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The manufacturing sector in the United States has greatly benefited from the usage of 

virtual reality technologies primarily for the last ten years, by allowing a more accessible 

integration between already developed operations and designs by manufacturers and virtual 

reality (VR) systems, making the resulting simulations' performances much more fluid and 

realistic. One of the newest subcategories in VR technology called Mixed Reality (MR), 

incorporates devices like 3D depth cameras and green screen video captures to stream the user's 

VR stream around him, as this stream can be seen by third-party observers, which allows for a 

more compelling experience. This research examines the implementation of both VR and MR 

platforms of a flexible manufacturing prototype scenario for teaching purposes. The thesis aims 

to present the pros and cons of using each platform, as the user manipulates its surroundings and 

interacts with tracking devices that are modeled into objects inside the scenario. 
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1. CHAPTER ONE: INTRODUCTION 

1.1 Background 

Automation technology is considered to be more than a discipline, an application of 

processes and equipment thanks to human control, even though this greatly dismisses human 

intervention. It is considered that automation behaves like a bond between the mechanization of 

a process and the computerization that it is required to determine the behavior of it. One 

important aim of automation technology is that these processes can be efficient and met with a 

low error rate. 

The intrinsic relationship between automation and manufacturing is based on several 

aspects. Many types of industries today require highly automated products and processes to meet 

their demands because, as society grows naturally, it increasingly seeks to have better conditions 

around it and thus contributes to competitiveness between companies. Similarly, as there are 

more and more professionals training in the different branches related to automation 

technologies, the industry will seek to take advantage of this by improving its processes, valuing 

indices such as quality and execution time. Other aspects in which automation may benefit the 

manufacturing industry are increases in productivity, reduction in labor costs and manual tasks, 

the improvement of safety measures, etc. 

Given the importance of industrial automation for manufacturing companies, it is 

important that they consider the implementation of training techniques in these technologies for 

their employees, considering various factors such as prior knowledge in the handling of 

automatic devices that each company or process uses or intends to implement and the financial 

resources available for personnel training. At this point, automation training in industrial 

automation technologies has some key disadvantages: it tends to be an internal resource that very 
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few companies or organizations can afford, and among those that have the economic availability 

to do so, automation training tends to be a process limited to certain personnel and requires 

considerably high time demand. Something important to mention is that, due to global crisis 

situations like the SARS-CoV-2 pandemic, the ability to train these employees in a face-to-face 

environment is gravely affected. 

For these reasons, the development of a virtual scenario-focused simulation of 

automation technologies training is proposed. The expected result of the development is that 

researchers will be able to present users with the same concepts required to handle automated 

industrial equipment used in areas like manufacturing in a safer environment that can offer 

flexibilities like remote monitoring of the data gathered from the virtual equipment and 

compatibility with physical devices like programmable logic devices (PLC) to enhance the 

learning process. 

1.2 Purpose 

The development of virtual scenarios focused on automation technologies implemented 

in the area of manufacturing is not something new. Since the development of virtual Reality and 

augmented reality devices and platforms, several researchers have sought ways in which specific 

tasks or processes can be adapted with the use of these devices. Many previous works have 

focused on the optimization of processes in real time or on the variation of different models or 

scenarios in which they allow the user to visualize the results prior to a real implementation of 

said process. As technological capabilities become more and more complex in an effort to 

execute more precise instructions, the people behind the development of virtual scenarios and 

technologies must deal with more complete and flexible execution models, so that with each new 
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advance, the end-user manages to experience an interaction not so different from the real 

handling of the simulated processes. 

The proposed design of this research contemplates the use of different key features of the 

virtual experience to allow multiple interaction levels between the user and the surrounding 

environment, as well as with external elements in the shape of hardware and software that uses 

the virtual data to establish a connection with ongoing physical processes, similar to the realistic 

way in which, on an industrial level, data can be shared between different platforms using 

industrial communication protocols. 

1.3 Research Objectives 

Objective 1: 

To implement both VR and MR technologies of a flexible manufacturing prototype 

scenario for automation training purposes by integrating different levels of immersion. 

Objective 2: 

To integrate industrial communication protocols that allow the virtual scenario to 

establish a connection with physical automation devices for parallel applications. 

1.4 Assumptions 

The following assumptions are considered as pre-conditions for this research. 

The virtual reality scenario corresponds to a CNC manufacturing prototype cell located 

inside the Morehead State University's School of Engineering & Computer Science Virtual 

Reality laboratory. The reason for this specific system to be modeled is that the physical 

elements and devices found on it offer students of the different engineering-related courses to 

understand basic automation concepts easily, and the overall virtual modeling process for these 

elements fits under the estimated time of development for the rest of the activities of this project. 
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The virtual reality scenario's main purpose is to offer the user the opportunity to recreate 

the same activities of the physical prototype. The behavior of each element inside of the scenario 

matches their real-life counterpart, thus allowing a proper way in which the operation knowledge 

gets transferred onto the virtual environment. 

1.5 Limitations 

The simulated prototype is considered to offer the user the ability to manipulate elements 

in order to follow an automated sequence of events similar to the physical manufacturing cell. 

Certain objects inside the scenario can and need to be handled by the user, but there are 

restrictions as to what the user can and cannot interact. These restrictions are incorporated as 

warnings inside the environment in order to guide the end-user through the right set of actions. 

1.6 Definition of Terms 

Virtual Reality: 

"The use of computer technology to create an interactive three-dimensional world in 

which the objects have a sense of spatial presence; virtual environment, and virtual world are 

synonyms for virtual reality" (Defense Modeling and Simulation Enterprise, 2020). 

Augmented Reality: 

"A type of virtual reality in which synthetic stimuli are registered with and superimposed 

on real-world objects; often used to make information otherwise imperceptible to human senses 

perceptible " (Defense Modeling and Simulation Enterprise, 2020). 

Mixed Reality: 

"A blend of physical and digital worlds, unlocking the links between human, computer, 

and environment interaction. This new Reality is based on advancements in computer vision, 

graphical processing power, display technology, and input systems" (Microsoft, 2020). 
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PLC: 

"(Programmable Logic Controller) An industrial computer used to automate 

manufacturing, industrial, and other electromechanical processes. PLCs are different from 

common computers in that they are designed to have multiple inputs and output arrays and 

adhere to more robust specifications for shock, vibration, temperature, and electrical 

interference, among other things" (Schneider Electric, 2019). 

HMI: 

"(Human-Machine Interface) The hardware or software through which an operator 

interacts with a controller. An HMI can range from a physical control panel with buttons, and 

indicator lights to an industrial PC with a color graphics display running dedicated HMI 

software" (U.S. Department of Commerce, 2015). 

CPU: 

"(Central Processing Unit) Is the portion of a computer that retrieves and executes 

instructions. The CPU is essentially the brain of a CAD system. It consists of an arithmetic and 

logic unit (ALU), a control unit, and various registers. The CPU is often simply referred to as the 

processor. The ALU performs arithmetic operations, logic operations, and related operations, 

according to the program instructions" (Rosato & Rosato, 2003). 

HMD:  

"(Head Mounted Display) The current form of hardware delivering virtual reality 

experiences to users. It is typically in the form of goggles strapped to the head. Integrated with 

either a mobile phone or display and custom lenses, it is through the headset that the user can 

view different virtual reality content" (Facebook, 2020). 

GPU: 
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"(Graphics Processing Unit)  Is a specialized processor originally designed to accelerate 

graphics rendering. GPUs can process many pieces of data simultaneously, making them useful 

for machine learning, video editing, and gaming applications. GPUs may be integrated into the 

computer's CPU or offered as a discrete hardware unit)" (Intel, 2021). 

