
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computational Modeling & Simulation
Engineering Faculty Publications

Computational Modeling & Simulation
Engineering

2021

Efficient Algorithms for Identifying Loop Formation and Efficient Algorithms for Identifying Loop Formation and

Computing θ Value for Solving Minimum Cost Flow Network Computing Value for Solving Minimum Cost Flow Network

Problems Problems

Timothy Michael Chávez
Old Dominion University, tchav006@odu.edu

Duc Thai Nguyen
Old Dominion University, dnguyen@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/msve_fac_pubs

 Part of the Operations and Supply Chain Management Commons, OS and Networks Commons, and

the Theory and Algorithms Commons

Original Publication Citation Original Publication Citation
Chavez, T. M., & Duc Thai, N. (2021). Efficient algorithms for identifying loop formation and computing
value for solving minimum cost flow network problems. WSEAS Transactions on Circuits and Systems,
20, 107-117. https://doi.org/10.37394/23201.2021.20.14

This Article is brought to you for free and open access by the Computational Modeling & Simulation Engineering at
ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation Engineering
Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_fac_pubs
https://digitalcommons.odu.edu/msve_fac_pubs
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37394/23201.2021.20.14
mailto:digitalcommons@odu.edu

Efficient Algorithms for Identifying Loop Formation and

Computing θ Value for Solving Minimum Cost Flow Network Problems

TIMOTHY MICHAEL CHÁVEZ
Department of Computational Modeling and Simulation Engineering

Old Dominion University
1300 Engineering & Computational Sciences Building, Norfolk, VA 23529

UNITED STATES OF AMERICA

DUC THAI NGUYEN
Department of Civil & Environmental Engineering

Old Dominion University
135 Kaufman Hall, Norfolk, VA 23529

UNITED STATES OF AMERICA

Abstract: - While the minimum cost flow (MCF) problems have been well documented in many publications,
due to its broad applications, little or no effort have been devoted to explaining the algorithms for identifying
loop formation and computing the θ value needed to solve MCF network problems. This paper proposes efficient
algorithms, and MATLAB computer implementation, for solving MCF problems. Several academic and real-life
network problems have been solved to validate the proposed algorithms; the numerical results obtained by the
developed MCF code have been compared and matched with the built-in MATLAB function Linprog() (Simplex
algorithm) for further validation.

Key-Words: - Minimal Cost Flow, Loop Formation, theta
Received: December 2, 2020. Revised: May 31, 2021. Accepted: June 16, 2021. Published: June 24, 2021.

1 Introduction
There exist linear-programming (LP) problems

[1-8] which exhibit a special structure, one balanced
equation for each node in the network, that can be
exploited for the development of efficient algorithms
to obtain optimal solutions. The minimum cost flow
(MCF) problems [9-11] are considered in this study
due to their broad industrial, logistics applications.
The transportation problem, the assignment problem,
the shortest path problem, and more can be
considered special cases of the MCF problem [12-
15]. Although the MCF problem can be naturally
formulated as a LP problem, the special structure of
MCF problems need to be exploited to efficiently
solve large-scale systems, which are otherwise not
possible, or highly resource intensive, using a
traditional LP/SIMPLEX algorithm.

A common scenario of a network-flow problem
arising in industrial logistics concerns regarding the
distribution of goods/products from a set of
originating (supply) nodes to a set of destination
(demand) nodes. The number of units available at
each supply node and the number of units required at

each demand node is assumed to be known. The
delivered product from supply nodes to demand
nodes often pass through “transshipment” nodes
(neither supply nor demand), which may represent
warehouses or distribution centers along the
distribution path. The objective is to minimize the
total cost of shipping the products to satisfy all
consumers’ requests at demand nodes. To facilitate
the discussions, a simple 5-node and 7-link network
[10], shown in Fig 1, was chosen; it will be used to
explain different steps in the conventional MCF
algorithm, with special emphasis on developing an
efficient algorithm for identifying the loop-formation
and computing the value for θ. In Fig 1, nodes #1 and
#3 are identified as supply nodes (with the values
𝑏1 = 6 and 𝑏3 = 4), while nodes #4 and #5 are
identified as demand nodes (with the values 𝑏4 = −5
and 𝑏5 = −5), and node #2 is a transshipment node
(with the value 𝑏2 = 0). The cost (𝐶𝑖𝑗) for
transporting each unit of product on any directional
link i-j (from node “i” to node “j”) are also shown in
Fig 1.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 107 Volume 20, 2021

 Fig 1. A 5-Node and 7-Link Network.

