
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Henry M. Rowan College of Engineering Faculty 
Scholarship Henry M. Rowan College of Engineering 

4-16-2021 

Fatal crashes at highway rail grade crossings: A U.S. based study Fatal crashes at highway rail grade crossings: A U.S. based study 

Subasish Das 

Xiaoqiang Kong 

Steven M. Lavrenz 

Lingtao Wu 

Mohammad Jalayer 
Rowan University, jalayer@rowan.edu 

Follow this and additional works at: https://rdw.rowan.edu/engineering_facpub 

 Part of the Transportation Engineering Commons 

Recommended Citation Recommended Citation 
Subasish Das, Xiaoqiang Kong, Steven M. Lavrenz, Lingtao Wu, & Mohammad Jalayer. Fatal crashes at 
highway rail grade crossings: A U.S. based study. International Journal of Transportation Science & 
Technology 2021, https://doi.org/10.1016/j.ijtst.2021.03.002. 

This Article is brought to you for free and open access by the Henry M. Rowan College of Engineering at Rowan 
Digital Works. It has been accepted for inclusion in Henry M. Rowan College of Engineering Faculty Scholarship by 
an authorized administrator of Rowan Digital Works. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/engineering_facpub
https://rdw.rowan.edu/engineering_facpub
https://rdw.rowan.edu/engineering
https://rdw.rowan.edu/engineering_facpub?utm_source=rdw.rowan.edu%2Fengineering_facpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=rdw.rowan.edu%2Fengineering_facpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages


Fatal crashes at highway rail grade crossings: A U.S. based study

Subasish Das a,⇑, Xiaoqiang Kong b, Steven M. Lavrenz c, Lingtao Wu a, Mohammad Jalayer d

a Texas A&M Transportation Institute, Bryan, TX 77807, United States
b Texas A&M University, College Station, TX 77843, United States
cCivil and Environmental Engineering, Wayne State University, Detroit, MI 48202, United States
dDepartment of Civil and Environmental Engineering, Rowan University, Glassboro, NJ 08028, United States

a r t i c l e i n f o

Article history:
Received 14 October 2020
Received in revised form 22 December 2020
Accepted 3 March 2021
Available online xxxx

Keywords:
Highway rail grade crossing crashes
Taxicab correspondence analysis
Pattern recognition
Safety improvement

a b s t r a c t

Crashes at highway rail grade crossings (HRGCs) are often involved with fatalities due to
the momentum of a train. This study collected nine years (2010–2018) of fatal HRGC
crashes from the Fatality Analysis Reporting System (FARS) to perform the analysis. The
Taxicab Correspondence Analysis (TCA) was applied to this dataset. This method identified
several patterns that trigger HRGC-related fatal crashes. The findings indicate that fatal
crashes involving multiple fatalities are often highly associated with alcohol-influenced
drivers, poor lighting conditions, and inclement weather. The fatal crash that occurs during
the daylight with the uninfluenced driver is less likely to involve more than one fatality.
The results also recognized the combinations of vehicle type and speed are associated with
fatal crashes at rail grade crossings. The relatively low-speed limit crossings and larger util-
ity vehicles are more likely to be associated with fatal crashes because large vehicles
require a longer time to cross railroads at a low speed. The relatively high-speed limit
crossing and smaller or lighter vehicles, especially the motorcycle, are highly associated
with fatal crashes.
� 2021 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Crashes that occur at highway rail grade crossings (HRGCs) may result in severe injury outcomes due to the enormous
mass of trains. The reduction of HRGC crashes is essential for policymakers and city planners. From 2010 to 2018, a total
of 1114 fatal crashes occurred at HRGCs in the United States, resulting in 1306 fatalities. During the same period, HRGC
related crashes reduced by 20% (FARS, 2020). However, the death toll is still huge.

