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Abstract—As larger and more comprehensive datasets become
standard in contemporary machine learning, it becomes increas-
ingly more difficult to obtain reliable, trustworthy label infor-
mation with which to train sophisticated models. To address this
problem, crowdsourcing has emerged as a popular, inexpensive,
and efficient data mining solution for performing distributed
label collection. However, crowdsourced annotations are inher-
ently untrustworthy, as the labels are provided by anonymous
volunteers who may have varying, unreliable expertise. Worse
yet, some participants on commonly used platforms such as
Amazon Mechanical Turk may be adversarial, and provide
intentionally incorrect label information without the end user’s
knowledge. We discuss three conventional models of the label
generation process, describing their parameterizations and the
model-based approaches used to solve them. We then propose
OpinionRank, a model-free, interpretable, graph-based spectral
algorithm for integrating crowdsourced annotations into reliable
labels for performing supervised or semi-supervised learning.
Our experiments show that OpinionRank performs favorably
when compared against more highly parameterized algorithms.
We also show that OpinionRank is scalable to very large datasets
and numbers of label sources, and requires considerably fewer
computational resources than previous approaches.

Index Terms—Unreliable experts, graph-based ranking, spec-
tral methods, ensemble voting systems, crowdsourcing

I. INTRODUCTION

Supervised machine learning is built on the fundamental
assumption that the labels provided by the training and testing
datasets are accurate. Regardless of the application, from data
mining to computer vision to natural language processing, trust
in the ground truth provided by the datasets is paramount.
However, increasingly many of these applications use in-
creasingly large datasets (sometimes on the order of millions
or even billions of examples); such datasets are simply far
too large to annotate manually. Crowdsourcing has therefore
emerged as an appealing, inexpensive tool for distributed
collection of label information for large-scale datasets; the
widely used ImageNet dataset, for example, is annotated using
crowdsourcing from Amazon Mechanical Turk [1]. Crowd-
sourcing is also widely used to annotate datasets in natural
language processing [2], [3] and data mining [4]–[6].

However, crowdsourcing suffers from the problem of
inexpert—and therefore unreliable—labeling. The very prop-

erty of widespread contribution that gives crowdsourcing its
power also results in the significant drawback of relying on
the opinions of “experts” (sometimes referred to as labelers,
annotators, workers, or label sources) who may have little or
no domain knowledge. Furthermore, there may be differences
of opinion between labelers with contrasting expertise: one
expert may provide a label that could be considered correct
from one perspective that disagrees with a label that could be
considered correct from a different perspective. For example,
recent works that have analyzed the ImageNet dataset found
that using the crowdsourced labels as a gold standard may
be flawed [7], [8]. Perhaps more importantly, there may also
be labels provided by adversarial labelers, who intentionally
provide incorrect labels with the sole purpose of confounding
the learner. Finally, we cannot discount the possibility of
corruption between the labels provided by a source and the
labels observed by a learner, examples of which may include
recording errors, data transfer errors, modeling errors, or
simply missing labels.

Against this background of accumulating uncertainties, and
the fact that any particular label source must therefore be
treated with some skepticism, our goal is to determine which
sources—and to what extent—should be considered in assign-
ing labels, particularly when there are conflicting opinions. In
the absence of unassailable ground truth labels, it is necessary
to solve the unsupervised problem of integrating unreliable
expert opinions into reliable ground truth labels.

II. RELATED WORK

Perhaps the earliest work on characterizing the collective
decision of a set of inexpert opinions is the Condorcet jury
theorem [9], which states that for a group of independent
voters with a homogeneous probability of correctness p, the
probability of their majority vote being correct on a binary
decision increases with the size of the group if p > 0.5.
Kazmann showed that the assumption of homogeneous voters
can be relaxed by assuming that the heterogeneous voter
correctness probabilities follow a symmetrical distribution
about a mean p [10]. Grofman demonstrated that the group’s
collective accuracy can increase even if the added members are
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less competent than the group’s previous average [11]. Owen,
Grofman, and Feld removed the distribution restrictions, gen-
eralizing the theorem to depend only on p > 0.5 [12]. List
and Goodin extended this result to problems with more than
two classes, showing that for a k-class problem, the average
voter reliability needs only to exceed 1/k for the majority vote
decision to be correct [13].

