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Abstract: In a traditional system paradigm, an enterprise reference model provides the guide for
practitioners to select manufacturing elements, configure elements into a manufacturing system, and
model system options for evaluation and comparison of system solutions against given performance
metrics. However, a smart manufacturing system aims to reconfigure different systems in achieving
high-level smartness in its system lifecycle; moreover, each smart system is customized in terms
of the constraints of manufacturing resources and the prioritized performance metrics to achieve
system smartness. Few works were found on the development of systematic methodologies for the
design of smart manufacturing systems. The novel contributions of the presented work are at two
aspects: (1) unified definitions of digital functional elements and manufacturing systems have been
proposed; they are generalized to have all digitized characteristics and they are customizable to
any manufacturing system with specified manufacturing resources and goals of smartness and (2) a
systematic design methodology has been proposed; it can serve as the guide for designs of smart
manufacturing systems in specified applications. The presented work consists of two separated parts.
In the first part of paper, a simplified definition of smart manufacturing (SM) is proposed to unify
the diversified expectations and a newly developed concept digital triad (DT-II) is adopted to define
a generic reference model to represent essential features of smart manufacturing systems. In the
second part of the paper, the axiomatic design theory (ADT) is adopted and expanded as the generic
design methodology for design, analysis, and assessment of smart manufacturing systems. Three
case studies are reviewed to illustrate the applications of the proposed methodology, and the future
research directions towards smart manufacturing are discussed as a summary in the second part.

Keywords: smart manufacturing; information technologies (IT); system of systems (SoS); digital
manufacturing (DM); digital twins (DT-I); digital triad (DT-II); cyber-physical systems; Internet of
Things (IoT); Internet of Digital Triad Things (IoDTT); big data analytics (BDA); cloud computing
(CC); axiomatic design theory (ADT)

1. Introduction

Smart manufacturing (SM) has been identified as one of the prioritized areas to
strengthen a nation’s economy in both developed and developing countries. The studies in
smart manufacturing technologies have attracted a great deal of attention from researchers
in multiple disciplines. On the one hand, SM is a comprehensive solution to manufacturing
systems with the integration of recent information technologies (IT); on the other hand,
every smart manufacturing system is customized to the needs of a specific enterprise with
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limited resources and its own interests of business domains, strategies, and performance
metrics. This leads to a high diversity for developers and users to understand the true
meanings of SM, and accordingly, to select and integrate existing technologies adequately in
the context of given circumstances of manufacturing businesses. To fill this gap, this paper
attempts to unify the definition of SM with a newly proposed concept called digital triad
(DT-II) to cover all common features of digital technologies towards system smartness; the
contents of system smartness can be tailored to the needs of specific companies especially
in terms of flexibility, scalability, adaptability, and resilience. Moreover, the concept of
Internet of Digital Triad Things (IoDTT) is proposed as a system reference model to deal
with the integrations of digital solutions at upper levels. The rationales of DT-II and
IoDTT have been elaborated in the first part of the paper [1]. In the second part here,
these concepts will be used to develop a systematic methodology for designs of smart
manufacturing systems. To this end, the rest of the paper is organized as follow. In
Section 2, the design of a smart manufacturing system is formulated to define a design
space for the discussed functional requirements (FRs) of SM [1]; the design space consists of
commonly adopted digital technologies including DT-I, CPS, IoT, CC, AI, VM, BDA, SoA,
and BCT. In Section 3, the methods for the evaluation and comparison of design solutions
(DS) are discussed, and the focus is put on the quantification as well as system performance
indicators in dealing with the changes and uncertainties in dynamic business environments.
In Section 4, axiomatic design theory (ADT) is adopted as a systematic methodology in
designing a smart manufacturing system; a general design procedure is proposed with
the detailed discussions of customizing FRs and DSs to specific applications. In Section 5,
three case studies are introduced to illustrate how ADT can be applied in customizing a
smart manufacturing systems when the performance indicators for system smartness are
given. In Section 6, the innovation of the presented work is summarized for its theoretical
and practical significance and the authors’ future works in advancing the concepts of
DT-II, IoDDT, and the ADT-based design methodology for smart manufacturing systems
are outlined.

2. Design of Smart Manufacturing Systems

Since a smart manufacturing system aims for system adaptability in dealing with
changes and uncertainties, and such a capability is achieved by either the flexibility of
system elements or the configurability at system level, design of a smart manufacturing
system involves three iterative phases in its system lifecycle, i.e., system design phase,
system operation phase, and system reconfiguration phase, as shown in Figure 1. At the
system design phase, a set of functional requirements (FRs) is defined, available physical
assets and accessible virtual assets are considered to define a design space with all feasible
design solutions (DSs), and system performances are ranked to define a set of prioritized
performance metrics. At the system operation phase, design analysis and synthesis are
performed to optimize a system, and thus implement it in application; all smart things in
the system are monitored to determine if system elements or the whole system has to be
reconfigured to meet the identified changes. At the system reconfiguration phase, either
system elements or the whole system is reconfigured to make the smart manufacturing
system sustainable.