FOV: 

"(Field of view) Is the angle of degrees in the user's visual field within a headset. Having 

a higher field of view is important because it contributes to the user having a feeling of 

immersion in a VR experience. The bigger that angle is, the more immersive it feels" (Facebook, 

2020). 

JSON: 

"(JavaScript Object Notation) Is a text syntax that facilitates structured data interchange 

between all programming languages. JSON is a syntax of braces, brackets, colons, and commas 

that is useful in many contexts, profiles, and applications" (ECMA International, 2017). 
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Immersion: 

"The sensorimotor contingencies available within a virtual environment, that it, the 

physical actions required within a specific environment to perceive and interact with a given 

environment" (Alinier, Young, Farra, & Kardong-Edgren, 2019) 

OLE: 

"(Object Linking & Embedding) A distributed object system and protocol from 

Microsoft, also used on the Acorn Archimedes. OLE allows an editor to "farm out" part of a 

document to another editor and then reimport it" (FOLDOC , 1998). 

OPC: 

 "(OLE for Process Control, later changed to Open Platform Communications) Is an 

industrial connectivity standard that enables the transfer of automation data between automation 

hardware and software. The goal of OPC is to make it possible for a software application to 

access automation data from any control and/or monitoring system, regardless of its vendor" 

(OPC Training Institute, 2021). 

TCP/IP 

"(Transmission Control Protocol/Internet Protocol (TCP/IP)) Is the basic communication 

language or protocol of the Internet. The TCP protocol is responsible for an error free connection 

between two computers, while the IP protocol is responsible for the data packets sent over the 

network. The TCP/IP Internet protocol suite developed by the US Department of Defense in the 

1970s" (OPC Training Institute, 2021). 
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Modbus Protocol: 

"Is a messaging structure developed by Modicon in 1979. It is used to establish client-

server communication between intelligent devices. It is a de facto standard, truly open and the 

most widely used network protocol in the industrial manufacturing environment. It has been 

implemented by hundreds of vendors on thousands of different devices to transfer 

discrete/analog I/O and register data between control devices" (The Modbus Organization, 

2021). 

Ladder Diagram: 

"Ladder diagrams are specialized schematics commonly used to document industrial 

control logic systems. They are called "ladder" diagrams because they resemble a ladder, with 

two vertical rails (supply power) and as many "rungs" (horizontal lines) as there are control 

circuits to represent" (Oliver, 1991). 
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2. CHAPTER TWO: REVIEW OF LITERATURE 

2.1 Virtual Reality 

VR is currently considered to be a technology that evolved exponentially thanks to its 

natural tendency to be a pleasing interactive environment experience. Its adaptability to a wide 

range of problems and domains by allowing the user to perceive a close-to-reality world in which 

not only sight but also smell, touch, and hearing are controlled by high-performance computers 

made it quickly break the erroneous idea that it was meant to be a fantastic, futuristic and short-

lived idea born out of science fiction (dated as far back as 1935 on Stanley G. Weinbaum's 

"Pygmalion's Spectacles"). 

One of the most important concepts to understand within the virtual reality field is the 

reality-virtuality continuum, which is represented by a scale that ranges from what is considered 

physical and visually "real" to what is considered "virtual." The continuum is best represented by 

a two-dimensional plane of virtuality and reality, with the origin R denoting unmodified Reality 

and two axes, M and V, representing changes. Figure 1 (Nincarean, Bilal Ali, & Abd halim, 

2013) illustrates the continuum. 

 

Figure 1. Reality - Virtuality continuum 

 

Four points result within this plane: augmented Reality, augmented virtuality, mediated 

Reality and mediated virtuality. Furthermore, this model allows the emergence of the concept of 
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"mixed reality", a merging point of both worlds that results in their particular environments and 

visualizations, as shown in Figure 2 (Flavián, Ibáñez-Sánchez, & Orús, 2018). 

 

Figure 2. Exemplification of the mixed reality concept 

For the purpose of this document, Virtual Reality refers to the experience that allows a 

person to be immersed in a simulated environment provided by a device called a head-mounted 

display (HMD). Although something relatively simple to understand, it is important to make this 

clarification of the VR term, given the existence of different levels of immersion, which in turn 

can diversify the concept of what VR is. Although there is not a unified scheme, a valid proposed 

model of VR's immersion levels is presented as follows in Figure 3 (McCarthy, 2020): 



11 

 

 

Figure 3. Different levels of immersion 

2.1.1 Components of Virtual Reality 

When one considers what a "basic" VR setup should look like in the current year, 

especially given how quickly new accessories are developed and how the concept of VR gets 

reshaped, many different opinions are encountered. Therefore, experts in the area sometimes 

struggle to establish normativity on what these components should be. One example of this can 

be observed in the differences between the following diagrams corresponding to Figure 4 

(Burdea & Coiffet, 2003) and Figure 5 (Bamodu & Ye, 2013): 
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Figure 4. Early architecture for VR systems 

 

 

Figure 5. Example of a newer VR system architecture 

It is worth noticing, for example, how, currently, the "application software" element is 

contained within the rest of the software involved in the VR system. How ten years change the 

perspective of what should be considered "basic" is indeed interesting from the point of view of 

standardizing concepts. 
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For the purpose of this document, the latter diagram is chosen to enumerate and briefly 

describe the VR elements employed. 

2.1.1.1 Head-Mounted Display (HMD) 

One of the main components of any VR system, if not the main component, is the head-

mounted display (HMD). This device mostly consists of a helmet that includes a visor that 

simulates binocular vision, using each eye to transmit slightly different images of the same 

object with a slight offset between each other. The HMD offers diverse features to help the user 

enhance the quality of the VR environment, like toggling between different levels of resolution, 

adjusting the available field-of-view and the tightness of the helmet to the user's head. A 

deconstructed view of the HMD can be observed on Figure 6 (Yole Développement, 2020):  

 

Figure 6. Part collection for a Vive® VR HMD 

With the fast development of VR technology in the last few years, there is already 

enough diversification of HMDs that it is possible to sort them into two main categories:  
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2.1.1.1.1 Tethered HMD 

Tethered HMDs are those that make use of a special wired connection to the hosting 

CPU, with some special cases in which each HMD include their own computing unit. Tethered 

HMDs usually contain a standalone display inside with special electronics, an optical lens, and a 

tracking system that can register the user's movement in either 3 or 6 DoF, making use of 

technologies like gyroscopes accelerometers, magnetometers, etc. An example can be observed 

in Figure 7 (VIVE VR, 2021): 

 

Figure 7. Wiring a tethered VIVE® VR HMD 

The main advantage of using tethered HMDs comes when the user/developer intends to 

pursue quality over simplicity: by having dedicated displays and electronics, these devices offer 

better high-quality images and environmental tracking that enhance the user's immersion and 

performance within the VR scenario. The cost, obviously, is that the user's real-life movement 

capabilities are limited to the total length of the HMD cable. In addition to this, different tethered 

HMD brands differ in the total number of connections that they need to receive in order to be 

powered up and start the VR projection. 



15 

 

2.1.1.1.2 Mobile HMD 

On the other hand, mobile HMDs are mostly designed as helmets that do not need a 

physical wired connection to a hosting PC or computing unit. Given that, today, wireless HMDs 

are a tendency that most developers seek, this type of HMD is not limited to VR but can also 

make use of AR applications. Therefore, mobile HMDs differ according to the software used on 

them: 

• Smartphone VR: These include mostly the lens and a socket in which another device, like 

a smartphone, is introduced while already having a pre-built app that acts as the VR 

environment, such as in Figure 8 (Raffaele, 2017). 

• Wireless VR: Some companies have incorporated wireless capabilities onto some of their 

helmets, allowing users to keep a higher quality transmission while not sacrificing 

mobility within the workspace. 