In Section 2, the MCF network presented in Fig 1

is formulated as a Linear Programming (LP)
problem, so that its special structure can be high-
lighted. Details of the three steps involved in each
iteration for Phase 1 and Phase 2 of the MCF
algorithms are explained in Section 3. The efficient
algorithm for identifying loop-formation and
computing θ value for MCF problems is also
presented in Section 3. Numerical results for several
academic and real-life networks are presented and
validated in Section 4. Finally, conclusions are drawn
in Section 5.

2 The MCF Linear Programming

Problem
The MCF network presented in Fig 1 is

formulated as a LP problem, to take advantage of one
balanced equation for each node in the network.
Based on the conservation of flow balance
(equilibrium) at each node, such that:

𝐹𝑙𝑜𝑤𝑂𝑢𝑡 − 𝐹𝑙𝑜𝑤𝐼𝑛 = 𝑁𝑒𝑡𝑆𝑢𝑝𝑝𝑙𝑦 + 𝐷𝑒𝑚𝑎𝑛𝑑 (1)

The following equations can be written for the
network shown in Fig 1:

Thus, the following LP problem (Eq. 7) can be

formulated from the network costs shown in Fig 1,
and the balanced equations above.

The objective is to find the amount of link flow
(𝑋𝑖𝑗) directly connected between nodes “i” and “j”
such that the summation of the link costs times the
link flows for the network is minimized:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐶𝑂𝑆𝑇 = ∑ ∑ (𝐶𝑖𝑗 ∙ 𝑋𝑖𝑗)

𝑛
𝑗=1

𝑛
𝑖=1 (7)

with the constraints presented in Eqs. (2-6),
n = number of nodes, 𝐶𝑖𝑗 = non-negative (integer)
cost, and 𝑋𝑖𝑗 = non-negative (integer) flow.

It should be noted that the summation of all terms
on the left-hand-side (LHS) of Eqs. (2-6) and the
corresponding summation of all terms on the right-
hand-side (RHS) of Eqs. (2-6) are both equal to zero.
This special (unimodal) property will allow the MCF
algorithm, which can be considered a special case of
LP/Simplex solver, to obtain the integer values for
𝑋𝑖𝑗 at the optimum, without being required to solve a
more costly Linear Integer Programming (LIP)
problem. From the “duality theories” [1-4], the above
7-variable and 5-constraint “Primal” LP problem can
be associated with the following 5-variable and
7-constraint “Dual” LP problem.

Find 𝑤1 through 𝑤5, such that [(𝑏1 = 6) ∙ 𝑤1 +
(𝑏2 = 0) ∙ 𝑤2 + (𝑏3 = 4) ∙ 𝑤3 + (𝑏4 = −5) ∙ 𝑤4 +
(𝑏5 = −5) ∙ 𝑤5] is maximized, and the following
seven constraints (expressed in matrix notation) are
satisfied:

The above 7x5 matrix (of the “Dual” problem) is
simply the transpose of the 5x7 coefficient matrix
shown in Eqs. (2-6) of the “Primal” problem. The
matrix shown in Eq. (8) can also be expressed as 𝑤𝑖 −
𝑤𝑗 = 𝐶𝑖𝑗, and this equation will be used in Section 3.

3 The Minimum Cost Flow Algorithm
With regards to the conventional MCF problem,

the objective for Phase 1 is to find the BFS, while the
objective for Phase 2 is to obtain the OFS. The MCF
method is an iterative process that consists of
identifying which non-basic link (not currently in the
solution) should be brought into the basic (active
links) set, identifying the current loop, adjusting the
link flow along the loop, and removing unneeded
links.