Many researchers have investigated the design methodologies of intelligent manufac-
turing systems. Unglert et al. [2] proposed a computational design synthesis to analyze
reconfigurable manufacturing cells where functional modules were reorganized to balance
the capability and capacity of system. It was used in the concurrent design of system con-
figurations. Kurgan et al. [3] proposed an integrated design methodology and considered
manufacturing requirements at the phase of system design; it led to the cost saving of 18%
and time reduction of 17% in the case study. SM is a type of reconfigurable systems that
is sustainable over time. A system configuration of a reconfigurable system consists of a
set of functional building blocks that are selected and assembled from available physical
and virtual manufacturing assets for specific tasks [4–7]. A reconfigurable system allows
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the additions, removals, and modifications of functional modules without affecting the
functions of other modules, and this helps scale the capacity of productions [8]. A reconfig-
urable system is characterized by its modularity, integrability, customization, convertibility,
scalability, diagnosability, mobility, and adaptability. The high-level building blocks of
SM were classified by Mittal et al. [9], and the most commonly used ones were intelligent
controls, data-driven production managements, data analytics, smart products, smart
materials, interoperability, data sharing, and standards.
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Here, the axiomatic design theory (ADT) is used to describe the design procedure of
smart manufacturing systems. However, the authors’ main interests are (1) the determi-
nations of functional requirements (FRs) and design spaces by the solutions, and (2) the
evaluation of the mappings from design solutions (DSs) to functional requirements (FRs).
How to decompose FRs to meet the independence principle and minimized information
principle is of less interest in this section. As the matter of fact, for a complex and multi-
disciplinary system, every system element is conceptually coupled with others, which
makes it impractical to achieve the independence of functional requirements in decomposi-
tion. Since FRs have been discussed in part I, we discuss common digital technologies as
design solutions (DSs) and performance evaluations (PSs) for system smartness as follows.

A smart manufacturing system has been modelled as an instance of the Internet of
Digital Triad Things (IoDTT), and the system consists of a set of networked digital triads.
Therefore, various digital technologies are the essential enablers to satisfy the functional
requirements of smart manufacturing systems. Here, commonly used digital technologies
as well as the roles in SM are discussed.
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2.1. Digital Technologies for Smart Materials and Processes

Similar to traditional manufacturing, SM aims to make and deliver products to users.
However, products from SM are generally more advanced in terms of their intelligence
level, functionalities, and more importantly, their sustainability from the perspectives
of economy, environment, and human society. Akrivos et al. [10] argued that future
products should be sustainable, and products from SM should be made to enhance their
sustainability, especially the self-healing properties of materials, products, and systems.
A smart product could sense occurred damage and heal the damage autonomously to
sustain the product life, so that the product life is extended, even lasting permanently. The
most advanced digital technologies such as extreme ultraviolet lithography (EUV) [11]
and 4D or 5D printing [12] became commercially available to prepare raw materials for
smart products.

2.2. Digital Twins (DT-I)

To practice the first-time right in decision-making processes, decisions should be
verified and validated before they are executed in the physical world. Modelling and
simulation tools used to be standalone system that were widely applied to predict system
behaviors based on assumed conditions, changes, disturbances, and randomness [13].
DT-I has been advanced from traditional modelling and simulation approaches in the
sense that physical and virtual models are connected and interacted directly. The concept
of digital twins (DT-I) has enabled the interactions and integrations of information and
physical worlds in real-time manners. For example, augmented reality was adopted
specifically for the interaction interfaces in smart manufacturing [14]. DT-I could be
multidimensional: for example, geometric, physical capability, rule, and behavior models
in the five-dimensional model [15]. DT-I could be expanded to represent reconfigurable
systems at different granularities and for corresponding missions. In a recent literature
review by Semeraro et al. [16], DI-I itself was treated as a system paradigm where virtual
models were embedded as indispensable components to model the behaviors of physical
components and make smart decisions for system operations.

2.3. Cyber-Physical Systems (CPS)

CPS is related closely to DT-II; while the former focuses on the interactions of digital
and physical twins in the cyber and physical worlds, respectively. CPS supports real-time
communication and interaction of cyber and physical systems to close control loops, moni-
tor system states in real-time, and adjust system behaviors promptly when the changes
are detected [17,18]. The CPS-based system elements are applicable to many tasks such
as communication, controls, scalability, validation and verifications, and system manage-
ments [19,20]. CPS can be data-driven to optimize system controls using real-time data
collected from the physical world; CPS makes a manufacturing system smart by improving
the responsiveness, adaptability, and predictivity of system elements and facilitating the
collaboration of stakeholders in the entire process of mass customization of products [21].

