forin = G Ly sesy Nels

Irrigation Returns. The unit gross irrigation return for this

system is assumed to be a function of the annual target output for irriga-
tion. Therefore, as the annual target:output for irrigation increases, the
demand for irrigation water and subsequently the unit gross irrigation

return decreases. This relationship is shown in Figure 14 and its equations

are given in Maass et al. [1962] as:

0.0527A2 - 0.6412A + 6.44924 if A < 5.5

"

UIR
(64)

]

UIR = 4.5 if A > 5.5

where UIR is the unit gross irrigation return in dollars per acre foot and
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A is the annual target output for irrigation water in 106 acre feet. The
maximum annual target output for irrigation is to be for 1.2 X 106 acres
of irrigable land which demands 6 X 106 acre-feet (ac. ft.) annually

(5.0 ac. £t. of water per acre). For this amount of water a unit gross
irrigation return is 4.5 dollars/acre-feet. Similarly, for lesser annual
target outputs for irrigation the unit gross returns may be obtained from
equation (64).

Due to the dynamic and multiple-purpose nature of the éystem, it
is quite possible that during one or several operating periods there are
irrigation shortages. Depending on the severity of these shortages, the
operators of the farm may lose part or all of their crops. For example,
severe shortage of water for irrigation during the germinating season of
the small grains, when the presence of moisture is of great imporfance, can
completely destroy the crop. If shortage occurs during the maturing season,

the damage may be partial.

Therefore, a penalty function is needed to calculate the damages
resulting from certain irrigation shortages. Figure 15 shows the assumed
irrigation shortage penalty function used in this analysis. The percent
loss of monthly gross irrigation returns passeé the 1007% mark at a shortage
of about 80%. This severe penalty forces the optimizing model to choose, if
possible, the policy which allocates more water for irrigation. The highest
percentage of shortage beyond which no return is expected for the entire year
(total destruction of crops) was arbitrarily set at 80%) i.e. when during any
month of irrigation season the shortage surpassed 80% of that month's demand,

the entire irrigation return during the season was assumed lost.
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Unit Gross Return ($/ac.ft.)
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Annual Target Irrigatiom Diversion Requirement (106 ac.ft.)
FIGURE 14. Assumed Unit Gross Irrigation Return Function
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FIGURE 15.

(Source: Maass, et al., 1962)
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The function in Figure 15 implies that the importance of water
for irrigation during any month of the year is the same. In order to
correct this shortcoming a weight evaluating the importance of a specific
operating period was assigned to each of the months in the irrigation season.
Thus, by multiplying the loss obtained from Figure 15, for a certain per-
centage of shortage, by the weight assigned to the month in operation, the
importance of the irrigation water during different months was projected
in the analysis. The weight describing the importance of any month of
irrigation season was calculated by dividing the demand for irrigation
during that month by the maximum irrigation demand during any month of the

irrigation season. Therefore,

vy(n) = IR(n)/IRmaX n=0,1, ..., N-1 (65)

where y(n) is the weight assigned to irrigation losses of the period starting
at stage n; IR(n) is the demand for irrigation for the period starting at

stage n; and IRmay

L

is the maximum demand for irrigation water during any

period,

5-3-4-2. Hydropower

Demand. Another main activity of the system is hydropower genera-
tion. The generated energy is to be distributed among domestic, rural,
industrial, commercial, and irrigation activities. The survey of the demand
schedule prepared by Maass, et al. [1962] for Clearwater River Basin, Idaho

showed the monthly demand distribution presented in Table 6.
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TABLE 6. Assumed Monthly Distribution of Annual Total Energy Output*

Month % of Total Annual Energy
Requirement

April
May

June
July
August
September
October
November
December
January
February
March

Total 100.0

~l ~J 00 CoCo 0o \D WO \O o co ~d
Lan b2 L= - W WO~

” .
Source: Maass, et al. [1962]

This study assumed that the monthly distribution of energy demands,
presented in Table 6, does not vary with the magnitude of target annual energy
output. Therefore, a target annual energy output, compatible with the system,
was assumed and based on the distribution of Table 6 the monthly energy demands
were computed. Due to the monthly operational policies, there may be several
months during which there is either a surplus or a shortage of energy. 1In
such cases, steps must be taken to import or export power to the demand areas.
The decision as to what sizes of turbines must be considered for power plant 1,
PP1, and power plant 2, PP2, was based on the annual target energy output and
the following assumptions:

(1) The return from unit power generated by both plants are the same.
This assumption enables the incorporation of the energy outputs from the two
plants into a single network for distribution.

(2) The turbines are to generate energy at relatively constant rates

throughout the month. No stand-by unit was considered for reserve capacity.
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Therefore, first an annual target énergy output was assumed, and
using a load factor of 0.6, the combined installed capacity of the turbines

is calculated by:

OF & e (65)

where CT is the required installed capacity in kw; f is the load factor;

hy is the number of hours in a year; and EO is the annual target energy
output in kw-hr. The required installed turbine capacity, CT, should be
divided between the two plants in such a way that they contribute to the
overall maximization of the net return from the system. For simplicity,

it was assumed that each power plant can handle half of the required installed
turbine capacity.

Returns from Hydropower. As mentioned before, releases from the

reservoirs during any period generate hydropower which may be greater or
less than the demand during the period. Surplus energy generated during any
period, called dump energy, may be exported from the system, and energy may
be imported into the demand area during periods when the amount of energy
generated bj the system is less than the demand.

In this study it was assumed that the unit return from the energy
genefated by the system and used in the demand area is constant at 7 mills
per kilowatt-hour. The dump energy was assumed to have an unlimited market
demand with a return of 1.5 mills per kilowatt-hour and the energy purchased
to overcome any deficits was assumed to be available in unlimited supply at
9 mills per kilowatt-hour.

The functions which were used to calculate the energy output of

the two power plants are given in Maass et al. [1962] as shown in Table 7.
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TABLE 7. DPower and Energy Relationships Used in Analysis of Clearwétjé
River System* it

Element of Dependent Independent Variables and Constants Assumed Relationship
System Variable
PP1 Effective Storage in reservoir L,x h = 0.,76040039E0L + 0,15802026E03%

head h{ft.) (106 ac.ft.) 5. SR

S
 SEr + O.35461025E01x3
- 0.19&95636300:&4
+ 0.41586272E-02x"
FFl and Energy out- u = waterflow through turbines E= € euh
PP2 put, E(Mw hr) (102 ac.ft,/month)

H = effective head (ft.)
e = turbine efficiency = .85

c, = converslon factor equal to
,001024, converts from ft x
ac.ft. to Mw hr

PPl gzzrgzrout- h,, = average head during mouth (ft) E_= e b Uy
month. Em u; = flow through turbines
(M hl,:;‘month) (102 ac.ft./month)
e, = conversion factor equal to
0,0871 which contains cqy, e,
and converts from ft x 102
ac,ft. to My hr.
PPL Maximum hmax = maximum head (ft) : Emax = Cthaxumax
energy out-
put per o™= maximum water capacity of
month, E .. turbines (102 ac.ft./month)
(Mw hr/month)
c2 = as above
FPL E CPPl = rated power capacity of E = ¢,CPP1
max PPL (Mw) max 3
€y = converaion factor equal to
730.56, converts months to
hours
= = 1/2 1/2
Prl Water CPP1, hav’ hmax and ¢, = con- WCFPL cﬁCPPl x hav fhmax
c;pzci;{ version factor equal to
;CPP?? nes 8387.6, converts from (Ma/ft)
(102 ac.ft./ to (102 ac.ft./month)
month)
FF1l Maiiium CPF1, hmax’ <, WCPleax = CQCPPljhmax
wate
capacity of
turbines
WCPPLyay
(102 ac.ft./month)
PP2 Energy out- FL4 = flow at node 4 in Figure 13, If FL4 < WCPP2, E = cSFL4
put per (102 ac.ft.)
= CP
month, WCPP2 = water capacity of turbines LE-FLG 2 WCPEL, Em c5w F2

(Mw hr/month) (102 ac.ft.)