Safety at HRGCs continues to be a major safety issue despite the improved safety practices in recent years. Although
safety improvement efforts for HRGCs are continuous, crash counts and associated safety concerns remain high. Past studies
include many research efforts, including crash prediction models by incorporating roadway, HRGC inventory, rail, and vehi-
cle traffic characteristics. A group of HRGC studies has viewed specific classes of warning devices (Ries, 2007; Raub, 2006,
2009; Horton and DaSilva, 2013; Schoppert and Hoyt, 1968; Lerner and Tucker, 2002; Gabree et al., 2014; Noyce and
Fambro, 1998; Landry et al., 2016). Another group of HRGC studies examined the safety issues by either focusing on crash
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frequency or crash severity analysis (Hao and Kamga, 2017; Hao et al., 2017; Khan et al., 2018; Keramati et al., 2020; Zheng
et al., 2019, 2016; Eluru et al., 2012; Oh et al., 2006; Zhao et al., 2019; Yan et al., 2010).

It is important to note that determining the crucial crash contributing factors is a key task of highway safety analysis. This
study aims to identify the patterns of the factors that are associated with HRGC related fatal crashes. Taxicab correspondence
analysis (TCA), a data mining approach, can provide insights on the importance of variable categories from a high dimension
dataset. This study used nine years (2010–2018) of fatal HRGC crash data in the United States from the national level Fatality
Analysis Reporting System (FARS) data. The purpose of the present study is to evaluate the patterns and nature of HRGC
crash occurrences in order to create appropriate countermeasures and improve roadway safety.

The rest of the paper is organized in the following four sections: The next section provides a literature review on HRGC
related studies. The third section focuses on data integration, exploratory data analysis, and a brief overview of TCA. The
fourth section presents the results using the proposed approach and related discussions. The last section explains the con-
clusions of the study.

Literature review

The HRGC related safety analysis mostly focused on either frequency-based analysis or severity-based analysis. Using the
ordered probit model, Hao and Kamga (2017) explored the key contributors of crash severity at rural HRGCs compared with
urban ones. The analysis found that motor vehicle driver’s injury level at rural HRGCs is much higher than in urban areas.
Hao et al. (2017) estimated the effect of foggy conditions on crash severity outcomes at HRGC locations. The results demon-
strated that foggy condition crashes tend to result in more severe injuries than normal or clear weather conditions. Older
drivers are more likely to suffer severe injuries in foggy condition crashes than in normal conditions due to their slow reac-
tion times. Drivers are more likely to experience high-level injuries in crashes in the early morning during winter.

By developing a binary logit regression model, Khan et al. (2018) predicted crash likelihood at HRGCs by incorporating
several contributory factors, including the U.S. Census Block level population within five miles of crossings. This study used
seventeen years (2000–2016) of North Dakota crash data to develop the models. The results show that daily train exposure,
the maximum train speed, frequency of through railroad tracks, and the number of roadway lanes are associated with crash
counts. This study shows that ‘stop’ pavement marking reduces the crash likelihood, while populations within five miles of
HRGCs have a positive relationship with crash frequencies. Keramati et al. (2020) evaluated the effects of geometric charac-
teristics of HRGCs on crash and severity likelihoods. Using data from 3194 public HRGCs in North Dakota, four main HRGC
geometric factors (acute crossing angle, number of railway tracks, distance between the HRGC and presence of signalized
intersection, and number of roadway lanes), along with other contributors, were explored. Zheng et al. (2019) used a neural
network (NN) model to investigate rain-vehicle crash risk at HRGCs to determine dependent nonlinear contributor-crash
curves with all other contributors considered for a specific contributor variable. The study used historical crash data for
North Dakota public HRGCs from 1996 to 2014. Eluru et al. (2012) examined crash severity patterns with a latent ordered
response model using ten years of crash data at HRGCs across the nation.

There is a large body of research that aims to assess HRGC crash risk factors pertaining to driver behaviors or operational
characteristics of the roadway. Higher traffic volumes, higher train speeds, and a higher percentage of large trucks at the
crossing are all associated with higher rates of fatal and severe injury crashes (Raub, 2009; Lee et al., 2019; Millegan
et al., 2009; Abraham et al., 1998). Other characteristics associated with higher serious injury crash rates include driver
age (Raub, 2009; Abraham et al., 1998) and time of day (Salim et al., 2018; Salim, 2018). Several studies have found the speed
of the vehicle approaching the grade crossing to be significantly associated with crash risk; that is, higher levels of travel
speed are found to be associated with an increased risk of a crash or greater crash severity (Millegan et al., 2009). This
may be due to the inability of the driver to accurately gauge safe stopping distances at higher speeds, along with the height-
ened difficulty of processing multiple external stimuli for correct decision making.

