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Abstract: - While the minimum cost flow (MCF) problems have been well documented in many publications, 
due to its broad applications, little or no effort have been devoted to explaining the algorithms for identifying 
loop formation and computing the θ value needed to solve MCF network problems. This paper proposes efficient 
algorithms, and MATLAB computer implementation, for solving MCF problems. Several academic and real-life 
network problems have been solved to validate the proposed algorithms; the numerical results obtained by the 
developed MCF code have been compared and matched with the built-in MATLAB function Linprog() (Simplex 
algorithm) for further validation. 
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1 Introduction 
There exist linear-programming (LP) problems 

[1-8] which exhibit a special structure, one balanced 
equation for each node in the network, that can be 
exploited for the development of efficient algorithms 
to obtain optimal solutions. The minimum cost flow 
(MCF) problems [9-11] are considered in this study 
due to their broad industrial, logistics applications. 
The transportation problem, the assignment problem, 
the shortest path problem, and more can be 
considered special cases of the MCF problem [12-
15]. Although the MCF problem can be naturally 
formulated as a LP problem, the special structure of 
MCF problems need to be exploited to efficiently 
solve large-scale systems, which are otherwise not 
possible, or highly resource intensive, using a 
traditional LP/SIMPLEX algorithm. 

A common scenario of a network-flow problem 
arising in industrial logistics concerns regarding the 
distribution of goods/products from a set of 
originating (supply) nodes to a set of destination 
(demand) nodes. The number of units available at 
each supply node and the number of units required at 

each demand node is assumed to be known. The 
delivered product from supply nodes to demand 
nodes often pass through “transshipment” nodes 
(neither supply nor demand), which may represent 
warehouses or distribution centers along the 
distribution path. The objective is to minimize the 
total cost of shipping the products to satisfy all 
consumers’ requests at demand nodes. To facilitate 
the discussions, a simple 5-node and 7-link network 
[10], shown in Fig 1, was chosen; it will be used to 
explain different steps in the conventional MCF 
algorithm, with special emphasis on developing an 
efficient algorithm for identifying the loop-formation 
and computing the value for θ. In Fig 1, nodes #1 and 
#3 are identified as supply nodes (with the values 
𝑏1 = 6 and 𝑏3 = 4), while nodes #4 and #5 are 
identified as demand nodes (with the values 𝑏4 = −5 
and 𝑏5 = −5), and node #2 is a transshipment node 
(with the value 𝑏2 = 0). The cost (𝐶𝑖𝑗) for 
transporting each unit of product on any directional 
link i-j (from node “i” to node “j”) are also shown in 
Fig 1. 
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      Fig 1. A 5-Node and 7-Link Network. 
 
In Section 2, the MCF network presented in Fig 1 

is formulated as a Linear Programming (LP) 
problem, so that its special structure can be high-
lighted. Details of the three steps involved in each 
iteration for Phase 1 and Phase 2 of the MCF 
algorithms are explained in Section 3. The efficient 
algorithm for identifying loop-formation and 
computing θ value for MCF problems is also 
presented in Section 3. Numerical results for several 
academic and real-life networks are presented and 
validated in Section 4. Finally, conclusions are drawn 
in Section 5. 
 

2 The MCF Linear Programming 

Problem 
The MCF network presented in Fig 1 is 

formulated as a LP problem, to take advantage of one 
balanced equation for each node in the network. 
Based on the conservation of flow balance 
(equilibrium) at each node, such that: 
 
𝐹𝑙𝑜𝑤𝑂𝑢𝑡 − 𝐹𝑙𝑜𝑤𝐼𝑛 = 𝑁𝑒𝑡𝑆𝑢𝑝𝑝𝑙𝑦 + 𝐷𝑒𝑚𝑎𝑛𝑑 (1) 
 

The following equations can be written for the 
network shown in Fig 1: 

 

 
 
Thus, the following LP problem (Eq. 7) can be 

formulated from the network costs shown in Fig 1, 
and the balanced equations above. 