¢, = conversion factor equal to

3 14.4, converts from 102 ac.ft.
to Mw hr
PP2 Water CPP2 = rated power capaclty of FP2 WCPP2 = C6CPP2

capacity of (M)
turbines

2 ¢, = conversion factor equel to
{ia ;c.ft.f 6 50.73, converte from Mw to
moyth) 102 ac.ft./month

*Source: Maass, et al. [1962]
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5-3-5. Hydrology of the System

The system in Figure 13 contains five inflows for which at least
31 years of monthly flows are available. These flows are measured at the
following points:
Flow into reservoir 1l: The sum of runoff records at Selway
River and Lachsa River near Lowel, Idaho.
Flow into reservoir 2: The south fork of the Clearwater River
near Grangeville, Idahof
Flow into reservoir 3: The north fork of the Clearwater River
near Ahsahka, Idaho.
Flow at node 1: The Clearwater River at Kamiah, Idaho.
Flow at node 4: The Clearwater River at Spalding, Idaho.
These flows provide Yis Vg5 Y4 for the system equations, equation
(58). To calculate Yy the sum of the natural flows Yy and y, were sub-
tracted from the flow at node 1. The flow yg was calculated by subtracting
the sum of the natural flows at node 1 and V4 from the natural flow measured
at node 4. These five inflows constitute the stochastic disturbances in the
system. Any activity of the system must be related to the joint probability
of these stochastic elements. These joint prbbabilities may be described
by multi-variable statistical models such as the ones presented by
Anderson [1966].
The aﬁalysis in this study used deterministic data, i.e., the
mean monthly flows presented in Table 8. Such deterministic data, naturally,
limit the applicability of the results. The responses of the system to the

mean monthly inflows may be considered as mean or average responses.
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Since irrigation activities start in April and last until the
end of October, it was decided to start the operation of the system in
April. This procedure guarantees that no irrigation water is left in the

system at April as a result of previous year's irrigation activities.

5-3-6. Computer Program

The computer program was written in FORTRAN IV and is presented
in Appendix A which contains the notations used in the input data, the
program, and sample outputs., The program consists of one main routine
and nine subroutines. Some of the subroutines may be integrated with the
others to make the compiling time shorter. Following is a brief descrip-
tion of each part:

MAIN: This is the routine in which most other routines are called.

INPUT: This subroutine reads all the input data, and, if necessary,
lists them.

DETAIL: Given a trajecotry and policy, this subroutine evaluates and
lists the energy, and irrigation activities for each operating
period, and sums them for the entire operating horizon.

POWER: Given a set of outflows from reservoir 1 and at node 4 during
any period, this subrouting calculates the total energy gen-
erated, compares it with the demand, and evaluates the returns
and deficits.

TRRIG: This subroutine evaluates the returns due to irrigation activi-

ties using the functions described by Figures 14 and 15.

STATE: This subroutine uses the Gj 3 provided in input data to set up a

3

corridor around the trial trajectory.
DPD: This subroutine uses the forward deterministic algorithm of

dynamic programming to maximize the performance criterion of
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equation (63) subject to equations (58), (59), (6Q), and (61)
for the states inside the corridor.

TRACE: Given a final state located inside the corridor this subroutine

traces the trajectory which starts with the initial state and

ends with the final state.

SERECER

PLOT 1: Given a trajectory this routine plots state vs. stage for each

reservoir using a Calcomp plotter.

5-3-7. Constraints and Parameters Used in the Analysis

In the analysis of this system by the DDDP approach, the following

constraints and parameters were assumed:

1. Irrigation target demand was set at 4.0 X 106 ac.ft./yr., and
monthly target demands were calculated using Table 5. The per-

Hf.". centage of irrigation return was set atla(n) = .3, for
n=20,1, ..., N-1.

2. Power target demand and installed power plant capacities are
given by equation (61) and the monthly target power demands
were calculated using Table 6.

3. The maximum and minimum capacity of reservoirs are given by

equations (59).

4, The desired initial and final state vectors were set as follows:

[10.0 ]

soy = alw = | 1A (66)

9.0
10.0
& 4
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5. The state sub-domain at each stage was computed from the following

assumed increments from the state variables:

Ul,l = - 0.3 01,2 = 0 01!3 =+ 0.3

02,1 = - 0.03 02,2 =0 02’3 =+ 0.03

03,1 = - 0.3 03,2 =0 0333 =+ 0.3 §7]
04’1 = - 0.3 54,2 =0 04,3 =+ 0.3

6. Based on the above parameters and constants two trial trajectories,

A and B, of Figures 16 and 17 were calculated.

5-3-8. Discussion of Analysis

Uging the trial trajectories A and B of Figures 16 and 17, the
system was analyzed for 12 monthly operating periods. In order fo achieve
near optimum results the.technique of variable corridor width described in
Section 5-1-5 was used. First a set of state sub-domains computed from
equations (67) were adopted, and iterations continued in six corridors each

with a width equal to 0,7 that of the previous corridor. At the end of

each iteration a trajectory satisfying the boundary conditions in equation (66)

was traced. Figures 16 and 17 present the trial trajectories and their
respective final trajectories obtained after 30 iterations. Tigures 18 and
19 show the rate of convergence to the final trajectory for different trial
trajectories. Figures 20 and 21 show the results for trajectory C which is
the extension of trajectory B to 24 months of operation. Table 9 summarizes
the results of optimization for the three trial trajectories.
Comparison of the final trajectories A and B reveals that even

though they are rather similar, differences exist between them. Results of

Table 9 indicate that final trajectory B provides about $57,000 (about 0.17%)
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per year more return than A. The differences between these two final tra;
jectories may be attributed to the choice of the trial trajectory and the
state sub-domains. In both cases a state sub-domain computed from equa-
tions (67) was used for the trial trajectory. It may be more effecient
computationally to determine the state sub-domain as a function of stage
and iteration number as suggested by Mayne [1966] and Jacobson [1968a].
See Section 6-2-1 for discussion regardiﬁg computations of the state
sub-domain.