Beyond simple majority vote analysis, and the associated
large body of ensemble-based approaches, much research has
gone into investigating crowdsourcing algorithms. Dawid and
Skene proposed a model based on the well-known expectation-
maximization (EM) algorithm, attempting to estimate each
annotator’s respective expertise as a confusion matrix [14].
From their application, a rich body of work has sprouted, with
many improvements, alterations, and theoretical bounds on the
performance of generative models based on the EM approach
[2], [15]–[22]. Aside from EM-based approaches, Ghosh et al.
[23] and Dalvi et al. [24] proposed sparse matrix algorithms
based on singular value decomposition. Other approaches have
investigated Bayesian inference [25]–[28], as well as spectral
methods [29], [30]. An intriguing line of investigation by
Goldberger examined the problem of inexact labels [31]. More
recently, the success of deep neural networks has prompted
work on deep generative models [32]–[34]. Regardless of the
specific approach, nearly all work in this area attempts to
model either the parameters of annotators’ reliabilities, or the
confusion matrices associated with each annotator.

Ranking algorithms are also commonly used in applica-
tions such as information retrieval, bioinformatics, and rec-
ommender systems. Most well-known is the PageRank al-
gorithm, which utilizes the power iteration method to rank
web pages based on how frequently other web pages link to
them [35]. Similar graph-based methods are used in natural
language processing for extractive document summarization
by ranking sentence importance [36], [37]. Other approaches
include gradient-based techniques [38], multi-criteria max-
margin algorithms [39], and support vector methods [40].

III. PARAMETERIZED MODELS FOR LABEL GENERATION

In this section, we review and discuss three models of
learning from unreliable sources. The first two settings are
well-established and widely cited, and can be considered
to be canonical models. While more recent work has pro-
posed some additions to these models, the fundamental idea
of highly parameterized probabilistic dynamics is consistent
across the literature. The third model adds a new layer of
complexity to the label generating process that cannot be
easily incorporated into the previous models, and so we give
it special consideration. For consistency, we use the original
authors’ terminologies for label assigners (such as “labelers”,
“annotators”, or “experts”); each of these terms is understood
to refer to the same concept.

A. Joint Modeling of Source Reliability and Instance Difficulty

We first consider the setting proposed by Whitehill et al.
[16], who model the labeling process as not only a function of

the expertise of the labeler, parameterized by α ∈ (−∞,∞),
but also as the difficulty of labeling a data instance, parameter-
ized by 1/β ∈ [0,∞). When 1/β =∞, an instance is deemed
very difficult to label for even the most expert labeler, whereas
1/β = 0 represents a trivial instance, so obvious that anyone
would label it correctly irrespective of expertise. The range
of values for α describes expertise from “perfectly wrong”
(when α = −∞) to “perfectly accurate” (when α = ∞),
with α = 0 representing random guessing. The probability of
the label Lij—assigned by labeler j on instance i—being the
correct label Zi ∈ [0, 1] is then modeled as

Pr(Lij = Zi|αj , βi) =
1

1 + e−αjβi
.

The model allows the log odds for the label being correct
to be expressed as

log
Pr(Lij = Zi)

1− Pr(Lij = Zi)
= αjβi.

From this formulation, the authors develop an EM-based al-
gorithm called GLAD (Generative model of Labels, Abilities,
and Difficulties), which—under the assumptions of the label-
ing model—is able to recover Z, α, and β for all data and
labelers.