The objective is to find the amount of link flow 
(𝑋𝑖𝑗) directly connected between nodes “i” and “j” 
such that the summation of the link costs times the 
link flows for the network is minimized: 
 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐶𝑂𝑆𝑇 = ∑ ∑ (𝐶𝑖𝑗 ∙ 𝑋𝑖𝑗)

𝑛
𝑗=1

𝑛
𝑖=1     (7) 

 

with the constraints presented in Eqs. (2-6),  
n = number of nodes, 𝐶𝑖𝑗 = non-negative (integer) 
cost, and 𝑋𝑖𝑗 = non-negative (integer) flow. 

It should be noted that the summation of all terms 
on the left-hand-side (LHS) of Eqs. (2-6) and the 
corresponding summation of all terms on the right-
hand-side (RHS) of Eqs. (2-6) are both equal to zero. 
This special (unimodal) property will allow the MCF 
algorithm, which can be considered a special case of 
LP/Simplex solver, to obtain the integer values for 
𝑋𝑖𝑗 at the optimum, without being required to solve a 
more costly Linear Integer Programming (LIP) 
problem. From the “duality theories” [1-4], the above 
7-variable and 5-constraint “Primal” LP problem can 
be associated with the following 5-variable and  
7-constraint “Dual” LP problem.  

Find 𝑤1 through 𝑤5, such that [(𝑏1 = 6) ∙ 𝑤1 +
(𝑏2 = 0) ∙ 𝑤2 + (𝑏3 = 4) ∙ 𝑤3 + (𝑏4 = −5) ∙ 𝑤4 +
(𝑏5 = −5) ∙ 𝑤5] is maximized, and the following 
seven constraints (expressed in matrix notation) are 
satisfied: 

 

 
 

The above 7x5 matrix (of the “Dual” problem) is 
simply the transpose of the 5x7 coefficient matrix 
shown in Eqs. (2-6) of the “Primal” problem. The 
matrix shown in Eq. (8) can also be expressed as 𝑤𝑖 −
𝑤𝑗 = 𝐶𝑖𝑗, and this equation will be used in Section 3. 
 

3 The Minimum Cost Flow Algorithm 
With regards to the conventional MCF problem, 

the objective for Phase 1 is to find the BFS, while the 
objective for Phase 2 is to obtain the OFS.  The MCF 
method is an iterative process that consists of 
identifying which non-basic link (not currently in the 
solution) should be brought into the basic (active 
links) set, identifying the current loop, adjusting the 
link flow along the loop, and removing unneeded 
links. 

 
3.1 Phase 1 – Calculate the Basic Feasible 

Solution 

 
3.1.1 Initialization 

To initialize the network and begin the iterative 
process of calculating the BFS, an artificial node #A 
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1 - 1 0 0 0 C12 
1 0 -1 0 0 

-[~} 
C13 

0 1 0 -1 0 C24 
0 1 0 0 - 1 C2s (8) 
0 0 1 -1 0 C34 
0 0 1 0 -1 C3s 
0 1 0 0 - 1 C4s 

Xode Flow Out - Flow In Net Supply/Demand 

+x,: + x,. = b1 = +6 (2) 

- X1: + X,. + X25 = b, = 0 (3) 

+x,. +x., = b, = +4 (4) 

- X,. +x., = b, = -5 (S) 

- Xis = b, = -5 (6) 



(with 𝑏𝐴 = 0) is added to the original network 
(shown in Fig 1). Then, we add artificial links 
connected from supply nodes (node #1 and node #3) 
to node #A and artificial links connected from node 
#A to each demand and transshipment nodes (node 
#2, node #4, and node #5). (Note: transshipment 
nodes are treated as demand nodes.) In Phase 1, all 
artificial links have the cost 𝐶𝑖𝑗 = $1 (cost-unit), and 
all original links have the cost 𝐶𝑖𝑗 = $0 (cost-unit), 
as shown in Fig 2. This drives flow from the artificial 
links to the original links. 

