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Mechanism for the Unfolding of the
TOP7 Protein in Steered Molecular
Dynamics Simulations as Revealed by
Mutual Information Analysis
Ognjen Perišić 1* and Willy Wriggers2*

1Big Blue Genomics, Belgrade, Serbia, 2Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk,
VA, United States

We employed mutual information (MI) analysis to detect motions affecting the mechanical
resistance of the human-engineered protein Top7. The results are based on theMI analysis
of pair contact correlations measured in steered molecular dynamics (SMD) trajectories
and their statistical dependence on global unfolding. This study is the first application of the
MI analysis to SMD forced unfolding, and we furnish specific SMD recommendations for
the utility of parameters and options in the TimeScapes package. The MI analysis provided
a global overview of the effect of perturbation on the stability of the protein. We also
employed a more conventional trajectory analysis for a detailed description of the
mechanical resistance of Top7. Specifically, we investigated 1) the hydropathy of the
interactions of structural segments, 2) the H2O concentration near residues relevant for
unfolding, and 3) the changing hydrogen bonding patterns and main chain dihedral angles.
The results show that the application of MI in the study of protein mechanical resistance
can be useful for the engineering of more resistant mutants when combined with
conventional analysis. We propose a novel mutation design based on the hydropathy
of residues that would stabilize the unfolding region by mimicking its more stable symmetry
mate. The proposed design process does not involve the introduction of covalent
crosslinks, so it has the potential to preserve the conformational space and unfolding
pathway of the protein.

Keywords: molecular dynamics analysis, protein design and engineering, protein unfolding pathway, mutual
information (MI), steered molecular dynamics (SMD)

INTRODUCTION

Top7 is a human-engineered protein with resistance to unfolding comparable to that encountered in
naturally occurring proteins that exhibit mechanical roles (Kuhlman et al., 2003). Its tertiary
structure has not yet been encountered in nature (Figure 1). The protein is composed of two
alpha helices and one beta sheet. The protein’s uniqueness stems from its beta sheet, which consists of
five strands (residues 15–25, 3–12, 46–55, 86–94, and 76–85, as shown from top to bottom in
Figure 1B). The N- and C-terminal strands (which are force-bearing in mechanical pulling
experiments or simulations) are the second and penultimate strands, respectively (Figure 1B).
The middle strand of the beta sheet (also known as region II; Figure 1A) is sequentially distant from
these force-bearing strands but connected to them through hydrogen bonds (Figure 1B). The Top7
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fold is symmetrical about the central region II and can be divided
into two structurally similar segments, each having an alpha helix
and two stands of the beta sheet (regions I and III; Figure 1A).

The initial molecular dynamics (MD) simulations (Sharma
et al., 2007; Genchev et al., 2009) showed that a fast, simulated
perturbation far from equilibrium can be used as a guideline in
the rational design of Top7. During the simulated pulling, that is,
steered MD (SMD), the second group of hydrogen bonds
weakens and disappears, which correlates with the drop in
resistance force (Figures 1C–E). This process is almost
identical for every pulling regime examined (1, 5, or 10 m/s
pulling) and pulling direction (from N or C terminus), except
for the fastest pulling (100 m/s) when the second and third groups

break together. The pulling regimes were far from
equilibrium—seven to eight orders of magnitude faster than
the real-world constant-velocity pulling experiments (Rief
et al., 1997; Carrion-Vazquez et al., 2003; Eckels et al., 2019).

Mechanical resistance of Top7 is reflected in the behavior of its
beta sheet hydrogen bonds. The protein unfolds into three parts:
The first part is a fragment of the beta sheet belonging to
structural region I; the second part is the alpha helix I from
region I; and the third part mainly comprises region III, which
keeps its overall configuration largely intact and stays loosely
bound to helix I (Sharma et al., 2007). The beta sheet is composed
of four sets of hydrogen bonds (Figure 1B). The protein’s forced
unfolding is mainly reflected in the drop in the number of

FIGURE 1 | (A) The Top7 protein is composed of two alpha helices and a single beta sheet. The structure can be divided into two segments, each comprised of an
alpha helix and a part of the beta sheet (regions I and III). A single beta strand (region II) separates these segments. The first and last residues in the protein chain are
enumerated (numbers 3 and 94 in PDB ID 1QYS). (B) The beta sheet is formed by five strands that are connected by four sets of hydrogen bonds. The first hydrogen
bond set is colored blue (connecting two strands with residues 3–12 and 15–25), the second set is colored green (residues 3–12 and 46–55), the third set is colored
red (residues 46–55 and 86–94), and the fourth set is colored cyan (residues 76–85 and 86–94). The two alpha helices comprise residues 26–45 and residues 56–75. (C)
Three protein conformation snapshots during the unfolding. The hydrogen bonds are colored as in (A,D) The force-extension curve (pulling velocity 10 m/s). (E) Number
of hydrogen bonds (see Methods section) during the simulation (pulling velocity 10 m/s). The continuous values are obtained via low-pass filtering (moving average with
window width 11 frames, or ± 5 frames about sampling points). Panels (A,B) were created with Chimera (Pettersen et al., 2004). Panel (C) and all other molecular
structure graphics in this work were created with VMD (Humphrey et al., 1996).
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hydrogen bonds from the second set that connects the central
beta strand (region II) to the force-bearing beta strand of region I.
In the initial work (Sharma et al., 2007; Genchev et al., 2009), a
disulfide bond introduced in the protein’s beta sheet forced the
protein to follow the unfolding pathway of high resistance.
Covalent cross-linking is evidently a rather intrusive
manipulation that alters the unfolding pathway by introducing
(non-native) spatial constraints. In the present work, we used a
different approach and sought possible mutants that strengthen
non-covalent contacts, leaving the polypeptide chain intact.