 

Figure 8. The Google® Daydream HMD 

 

In the case of HMDs that make use of smartphones, the main disadvantage is that the 

performance and image quality greatly depends on the type of phone used. Therefore, while the 
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mobile HMD's price is considerably lower than tethered options, the budget increases if the user 

desires higher quality according to the selected smartphone. Furthermore, wireless VR HMDs 

can sometimes be affected by the performance of the transmitter/receiver devices that are 

adapted onto it. 

2.1.1.2 Input Devices 

The second-largest branch of equipment used in VR environments includes all other 

devices used to provide data and control signals into the scenario's information processing 

system. Within the past three to four years, there has been a rapid emphasis on more active 

experiences and environments for the end-user to interact with, which in turn demands faster and 

more responsive/intuitive equipment. This is important, given that these traits determine the 

speed at which one can navigate through all the scenario's pre-established actions. 

VR Input devices can be classified according to the corresponding type of input provision 

for the HMD: 

2.1.1.2.1 Controllers 

Like most video game consoles, virtual reality setups were initially conceived as 

entertainment for people, and thus, most of the early versions of these were designed with similar 

controllers as the then-available market-established consoles and some arcade machines. This 

was mostly because the movements of the user were more limited. (Some early scenarios could 

only allow forwards/backward and left/right displacement.) 

As technology progressed, translation of user/character movement from real-life models 

to a virtual environment happened in a more natural way, thus forcing developers to look for 

ways in which controllers could replicate these commands. The response came in the way of 

3DoF/6DoF controllers, the latter being capable of adding more interactive options with the 
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elements of the VR environment; these include properties like integrated trackers and buttons 

like grippers and triggers. Examples of these can be seen in Figure 9 (Raffaele, 2017): 

                                    

Figure 9. Examples of a 3 DoF and a 6 DoF controller 

2.1.1.2.2 Tracking Device 

A tracker is a device that, like its name implicitly says, detects and follows a given 

coordinate position of an object. Translated into a VR environment, this device identifies and 

transmits the position of HMDs and the user's location within the scenario and sends it towards a 

receiver device plugged into the hosting PC. 

Tracking devices widely depend on the type of coordinate system that is being used 

inside the scenario, so it is highly important for the developer to properly calibrate these devices 

on all of its possible positions and orientations before attaching it to the user or desired object. 
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Figure 10. Coordinate systems for tracking devices (Burdea & Coiffet, 2003) 

Parameters like accuracy, drift, and latency are considered necessary in the development 

stage. The more accurate a tracker or the lower latency it has can have a significant influence on 

the chosen device for a specific scenario. Such correlation between parameters can be seen in 

Figure 11: 

 

Figure 11. Correlation graph between tracking devices' parameters (Burdea & Coiffet, 2003) 
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Several types of trackers are available currently in the VR market. Most of these trackers 

include wireless capabilities and low latency periods. These also can vary according to the body 

part on which the trackers are mounted: 

 

 

Figure 12. Types of VR trackers according to body location 

 

Figure 13. Examples of hand VR tracking devices (Raffaele, 2017) 
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2.2 Augmented Reality 

When looking at the most common implementations of Virtual Reality in the present day, 

it is most likely that one could stumble upon certain applications that do not benefit from the fact 

that the user is immersed into an environment completely different from the real-life objects that 

surrounds him. Indeed, a lot of information tends to be overlooked in most processes, so while 

VR environments shine in emulating complicated and critical actions in a safer and more 

controlled way, they lack the ability to enhance the perception of its typical environment (Lu, 

Xu, & Wang, 2020). 

Augmented Reality is now considered a significant area of research in the field of VR. 

This technology takes advantage of the wealth of information and data that are capable of being 

obtained from the environment that surrounds the user, allowing a more practical and graphical 

display, rather than being presented in a numerical way or in the form of files or databases. 

Strictly, AR is "an enhanced version of reality created by the use of technology to overlay digital 

information on an image of something being viewed through a device" (Novak-Marcincin, 

Barna, Janak, & Novakova-Marcincinova, 2013). The main objective of image interposition is to 

create a system in which the user can improve the perception of the system being manipulated 

using as much information or data as possible. 

AR systems, unlike VR systems, use HMDs that incorporates a translucent screen, in 

which the overlay has an effect. Projectors located on both sides of the device generate the 

virtual environment in the form of holograms, using depth sensors to place the computer-

generated images according to what is observed into the user's field of vision. A main difference 

between these devices compared to VR HMDs is that the former allows the user to identify hand 

gestures to interact with the environment, thus avoiding the use of special controls. Although 
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providing a much lower-end experience, smartphones represent the most common distribution 

channel for AR, given how easy these holographic designs can be used alongside current camera 

technology. In a typical AR system, the camera in a smartphone is used to scan a specially-

designed marker, such as a QR barcode or image, which then calculates the camera's position in 

relation to the environment and projects visual AR content through the screen. 

 The software used for the creation and development of AR applications is actually the 

same one used by VR environments since the main difference lies in the plug-ins or scripting that 

are intended to be used according to the HMD. The main difference is that these environments 

require a camera to be able to interpret the environment that surrounds the user, so it is also 

important that the software includes the ability to recognize and incorporate the video stream 

from said device. 

 

Figure 14. Built-in sensors of the Microsoft® Hololens HMD (Khoshelham, Tran, & Acharya, 

2019) 
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2.3 Mixed Reality 

Although the concept of Augmented Reality is wide enough to cover a large number of 

technologies that enhance the perception of the user's surroundings, it is important to backtrack 

to the Milgram et al. explanation of the wide spectrum covered by Reality and virtuality. 

Everything that is located within both extremes of the spectrum can be described as mixed 

Reality (MR). Even up to the current day, many developers and researchers still strongly debate 

about the main differences between the discrepancies of AR and MR concepts. 

For the purposes of this project, mixed Reality (MR) refers to the intertwining of the 

virtual world and the physical world at a high level. The main focus on MR environments varies 

according to the multiple experiences that tend to differ from user to user, including the level of 

immersion, interaction, number of users and environments, etc. After careful considerations, it 

was established that the "level of virtuality" dimension had a heavy weight on the decision to 

consider "mixed reality" as the right framework. 

2.3.1 Components of Mixed Reality 

Similar to AR, most mixed reality applications make use of HMDs, which contain a 

screen that composes information without obfuscating the environment in front of the user; this 

is achieved through the use of a holographic projector mounted on the sides of each eye. In other 

cases, however, the composition requires that additional elements like stereo cameras and green 

screens combine to produce a more immersive experience, not only for the user but for other 

external observers. 

2.3.1.1 Stereo Camera 

 Stereo cameras (or stereoscopic cameras) are image-capturing devices that have two or 

more lenses, with separate image sensors located on each lens. Each of the lenses displays 
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different images, which then are sent to a processor that applies a perspective rendering method 

to match the scene projection point-of-view to the user's position. The resulting effect allows the 

observer to notice changes in depth and placement of the captured objects, exemplified by Figure 

15 (Chotrov, Uzunova, Yordanov, & Maleshkov, 2018). 

 

Figure 15. Epipolar geometry of stereo vision 

A stereo camera reproduces the way human binocular vision works. They incorporate the 

camera sensors usually within a 6 to 12 cm separation, thus allowing the capture of 3D video 

and, more importantly, the estimation of both depth and motion. 

The depth maps that are created from the stereo cameras are created by capturing a 

distance value for each of the pixels in the images. This distance is internally calculated from the 

furthest position of the camera sensors to the actual object in the scene. In a similar way, stereo 

cameras can create 3D point clouds, which are nothing more than a "collection of 3D points that 

represent the external surface of the scene, and can contain color information" (Stereo Labs Inc., 

2020). 
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Figure 16. The depth and point-cloud maps 

2.3.1.2 Green Screen 

Another method for image composition used not only in mixed Reality, but also in many 

other media that involves movement capturing is chroma key compositing (or chroma keying). 