 

 
Fig 2. Addition of Artificial Node and Links 

 
In Fig 2, there will be 10 units of flow-IN from the 

supply nodes (𝑏1 = 6 + 𝑏3 = 4) to the artificial node 
#A and 10 units of flow-OUT from the artificial node 
#A to the demand nodes (𝑏2 = 0 + 𝑏4 = 5 + 𝑏5 =
5). This network is in equilibrium; 10 units IN and 10 
units OUT.  The initial cost for the network can be 
calculated as: 

 
 𝑀𝑖𝑛𝐶𝑂𝑆𝑇 = 𝐶1𝐴 ∙ 𝑋1𝐴 + 𝐶𝐴2 ∙ 𝑋𝐴2 + 𝐶3𝐴 ∙

𝑋3𝐴 + 𝐶𝐴4 ∙ 𝑋𝐴4 + 𝐶𝐴5 ∙ 𝑋𝐴5 
 
 $1 ∙ (𝑏1 = 6) + $1 ∙ (𝑏2 = 0) + $1 ∙ (𝑏3 = 4) +

$1 ∙ (−𝑏4 = 5) + $1 ∙ (−𝑏5 = 5) = $20 
 (9) 
 
3.1.2 Iterative Step #1 – Calculate Node Weights 

At the beginning of each iteration, we repeatedly 
apply the following equation among the basic links to 
calculate 𝑤 , with 𝑤𝐴 = 0 (associated with the 
artificial node #A): 

 
 𝑤𝑖 −𝑤𝑗 = 𝐶𝑖𝑗                 (10) 
 

The equivalent version of Eq. (10), in matrix 
notation, has already been explained in Eq. (8) of 
Section 2. 

Then, for our 5-node example with an artificial 
node: 

 
𝑤1 −𝑤𝐴 = 𝐶1𝐴;𝑤1 − 0 = 1;𝑤1 = 1              (11) 
𝑤𝐴 −𝑤2 = 𝐶𝐴2; 0 − 𝑤2 = 1;𝑤2 = −1              (12) 
𝑤3 −𝑤𝐴 = 𝐶3𝐴;𝑤3 − 0 = 1;𝑤3 = 1              (13) 
𝑤𝐴 −𝑤4 = 𝐶𝐴4; 0 − 𝑤4 = 1;𝑤4 = −1              (14) 
𝑤𝐴 −𝑤5 = 𝐶𝐴5; 0 − 𝑤5 = 1;𝑤5 = −1             (15) 
 
Remarks:  

 In general, the selected #th node with the 
known/assigned value 𝑤  is NOT always to 
be the artificial node. In the MATLAB code, 
𝑤 = 0 for node ## in which node ## has the 
largest number of connected basic links is 
selected; this should reduce the number of 
unknown node weights. 

 In this example, since there are a total of six 
nodes (five original nodes plus the artificial 
node), the number of basic links required to 
solve for all 𝑤   is five (six nodes total 
minus one). 

 In applying Eq. (10), it is required that either 
𝑤𝑖 or 𝑤𝑗 is known, so that either 𝑤𝑗 (if 𝑤𝑖 is 
known) or vice versa can be computed. 

 Since this Step #1 is straight forward, the 
details for the MATLAB coding are not 
discussed here.   

 
3.1.3 Iterative Step #2 – Determine Which Non-

Basic Link Enters the Basic Set 

Among the non-basic links (dashed links in Fig 2), 
one needs to determine which non-basic link should 
be added to the basic (solid links in Fig 2) group, 
based on the maximum positive value, v, in the 
following equation: 

 
𝑣 = 𝑤𝑖 −𝑤𝑗 − 𝐶𝑖𝑗               (16) 

 
Then, for the current example’s non-basic links: 
 