The review found that most research to date has focused on the evaluation of HRGC treatments or perform safety analysis
using conventional methods, with little consideration given to the identification of patterns of key contributing factors.
Therefore, the aim of this study is to develop a complete understanding of the HRGC fatal crash-related contributing factors
and fill this critical gap in knowledge in this field.

Methodology

Data collection

This study used nine years (2010–2018) of HRGC related fatality data from the FARS database. This study used the
RELJCT2 variable attribute to identify HGRC related fatalities. The RELJCT2 is the Relation to Junction-Specific Location, which
identifies the crash locations concerning the presence in or proximity to components typically injunction or interchange
areas; a variable attribute of 6 indicates Railway Grade Crossing. During the nine years studied, 1114 fatal crashes occurred,
with 1306 fatalities.
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HRGC crashes by States

Fig. 1 shows the HRGC related fatalities for all fifty states in the United States from 2010 to 2018. The year groups (3-year
vs. 2-year) are due to the use of nine years of data. However, the color gradient represents the average number of fatalities in
the year groupings. Each of the sub-plots indicates the average number of fatalities for four different temporal groups. Purple
indicates a fewer number of deaths, while yellow indicates a larger number of fatalities. The states are displayed in a region
relative to their geographical location. Overall, Texas experienced a significantly higher number of HRGC related deaths than
any other state. States in the northeastern region of the United States had the lowest amount of HRGC related fatalities. From
2010 to 2012, Texas was the only state with a yellow color grade, meaning the highest number of fatalities. Other states with
a high number of fatalities are Illinois, Indiana, California, and Louisiana. From 2013 to 2014, Texas accounted for the highest
number of fatalities, followed by Illinois, Indiana, California, Oklahoma, and Alabama. From 2015 to 2016, Texas was also the
state with the highest number of fatalities, followed by Illinois. From 2017 to 2018, a significant shift occurred. Indiana was
the state with the highest number of fatalities. Florida also experienced a significantly higher number of fatalities, while
Texas showed a marked decrease in fatalities.

The primary selection of variables contained a wide array of geometric, traffic, environment, and vehicle-related data.
After performing variable importance measures using information criteria based on random forest (RF), a set of variables
was selected for further analysis (Greenwell et al., 2019). RFs proffer an extensive method for computing variable importance
scores. The concept is to utilize the leftover out-of-bag (OOB) data to create validation related errors for each of the gener-
ated trees. Later, each predictor is shuffled at random in the OOB dataset using a computation of error measures. The general
idea is that if a variable is significantly important, then the validation error is going to increase when that variable is per-
turbed in the OOB dataset. The disparity between these two error measures will then be averaged across all trees in the for-
est. Table 1 displays percent distributions of the selected variable categories. For 87.6% of fatal crashes, one fatality occurred.
Alcohol involvement in fatal crashes was 19%. The occurrence of a rollover was not present in most fatal crashes (83.33%).

Fig. 1. HRGC related fatalities (2010–2018) by the U.S. states.
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The prior movement in a majority of reported fatalities was going straight (74.96%). From the other attributes of prior
crashes, 10% of fatal crashes happened when the vehicle stopped on the road or track. The alignment of the road was level
in most reported fatalities (62.26%). It is important to note that over 30% of fatal crashes occurred on grade, hillcrest, and
uphill/downhill locations. Two-way undivided was reported as the roadway type in a majority of fatalities (87.82%). Cloudy
and inclement weather contributed to 25% of fatal HRGC crashes. The majority of the HRGC crashes occurred on low-speed
roadways: 10–35 mph (45.94%) and 40–55 mph (41.11%). A majority of the fatal crashes (80%) occurred on country or local
roadways. Dark and dusk/dawn lighting conditions contributed to 25% of fatal HRGC crashes. It is also found that two-lane
roadways are dominant in frequencies (87.82% of all fatal crashes).

The majority of traffic safety studies do not examine interactions between the variables. The omission of this critical issue
can produce biased results. The current study aims to mitigate this research gap in HRGC crash analysis by using TCA. Before
performing TCA analysis, it is important to show the interaction patterns of categorical attributes used in this analysis. Allu-
vial plots are excellent data visualization tools that can be used in explaining complex structural networks in crash datasets.