Table 9 shows that all final trajectories satisfied the annual
target irrigation and power demands, and that there was a surplus power
of about 27.2%, 29.1%, and 28.57 with respect to the demand for final tra-
jectories A, B, and C respectively. Tables A-1, 2, 3, 4, 5, 6 in Apendix A
show that monthly irrigation and power demands are satisfied. In addition,
surplus power was sold as dump energy (priced at 1.5 mills per kilowatt hour)
and, therefore, the total return would have been more had the annual energy
demand been set higher than 2.0 k lO9 kw hr. This ;onclusion suggests that
the parameters and demands set in this analysis do not represent the optimum

capability of the system. Therefore, in further analysis, the response of

the system to higher demands must be evaluated.
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6. CONCLUDING REMARKS

6-1. Summary and Conclusions

i kv

This study has been primarily aimed at the presentation of an
approach (based on existing optimization techniques) which is suitable
for analysis of operation policies of multiple-purpose and multiple—uﬁit
water resources systems. While investigating the characteristics of these

systems, it was concluded that dynamic programming is applicable for the

optimization of their operating policies. However, further investigation

e R RN

of sténdard dynamic programming revealed a dimensionality problem which
o oo limits its application to low-order systems. Attempts to curb the dimen-
sionality of the standard dynamic programming led to an approach which
originally had been inspired by Larson's [1968] state increment dynamic
programming, but whose theoretical justification was found to be that of
differential dynamic programming presented by Mayne [1966] and Jacboson

[1968a, b, ¢]. The proposed DDDP approach which deals with the optimization

simplified system, and Clearwater River System) whose solutions could not
be obtained using standard dynamic programming with the available computer
facilities and budget allocated for compﬁter time. In the analysis of
these systems it was discovered that the invertibility of system equations
in water resources can be used to reduce computation time.

For the first system the solution by the proposed approach with

: three different trial trajectories was found to be the exact solutions
obtained by two other techniques. However, it was concluded that this
exactness in results is due to the choice of the trial trajectory and the

state sub—domains. The selection of a different set of state sub-—domains

proved to provide near optimum results.
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The difficulties in the choice of the trial trajectory and the
state sub—domains became more apparent in the solution of the second system
which is much more realistic than the previous one, but which must still
be considered a simplified system with respect to actual systems. It was
observed that the choice of two different trial trajectories led to two

different but close final trajectories. The total return of final trajec-

tory A is about 0.17% less than that of final trajectory B. This difference

was attributed to the choice of the trial trajectories and the state sub-
domains which remained the same for both trial trajectories.

Extensions of the time horizons of the above systems, without
any changes in demand and objective function, from 12 to 24 time periods
produced operating policies in each of the two sets of 12 time periods very
similar to those obtained in the analysis for a time horizon of only 12
time periods. The results of the analysis of the Clearwater River system
indicate that it is capable of answering higher demands than are set in
the analysis.

It must be mentioned that the solution of these systems became
possible by reducing them to a class of problems generally referred to as
two-point boundary-valued problems. This apprdach naturally excludes many
cther.solutions. However, in water resources analysis many of these
solutions are not considered operationally feasible. For example, the
solution of cases where the reservoirs are full or empty at the beginning
and end of a certain time period may never be operationally feasible and
therefore may be excluded from the analysis. There are cases due to system
constraints, such as flood control pool, recreational, and power head
requirements which make the solution of a general problem wasteful, i.e.,

a problem which provides answers for every initial and final state,
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6-2. Recommendations for Future Studies

The following recommendations and suggestions are the direct result
of the realization that this study has not investigated all of the possible
improvements that can be made to the proposed approach and its applications

to actual systems.

6-2-1. Regarding the Approach

In the application of the proposed approach two major difficulties

were observed which may be improved as follows.

6-2-1-1. Choice of Trial Trajectory

The choice of the trial taajectory can reduce the computing time
noticeably, simply because the closer the trial trajectory is to the optimal
trajectory, the fewer are the iterations that are required to arrive at or
near the optimal trajectory. Larson's [1968] successive approximation
dynamic programming algorithm based on Bellman's [1957, 1961] work may be
employed to arrive at a trial trajectory. In fact, in applying this
technique (successive approximation dynamic programming) to the problem
presented in Section 5-1 a near optimal trajectory was obtained in this
study. Another approach in setting up the trial trajectory is the use of
engineering judgment. This approach is particularly applicable to water
resources systems where most of them are presently being operated on the

basis of such engineering judgment.

6-2—-1-2. Choice of the State Sub-Domains

The choice of a set of state sub-domains at the start of each
iteration as a function of stages may be considered as the most important
single factor in the rate of convergence. In selection of these sub-domains

works of Mayne [1966], Jacobson [1968a], and Jacobson and Mayne [1970]
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may be employed. These works form the Hamiltonian of the return function
and optimize it by calculus of variation to estimate the best changes in
decision and states as functions of time in the neighborhood of the trial
trajectory. Both of these algorithms require that the second derivative
of the Hamiltonian with respect to the decision wvariable be negative-
definite for a maximization problem. This requirement may be difficult to

fulfill in water resources systems where some objective functions, such as

flood control return functions, are not continuously differentiable, However,

approximation of these functions by a proper order polynomial function
which satisfies the above requirement may generate a close approximation
to the optimal Su(t) and 8s(t) in equations (21) and (22). Mayne's

algorithm, which is an approximation to Jacobson's, exhibits one step con-
PP

vergence for control problems with linear equations and quadratic performance

criterion. In this context, Mayne's algorithm is found to be considerably
more efficient than Jacobson's algorithm [Jacobson, 1968a]. Therefore,
perhaps an approximation of the objective function by a second order poly-

nomial is suitable for an approximation of the state sub-domains.

6-2-2. Choice of Return Functions

In the course of this study it was observed that the compatibility
of return functions play an important role in the final results. Assume
that storage in a reservoir provides recreation, and outflow from it
generates hydropower and may cause flood damage. If the return and damage
functions are assumed without substantial amount of economic and engineering
studiaé, the result of optimization may not show any logical conclusion.

For example, if an unjustifiably high penalty is assumed for the hydropower
shortage, the optimizing model selects decisions which méy not be realistic

as far as flood control and recreation projects are concerned. Therefore,
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one of the prime objectives of any future study should be the development

of realistic return functions for the water resources system under study.

6-2-3. Regarding the Hydrology

In this study the economic response of the physical system was
measured in terms of the mean monthly flows. However, in a more realiétic
analysis, statistical and stochastic models describing the joint probability
distributions of the different river flows must be formulated and incor-
porated into the recursive equation of dynamic programming. Perhaps one

should be warned of the sharp increase in the computer time requirements

with this type of data.

6-2-4, Regarding the System Optimization

In a complete optimization of the water resources system, fhe
operating phase must be optimized in conjunction with the planning and
allocation phases. The proposed optimization procedure may be repeated for
different combinations of planningAand allocation decisions to form a
maximum return response surface. Then, this surface may be optimized by
a static optimization technique such as the steepest ascent in an attempt

to obtain the most suitable combination of decisions, i.e., planning,

allocation, and operation.
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APPENDIX A. COMPUTER PROGRAMS AND DESCRIPTION OF PROGRAM INPUT AND OUTPUT

A-1. Notation Used to Input Data for Program to Analyze Clearwater

River System

TUNIT = Low-speed storage unit used to store computed- data
of the previous stages.

N = Number of stages in analysis.

ITER = Maximum number of iterations to be performed in each
corridor width.

NCOR = Number of corridors to be considered in the analysis.
IFLAG = A flag which specified whether stochastic dynamic
programming or deterministic dynamic programming

should be used.

If IFLAG 1, then analyze stochastically.

If IFLAG 2, then analyze deterministically.

Note: Since the subroutine for stochastic dynamic
programming is not included in the following
program, this flag should always be set equal
to 2 in the input data.

IPRINT = A flag specifying whether or not a listing of the
input data is required.

If IPRINT = 0, then no listing of input data will
be produced.
If IPRINT = 1, then the input data will be listed.
IPLOT = A flag specifying whether or not a plot of trajectory

is required.