2.4. Human Cyber-Physical Systems (HCPS)

Due to a high-level of uncertainty and complexity, many fully automated solutions in-
volve in a high cost, and such solutions become impractical due to limited cost-effectiveness.
Therefore, humans still play indispensable roles in making manufacturing systems flexible
and adaptable. D’Addona et al. [22] analyzed the needs of human operations for cognition
in practicing adaptive automation through case studies. Cognition was utilized to respond
out-of-the-loop conditions such as abnormal transitions, and skill loss, automation-induced
errors, adaptable behaviors, and inappropriate trusts in collaborative manufacturing pro-
cesses. Humans must be in the loop to achieve the desired performances of production.
In such a way, the safety and comfortableness of workers were well balanced in uncer-
tain environments. Humans are integrated with CPS and human cyber-physical systems
(HCPS). Enabling technologies such as augmented reality (AR) are critical to support
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human-machine collaborations and interactions. Baroroh et al. [23] showed that AR were
used in SM in implementing interactions, manufacturing processes, machine functions,
and knowledge explorations.

2.5. Internet of Things (IoT)

IoT seems essential to SM due to two main reasons: (1) SM is data-driven, and
real-time data about smart things, stakeholders, and business environments must be
available to support the decision-making processes at any level and scope of manufacturing
businesses and (2) SM requires the access to virtual resources over the Internet to deal
with manufacturing businesses over product lifecycles. SM adopts IoT as the information
infrastructure to network manufacturing assets such as products, parts, machine tools,
sensors, and decision-making units in the heterogeneous environment. IoT allows a
smart manufacturing system to sense system elements and environment, access virtual
services over the Internet, and provide abundant data to drive decision-making processes
at all levels and scopes of manufacturing businesses in system lifecycles [24–26]. IoT
consists of countless smart things that are built over the Internet with wired and wireless
communications [27,28].

2.6. Cloud Computing (CC)

Modern manufacturing systems tend to be decentralized and distributed, while
decision-making activities for smart manufacturing are facing a number of challenges, such
as (1) sharing and accessing data in distributed environments, (2) storing and maintaining
an ever-increasing amount of data in the network, (3) the high demand of computing to
optimize decisions with the limited local computing resources, and (4) the complexity
of coordination, collaboration, and interoperation of manufacturing resources over the
Internet. Cloud computing (CC) is built upon service-oriented architecture (SoA); every
task that manipulates data, accesses virtual resource, or run a model for decision-making
can be treated as a service (XaaS), and any system element with a limited computing
capability can utilize CC to support its decision-making activities [29] To select services
to meet manufacturing needs in cloud manufacturing, Huang and Wu [30] developed a
two-layer trust fuzzy model which consisted of time, cost, availability, reliability, and safety
at the first-layer and 13 other indexes at the second-layer.

2.7. Artificial Intelligence (AI)

In making a decision for a manufacturing business, it is an ideal scenario that (1) an
explicit mathematic model is available to represent the relations of inputs, outputs, and
system parameters, (2) all of the required data of the decision model are available and
accurate when a decision is made, and (3) the computation is manageable by the system to
reach decisions in time. Unfortunately, most of decision-making processes are too complex
to develop explicit mathematic models, and the required data in decision-making are often
incomplete, ambiguous, and not free of error. Artificial intelligence (AI) is a cognitive
science for data mining and decision-making support in the fields of data analytics, image
processes, robotics, natural language processes, and machine learning. AI became the
frontier of manufacturing technologies in future industrial systems, and was integrated
with industrial IoT (IIoT), BDA, CC, and CPS to support industrial operations in an efficient,
flexible, and sustainable way [31].

2.8. Virtual Manufacturing (VM)

Utilizing virtual assets over the Internet transferred certain manufacturing businesses
into services, and, accordingly, the manufacturing system became a product-service system.
This leveraged the flexibility and capability of a smart manufacturing system to deal with
the complexity and changes [32]. To access virtual assets over the Internet, manufacturing
assets must support interoperations. Adamczyk et al. [33] introduced a knowledge-based
expert system to support the semantic interoperations in SM; note that the semantic
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interoperations must address the divergence and misinterpretation of heterogenic data from
various sources. Landolfi et al. [34] referred to the use of virtual assets as manufacturing
as a service (MaaS). A MaaS based platform was developed to connect service vendors,
suppliers, and customers to enterprises directly for system-level optimization.