In an alluvial plot, the length of the black bars represents the proportion of attributes by variable. The width of the bands
indicates the relative proportion between the variable attributes. For example, daylight, clear, failure to obey signs and other
traffic control devices (TCD), no rollover are the dominant attributes in lighting conditions, weather conditions, driver vio-
lations, and occurrence of rollover variables, respectively (see Fig. 2(a)). Similarly, in Fig. 2(b), roadway alignment as level,
two-way undivided roadways, 4-door sedan as the vehicle body type, and one fatality are the dominant attributes. Alluvial
plots revealed several key patterns through a two-dimensional plot. Although daylight is the dominating attribute, it is found
that inclement weather related crashes also occurred in a similar proportion at dark or dawn/dusk lighting conditions. Care-
less driving was seen to occur mostly during clear weather. Few of these careless driving-related crashes occurred during
cloudy and inclement weather. It is interesting that careless driving is related to tripped rollover crashes but not with
untripped rollover crashes. Fig. 2(b) can also be explained in a similar pattern. Most of the crashes only involved one fatality.
The vehicles of crashes with more than one fatality are mostly 4-door sedan. The plot also shows that the two-way undivided
roadway type dominates the roadway attributes associated with crashes.

Table 1
Descriptive Statistics.

Attributes Percent Attributes Percent

NUMF (No. of Fatalities Involved) LGT (Lighting Condition)
One 87.56 Daylight 68.83
More than One 12.44 Dark Lighted 11.92
ALC (Impairment of Driver) Dark Not Lighted 15.2
No 80.83 Dawn/Dusk 4.06
Yes 19.17 VTRAFWAY (Roadway Type)
DR_SF (Driver Violation) Two-Way, Not Divided 87.82
Failure to Obey Signs, Traffic Control Device (TCD) 36.27 Two-Way, Divided, Unprotected Median 7.51
Failure to Yield Right of Way 29.27 Two-Way, Divided, Median Barrier 2.07
Careless Driving 3.71 Others 2.59
Others 13.04 VNUM (Number of Lanes)
None 17.7 Two Lanes 87.82
PCRASH (Prior Movement) Three Lanes 3.54
Going Straight 74.96 Four Lanes 5.61
Stopped in Roadway 9.67 Five Lanes 0.86
Others 8.89 Others 2.16
Negotiating a Curve 4.06 VPROFILE (Alignment)
Turning Related 2.42 Level 62.26
ROUTE (Route Type) Grade, Unknown Slope 18.22
County Road 33.68 Hillcrest 8.29
Local Street Municipality 29.71 Uphill 4.84
Local Street Township 14.68 Downhill 1.38
State Highway 11.49 Others 5.01
U.S. Highway 5.79 VTYP (Body Type)
Other 4.66 4 Door Sedan 29.88
WEATHER (Weather Condition) Compact Utility 13.73
Clear 74.27 Standard Pickup 15.89
Cloudy 13.99 Truck Tractor 5.7
Inclement 11.74 Single Unit Straight Truck 5.44
PSL (Posted Speed Limit) Minivan 4.49
10–35 mph 45.94 2 Door Sedan 4.23
40–55 mph 41.11 Station Wagon 3.37
60–70 mph 4.58 Large Utility 3.2
Not Reported 8.38 Farm Equip 1.9
ROLLOVER (Occurrence of Rollover) Motorcycle 2.16
No Rollover 83.33 Others 5.44
Rollover, Tripped by Object/Vehicle 16.06 Unknown Body Type 4.58
Rollover, Untripped 0.6
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Taxicab correspondence analysis (TCA)

Jean-Paul Benzécri first introduced the concept of correspondence analysis (CA). Choulakian recently introduced the the-
ory of TCA, which is considered an enhanced version of CA (Choulakian, 2006). CA is based on Euclidean distance. On the
other hand, TCA considers a separate distance measure, which is known as Manhattan city block or taxicab distance. For
example, consider A ¼ ða1; a2; � � � ::; anÞ and B ¼ ðb1;b2; � � � ::;bnÞ and a vector v ¼ ðv1; v2; � � � ::; vnÞ to evaluate these two speci-
fic distances:

Euclidean Distance ¼ ed A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðai � biÞ2

q
½with L2Norm ¼ kvk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðviÞ2

q
ð1Þ

Taxicab Distance ¼ td A;Bð Þ ¼
Xn

i¼1
ai � bij j½with L1 Norm ¼ kvk1 ¼

Xn

i¼1
vij j ð2Þ

The concept of singular value decomposition (SVD) is critical in understanding CA and TCA. For example, first consider a

real matrix K, decomposed as MK1=2N
0
with K the diagonal matrix of the real non-negative eigenvalues of KK

0
;whereMisthe

orthogonal matrix of the corresponding eigenvectors, and N the matrix of eigenvectors of K
0
K (with constraints

M
0
M ¼ IandN

0
N ¼ IÞ:Choulakian (29) proposed a recursive optimization process to evaluate the SVD solution. TCA can be

denoted as the Taxicab SVD of the data table D ¼ T� rl0 by considering the table’s profiles, respectively R ¼ D�1
r D for the

rows and L ¼ D�1
l D for the columns. Unlike CA, the solution is always recursive in nature. Interested readers can consult addi-

tional details of the TCA theory in the series of papers published by Choulakian (Choulakian, 2006).
Traditional statistical modeling techniques require structured data with response variables and explanatory variables;

these techniques also require some prior assumptions. Data mining and dimension reduction methods (for example, TCA)

Fig. 2. Alluvial plots to show the distribution patterns of multiple variables.
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have a clear advantage because they do not require any prior assumptions. Furthermore, these methods can work on both
supervised (in which response and explanatory variables are known) and unsupervised data (in which response and
explanatory variables are unknown). In TCA, the aim is to show the co-occurrence of the categories (for example, ‘daylight’
is a category of ‘lighting condition’ variable) in a low dimensional space where closer vicinity in the space indicates the co-
occurrence of the categories. Another great advantage of TCA is its capability of noise reduction (by representing the data in
low dimensional spaces) without reducing the dataset size. As the HRGC crash dataset has a limited number of cases, remov-
ing data entries with missing information would make a small dataset smaller. This method facilitates in describing the sig-
nificant associations between the categories of complex datasets like HRGC crashes. In recent years, several studies related to
transportation safety used both CA and TCA methods to identify insights from the complex nature of crash datasets (Das
et al., 2018, 2019a, 2019b; Das and Sun, 2016; Jalayer et al., 2018).

Results and discussions

This study used an open source R software package ‘TaxicabCA’ (Allard and Choulakian, 2020) to perform the analysis. The
analysis included the 13 variables (with all categories in each variable) listed in Table 1. The TCA approach helps in under-
standing diverse variable categories and produces visible results from the key association patterns. The TCA method pro-
duces coordinate measures for each of the variable categories for multiple axes. The first two axes explain around 49% of
total dataset inertia (see Table 2). It means that 49% of the total variability is explained by the plane. This percentage is rel-
atively high, and thus, the first plane well represents the data variability. Fig. 3 and Fig. 4 show the TCA plot generated in this
analysis (the complete two-dimensional plot is divided into four quadrants for easy visual interpretation). The closer the
coordinates of the variable categories, the closer the association. Table 3 lists the coordinates of the attributes by sorting
the attributes based on the signs of the coordinate measures. For example, the first 17 variable categories are in quadrant
1 as both coordinates are positive. Quadrant-based TCA plots are shown in Fig. 3 and Fig. 4.

Clusters based on attribute locations

TCA has been used as a pre-processing step to develop a framework to visualize data. The hierarchical clustering was
applied to the two-dimensional map provided by the TCA outcomes. The simultaneous use of both methods represents
the clustering issue from the dendrogram on the map, which is improved by inspecting the ratio of ‘between inertia’ and
‘total inertia.’ This study used a range of (0, 10) to determine the optimal number of clusters. This procedure defined an opti-
mal number of six clusters, which is why this study suggested three as the default. The description of the clusters is provided
below.