This visual-effect technique makes use of a single-color background that, after the image or 

video is captured, is replaced with another image or video recorded separately. These colors tend 

to be, in most cases, either blue or green, given the fact that they are the furthest from a person's 

skin tone, shown as an example in Figure 17 (Stereo Labs Inc., 2020). 

 

Figure 17. Example of a green screen background capture in MR 
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2.4 Automation Technologies 

Automation as a concept is as complicated to define as virtual Reality. Over the coming 

years, the idea of automated systems has confused many people that have struggled to 

distinguish up to which point a certain device or operation could be considered "autonomous" or 

without human aid. With the exponential technological progress accomplished from the 1940s 

and 1950s onwards, automation was known as a solution for quality improvement and 

productivity increase among different industries around the world by switching human 

involvement towards supervisory roles and cognitive tasks. 

In the simplest of terms, automation can mean "the execution by a machine agent of a 

function that was previously carried out by a human" (Parasuraman, 2000). However, it can also 

refer to the collective range of technologies capable of carrying out these actions. From here, 

there are a plethora of important concepts that revolve around automation, such as automated 

control (the systems that manage the logic and instructions for automated devices) and control 

lops (measurement of values and the comparison with a preset, which in turn is sent to the 

control system to determine the best course of action). 

2.4.1 Sequential Control 

In the current industrial field, it is more common to observe a wide arrange of machinery 

and sectors that rely on automated work with little to no human interaction. This is mostly 

accomplished by an equally large number of devices in charge of guiding pre-established 

instructions (most of them inputted by humans) in very specific notation (variables) that 

constantly modify or maintain numerical or verbal values that these machines recognize. 

There are different control schemes that can be implemented in automated systems; some 

of these are even used in conjunction if needed. Some systems are relatively simple enough to 
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employ abrupt on-off controls when the desired value is met, while other, more complex ones 

use arithmetical calculations to compensate the continuous error obtained to increase or decrease 

proportional, integral, and derivate terms in order to maintain stability. 

However, for the purposes of this thesis, the focus shifts to a type of control that 

considers the execution of different tasks depending on various system states. This is commonly 

referred to as sequential control or system state control, exemplified by Figure 18 (University of 

Ovideo, 2007). The states refer to the diverse and sometimes specific conditions that can happen 

in a sequence where one or many elements of a system are involved. 

 

Figure 18. Elements of sequential control systems 

2.4.2 Programmable Logic Controller (PLC) 

In many industrial applications, the most common way to achieve total control over 

automated processes is by the aid of programmable logic controllers (PLC). A PLC is "a digitally 

operated electronic device, which uses a programmable memory for internal storage of 

instructions to implement specific functions, such as logic, sequencing, recording and control of 

times, counting and arithmetic operations to control, through digital input/output modules (ON / 

OFF) or analog (1-5 VDC, 4-20 mA, etc.), various types of machines or processes" (National 

Electrical Manufacturers Association, 2005). 
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The field of application of PLCs is exceedingly diverse and includes various types of 

industries (e.g., automotive, aerospace, construction, etc.), as well as machinery. Unlike general-

purpose computers, the PLC is designed for multiple inputs and output signals, wide temperature 

ranges, immunity to electrical noise, and resistance to vibration and shock. The programs to 

control the operation of the machine are usually stored in backup batteries or in non-volatile 

memories. 

A PLC is an example of a hard-real-time system where output results must be produced 

in response to input conditions within a limited time, which will not otherwise produce the 

desired result. 

 

Figure 19. PLC main and secondary modules (Siemens, 2012) 

Among the advantages that PLCs offer is the fact that they make it possible to carry out 

operations in real time, due to their reduced reaction time. In addition, they are devices that 

easily adapt to new tasks due to their flexibility when programming them, thus reducing 

additional costs when preparing projects. 
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They also allow immediate communication with other types of controllers and computers 

and even allow network operations. They have a stable construction, as they are designed to 

withstand adverse conditions such as vibrations, temperature, humidity, and noise. They are 

easily programmable through quite understandable programming languages, like ladder 

diagrams, sequential function charts (SFC), function block diagrams (FBD), etc. However, they 

have certain disadvantages, such as the need for qualified technicians to take care of their proper 

operation. 

2.4.2.1 General Structure of a PLC 

In order for the PLC to work, it needs a power supply whose main purpose is to guarantee 

the internal operating voltages of the controller and its blocks. The most frequently used values 

are ± 5V, ± 12V, and ± 24V, and there are mainly two power supply modules: those that use an 

input voltage from the main module and those that use operational power supplies to control the 

objects. 

The main part is the central processing unit (CPU) which contains the processing part of 

the controller and is based on a microprocessor that allows the use of arithmetical and logical 

operations to perform different functions, as illustrated in Figure 20 (Farrukh, Halepoto, 

Chowdhry, Kazi, & Lal, 2017). In addition, the CPU also frequently tests the PLC to find errors 

in due time. 
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Figure 20. Basic structure of a PLC 

The place where data and instructions are stored is a memory that is divided into the 

permanent memory (PM) and operational memory, also known as random access memory 

(RAM). The first, PM, is based on ROM, EPROM, EEPROM or Flash; it is where the PLC 

operating system runs and can be replaced. However, the RAM is where the program in question 

used is saved and executed, and it is the SRAM type that is usually used. 

Finally, the inputs and outputs (I/O) modules are those signal modules (SM) that 

coordinate the input and output of the signals with those internal to the PLC. These signals can 

be digital (DI, DO) and analog (AI, AO), and they come from or go to devices such as sensors, 

switches, actuators, etc. Analog SMs generally use direct current (DC) voltage and a direct 

current. In this way, optocouplers, transistors, and relays are used in the digital output of the SMs 

to change the states of the output signal in order to protect these devices from situations such as a 

short circuit, an overload, or an excessive voltage. 

A PLC receives and transfers electrical signals, thus expressing finite physical variables 

(temperature, pressure, etc.). Therefore, it is necessary to include a signal converter in the SM to 

receive and change the values to physical variables. There are three types of signals in a PLC: 

binary, digital, and analog signals. 

2.4.3 Industrial Communication Protocols 

On many occasions, the concept of "industrial communication protocol" has been heard, 

but to what it refers to has not been clarified. In order to understand this concept, it is important 

to understand the role that communication plays in today's highly technological and modern 

industry. Inside most factories today, many systems are made up of equipment from different 

manufacturers and operate at different levels of automation. Due to this, and also due to the fact 
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that most factories have their different operating areas considerably distanced from each other, it 

is often desirable to work in a coordinated way for a satisfactory result of their processes. The 

concept of industrial communication protocol then becomes "a method for digital data 

communications between two or more devices in different locations, or on a network" (InduSoft, 

2017). 

.  

Figure 21. Example of networked devices through Ethernet communications 

This type of communication between systems has been used essentially for 

instrumentation equipment and systems where a low data transfer rate between equipment is 

necessary, but in a large number of cases today, it can no longer respond to the needs of 

intercommunication between devices that are demanded. The advantages provided by industrial 

communication protocols, among others, are: 

• Visualization and supervision of production processes 

• Quick or instantaneous acquisition of process data 
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• Improvement of the general performance of the entire process 

• Possibility of data exchange between sectors of the process 

• Remote programming 

 

Figure 22. Hierarchy of an industrial automation system (Belai & Drahoš, 2009) 

2.4.3.1 Fieldbus 

Each of the types of industrial communication protocols must have particular 

characteristics in order to respond to the needs of intercommunication in real-time. In addition, 

they must withstand a harsh environment where there is plentiful electromagnetic noise and 

harsh environmental conditions. In the use of industrial communications, two main areas can be 

separated: communication at the field level and communication towards SCADA (Supervisory 

Control and Data Acquisition). In both cases, the data transmission is carried out in real-time or, 
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at least, with a delay that is not significant concerning the process times and can be critical for 

the field level. 