To our knowledge, Whitehill et al. were the first to extend
the work of Dawid and Skene (who assumed that labels were
generated only by parameters over the labelers’ expertise [14])
such that the generative model also included parameters for the
difficulty of assigning the correct label. While adding a small
amount of complexity, Whitehill et al. sought to keep their
model as simple as possible, assigning only a single hidden
parameter for each instance and labeler.

B. Multidimensional Parameterization of Label Generation

Welinder et al. considered the annotation process to be a
high-dimensional system, with both instance difficulty and
annotator ability being governed by many parameters [28]. For
their formulation, the authors suggest that the dynamics can
be described as a Gaussian mixture model. For each instance
i, with ground truth label zi ∈ [0, 1], the presentation xi of
instance to annotator j is modeled by

xi ∼ N (µz, θ
2
z)

µz =

{
−1 if zi = 0

1 if zi = 1
,

where θz is a parameter describing the variability in the
difficulty of correctly labeling instance i. Annotator j sees
a version of instance i modeled as yij = xi + nij , where
nij is the annotator- and instance-specific “noise”, such as
differences in annotator attention, acuity, direction of gaze,
etc. The noise statistics vary from annotator to annotator, and
are modeled as a parameter σj . The authors assume Gaussian
noise, i.e. yij ∼ N (xi, σ

2
j ). The annotator-assigned label Lij

is then chosen deterministically as Lij = I(〈ŵj , yij〉 ≥ τ̂j),
where I(·) is the indicator function and ŵj is a weighting
vector that encodes each annotator’s expertise. The authors



draw the decision threshold according to τj following a zero-
mean Gaussian, and sample the noise parameter σj from a
gamma distribution.

The authors then apply Bayesian maximum a posteriori
(MAP) estimation to maximize the posterior on the param-
eters. They solve this optimization using gradient ascent by
alternating between fixing x and optimizing over (w, τ ), and
fixing (w, τ ) and optimizing x, assuming Gaussian priors on
wj and τj , respectively.

The generative model proposed by Welinder et al. is highly
parameterized and considerably more complex than the model
suggested by Whitehill et al. Later models build on this idea,
such as that of Atarashi et al., adding even more parame-
terization in the form of latent variables [33]. Latent variable
models are intractable for EM algorithms; more recent authors
have turned to deep neural networks for approximating these
more complex environments [32]–[34]. Each of these models,
however, shares lineage with the work of Welinder et al.,
and the general class of multidimensional label generation
dynamics is well-represented by their work.

C. “Soft” Observations of Expert Opinions

Goldberger introduced the notion of soft opinions, where
categorical label assignment of expert j on data instance i
(with true label zi) is not a one-hot encoding, but rather a
probability distribution [31]. He simplified the initial annota-
tion process compared to the previous models, assuming only
that the expert’s initial opinion is assigned following

Pr(yij |zi = a; pj) =


pj , if yij = a

1− pj
|A| − 1

, if yij 6= a

 , ∀a ∈ A,

where pj is the expert’s probability of providing the correct
label, and A is the set of possible labels. Goldberger assumed
that each source has an identical reliability across all classes,
and that an incorrect label is assigned following a uniform
distribution across the incorrect classes.

Goldberger’s most notable contribution is that he extends
the uncertainty in observed labels beyond that of the expert’s
label generation model. He assumes that the observed version
of the expert opinion, qij , is not an indicator, but rather a
probability distribution over all visible labels:

qij(b) = Pr(yij = b), ∀b ∈ A.

In this way, Goldberger accounts for a layer of obfuscation
between the labels as provided by the experts and the labels
as seen by the observer. This consideration is intriguing,
and adds an important contribution that is missing from the
previous models, extending the assumption of unreliability
from simply the generation of labels to the observation of
the labels. Goldberger handles this obfuscation by developing
an extended EM algorithm.