Our new design paradigm for enhancing mechanical stability
is based on a statistical analysis of residues important for the
global unfolding process, as well as on an analysis of the
biophysical and biochemical properties of SMD trajectories,
which is different from the cross-linking strategy originally
applied by Sharma et al. (2007). The present work is an
extension of previously proposed strategies (Wriggers et al.,
2009; Shaw et al., 2010; Kovacs and Wriggers, 2016; Kovacs
et al., 2017) aimed at detecting functionally relevant mechanisms
in proteins. The new approach efficiently matches fast local
movements (secondary or tertiary structure rearrangements)
with slow global protein behavior (characterized by an activity
function or order parameter). Statistical dependence using
mutual information (MI) generates a spatial heat map that
reveals functionally relevant protein segments from the time
series. The MI analysis reveals only statistically correlated
residues and does not offer a physical interpretation of the
protein’s behavior during stretching. The physical properties
of those residues, such as their water molecule binding
and hydrogen bonding, can offer insights into the true
mechanism of the Top7’s asymmetrical response to the
external stimulus.

METHODS

Steered Molecular Dynamics Simulations of
Top7
Recent advances in parallel computing have made MD
simulations accessible to a wide range of researchers who can
now regularly perform long simulations of very large
biomolecular complexes, such as viral capsids (Arkhipov et al.,
2006; Perilla and Schulten, 2017; Tarasova et al., 2017), full viral
particles (Freddolino et al., 2006; Wang et al., 2013), ribosomes
(Sanbonmatsu, 2012), or chromatin fibers (Sanbonmatsu, 2019).
The success of such studies in protein folding, drug design, or
structure optimization primarily relies on the numerical power of
modern architectures and on the accuracy of algorithms and force
fields. Such technical challenges have been addressed in earlier
works (Sharma et al., 2007; Genchev et al., 2009) on the force-
induced unfolding of the Top7 protein. Figure 1 provides a
review of the existing SMD simulations (Sharma et al., 2007;
Genchev et al., 2009) we used in this study.

The Top7 protein equilibration and SMD constant velocity
stretching simulations were performed at 310 K in an explicit
water solvent box with periodic boundary conditions large
enough for a spring extension of up to 50 Å (length 127 Å,

width 52 Å, height 59 Å). The SMD spring constant was
10 kcal/mol/Å2. The protein–solvent system contained 39,121
atoms. The spring velocities used in the SMD simulations
were between 1 and 100 m/s (in this paper, we used
simulations based on 1 and 10 m/s velocities). The model was
prepared with VMD (Humphrey et al., 1996), and MD
simulations were performed with NAMD (Phillips et al., 2005)
by using par_all27_prot_lipid (CHARMM22/27) parameters and
topologies. During the 1 ns equilibration simulations, the protein
was stable within a 2 Å root-mean-square deviation (RMSD)
from the initial PDB structure 1QYS. The equilibrated structures
were the starting structures used in the SMD simulations. The
SMD simulation length (integration time step: 1 fs) was
determined by the spring velocity; for example, at 50 Å
extension and 10 m/s velocity, the SMD part of the simulation
was 0.5 ns long, and at 25 Å extension and 1 m/s velocity, the
SMD part of the simulation was 2.5 ns long.

Mutual Information Analysis of MD
Trajectories Using TimeScapes
The analysis of the SMD simulation trajectories presents a
challenge. Functionally important effects are often difficult to
detect visually (Humphrey et al., 1996; Pettersen et al., 2004).
Therefore, we visualized unfolding events locally by using
information theory—by transforming highly resolved SMD
time series into spatial images or heat maps that characterize
the importance of specific amino acid residues for the unfolding.
The statistical analysis described in the following was carried out
with the Python-based TimeScapes package (Wriggers et al., 2009;
Kovacs and Wriggers, 2016) disseminated at http://timescapes.
biomachina.org.

Specifically, in the present work, we used the tagging.py tool,
which represents an MD trajectory as a time series of pairwise
side-chain distances Xij(t), where each amino acid (denoted here
by i or j) is represented by an atom from its side chain. Thus, the
Xij(t) measures fast local rearrangements of the protein
configuration. The coarse graining into side-chain
interactions makes the problem more tractable (the
computational complexity scales with the square of the
number of residues but not with the square of the number of
atoms). We used default parameters, that is, neighbor contact
exclusion in the coarse model (excl � 1), distance cutoff set to
infinity (i.e., no cutoff), and the default coarse-graining function
(mod_pwk_side).