A Fieldbus is, in general lines, "a system of field devices (sensors and actuators) and 

control devices, which share a bidirectional serial digital bus to transmit information between 

them, replacing the conventional point-to-point analog transmission." They allow the 

replacement of the wiring between sensors/actuators and the corresponding control elements. 

This type of bus, exemplified in Figure 23, must be low cost, with minimum response times, 

allow serial transmission over a digital data bus with the ability to interconnect controllers with 

all kinds of simple input-output devices, and allow intelligent slave controllers (Pimentel & 

Schneider, 2013). 

 

Figure 23. Network topology with Ethernet/IP 

When the distance between the instrument and the control system becomes considerable 

or when many instruments are present in the process, one must consider factors like wiring costs, 

especially when the need for a large number of reserve drivers is established. For these reasons is 

that the Fieldbus philosophy is more widely implemented. With this system, it is possible to 
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replace large bundles of conductors with a simple two-wire or fiber optic cable, common to all 

sensors and actuators, with the consequent economic savings that this entails. The 

communication of the process variable is entirely digital. 

2.4.3.2 OPC Communications 

As has been seen, there is a wide variety of industrial communication protocols available 

for various types of applications and needs. However, one of the most relevant and flexible 

protocols in the design of automated virtual systems is the OPC protocol. 

The OPC (OLE for Process Control, later Open Platform Communications) is a 

communication standard in the field of industrial process control and supervision, based on 

Microsoft's Object Linking & Embedding technology, which offers a standard interface for 

communication, allowing individual software components to interact and share data. OPC 

communication is carried out through a client-server architecture. It is an open and flexible 

solution to the classic problem of proprietary drivers. Virtually all of the major manufacturers of 

process, instrumentation, and control systems have included OPCs in their products. 

2.4.3.2.1 OPC Architecture 

OPC uses a client-server approach to communication. The OPC server is in charge of 

encapsulating the information and making it available through its interface, while the OPC client 

connects to the OPC server and accesses the available information. In classic OPC, the interfaces 

are based on Microsoft's COM and DCOM technology, while in the latest version of the standard 

of OPC UA, two protocols are used: a high-performance binary TCP protocol (OPC-TCP) and a 

second based in web services (HTTP). This network configuration can be seen in Figure 24 

(Mahmoud, Sabih, & Elshafei, 2015). 
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Figure 24. Topology of an OPC protocol network 

Classic OPC provides the standard specifications for Data Access (DA), Historical Data 

Access (HDA), and Alarms and Events (A&E). These OPC specifications are widely accepted in 

the automation industry. Classic OPC, which is based on Microsoft's old COM/DCOM1 

technology, has led to the development of new specifications known as OPC UA (Unified 

Architecture) (Gutiérrez-Guerrero & Holgado-Terriza, 2019). 

The main objective of OPC UA is to maintain the functionality of the classic OPC and to 

move from Microsoft's COM/DCOM technology to state-of-the-art services technology. Using 

web service technology, OPC UA becomes platform-independent and can therefore be applied in 

situations where classic OPC is no longer used. OPC UA can be seamlessly integrated into 

manufacturing enterprise systems (MES) and enterprise resource planning (ERP) systems and 

works not only on Unix/Linux systems with  Java but also on drivers and smart devices that have 
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specific operating systems capable of real-time operation. Of course, compatibility with previous 

OPC specifications is a requirement for OPC UA.  

 

Figure 25. Topology of an OPC UA network 

3. CHAPTER THREE: METHODOLOGY 

3.1 Research Design 

The main objective of this project consisted of the design of a virtual environment in 

which a flexible manufacturing prototype for automation training can be displayed and interacted 

with by incorporating a mixed reality layout. One of the first steps in the realization was to 

identify the main problem, which was found in a prototype training manufacturing cell located 

within the Virtual Reality Laboratory at Morehead State University (Figure 26). 
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Figure 26. Manufacturing training prototype located in the VR Laboratory 

The type of research design followed was one of the descriptive (case-study) types. The 

main for this is that the object of study required a degree of manipulation, not only in its 

physical components but also in the virtual model obtained. In addition to this, one of the main 

results was translated into the appreciation of the differences between the design based on 

Virtual Reality and Mixed Reality. However, the study did involve a degree of experimentation, 

given the fact that many controllable variables affected the outcome of important dependent 

variables. 

3.2 Setup Development Environment 

In order to better understand the basis of the project, a brief description of the composing 

elements of the prototype must be included. 
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3.2.1. CNC Machines 

Computer Numerical Control (CNC) machines are computer-controlled devices enabled 

to treat materials such as wood, foam, plastic, medium-density fiberboard (MDF), metal, among 

many others. The emergence of CNC machines has optimized the technical process of industrial 

and artistic creation. These devices also automate machine sequences and techniques that allow 

the creation of parts that manually could not be done. 

The sequence in which a CNC machine typically executes its commands in order to 

manufacture the desired material and produce a component is described as following: 

• A part program is written using specific codes that were standardized for 

machine control, called G and M codes, which tell the machine where to move 

and to describe the sequence of operations that the machine must perform to 

manufacture the component. 

• The part program is then loaded onto the machine's computer, called a controller. 

In this stage, the CNC software allows the program to be edited or graphically 

simulated in order to get a complete preview of the finished product. 

• The controller then processes the part program and sends signals to the machine 

in order to direct the machine through the required sequence of operations. 

The training manufacturing prototype includes two different CNC machines produced by 

Denford. 

3.2.1.1 Lathe 

The CNC lathe is a two-axes CNC training machine tool that is designed for turning 

synthetic material such as wax, plastics, acrylics, and non-hardened metals such as aluminum. In 



38 

 

each of these cases, the appropriate tooling, spindle speeds, and feed rates should be used as 

recommended by the material supplier (Denford, 2003). 

 

Figure 27. Detail of the Microturn lathe tool 

 

Figure 28. Machine parts of the lathe 
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3.2.1.2 Mill 

The CNC mill is a full three-axis CNC training machine tool designed for milling 

synthetic material such as wax, plastics, acrylics, and non-hardened metals such as aluminum. In 

each case, the appropriate tooling, spindle speeds and feed rates, should be used as recommended 

by the material supplier (Denford, 2003). 

 

Figure 29. Detail of the training prototype's mill 
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Figure 30. Machine Parts of the mill 

3.2.2 Robotic Arm 

Although the definition for "robot" is as complex and can vary among different authors, 

most of them would agree that it can be considered as an electromechanical device that can 

emulate motions similar to a human being. On that note, a robotic arm can be defined as an 

articulated electric servo system designed to replicate the articulations of a human arm. 

Robotic arms are fabricated with industrial-grade components and are composed of 

articulations, called joints, that can move the device in various translational and rotational points 

(axes). Typically, robotic arms include a final actuator in the shape of a gripper or a tool, which 

is used to interact with other external objects, depending of the purpose of use of the robotic arm. 
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The robotic arms located within the training prototype are the Amatrol Pegasus II robotic 

arms, and they move around five different joints or axes, as well as a translational axis by being 

mounted on top of a linear conveyor. The robotic arms also include a teach pendant, which 

works as a programmable handheld device used to teach and store movement points for the 

robot, as well as its own controller with independent inputs and outputs. 