12: 𝑣 = 𝑤1 −𝑤1 − 𝐶12 = 1 − −1− 0 = 2   (17) 
13: 𝑣 = 𝑤1 −𝑤3 − 𝐶13 = 1 − 1 − 0 = 0   (18) 
24: 𝑣 = 𝑤2 −𝑤4 − 𝐶24 = −1 − −1− 0 = 0    (19) 
25: 𝑣 = 𝑤2 −𝑤5 − 𝐶25 = −1 − −1− 0 = 0    (20) 
34: 𝑣 = 𝑤3 −𝑤4 − 𝐶34 = 1 −−1 − 0 = 2    (21) 
35: 𝑣 = 𝑤3 −𝑤5 − 𝐶35 = 1 − −1 − 0 = 2    (22) 
45: 𝑣 = 𝑤4 −𝑤5 − 𝐶45 = 1 − 1 − 0 = 0   (23) 
 

Remarks: 
 Since the three non-basic links (1-2, 3-4, and 

3-5) all have the same maximum positive 
value (= +2), based on Eq. (16), tie-breaker 
criterion needs to be considered. Although 
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some researchers have suggested a random 
selection is adequate in the case of a tie, the 
recommended criterion is to select the link 
which has the minimum, original cost (see 
Fig 1). Hence, in this example, link 3-5, with 
an original cost of $3, will be selected to 
enter the basic group. 

 Since this Step #2 is straight forward, the 
details for MATLAB coding will not be 
discussed here.   

 

3.1.4 Iterative Step #3 – Determine Which Basic 

Link is Removed 

Among the basic links, one needs to determine 
which basic link(s) is/are to be removed from the 
basic set, by identifying the loop-formation and 
computing the value of θ. 

At the end of Step #2, it has been determined that 
link 3-5 should “enter the basic set”, with the flow 
value 𝑋35 = 𝜃, as shown in Fig 3. 
 

 
Fig 3. Link 3-5, As θ, Enters the Basic Set 

 
By “observation”, one can see that the loop can be 

formed by the following links 3-5 (with flow  
𝑋35 = unknown value θ), 3-A (with flow 𝑋3𝐴 =

4 − 𝜃), and A-5 (with flow 𝑋𝐴5 = 5 − 𝜃) as shown 
in Fig 4. 

 

 
Fig 4. Observed Loop 

 
The analysis is further restricted to only realistic 

solutions, introducing the constraint that the flow on 
any link must be “non-negative”, then basic links: 

 
 35: 𝑋35 = 𝜃 ≥ 0  (24) 
 3𝐴:𝑋3𝐴 = 4 − 𝜃 ≥ 0; ℎ𝑒𝑛𝑐𝑒𝜃 ≤ 4  (25) 
 𝐴5:𝑋𝐴5 = 5 − 𝜃 ≥ 0; ℎ𝑒𝑛𝑐𝑒𝜃 ≤ 5  (26) 
 

Based on the requirements stated in Eqs. (24-26), 
one concludes that the requirement θ ≤ 4 will control 
the outcome; when θ ≤ 4 is satisfied, θ ≤ 5 is also 
automatically satisfied. Thus, the maximum positive 
value for θ is, θ = 4. 

Substituting the value of θ = 4 into Eqs. (24-26), 
one obtains the following link values: 

 
 35: 𝑋35 = 4  (27) 
 3𝐴:𝑋3𝐴 = 4 − 4 = 0(𝑙𝑖𝑛𝑘𝑟𝑒𝑚𝑜𝑣𝑒𝑑)  (28) 
 𝐴5:𝑋𝐴5 = 5 − 4 = 1  (29) 
 

To develop a simple algorithm which will 
automatically identify the loop-formation and 
compute the appropriate value for θ, one must answer 
the following 4 questions: 

1. Among the basic links, how is it determined 
(automatically) which basic link i-j does 
NOT belong to the loop-formation; which 
links should NOT have their flow adjusted 
by the value of θ? 

2. How is it determined (automatically) which 
basic links i-j (such as basic links 3-5, 3-A, 
and A-5) belong to the loop-formation? 

