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Comparative study of 6He β-decay based on different similarity-renormalization-group
evolved chiral interactions
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(Received 15 June 2021; accepted 25 August 2021; published 14 September 2021)

We report on a study of the Gamow-Teller matrix element contributing to 6He β decay with similarity
renormalization group (SRG) versions of momentum- and configuration-space two-nucleon interactions. These
interactions are derived from two different formulations of chiral effective field theory (χEFT)—without and
with the explicit inclusion of � isobars. We consider evolution parameters �SRG in the range between 1.2 and
2.0 fm−1 and, for the �-less case, also the unevolved (bare) interaction. The axial current contains one- and
two-body terms, consistently derived at tree level (no loops) in the two distinct χEFT formulations we have
adopted here. The 6He and 6Li ground-state wave functions are obtained from hyperspherical-harmonics (HH)
solutions of the nuclear many-body problem. In A = 6 systems, the HH method is limited at present to treat
only two-body interactions and non-SRG evolved currents. Our results exhibit a significant dependence on �SRG

of the contributions associated with two-body currents, suggesting that a consistent SRG-evolution of these is
needed in order to obtain reliable estimates. We also show that the contributions from one-pion-exchange currents
depend strongly on the model (chiral) interactions and on the momentum- or configuration-space cutoffs used to
regularize them. These results might prove helpful in clarifying the origin of the sign difference recently found
in no-core-shell-model and quantum Monte Carlo calculations of the 6He Gamow-Teller matrix element.

DOI: 10.1103/PhysRevC.104.035501

I. INTRODUCTION

Nuclear β decays have become, in recent years, a research
topic of intense interest. A quantitative understanding of these
decays is crucial for a number of experimental endeavors, in-
cluding the program of experiments planned at the Facility for
Rare Isotope Beams (FRIB) to measure weak-interaction rates
in nuclei, and neutrinoless double-β decay experiments aimed
at establishing the Dirac or Majorana nature of the neutrino. In
this context, of particular relevance are Gamow-Teller matrix
elements (GTMEs). Shell-model calculations have typically
failed to reproduce the measured values of these, unless an ef-
fective (one-body) Gamow-Teller (GT) operator is used with a
nucleon axial coupling constant gA that is quenched by about
20–30 % relative to its free value [1,2]. The shell model also
yields rather uncertain estimates [2] for the nuclear matrix
elements entering neutrinoless double-β decay rates, which
are proportional to g4

A. Therefore an understanding of the
origin of gA quenching is important, as is a reliable estimate of
the contributions from many-body terms in the weak current.

There have been indications [3–5] that gA quenching might
originate from lack of correlations in shell-model wave func-
tions, and possibly from two-body axial current contributions
that tend to decrease the matrix element calculated with the
leading one-body GT operator [4]. In this context, it is inter-
esting to note that the Gysbers et al. study [4] consistently

finds these two-body contributions to generally have the op-
posite sign relative to the leading GT contributions in nuclei
with mass number A > 3. This is in contrast to the results of
Refs. [3,5], in which the sign of the one- and two-body contri-
butions is the same, at least in light nuclei with mass number
A � 10, the only ones accessible at this time to Green’s
function Monte Carlo (GFMC) methods. The origin of this
difference is yet to be clarified. Of course, the comparison
of results obtained by different groups is difficult owing to
the different models adopted to describe nuclear interactions,
and the different methods used to solve the nuclear quantum
many-body problem. At this point in time, what can be stated
with confidence is that Gysbergs et al. [4] and the authors
of Refs. [3,5] only agree on the magnitude of the two-body
corrections: they are small in the A � 10 mass range.

In this work, in an attempt to understand the origin of
this discrepancy, we present a calculation of the GTME
contributing to the β-decay of 6He, within the hyperspherical-
harmonics (HH) method developed by the Pisa group [6,7],
and recently extended to deal with A = 6 nuclei [8]. The
6He and 6Li wave functions are obtained from a Hamiltonian
including two-nucleon (2N) interactions only. Three-nucleon
(3N) interactions are neglected, since it is not yet pos-
sible to incorporate them in HH calculations of A = 6
nuclei (although some progress in this direction has been
recently made, see Ref. [9], by including the 3N contact
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interaction that enters pionless effective field theory at leading
order).

We adopt 2N interactions obtained in two different for-
mulations of χEFT: one [10] includes pions and nucleons as
degrees of freedom, while the other [11,12] also includes �

isobars. To each of these, we apply the similarity renormal-
ization group (SRG) unitary transformation [13] in order to
accelerate the convergence rate of the HH expansion. In refer-
ence to the nuclear axial currents, we use the chiral models
of Refs. [14] and [15] in conjunction with the �-less and
�-full interactions, respectively. These currents are treated
without applying the proper SRG transformations. Clearly, the
absence of both 3N interactions and the proper SRG evolu-
tion of interactions and currents does not allow us to obtain
a complete and fully consistent description of the process.
Nevertheless, having an independent method that can deal
with different interactions could prove helpful in clarifying
the origin of some of the tensions mentioned above.

The main goal of the present work is to understand the
origin of the difference in sign obtained for the two-body con-
tributions to the GTME of 6He β decay in the no-core shell
model (NCSM) and GFMC calculations, reported in Ref. [4]
and Refs. [3,5], respectively. Since use of the next-to-next-to-
leading-order (N2LO450) interaction of Ref. [10] allows us to
achieve a satisfactory convergence in the A = 6 HH calcula-
tion even without implementing the SRG transformation, we
are also in a position to assess the impact of the SRG evolution
itself on the GTME, at least as it relates to the 2N interaction.
However, we should note that the 2N interaction adopted here
and in the study of Ref. [4] are not the same; specifically, the
authors of that work use the next-to-next-to-next-to-next-to-
leading-order (N4LO500) rather than the N2LO450 model of
Ref. [10]. The former is of higher order (N4LO versus N2LO)
in the power counting and has a slightly larger cutoff (500
MeV) than the latter (450 MeV).

The other 2N interaction we and the authors of Ref. [5] use
in the GTME calculations is the NV2-Ia model of Ref. [12].
For this interaction, however, in order to reach convergence in
the HH expansion, we are forced to implement the SRG trans-
formation. We consider four different values for the evolution
parameter �SRG, namely �SRG = 1.2, 1.5, 1.8, and 2.0 fm−1.
This allows us to disentangle how two-body axial-current
contributions are affected by the input 2N interaction model
(whether N2LO450 or NV-Ia) and by the corresponding SRG-
evolved versions of these models.

The paper is organized as follows. In Secs. II and III
we provide a concise review of, respectively, interactions
and axial currents, and the HH approach for A = 6 nuclei.
We report our results in Sec. IV, and close in Sec. V with
some concluding remarks. A number of more technical issues

having to do with the convergence of the HH method for the
6Li and the 6He ground states are relegated to Appendices A
and B.