 

Figure 31. One of the two Pegasus robotic arms 
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Figure 32. Locations of the different robotic arm axes 

3.2.3 Actuator 

An actuator is a device that converts energy into motion or is used to apply force. The 

device takes energy from a certain source (which can be energy created by air, liquid, or 

electricity) and converts it into the desired movement. The two types of basic movement desired 

are linear and rotary, but oscillatory movement is also common. 

Linear actuators work by converting energy into linear movements, which are used for 

pushing or pulling. Rotary actuators, on the other hand, convert energy into oscillatory 

movements and are generally used in different valves, such as butterfly or ball valves. 

In the training prototype, there are different types of actuators. Each of them performs a 

very specific task within the system. 



43 

 

3.2.3.1 Conveyor Belt 

The system has two conveyor belts, which move along a system of drums driven by a 

motor. Materials placed on top of the belt move from point to point while the belt rotates around 

the drum in the opposite direction to maintain uninterrupted movement. 

Conveyor belt systems are generally designed according to the type of movement desired 

and can have cyclical, finite, linear paths, etc. The elements that are located on top of the 

different conveyor belts correspond to supports for different types of pieces. In the case of the 

manufacturing training prototype, the belts are designed for parts in the form of blocks and 

cylinders. 

 

Figure 33. Two types of holders 
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Figure 34. One of the training prototype's conveyors 

3.2.3.2 Slider 

A slider, as the name implies, is generally a linear motion actuator that is responsible for 

rapidly moving elements from one point to another through a guide, generally in conveyor belt 

systems. Most of these actuators are energized from a pneumatic (pressurized air) or mechanical 

impulse. 

 

Figure 35. Slider actuator 



45 

 

3.2.3.3 Linear Actuator 

A linear actuator is a device that, as mentioned previously, converts a certain type of 

energy into linear movements. In the particular case of the training prototype, there are two types 

of pneumatic actuators that perform linear movements on the part supports. One of them moves 

to raise or lower the support in a fixed position so that the robotic arms can manipulate the parts, 

and the other actuator performs the function of blocking the advance of the supports along the 

conveyor belt. 

 

Figure 36. Linear actuator for the main conveyor 

3.2.4 Sensors 

Sensors, also known as transducers, are one of the fundamental components of modern 

data acquisition systems. A sensor is a device that detects a change in the environment and 

responds to an electrical stimulus from a control system. A sensor converts a physical 

phenomenon into a measurable analog voltage (or sometimes a digital value), which in turn can 

be sent to a human-readable display or transmitted for further reading or processing. 
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Depending on the type of sensor, its electrical output can be a voltage, current, resistance, 

or another electrical attribute that varies over time. Some sensors are available with digital 

outputs, thus generating a series of scaled or unscaled data bytes. 

3.2.4.1 Snap-action Switch 

A snap-action switch is a switch that only has a single input and can be connected to and 

switched between two outputs. This means that it has one input terminal and two output 

terminals. Snap-action switches can serve a variety of functions in a circuit. It can serve as an on-

off switch, depending on how the circuit is connected, or it can be used to connect circuits to any 

two different paths that a circuit may need to function. 

The way of operation of these devices is that, when activated, they can give information 

to the controller (in this case, the robot controller) to indicate that support is in position to be 

moved by the sliders. 

 

Figure 37. Snap-action sensor 
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3.2.5 Machine Vision Inspection System 

The industrial machine vision inspection system is one of the technologies that make the 

difference in certain essential tasks in industrial production. These artificial vision systems 

applied to robotics facilitate the solution in industrial phases as decisive as quality controls or the 

detection of defective products. Artificial vision is an industrial technology applicable to 

different sectors and production phases. It is one of the most effective and innovative automated 

and intelligent methods for acquiring, processing, and analyzing images in production processes. 

3.2.5.1 Camera 

The smart camera is one of the most popular technological advances in relation to vision 

sensors and stand out for their computing power—capable of providing a solution to any need 

for industrial vision—image resolution and easy installation. This facilitates that their 

applications are vastly varied, regardless of activity or phase of the production chain. Its most 

innovative aspect lies in its processing capacity, which provides it with storage and availability 

to connect with other automated systems, due to the use of input and output mechanisms. 

One of the main advantages of the machine vision hardware used in the prototype is that 

it includes an inspection software that allows statistical analysis of measurements and faults in 

the patterns of the manufactured parts in such a way that it offers a pass/fail result of the product. 
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Figure 38. Cognex® machine vision camera sensor 

3.2.5.2 Barcode Reader. 

Another of the hardware devices incorporated in the vision system is the barcode readers. 

This electronic device consists of a scanner capable of reading the bar codes by means of a laser 

to later send the data, through a Wi-Fi antenna or cable, to a terminal or computer. 

The prototype has three barcode readers, which access different types of information that 

are embedded within a barcode located on each of the supports: this, in turn, specifies the type of 

material to be placed and the shape of the part to be manufactured.  

3.2.6 Piece Holder 

A piece holder is a common element found in many production lines. This is an object 

whose only function is to provide support and transportation for either raw materials going into a 

specific process and for finished products obtained from said process. The manufacturing 

training prototype includes two types of piece holders: one destined to support blocks going into 

the mill and the other dedicated to transport the cylindrical pieces towards the lathe. 
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Figure 39. Cognex® machine vision inspection system barcode reader, along with a piece holder 

3.3 Methodology 

The main function of the manufacturing prototype is as follows: one of the two robotic 

arms located in the stations grabs different pieces of raw material in the form of acrylic/wooden 

blocks and aluminum cylinders and moves them into different holders inside of one of the 

conveyors. These holders are transported to different stops, in which they get a certain barcode 

scan by sensors located in fixed positions. According to the type of part, the barcode readers send 

a specific set of data to the PLC, which, in response, tells the robot controller to move and place 

the piece into the desired CNC machine (the blocks to a mill and the cylinders to a lathe). Once 

there, and also according to the given barcode, the machines will execute one of two different 

sets of M codes to generate a specific model with different geometric references.  

When finished, the CNC machines will communicate with the PLC and the robot 

controller to move the other robotic arm towards the machine, pick up the finished part and 

deposit it back into the holder. Then, the holder will continue its trajectory inside the conveyor 

until it reaches the vision system. At that point, the camera takes a capture of the finished part 
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and analyzes a certain set of parameters. According to a given set of specifications, the software 

indicates if the part is either accepted or rejected. This status determines the correct final 

conveyor in which it is placed. 

 

Figure 40. Flowchart representing the manufacturing training prototype's routine 
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3.3.1 3D Design Stage 

The proposed environment is composed of different 3D models created by computer-

aided design (CAD) software. The selected models were imported into the Solidworks® CAD 

software, chosen because of their flexibility when handling different types of 3D model files and 

the wide range of operations used to achieve the desired shapes. Once the CAD model is 

finished, shown as an example in Figure 41, it is then exported to the 3DS Max modeling 

software, represented in Figure 42.  

One of the main reasons for this is because the scenario has to adapt to the minimum 

specifications that the computational platform (in this case, laptops belonging to the testing crew) 

can afford. Too heavy a render can cause a significant delay in the number of actions that the 

laptop processor has to run. Basic geometrical shapes are the exceptions since the game engine 

can create them with a relatively simple mesh, and they are used to represent objects that are 

either core to the functions of the prototype or part of the interactive elements in it. 

 

Figure 41. 3D model of the Amatrol robotic arm 
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Figure 42. Face and mesh models od the 3D robotic arm 

3.3.2 Game Engine Stage 

These models are exported into a game engine in which they are arranged according to 

the needs of the virtual environment. The game engine software allows the environment to 

simulate real-life conditions within the virtual object's physical properties. Actions like grabbing, 

releasing, twisting, and pressing must be as realistic as possible for the user.  Therefore, the more 

detailed the actions are programmed, the easier it is for the user to adapt to the real objects when 

given a chance. 