When a folding or unfolding protein transitions between
relatively quiescent “low activity” basins to other such basins
as a function of simulation time, it experiences “high activity”
bursts during the transition (Wriggers et al., 2009). In the
following, we statistically related the rate of change of the
Xij(t) to a function that measures the activity during such
folding or unfolding events. Several types of activity functions
a(t) supported in TimeScapes (Wriggers et al., 2009; Kovacs and
Wriggers, 2016) provide different imaging modalities for
visualization. Because of its robustness and demonstrated
utility in characterizing folding simulations (Kovacs and
Wriggers, 2016), we used the RMS fluctuation (RMSF) of
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Cartesian coordinates in a Gaussian-weighted sliding window of
length δ, which was computed with the agility.py tool.

If I(x, y) denotes a measure of the statistical dependence of two
discrete random variables x and y, it can then be used to express
the measure RX,a(i, j) of the dependence between local changes of
Xij(t) and the global activity function a(t) as (Kovacs and
Wriggers, 2016):

RX,a(i, j) � I(
∣∣∣∣∣∣∣dXij(t)

dt

∣∣∣∣∣∣∣, a(t)) (1)

I(x, y) was initially expressed as a linear Pearson cross-correlation
(Wriggers et al., 2009), but we recently adoptedMI, which is more
robust with respect to the choice of activity function, and it
provides results even in fast-folding cases, where the earlier cross-

FIGURE 2 |RMSF curves (left; arbitrary units) and pairwise residueMI matrices (right; normalized to a range of [0, 1]) for three values of δ (windowwidth: 50, 10, and
5 frames; 1 frame � 0.5 ps for the 10 m/s SMD velocity; see Methods section). (A) RMSF for δ � 50 frames. (B)MI pairwise matrix for δ � 50 frames. (C) RMSF for δ � 10
frames. (D) MI pairwise matrix for δ � 10 frames. (E) RMSF for δ � 5 frames. (F) MI pairwise matrix for δ � 5 frames.
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correlation failed to detect any significant contacts (Kovacs and
Wriggers, 2016). The coefficients RX,a(i, j) can then be used to
rank the local residue pairs (i,j) by the statistical dependence of
their fast motion on the slow, global activity a(t). The RX,a(i, j)
forms a heat map that can be plotted as a 2D matrix (Figure 2,
right).

Eq. 1 was originally developed for non-negative activities
(Kovacs and Wriggers, 2016), but tagging.py also supports a
variant of the approach, where an external raw time series is used
as an order parameter instead of an activity function;
furthermore, instead of the absolute rate of change, the direct
dependence on (signed) pairwise distances is computed:

RX,a(i, j) � I(Xij(t), a(t)) (2)

Here, a(t) may be signed and denotes an external order
parameter that characterizes the global state of the system.
The approach in Eq. 2 was historically used in the analysis of
the first millisecond MD simulation (Supplementary Figure S9 of
Shaw et al., 2010), where a(t) denotes the membership of specific
conformational clusters in Supplementary Table S2 of Shaw et al.
(2010). In the present work, we focused on force-induced
unfolding, similar to that in a(t) in Eq. 2, where we used the
RMSD from the initial conformation (computed by VMD;
Humphrey et al., 1996), in addition to the RMSF.

The Python-based package TimeScapes was recently enhanced
with additional C++ code for the balanced approach to adaptive
probability density estimation (BADE) (Kovacs et al., 2017):
Python programs that support MI, such as tagging.py, execute
the BADE program (Wriggers, 2017) and use the resulting
probability densities for the MI calculations in Eqs. 1, 2.

Biomolecular Trajectory Analysis
For the hydropathy analysis, the protein was divided into
structural sub-segments based on visual inspection of how
secondary structure elements move during the perturbation.
For specific pairs of such sub-segments, the degree of
hydrophobicity was computed for contact and non-contact
residues by averaging their Black and Mould (Black and
Mould, 1991) or Kyte and Doolittle (Kyte and Doolittle, 2003)
hydropathy scores. A residue was defined to be in contact if any of
its atoms were within 4.5 Å of the atoms from a neighboring
segment. The contact residues were extracted using our in-house
developed programs (Perišić, 2018; Perišić, 2020).

The number of hydrogen bonds, water molecule
concentration, and angles between residue triplets were
measured with VMD (Humphrey et al., 1996) by using Tcl/Tk
scripts, which were developed specifically for this purpose. The
hydrogen bonds were selected with the VMD list command set
hbcount1 [llength [lindex [measure hbonds 3.5 45 $sel11 $sel12]
0]]. The command selects all hydrogen bonds within a 3.5 Å
cutoff distance, whereas the angle formed by the donor,
hydrogen, and acceptor must be within a tolerance of 45° from
the expected 180° angle. The script passes through every
simulation frame, counts the number of hydrogen bonds for
each selection, and stores them in text files. Similarly, the script
that counts the number of water molecules around the desired

residues uses the VMD atom selection language. For example,
water molecules near residue 15 would be counted with set
sel_wm_around_15 [atomselect top “water and name OH2 and
within $radius of protein and resid 15”. The script passes through
every simulation frame and saves the number of water
molecules with the function calls set wmcount_around_15
[$sel_wm_around_15 num] and puts $outfile_15
“$wmcount_around_15”. Finally, angles between residue
triplets (between corresponding Cα atoms) were calculated
using elementary trigonometry and saved in text files for
further scripting analysis, similar to the above-given
procedures for hydrogen bonds and water molecules.