3. How is the appropriate value for θ computed 
(automatically)? 

4. For those links that should belong to the 
loop-formation (such as links 3-5, 3-A, and 
A-5), how is it determined that the value of θ 
should be “ADDED” or “SUBTRACTED”? 
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To answer the previous questions, the following 
terms are defined: 

 A “dead node” is defined as a node which 
is connected by only one or no basic link 
(solid line in the figures), and 

 A “dead basic link” is defined as a basic 
link (solid line) which is connected to a 
“dead node”; furthermore, “dead nodes” 
and any associated “dead links” can be 
DELETED (ignored or discarded) during 
the process of finding the θ value. 

Based on the above definitions, and using Fig 4 
(focusing on basic links only), one concludes that 
(see Fig 5): 

 Node #1 is a “dead node” (because there 
is only one basic link 1-A connected to 
node #1), hence node #1’s associated 
“dead link 1-A” can be DELETED. 

 Node #2 is a “dead node” (because there 
is only one basic link A-2 connected to 
node #2), hence node #2’s associated 
“dead link A-2” can be DELETED. 

 Node #4 is a “dead node” (because there 
is only one basic link A-4 connected to 
node #4), hence node #4’s associated 
“dead link A-4” can be DELETED. 

 

 
Fig 5. Dead Links Deleted 

 
Note: 

 The remaining nodes (#3, #5, and #A), 
and the remaining basic links (3-A, A-5, 
and 3-5) will form the closed loop-
formation needed to calculate the value of 
θ. 

 All nodes that belong to the closed loop-
formation will be connected (or 
surrounded) by at most two basic links 
(i.e., node #3 has link 3-5 and link 3-A; 
no others). 

The following algorithm can be developed to 
automatically identify the closed loop-formation and 
compute θ value (in Step #3): 

Step #3.1 Identify all the “dead nodes”. 
Step #3.2 Identify and DELETE all the “dead 

basic links”. 
Step #3.3 In Step #2, it was determined that the 

non-basic link 3-5 will “enter the basic 
group”; node #3 is defined as the “loose node 
#i” and node #5 is defined as the “loose node 
#j”. 

Step #3.4 The “link status” for the “loose node 
#i = loose node #3” can be defined as one of 
the following four possibilities as detailed in 
Fig 6: 

 
Link Status = 1: “out more”,  
        (Link Status = 1 is selected see Fig 6) 
Link Status = 2: “out less”, 
Link Status = 3: “in more”, or 
Link Status = 4: “in less”  
 
Once the status for the current “loose node #i” is 

updated, the new “loose node #i” shifts to the next 
connected node, in this case node #A. 

Step #3.5 The “link status” for the “loose node 
#j = loose node #5” can be defined as one of 
the following four possibilities as detailed in 
Fig 6: 

 
Link Status = 1; “out more”,  
Link Status = 2; “out less”, 
Link Status = 3; “in more”, or  
        (link Status = 3 is selected see Fig 6) 

Link Status = 4; “in less” 
 
Once the status for the current “loose node #j” is 

updated, the new “loose node #j” shifts to the next 
connected node, in this case node #A. 

 

 
Fig 6. Status of Loose Nodes #i and #j 

 
Step #3.6 In Fig 7, a basic link which is 

connected to the “loose node #i = loose node 
#3” can be EITHER case #1 OR case #4. 
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Fig 7. General Case for Status Selection 
 

In case #1, if the basic link u-i is connected TO a 
loose node #i (at this point node #3), then the flow for 
link u-i is 𝑋𝑢𝑖 + 𝜃 (i.e., flow on u-i), so that the loose 
node #i will maintain its equilibrium. Under this 
scenario, the UPDATED loose node #i becomes 
loose node #u (node #A in our example), and the 
UPDATED link status for the loose node #u is 1, 
which means “out more”. Since the new flow (= 
𝑋𝑢𝑖 + 𝜃) is required to be non-negative, one can have 
any non-negative value for θ.  