II. INTERACTIONS AND AXIAL CURRENTS

In this work we use two different 2N chiral interactions.
The first one is the next-to-next-to-leading-order (N2LO)
model by Entem, Machleidt, and Nosyk [10]. This interac-
tion is derived from a χEFT including pions and nucleons
as degrees of freedom. It is regularized in momentum space
(with a cutoff � = 450 MeV), and is strongly nonlocal in
configuration space.

The second interaction is the next-to-next-to-next-to-
leading-order (N3LO) model developed in Refs. [11,12],
which includes, in addition to pion and nucleon, �-isobar
degrees of freedom. It is formulated in configuration space
and is regularized in this space with two regulators, one (RS)
for the short-range components associated with 2N contact
terms, and the other (RL) for the long-range ones induced by
one- and two-pion exchange. Various combinations of RS and
RL regulators are available, but in this work we have selected
the model denoted as NV2-Ia with (RS, RL ) = (0.8,1.2) fm.

Below, we will refer to these two interactions as the E
and P models by the initial of the first author on the relevant
publications, respectively, Refs. [10] and [11]. Both models
are evolved using the SRG unitary transformation [13], in
order to improve the convergence of the HH calculation. This
SRG evolution leads to momentum-space interactions which
are transformed back to coordinate space by standard Fourier
transforms. The matrix elements are then computed using the
procedure of Ref. [8].

Since one of our goals is to understand the effect of these
SRG-evolved interactions on the GTME, we consider four
different values for the evolution parameter �SRG, namely,
�SRG = 1.2, 1.5, 1.8, 2.0 fm−1. Furthermore, it has been pos-
sible with the E interaction to obtain reasonable convergence
without implementing any SRG evolution (that is, with the
“bare” interaction). This has allowed us to compare directly
the bare and SRG calculated GTME, and to assess the role of
SRG evolution on this observable (see below). However, we
do not account for 3N interactions, since SRG evolution for
these is not yet available.

Accompanying each of these interactions is a set of N3LO
axial currents derived consistently in χEFT—the formulation
that includes pions and nucleons for the E model, and that
with, in addition, � isobars for the P model. We provide below
their configuration-space expressions in the limit of vanishing
momentum transfer of interest here:

(i) The leading-order (LO) term consists of the Gamow-Teller operator

ALO
i,a = −gA

2
τi,a σ i, (2.1)

and scales, in a two-body system, as Q−3 in the power counting—here, Q denotes generically a low-momentum scale;
(ii) The N2LO terms (scaling as Q−1) consist of a relativistic correction to the Gamow-Teller operator

AN2LO
i,a (RC) = gA

4 m2
τi,a pi × (σ i × pi ), (2.2)
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and of a two-body operator induced by a �-isobar intermediate state (this only enters the calculations based on the P
interaction)

AN2LO
i j,a (�) = −(τ i × τ j )a

[
I1

(
ri j ; α

�
1

)
σ i × σ j + I2

(
ri j ; α

�
1

)
σ i × r̂i j σ j · r̂i j

]
− τ j,a

[
I1

(
ri j ; α

�
2

)
σ j + I2

(
ri j ; α

�
2

)
r̂i j σ j · r̂i j

] + (i � j); (2.3)

(iii) The N3LO terms (scaling as Q0) consist of a two-body operator associated with one-pion exchange (OPE):

AN3LO
i j,a (OPE) = −(τ i × τ j )a[I1(ri j ; α1) σ i × σ j + I2(ri j ; α1) σ i × r̂i j σ j · r̂i j]

− τ j,a[I1(ri j ; α2) σ j + I2(ri j ; α2) r̂i j σ j · r̂i j]

− (τ i × τ j )a
1
2 {pi , Ĩ (ri j ; α̃) σ j · r̂i j} + (i � j), (2.4)

and of a two-body contact operator

AN3LO
i j,a (CT) = Ic(ri j ; z0) (τ i × τ j )a (σ i × σ j ). (2.5)

In Eqs. (2.1)–(2.5), pk = −i ∇k , σk , and τk are the mo-
mentum operator, and Pauli spin and isospin operators of
nucleon k, respectively, {. . . , . . . } denotes the anticommuta-
tor, and ri j = ri − r j . Charge-raising (+) or charge-lowering
(−) currents follow from A± = Ax ± i Ay, where the subscript
specifies the isospin component. In a many-body system,
the one-body operators above are summed over the nucle-
ons

∑
i Ai,a, while the two-body ones over the nucleon pairs∑

i< j Ai j,a.
The correlation functions entering the OPE and CT cur-

rents and corresponding to the E interaction are regularized
by a momentum space cutoff given by C�(k) = e−(k/�)4

. They
can be written as

IE
1

(
r; αE

i

) = − αE
i

�r

∫ ∞

0
dx

x3

x2 + (mπ/�) 2
e−x4

j1(x�r),

(2.6)

IE
2

(
r; αE

i

) = αE
i

∫ ∞

0
dx

x4

x2 + (mπ/�) 2
e−x4

j2(x�r), (2.7)

ĨE(r; α̃ E) = −α̃ E
∫ ∞

0
dx

x3

x2 + (mπ/�) 2
e−x4

j1(x�r), (2.8)

IE
c

(
r; zE

0

) = zE
0

�3

2π2

∫ ∞

0
dx x2 e−x4

j0(x�r), (2.9)

where the jn(z) are spherical Bessel functions, the αE
i and α̃ E

denote the combinations of coupling constants defined as

αE
1 = �3

4 π2

gA

f 2
π

(
c4 + 1

4 m

)
, αE

2 = �3

2π2

gA c3

f 2
π

,

α̃ E = �2

8 π2

gA

m f 2
π

, (2.10)

and zE
0 is the low-energy constant (LEC) that characterizes the

contact axial current (its determination is discussed below);
note that the αE

i are adimensional. Here, gA is the nucleon
axial coupling constant (gA = 1.2723), fπ is the pion-decay
constant ( fπ = 92.4 MeV), and mπ and m are the pion and
nucleon masses, respectively. The values of the LECs c3 and
c4 depend on the interaction model (either E or P) and are
listed in Table I.