1]

If IPLOT = 0, then no plot will be produced.

I

If TPLOT 1, then plots will be produced.

ALPHA = A constant equal to 0.3 specifying the percentage of
irrigation water return,

CONST = A negative constant, such as -1000000, replacing all
the variables to be calculated at the start of

computations.

6
CR(T) = Capacity of reservoir I, I = 1,2,3,4, (107 ac.ft.).
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(629-88
CPP2
TIRR
TPWR
BPUFE
CPUDEF
BPUDUP
SI(I)
SF(I)

DS(I)

S(IS,N)

EY (I,N)

DMIN(IS,N)

SMIN(IS,MN)

SMAX (IS,N)

PPR(MO)

PTR(MO)

A(L,I)

Capacity of power plant 1 (Mw).

Capacity of power plant 2 (Mw).

, 6
Target irrigation water demand (10

Target power demand (Mw hr.).

ac, Tti)a

Return per unit of firm energy ($/Mw hr.).

Cost per unit of deficit energy ($/Mw hr.).

Return per unit of dump energy ($/Mw hr.).

Initial storage of reservoir I, I = 1,2,3,4 (106

ac.ft.).

Final storage of reservoir I, I = 1,2,3,4 (106 acyEla).

One half of the initial corridor's width for reservoir

I, I =1,2,3,4 (10 ac.ft.).

Initial trajectory of reservoir IS, IS = 1,2,3,4 at
stage N, i = 1,2, ...,

NN (lO6 ac. ft.).

Expected inflow of stream I, I = 1,2,

(106 ac.ft.

Lower bound on decision IS, IS
ge.ft;

N, N = 1,2,

Lower bound on storagé IS, IS =
., 12 (10

) -

., 12 (109

ning of month N, N = 1,2,

I

p—g
.

15243

Upper bound on storage IS, IS = 1,2,3
ning of month N, N = 1,2,

. =

, 12 (10

6

2

ey (NN_l)

1,2,3,4 during month

4 at the begin-
ac.ft.).

4 at the begin-
aci:Fr, Yu

Percentage of the power demand during month MO,

MO = 1,2,

Percentage of the irrigation water demand during month MO,

MO = 1, 2,

ey

LREREY

12,

2

Coefficients of the polynomial describing the effective

power head-storage relationship for reservoir 1 in Table 7.
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101

99

100

101

102
103

SUBROUTINE DETAIL{NN,FLAG2,IT,ICsIFLAG)

COMMON NNS{4,121)pST(4) SF4),SL164,12143)SINML(B1),S2NMLIBL)
1,53NML{BL) +S4NMLIB1) ,FN(BL) FNML(BL),D5N(BL),D5NMLI2,81)+EY(S
2,120),YL(551243) $DMIN(4,12) 4DMAX(4,12) 4DIR(12)4DPRI12),BETALL
32) 250441211 ,0504) ySMINI4,13)9SMAX(4413)5A(146),D15,121),PPRI{1
42) yREPWR(12) +PIR(12);RETURN(13)4CR(4) +ALPHA,CONST,CPP1,CPP2,H
S1MAX,WCPP2,BPUFE,CPUDEF,BPUDUP,UPIR,PRID(243)

DIMENSION FLAGLI12)

PRINT 100041T,IC

FLAG2=0.

MD=0

SBPRYR=0.

SBPRHR=0.

SBIRYR=0.

SBIRHR=0.

SWIRYR=0.

SWIRHR=0.

SPRYR=0.

SPRHR=0.

SBPYR=0.

SBHR=0.

DO 99 MD=1,12

FLAGLIMO)=0.
DO 110 N=2Z4NN
NM1=N-1
MO=MO+1

IF{MO.GT-12)1MD=1
IF(IFLAG.EQ.1)NML=MD
DI{LyN=1)=5(LsN-1)+EY(LyNML)=5(14N]}
IDE=1

IF(D(LsN=1).LT.OMIN(L,MD})GD TO 111
DI2sN=1)=S12sN-L)I+EY(2,NML)-5{2,N)
1DE=2

IF(DI2¢N=1) .LT.DMIN(2,MD})IGD TO 111
DE{3sN=-1)1=S{34N=-1)+EY (3, NML)=-5(3,N)
I1DE=3

IF(D(3,N-1)«LT.DMINI3,M0)IG0O TO 111
FLOZ2=D(1sN=1)+D(24N-1)+EY (4 4NM1)
IF(FLO2.GE.DIR(MD})GDO TO 100
DI5.N=-1)=FLD2

DEFIR=DIR(MO)-FLO2
PIRSH=(DEFIR/DIRIMO) }*100.

GO TO 101

D{5,N=1)=0D1IR(MO)

DEFIR=0.

PIRSH=0.

CONTINUE

1F(N.GT.2)G0 TO 102

RUNOFF=0.

GO TO 103

RUNOFF= ALPHA*D(S,N—Z]
Dl4aN=1)=5044N-1)-5(4,MN}+FLOZ2-D(5+N=1)+RUNDFF
IDE=4

IF(D{4,N=1).LT.DMIN(4,M0)}G0 TO 111
FLO4=D{34N=1)+D(44N-1)}+EY(54NML)
CALL POWER(S(L1sN=1)sS{LyN)yD(1yN-1)sFLO4sMO4CPPLyHIMAX,WCPP2,
1CPUDEF, BPUDUP+BPR,TOTP yA,DPR,RFPHR+PPRSH,PPRSP)

IF(PIRSH.GT.80.160 TO 104
CALL TRRIG(PIRSHy;BIR,MO,DIR,BETA,IPIR)
GO T 105
104 BIR=0.
FLAGL(MOD)=1.
105 CONTINUE
DO 106 M=1,M0
IF(FLAGL(M}.EQ.1.)60 TO 107
106 CONTINUE
SBPYR=SBPYR+BIR+BPR
SBIRYR=SBIRYR+BIR
GD TO 108
107 SBPYR=SBPYR+BPR-SBIRYR
SBIRYR=0.
108 CONTINUE
SWIRYR=SWIRYR+D(5,N=1)
SPRYR=SPRYR+TOTP
SBPRYR=SBPRYR+BPR
PRINT 1001 ,N,MD;D(5,N=1),PIRSH;SWIRYR,BIR,SBIRYR,TOTP PPRSP P
1PRSHy SPRYR ,BPR, SBPRYR, SBP YR
IF(M0.LT.12)G0 TO 110
DO 109 M=1,12
109 FLAGL{M)=0.
SBIRHR=SBIRHR+SBIRYR
SBPRHR=SBPRHR+SBPRYR
SWIRHR=SWIRHR+SWIRYR
SPRHR=SPRHR+SPRYR
SBHR=5BHR+SBPYR
SBIRYR=0.
SAPRYR=0.
SWIRYR=0.
SPRYR=0.
SBPYR=0.
110 CONTINUE
RETURN(IC)=SBHR .
PRINT 1003,SWIRHRySBIRHR
PRINT 1004, SPRHR ;5BPRHR
GO TO 112
111 PRINT 1002,N,M0,1DE
FLAG2=1. &,
1000 FORMAT(1H1,//,10%,'SUMMARY OF IRRIGATION, PWER, AND FLOOD- ACT
LIVITIES (TRAJ. OF ITER ',12,% IN CORRe '4125')%¢//92%s "N¥32Xs
Z¥MDY 43X 'D5' 43Xy "PIRSH® 41X, "SHIR/YR' 35X 4 'BIR" 34X 'SBIR/YR' 45X
3,1 TOTP ' 43X, ' PPRSP 11X, *PPRSH! 42Xs *SPR/YRY s 7X1 "BPR ' 44X, ' SBPR/Y
4R L e3X g STB/YRI ./ BXs ' (M=AF) 142X 4" (%) 142X, " (M=AF)
SH 5Ky T (K=511 34Xt (K=$)1 33Kyt (MW=HR) ' 33Xy ' (%) 143X, ()1 ,3X, ' (M
BU-HR) " 45X 5 ' [K=5) 7 54X, ' (K-8} 7, SXy ' (K=$) "y /)
1001 FORMAT(L1Ky1351Xy12,FTabsFba2yFBaks3F10.15 Fb.2,5F101)
1002 FORMAT(1X,'AT N=',13,% AND MO=%,12,% D*,I1,% IS LT. DMIN®)
1003 FORMAT(//35Xs *SWIRHR (M=AF)=%,F10.4,10%, 'SBIRHR (K-$)=",
LF10.1)
1004 FORMAT(/y5Xy* SPRHR (MW-HR)=4 yF10.1510X, ' SBPRHR (K—$)=
112 CONTINUE
RETURN
END