IV. OPINIONRANK: SPECTRAL RANKING WITH
CORROBORATION GRAPHS

Previous approaches using expectation-maximization have
been shown to be highly effective for estimating label-
generating dynamics, under the assumption that these dy-
namics follow the specific parameterizations of the model.
However, EM approaches depend highly upon the correct
parameterization of the system, and can fail in alternative en-
vironments. Similarly, deep generative models have achieved
remarkable results in semi-supervised settings, but they too
rely on correct parameterization, in addition to their lack of
interpretability. Finally, both EM approaches and deep neural
networks demand substantial computational requirements to
converge to their estimates of the system dynamics.

To address these drawbacks, we propose OpinionRank, a
spectral algorithm for expert ranking and weighted voting.
Instead of attempting to estimate the true reliability parameters
of each expert in the ensemble, we propose to estimate the
relative reliability of each expert. Furthermore, we do so
using a nonparameterized approach: given only the observed
labels (of unknown reliability) provided by each expert, we
compute our estimation of the experts’ relative expertise by
comparing the frequency of agreement between each pair of
experts. An agreement between two experts can be interpreted
as a soft “recommendation” between them: given that they
have provided the same label for the same instance, it is
reasonable to expect that one expert would recommend the
other at least some of the time. Under the Condorcet criterion
that the average expertise of the ensemble of experts exceeds
random guessing, this system of mutual recommendations
builds a network of trust. We formulate the ensemble as a fully
connected graph, with each expert functioning as a node. The
edges of each node correspond to the number of times that
each expert i agrees with (recommends) each other expert j
(an expert always recommends itself).

We consider the probabilistic interpretation of the frequency
of expert i recommending any other expert j. The edges
leading outward from any expert i can be transformed into a
probability distribution; we interpret the graph of interexpert
agreements as a Markov chain. The edge probabilities of
recommendation form a dense transition matrix, which we call
a corroboration matrix. We guarantee that the corroboration
matrix is ergodic and irreducible by selecting the softmax
function to form the edge distributions. For stability, we scale
the entire corroboration matrix by dividing by the total number
of examples before applying the softmax operation.

The Perron-Frobenius theorem guarantees that the corrob-
oration matrix—being real, square, and positive—will have a
unique, positive eigenvector [41]. This dominant eigenvector
represents the steady-state probabilities of the corroboration
matrix, with its elements describing the long-run probabilities
of choosing the opinion of any given expert after stochastically
asking each expert to recommend other experts. We compute
the dominant eigenvector v using the well-known power
iteration method, raising the transformed corroboration matrix
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Fig. 1. Block diagram of OpinionRank.

C to an arbitrarily high matrix power P and multiplying by
an elementary vector e:

v = (CP )ᵀe.

The use of the Perron-Frobenius eigenvector as a ranking
tool is most often associated with the PageRank algorithm
[35], though its use in this application goes back even further
[42], [43]. Recent theoretical work has shown that under mild
assumptions about the underlying properties of the objects
being ranked, the spectral method of eigenvector ranking is
equally optimal as maximum likelihood estimation approaches
[44]. Here, we interpret the probabilities of the eigenvector
as a scheme for weighting the votes of each expert. For each
instance, we take the dot product between the binary vector of
expert opinions on class membership and the relative reliability
vector to produce a scalar value w ∈ [0, 1] representing the
weighted ensemble opinion on the class membership of the
example. Optionally, we can choose to treat the eigenvector
as a strict ranking, and retain only the top-N experts. We
summarize OpinionRank in Algorithm 1; a visual diagram
outlining the algorithm’s flow is shown in Figure 1.

