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Abstract

We propose a feature generator backbone composed of an ensemble of convolutional neural
networks (CNNs) to improve the recently emerging Vision Transformer (ViT) models. We
tackled the RSNA intracranial hemorrhage classification problem, i.e., identifying various
hemorrhage types from computed tomography (CT) slices. We show that by gradually
stacking several feature maps extracted using multiple Xception CNNs, we can develop
a feature-rich input for the ViT model. Our approach allowed the ViT model to pay
attention to relevant features at multiple levels. Moreover, pretraining the ”n” CNNs using
various paradigms leads to a diverse feature set and further improves the performance of the
proposed n-CNN-ViT. We achieved a test accuracy of 98.04% with a weighted logarithmic
loss value of 0.0708. The proposed architecture is modular and scalable in both the number
of CNNs used for feature extraction and the size of the ViT.

Keywords: Computed Tomography slices, Intracranial hemorrhage, CNN, ViT.

1. Introduction

Motivated by the recently emerging vision transformer model (Dosovitskiy et al., 2020),
we propose a hybrid architecture composed of multiple CNNs for feature extraction and a
vision transformer designated for intracranial hemorrhage classification. In our work, we
hypothesize that utilizing feature maps extracted from highly crafted CNNs can improve the
information content the ViT is processing and the resolution input it attends to. Further-
more, we hypothesize that generating features from the same input image using multiple
CNNs leads to a richer feature content with higher resolution. To this end, we used multiple
Xception CNN feature extractors, pretrained on separate paradigms using two distinguished
datasets. The first CNN model used the ImageNet dataset for pretraining, which was then
fine-tuned on the RSNA dataset. The second CNN model was priorly pretrained on the
ImageNet dataset and then further pretrained on data generated from ImageNet using a
Generative adversarial network (GAN) (Goodfellow et al., 2014) applied on several brain
computed tomography images. The idea behind generating the dataset using GAN was
motivated by the dissimilarities of ImageNet natural images and the 2D medical images.
We reduce these dissimilarities by further pretraining on the generated GAN images to
approach a better inductive bias for our target computed tomography dataset.

2. Methodology

The Scopeformer model, presented in figure 1, is an extension of the vision transformer
(ViT) architecture. It is applied either directly to raw images or to a given ”n” number of
feature maps extracted from the latest Xception Add layers and concatenated to a single
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feature map. We adopted the base ViT variant with 12 encoder layers and a latent vector
dimension of 1456. In our experiments, we used the RSNA intracranial hemorrhage dataset
(Flanders AE, 2019) by generating 224×224×3 images from the DICOM files (Burduja M,
2020). The input image to each feature extractor is 224×224×3, and the output dimension is
7×7×1024. For multiple CNNs, the size of the input vector will be 7×7×(n1024). A smaller
version of n-CNN-ViT models was introduced to reduce the computational complexity of
the ViT input, where we use a 1×1 CNN filter after the Xception Add layer to reduce the
dimension from 1024 to 128.

Figure 1: Overview of the proposed n-CNN-ViT architecture. The model is composed of
two main stages; Feature map generation and global attention encoding for the
MLP head classification.

3. Results and discusion

The performances of our models are evaluated by the multi-label weighted mean logarithmic
loss (Goodfellow et al., 2014). Figure 2 shows the classification accuracy of our models
against the number of CNNs in the feature extractor backbone for different pretraining
paradigm settings. We observe that the classification accuracy is directly proportional to
the number of Xception models. Moreover, using the same pretrained weights for the 2-
CNN-ViT model results in lower accuracies compared to using diverse backbones. Table 1,
summarizes best models within each variant. Applying the ViT encoder directly on the raw
intracranial hemorrhage images shows that the proposed ViT model by (Dosovitskiy et al.,
2020) cannot overcome models without including CNNs as claimed. In fact, The more we
add features with a more diverse CNN pretraining paradigms, the richer the feature content
will be and the better the ViT attends to the input to extract global attention among
patches. The n-CNN-ViT model uses a base ViT variant and relatively small Xception
CNN feature maps. Furthermore, we show comparable results for the smaller version of
the 2-CNN-ViT compared to larger ViT inputs. This implies the degree of modularity and
scalability of the proposed model.
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Table 1: Classification performance of ViT based models on the RSNA validation dataset

Model ViT input dimension Validation accuracy Loss

ViT 256×256×3 94.33% 0.1822
1-CNN-ViT (GAN) 7×7×1024 96.95% 0.08272
2-CNN-ViT (ImageNet/GAN) 7×7×2048 97.46% 0.07754
3-CNN-ViT (ImageNet/ImageNet/GAN) 7×7×3072 98.04% 0.07050
2-CNN-ViT (ImageNet/GAN) 7x7x256 97.58% 0.07903

Figure 2: Performance versus n-CNN-ViT variants; Pure ViT, 1-CNN-ViT, 2-CNN-ViT and
3-CNN-ViT, and pretraining modes; ImageNet and data generated using GAN.
Models with multiple CNNs and different pretraining modes perform better.
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