RESULTS

Protein folding is a relatively slow equilibrium process guided by
entropy, whereas forced unfolding is usually far from equilibrium
and characterized by the sudden breaking of noncovalent bonds.
In SMD, a sudden disruption of a hydrogen bond is characterized
by a burst of high-amplitude fluctuations, which means that bond
breakage should be followed by high-frequency fluctuations of the
corresponding residues. The raw time series, on the other hand,
should move in synchrony with slow, large-amplitude global
movements that correspond to mechanically more stable
structural segments. In the following heat map analysis, we
used the rate of change of pairwise distance time series (Eq. 1)
to detect the most important residues for destabilizing the
structure and raw time series to identify the globally stable
rigid segments (Eq. 2). The statistical analysis is followed by
more traditional analysis of biophysical and biochemical
properties that further elucidate the unfolding mechanism.

Rate of ChangeMutual Information Analysis
Based on the Activity Function
As described in the Methods section, the agility.py script of the
TimeScapes package was used to extract the RMSF in a Gaussian-
weighted sliding window. An important parameter in estimating
the RMSF is the length δ of the window. The best practices
(Wriggers, 2017) suggest starting with 5% of the total number of
trajectory frames as the δ length and adjusting this value if
indicated. In our case, with a length of 1,000 frames, 5%
corresponds to 50 frames. To investigate the robustness of the
analysis, we also calculated the RMSF with δ � 10 and 5 frames.
The MI values did not significantly depend on the window length
δ in earlier equilibrium MD simulations of native state dynamics
(Kovacs and Wriggers, 2016), but we would not expect this time
invariance in the presence of a significant time-dependent
perturbation, such as in the SMD.

In Figure 2, the left part shows the RMSF activity functions
obtained with δ � 50, 10, and 5 frames (1 frame � 0.5 ps for the
10 m/s SMD velocity, see Methods section), and the right part
shows the corresponding normalized pairwise residue MI heat
maps based on the absolute derivatives of the residue–residue
distance time series (Eq. 1). Figure 2 suggests that the timescale
imposed by the pulling regime in (non-equilibrium) SMD has a
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modest effect on time-dependent statistics, whereas MI values did
not significantly depend on the window length δ in conventional,
equilibriumMD simulations (Supplementary Figure S4 of Kovacs
and Wriggers, 2016).

The heat map matrices in Figure 2 (right) generally exhibit a
banded structure with high MI values for residues 3–22 (the first
two beta strands from region I) and the central strand region II
but lower values in region III. However, the maps are relatively
noisy. For an improved visualization of the results in 3D, Figure 3
depicts residues extracted from the 2D heat maps when
corresponding normalized matrix elements were greater than
0.7. With δ � 50 frames, the MI analysis emphasizes residue pairs
9/36, 12/48, 26/62, and 47/91. With δ � 10 frames, the procedure
yields residue pairs 6/29, 9/36, 12/48, 23/29, 26/28, 26/55, 26/62,
and 47/91. With δ � 5 frames, residue pairs 3/29, 3/80, 6/29, 9/36,
9/48, 9/52, 9/72, 9/90, 11/50, 11/81, 11/90, 12/48, 12/50, 12/89,
12/90, 14/50, 14/72, 23/29, 26/28, 26/55, 26/62, 29/46, 29/49, 29/
51, 29/80, 29/90, 29/91, 45/49, 47/91 are selected. Although the
highlighted residues generally agree in their location, a sharper
RMSF curve provides an opportunity for more pairwise
interactions to exhibit a high statistical dependence on the
RMSF (the residue selection expanded with decreasing width/
duration δ).

The analysis primarily highlights residues from the beta sheet
belonging to regions I and II (in particular, residues 9 and 12)
and, only to a lesser extent, residues in the alpha helices (mostly
from region I). For δ � 50 and δ � 10 frames, Figure 3 emphasizes
residues from the structural regions I and II. Those residues are,

surprisingly, concentrated far from the site where Sharma et al.
(2007) introduced the disulfide bridge (residues 3 and 51) to force
the protein to unfold via the third set of beta sheet hydrogen
bonds (Figure 1). The analyses with δ � 50 and δ � 10 frames
omit residues 3 and 51, and only the analysis with δ � 5 highlights
those two among 27 other residues that emerge from the noise in
the heat map (Figure 2F).

Direct Mutual Information Analysis Based
on Raw Time Series
The previous rate of change analysis (Eq. 1) was originally
developed for equilibrium simulations where activity functions,
such as the RMSF, that characterize one or more functionally
relevant changes in the system can be learned (Kovacs and
Wriggers, 2016). However, in the case of the SMD trajectories
in this paper, the system undergoes a directional change due to
the force-induced unfolding. The well-defined directional
perturbation provides a natural order parameter that can be
used to directly determine the importance of interactions for
the structural change by using the raw time series for the analysis
(Eq. 2). We used the RMSD and the RMSF (δ � 50 frames) curves
for the direct MI analysis of the raw pairwise residue distance
time series because these curves characterize the deformation of
the system (Figure 4A) and the saturation of the internal changes
(Figure 4C).