The OpinionRank algorithm is highly flexible, and is easily
adaptable to any labeling paradigm. In the case of binary
categorical labeling problems, OpinionRank can be applied
directly. For multinomial and multilabel problems, the expert-
provided class labels can be transformed into binary encodings
(one-hot labels for the multinomial case), with OpinionRank
being applied across each class. In these scenarios, Opinion-

Algorithm 1 OpinionRank: A Model-Free, Graph-Based
Spectral Method for Extracting Labels from Unreliable Expert
Opinions
Input: Y , a set of k-class membership opinions on n total

examples from s sources.
Input: P , the number of matrix power iterations
Input: N ∈ [1, s], the number of sources to retain from the

dominant eigenvector
Output: W , a k × n matrix of weighted class membership

scores.
1: Initialize k × n matrix of class scores, W
2: for each class ` = 1 to k do
3: Obtain s× n matrix of class-` membership opinions,

K ← checkEqual(Y, `)
4: Initialize s× s corroboration matrix C
5: for each source i = 1 to s do
6: for each source j = 1 to s do
7: Cij ←

∑
checkEqual(Ki,Kj)

8: end for
9: Ci ← softmax(Ci/n)

10: end for
11: Obtain dominant eigenvector, v ← (CP )ᵀe
12: Obtain top-N eigenvector indices, I ← argsort(v, N)
13: for all k ∈ K do
14: Replace missing values, k ← 0.5 if k is missing
15: end for
16: W` ← Kᵀ

IvI
17: end for
18: return W

Rank estimates the class-conditional reliability ranking of each
expert, on the observation that some experts may have more or
less expertise with respect to some classes compared to others.

For binary problems, label predictions are obtained by
thresholding the weighted class scores at 0.5. In the multilabel
case, the same rule can be applied to each class independently
to obtain binary label vectors for each instance. Multinomial
decisions are made by choosing the class corresponding to the
argmax of the class membership scores.

OpinionRank can also easily handle missing values, such
as the case where some experts did not label every instance.
We consider an expert that does not provide a label for a
given instance to not be in agreement with any other expert,
including itself, for that instance. A missing value therefore
reduces the overall reliability of an expert, as there is less
evidence that the expert is trustworthy. When performing
inference, missing values are replaced with 0.5, so that they
do not bias the final decision of the algorithm.

V. EXPERIMENTAL DESIGN AND RESULTS

In order to objectively evaluate and compare our proposed
algorithm, we reproduce, as faithfully as possible, experiments
from each of the settings described in Section III, and test
the OpinionRank algorithm under the hand-crafted conditions
for the models of the original authors. We also perform a



Fig. 2. The accuracy of OpinionRank versus the GLAD model and simple
majority voting for inferring underlying class labels on the binary labeling
experiment (Section V-A1). Baseline results reproduced from Figure 2 in
Whitehill et al. [16].

wall clock runtime analysis of OpinionRank to demonstrate
the algorithm’s speed and computational efficiency.

A. Whose Vote Should Count More: Optimal Integration of
Labels from Labelers of Unknown Expertise

We implemented three experiments under the same con-
ditions described in Whitehill et al. [16]. These experiments
evaluate the OpinionRank algorithm’s performance under the
conditions of the authors’ labeling model (as described in
Section III-A), its ability to handle “difficult” images, and its
stability under varying starting conditions.

1) Labeling Model: The first experiment simulates the
labeler accuracy as αj ∼ N (1, 1), and the inverse-difficulty
of labeling an image as βi ∼ Lognormal(1, 1). The observed
label of an instance i provided by labeler j is sampled
according to the probability Pr(Lij = Zi|αj , βi) = 1

1+e−αjβi
.

The algorithms are evaluated by the proportion of accurate
class labels, with the amount of total data set to n = 200.
Whitehill et al. reported the average of 40 experiments; we
report the mean of 50,000 experiments (Figure 2).

Both OpinionRank and GLAD considerably outperform
majority voting, and converge to > 99% accuracy as the
number of labelers increases. Because the parameters of the
experiment ensure that the average reliability of the pool of
labelers is greater than 0.5, these results are expected (from the
generalized Condorcet jury theorem). Notably, OpinionRank
outperforms GLAD at lower numbers of labelers, suggesting
that eigenvector-based reliability ranking is robust even for
small pools of labelers.