'yF10.1)
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col

24
25
26
27
2H
29
30

32

33

331
34

15

16
18
19

S2NML(M2)=SL(2,N-1,J1)
SANML(M2)=SL(3,N-1,K1)
SANML(MZ)=SL (4 4N=-1,L1)
D5N (M2 )=U5N
NSNML(2,M2)=D5NMT (1,M1)
FLAGL(2,M2)=TAGM2
SBIR(2,M2)=SRIRM2
CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

COMTIMUE

CONTINUE

WRITECTUNITINy (SIMML(MZ) (S2NML (M2 ) 3 SINML [M2) 4 SANMLIMZ ], DSN{M2
1) ¢DSNML(2,M2) 4 M2=1,NDIN2)
PO 33 M2=1,NDIM2
FNML(M2)=FN(M2)
DSNML{1,M2)=D5N(M2)
FLAGL(1,M2)=FLAGL[2,M2)
SBIR(1,M2)=SBIR(2,M2)
CONTINUE

IF(MD.LT.12)GD TO 34

DO 331 M2=1,NDIM2
FLAGL(1+M2)=0.
SBIR(1,M2)=0.

COMT INUE

CONTINUE

ENDFILE TUNIT

RETURN

END

SUBROUTINE IRRIGIPIRSH,BIR,MO.DIRLBETAUPIR)
OIMENSION DIR({L2)HRETA(L2]}) ’

CALCULATE GROSS TRRIGATINM BENEFITS IN(51000.)
IF(PIRSH.GT.10.1G0 TOD 15
PLGA=0.8%PIR5H
60 TO 18
TF(PIRSH.GT.70.)GN TN 16
PLGB=1.45%PIRSH-6.5
GO TO 18
PLEB=D.5%PIRSH+A0.0
BIR‘lD[R(MU}vUPIR-iﬂIR{MGI#UPIR*PLGHZIOD-I*BETAEMUIIIIOOG.
CONTINUE
RETURN
END

(gl gl

SURRNUTINE TRACE (NN THINTT yMNN NMMT MNP 1y TFLAG)

TRACE TRAJECTORY WHICH SATISFIES THE AOUNDARY CONDITIONS
S1 AND SF

COMMON NNS{49121),5T1(4),SF{4),SL{4,121,3),SINMLIB1),52NM1(B1}
1,53NM1EBL), 54NM11a1:,Fu:al:.Fantal:.nswtall.DSletz 81)+EY(5
291200, YL{5:12:3)4DMIN(4,12)0MAX(4412),DIR(12),DPR(12),BETA(L
329551441210 4D514) $SMINI4,13) ;SMAX(4,13) 3 A0146)4D(5,121)4PPRI1
421,RFPth1?:,Platlz1,RFTURN(13:.cR¢4},ALPHA.CUNST.EPPl.cppz H
51MAX , WCPP2,APUFE s CPUDEF +BPUDUP P TR, PRID(243)

NIMENSION NOD{&)
D0 10 15=144
10 SUIS,NN)I=SF(IS)
MO=MNM
DO 15 NH=1,NNML
N=MMP1-NR
MO=MO-1
IFIMOLLT.1)M0=12
IF{IFLAG.ED.1}NML =MD
NM1=N-1
NOTM=NNS( 1, MIENNS (2, N)FNNS (3N *NNS [4,0)
NnO 13 158=1,4%
NNOD=NNS{T5,M)
DO 11 I=1,NNOD
11=1
TFISLI5,N) EQ.SLITIS,N,1)1G0 TO 12
11 CONTINUE
12 NOD(1S)=11
13 CONTINUE _
M=(MADLLY =1 ) %NNS (2, M) ENNS (3 NI #=NNS L4 NI+ (NDDE2) =1} #NNS{3 4N} =N
INS (4, N)+INODI3I=1 }=NNS (49N)+NDDL4)
IFIN.EQ.NN)MNN=M
DD 14 IR=1,2
BACKSPACE ITUNIT

14 CONTINUE
REaDliumlT)NP.t51Nm1lM21.szwnl(Mz}.saunltMZI,squnllnzl D5N{ M2
1) +DSNML(2,M2),M2=1,NDIM)
SE1,N-21)=51NM1{M)
S124N=11=52NML{M)
S13,N=1)=53INMI(M)
S{a,N=1)=54NMLIM)
DIl M=13=5S(14N=1)-S{LyNI+EY(1,NM1)
DI2yN=1)=5(24N=1)-5(2,N)+EY(2,NM1}
DE3gN=1)=5(3yN=-1)=-S(3;MI+EY (3 ,NM1)
DU4gN=11=504sN=11=5{&,N)+D(14N=12)+D[24N- 1]+EYE4:NM1i+ALPHA*DS
INML(2,M)=DNSN(M) )
D(5,N=11=D5N{M)

15 CONTIMIIE

16 CONTINUE
RETURN
END
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A-3, Notation Used in Output Tables for Clearwater River System

N

MO

PIRSH

SWIR/YR

BIR

SBIR/YR

TOTP
PPRSP
PPRSH

SPR/YR

BPR

SBPR/YR

STB/YR

(M-AF)
(X-8)

SWIRHR

SBIRHR

SPRHR

SBPRHR

Stage

Month

Storage (state) or reservoir i, 1 = 1,2,3,4 in 106 ac.ft.
Outflow (decision) from reservoir i, i = 1,2,3,4 in 106 a A,
Irrigation diversion in 106 ac.ft.

Percent monthly irrigation shortage.

Sum of the irrigation diversion per year from the beginning of the
irrigation season to the end of month in question in 10° ac.ft,

Monthly return due to irrigation activities in $1000.

Sum of the returns per year from the beginning of the irrigation
season to the end of the month in question in $1000.

Total monthly power generated by PPl and PP2 in Mw hr.
Percent monthly power surplus.
Percent monthly power shortage.

Total power per year from the beginning of the operating i
vear to the end of the month in question in Mw hr. |

Monthly return from hydropower.

Total return per yvear from hydropower from the beginning of the B
operating year to the end of the month in question in $1000. :

Sum of the total returns per year from the beginning of the b
operating year to the end of the month in question in $100. '

106 ac., ft.
§1000. ) A

Sum of the total water diverted for irrigation during'the
entire time horizon in lO6 ac.ft.