As was the case in Figure 2 (right), where an identical color
scale was used, the results in Figures 4B,D show a heat map in

FIGURE 3 | Residues highlighted by the MI analysis of the constant velocity unfolding trajectory. The shown residues were taken from the residue pairs extracted
from the activity matrix when the corresponding normalizedmatrix elements were greater than 0.7. The residues are depicted by their Cα atoms and correspond tomatrix
elements in Figure 2 (right). The visualization is based on the analysis with the RMSF smoothing windows of δ � 50 (A), 10 (B), and 5 (C) frames used in Figure 2 δ � 50
emphasizes residues 9, 12, 26, 36, 47, 48, 62, and 91, δ � 10 emphasizes residues 6, 9, 12, 23, 26, 28, 29, 36, 47, 48, 55, 62, and 91, and δ � 5 emphasizes
residues 3, 6, 9, 11, 12, 14, 23, 26, 28, 29, 36, 45–52, 55, 62, 72, 80, 81, and 89–91.
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pairwise residue space. However, the results in Figure 4 show a
much more distinct block pattern that can be readily interpreted
in Figure 4E. The raw time series analyses in Figures 4B,D reveal
three structurally distinct segments (as judged by the blue squares
on the diagonal, which represent low intra-segment values): 1)
The union of regions II and III (blue in Figures 4E) helix I from
region I (green in Figures 4E) two beta strands from region I (red
in Figure 4E). We noted that low MI values do not directly
indicate the absence of internal motion in the three segments of
Figure 4E and that the motion (e.g., due to thermal fluctuations)
is not statistically correlated with the stretching (RMSD) or global
activity (RMSF). In this sense, the MI analysis allows us to mask
out any unrelated (non-functional) motion. While both analyses

highlight the same segments, the RMSD-based analysis is more
selective. As the simulated pulling progresses, the two “red”
strands alter their interactions with the neighboring helix I
and regions II/III (as evidenced by high inter-segment MI
values). Helix I is internally stable, and interactions of helix I
with regions II/III change with overall activity (RMSF) and are
detected by the statistical analysis, but these interactions do not
correlate directly with the stretching (RMSD) itself (as is the case
in the interactions of helix I with the two “red” strands).

The above heat map analysis is relatively non-specific, but it
allows us to focus on key regions that we explored further in the
following section. Figure 4 shows that residues 3–22 (two beta
strands from region I) are most active during unfolding.

FIGURE 4 | MI analyses of the constant velocity unfolding trajectory against RMSD order parameter and RMSF activity function. (A) RMSD curve (see text). (B)
Pairwise residue matrix created by direct MI against RMSD (color scale as in Figure 2, right). (C) RMSF curve (Figure 2A). (D) Pairwise residue matrix created by direct
MI against RMSF (color scale as in Figure 2, right). (E)Cartoon representation of the protein with colored segments emphasized by theMI analysis depicted in (B,D). The
red segment (residues 3–22) is the most active (see the highly active band in panel (B)), showing the activity of residues 3–22 against all other residues. The green
segment (residues 23–44) is less active than the red segment (see panel (B)), whereas the blue segment (residues 45–94) remains stable (see text for details).
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This result agrees with the banded structure of the pairwise
matrices in Figure 2, which exhibit high MI values for
these residues. Figure 3 also shows that many significant
residues (in particular, residues 9 and 12 and their structural
neighbors) belong to the interface between regions I and II.
However, we still needed a deeper knowledge of the system,
as MI alone is not sufficient to provide a complete design strategy
for engineering a stable structure. To predict a mutation that
mechanically stabilizes the protein, we augmented the heat map
analysis with a more conventional trajectory analysis.

Hydropathy, Solvent Exposure, and
Hydrogen Bonding
The above statistical analysis showed that the pairwise residue
activity is structurally separated and asymmetric despite the
tertiary similarity of regions I and III (Figure 1). Two beta
strands from region I (residues 3–22) are much more active
and eager to unfold than those from region III (Figure 4). As we
were interested in discovering the mechanism responsible for the
asymmetric response of the protein to the external stimulus, we
decided to examine the hydrophobic properties, solvent exposure,
and hydrogen bonding in more detail.

The hydrophobic effect is a major driving force in the folding
of globular proteins in aqueous solution. To assess the role of
specific segments in the Top7’s resistance to pulling, we examined
their hydropathy scores (i.e., mutual hydrophobic and
hydrophilic propensities) as a potential source of the structural
resistance to the external force, as originally suggested by Sharma
et al. (2007). Figure 5 shows seven pairs of structural sub-
segments and their corresponding average (Kyte and Doolittle,
2003) hydropathy scores (see Methods section), which we related
to the MI results.