2) Modeling Image Difficulty: The second experiment con-
siders a pool of 50 labelers, each labeling the same set of
n = 1000 instances, with half of the instances considered
“easy” and the other half considered “hard”. The labelers
labeled the “easy” images correctly with 100% accuracy.

TABLE I
MEAN ERROR RATE FOR ESTIMATED LABELS WHEN MODELING IMAGE
DIFFICULTY (SECTION V-A2). BASELINE RESULTS REPRODUCED FROM

SECTION 4 OF WHITEHILL ET AL. [16].

Method Error

Majority vote 11.2%
Dawid & Skene 8.4%

GLAD 4.5%
OpinionRank 0.0%

The labelers labeled the “hard” images correctly according
to whether they were “good” (pcorrect = .95) or “bad”
(pcorrect = .54). The ratio of “good” to “bad” labelers is 25:1.
The score is measured as the proportion of correctly estimated
labels, reported as the error rate, error = 1 − accuracy.
Whitehill et al. reported the average of 20 experiments; we
report the mean of 50,000 experiments (Table I).

In the image difficulty modeling experiment, OpinionRank
is able to recover the correct label in 100% of cases. This is
due to the parameters of the experiment. The “easy” images,
being labeled with 100% reliability, are heuristically irrelevant
to the performance of the OpinionRank algorithm, as all voters
will provide the same (correct) label. Therefore, regardless
of the relative reliability eigenvector, the weighted sum will
always be the correct label. The “hard” images, on the other
hand, are also simple for OpinionRank, due to the labeling
schema. With such a large majority of the labelers being
“good”, OpinionRank builds very strong recommendation re-
lations between the “good” labelers, so the “bad” labelers are
overruled when they are wrong (the 5% of the time that the
“good” labelers are wrong is also easily ignored).

Whitehill et al.’s experiment was heavily biased toward
“good” labelers (a reasonable scenario in the context of
human annotators). We extended the experiment to smaller
proportions of “good” to “bad” labelers; with 25, 40, and
50 (out of 50) labelers being “bad”, we found error rates
of 0%, 1%, and 14%, respectively. These results suggest that
OpinionRank is robust even against labeler pools with a high
density of unreliable labelers.

3) Stability Under Various Starting Points: The third ex-
periment simulates the labeling of n = 2000 instances by
20 labelers, with αi ∼ U [0, 4] and log(βj) ∼ U [0, 3].
Under the assumptions of the authors’ generative model,
these parameters represent a large variance in the difficulty-
expertise spectrum, and so the experiment tests algorithmic
stability across a broad range of starting conditions. The
scores are reported as the mean and standard deviation of
label accuracy scores. Whitehill et al. reported the mean and
standard deviation over 50 experiments; we report the mean
and standard deviation over 50,000 experiments.

Similarly to the second experiment, OpinionRank achieves
a perfect score on the authors’ stability test (compared to
mean of 85.84% and standard deviation of 0.024% for GLAD).
Because the test draws the labeler expertise from α ∼ U [0, 4],
all labelers have expertise greater than random guessing. With



Fig. 3. Performance of the OpinionRank algorithm in predicting zi ∈ [0, 1]
on the data from Section V-B1, compared to majority voting, the EM model
of Dawid and Skene [14], the GLAD model of Whitehill et al. [16], and the
model of Welinder et al. [28]. Baseline results reproduced from Figure 3(c)
in Welinder et al. [28].

a pool of 20 labelers, OpinionRank is able to consistently dis-
cover the best labelers, even within this pool of above-average
labelers, and extract the correct labels. Notably, it achieves
this performance without the computationally costly need to
estimate the precise parameters of each labeler. OpinionRank
demonstrates that only the relative expertise is needed, as long
as the Condorcet criterion is obeyed and the average expertise
is greater than random chance [12].