Sum of the total returns due to irrigation activities during
the entire time horizon in 106 ac.ft.

Sum of the total pewer generated during the entire time horizon
in Mw hr.

Sum of the total returns due to power generated during the entire
time horizon in $1000.

106




LOT

TABLE A-1. Trial Trajectory A and Detailed List of Activities
Trial Trajectory A (all units in 106 ac.ft.)
N $1 %) B3 54 Wy Uy U3 4 Us
1 10.0000 1.0000 9.0000 10.0000 0.2112 0.1033 1.0675 0.0 0.3939
2 10.5000 1.0100 8.7000 10.0000 0.5197 0.1830 1.3098 0.3297 0.5840
3 11.5000 1.0200 8.5000 10.0000 1.1079 0.1139 1.1545 0.7953 0.6640
4 11.5000 1.0300 8.0000 10.0000 1.2969 0.0373 0.4267 0.7900 0.7600
5 10,5000 1.0300 7.7900 10.0000 1.2895 0.0128 0.0055 0.8156 0.7200
6 9.3000 1.0300 7.8800 10.0000 0.0676 0.0106 0.0089 0.2160 0.0838
7 9.3000 1.0300 7.9500 10.0000 0.0095 0.0150 0.0002 0.0251 0.0310
8 9.4000 1.0300 8.0600 10.0000 0.0386 0.0175 0.0022 0.0766 0.0
9 9.5000 1.0300 8.2100 10. 0000 0.0663 0.0193 0.0084 0.1016 0.0
10 9.6000 1.0300 8.4200 10.0000 0.0340 0.0162 0.0047 0.0672 0.0
11 9.7000 1.0300 8.6000 10.0000 0.0308 0.0161 0.0773 0.0711 0.0
12 9.8000 1.0300 8.7000 10.0000 0.0269 0.0626 0.0098 0.1408 0.0
13 10.0000 1.0000 9.0000 "10. 0000
Return (51000) = 12552.14
Summary of Irrigation and Power Generation Activities (Trial Trajectory A)
N MO D5 PIRSH  SWIR/YR BIR SBIR/YR TOTP PPRSP PPRSH  SPR/YR BPR SBPR/YR STB/YR
(M-AF) (%) (M-AF)  (K-$) (K-8) (MW-HR) (%) (%)  (MW-HR) (K-%) (K-3) (K-9)
2 1 0.3939 20.58 0.3939 1988.1 1988.1 221645.0 43.93 0.0 221645.0 1179.5 1179.5 3167.6
3 2 0.5840 0.0 0.9779 2761.7 4749 .8 276266.8 66.43 0.0 497911.8 1327.4 2506.9 7256.7
4 3 0.6640 0.0 1.6419 3140.0 7889.8 278475.7 56.45 0.0 776387.4 1396.7 3903.6 11793.4
5 4 0.7600 0.0 2.4019  3594.0 11483.8 276266.8 51.80 0.0 1052654.0 1415.4 5319.0 16802.8
] 5 0.7200 0.6 3.1219 3404.8 14888.6 244344 .3 31.37 0.0 1296998.0 1389.5 6708.5 21597.1
7 6 0.0838 83.11 3.2057 0.0 0.0 56926.4 0.0 68.72 1353924.0 1023.9 7732.2 7732.3
8 7 0.0310 88.93 3.2367 0.0 0.0 8917.5 0.0 94.56 1362841.0 837.8 8570.2 8570 2
9 8 0.0 0.0 3.2367 0.0 0.0 29548.0 0.0 81.76 1392388.0 B869.1 9439.3 9439 .3
10 9 0.0 0.0 3.2367 0.0 0.0 49454.2 0.0 70.21 1441842.0 928.9 10368.2 10368.2
11 10 0.0 0.0 3.2367 0.0 0.0 33671.9 0.0 79.47 1475513.0 887.3 11255.5 11255.5
12 11 0.0 0.0 3.2367 0.0 0.0 47007.9 0.0 68.66 1522520.0 844.0 12099.5 12099.5
13 12 0.0 0.0 3.2367 0.0 0.0 61311.2 0.0 58.01 1583831.0 852.6 12952.1 12952.1
SWIRHR (M-AF) = 3.2367 SBIRHR (51000) = 0.0
SPRHR (MW-HR) = 1583831,0 SBPRHR ($1000) = 12952.1
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TABLE A-5. Trail Trajectory C and Detailed List of Activities

Trial Trajectory C (all units in 106 ac.fe.)