3.1 Phase 1 – Calculate the Basic Feasible

Solution

3.1.1 Initialization

To initialize the network and begin the iterative
process of calculating the BFS, an artificial node #A

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 108 Volume 20, 2021

1 - 1 0 0 0 C12
1 0 -1 0 0

-[~}
C13

0 1 0 -1 0 C24
0 1 0 0 - 1 C2s (8)
0 0 1 -1 0 C34
0 0 1 0 -1 C3s
0 1 0 0 - 1 C4s

Xode Flow Out - Flow In Net Supply/Demand

+x,: + x,. = b1 = +6 (2)

- X1: + X,. + X25 = b, = 0 (3)

+x,. +x., = b, = +4 (4)

- X,. +x., = b, = -5 (S)

- Xis = b, = -5 (6)

(with 𝑏𝐴 = 0) is added to the original network
(shown in Fig 1). Then, we add artificial links
connected from supply nodes (node #1 and node #3)
to node #A and artificial links connected from node
#A to each demand and transshipment nodes (node
#2, node #4, and node #5). (Note: transshipment
nodes are treated as demand nodes.) In Phase 1, all
artificial links have the cost 𝐶𝑖𝑗 = $1 (cost-unit), and
all original links have the cost 𝐶𝑖𝑗 = $0 (cost-unit),
as shown in Fig 2. This drives flow from the artificial
links to the original links.

Fig 2. Addition of Artificial Node and Links

In Fig 2, there will be 10 units of flow-IN from the

supply nodes (𝑏1 = 6 + 𝑏3 = 4) to the artificial node
#A and 10 units of flow-OUT from the artificial node
#A to the demand nodes (𝑏2 = 0 + 𝑏4 = 5 + 𝑏5 =
5). This network is in equilibrium; 10 units IN and 10
units OUT. The initial cost for the network can be
calculated as:

 𝑀𝑖𝑛𝐶𝑂𝑆𝑇 = 𝐶1𝐴 ∙ 𝑋1𝐴 + 𝐶𝐴2 ∙ 𝑋𝐴2 + 𝐶3𝐴 ∙

𝑋3𝐴 + 𝐶𝐴4 ∙ 𝑋𝐴4 + 𝐶𝐴5 ∙ 𝑋𝐴5

 $1 ∙ (𝑏1 = 6) + $1 ∙ (𝑏2 = 0) + $1 ∙ (𝑏3 = 4) +

$1 ∙ (−𝑏4 = 5) + $1 ∙ (−𝑏5 = 5) = $20
 (9)

3.1.2 Iterative Step #1 – Calculate Node Weights

At the beginning of each iteration, we repeatedly
apply the following equation among the basic links to
calculate 𝑤 , with 𝑤𝐴 = 0 (associated with the
artificial node #A):

 𝑤𝑖 −𝑤𝑗 = 𝐶𝑖𝑗 (10)

The equivalent version of Eq. (10), in matrix
notation, has already been explained in Eq. (8) of
Section 2.

Then, for our 5-node example with an artificial
node:

𝑤1 −𝑤𝐴 = 𝐶1𝐴;𝑤1 − 0 = 1;𝑤1 = 1 (11)
𝑤𝐴 −𝑤2 = 𝐶𝐴2; 0 − 𝑤2 = 1;𝑤2 = −1 (12)
𝑤3 −𝑤𝐴 = 𝐶3𝐴;𝑤3 − 0 = 1;𝑤3 = 1 (13)
𝑤𝐴 −𝑤4 = 𝐶𝐴4; 0 − 𝑤4 = 1;𝑤4 = −1 (14)
𝑤𝐴 −𝑤5 = 𝐶𝐴5; 0 − 𝑤5 = 1;𝑤5 = −1 (15)

Remarks:

 In general, the selected #th node with the
known/assigned value 𝑤 is NOT always to
be the artificial node. In the MATLAB code,
𝑤 = 0 for node ## in which node ## has the
largest number of connected basic links is
selected; this should reduce the number of
unknown node weights.