2.9. Big Data Analytics (BDA)

SM is built upon IoT. To achieve a high system diagnosability, predictivity, and
responsiveness, SM must rely on big data connected over the Internet to support its
decision-making systems at all levels and scopes. SM applications involved the challenges
to assure integrity, quality, privacy, availability, scalability, transformation, legitimacy,
surveillance, and governance of data [19]. BDA and SM used to be investigated in the fields
of information technologies and intelligent manufacturing, respectively. These concepts
were recently bridged due to close correspondences [35]. Ren et al. [36] analyzed emerging
issues and potential solutions when BDA is integrated as one of critical technologies to
deal with big data and data-driven decision-makings from the perspective of product
lifecycles. Tao et al. [37] discussed the importance of big data analytics from the historical
perspective, identified the bottlenecks of BDA in utilizing abundant data in developing SM,
and proposed a conceptual framework to integrate BDA tools for effective data-driven SM.

SM fully utilized advanced data analytics tools to support decision making activities
at various domains and levels of manufacturing businesses. Accordingly, with the increase
of volume, velocity, and variety of data acquired from business environment, it posed
the challenge of processing data efficiently [38]. On the other hand, BDA also relies on
reliable and trustworthy data from IoT to reduce knowledge and information for decision
makings; therefore, BDA relates to numerous activities in an information flow including
data collection, sharing, processing, and fusion. Wang and Luo [39] proposed a reference
framework to take advantage of digital-twin models to fuse the data from virtual and
physical models seamlessly.

2.10. Blockchain Theologies (BCT)

SM applications involved the challenge of assuring integrity, quality, privacy, avail-
ability, scalability, transformation, legitimacy, surveillance and governance of data, value
transfer, and manufacturing services [19]. In contrast to traditional standalone information
systems, SM is networked and its system boundaries are open; SM is more vulnerable in
terms of security, privacy, and safety. Tuptuk and Hailes [40] discussed the challenges in
securing smart manufacturing systems in terms of existing vulnerability, potential cyber-
attacks, awareness and preparations for security loopholes, and security measures. The
blockchain technology (BCT) has been explored to embed trustworthiness and visibility
in SM. Viriyasitavat et al. [41–43] developed a few algorithms to (1) select partners and
compose them as virtual enterprises over the Internet and (2) assure the privacy, trustiness,
and security in value transfer and interoperations of business partners.

3. Performance Metrics (PMs) for System Smartness

The expectations for SM can be classified into functional requirements (FRs) and per-
formance metrics (PMs). On the one hand, FRs are a set of hard goals that a manufacturing
system must achieve; FRs are treated as design constraints in developing DSs. On the other
hand, PMs are a set of soft goals for which DSs of a smart manufacturing system should be
optimized. Since a system solution is specific to given applications, the classification of
system expectations for FRs and PMs is different from one system to another. The common
FRs of smart manufacturing systems have been discussed in Section 3.2; in this section, the
commonly used PMs will be discussed.

Researchers have proposed many evaluation models and performance metrics for
manufacturing systems from different perspectives. However, performance metrics can
conflict with each other. Jiang et al. [44] discussed the contradictions of metrics in multi-
objective optimizations (MOO). Based on their relevance, the metrics were classified into
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capacity, convergence, diversity, and convergence-diversity, and one performance eval-
uation model was developed to achieve the consistencies of Pareto fronts in (MOO). In
evaluating system sustainability, Moldavska and Welo [45] emphasized the importance
of sustainable development goals and proposed incorporating these goals in evaluating
system sustainability. Auer et al. [46] assessed manufacturing systems from the perspective
of products, and life-cycle assessment and life-cycle costing was used to determine the
impact of manufacturing systems on the eco-environment. Jung et al. [47] tried to map
strategy-level performance metrics to the structure of SM, and the identified challenges
were the selection of performance metrics, the correspondences of performance metrics
and manufacturing activities, and the representation of system models for comparisons.
Some researchers investigated the impact of certain information technologies on the perfor-
mances of a smart manufacturing system. For example, Kiesel et al. [48] discussed the roles
of 5G in reducing the latency of critical applications since 5G was able to accelerate digital
transformation in the sense that the latency could be below 1 milliseconds (ms) in monitor-
ing and controlling complex production processes. The potential economic benefits were
quantified. Barletta et al. [49] valued SM for its contribution to environmental sustainability,
and they presented the assessment model and tools to evaluate sustainability readiness
of smart manufacturing systems. Ante et al. [50] proposed a hierarchical structure of key
performance indicators (KPIs) to measure the performance of smart manufacturing sys-
tems; the performances were evaluated at strategic, tactical, and operational levels, and the
dependences of system elements were taken into consideration in quantifying KPIs. Zhang
et al. [51] emphasized the impact of disposed products on economy and environment, and
they suggested combining the gray correlation decision-making trials to evaluate products
in layout designs of manufacturing plants. Both centralized and decentralized production
systems were modelled by Moutzis et al. [52] and system performances were evaluated
from the perspectives of lead time, cost, flexibility, throughout, and environmental im-
pact relevant to transportation. It is a difficult challenge for a small and medium-sized
enterprise (SME) to choose an appropriate digital solution for specific decision-making.
Martin et al. [53] argued that the core value of smart manufacturing was to utilize data to
predict behaviors of cyber physical production systems, and they adopted the value stream
mapping method (VSM) to analyze and compare smart manufacturing solutions.