8 | By 8 %4 b 2 Y Uy “s
1 10.0000 1.0000 9.0000 10,0000 0.7112 0.1133 0.7675 0.4079 0.4960
2 10.0000 1.0000 9.0000 10,0000 1.5197 0.1930 1.10%8 1.3703 0, 5840
3 10.0000 1.0000 9.0000 10,0000 1.1079 0.1239 0.6545 0.8053 0. 6640
4 10,0000 1.0000 9.0000 10.0000 0.2969 0.0373 0.2167 0.1992 0.3508
5 10,0000 1.0000 9.0000 10. 0000 0.0895 0.0128 0.0955 0.1052 0.1076
6 10.0000 1,0000 9,0000 10.0000 0.0676 0.0106 0.0789 0.0323 0.0838
7 10.0000 1.0000 9,0000 10.0000 0.1095 0.0150 0.1102 0.0251 0.1310
8 10.0000 1.0000 9.0000 10,0000 0.1385 0.0175 0.1522 0. 2066 0.0
9 10.0000 1,0000 9, 0000 10,0000 0.1663 0,0193 0.2184 0.2016 0.0
10 - 10,0000 1.0000 59,0000 10,0000 0.1340 0.0162 0.1847 0,1872 0.0
11 10.0000 1.0000 9.0000 10,0000 0,1308 0.0161 0.1773 0.1711 0.0
12 10.0000 1,0000 9.0000 10.0000 0.2269 0.0326 0.3098 0.3108 0.0
13 10.0000 1.0000 9, 0000 10.0000 0.7112 0.1133 0.7675 0.4079 0.4960
14 10.0000 1.0000 9,0000 10.0000 1.5197 0.1930 1.1098 1.3703 0.5840
15 10.0000 1.0000 9.0000 10.0000 1.1079 0.1239 - 0.6545 0.80353 0.6640
16 © 10,0000 1,0000 9.0000 10,0000 0,2969 0.0373 0,2167 0.1992 0.3508
17 10.0000 1.0000 9.0000 10,0000 0.0895 0.0128 0.0955 0.1052 0.107&
18 10.0000 1.0000 9.0000 10.0000 0.0676 0.010a 0.078% 0.0323 0.0838
19 10,0000 1.0000 9.0000 10.0000 0,1095 0.0150 0.1102 0.0251 0.1310
20 10,0000 1.0000 9,0000 10,0000 0.1386 0.0175 0.1522 0.2066 0.0
21 10,0000 1,0000 9, 0000 -10,0000 0,1663 0.0193 0.2184 0,2016 0.0
22 10,0000 1,0000 9.0000 10.0000 0.1340 0.0162 0.1847 0.1872 0.0
23 10.0000 1.0000 §.0000 10.0000 0.1308 0.0161 0.1773 0.1711 0.4a
24 10,0000 1.0000 9,0000 10. 0000 0.2269 0.0326 0.3098 0.3108 0.0
25 10.0000 1,0000 9.0000 10,0000
Return ($1000) = 26846.67
Summary of Irrigation and Power Generation Activities (Trial Trajectory C)
i N M0 D5 PIRSH SWIR/YR BIR SBIR/YR TOTP PPRSP PPRSH SPR/YR BPR SBEPR/YR STR/YR
i (M-AT) (¢3) (-AF)  (K-$§)  (K-8)  (MW-HR) (% (%) (W-HR) (K-%) (x-$) (K-$)
)
q 2 1 0.4960 0.0 0.4960 2345.5 2345.5 271523.1 76.31 0.0 271523,1 1254,3 1254.3 . 31599.8
A 3 2 0.5840 0.0 1.0800 2761.,7 5107.2 271523.1 63.57 0.0 543046.3 1320.3 2574.6 7681.8
fﬁ & 3 0.6640 0.0 1,7440  3140,0 8247.2  271523:1 52,54 a.0 B14569.4 1386,3 3960.8 12208.1
i 5 & 0.3508 53,84 2,0948 1021.7 9269.0 169622.1 0.0 6.80 9B4191.4 1249.2 5210.1 14479.0
| & 5 0.1078 B5.06 2,2024 0.0 0.0 62072.5 0.0 66.63 1048283.9 1054.1 6264.2 6264.2
7 6 0.0838 B83.11 2.2862 0.0 0.0 41049.3 0.0 77.45 1087313,0 992.1 7256.3 7256.3
8 7 0.1210 53,21 2,4172 979.4 0.0 60351.0 0.0 63,20 1147664.0 940.7 81%7.0 8197.0
9 8 0.0 0.0 2,4172 0.0 0.0 105618.3 0.0 34.80 1253282.0 1021.2 9218.3 9218.3
w s 0.0 o0.0 2,4172 0.0 0.0 129931.8 0.0 21,73 1383213.0 1089.9 10308.1 10308.1
i1 10 0.0 0,0 2,4172 0.0 0.0 109643.3 0.0 33,14 1492856.0 1039.3 11347.4 11347.4
12 11 0.0 0.0 2.4172 0.0 0.0 111415.0 0.0 25.72 1604271.0 972.8 12320.2 12320.2
13 12 0.0 0.0 2.4172 0.0 0,0 200076.3 37.04 0.0 1B04347.0 1103.1 13423.3 13423.13
14 1 0.4960 a.0 0.4980  2345,5 2345.5 271523.1 76.31 0.0 271523.1 1254.,3 1254.3 3599.8
15 2 0.5840 0.0 1,0800 2761.7 5107.2 271523.1 63.57 0.0 543046.3 1320.3 2574.6 7681.8
16 3 0,6640 0.0 1.7440 3140,0 8247,2 271523.1 52,54 0.0 B14569.4 1386.3 3960.8 12208.1
17 &4 0.3508 53,84 2,0948 1021,7 9269.0 169622.1 0.0 6,80 984191.4 1249.2 5210.1 14479.0
18 5 0.1076 B5,06 2,2024 0.0 0.0 62072.5 0.0 66,63 1046263,9 1054.1 6264.2 6264.2
19 & 0,0838 83.11 2.2862 0.0 0.0 410469.3 0.0 77.45 1087313.0 992.1 7256.3 7256.3
i 20 7 0.1310 33.21 2,4172 979.4 0.0 60351.1 0.0 63.20 1147664.0 940.7 8197.0 8197.0
A 21 8 0.0 0.0 2,4172 0.0 0.0 105618.3 0.0 34,80 1253282,0 1021.2 9218.3 9218.3
o 22 9 0.0 a.0 2.4172 0.0 0.0 129931.8 0.0 21.73 1383213.0 1089.9 10308.1 10308.1
: 23 10 0.0 0.0 2.4172 a.0 0.0 109643.3 0.0 33,14 1492856.0 1039.3 11347.4 11347.4
o 24 11 0.0 0.0 2.4172 0.0 0.0 111415.0 0.0 25.72 1604271.0 972.8 12320.2 12320.2
E 25 12 0.0 0.0 2,4172 0.0 0,0 200076.3 37.04 0.0 1804347.0 1103.1 13423.3 13423.3
ﬁ SWIRHR (M-AF) = 4. B344 SBIRHR ($1000) = 0.0
SPRHR (MW-HR) = 3608694.0 SEPRHR ($1000) = 26846.7
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TABLE A-6, Final Trajectory C and Detailed List of Activities

Final Trajectary € (all units in lﬂﬁ ae.ft.)