B. The Multidimensional Wisdom of Crowds

We also implemented two experiments from Welinder et
al. [28]. The first experiment evaluates the OpinionRank
algorithm on the authors’ proposed label generation model (as
described in Section III-B); the second experiment evaluates
OpinionRank on a real-world dataset of human annotations.

1) Multidimensional Labeling Model: We reproduce the
conditions of Welinder et al.’s modeling experiment by gen-
erating data following the assumptions of the model (as
described in Section III-B). Following the experimental setup
in [28], we:

• set the number of data instances as n = 500.
• assign wj = 1 with probability .99 and wj = −1 with

probability .01, to simulate adversarial annotators.
• draw τj ∼ N (0, σ = 0.5).
• draw the noise parameter σj ∼ Gamma(1.5, 0.3).
• set the generative parameter θz = 0.5. This value is

different from the θz = 0.8 as reported in [28]. However,
this change was done after examining the code available
at the authors’ GitHub page1 and discovering that they
have in fact set this parameter to 0.5.

1Welinder, P., “Caltech UCSD Binary Annotation Model,” Github, 2012.
Available at https://github.com/welinder/cubam.

TABLE II
PERCENT CORRECT LABELS ON THE WATERBIRDS DATASET (SECTION
V-B2). PERFORMANCE OF OTHER ALGORITHMS REPRODUCED FROM

SECTION 5.2 OF WELINDER ET AL. [28].

Method Percent Correct

Majority voting 68.3%
GLAD 60.4%

Welinder et al. 75.4%
OpinionRank 86.7%

Welinder et al. report the average over 40 experiments;
we report the mean of 50,000 experiments (Figure 3). The
annotation model of Welinder et al. is considerably more
complex than that of Whitehill et al. Despite this complexity,
OpinionRank achieves accuracy above 94% across all experi-
ments. We note that while all of the algorithms being compared
eventually achieve accuracies > 96%, OpinionRank strongly
outperforms the other algorithms at lower numbers of experts.

2) Waterbirds Dataset: We evaluate OpinionRank on the
real-world Waterbirds dataset constructed by the authors. Us-
ing Amazon Mechanical Turk, the authors asked 53 human
annotators to provide labels on a set of 240 images. The im-
ages consisted of 50 photographs each of Mallards, American
Black Ducks, Canadian Geese, and Red-necked Grebes, as
well as 40 additional images featuring no birds. The annotators
provided binary labels according to whether, in their opinion,
each image contained a picture of a duck (only Mallards
and American Black Ducks are positive classes). Of the 53
annotators, only 25 provided labels for all images; the other
28 annotators omitted between 40 and 200 labels.

On this real-world dataset, OpinionRank predicts the cor-
rect label for 86.7% of the images (Table II). OpinionRank
outpaces majority vote at 68.3% accuracy, GLAD at 60.4%
accuracy, and the authors’ own Bayesian generative model at
75.4% accuracy.

C. Combining Soft Decisions of Several Unreliable Experts
We reproduced the soft-decision modeling experiment under

the same conditions described in Goldberger [31]. Following
Section III-C, n = 200 instances are generated and assigned
random labels drawn from a pool of three classes. For each
expert j, its reliability is sampled uniformly on the interval
[0.4, 0.7]. After each expert’s opinion yij is modeled (as
described in Section III-C), opinions are obfuscated by first
sampling a multinomial distribution Uij from the flat Dirichlet
distribution, before transforming yij into Uij following

ŷ = argmax
a∈A

Uij [(yij + z − a) mod |A|], ∀a ∈ A,

where z ∈ A is randomly sampled from Uij . Because
OpinionRank requires “hard” labels, we utilized Goldberger’s
hard-decision process, which takes the argmax of the soft label
information over the set of classes, before providing the labels
to the algorithm.