Quantitative evaluations are critical in the analysis and synthesis of system designs.
Georgoulias et al. [54] indicated that existing empirical evaluation models were only ap-
plicable to specific applications, and they argued that an evaluation model or algorithm
should be generic, holistic, and quantitative. Georgoulias et al. [55] further developed
an evaluation model to quantify the system flexibility (i.e., product flexibility, capacity
flexibility, and operation flexibility) in dealing with the changes of management processes
in manufacturing organization; the developed model was used to optimize the system for
better effectiveness and competitiveness. Youssef et al. [56] used the universal generation
function to evaluate the availability of manufacturing assets; it considered the changes
of production rates and demands in assessing system configurations. Cagno et al. [57]
proposed a framework to measure the sustainability of enterprises and the sustainability
was assessed based on economic, social, and environmental indicators. In the framework
by Farias et al. [58], the green performance and leanness were emphasized in determining
the assessment criteria and metrics of manufacturing systems. Junior et al. [59] proposed a
balanced scorecard method to evaluate system sustainability based on the correspondences
of economic, environmental, and social lines to the learning and growing, process, and
market and financial perspectives. Cai and Lai [60] evaluated the system sustainability
from the perspective of energy flow within manufacturing plants. Unfortunately, the infor-
mation for the assessment model would not be available until the physical system was built
and in operation and the statistical data were collected and available for use. Brennan [61]
discussed the need for holonic manufacturing systems to develop corresponding perfor-
mance metrics. A holonic system was required to handle disturbance, support human
integration, and provide reliability, robustness, and flexibility in coping with changes, and
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a system design was evaluated based on reliability, responsiveness, flexibility, cost, and
assets. Mahmood et al. [62] used modeling and simulation to assess the performance of ap-
plied technologies in integrated production lines while only the performances at shop-floor
level were evaluated without the consideration of external partners and end-users. Burggra
et al. [63] compared the performances of artificial intelligence (AI) and human beings in
job-shop scheduling of a cyber-production management system using a reinforcement
learning algorithm. Ottesjo et al. [64] proposed an assessment tool to measure the level
of digitization of SMEs, and it aimed to analyze administrative awareness and technical
capabilities and identify digitalization gaps for SMEs to advance their manufacturing
systems from the system lifecycle perspective.

The following section will focus on the smartness of system that is exhibited in its
system lifecycle.

3.1. Visibility, Diagnosability, and Predictivity

A smart manufacturing system must be a closed system that is responsive to internal
and external changes; the primary condition is that the system possesses an ability to
understand the past, present, and future of the system. Visibility, diagnosability, and
predictivity reflect the levels of system smartness in detecting changes and disturbances,
diagnosing and troubleshooting problems, and predicting the trends of changes based on
data collected from various sources over manufacturing systems. System visibility relies
on the sensors and instrumentations installed on smart things, and diagnosability and
predictivity rely on the capabilities of advanced information technologies such as AI, CC,
and BDA [1].

3.2. Upgradability

Upgradability measures how easily a system or system element can be upgraded
to newly developed technologies. Manufacturing technologies are essential tools to run
manufacturing businesses, and manufacturing technologies are continuously evolving
with the advance of fundamental science and technologies, especially digital technologies.
To prolong the lifecycle, manufacturing systems should be modularized so that individual
functional modules can be maintained and upgraded with a minimized impact on sys-
tems [65,66]. The smartness of a system can be measured by the upgradability of adopting
technologies, enterprise systems, and decision-making units at various levels and domains.

3.3. Adaptability

Adaptability measures the capability of a system to deal with changes and uncertain-
ties [67]. Adaptability is measured from system outputs; correspondingly, adaptability
is achieved by the flexibility of system elements and the reconfigurability among system
elements. Internal or external changes and uncertainties can only be tackled by the changes
that can be possibly implemented on system elements or system configurations; therefore,
system adaptability can alternatively be measured on (1) internal adjustable components,
(2) modular system architecture, and (3) a combination of adjustable and modular compo-
nents and use of external assets [68,69]. In particular, a modularized architecture makes
a system reconfigurable to meet new manufacturing needs by reconfiguring its physical
and logical structures. Note that aiming at high-level adaptability involves in an increased
cost and complexity in general. The challenges in developing a reconfigurable system are
high initial investments, long-term of investment returns, limited system performances at
reconfiguration and ramp up phases, and the complexity of task-oriented configuration
designs [66,70–72].