The (regularized) correlation functions entering the �,
OPE, and CT currents and corresponding to the P interaction
are

IP
1

(
r; αP

i

) = −αP
i (1 + μ)

e−μ

μ3
CRL (r), (2.11)

IP
2 (r; αP

i ) = αP
i (3 + 3 μ + μ2)

e−μ

μ3
CRL (r), (2.12)

Ĩ P(r; α̃ P) = −α̃ P (1 + μ)
e−μ

μ2
CRL (r), (2.13)

IP
c

(
r; zP

0

) = zP
0

1

π3/2 R3
S

e−(r/RS )2
, (2.14)

where μ = mπ r, and

CRL (r) = 1 − 1

(r/RL )s e(r−RL )/aL + 1
. (2.15)

Here, aL = RL/2, and the exponent s is taken as s = 6. The
RS and RL values are (RS, RL ) = (0.8,1.2) fm, consistently
with the P model for the nuclear interaction. The correlation
functions entering the � current of Eq. (2.3) are the same as
Eqs. (2.11) and (2.12) but with αP

i → α�
i . The α�

i and αP
i

combinations are defined as

α�
1 = gA

8 π

m3
π

f 2
π

c�
4 , α�

2 = gA

4 π

m3
π

f 2
π

c�
3 , (2.16)

αP
1 = gA

8 π

m3
π

f 2
π

(
c4 + 1

4 m

)
, αP

2 = gA

4 π

m3
π

f 2
π

c3,

α̃ P = gA

16 π

m2
π

m f 2
π

(2.17)

TABLE I. Values of the LECs c3 and c4 associated with the E [10]
and P [11] chiral interactions and used in the accompanying axial
currents; they are in units of GeV−1. These values are obtained from
fits to πN data without (E model) and with (P model) the inclusion
of � isobars.

E model P model

c3 −3.61 −0.79
c4 2.64 1.33
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TABLE II. Results for the GTME of the tritium β decay for
the different components of the currents. Columns labeled LO,
and N3LO(CT) refer to the contributions given by the axial cur-
rents of Eqs. (2.1), and (2.5), respectively; the column labeled
N2LO+N3LO(OPE) refers to the cumulative contribution of the
axial currents of Eqs. (2.2), (2.4), and (2.3) in the P-model case. The
N3LO(CT) cotribution is determined by fitting the LEC z0, used in
Eqs. (2.9) and (2.14), to reproduce the observed β-decay GTME of
tritium, 〈GT 〉exp/

√
3 = 0.9511 ± 0.0013 [14]. The calculated values

of the LEC z0 in fm3 are reported as well in the last column of the
table.

Model LO N2LO+N3LO(OPE) N3LO(CT) z0 [fm3]

E-SRG1.2 0.9722 −0.0121 −0.0090 0.1104
E-SRG1.5 0.9666 −0.0095 −0.0060 0.0610
E-SRG1.8 0.9606 −0.0053 −0.0042 0.0392
E-SRG2.0 0.9572 −0.0021 −0.0041 0.0370
E-bare 0.9446 0.0086 −0.0021 0.0193

P-SRG1.2 0.9728 0.0118 −0.0335 0.4665
P-SRG1.5 0.9679 0.0182 −0.0348 0.3963
P-SRG1.8 0.9620 0.0253 −0.0363 0.3843
P-SRG2.0 0.9584 0.0294 −0.0368 0.3764

with the LECs c�
3 and c�

4 given by

c�
3 = − h2

A

9 m�N
, c�

4 = h2
A

18 m�N
, (2.18)

where hA is the nucleon-to-� axial coupling constant (hA =
2.74) and m�N is the �-nucleon mass difference (m�N =
293.1 MeV). Finally, as per the determination of z0, we
note that this LEC is related to the LEC cD that appears in
the 3N contact interaction [15]. Since 3N interactions are
altogether ignored in the present work, we fix directly z0 so as
to reproduce the experimental value of the GTME in tritium
β decay, 〈GT 〉exp/

√
3 = 0.9511 ± 0.0013 [14], without con-

cerning ourselves with the connection between z0 and cD. We
do so for each of the SRG-evolved interactions corresponding
to the E and P models. The numerical results for the GTME
in tritium β decay and the fitted values of z0 are reported in
Table II.

III. THE HYPERSPHERICAL HARMONIC METHOD

The 6Li and 6He wave functions have been expanded
using the HH basis. As reference set of Jacobi vectors for six
equal-mass particles we use

ξ1p =
√

5

3

(
rn − rm + rl + rk + r j + ri

5

)
,

ξ2p =
√

8

5

(
rm − rl + rk + r j + ri

4

)
,

ξ3p =
√

3

2

(
rl − rk + r j + ri

3

)
,

ξ4p =
√

4

3

(
rk − r j + ri

2

)
,

ξ5p = r j − ri,

(3.1)

where (i, j, k, l, m, n) indicates a generic permutation p of
the particles. By convention, p = 1 is chosen to correspond
to (1,2,3,4,5,6). For a given choice of the Jacobi vectors, the
hyperspherical coordinates are given by the hyper-radius ρ,
which is independent on the permutation p of the particles
and is defined as

ρ =
√ ∑

i=1,N

ξ 2
ip, (3.2)

and by a set of variables, which in the Zernike and Brinkman
representation [16,17], are the polar angles ξ̂ip = (θip, φip) of
each Jacobi vector and the four additional “hyperspherical”
angles ϕ j p, with j = 2, . . . , 5, defined as

cos ϕ j p = ξ j p√
ξ 2

1p + · · · + ξ 2
j p

. (3.3)

Here, ξ j p is the magnitude of the Jacobi vector ξ j p. The set
of variables ξ̂1p, . . . , ξ̂5p, ϕ2p, . . . , ϕ5p is denoted hereafter as
�p. The expression of the generic A = 6 HH function is

YKLM
μ (�p) = [

(((Y�1 (ξ̂1p)Y�2 (ξ̂2p))L2Y�3

× (ξ̂3p))L3Y�4 (ξ̂4p))L4Y�5 (ξ̂5p)
]

LM

× P�1,�2,�3,�4,�5
n2,n3,n4,n5

(ϕ2p, ϕ3p, ϕ4p, ϕ5p), (3.4)

where

P�1,�2,�3.�4,�5
n2,n3,n4,n5

(ϕ2p, ϕ3p, ϕ4p, ϕ5p)

= N �2,ν2
n2

(cos ϕ2p)�2 (sin ϕ2p)�1 P�1+1/2,�2+1/2
n2

(cos 2ϕ2p)

× N �3,ν3
n3

(cos ϕ3p)�3 (sin ϕ3p)K2 Pν2,�3+1/2
n3

(cos 2ϕ3p)

× N �4,ν4
n4

(cos ϕ4p)�4 (sin ϕ4p)K3 Pν3,�4+1/2
n4

(cos 2ϕ4p)

× N �5,ν5
n5

(cos ϕ5p)�5 (sin ϕ5p)K4 Pν4,�5+1/2
n5

(cos 2ϕ5p), (3.5)

and Pa,b
n are Jacobi polynomials. The coefficients N � j ,ν j

n j are
normalization factors given explicitly by

N � j ,ν j
n j =

[
2ν j�(ν j − n j )n j!