 In this example, since there are a total of six
nodes (five original nodes plus the artificial
node), the number of basic links required to
solve for all 𝑤 is five (six nodes total
minus one).

 In applying Eq. (10), it is required that either
𝑤𝑖 or 𝑤𝑗 is known, so that either 𝑤𝑗 (if 𝑤𝑖 is
known) or vice versa can be computed.

 Since this Step #1 is straight forward, the
details for the MATLAB coding are not
discussed here.

3.1.3 Iterative Step #2 – Determine Which Non-

Basic Link Enters the Basic Set

Among the non-basic links (dashed links in Fig 2),
one needs to determine which non-basic link should
be added to the basic (solid links in Fig 2) group,
based on the maximum positive value, v, in the
following equation:

𝑣 = 𝑤𝑖 −𝑤𝑗 − 𝐶𝑖𝑗 (16)

Then, for the current example’s non-basic links:

12: 𝑣 = 𝑤1 −𝑤1 − 𝐶12 = 1 − −1− 0 = 2 (17)
13: 𝑣 = 𝑤1 −𝑤3 − 𝐶13 = 1 − 1 − 0 = 0 (18)
24: 𝑣 = 𝑤2 −𝑤4 − 𝐶24 = −1 − −1− 0 = 0 (19)
25: 𝑣 = 𝑤2 −𝑤5 − 𝐶25 = −1 − −1− 0 = 0 (20)
34: 𝑣 = 𝑤3 −𝑤4 − 𝐶34 = 1 −−1 − 0 = 2 (21)
35: 𝑣 = 𝑤3 −𝑤5 − 𝐶35 = 1 − −1 − 0 = 2 (22)
45: 𝑣 = 𝑤4 −𝑤5 − 𝐶45 = 1 − 1 − 0 = 0 (23)

Remarks:
 Since the three non-basic links (1-2, 3-4, and

3-5) all have the same maximum positive
value (= +2), based on Eq. (16), tie-breaker
criterion needs to be considered. Although

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 109 Volume 20, 2021

I
I

0 ' I

some researchers have suggested a random
selection is adequate in the case of a tie, the
recommended criterion is to select the link
which has the minimum, original cost (see
Fig 1). Hence, in this example, link 3-5, with
an original cost of $3, will be selected to
enter the basic group.

 Since this Step #2 is straight forward, the
details for MATLAB coding will not be
discussed here.

3.1.4 Iterative Step #3 – Determine Which Basic

Link is Removed

Among the basic links, one needs to determine
which basic link(s) is/are to be removed from the
basic set, by identifying the loop-formation and
computing the value of θ.

At the end of Step #2, it has been determined that
link 3-5 should “enter the basic set”, with the flow
value 𝑋35 = 𝜃, as shown in Fig 3.

Fig 3. Link 3-5, As θ, Enters the Basic Set

By “observation”, one can see that the loop can be

formed by the following links 3-5 (with flow
𝑋35 = unknown value θ), 3-A (with flow 𝑋3𝐴 =

4 − 𝜃), and A-5 (with flow 𝑋𝐴5 = 5 − 𝜃) as shown
in Fig 4.

Fig 4. Observed Loop

The analysis is further restricted to only realistic

solutions, introducing the constraint that the flow on
any link must be “non-negative”, then basic links:

 35: 𝑋35 = 𝜃 ≥ 0 (24)
 3𝐴:𝑋3𝐴 = 4 − 𝜃 ≥ 0; ℎ𝑒𝑛𝑐𝑒𝜃 ≤ 4 (25)
 𝐴5:𝑋𝐴5 = 5 − 𝜃 ≥ 0; ℎ𝑒𝑛𝑐𝑒𝜃 ≤ 5 (26)

Based on the requirements stated in Eqs. (24-26),
one concludes that the requirement θ ≤ 4 will control
the outcome; when θ ≤ 4 is satisfied, θ ≤ 5 is also
automatically satisfied. Thus, the maximum positive
value for θ is, θ = 4.