Cluster 1
The attributes in this cluster are rollover, cloudy weather, inclement weather, dawn/dusk lighting, the presence of the

impairment of alcohol, and more than one fatality (see Fig. 3a). This cluster indicates that alcohol-impaired related HRGC
fatal rollover crashes at visually challenging situations while crossing the rail tracks, such as dusk/dawn lighting or incle-
ment weather conditions. Driving under poor lighting environments or inclement weather conditions already poses difficul-
ties for normal drivers. It increases extra risks for drivers under the influence. These crashes often involve multiple fatalities.
The results of this cluster are in line with the Hao et al. (2017) study. Countermeasures to improve visibility prior to the RGC,
such as the addition of retroreflective signage, may help to mitigate these crash risks. Measures to lower travel speed near
the HRGC may also help, in providing drivers additional time for decision-making, as well as reducing the likelihood of the
most severe crashes, such as untripped rollovers.

Cluster 2
The attributes in this cluster (see Fig. 3a) are compact utility vehicle type, large utility vehicle type, 4 door sedan vehicle

type, careless driving, local street municipality route, dark not lighted as lighting conditions, and low-speed limit (10–35
mph) roadways. This cluster also shows the effect of dark lighting conditions and challenges of the drivers while crossing
the junctions. Vehicle type is also an issue at HRGC locations. Large vehicles usually require additional time to cross the junc-
tions, especially while driving on roadways with a relatively low-speed limit. This is consistent with previous studies. For

Table 2
Variance Explanation by the First
Five Axes.

Axis Inertia Explanation

Axis 1 26.5%
Axis 2 22.2%
Axis 3 13.7%
Axis 4 9.3%
Axis 5 6.5%
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example, Hao et al. (2016) pointed out that 25% of highway-rail grade crossing accidents involved trucks, which only make
up about 4% of vehicles on the road. Another study also found that truck percentage is a significant factor determining HRGC
safety (Yan et al., 2010). Conspicuity and speed-related HRGC treatments may also prove beneficial for reducing these types
of crashes.

Cluster 3
The attributes in this cluster are vehicle alignment as uphill/hillcrest/slope grade as alignment, local street township

route, two-way undivided roadways, two-lane roadways, county road route, and standard pickup or minivan as vehicle type
(see Fig. 3b). The uphill/hillcrest/slop grade always creates an additional obstruction for vehicle drivers. Without being
alerted beforehand, the crashes that occur at these locations are often associated with fatal crashes. This result is in line with
Eluru et al. (2012), which indicates that both vehicle type and roadway classification influence the likelihood of assigning a

Fig. 3. TCA plot of the upper right and upper left.
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driver’s crash risk. This cluster of crashes may be more difficult to mitigate, as the relevant risk factors suggest that larger
geometric changes to the roadway, such as right-of-way realignment, are needed.

Cluster 4
The attributes of this cluster are fatal crashes with one fatality, posted speed limit 40–55 mph, clear weather, no impaired

driver, and daylight (see Fig. 4a). This cluster signifies fatal crashes that occur under uncompromised conditions, clear
weather, daylight, and no impairment, mostly involve one fatality. In other words, crash with multiple fatalities is less likely
to happen under clear weather, daylight, and no impairment conditions. It is reasonable to believe that if there is a passenger
present in the vehicle in daylight and clear weather conditions, the passenger could alert the driver while approaching a

Fig. 4. TCA plot of the lower right and lower left.
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railroad intersection, even the driver is distracted. This could be the primary reason to explain why these fatal crashes during
clear weather and proper lighting environment are less likely to involve multiple fatalities. However, crashes in this cluster
warrant a deeper analysis to develop recommendations for mitigation. The significant factors suggest that driver behavior
and/or disregard for existing safety treatments may play a key role.

Table 3
Locations of the Key Attributes.