�
(
ν j − n j − � j − 1

2

)
�

(
n j + � j + 3

2

)]1/2

, (3.6)

and we have defined

Kj = � j + 2n j + Kj−1, ν j = Kj + 3

2
j − 1 (3.7)

with K1 = �1 and K5 = K . The integer index μ labels the set
of hyperangular quantum numbers, namely

μ ≡ {�1, �2, �3, �4, �5, L2, L3, L4, n2, n3, n4, n5}. (3.8)

The wave function is constructed to have a well-defined total
angular momentum J and third component Jz, parity π and
isospin T (in the following, we ignore the small admixtures
between isospin states induced by isospin-symmetry-breaking
interactions). Therefore, a complete basis of antisymmetrical
hyperangular-spin-isospin states is constructed as follows:

�KLST Jπ
α =

360∑
p=1

�KLST Jπ
α (i, j, k, l, m, n), (3.9)
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where the sum is over the 360 even permutations p of the
particles and

�KLST Jπ
α (i, j, k, l, m, n) = {YKLM

μ (�p)[[[sis j]S2 sk]S3

× [[sl sm]S4 sn]S5 ]S
}

JJz

× [[[tit j]T2tk]T3 [[tl tm]T4tn]T5 ]T Tz .

(3.10)

The functions YKLM
μ (�p) are the HH functions defined in

Eq. (3.4), and si (ti ) denotes the spin (isospin) state of nucleon
i. Note that the coupling scheme of these spin and isospin
states does not follow that of the hyperangular part. This
particular choice simplifies the calculation of the interaction
matrix elements. The index α labels the possible sets of hyper-
angular, spin and isospin quantum numbers compatible with
the given values of K , L, S, T , J , and π , namely

α ≡ {�1, �2, �3, �4, �5, L2, L3, L4, n2, n3, n4, n5,

× S2, S3, S4, S5, T2, T3, T4, T5}. (3.11)

The parity of the state is defined by π = (−1)�1+�2+�3+�4+�5 ;
of course, we include in the basis only those states having the
parity of the nuclear state under consideration. By exploiting
the sum over the permutation, the antisymmetry on the wave
function is imposed by the condition

�5 + S2 + T2 = odd. (3.12)

This method generates linearly dependent HH states. How-
ever, in the basis we only include independent states, obtained
by calculating the norm matrix elements and by implementing
the Gram-Schmidt orthogonalization procedure (the tech-
nique is described in Ref. [8]). This drastically reduces the
number of states used in the expansion.

The final form of the six-nucleons bound state wave func-
tion can be written as

�T Jπ
6 =

∑
l

∑
KLS,α

cKLST
l,α fl (ρ)�KLST Jπ

α , (3.13)

where the sum is over the linearly independent antisymmetric
states α, and cKLST

l,α are variational coefficients to be deter-
mined. The hyper-radial functions fl (ρ) are chosen to be

fl (ρ) = γ 15/2

√
l!

(l + 14)!
L(14)

l (γ ρ) e−γ ρ/2, (3.14)

where L(14)
l (γ ρ) are Laguerre polynomials [18], and γ is a

nonlinear variational parameter that is introduced so as to
improve the convergence on l . A typical range for γ is 3.5–
5.5 fm−1 while the sum over l is typically carried up to l = 20.
The expansion coefficients cKLST

l,α are determined by using the
Rayleigh-Ritz variational principle. The resulting eigenvalue
problem is solved with the procedure of Ref. [19].

Even though the number of states is much reduced, a brute
force approach, in which the complete basis of independent
states up to a maximum K is included, is not yet possible.
For this reason, we select subsets of basis states, separating
them in classes of convergence. Within each class, we analyze
the convergence pattern in order to obtain a reliable extrapo-
lation for the binding energy. A fairly detailed discussion of

TABLE III. Extrapolated values for the 6Li and 6He binding
energies obtained with the SRG-evolved versions of the E and P
interactions, corresponding to �SRG = 1.2, 1.5, 1.8, and 2.0 fm−1,
and without SRG evolution for the E interaction; in parentheses,
are extrapolation errors (see Appendices for a discussion of how
these are estimated). For comparison, we also report the experimental
binding energies from Ref. [20].

6Li 6He

E model P model E model P model

SRG1.2 32.19(1) 32.40(1) 28.96(1) 29.10(1)
SRG1.5 33.47(2) 33.88(2) 30.31(1) 30.61(1)
SRG1.8 33.33(5) 33.85(8) 30.25(3) 30.64(3)
SRG2.0 32.94(7) 33.43(8) 29.89(4) 30.22(5)

bare 30.33(20) 27.51(23)
Exp. 31.99 29.27

these classes for 6Li is given in Ref. [8]. It is summarized
here in Appendix A along with a discussion of the classes
of convergence for 6He. In the Appendix, we also discuss
the extrapolation procedure, and provide tables exhibiting the
convergence pattern, within each class and for each nucleus,
corresponding to the different interaction models.

IV. RESULTS

The extrapolated binding energies for the 6Li and 6He
ground states corresponding to the E and P models are listed
in Table III. We stress again that 3N interactions as well as
many-body interactions induced by the SRG transformation
are not accounted for. Nevertheless, the results obtained with
the SRG-evolved versions of the E and P models happen to be
quite close to the experimental values.

We define the reduced GTME as

RME(KL, KH ) =
√

2Jf + 1

gA

〈ψJf ,M (KL )|Az
+|ψJi,M (KH )〉

〈JiM, 10|Jf M〉 ,

(4.1)

where Az
+ is the z component (at vanishing momentum trans-

fer) of the total charge-raising axial current given in Sec. II,
and 〈JiM, 10|Jf M〉 is a Clebsch-Gordan coefficient; note that
the 6He and 6Li ground states have Jπi

i = 0+ and J
π f

f = 1+,
respectively. This matrix element depends explicitly on the
maximum value of K used in the HH expansion of the 6He
(KH ) and 6Li (KL) wave functions. Its evaluation is carried
out by Monte Carlo integration with ∼30000 configurations,
which yields a statistical error of the order of ∼1% on the
individual components beyond LO of the axial current, except
for the Az,N3LO

+ (OPE) component because of accidental can-
cellations (see below).

We study separately the convergence of the RME with
respect to KH and KL, since the states included in the HH
expansions of the 6He and 6Li wave functions are different.
We proceed as follows. We fix KL (KH ) to the maximum value
used in the present work—namely, KL = 12 (KH = 12)—and
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FIG. 1. RME values computed as function of the maximum K used in the expansion of the 6Li (KL , circles) and 6He (KH , squares) wave
functions for the SRG2.0 version of the E interaction. The left (right) panel corresponds to results obtained with the LO (up to N3LO) axial
current. The solid red (dashed blue) line is a fit to the calculated RMEs as function of KL (KH ); see text for further explanations. All remaining
interactions exhibit a similar pattern of convergence.

then compute the matrix element by increasing the value of
KH (KL). The LO RME exhibits an exponential behavior with
respect to both KH and KL, as shown in the left panel of Fig. 1.
We fit our results with a function of the form RME(K ) =
RME(∞) + A exp (−bK ) for KL,H � 4, where the parameter
RME(∞) is the extrapolated value corresponding to KH −→
∞ and KL −→ ∞. The fits are indicated by the solid and
dashed lines. The two extrapolated values are then mediated
with the weighted average in order to obtain the final result.
The same exponential behavior of the RME is observed when

all axial-current contributions up to N3LO are included, see
solid lines in the right panel of Fig. 1. It is worthwhile noting,
though, that this behavior is essentially driven by the LO term,
since higher-order terms only provide small corrections to
the RME, see below. Considering separately the contribu-
tions beyond LO, we observe that they do not present any
particular convergence pattern. However, the calculations for
8 � KL, KH � 12 are compatible within twice the statistical
error bars of the Monte Carlo integration. Therefore, we con-
sider as our best estimate the weighted average between the