3.4. Resilience

The wish-list of future manufacturing systems provided by O’Connell et al. [73]
emphasized system resilience. Resilience refers to the system ability to achieve high-level
objectives (i.e., adaptation, sustainability, and reliability) in the presence of unpredicted
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changes and disturbances [74–77]. In particular, adaptation referred to the enhanced
ability to achieve desired goals in a dynamic environment, including the ability to reduce
vulnerability to threats and adverse disturbances. To improve system resilience, Zhang
et al. [78] developed a dynamic model to control a reconfigurable electronic assembly line
that was subjected to spatio-temporal disruptions. Resilience dynamics were analyzed by
max-plus algebra, the analyzed results were used to generate digital twins, and the control
of the assembly line was implemented over an open reconfigurable architecture.

3.5. Flexibility

Flexibility is similar to adaptability, but it is measured on system elements rather
than system outputs. Lafou et al. [79] defined flexibility as the ability of a manufacturing
system to deal with variations of products, and system flexibility was quantified based on
the mappings of products and manufacturing assets. They commented that modularity
and standardization of manufacturing resources and products generally minimized the
introduction costs of new variations. System flexibility can be achieved by software,
hardware, or a combination of both. The flexibility of a hardware system must be supported
by the corresponding software system. Keddis et al. [80] discussed the flexibility of data-
driven communication to match the flexibility of adaptable hardware system.

All of the performance indicators are driven from manufacturing systems; therefore,
performance indicators are associated with each other in certain ways. It is important to
understand their correspondences. For example, Lufi and Besenfelder [81] investigated the
dependence of robustness on system flexibility of manufacturing systems since system flex-
ibility tackled with volatile and unpredictable environments and a manufacturing system
should make a trade-off between optimization and robustness for the best interest of system
performance. Mass personalization needs high-level flexibility and responsiveness of a
manufacturing system to make personalized products in small batch sizes cost-effectively.
Traditional manufacturing systems have their limits in reconfiguring systems to accommo-
date changes, and SM should be capable of self-reconfiguring and optimizing to achieve
flexible, autonomous, and error-tolerant productions in turbulent business environments.
System elements in a self-organizing system are distributed, adaptable, self-autonomic,
and supportive to bottom-up reconfiguration [82].

3.6. Sustainability

Alike to humankind, a smart manufacturing system aims ultimately at a long system
lifespan; manufacturing enterprises are facing an increasing pressure to optimize system
sustainability in addition to traditional performance measures such as reliability, cost, and
productivity. Sustainability becomes necessary to consider in decision-making processes
over system lifecycles. A manufacturing process is a type of mechanical, chemical, elec-
trical, or biological transformation that can be modelled by energy generation, transfer,
storage, or consumption. Hoang et al. [83] developed a mathematic model with thermo-
dynamic, physical-thermodynamic, and economic-thermodynamic indicators to estimate
energy efficiency of manufacturing systems. Huang and Badurdeen [84] investigated the
impacts of products and processes respectively in evaluating system sustainability; the
framework for sustainability evaluation included the metrics involved at five stages. In
the assessment by Jiang et al. [85], system sustainability was quantified for decomposing
system-level mission into device-level manufacturing processes and integrating data from
device-level to enterprise-level executions. Sustainability was evaluated comprehensively
from economic, environmental, and social perspectives. SMEs have limited resources to
pursue system sustainability as prioritized business objectives; the required sustainabil-
ity is treated as the constraint of business rather than the performance to be optimized.
Singh et al. [20] introduced an expert system to quantify system sustainability for SMEs.
Sustainability becomes mandatory simply because the ecosystem of the earth and desired
quality of humankinds could not be maintained without sustainable manufacturing [86].
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Zhang et al. [87] developed a business case to make system-level decisions in SMEs; it
considered system dynamics in assessing sustainability and lifecycle costing of products.

4. Systematic Methodology for Design of Smart Manufacturing Systems

The main functional requirements enabling digital technologies and a complete list
of expectations of a smart manufacturing system have been discussed in Sections 3 and 4;
however, it is extremely rare that an enterprise has the access to any digital technologies
when the enterprise needs, and a manufacturing system can be designed and implemented
from scratch. It is impractical to design an ideal smart manufacturing system without
physical constraints. In practice, the smartness of a manufacturing system will be iteratively
improved by upgrading and incorporating more digital methodologies in continuous
improvement (CI).