Substituting the value of θ = 4 into Eqs. (24-26),
one obtains the following link values:

 35: 𝑋35 = 4 (27)
 3𝐴:𝑋3𝐴 = 4 − 4 = 0(𝑙𝑖𝑛𝑘𝑟𝑒𝑚𝑜𝑣𝑒𝑑) (28)
 𝐴5:𝑋𝐴5 = 5 − 4 = 1 (29)

To develop a simple algorithm which will
automatically identify the loop-formation and
compute the appropriate value for θ, one must answer
the following 4 questions:

1. Among the basic links, how is it determined
(automatically) which basic link i-j does
NOT belong to the loop-formation; which
links should NOT have their flow adjusted
by the value of θ?

2. How is it determined (automatically) which
basic links i-j (such as basic links 3-5, 3-A,
and A-5) belong to the loop-formation?

3. How is the appropriate value for θ computed
(automatically)?

4. For those links that should belong to the
loop-formation (such as links 3-5, 3-A, and
A-5), how is it determined that the value of θ
should be “ADDED” or “SUBTRACTED”?

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 110 Volume 20, 2021

8

To answer the previous questions, the following
terms are defined:

 A “dead node” is defined as a node which
is connected by only one or no basic link
(solid line in the figures), and

 A “dead basic link” is defined as a basic
link (solid line) which is connected to a
“dead node”; furthermore, “dead nodes”
and any associated “dead links” can be
DELETED (ignored or discarded) during
the process of finding the θ value.

Based on the above definitions, and using Fig 4
(focusing on basic links only), one concludes that
(see Fig 5):

 Node #1 is a “dead node” (because there
is only one basic link 1-A connected to
node #1), hence node #1’s associated
“dead link 1-A” can be DELETED.

 Node #2 is a “dead node” (because there
is only one basic link A-2 connected to
node #2), hence node #2’s associated
“dead link A-2” can be DELETED.

 Node #4 is a “dead node” (because there
is only one basic link A-4 connected to
node #4), hence node #4’s associated
“dead link A-4” can be DELETED.

Fig 5. Dead Links Deleted

Note:

 The remaining nodes (#3, #5, and #A),
and the remaining basic links (3-A, A-5,
and 3-5) will form the closed loop-
formation needed to calculate the value of
θ.

 All nodes that belong to the closed loop-
formation will be connected (or
surrounded) by at most two basic links
(i.e., node #3 has link 3-5 and link 3-A;
no others).

The following algorithm can be developed to
automatically identify the closed loop-formation and
compute θ value (in Step #3):

Step #3.1 Identify all the “dead nodes”.
Step #3.2 Identify and DELETE all the “dead

basic links”.
Step #3.3 In Step #2, it was determined that the

non-basic link 3-5 will “enter the basic
group”; node #3 is defined as the “loose node
#i” and node #5 is defined as the “loose node
#j”.

Step #3.4 The “link status” for the “loose node
#i = loose node #3” can be defined as one of
the following four possibilities as detailed in
Fig 6:

Link Status = 1: “out more”,
 (Link Status = 1 is selected see Fig 6)
Link Status = 2: “out less”,
Link Status = 3: “in more”, or
Link Status = 4: “in less”

Once the status for the current “loose node #i” is

updated, the new “loose node #i” shifts to the next
connected node, in this case node #A.

Step #3.5 The “link status” for the “loose node
#j = loose node #5” can be defined as one of
the following four possibilities as detailed in
Fig 6:

Link Status = 1; “out more”,
Link Status = 2; “out less”,
Link Status = 3; “in more”, or
 (link Status = 3 is selected see Fig 6)

Link Status = 4; “in less”

Once the status for the current “loose node #j” is

updated, the new “loose node #j” shifts to the next
connected node, in this case node #A.