TABLE IV. Extrapolated RMEs in 6He β decay. The results are obtained by using SRG-evolved versions of the E and P models with
�SRG = 1.2, 1.5, 1.8, 2.0 fm−1; 3N interactions are not included. Columns labeled LO, N2LO(RC), N3LO(OPE), and N3LO(CT) refer to the
contributions given by the axial currents of Eqs. (2.1), (2.2), (2.4), and (2.5), respectively; the column labeled N2LO(RC+�) refers to the
cumulative contribution of the axial currents of Eqs. (2.2) and (2.3). Note that the N3LO(CT) results have been divided out by the z0 values
listed in Table II. The errors, when shown, are associated with the extrapolation; when they are not explicitly indicated, they are below the
precision reported in the table. For a qualitative comparison, we also list the results of Ref. [5] obtained with the P model (including 3N
interactions), and the experimental value from Ref. [21].

E model

LO N2LO(RC) N3LO(OPE) N3LO(CT) N3LO(CT)/zE
0 [fm−3] Full

SRG1.2 2.345(2) −0.019 −0.038(1) −0.018 −0.162(1) 2.271(3)
SRG1.5 2.342(3) −0.021 −0.029(1) −0.011 −0.185(1) 2.281(2)
SRG1.8 2.327(3) −0.022 −0.019(1) −0.008 −0.198(1) 2.281(4)
SRG2.0 2.338(3) −0.022 −0.013(1) −0.008 −0.202(1) 2.297(2)
bare 2.321(9) −0.023 0.002(1) −0.004 −0.211(1) 2.303(11)

P model

LO N2LO(RC+�) N3LO(OPE) N3LO(CT) N3LO(CT)/zP
0 [fm−3] Full

SRG1.2 2.354(1) −0.033(1) 0.011 −0.066 −0.143(1) 2.265(2)
SRG1.5 2.331(4) −0.030(1) 0.016 −0.066 −0.166(1) 2.251(3)
SRG1.8 2.329(5) −0.023(1) 0.020 −0.068 −0.177(1) 2.257(4)
SRG2.0 2.322(6) −0.019(1) 0.022 −0.070 −0.185(1) 2.260(11)

NV2-Ia + 3b(VMC) [5] 2.200 0.022 0.039 −0.005 −0.009 2.256
NV2-Ia + 3b(GFMC) [5] 2.130 2.201
Exp. [21] 2.1609(40)
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FIG. 2. Two-body densities defined in Eq. (4.2) for the SRG-evolved versions of the E and P interactions corresponding to �SRG =
2.0 fm−1. Similar results are obtained for all other �SRG considered in this work, except for the N2LO(�) contribution for the P model
where for �SRG = 1.2, 1.5, 1.8 fm−1 the two-body transition densities result of opposite sign.

values obtained in the range 8 � KL, KH � 12. We note that
the convergence pattern of these contributions is independent
of the interaction model (either E or P) and the value of
�SRG. The extrapolated values of the RME for each individual
component of the current as well as for the full current are
reported in Table IV. We find that two-body currents give a
overall correction of opposite sign to the LO contribution, of
the order of ∼3/4%, in line with the results of Refs. [4,22].
However, a closer inspection of the table suggests a more
complex situation.

From the first column of Table IV, the LO contribution
seems to have a weak dependence on �SRG: the larger is �SRG,
the smaller is the resulting LO contribution. This same sensi-
tivity is also shown in Fig. 8 of Ref. [4] and, as demonstrated
by the authors of that paper, it is removed by including the
SRG-induced two-body operators corresponding to the LO
current. By comparing the results for the bare E model with
its SRG evolved versions, the difference is of the order of
∼0.5% and we would have expected a similar difference also
in the case of the P model, had we been able to use the bare
interaction. However, the results reported in Ref. [5] show that
at least a correction of the order of 5% is needed. This extra
quenching of the LO contribution comes from 3N interaction
effects [23].

The N2LO(RC) contribution, which only consists of rela-
tivistic corrections to the LO Gamow-Teller operator, appears
to be independent of the SRG-evolution parameter for both
the E and P models. By contrast, the N2LO(�) contribution
strongly depends on �SRG, and is responsible for generating
the pattern shown in Table IV. It starts off negative for �SRG =
1.2 fm−1, increases monotonically, and becomes positive for
�SRG = 2.0 fm−1. In Ref. [5] (with the bare P interaction) this
contribution is found to be positive and larger than the nega-
tive N2LO(RC) contribution, resulting in an overall positive
value for the sum. Here, the situation is reversed, and even at
�SRG = 2.0 fm−1 the sum of the N2LO(RC) and N2LO(�)

contributions remains negative. Such a difference is clearly
due to SRG-evolution effects.

The N3LO(OPE) contribution also depends strongly on
�SRG, see Table IV. For the E model, it starts off negative
at low �SRG, and increases monotonically as �SRG increases,
becoming positive in the limit �SRG −→ ∞, corresponding
to the bare interaction. This is a clear indication that a proper
SRG evolution of the N3LO(OPE) current—as well as the
N2LO(�) current, discussed above—is needed to obtain reli-
able estimates. Such a program has been partially carried out
in Ref. [4]. However, to best of our knowledge, three body
induced axial currents generated by the SRG evolution have
not been included. The results obtained with the P model show
the same behavior as function of �SRG. However, in this case
the N3LO(OPE) contribution is positive for all �SRG used,
and the calculations seem to go in the direction of Ref. [5]
when �SRG increases. However, we should point out that,
because of cancellations between the terms proportional to c3

and c4, the overall N3LO(OPE) contribution is rather sensitive
to the actual values of these LECs, in particular their ratio
c3/c4. Lastly, for this contribution we do not expect significant
effects from 3N interactions, since the latter do not affect ap-
preciably the short-range behavior of two-nucleon densities.
These densities, and the resulting change of sign between the
E and P N3LO(OPE) contributions, are studied in the next
section.

The N3LO(CT) contributions are found to be negative
for both interaction models. When divided out by the LEC
z0—column labeled N3LO(CT)/z0—they are almost identical
between the E and P models. The results reported in Table IV
exhibit a significant dependence on the SRG-evolution param-
eter. It is interesting to note, however, how these results, when
they are multiplied by the fitted values of z0 from Table II,
become essentially independent of �SRG for the P model.
By contrast, in the case of the E model the results remain
�SRG-dependent, albeit the trend is inverted (rather than de-
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FIG. 3. Two-body densities for the N3LO(OPE) contribution (solid points) computed with the SRG-evolved versions of the E and P
interactions with �SRG = 2.0 fm−1. The blue (red) points indicate the density corresponding to the component proportional to c3 (c4) only.

creasing, they increase as �SRG increases). It seems that z0

can absorb, at least partially, the effect of the SRG evolution
of the currents. By comparing our results for the P model with
those of Ref. [5], there is almost one order of magnitude of
difference.