To make system complexity manageable at each iteration, the axiomatic design theory
(ADT) is adopted in Figure 1 to narrow down a set of FRs, DSs, and PMs that are most
critical to given applications, and the rest of FRs, DSs, and PMs should be formulated
as design constraints based on available manufacturing assets and current system states.
In other words, design of a smart manufacturing system at each iteration only involves
(1) one or a few metrics relevant to system smartness (i.e., flexibility, visibility, sustainability,
resilience, and even some traditional metrics such as efficiency and agility) and (2) one
or a few corresponding digital triads (DT-II) or the configuration in IoDTT. Available
manufacturing assets and given marketing conditions are formulated as design constraints.

5. Case Studies

Three examples of manufacturing system designs by the authors and their collabo-
rators are introduced here to illustrate how the proposed methodology was applied in
the system development to increase system smartness in continuous improvement (CI).
Note that the application scenarios were specified, the design solutions (DSs) were lim-
ited to certain digital technologies, and system smartness was associated with the system
performance of interests in achieving specified functional requirements (FRs) in the given
applications. In all of these three cases, FRs and system smartness were interpreted and
defined based on customers’ needs. The design space of DSs were for digital technologies
and determined by system developers based on accessible manufacturing resources, and
the following discussions were limited to using the proposed methodology to formulate a
smart system design problem. Interested readers might find the details and rad data of
these design examples in the corresponding publications [5,7,88–90].

5.1. Case Study 1: BDA for Visibility and Diagnosability in Continuous Improvement (CI)

The purpose of the first case study was to show that the definition of system smartness
in a smart manufacturing system can be customized to the prioritized key performance
indicators (KPIs). In other words, pursuing a smart manufacturing system is a long-term
effort of continuous improvement, and targeted system smartness should be as specific as
possible to be measured quantitatively. The process was applicable to system design in any
sectors. With real-time data collected from the things in the physical world and simulation
models in the digital world, the decision-making processes at any level and domain could
be data driven to improve system responsiveness, since big data helps to improve system
smartness in terms of the visibility of system states and changes and the diagnosability of
defects and malfunctions.

Figure 2 shows a case where system smartness was defined for visibility and diag-
nosability, and digital technologies for data collection and analysis were identified as
the design solutions of interest. In the developed solution, BDA was incorporated in an
enterprise system, heterogeneous and data were analyzed and processed to make the scale
of the datasets manageable, and the decisions for the actions in continuous improvement
could be made promptly. Note that the data of past, present, and prediction could be
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maintained in a life model together with digital and physical things as DT-II in system
implementation [88–90].
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5.2. Case Study 2: Incorporating Additive Manufacturing for Flexibility and Adaptability

The purpose of the second case study was to show that the proposed design method-
ology was ready to be applied at the phase of system operations when some system
performances were found unsatisfactory, and the solution to critical processes must be ob-
tained in enhancing system smartness. In such a case, DSs were for certain manufacturing
processes, and system smartness was related to unsatisfactory performances of interests.
The process was applicable to design problems in system operations in any continuous
improvement practice. In general, a manufacturing system transfers raw materials into
final products through a series of manufacturing processes. When an enterprise aims at
system smartness for dealing with the changes and disturbance in its material flow, the
hardware systems must have flexibility and capabilities to accommodate these changes in
manufacturing processes. From this perspective, incorporating more and more advanced
digital technologies in production systems helps to improve system smartness in terms of
the adaptability and robustness.

Figure 3 showed a case where system smartness was defined for high-level flexibil-
ity and adaptability in dealing with unavoidable defects occurring to production lines;
system flexibility and adaptability was directly measured by the direct run rate (DRR) of
products, i.e., the percentage of products that meet the requirements of quality at the first
try. A product might be damaged due to numerous potential interactions of tooling and
products over production lines. System flexibility and adaptability was measured by a set
of decomposed FRs shown in Figure 3 and Table 1. Additive manufacturing (AM) was
introduced as the design solutions (DSs) to enhance the capabilities of the manufacturing
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system in producing protective tools when they are needed. In the developed solution,
3D printers were introduced to make protective parts for problematic tools where product
defects occurred. A number of DT-II units were developed to implement the whole process
from monitoring production lines to detecting defects on products, identifying problematic
tools, generating and verifying digital models for protective parts, producing parts, and
finally to mounting parts on assembling tools in the production lines. According to ADT,
the design solutions (DSs) in Figure 4 were developed to fulfill the identified FRs [7].
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Table 1. The meanings of decomposed FRs in case study 2 (Reprinted with permission from ref. [7]. 2021 Taylor & Francis).

FRs Description

FR-0: Develop the solution to improve DRR of truck assembly line by integrating AM processes

FR-01: Utilize the data of truck quality inspection for surface defects, identify the sources (workstations and assistive tools)
of defects.
FR-011: Detect surface defects.
FR-012: Identify problematic assembling processes and assistive tools.

FR-02: Develop and model parts as the protective solutions to identified defects.
FR-021: Utilize information of assistive tools.
FR-022: Optimize design for strength, fabrication time, and cost.