8 1 52 o = Hy Y b Y 5
1 10,0000 1.0000 9,0000 10,0000 0,3392 0.0792 0.7495 0.0018  0.4960
2 10.3720 10,841 9.0180 10.0000 0.4097 0.0823 0.7832 0.02462 0.5840
3 11,4820 1,1448 9, 3446 10,1254 0,5079 0.0983 0.8294 0.0636 0.6640
& 12,0820 1.1704 9.1697 10,2415 0.5969 0.1767 0.4795 0.5045 u.7aoq
5 11.7820 1.0310 8.9089 9.9664 0.6895 0.0353 0.6850 0.2696 0.7200
& 11,1820 1.0085 8,3174 9.9349 0.3676 " 0.1328 0.6915 0.0910 0.4960
1 10.8820 0.8883 7.7048 10.0699 0.2625 0.01%0 0,9142 0.0098 0.2800 i
8 10,7290 0.,8823 §,9008 10,2169 0.0665 0.0008 0.8178 0.1379 0.0 i
9 10.8011 0.8990 6.2352 10,2415 0.1292 0.0440 0.1087 0.68926 0.0
10 10.8382 0.8743 6.3449 9,7381 0.3440 0.0102 0.5306 0.2200 0.0
11 10.6282 0.8803 5.9990 9,8893 0.3408 0.0065 0.3135 0.44%6 0.0
12 10.4182 0.8899 5.8628 9.8112 0.3298 0.0007 0.0127 0.0319 0.0
13 10,3153 0.9218 6,1599 10,1611 0.4112 0.0089 0.6470 0.0035 0.4960
14 10,6153 1.0282 6.2804 10,1611 0.3197 0,1791 0.0628 0.2161 0.5840- q
15 11.8153 1,0401 7.3274 10.1014 0.5979 0.0090 0.2488 0.1624 0.6640 7
16 12.3253 1,1550 7.7311 10,1194 0.5969 0,1570 0,00687 0.3188 0.7600
17 12,0253, 1.0333 7,9431 10.0123 0,6895 0.0281 0.1043 0.2618 0.7200
18 11,4253 1.0200 7.9343° 9,9814 0.3676 0.1234 0.0068 0.4011 0.4960
19 11.1253 0.9072 8.0064 9.7969 0.3437 0.0041 0.0235 0.5532 0.2800
20 10,8911 0.9181 8.0931 9.4668 0.3486 0.0075 0.0493 0.4237 0.0
21 10,6811 0.9281 8.1960 9.4944 0.3322 0.0046 0.0084 0.2622 0.0
22 10,5152 0.9428 B.4060 9.5850 0.3402 0.0037 0.0377 0.5313 0.0
23 10,3090 0.9553 8,5530 9.4146 0.3369 0.0014 0,0303 0.1270 0.0
24 10.1029 0,9700 8.,7000 9.6501 0.3298 0.0026 0.0098 0.0338 0.0
25 10.0000 1.0000 9,0000 10,0000
Return ($1000) = 67541,06
Summary of Irrigation and Power Ceneration Activities (Final Trajectory C)
N MO o5 PIRSH SWIR/YR BIR SBIR/YR TOTP PERSP FPREH SER/YR BPR SEPR/YR STE/YR
(M-AF) ¢ (M-AF) (k-$) (K-5) (MW-HR) (%) (%) (¥-HR) (K-8} (K-%) (K-5)
2 1 0.4980 0.0 0.43960 2345.5 2345.5 264578.1 71.80 0.0 264578,1  1243.9 1243.9 3589.4
3 2 0,580 0.0 1.0800 2761,7 5107.2 272731.0 64,30 0.0 537309.1 1322.1 2566.0 7673.2
4 3 0,586840 0.0 1.7440 3140.0  B247.2 274841.6 54,41 0.0 812150.7 1391.3  3957.2 12204 .4
5 4 0.7600 0.0 2,5040 3594,0 11841.2 279921.6 53.80 0.0 1092072.0 1420.9 5378.1 [’ 17219.3
] 5 0.7200 0.0 3,2240 3404.8 15246.0 2710893 45.75 0.0 1363161.0 1429.6 GBO7.7 22053.B
7 60,4960 0.0 3.7200 2345.5 17591.6 244121.3 34.13 0.0 1607282,0 1367.2 8174.9 25766.5
8 7 0.2800 a.0 4,0000 1324,1 18915.7 230245.8 - 40,39 0.0 1837527.0 1247 .4 9422.3 28337.9
5 & 0.0 0.0 4.,0000 0.0 18915,7 166430.8 2,74 0.0 2003957.0 1140.6 10562.9 29478.6
10 9 0.0 0.0 4,0000 0.0 18915.7 172643.4 4.00 0.0 2176600.0 1172.0 11734.9 30650.5
11 10 0.0 0.0 4,0000 0.0 18915.7 244028.7 48,80 0.0 2420628.0 1268,0 13002.9 31918.6
12 11 ©.0 0.0 4, 0000 0.0 18915.7 247444.8 64,96 0.0 2668072.0 1196.2 14199.1 33114.7
13 12 0.0 Q.0 &,0000 0.0 18915,7 154864.3 6.07 0.0 2822936.0 1035.3 15234.4 34150.0
14 1 0.4960 0.0 0.4960 2345,5 2345.5 256724.5 66,70 0.0 256724,5 1232.1 1132.1 3577.6
15 2 0.5840 0.0 1.0800 2761.7 5107.2 183765.9 10.70 0.0 440490.4  1188.8  2420.7 7528.0
16 3 0.6640 0.0 1.7440 3140.0 B247.2 206503.4 16.01 0.0 6469938  1288.8 3709.5 11956.7
17 4 0.7600 0.0 2,5040 3594,0 11841,2 1B5653.7 2,01 0.0 B32647.4  1279.5 4989.0 16830.2
18 3 0.7200 0.0 3.2240 3404.8 15246.0 1B7281,6 0.69 0.0 1019929.0 1303.9 6292.9 21538.9
19 6 0.,4960 0.0 3.7200 2345,5 17591.6 191215.4 5.06 .0,0 1211144,0 1287.8  7580.7 25172.3
20 7 0.2800 0.0 4.,0000 1324,1 18915.7 210274.3 28,22 ‘0,0 1421418.0 1217.4 8798.1 27713.8
21 8 0.0 0.0 4.0000 0.0 1B915,7 199227.2 22.98 0.0 1620645.0 1189.8 9987.9 28903.6
22 9 0.0 0.0 4.,0000 0.0 18915,7 169246.1 1.96 0.0 1789891.,0 1166.9 11154.8 30070.5
23 10 0.0 0.0 4.0000 0.0 1B915,7 215517.9 31.41 0.0 2005408.,0 1225.3 12380.1 31295.7
24 11 0.0 0.0 4,0000 0,0 18515,7 157800.6 5.20 0.0 2163208.0 1061.7 13441.8 32357 .4
25 12 0.0 0.0 4.0000 0,0 18915.7 153715.4 5.28 0.0 2316923.0 1033.6 14475.4 33391.0
SWIRHR (M-AF) = 8.0000 SBIRHR ($1000) = 37B31.3
SPRHR (MW-HR) = 5139859.0 SBPRHR ($1000) = 29709.7
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APPENDIX B. NOTATIONS :;

a(o); a(N) = m—-dimensional vectors specifying the desired states of
system at tO and tf respectively
b(n) = return function for a time increment starting at stage n
BIR(n) = return from irrigation activities during a time increment
starting at stage n
BPR(n) = return from hydropower generation during a time increment
starting at stage n
c; e = discrete levels in state vector ?
Ck : = corridor formed by all D(n), n = 0,1, ..., N for k-th i
iteration 4
CT = capacity of turbines in kw é
CpP1l, CPP2Z = capacities of power plants 1 and 2 in Mw 4
D(n) = sub-domain formed at stage n i
E{ } = expected value of the terms in the bracket :
EO = annual target energy output in Kw hr !
£ = load factor ?
F = sum of the returns for N time increments
* .
F = optimum sum of the returns for N time increments
F = sum of the returns for N time increments due to u and s
9F oF aF
Fs B (Bs > 8s,” """? &s )
1 2 m
2_%* -
F* N (a B 1y #8002 cwwy )
s ds, 0s,
1 ]
g = a penalty function
hy = number of hours in a year
h.o.t. = higher order terms
H, = number of discrete levels in the j-th component of
d decision vector ' : '
Li = number of discrete levels in the i-th component of

state wvector
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A
9
Lok
#i
L%
o

S2ialt

A g

]

m
n

N

ply(m), v]

s(n)
*

s (n)

s(n)

S(n)

u(n)
%

u (n)

-E(n)

U(n)

y(n)

o(n)

B(n)

[l

the order of the system, i.e., the number of state variables
beginning of a time increment called a stage
total number of time increments in the time horizon

probability of the v-th discrete level of y during a time
increment starting at stage n .

number of decision wvariables in the system

return from the system in one time increment

an m-dimensional state (storage) vector at stage n
vector of the optimal state at stége n

vector of the trial state at stageln

an m-dimensional wvector representing the admissible state
domain at stage n

ggfs,u,t].
time
beginning of the time horizon

end of the time horizon

total number of‘assumed increments from the state domain
a gq-dimensional decision (release) vector at stage n
vector of the optimal decision at stage n

vector of the trial decision at stage n

q-dimensional vector representing the admissible decision
domain at stage n

number of discrete levels in the probability space of y

inflow during the time increment starting at stagé;ﬁ

a discrete level in decision vector

a constant between 0 to 1 representing the fr
irrigation water return to the system b

irrigation demand relative to the annual irr
during a time increment starting at stage
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y(n)

8s j(n)

=

Su(t)

At

I

a value between 0 and 1 describing the importance or
irrigation water demand during a time increment starting
at stage n as compared to the maximum irrigation demand
during any period

j-th component of the m-dimensional incremental vector
Asi(n) at stage n

change in decision vector at time t
an increment of time

the i-th m-dimensional incremental wvector formed at
Stage n

a constant
a dummy variable representing time
function describing the dynamic behavior of the system

value of t-th assumed increment for j-th state wvariable
in the state domain

a function presenting decision as a function of states only
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