Two-body transition densities

In order to understand the differences between the re-
sults obtained with the two different chiral interactions, we
compute the two-body transition density, which we define as
[5,24]

RME(2b) = 4π

∫ ∞

0
dr r2 ρ2b(r), (4.2)

where r is the distance between two nucleons and 2b stands
for N2LO(�) (only for the P model), N3LO(OPE), and
N3LO(CT). In Fig. 2 we report the two-body densities com-
puted using �SRG = 2.0 fm−1 for the E and P models. Their
shape is independent on the �SRG value, except for the
N2LO(�) contribution for the P model where for �SRG =
1.2, 1.5, 1.8 fm−1 the two-body transition densities result of
opposite sign.

Inspection of the two panels in Fig. 2 indicates that the
N3LO(OPE) densities corresponding to the E and P models
are rather different. As a matter of fact, the shape of these
densities is determined by the cancellation between the two
components of the current proportional to the LECs c3 and c4

through α1 and α2 in Eq. (2.4). In Fig. 3 we plot the separated
contributions for the two interactions. In the E model there is
a double lobe structure for both the c3 and c4 components.
This, and the fact that the maxima of the second lobes do
not coincide, generate a three-lobe structure with two of the
lobes negative and one positive. In the P model, the c3 and c4

components have both just one lobe, which generates a single
lobe in the total contribution (see Fig. 3). This is qualitatively
consistent with the results reported in Ref. [5].

The difference in the N3LO(OPE) densities of the E
and P models originates from that in the corresponding
correlation functions entering the current, see Eqs. (2.6)–(2.7)

and Eqs. (2.11)–(2.12). We plot those proportional to c3 (with
c3 = 1 in units of GeV−1 to make the comparison meaningful)
in Fig. 4. In the region r � 3 fm, their shapes are affected by
the choice of regulator. This also produces the sign inversion
between the E and P model c3 (and c4) contributions, shown
in Fig. 3.

For the N3LO(CT) contribution, the main difference be-
tween the two interactions is the presence of a second tiny lobe
at r ≈ 2 fm in the E model, and the fact that the maximum
is shifted towards larger r values (around 1 fm) compared to
that in the P model. Also in this case, the origin of the differ-
ences among the two-body densities comes from the different
behavior of the correlation functions given in Eqs. (2.9) and
(2.14). The results obtained with the P model with �SRG =
2.0 for the N2LO(�), N3LO(OPE), and N3LO(CT) densities
are in qualitative agreement with those of Ref. [5].
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FIG. 4. Correlation functions in the N3LO(OPE) current for the
E model from Eqs. (2.6)–(2.7) (full lines), and the P model from
Eqs. (2.11)–(2.12) (dashed lines). In the figure we show the I1 and
I2 functions proportional to c3 only, but with c3 set to 1 in units of
GeV−1.
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V. CONCLUSIONS

In this work, we have reported on a study of the 6He
GTME, using different chiral two-nucleon interactions, the
N2LO450 [10] and NV2-Ia [12] models. Both models have
been evolved via SRG unitary transformations corresponding
to parameters �SRG between 1.2 and 2.0 fm−1. We have
neglected 3N and SRG-induced many-nucleon interaction ef-
fects, as well as SRG-induced many-body terms in the nuclear
axial current.

The results are summarized in Table IV. We find for both
models that all axial-current terms beyond LO yield a cumu-
lative contribution, which (in magnitude) amounts to a 3%
correction of the LO Gamow-Teller contribution. We also find
this cumulative contribution to have the opposite sign of the
LO one, in agreement with the results of Refs. [4,22]. The con-
tributions of two-body currents, in particular of N3LO(OPE),
while small, depend strongly on the parameter �SRG, sug-
gesting that a consistent evolution of these currents (together
with the one-body current) may be necessary in order to
obtain reliable predictions. The same conclusion can also be
drawn by considering the results for the tritium β decay in
Table II.

We have been unable to reproduce the sign of the beyond-
LO contributions obtained in Ref. [5] with the bare NV2-Ia
interaction. This can be traced back to differences in the
contributions associated with the N2LO(RC) and N3LO(CT)
currents. The origin of these differences is unclear. We con-
jecture they might be due to the absence, in the present HH
calculation, of the multinucleon terms induced by the SRG
transformation in the interactions and currents. By contrast,
there is qualitative agreement in the shape of the two-body
transition densities calculated here and in Ref. [5].

We have shown that the N3LO(OPE) contribution is op-
posite in sign for the SRG-evolved N2LO450 and NV2-Ia
interactions. The corresponding transition densities in Fig. 2
have different shapes, reflecting the different behavior of the
correlation functions entering the N3LO(OPE) current, see
Fig. 4. This behavior follows in turn from the different choice
of short-range regulators we have adopted in the N2LO450
and NV2-Ia calculations. We note in closing that the sign dif-
ference in the N3LO(OPE) contribution obtained in Refs. [4]
and [5] may have a similar origin.
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APPENDIX A: CLASSES OF CONVERGENCE

In this Appendix we define the classes of convergence in
which we separate the HH states. This definition is based

TABLE V. Definition of the classes of hyperangular-spin-isospin
states �KLST Jπ

α [see Eq. (3.9)] used for the 6Li bound state as given in
Ref. [8]. The classes are defined by selecting particular values of the
total orbital angular momentum L and total spin S (indicated by the
spectroscopic notation 2S+1LJ ), and the value of �sum = �1 + · · · +
�5, given in the second and third column, respectively. In the last
column, the maximum K value adopted in the expansion is reported
for each class.