FR-03: Provide the tested physical solutions to assembly workstations in less than 24 h.
FR-031: Perform tests on physical parts for material strength.
FR-032: Perform simulation for functional validation and process optimization.

FR-04: Standardize the procedure and practice of AM processes.
FR-041: Maintain normal operations of AM machines.
FR-042: Provide guides and training manuals for operators and procedure.
FR-043: Standardize the interactions of functional modules.

FR-05: Routinize the operations of AM machines with the aid of inventory, design library, planning and scheduling of printing
jobs for cost reduction.
FR-051: Build and maintain design libraries for knowledge-based engineering
FR-052: Manage the inventory of protective parts.

5.3. Case Study 3: Using IoT for Automation

The purpose of the third case study was to show that the proposed design method-
ology can be extended to design any systems or products as long as FRs, DSs, and per-
formance metrics (PMs) could be tailored to the specified applications. The proposed
design methodology is generally applicable to designs of any smart systems or products,
since the systems are tailored to given applications by defining system smartness and
feasible design solutions of most interests. As mentioned before, system smartness can
be defined for high-level adaptability and sustainability in dynamic environment; system
smartness can also be defined for some traditional performance metrics such as efficiency,
agility, robustness, cost-effectiveness, and degree of automation. Such design types have a
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significant advantage in practice since adopting digital technologies has a direct impact on
these system metrics.
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Figure 5 showed a case of designing an automatic fuel-recharging system. System
smartness was defined for the degree of automation in performing relevant tasks for drivers
to refill gas on vehicles. System smartness was measured by the minimized cost for fully
automated refueling services at gas stations. The IoT-based technologies were explored
as the design solutions to minimize users’ interferences cost-effectively. The system-level
goal was decomposed into four FRs, i.e., FR11 for ‘data collection and processing’, FR12
for ‘controls for abnormal events’, FR13 for ‘refueling operation’, and FR14 for ‘controls
for normal events’. To meet FR11, various sensors and instrumentations such as vision,
laser scanning, bar-code scanning, compliant sensors, and controllable platform were used
as DSs to detect incoming vehicles and determine the relative position and orientation of
fuel spout; embedded chips and apps on phones can be integrated with the Internet of
Things (IoT) database to obtain customers’ intent and payment information and collect
information about vehicle and fuel. To meet FR13, gantry systems, robots, and sophisticated
mechanisms were integrated with multi-functional tools to access a fuel port, open a fuel-
filler cover, retrieve a refueling tool, close a fuel-filler cover, and reset the refueling tool.
To meet FR12 and FR14, the system-level controls for normal and abnormal events were
implemented as stand-alone systems or IoT-enabled apps; in addition, all processing
parameters could be specified manually through the interfaces of programmable logic
controllers (PLC) or IoT-based apps.
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6. Conclusions and Future Directions

To the authors’ knowledge, limited works are available on the development of system-
atic methodologies for designs of smart manufacturing systems. The novel contributions
of the presented work were made at two aspects: (1) unified definitions of digital elements
and manufacturing systems have been proposed; they are generalized to have all of the
digitized characteristics and they are customizable to be applied in any manufacturing
system with specified manufacturing resources and goals of smartness and (2) a systematic
design methodology has been proposed; it can serve as the guide for designs of smart
manufacturing systems in certain applications from a practical perspective. Note that
‘practical perspective’ here refers to the views of specific enterprises with given resources,
technology accesses, and the interests of business domains, strategies, and performance
indicators including costs.

The proposed design methodology deals with the high diversified systems by some
customizing efforts in defining prioritized goals of system smartness and affordable digital
technologies in achieving system goals; in addition, the performance metrics for system
smartness must be quantifiable so that different design solutions can be analyzed, evalu-
ated, and compared to optimize system solutions. Future research efforts will be needed in
many areas such as (1) developing quantifiable performance metrics for system smartness
of interest and synergizing multiple performance metrics when they are considered simul-
taneously; (2) establishing design libraries which include commonly design solutions (DSs);
(3) developing some design templates which correspond to design solutions (DSs) and
functional requirements (FRs) with consideration of the sustainability at both of component
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and system levels; (4) using BDA and AI in dealing with the combinatory complexity
in tailoring digital solutions to specific manufacturing applications’ effective computing;
(5) making a trade-off between system reconfigurations and the utilization of virtual assets
in system lifecycle; (6) developing some systematic approaches to verify and validate a
system before it will be actually implemented in physical world; (7) developing the stan-
dardized procedures for design of smart manufacturing systems based on the proposed
methodology; (8) reshaping the proposed design methodology as a standardized procedure
in designing smart manufacturing systems; (9) adapting the proposed design methodology
to supply network systems since they are a model of the social-technological-economic
system—a reality of mankind.
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