The largest difference between contact and non-contact
hydropathy was observed in the segment composed of helices I
and III (Figure 5). This findingmeans that it should experience the
largest change in entropy upon exposing contact residues to the
environment. As shown in Figures 1C, 4E, these helices remain
attached to each other throughout the pulling process. The
observed mechanical resilience would certainly be helped by the
pronounced hydrophobic interactions. Furthermore, the segment
composed of regions II/III and helix I also has a significant
difference between contact and non-contact hydropathy. This
effect should also make it stable, which agrees with the green/
blue independence from stretching in Figure 4B and the conserved
interface in Figures 1C, 4E. Region I has negative contact and non-

FIGURE 5 | Top7 hydropathy analysis. (A) Structural sub-segments (the backbone is represented as a thin line). Each segment is divided into two constituent parts
(blue and red). The partitioning was performed heuristically to account for the known functionally important regions that encompass secondary structure elements. (B)
Corresponding Kyte and Doolittle hydropathy plot (Kyte and Doolittle, 2003; residue specific hydropathy scores averaged over the constituent parts; see Methods
section). Negative and positive values indicate the degree of hydrophilicity and hydrophobicity, respectively. Average Black and Mould scores (Black and Mould,
1991; based on non-negative scores that measure only hydrophobic propensity) were also computed but are not shown here because they closely resemble the Kyte
and Doolittle contact plot.
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FIGURE 6 | Analyses of the numbers of hydrogen bonds vs. the concentration of water molecules and residue triplet angles (see Methods section) for the 10 m/s
trajectory. (A)Number of hydrogen bonds during the simulation. The values are obtained through low-pass filtering (moving average with windowwidth 11 frames, or ± 5
frames about sampling points). (B) Numbers of water molecules near residues 15–23 and 77–85. (C) Number of water molecules near residue 19. (D) Residue triplet
angles for residue triplets 19–8–50, 18–9–49, 17–10–48, and 16–11–47 (triplet 19–8–50 is discussed in the text; the others are shown for comparison purposes).
(E) Structure of the protein during pulling. Residue 19 (tyrosine is hydrophobic with a polar side chain) is colored cyan. Hydrophobic residues (15–23 and 77–85) are
colored red, and hydrophilic residues are colored blue. Hydrophobic and hydrophilic residues in Figures 6, 8 are displayed with VMD (Humphrey et al., 1996) by using
the built-in atom selection language.
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contact scores. This result indicates that region I overall prefers a
water environment over being buried, consistent with the relative
ease of its unfolding in Figure 4. Region III is comparable to the
symmetry-related region I, but its contact residues have a slight
positive score (hydrophobicity) instead. The segment composed of
regions I and II and helix III is similar. For these segments, a
hydrophobic driving force is present but perhaps not quite as
strong as expected. Finally, in regions II and III, as well as regions I
and II, we do not observe a significant hydropathy. In fact, the only
unexpected result of this analysis was obtained for regions II and
III. Based on the stability of the union of regions II and III in
Figure 4, we would have predicted a hydrophobic driving force,
but none is found, possibly because the strong and stabilizing helix
I and III interactions were not included in the scores of regions II
and III.

These stability patterns mostly agree with the above MI
analysis of the far from equilibrium SMD perturbations and
thus suggest that hydrophobicity could play a role in the
mechanical resistance to fast pulling of the Top7 protein.
However, we must also note that hydrophobicity is an
equilibrium property, whereas our simulations are six orders
of magnitude faster than those in AFM experiments.
Furthermore, similar to the case with the above heat map
analysis, the results by themselves are rather global in nature
and do not reveal a specific local mechanism. To find additional
details, we then analyzed the behavior of specific residues
involved in the formation of the protein’s beta sheet and its
water binding and hydrogen bonding patterns (Figure 1).

We were particularly interested in the two edges of the beta-
sheet, namely, residues 15–23 and 77–85, because these two beta
strands are in direct contact with the terminal, force-bearing beta
strands and are also exposed to water molecules. We started off by
counting the total number of water molecules near strands 15–23
and 77–85 and the number of water molecules near specific
residues (see Methods section). Figure 6 compares these values

to the number of hydrogen bonds in the beta sheet. The number of
water molecules near residues 15–23, particularly in residue 19,
drops to its lowest level when the number of hydrogen bonds in the
second set (Figure 1) falls to zero (Figures 6B,C). This result
indicates that the second set of hydrogen bonds breaks at the
moment when the side chain of residue Tyr-19, initially partially
exposed to the solvent, gets buried. Tyrosine, although
hydrophobic, has a polar side chain and is usually found on the
surface of proteins. Notably, residue 19 is not directly implicated by
our MI analysis in the rupture of contacts. However, in the
neighboring strand (Figure 7), residue 9 is at the root of a
structural disruption (residue 9 was detected regardless of the
sliding window width δ, as shown in Figure 3). Disruptive
neighbor residue 9 is bound to residue 49 via a hydrogen bond
from the second set, which creates a viable pathway for
destabilization. Additionally, a geometric analysis shows that the
triplet angle formed by the Cα atoms of residue pairs 19/8 and 8/50
grows when the number of water molecules around the residue 19
drops (Figures 6, 7), indicating that the protein backbone near
residue 19 moves with its side chain. This movement condenses
residues 15–23 and thus forces the rotation of that segment, which
is tightly bound to residues 5–11 by the first set of hydrogen bonds
(Figures 1, 7). In turn, the compaction reinforces strands 15–23
and thus the first set of hydrogen bonds while increasing the
distance between residues 8 and 50 and between residues 9 and 49,
which are connected by the second set of hydrogen bonds (the
distances between residues involved in the formation of the first set
of hydrogen bonds remains stable; see Supplementary Figures
S1B,C for more details). Thus, this mechanism breaks the second
set of hydrogen bonds and enables the unfolding. The identical
analyses performed on a slow-pulling simulation (1 m/s;
Supplementary Figures S2, S3) and on another fast-pulling
simulation (10 m/s; Supplementary Figures S4, S5) reveal very
similar patterns, that is, the movement of residue 19 and its
immediate tertiary neighbors are involved in the breakage of
the second set of hydrogen bonds.