Class Partial waves �sum KiM

CL
1

3S1 �sum = 0 14
CL

2
3D1,

5D1,
7D1 �5 = 2,

∑
i=1,4 �i = 0 12

CL
3

3S1 �sum = 2 10
CL

4
3D1,

5D1,
7D1 �sum = 2, not included in CL

2 10
CL

5
1P1,

3P1,
5P1 �sum = 2 8

CL
6

5F1,
7F1,

7G1 �sum = 4 8

on a couple of criteria. The first one is that, as the value
�sum = �1 + �2 + �3 + �4 + �5 increases, so does the centrifu-
gal barrier, which keeps nucleons apart from each other, thus
reducing the effect of correlations induced by the nuclear
interactions. The second criterion accounts for the fact that
the 2N interaction favors two-body correlations and so the
HH states with nonzero quantum numbers for the couple (i, j)
are privileged. These states can be easily selected by imposing
�i = 0 with i = 1, 2, 3, 4. Furthermore, the HH states can also
be classified on the basis of their LST quantum numbers (or
partial waves). Indeed, in the 6Li and 6He nuclei the most
important partial waves are the S and D waves, while all
the others give small contribution to the binding energy. In
Tables V and VI we report the properties of the HH states
used to define a given class for, respectively, 6Li and 6He.
For each class i we also give the maximum value of K we
have adopted (KiM). A more detailed discussion of the class
definition for 6Li can be found in Ref. [8]. Here, we only
note that in the case of 6He we divide the HH states in six
different classes. Classes CH

1 and CH
2 are the main components

of the 6He ground state, since they correspond to two-body
correlated states having L = 0 and 2, respectively. For both
of them we reach K values up to K1M = K2M = 12. Classes
CH

3 and CH
4 contain HH states that generate many-body corre-

lations for the S and D wave, respectively. For this reason,
their contribution to the binding energy is smaller and we
stop at K3M = K4M = 10. Class CH

5 contains HH states with
L = 1, which are less important in the construction of the
wave function. We therefore keep K values up to K5M = 8

TABLE VI. Same as Table V but for 6He.

Class Partial waves �sum KiM

CH
1

1S0 �sum = 0 12
CH

2
5D0 �5 = 2,

∑
i=1,4 �i = 0 12

CH
3

1S0 �sum = 2 10
CH

4
5D0 �sum = 2, not included in CH

2 10
CH

5
3P0 �sum = 2 8

CH
6

7F0 �sum = 4 8
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TABLE VII. Convergence of the 6Li binding energy for the different classes CL
1 –CL

6 , into which the HH states have been divided. All
results are in MeV units.

E model P model

K1 K2 K3 K4 K5 K6 SRG1.2 SRG1.5 SRG1.8 SRG2.0 Bare SRG1.2 SRG1.5 SRG1.8 SRG2.0

2 12 10 8 8 27.000 26.782 25.537 24.621 19.844 27.088 27.022 25.976 25.169
4 12 10 8 8 30.573 30.892 29.909 29.066 24.238 30.766 31.259 30.404 29.566
6 12 10 8 8 31.645 32.468 31.845 31.152 26.619 31.857 32.872 32.365 31.632
8 12 10 8 8 31.949 32.991 32.559 31.957 27.732 32.163 33.400 33.072 32.387

10 12 10 8 8 32.057 33.185 32.822 32.254 28.279 32.271 33.594 33.331 32.662
12 12 10 8 8 32.095 33.257 32.923 32.368 28.554 32.308 33.669 33.435 32.776
14 12 10 8 8 32.108 33.284 32.960 32.410 28.725 32.322 33.696 33.474 32.819

14 2 10 8 8 30.917 30.480 27.946 25.917 16.222 31.195 31.076 28.586 26.078
14 4 10 8 8 31.555 31.643 29.593 27.800 18.602 31.808 32.191 30.199 27.957
14 6 10 8 8 31.951 32.712 31.591 30.403 23.451 32.176 33.174 32.120 30.600
14 8 10 8 8 32.038 33.038 32.373 31.542 26.315 32.256 33.469 32.881 31.832
14 10 10 8 8 32.060 33.138 32.650 31.974 27.624 32.276 33.558 33.160 32.329
14 12 10 8 8 32.068 33.177 32.765 32.160 28.265 32.283 33.593 33.277 32.554

14 12 6 10 8 8 32.109 33.287 32.964 32.416 28.734 32.323 33.698 33.476 32.823
14 12 8 10 8 8 32.142 33.333 33.016 32.469 28.779 32.355 33.744 33.528 32.873
14 12 10 10 8 8 32.158 33.358 33.047 32.501 28.813 32.371 33.769 33.558 32.904

14 12 10 4 8 8 32.074 33.187 32.779 32.175 28.285 32.290 33.604 33.293 32.572
14 12 10 6 8 8 32.124 33.276 32.904 32.319 28.480 32.338 33.691 33.418 32.720
14 12 10 8 8 8 32.150 33.336 33.003 32.442 28.683 32.364 33.748 33.516 32.843
14 12 10 10 8 8 32.158 33.358 33.047 32.501 28.813 32.371 33.769 33.558 32.904

14 12 10 10 2 8 32.078 33.181 32.769 32.163 28.228 32.303 33.611 33.292 32.567
14 12 10 10 4 8 32.132 33.287 32.917 32.332 28.462 32.348 33.703 33.418 32.727
14 12 10 10 6 8 32.151 33.335 33.000 32.437 28.656 32.364 33.748 33.512 32.837
14 12 10 10 8 8 32.158 33.358 33.047 32.501 28.813 32.371 33.769 33.558 32.904

14 12 10 10 8 4 32.145 33.314 32.953 32.371 28.530 32.359 33.730 33.470 32.773
14 12 10 10 8 6 32.154 33.342 33.007 32.442 28.662 32.367 33.755 33.521 32.844
14 12 10 10 8 8 32.158 33.358 33.047 32.501 28.813 32.371 33.769 33.558 32.904

for these. Finally, class CH
6 consists of HH states with L = 3.

Their contribution to the binding energy is tiny and so we
select K6M = 8.

APPENDIX B: CONVERGENCE OF THE HH EXPANSION

In this Appendix we study the convergence of the 6Li and
6He binding energies and discuss the extrapolation method.
The convergence is studied class by class. When studying the
convergence of a generic class Ci, we include in the expansion
all the HH states with K � Ki and then vary Ki between a min-
imum value and KiM . For the other classes Cj with j 
= i, we
include all HH states up to KjM . Note that for classes CL

1 and
CL

2 (CH
1 and CH

2 ) in 6Li ( 6He), because of the procedure used
for the selection of the linearly independent HH states, we
cannot include, respectively, classes CL

3 and CL
4 (CH

3 and CH
4 ).

The 6Li and 6He binding energies are listed in Tables VII
and VIII.

We assume that for each class of convergence the behavior
of the binding energy as function of K is exponential, namely

Bi(K ) = Bi(∞) + ai e−biK , (B1)

where Bi(∞) is the asymptotic binding energy of class Ci as
K −→ ∞. The parameters ai and bi depend on the interaction

model and on the specific class of HH states we are studying.
The values of Bi(K ) are those reported in Tables VII and VIII.
By defining the function

�i(K ) = Bi(K ) − Bi(K − 2), (B2)

it is possible to compute, for each class, the “missing” binding
energy due to the truncation of the expansion to a finite KiM

as illustrated in Ref. [25], namely,

(�B)i =
∑

K=KiM+2,KiM+4,...

�i(K ). (B3)

By using Eq. (B1), we obtain

(�B)i = �i(KiM )
1

e2bi − 1
. (B4)

The “total missing” binding energy is then computed as

(�B)T =
∑
i=1,6

�i(KiM )
1

e2bi − 1
. (B5)

In order to determine the coefficients bi for each class, we
proceed as follows. For classes CL

1 , CL
2 , and CH

1 , we estimate
the bi by performing a fit to the binding energy values of
Tables VII and VIII, using Eq. (B1). We propagate the error on
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TABLE VIII. Same as Table VII but for 6He.