Fig 6. Status of Loose Nodes #i and #j

Step #3.6 In Fig 7, a basic link which is

connected to the “loose node #i = loose node
#3” can be EITHER case #1 OR case #4.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 111 Volume 20, 2021

Fig 7. General Case for Status Selection

In case #1, if the basic link u-i is connected TO a
loose node #i (at this point node #3), then the flow for
link u-i is 𝑋𝑢𝑖 + 𝜃 (i.e., flow on u-i), so that the loose
node #i will maintain its equilibrium. Under this
scenario, the UPDATED loose node #i becomes
loose node #u (node #A in our example), and the
UPDATED link status for the loose node #u is 1,
which means “out more”. Since the new flow (=
𝑋𝑢𝑖 + 𝜃) is required to be non-negative, one can have
any non-negative value for θ.

In case #4, if the basic link i-u is connected
FROM a loose node #i (at this point node #3), then
flow for link i-u is 𝑋𝑖𝑢 − 𝜃 (i.e., flow on i-u), so that
the loose node #i will maintain its equilibrium. Under
this scenario, the UPDATED loose node #i becomes
loose node #u (node #A in our example), and the
UPDATED link status for the loose node #u is 4,
which means “in less”. Since the new flow (= 𝑋𝑖𝑢 −
𝜃) is required to be non-negative, the value of θ must
be ≤𝑋𝑖𝑢 (LESS THAN or EQUAL TO 𝑋𝑖𝑢).

Step #3.7 In Fig 7, a basic link which is connected
to the “loose node #j = loose node #5” can be
EITHER case #2 OR case #3.

In case #2, if the basic link v-j is connected TO a
loose node #j (at this point node #5), then the flow for
link v-j is 𝑋𝑣𝑗 − 𝜃 (i.e., flow on v-j), so that the loose
node #j will maintain its equilibrium. Under this
scenario, the UPDATED loose node #j becomes
loose node #v (node #A in our example), and the
UPDATED link status for the loose node #v is 2,
which means “out less”. Since the new flow (= 𝑋𝑣𝑗 −
𝜃) is required to be non-negative, the value of θ must
be ≤𝑋𝑣𝑗 (LESS THAN or EQUAL TO 𝑋𝑣𝑗).

In case #3, if the basic link j-v is connected
FROM a loose node #j, then the flow for link j-v is

𝑋𝑗𝑣 + 𝜃 (i.e., flow on j-v), so that the loose node
#j will maintain its equilibrium. Under this scenario,
the UPDATED loose node #j becomes loose node #v
(node #A in our example), and the UPDATED link

status for the loose node #v is 3, which means “in
more”. Since the new flow (= 𝑋𝑗𝑣 + 𝜃) is required to
be non-negative, one can have any non-negative
value for θ.

Steps #3.6 and #3.7 are repeated until the “loose

#i = loose #j” and the loop is closed.

The final value for θ should be the smallest,

positive value among cases #1, #2, #3, and #4, to
guarantee the flows on every basic link of the closed
loop will be non-negative and maintain equilibrium.

After Step #3 in each iteration is completed, Steps
#1 through #3 will be repeated in subsequent
iterations Fig 8 – Fig 10), until the feasible solution,
for Phase 1, is identified. The cost at the end of
Phase 1 is zero because all artificial links with any
flow have been removed (Fig 10). (Note: the values
displayed are the link flows (𝑋𝑖𝑗) associated with the
updated 𝜃 values or the original artificial links).

Fig 8. End of Phase 1, Iteration 1 (Cost = 12)

Fig 9. End of Phase 1, Iteration 2 (Cost = 10)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 112 Volume 20, 2021

Status of New Loose Nodes
Case 1 = out more
Case 2 = out less
Case 3 = in more
Case 4 = in less

8

Fig 10. End of Phase 1, Iteration 3 (Cost = 0)

B. Phase 2 – Calculate the Optimal Final

Solution (OFS)
The objective for Phase 2 is to find an overall,

OFS for the original (in our example, Fig 1, a 5-node
and 7-link) network.