The comparison of the hydropathy patterns of residues 15–23
to residues 77–85 in Figure 8 shows that while residues 78–84 are
alternatingly hydrophilic (78, 80, 82, and 84) and hydrophobic (79,
81, 83), residues 15–23 are mostly hydrophilic except for residues
17 and 23 (Figure 8). In the folded state, the sidechains of residues
15, 16, 18, 19, 20, 21, and 22 mostly prefer water molecules,
whereas residue 17 (phenylalanine) tends to avoid the water
environment (Figure 8). The side chain of residue 17 in
equilibrium is oriented parallel to the side chains of residues 15
and 19. This finding indicates that due to the hydrophilicity of
residues 15 and 19, residue 17 is also partially exposed to water in
equilibrium, and a pronounced gap exists between the side chains
of residues 17 and 19 (Figure 8A). This organization of residues is
different from how residues 77–85 are organized in the symmetry-
related region III, where the hydrophobic and hydrophilic side
chains are highly regular, which does not put them in direct contact
and allows a tighter packing of hydrophobic residues (79, 81, and
83). This finding explains why the third and fourth sets of
hydrogen bonds (Figures 1B, 8) are relatively stable. The
parallel orientation of the side chains of residues 15 (lysine,
hydrophilic), 17 (phenylalanine, hydrophobic), and 19 (tyrosine,

FIGURE 7 | Residues involved in the first and second set (Figure 1) of
hydrogen bonds and corresponding residue triplets used for the angle
analysis (see Methods section). The colors of the hydrogen bonds correspond
to those in Figure 1B, and the colors of triplets involving residues 16–19
correspond to those in Figure 6D (triplets are represented by identically
colored Cα atoms).
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hydrophobic, but more soluble than phenylalanine) means that
they can move more freely without experiencing steric clashes. The
freedom of movement allows residues 17, 18, and 19 to react to
mechanical stimuli and thus disrupt the second group of hydrogen
bonds (Figures 1, 8) and the overall fold more readily.

In summary, by adding the hydropathy analysis and by
measuring the concentration of water molecules around residues
that break the hydropathy pattern, we can narrow our focus from
residues 3–22 (after MI analysis) to strand 2 at the edge of the beta
sheet. We observed a weak spot where side chains 16–22 have
freedom of movement and thus would make suitable locations for
the introduction of mutations intended to make the protein more
mechanically stable. Such mutations would not introduce additional
covalent bonds, as was the case with disulfide bridges proposed in
earlier work (Sharma et al., 2007). Instead, we proposed to mutate
one or more of these residues with hydrophilic side chains to
residues with hydrophobic side chains (or vice versa) and bury
them deeper into the body of the protein to mimic the hydropathy
pattern in the stable region III (Figure 8B). Such a modification
would pack them tight with the neighboring residues and restrict the
possible movement of side chains during the perturbation, which
should strengthen the weak spot.

DISCUSSION

Here, we presented an analysis of far from equilibrium SMD
simulations of the Top7 protein by using MI statistics (Kovacs
andWriggers, 2016) to relate an external activity function or order
parameter to the distance geometry of protein residues. The
analysis evaluates how residue pair properties, such as the
distance or its rate of change, correlate with an external activity
function or order parameter along time. Thus, this analysis leads to
a heat map of residue pairs that are likely to play an important part
in the unfolding process. Earlier publications offer a detailed
overview of the research leading to the development of MI
protocols (Kovacs and Wriggers, 2016) and the adaptive

probability density estimation algorithm (Kovacs et al., 2017).
They also provide examples of the application of the protocols
to MD simulations (Shaw et al., 2010; Kovacs and Wriggers, 2016;
Wriggers et al., 2017). However, the present work was the first
application of TimeScapes to SMD.

Our results show that the MI heatmap analysis of SMD is
straightforward. The analysis based on the rate of change of the
time series (absolute first derivative) emphasizes structural
fluctuations of individual residues that are the result of force-
induced hydrogen bond breaking (Figures 2, 3), whereas the
direct MI analysis is based on the raw time-series predicted
mechanically stable structural segments of the protein
(Figure 4). The approaches provide complementary results
that inform the subsequent analysis of the biophysical and
biochemical properties of Top7. Specifically, the MI
approaches select residues that belong to the beta sheets of
region I (residues 3 to 22, in particular residues 9 and 12).

We also observed a modest dependence of the MI values on
the duration δ used in the windowing of the activity function
(Figures 2, 3). The statistics appear to be influenced by the time
scale prescribed by the SMD pulling regime because the system is
in a forced state of perturbation and orthogonal degrees of
freedom are not sufficiently sampled. This finding is in
contrast with prior equilibrium MD simulation applications, in
which no dependence on δ was observed (Supplementary Figure
S4 of Kovacs andWriggers, 2016). In the SMD trajectory analysis,
at the constant cutoff used for the selection in Figure 3, the
smoothing parameter provides a trade-off between false negatives
(only the strongest interactions are kept at large δ) and false
positives (the analysis may include spurious correlations for small
δ). The time-scale dependence of the peak MI values in the forced
pulling simulations was modest and could easily be compensated
for by an adjustment of the heuristic selection cutoff we employed
after normalization.