One of the best game engines available for virtual scenario design is Unity 3D®, free 

software that is also mainly used for game development. Since its creation in 2002, the engine 

has undergone a series of upgrades that make it possible to work with third-party apps and 

hardware, including VR and AR devices. 
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Figure 43. View of a scene in Unity 3D® 

The game engine consists of different working environments, called "scenes" (Figure 43), 

in which the virtual objects get placed and arranged according to the desired specifications of 

what should be simulated. The placed objects, called "GameObjects," can be modified afterward 

in a wide number of properties like position, orientation, size, weight, material, and its 

animations. 

The GameObjects are subsequently animated through C# scripting. Since the purpose of 

the scenario is to emulate the same physical actions of the real-life training prototype, the logic 

chosen for the scripts is sequential, which matches the same logic implemented in the robotic 

arms, the CNC machines, and the conveyor movement are coordinated by the PLC. C# offers a 

clear, powerful, and robust availability to create the necessary codes, but another advantage is 

that most VR/AR/MR packages that belong to the hardware used can already be found in this 

programming language. 
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Figure 44. Properties for the mill GameObject 

3.3.2.1 Colliding Properties 

One of the most important properties of the virtual objects is the way in which each of 

them interacts with the rest of the environment and the user itself. For that, a "Rigidbody" 

property is used, which adds a gravity and mass component to the object so that it can behave 

like a real object. However, it also enables an element called "Collider," which is an invisible 

geometrical limit that closely approximates the size of the GameObject. When colliders interact, 

their surfaces need to simulate the properties of the material they are supposed to represent. 

Another useful mode for colliders is their function as triggers. The scripting system can 

detect when collisions occur and initiate actions using reserved C# functions. However, it can 

also use the physics engine simply to detect when one collider enters the space of another 
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without creating a collision. A collider configured as a "Trigger" does not behave like a solid 

object and will simply allow other colliders to pass through. 

 
 

Figure 45. Corresponding collider elements of the mill tool 

3.3.3 Virtual User Integration 

Once the main functions for each virtual object were programmed and tested, the next 

step was to work with the placement of the virtual user, commonly referred to as an "avatar," and 

its input control commands. The way in which this can be achieved is by means of plug-ins or 

added extra configurations that enable Unity 3D® to recognize the hardware inputs coming from 

the VR setup. 
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The chosen HMDs for the project, both the Oculus Rift® and the VIVE Pro®, have 

official packages that include virtual objects, scripts, materials, plug-ins, etc., that can be easily 

configured inside of the Unity scenes. One of the main elements is the "PlayerController" object 

(Figure 46), which includes the reference for both the placement of the HMD stream and the 

user's input controllers capsuled into one single object. 

 

Figure 46. Detailed view of the PlayerController object 

3.3.4 Calibration Stage 

For the MR layout, the HMD is used alongside motion tracking devices and a 3D stereo 

camera. All of these devices' software development kits (SDK) were imported into the game 

engine, which allows the use of their resources to be mixed with the rest of the scene. The green-

screen background, which is used to incorporate the area that projects the stream of the virtual 

environment window, must be set up in an optimal area that can be used to set up the screen, like 
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the corner of a room, which provides accurate depth and dimensional references to the tracking 

devices. 

The green screen setup consisted on painting a limited area within the VR Laboratory of 

said color, and placing green-colored mats on the floor. This way, the projection of the virtual 

environment could match the physical limits of the testing area. 

 

Figure 47. Green screen background used for the research 

Once all elements were placed, the last step consisted of calibrating the depth camera so 

that its stream could match a virtual camera placed on the virtual scenario, which in turn could 

show different perspectives of the user within the composed image. This way, if the user 

switched positions by walking behind an object in the VR environment, it could be shown the 

same way on the depth camera stream inside the Unity scene. To do so, the depth camera SDK 

included a scene in which different perspective points needed to be placed using the controllers, 

aligning the depth map with the avatar's position. 
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 Finally, the last calibration that needed to be done corresponded to the virtual gloves 

placed on each of the user's hands. Each glove included a tracker that sent its signal to the 

hosting PC, and within the SDK, the actions of each hand gesture (grabbing, pointing, etc.) were 

set up. 

 

Figure 48. The calibration process for both the depth camera and the virtual gloves 

3.3.5 PLC Integration 

Up to this point of development, the virtual scenario functions as an isolated system. By 

understanding the real-life training prototype, the user is able to manipulate the internal objects 

to run a given sequence of instructions in order to see a finished product, which are the 

manufactured pieces. However, it still remains a system that runs similar to a black box, that is, 

the true sequence remains something that only the VR designer knows how to operate, and thus, 

the automation process merely becomes an animation for the user. 

To fully make the environment achieve its purpose, it requires communication with the 

external world. The actions that take place within the virtual scenario would also have to serve a 
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mirrored behavior in the physical prototype. The proposed method in which this was 

accomplished made use of the OPC industrial communications protocol, which allowed the 

inputs and outputs of the system to match the inputs and outputs coming from an external PLC 

module that included the actual prototype code. 

3.3.5.1 Signal Identification 

The first step of this integration consisted on identifying the I/O signals that came from 

both the virtual scenario and the external PLC. For the scenario, a GameObject that encompassed 

all actuators and sensors, as well as the I/O signals that are used on the robotic arms, the CNC 

machines, and the machine vision system, was created. The script for this object was then linked 

to another code instance in which a serialization method was used to format the incoming and 

upcoming signals. This was done using the JavaScript Object Notation (JSON) serialization 

method, which is a format that encodes the data into a string instruction that gets sent to a pre-

established HTTP website that, in turn, deserializes the message and sends the data to user-

defined tags. 

Conversely, the PLC has to be programmed to run the automation sequence of the virtual 

environment. The chosen method was to implement a ladder diagram to define a state machine 

that runs the specific sequences for the CNC final product models, the movement of the robotic 

arms and their defined positions, and the acceptance/rejection status achieved by the machine 

vision analysis. The inputs and outputs generated within the PLC code were named in a similar 

structure as the ones found inside the VR scenario, in an effort to ease the linking process (Figure 

49). 
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Figure 49. Detail of inputs used for both the PLC and the virtual environment 

3.3.5.2 Communication Using OPC Protocol 

Once both ends of the I/O signals were defined, the final step consisted in finding a 

platform in which the serialization process could occur, considering that scripting it entirely 

within the Unity 3D® editor could have proven to be a problematic task. Fortunately, thorough 

research resulted in the findings of open-source software that could support a wide arrange of 

industrial protocols with the ability to interact within themselves according to OPC 

interoperability standards. The chosen software was the Kepware® KEPServerEX platform 

(Figure 50). 

One crucial tool found inside the software was the Internet-of-Things (IoT) Gateway 

plug-in, which allows the use of web servers that integrate real-time industrial data streams into 

device clouds. This way, the transition from the VR environment and the PLC automation 

process could occur seamlessly, mostly due to the high-end capabilities of both the clients and 

server's hardware, as well as the VR Laboratory local network. The IoT plug-in matches the 

incoming data from the server to the tags created using the PLC's TCP/IP Ethernet driver (which 
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consists of a channel and device with a local IP as an ID to identify and differentiate it from the 

VR scenario IP). It then links to the local IP of the physical PLC, which in turn sends its output 

signals in the inverted process back to the VR environment. 

 

Figure 50. Client window showing the PLC routine tags 

4. CHAPTER FOUR: FINDINGS 

4.1 Performance 

When conducting the first tests within the virtual stage, several positive and negative 

details were found. The response time of the simulation was quite fast and without long latency 

times, mostly due to the fact that the hardware utilized allowed the support of the video 
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transmission to the HMD. However, one of the devices affected was the depth camera because 

the support of its SDKs compatible with the Unity software did not yet have the latest updates. 