The BFS obtained at the end of Phase 1 (see
Fig 10) will be used as the beginning of Phase 2 (see
Fig 11). In Phase 2, the original links’ cost with the
value 𝐶𝑖𝑗 are used, and an #th node, with the most
connected links (in this case, node #3), is selected
such that 𝑤3 = known value = 0. Then, the same 3-
step algorithm (steps #1, #2, and #3) discussed in
Phase 1 will be applied for Phase2.

Fig 11. Feasible Solution to Start Phase 2

4 Numerical Results

Based on the 3-step MCF algorithm (applied in
Phase 1 and Phase 2) presented in Section 3, and the
newly proposed shortest path (SP) algorithm used in
Phase 1 and presented in Section 4, the following
academic and real-life networks are used to validate
our proposed algorithm for identifying the closed
loop-formation and computing the appropriate value
for θ (see the discussions in 3.1.4, for Step #3 of
Phase 1 and Phase 2). All our optimum results, for
these examples, have been compared with, and
validated using, the built-in MATLAB Linprog()
function (Simplex algorithm) [16] and the results
were recorded with each example in this section. The
process times were measured over 36 trials and the

average of the median 30 measurements were
included in the analysis of each example.

4.1 Example #1: 5-Node/7-Link Network

The example #1 network is displayed in Fig 12. In
this example the conventional MCF and Linprog()
solutions produced the same optimum solution.

Fig 12. Original Network (5/7)

Fig 13. MCF Phase 1 (5/7) Solution = 81

Fig 14. MCF Phase 2 (5/7) Solution = 81

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 113 Volume 20, 2021

(4)

____ 80~~~-5
I /
I /

r - ----------- (-5)

Fig 15. Linprog() Final (5/7) Solution = 81

4.2 Example #2: 9-Node/14-Link Network

The example #2 network is displayed in Fig 16. In
this example, the MCF solution results in an optimal
(minimum cost) value of 71 which is verified by the
Linprog() solution; however, it required both Phase 1
(solution = 80) AND Phase 2 to reach the Linprog()
verified solution (Fig 19).

Fig 16. Original (9/14) Network

Fig 17. MCF Phase 1 (9/14) Solution = 80

Fig 18. MCF Phase 2 (9/14) Solution = 71

Fig 19. Linprog() Final (9/14) Solution = 71

4.3 Example #3: 20-Node/74-Link Network

The example #3 network is displayed in Fig 20. In
this example, the MCF solution results in an optimal
(minimum cost) value of 1775 which is verified by
the Linprog() solution; however, it required both
Phase 1 (solution = 2000) AND Phase 2 to reach the
Linprog() verified solution (Fig 33).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 114 Volume 20, 2021

(-5)

Fig 20. Portion of Original (225/375) Network

Fig 21. MCF Phase 1 (225/375) Solution = 2000

Fig 22. MCF Phase 2 (225/375) Solution = 1775

Fig 23. Linprog() Final (225/375) Solution = 1775

6.4 Example #4: 24-Node/76-Link Sioux Falls

The example #4 network is displayed in Fig 25. In
this real-life, Sioux Falls (Fig 24) example, the
conventional MCF method required Phase 2 to refine
the feasible solution and deliver the OFS (Fig 27).
However, the conventional MCF method produced
an alternate optimal flow; indicating that there is
more than one path that will result in the same
optimal value or cost.

Fig 24 - Sioux Falls Map/Network

Fig 25. Original Network (24/76)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 115 Volume 20, 2021

3

' 1

Fig 26. - (Real Life Sioux Falls) Conv MCF Phase 1

(24/76) Solution = 188

Fig 27. (Real Life Sioux Falls) Conv MCF Phase 2

(24/76) Solution = 83

Fig 28. (Real Life Sioux Falls) Linprog()

Final (24/76) Solution = 83

7 Conclusion
The most complicated step in the conventional

MCF (Phase 1 and Phase 2) algorithm occurs in Step
#3 (identifying the closed loop and computing the

appropriate value for θ). To the authors’ best
knowledge, most (if not all) existing literature does
NOT discuss the (automated) numerical algorithm to
accomplish Step #3 of the conventional MCF
method. This work has explained, in detail, the step-
by-step procedures to implement the conventional
MCF algorithm, with emphasis on Step #3 (see
Section 3.1.4) to determine the loop-formation and
value for θ.