E model P model

K1 K2 K3 K4 K5 K6 SRG1.2 SRG1.5 SRG1.8 SRG2.0 Bare SRG1.2 SRG1.5 SRG1.8 SRG2.0

2 12 10 10 6 24.114 24.294 23.330 22.500 17.961 23.822 23.905 22.953 22.117
4 12 10 10 6 27.176 27.585 26.749 25.985 21.585 27.253 27.742 26.969 26.176
6 12 10 10 6 28.295 29.194 28.713 28.108 24.054 28.419 29.449 29.053 28.398
8 12 10 10 6 28.651 29.764 29.457 28.933 25.149 28.789 30.046 29.819 29.209
10 12 10 10 6 28.802 30.010 29.776 29.285 25.721 28.943 30.301 30.143 29.551
12 12 10 10 6 28.870 30.123 29.921 29.444 26.024 29.013 30.419 30.295 29.712

12 4 10 10 6 28.442 28.847 27.274 25.796 17.845 28.609 29.233 27.696 25.831
12 6 10 10 6 28.720 29.586 28.652 27.593 21.218 28.871 29.917 29.019 27.647
12 8 10 10 6 28.805 29.900 29.383 28.647 23.807 28.950 30.205 29.739 28.786
12 10 10 10 6 28.833 30.011 29.669 29.080 25.048 28.976 30.308 30.028 29.283
12 12 10 10 6 28.844 30.058 29.799 29.284 25.692 28.986 30.352 30.163 29.528

12 12 4 4 10 6 28.843 30.058 29.802 29.288 25.705 28.986 30.355 30.172 29.541
12 12 6 6 10 6 28.860 30.093 29.857 29.357 25.833 29.003 30.389 30.230 29.616
12 12 8 8 10 6 28.878 30.132 29.923 29.440 25.982 29.021 30.426 30.296 29.703
12 12 10 10 10 6 28.887 30.151 29.956 29.483 26.074 29.029 30.445 30.329 29.749

12 12 10 10 2 6 28.719 29.831 29.501 28.956 25.251 28.884 30.153 29.891 29.226
12 12 10 10 4 6 28.799 29.961 29.662 29.127 25.438 28.952 30.270 30.042 29.388
12 12 10 10 6 6 28.856 30.081 29.842 29.340 25.766 29.002 30.380 30.217 29.601
12 12 10 10 8 6 28.876 30.127 29.916 29.430 25.939 29.020 30.423 30.288 29.693
12 12 10 10 10 6 28.887 30.151 29.956 29.483 26.074 29.029 30.445 30.329 29.749

12 12 10 10 10 4 28.886 30.148 29.948 29.472 26.044 29.029 30.443 30.321 29.736
12 12 10 10 10 6 28.887 30.151 29.956 29.483 26.074 29.029 30.445 30.329 29.749

the resulting bi to compute the error on (�B)i. For classes CL
5 ,

CH
2 , and CH

5 , the quality of the fit is not good enough to obtain
a sensible estimate. In these cases, we consider a reasonable
range for bi,

min
{
b0

i , b1
i

}
� bi � max

{
b0

i , b1
i

}
, (B6)

where b0
i and b1

i are computed from

�i(KiM − 2)

�i(KiM )
= e2b0

i ,
�i(KiM − 4)

�i(KiM − 2)
= e2b1

i . (B7)

We use the central value of the interval as the best estimate,
and the range as error bar. For classes CL

3 , CL
4 , and CH

3 + CH
4 ,

we simply estimate bi from

�i(KiM − 2)

�i(KiM )
= e2bi . (B8)

In such cases, we use these bi to obtain the missing en-
ergy, and estimate the error as half of this missing energy.
Finally, for classes CL

6 and CH
6 it is not possible to obtain

reliable values for the bi. Therefore, we estimate the miss-
ing binding energy as �i(KiM ) and the error as half of it.
In Tables IX and X we report the missing binding energy
with the associated error for each of the six classes we have
considered.

TABLE IX. Missing binding energies corresponding to the E and P interaction models, obtained for each of the six classes of convergence
we have considered for 6Li. In parentheses, we report the errors on the extrapolation; note that (0) indicates that the error does not affect the
last digit reported in the result.

E model P model

SRG1.2 SRG1.5 SRG1.8 SRG2.0 Bare SRG1.2 SRG1.5 SRG1.8 SRG2.0

CL
1 0.007(0) 0.016(0) 0.022(0) 0.025(0) 0.175(0) 0.008(0) 0.016(0) 0.023(1) 0.026(1)

CL
2 0.003(0) 0.018(2) 0.066(5) 0.118(7) 0.557(19) 0.002(0) 0.016(2) 0.071(4) 0.173(10)

CL
3 0.015(8) 0.030(15) 0.046(23) 0.049(24) 0.105(53) 0.016(8) 0.030(15) 0.041(20) 0.051(25)

CL
4 0.004(2) 0.013(6) 0.035(18) 0.054(27) 0.231(116) 0.003(1) 0.012(6) 0.032(16) 0.060(30)

CL
5 0.004(0) 0.020(1) 0.061(1) 0.102(3) 0.319(25) 0.005(1) 0.019(1) 0.074(60) 0.123(24)

CL
6 0.008(4) 0.032(16) 0.080(40) 0.118(59) 0.302(151) 0.008(4) 0.030(15) 0.074(37) 0.120(60)

Tot. 0.033(9) 0.113(23) 0.288(50) 0.442(70) 1.515(200) 0.034(9) 0.107(22) 0.292(75) 0.527(76)
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TABLE X. Same as Table IX but for 6He.

E model P model

SRG1.2 SRG1.5 SRG1.8 SRG2.0 Bare SRG1.2 SRG1.5 SRG1.8 SRG2.0

CH
1 0.051(1) 0.088(3) 0.111(3) 0.121(3) 0.333(4) 0.052(2) 0.091(4) 0.116(6) 0.123(7)

CH
2 0.006(1) 0.030(5) 0.095(13) 0.161(21) 0.643(52) 0.006(1) 0.028(4) 0.104(15) 0.213(26)

CH
3 0.009(4) 0.018(9) 0.033(16) 0.046(23) 0.148(74) 0.006(3) 0.020(10) 0.033(17) 0.052(26)

CH
4

CH
5 0.009(4) 0.020(6) 0.036(11) 0.054(22) 0.251(213) 0.007(2) 0.018(5) 0.040(16) 0.061(26)

CH
6 0.002(1) 0.006(3) 0.016(8) 0.022(11) 0.060(30) 0.002(1) 0.004(2) 0.016(8) 0.026(13)

Tot. 0.078(7) 0.162(13) 0.292(25) 0.405(40) 1.434(233) 0.072(5) 0.161(13) 0.309(29) 0.474(47)
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