Goldberger reports the mean of 100 experiments; we report
the mean of 50,000 experiments. As seen in Figure 4, Opinion-
Rank outperforms the Goldberger’s extended EM algorithm by



Fig. 4. Accuracy of the OpinionRank algorithm as a function of the number
of experts on the three-class soft opinions problem (SectionV-C) compared
to the EM models of Goldberger. soft-EM, soft-maj, hard-EM, and hard-maj
results reproduced from Figure 1 in Goldberger [31].

a considerable margin, achieving at least 49% accuracy (with
only 5 experts), climbing monotonically up to 55% accuracy
(with 9 experts).

D. Empirical Runtime Analysis

We have also performed an empirical study of the wall clock
runtime of the OpinionRank algorithm. We parameterized the
experiment over s, the number of unreliable label sources (i.e.,
experts, labelers), and n, the total number of data instances. We
vary s between 1 and 100 sources, and n between 10 and 1000
instances. All experiments were performed on a consumer-
grade AMD Ryzen 3900X 3.8 GHz 12-core processor with
32 GB of memory. Each experiment occurred on a single
processing thread.

We generated an arbitrary s × n binary array of randomly
generated class membership opinions. This array is passed
to the OpinionRank algorithm, and we measure the time
required for the algorithm to return its array of weighted class
membership scores. We repeated this procedure 100 times for
each set of parameters, whose average runtimes are depicted in
Figure 5. We observe that the runtime of OpinionRank scales
linearly with the amount of data, and quadratically with the
number of sources. We note that the worst-case runtime, with
s = 100 and n = 1000, is only 16.684 milliseconds. Scaling
the amount of data up to 1 million instances only increased
the average runtime to 17.712 seconds.

VI. CONCLUSIONS AND FUTURE WORK

Label-based supervised and semi-supervised learning re-
quires trust in the veracity of the label information accom-
panying training datasets. Although crowdsourcing is an at-
tractive and popular method for distributed gathering of such
label information, it suffers from the inherent unreliability of
individual annotators. We considered the problem of extracting
reliable, ground truth labels from ensembles of label sources

Fig. 5. Wall clock runtime analysis of the OpinionRank algorithm.

with unknown expertise. We provided a brief overview of the
three conventional models of learning under unreliable labels,
as well as the hand-crafted algorithmic solutions designed for
each model. However, we noted that each of these solutions
depends strongly on the correct parameterization of the label
generation dynamics. To address this drawback, we proposed
OpinionRank, a model-free, graph-based spectral method for
tackling the problem of unreliable experts, which does not
depend on any assumptions about the learning environment.
OpinionRank is a very fast, scalable, efficient, and inter-
pretable algorithm that can integrate label information from
both human and machine label sources, while remaining robust
to sources that may be highly unreliable or even adversarial.
We evaluated OpinionRank on each of the settings considered,
and found that it performed at least as well as—and often
better than—the hand-crafted algorithms across all models of
the labeling paradigm. OpinionRank performs remarkably well
even across highly complex parameterizations of unreliable
label generation, suggesting that complete knowledge of the
label generation dynamics is not necessary for obtaining more
accurate labels. Furthermore, OpinionRank requires consid-
erably fewer computational resources than the expectation-
maximization, Bayesian generative models, or deep neural
network approaches proposed in the literature. OpinionRank
can be seamlessly incorporated into any supervised or semi-
supervised learner as a preprocessing step to increase the trust
that the learner has for the labels on which it is trained.

To the best of our knowledge, our work is the first attempt
to use Perron-Frobenius eigenvector ranking for evaluating
relative reliability of unreliable experts. Because the method
is well-researched in the context of the PageRank algorithm,
we are interested in investigating even more powerful im-
provements upon this approach, such as the case where a
prior is somehow known on a particular ground truth label
(such as via querying an oracle). Other intriguing avenues of
research include incorporating OpinionRank into more well-



known classifiers, its applications in the context of other
ensemble learning systems, and its potential as a tool for
detecting and relabeling adversarial examples.
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