References:

[1] R.T. Haftka and A. Gurdal, Elements of

Structural Optimization, Kluwer Academic
Publishers (Third revised and expanded edition)
1992.

[2] A.D. Belegundu and T.R. Chandrupatla,
Optimization Concepts and Applications in

Engineering, Cambridge University Press
(Third edition) 2019.

[3] E.J. Haug and J.S. Arora, Applied Optimal

Design, John Wiley & Sons 1979.
[4] D.G. Luenberger, Introduction to Linear and

Nonlinear Programming, Addison-Wesley
1973.

[5] G.B. Dantzig, “Maximization of a Linear
Function of Variables Subject to Linear
Inequalities”, T. C. Koopmans (Ed.), Activity

Analysis of Production and Allocation, John
Wiley & Sons 1951.

[6] G.B. Dantzig, “Linear Programming: The Story
About How It Began: Some legends, a little
about its historical significance, and comments
about where its many mathematical
programming extensions may be headed”,
Operations Research, Vol 50 (1), pp. 42-47,
2002.

[7] N. Karmarkar, “A New Polynomial Time
Algorithm for Linear Programming”,
Combinatorica, Vol 4, pp. 373-395, 1984.

[8] R.G. Bland, "New Finite Pivoting Rules for the
Simplex Method", Mathematics of Operations

Research. Vol 2 (2), pp. 103–107, 1977.
[9] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network

Flows. Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[10] M. Klein, "A Primal Method for Minimal Cost
Flows with Applications to the Assignment and
Transportation Problems". Management

Science. Vol 14 (3), pp. 205–220, 1967.
[11] G. Srinivansan, [nptelhrd]. (2010, January 10).

“Lec-23 Minimum Cost Flow Problem”
[Video], https://youtu.be/UtSrgTsKUfU.

[12] G. Srinivansan, [nptelhrd]. (2009, August 31).
“Lec-13 Transportation Problems” [Video],
https://youtu.be/Q31jKiEXxdc.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 116 Volume 20, 2021

(-1)

1 (-3)

,.,

(0)

https://youtu.be/UtSrgTsKUfU
https://youtu.be/Q31jKiEXxdc

[13] G. Srinivansan, [nptelhrd]. (2010, January 28).
“Lec-20 Shortest Path Problem” [Video],
https://youtu.be/wVu5qN0E4ww.

[14] G. Srinivansan, [nptelhrd]. (2009, August 31).
“Lec-16 Assignment Problem - Hungarian
Algorithm” [Video],
https://youtu.be/BUGIhEecipE.

[15] G. Srinivansan, “Re: Question for Subject
Matter Expert on Minimal Cost Flow” Personal
Email (2020, October 13).

[16] “Linprog(),” Solve linear programming
problems - MATLAB, 1994. [Online].
Available:
https://www.mathworks.com/help/optim/ug/lin
prog.html. [Accessed: March 15, 2021].

[17] 18. Transportation Networks for Research Core
Team. Transportation Networks for Research.
https://github.com/bsTabler/TransportationNet
works. [Accessed: March 15, 2021].

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2021.20.14 Timothy Michael Chávez, Duc Thai Nguyen

E-ISSN: 2224-266X 117 Volume 20, 2021

https://youtu.be/wVu5qN0E4ww
https://youtu.be/BUGIhEecipE
https://www.mathworks.com/help/optim/ug/linprog.html
https://www.mathworks.com/help/optim/ug/linprog.html
https://github.com/bsTabler/TransportationNetworks
https://github.com/bsTabler/TransportationNetworks

	Efficient Algorithms for Identifying Loop Formation and Computing θ Value for Solving Minimum Cost Flow Network Problems
	Original Publication Citation

	tmp.1637704069.pdf.1XUxC