In case #4, if the basic link i-u is connected 
FROM a loose node #i (at this point node #3), then 
flow for link i-u is 𝑋𝑖𝑢 − 𝜃 (i.e., flow on i-u), so that 
the loose node #i will maintain its equilibrium. Under 
this scenario, the UPDATED loose node #i becomes 
loose node #u (node #A in our example), and the 
UPDATED link status for the loose node #u is 4, 
which means “in less”. Since the new flow (= 𝑋𝑖𝑢 −
𝜃) is required to be non-negative, the value of θ must 
be ≤𝑋𝑖𝑢  (LESS THAN or EQUAL TO 𝑋𝑖𝑢). 

Step #3.7 In Fig 7, a basic link which is connected 
to the “loose node #j = loose node #5” can be 
EITHER case #2 OR case #3.  

In case #2, if the basic link v-j is connected TO a 
loose node #j (at this point node #5), then the flow for 
link v-j is 𝑋𝑣𝑗 − 𝜃 (i.e., flow on v-j), so that the loose 
node #j will maintain its equilibrium. Under this 
scenario, the UPDATED loose node #j becomes 
loose node #v (node #A in our example), and the 
UPDATED link status for the loose node #v is 2, 
which means “out less”. Since the new flow (= 𝑋𝑣𝑗 −
𝜃) is required to be non-negative, the value of θ must 
be ≤𝑋𝑣𝑗  (LESS THAN or EQUAL TO 𝑋𝑣𝑗). 

In case #3, if the basic link j-v is connected 
FROM a loose node #j, then the flow for link j-v is  

𝑋𝑗𝑣 + 𝜃 (i.e., flow on j-v), so that the loose node 
#j will maintain its equilibrium. Under this scenario, 
the UPDATED loose node #j becomes loose node #v 
(node #A in our example), and the UPDATED link 

status for the loose node #v is 3, which means “in 
more”. Since the new flow (= 𝑋𝑗𝑣 + 𝜃) is required to 
be non-negative, one can have any non-negative 
value for θ.  

 
Steps #3.6 and #3.7 are repeated until the “loose 

#i = loose #j” and the loop is closed. 
 
The final value for θ should be the smallest, 

positive value among cases #1, #2, #3, and #4, to 
guarantee the flows on every basic link of the closed 
loop will be non-negative and maintain equilibrium. 

After Step #3 in each iteration is completed, Steps 
#1 through #3 will be repeated in subsequent 
iterations Fig 8 – Fig 10), until the feasible solution, 
for Phase 1, is identified. The cost at the end of  
Phase 1 is zero because all artificial links with any 
flow have been removed (Fig 10). (Note: the values 
displayed are the link flows (𝑋𝑖𝑗) associated with the 
updated 𝜃 values or the original artificial links). 

 
Fig 8. End of Phase 1, Iteration 1 (Cost = 12) 
 

 
Fig 9. End of Phase 1, Iteration 2 (Cost = 10) 
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Fig 10. End of Phase 1, Iteration 3 (Cost = 0) 
 

B. Phase 2 – Calculate the Optimal Final 

Solution (OFS) 
The objective for Phase 2 is to find an overall, 

OFS for the original (in our example, Fig 1, a 5-node 
and 7-link) network. 

The BFS obtained at the end of Phase 1 (see  
Fig 10) will be used as the beginning of Phase 2 (see 
Fig 11).  In Phase 2, the original links’ cost with the 
value 𝐶𝑖𝑗 are used, and an #th node, with the most 
connected links (in this case, node #3), is selected 
such that 𝑤3 = known value = 0. Then, the same 3-
step algorithm (steps #1, #2, and #3) discussed in 
Phase 1 will be applied for Phase2. 
 