Variable Attribute Axis 1 Axis 2 Quadrant

PSL Not Reported 0.0261 0.0101 Quad 1
DR_SF Careless Driving 0.0803 0.3188 Quad 1
ROLLOVER Rollover Untripped 0.1999 0.5932 Quad 1
DR_SF Failure to Obey Signs TCD 0.2094 0.1886 Quad 1
VTYP Compact Utility 0.2394 0.3387 Quad 1
VTYP Large Utility 0.2462 0.231 Quad 1
WEATHER Cloudy 0.2545 0.4354 Quad 1
PSL 10–35 mph 0.2675 0.3387 Quad 1
VTYP 4 Door Sedan 0.4038 0.1597 Quad 1
WEATHER Inclement 0.4246 0.4414 Quad 1
NUMF More than One 0.4737 0.6473 Quad 1
LGT Dark Not Lighted 0.4774 0.338 Quad 1
ROUTE Local Street Municipality 0.4814 0.1684 Quad 1
LGT Dawn Dusk 0.5464 0.4591 Quad 1
VNUM Others 0.577 0.0851 Quad 1
ALC Yes 0.6246 0.5075 Quad 1
LGT Dark Lighted 0.8686 0.3827 Quad 1
DR_SF Failure to Yield Right of Way �0.6421 0.1689 Quad 2
ROUTE County Road �0.5738 0.1073 Quad 2
ROLLOVER Rollover Tripped by Object Vehicle �0.5667 0.576 Quad 2
VPROFILE Uphill �0.4787 0.4035 Quad 2
VTYP Standard Pickup �0.4539 0.1834 Quad 2
VPROFILE Grade Unknown Slope �0.3838 0.3006 Quad 2
VTYP Unknown Body Type �0.377 0.2657 Quad 2
VPROFILE Hillcrest �0.318 0.3913 Quad 2
VTYP Minivan �0.2892 0.2555 Quad 2
ROUTE Local Street Township �0.2254 0.3072 Quad 2
VPROFILE Downhill �0.193 0.6225 Quad 2
PCRASH Going Straight �0.155 0.1427 Quad 2
VTRAFWAY Two Way Not Divided �0.1151 0.0989 Quad 2
VNUM Two Lanes �0.1131 0.0636 Quad 2
VTYP Farm Equip �0.943 �0.8671 Quad 3
VTYP Single Unit Straight Truck �0.6573 �0.5637 Quad 3
PSL 40–55 mph �0.3254 �0.3062 Quad 3
VTYP Truck Tractor �0.3066 �0.7658 Quad 3
LGT Daylight �0.288 �0.168 Quad 3
VTYP Others �0.2128 �0.3342 Quad 3
ALC No �0.1481 �0.1204 Quad 3
WEATHER Clear �0.1151 �0.1518 Quad 3
NUMF One �0.0673 �0.0919 Quad 3
PCRASH Negotiating a Curve 0.0357 �0.4004 Quad 4
ROLLOVER No Rollover 0.1078 �0.1153 Quad 4
VPROFILE Level 0.1582 �0.1592 Quad 4
PSL 60–70 mph 0.1891 �0.6684 Quad 4
VTYP Station Wagon 0.2365 �0.4538 Quad 4
VTYP 2 Door Sedan 0.2407 �0.4265 Quad 4
VTYP Motorcycle 0.257 �0.5601 Quad 4
DR_SF None 0.3058 �0.5242 Quad 4
ROUTE State Highway 0.3502 �0.5472 Quad 4
ROUTE Other 0.3533 �0.4519 Quad 4
PCRASH Others 0.358 �0.2835 Quad 4
DR_SF Others 0.4212 �0.283 Quad 4
ROUTE U S Highway 0.46 �0.8183 Quad 4
VPROFILE Others 0.4708 �0.3235 Quad 4
VNUM Five Lanes 0.657 �0.7136 Quad 4
PCRASH Stopped in Roadway 0.682 �0.5417 Quad 4
PCRASH Turning Related 0.6999 �0.5414 Quad 4
VTRAFWAY Two Way Divided Median Barrier 0.7237 �0.8625 Quad 4
VTRAFWAY Two Way Divided Unprotected Median 0.8501 �0.8115 Quad 4
VTRAFWAY Others 0.857 �0.3103 Quad 4
VNUM Four Lanes 0.8724 �0.4331 Quad 4
VNUM Three Lanes 0.9107 �0.7679 Quad 4
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Cluster 5
The attributes of this cluster are the occurrence of no rollover, station wagon/2-door sedan/motorcycle as vehicle type,

posted speed limit as 60–70 mph, route as a state highway, and negotiating a curve as a prior movement (see Fig. 4b).
The components of this cluster show the combination of high-speed limit, negotiating a curve, and relatively small or light
vehicles such as 2-door sedan/motorcycle could lead to fatal crashes. Especially for motorcycles, it provides almost no pro-
tection to the driver under a turning movement at high speed. Speed-related treatments and additional warning signage in
advance of the HRGC may prove effective in these cases.