Applications of the direct MI approaches to raw data
(Figure 4) were originally developed for equilibrium
simulations (Shaw et al., 2010) that exhibited pronounced

FIGURE 8 | Beta sheet bordering hydrophobic (red) and hydrophilic (blue) residues. (A) Hydrophobic and hydrophilic residues in region I. (B) Hydrophobic and
hydrophilic residues in region III. For hydrogen bond coloration, see Figure 1.

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 69660911

Perišić and Wriggers Unfolding Mechanism of TOP7 Protein

A Top view, residues 15 to 23 B Bottom view, residues 77 to 85 

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


fluctuations in the order parameter a(t), which made them ideally
suited for a statistical correlation analysis. In SMD, the system
undergoes a near-linear directional change, so the RMSD in
Figure 4A is shaped like a linear ramp function. Correlating it
with pairwise distances in Figure 4B highlights the structural
segments that are important for the directional change. We noted
that for a simple ramp function, conventional analysis tools could
have provided a heat map similar to Figure 4B (e.g., by plotting
the pairwise residue distance changes between the start and the
end conformation of the SMD run). However, a fluctuating order
parameter, such as the RMSF in Figure 4C, justifies the use of the
statistical MI analysis. In addition, the absolute time differential
MI (Figure 2) is rooted in fluctuating activity functions a(t).

The statistical dependence observed in Figure 4D between raw
distances and the RMSF (which measures essentially the global rate
of change of the system) is empirical, due to the absence of the
absolute time derivatives (which in case of activity functions are
conventionally applied to raw distances; Figure 2). Nevertheless, the
unorthodoxMI analysis of raw distances against RMSF (Figure 4D)
picked up relevant interactions of helix I with its neighbors more
clearly than the RMSD analysis (Figure 4B). Such intriguing
“information fluidity” between order parameters that correspond
to different degrees of time variation could be investigated further in
future theoretical work.

The MI analysis does not prove causality, so we used
conventional trajectory and hydropathy analyses to trim the
initial MI predictions (residues 3–22) to a smaller subset
(residues 16–22). The proposed rational design of more
mechanically stable proteins is similar to other known
experimental and modeling strategies aimed at engineering the
hydrophobic effect (Ng et al., 2007; Sadler et al., 2009). Our results
implicated two residues, 17 and 19, which in equilibrium have
their sidechain more exposed to water (due to the opposed
hydrophobic/hydrophilic characters of residues 17 and 19) in
comparison to tightly packed residues in the region III of the
protein. The exposure of the side chains of residues 17 and 19 to
the solvent means that their mobility can influence the response
of the protein to mechanical stimuli.

Our results also suggest that the hydrophobic effect, although
being an equilibrium property, could drive the behavior of proteins
in far-from-equilibrium regimes. This result opens a new avenue for
the research of the rational design of mechanically stable proteins
and molecules. The average hydropathy patterns largely follow the
unfolding behavior of the Top7 protein, and the behavior of
hydrophobic residues bordering the interface between regions I
and II is largely concordant to the behavior of the second set
(Figure 1) of beta-sheet hydrogen bonds. We do not claim that
the hydrophobic effect directly influences mechanical behavior. The
results only show how the protein equilibrium conformation (as
influenced by the hydropathy patterns) could affect the folding
process and the accessible unfolding path. Thismechanismwould be
specific to Top7 because a relationship between the mechanical and
thermodynamic properties has not yet been observed in other
(evolutionarily designed) proteins (Bustamante et al., 2004).

Our work presents residues 16–22 as potential candidates for
mutations that strengthen the protein. Those mutations should
replace some of those residues (probably just one of them to

preserve the global fold) with a more hydrophobic side chain that
would be buried and anchored among neighboring residues.
Another strategy would be to separate hydrophobic from
hydrophilic side chains of residues 16–22, similar to the
separation of hydrophobic from hydrophilic side chains in the
stable region III. Therefore, the strategy may enable two
unfolding pathways of similar resistance.

The residues with the highest score in the MI analysis in
Figure 3A (residues 9 and 12) might provide targets for
covalent cross-linking. However, such an intervention would be
intrusive and restrict the unfolding path. (The residues are not ideal
as potential mutant sites, given that residue 12 belongs to a loop and
residue 9 is buried.) While these two residues are in the force-
bearing strand 1, the residues were well connected to residues 16–22
in the neighboring strand through the first set of hydrogen bonds.

In summary, we propose a refined, non-covalent stabilization
of residues 16–22 in strand 2 to rationally tune the mechanical
resistance of Top7. To test the effect of any mutation on the
protein folding and unfolding pathway, we can augment
predictions by using fast perturbation experiments that detect
both individual residues and rigid structural segments responsible
for mechanical resistance. Our design approach can also form
part of a “cocktail strategy” (Cao et al., 2011) that employs rather
diverse modifications to rationally strengthen a protein.
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