 
Fig 11. Feasible Solution to Start Phase 2 

 
4 Numerical Results 

Based on the 3-step MCF algorithm (applied in 
Phase 1 and Phase 2) presented in Section 3, and the 
newly proposed shortest path (SP) algorithm used in 
Phase 1 and presented in Section 4, the following 
academic and real-life networks are used to validate 
our proposed algorithm for identifying the closed 
loop-formation and computing the appropriate value 
for θ (see the discussions in 3.1.4, for Step #3 of 
Phase 1 and Phase 2). All our optimum results, for 
these examples, have been compared with, and 
validated using, the built-in MATLAB Linprog() 
function (Simplex algorithm) [16] and the results 
were recorded with each example in this section. The 
process times were measured over 36 trials and the 

average of the median 30 measurements were 
included in the analysis of each example. 

 
4.1 Example #1: 5-Node/7-Link Network 

The example #1 network is displayed in Fig 12. In 
this example the conventional MCF and Linprog() 
solutions produced the same optimum solution. 

 

 
Fig 12. Original Network (5/7) 

 

 
Fig 13. MCF Phase 1 (5/7) Solution = 81 

 

Fig 14. MCF Phase 2 (5/7) Solution = 81 
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Fig 15. Linprog() Final (5/7) Solution = 81 

 
4.2 Example #2: 9-Node/14-Link Network 

The example #2 network is displayed in Fig 16. In 
this example, the MCF solution results in an optimal 
(minimum cost) value of 71 which is verified by the 
Linprog() solution; however, it required both Phase 1 
(solution = 80) AND Phase 2 to reach the Linprog() 
verified solution (Fig 19). 

 

 
Fig 16. Original (9/14) Network 

 

 

Fig 17. MCF Phase 1 (9/14) Solution = 80 
 

 
Fig 18. MCF Phase 2 (9/14) Solution = 71 

 

 
Fig 19. Linprog() Final (9/14) Solution = 71 

 
4.3 Example #3: 20-Node/74-Link Network 

The example #3 network is displayed in Fig 20. In 
this example, the MCF solution results in an optimal 
(minimum cost) value of 1775 which is verified by 
the Linprog() solution; however, it required both 
Phase 1 (solution = 2000) AND Phase 2 to reach the 
Linprog() verified solution (Fig 33). 
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Fig 20. Portion of Original (225/375) Network 
 

 
Fig 21. MCF Phase 1 (225/375) Solution = 2000 

 

 
Fig 22. MCF Phase 2 (225/375) Solution = 1775 

 

 
Fig 23. Linprog() Final (225/375) Solution = 1775 

 
6.4 Example #4: 24-Node/76-Link Sioux Falls 

The example #4 network is displayed in Fig 25. In 
this real-life, Sioux Falls (Fig 24) example, the 
conventional MCF method required Phase 2 to refine 
the feasible solution and deliver the OFS (Fig 27).  
However, the conventional MCF method produced 
an alternate optimal flow; indicating that there is 
more than one path that will result in the same 
optimal value or cost. 

 

 
Fig 24 - Sioux Falls Map/Network 

 

 
Fig 25. Original Network (24/76) 
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Fig 26. - (Real Life Sioux Falls) Conv MCF Phase 1 

(24/76) Solution = 188 
 

 
Fig 27. (Real Life Sioux Falls) Conv MCF Phase 2 

(24/76) Solution = 83 
 

 
Fig 28. (Real Life Sioux Falls) Linprog()  

Final (24/76) Solution = 83 
 

7 Conclusion 
The most complicated step in the conventional 

MCF (Phase 1 and Phase 2) algorithm occurs in Step 
#3 (identifying the closed loop and computing the 

appropriate value for θ).  To the authors’ best 
knowledge, most (if not all) existing literature does 
NOT discuss the (automated) numerical algorithm to 
accomplish Step #3 of the conventional MCF 
method. This work has explained, in detail, the step-
by-step procedures to implement the conventional 
MCF algorithm, with emphasis on Step #3 (see 
Section 3.1.4) to determine the loop-formation and 
value for θ.  
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