Cluster 6
The attributes of this cluster are multilane roadways, two-way divided roadways, and prior movement as stopped on-

road or turning (see Fig. 4b). These attributes suggest a combination of speed, traffic volumes, and driver cognitive overload
may be contributing factors; treatments which emphasize the importance of changing roadway conditions, and possibly the
addition of active warning devices, such as gate arms and flashing lights, could be effective countermeasures for these types
of HRGC crashes.

The four quadrants of the TCA plot reveal several patterns associated with fatal HRGC crashes:

� The occurrence of rollover fatal crashes with multiple fatalities is highly associated with inclement weather, comprised
lighting conditions, and under the influenced driver.

� Fatal crashes at railroad crossings could also occur with normal drivers with no influence of alcohol or drugs in daylight
and clear weather conditions. However, these fatal crashes mostly only involve one fatality – the driver himself. The cur-
rent dataset does not provide adequate information about driver distraction. Availability of distraction information can
provide additional explanation.

� The uphill or hillcrest always creates additional obstructions for railroad crossing of two-lane roadways, which could lead
to fatal crashes. Without alerting visually of the incoming train, these crashes are often associated with fatalities since
they have no time to respond after they approach the crossing.

� The speed limit and vehicle type are both associated with fatal crashes. Relatively lower speed (10–35mph) and relatively
large utility vehicles are associated with fatal crashes. Relatively large vehicles require extra time to cross the railroad
crossing with a low-speed limit. Relatively higher speed (60–70 mph) and smaller/lighter vehicles are associated with
fatal crashes, especially at negotiating a curve movement.

� Motorcycle – train crashes at high speed are associated with fatal crashes since motorcycle could only provide limited
protection for drivers while crash occurs.

Conclusions

HRGCs are considered as the critical spatial junctions on roadway networks because the crashes at these locations can
cause catastrophic incidents due to the tremendous momentum of trains. Safety at HRGCs is a high-priority concern among
transportation agencies, and there is little research about pattern recognition of the key contributing factors of HRGC
crashes. Therefore, to attain a complete understanding of HRGC crash patterns, this study performed TCA to identify key clus-
ters of variable groups. In most cases, conventional safety analysis does explore interactions between variables or variable
attributes. As crash data contains a significant number of categorical variables, a dimension reduction method such as TCA is
beneficial in acquiring clusters from the complex datasets. This study applied TCA to determine the co-occurrence of variable
attributes based on their relative presence in the two-dimensional space.

The study not only echoes the findings in previous studies but also provides promising insights into the fatal
crashes at HRGC locations. The results indicate inclement weather, poor light conditions, influenced drivers, vehicle
type, and functional class are associated with fatal crashes at grade railroad crossings. The findings also recognize pat-
terns hidden in the dataset. For instance, the fatal crashes associated with clear weather, proper lighting conditions,
and uninfluenced drivers were less likely to involve multiple fatalities. Multiple fatalities are mostly associated with
a combination of influenced drivers, poor lighting conditions, and inclement weather. Many patterns are recognized
through the TCA plot. The finding could greatly benefit the rail grade crossing fatal crash study and help transportation
agencies to identify effective countermeasures to reduce the number of crashes and mitigate the severity of the
crashes.

The current study is not without limitations. First, the current analysis focuses on attribute level TCA analysis. Row-
level or individual crash level TCA analysis has not been performed in this analysis, which may provide additional
insights. Second, the current analysis used the top 12 variables based on the information criteria using random forest.
Additional variables can also be included. As TCA analysis is two-dimensional plot-based, the inclusion of a long list of
variables will make the interpretation of the results challenging. Future studies can examine using additional variables.
Third, the current analysis is limited to only axis 1 and axis 2 (both axes explain over 50% of variance). Additional com-
binations (e.g., axis 1-axis 3, axis 2-axis 3) can be performed to provide additional insights. Limitations of the current
study can be improved in future studies.
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