One of the negative points of the current virtual environment configuration is that the 

HMD works best only when it remains directly connected to the PC. This is because tests were 

carried out with a wireless adapter for the HMD, allowing the user to move freely without having 

to worry about tripping. However, the connection of the wireless adapter with the HMD was 

very sensitive, and therefore the researcher decided to physically connect the device instead. 

The manipulation tests of the virtual objects within the scenario were very favorable 

since the user was able to execute the command, control, and rotation of objects without any kind 

of difficulty (Figure 51). This point made it possible to reinforce the objective that each person 

capable of manipulating virtual objects with ease would be able to make better use of reason and 

intuition when working with the physical training prototype. 

When reviewing the use of the green screen projection, a great advantage noted was that 

the final integration resulted in the creation of a high-detailed MR environment suited for 

automation training and teaching. Real-life tracking resulted convincing enough for the 

users/observers, given the fact that they could see both actions being played out in the 

environment without the user being distracted while operating the virtual prototype. 
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Figure 51. Test subject manipulating a virtual object using the mixed reality configuration 

4.2 Machine Vision Inspection Analysis 

One of the most important elements that needed to be tested within the VR scenario was 

the machine vision inspection system. While the real-life training prototype included this system 

by default and could send the camera captures to the inspection software, it was also intended to 

test the possibility of capturing screenshots generated within the scenario and run the same 

analysis on it so that a true virtual experience could be obtained by the user. 
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A screenshot capture routine was coded using the camera GameObjects placed on the 

Unity environment. Once the finished objects were manufactured and moved over to the 

inspection area, the camera GameObject placed on the 3D model of the Cognex® camera 

captured a still frame of its point of view and stored it on an in-scene folder. This, in turn, was 

placed as the default folder that the machine vision software uses to load the images needed for 

its analysis. 

The images were run through a pass/fail routine, searching for a specific feature 

(distance, geometric shape, edge detection, etc.) in each of the captures. If it is found, then it 

counts as a pass, and the produced virtual object is considered accepted. If not, the piece is 

considered rejected. Results were positive, and the generated patterns were able to match the 

features of the manufactured virtual products. 

 

Figure 52. Results for both accepted and rejected mill products. Objects with wider geometrical 

features are considered to be accepted 
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Figure 53. Geometry detection routine executed into the machine vision software 

4.3 Graphic User Interface Integration 

When performing the different tests of the virtual scenario, it was observed that the 

learning obtained within the process could be used within an academic testing environment in 

order to obtain a more generalized feedback about the pros and cons of the current performance 

of the project. For this, it was important that users (Morehead State University students who 

were enrolled in subjects related to PLC programming) could have access to a much friendlier 

interface than the one developed in the laboratory test environment. 

The task of the research then shifted to the design of a graphic user interface (GUI) 

within the Unity 3D® scene that would allow the user not only to visualize the I/O signals of the 

virtual scene but also to give them the opportunity to manually manipulate each one to visualize 

their behavior. For this, manual connection and disconnection buttons for the OPC protocol 

platform were implemented, as well as buttons to switch the virtual visualization through the 

HMD to a simpler navigation mode using the keyboard and mouse connected to the PC. 
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The reception of students was generally positive, arguing that movement within the 

virtual environment proved to be simple enough for them to intuitively understand the controls of 

the scenario, as well as which signals were needed to manipulate the different virtual objects. 

 

Figure 54. Final design for the First-Person View GUI 

5. CHAPTER FIVE: CONCLUSIONS 

The purpose of this research was focused on developing a novel way of approaching 

users to a realistic experience that could offer them the same knowledge in manipulating a 

training manufacturing prototype as they would get in real life, but as the project kept on adding 

new features, it allowed the fact that, by enhancing the user's experience of its surroundings on 

both VR and MR environments, it could increase its intuitiveness and break the hardware 

unfamiliarity gap that many people have when attempting to use of this type of equipment. 

It is worth noting that the MR training experience is not yet focused on people with 

physical disabilities involved in sight and touch. While it was not the intention of this research to 

include this population, further research can be done to figure out a new design that could make 
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use of other technology that could bridge this gap. Also, some other technical problems were 

noted: software development kits' (SDK) parameters needed to be adjusted to fit the 

specifications of the VR hardware, and the right calibration and patch versions needed to match 

in order for the environment to run.  Otherwise, frame drops could be experienced because of its 

current graphics processing unit (GPU) hardware. 

If needed, the modification of the scenario is possible, but new processes could take time 

to be modeled/scripted, especially when they need to be built from the very early stages. Since 

most of the work was mostly being done by one person, it can only be concluded that adding a 

larger group of developers could greatly decrease the design stage time and focus on more 

frequent tests. 

Finally, it is noted that a great enhancement for this research would be the technological 

migration of this environment into an AR environment that could benefit from the real-time data 

obtained by running the physical training prototype alongside its virtual counterpart. By doing 

this, future users can compare performance and data values between the two systems in order to 

bring a more synergetic environment, in which multiple operators and observers can take actions 

to stabilize and keep both systems operational, and find new ways in which these platforms can 

be used more frequently by both the manufacturing industry and academic programs. 
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7. APPENDIX Case Study: Implementation of Virtual Scenario into an 

Undergraduate Course at Morehead State University 

Once the finished virtual environment was tested by the researcher, it became necessary 

that the performance of said environment was tested by a larger sample group. A suggestion that 

resulted from the main advisor of this project was the inclusion of this virtual platform as part of 

an undergraduate course assigned within the Spring 2021 catalog. 

The chosen group belongs to the SE 488 Automation Systems course, in which students 

majoring in Systems Integration Engineering receive education in the use of automation 

technologies, such as PLC devices and industrial communication protocols. The basis of this 

course matched the criteria needed for each participant to offer feedback to the researched about 

their experience with the virtual scenario. 

 

Figure 55. SE 488 students working on ladder logic diagrams 

For this course, students began learning the fundamentals of PLC programming, from the 

very definition of a PLC, to the different programming languages used to establish the behavior 
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of the device's input and output signals. The students also reviewed and implemented the basic 

ladder diagram elements needed to design the same main routine obtained by the researcher 

using a different PLC brand. This step served the purpose of comparing the response that could 

be obtained from different PLC hardware suppliers, which turned out to be minimal. 

Finally, the students were able to manipulate the finished virtual environment as part of 

their final practices. The students then proceeded to implement their built-in routine into the VR 

environment and manipulate all its interactable elements, while understanding how the 

automated system sends the appropriate signals to the PLC coding software. This step resulted 

fundamental mainly because, as one student said, "given the current global pandemic, it would 

have been really to observe these types of processes in person, and with this option, it serves its 

purpose of showing how quick and seamlessly a certain process can be controlled." 

 

Figure 56. Student manipulating interactable objects within the VR manufacturing environment 

When the researcher asked the students about their own feedback, most of them agreed 

that the performance of the VR environment and the first-person navigation resulted manageable 
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and very friendly-user. However, there were certain observations that are considered as 

important feedback, the most notorious being the initial delay obtained when switching from a 

first-person perspective to the HMD stream. 

Another important observation noted by the students was that they felt certain 

GameObject movements to be drastically slow when compared to other virtual objects. The 

slowest object turned out to the 3D models of the Pegasus robotic arms. This can be explained 

due to the fact that it is the object with the largest number of textures included, and the one 

object whose mesh included the largest number of polygons. 

As a final conclusion of this case study, the implementation of the first version of the 

virtual environment resulted convincing enough for people who had different approaches to both 

VR technology and automation technologies. The noted observations can be reworked in the 

second version of the platform, in the hopes that the following test group experience an even 

better performance. 
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