
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Faculty Publications Computer Science

2018

Efficient Randomized Algorithms for the Fixed Precision Low Efficient Randomized Algorithms for the Fixed Precision Low

Rank Matrix Approximation Rank Matrix Approximation

Wenjian Yu

Yu Gu

Yaohang Li

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

 Part of the Theory and Algorithms Commons

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_fac_pubs
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2018 Society for Industrial and Applied Mathematics
Vol. 39, No. 3, pp. 1339–1359

EFFICIENT RANDOMIZED ALGORITHMS FOR THE
FIXED-PRECISION LOW-RANK MATRIX APPROXIMATION∗

WENJIAN YU† , YU GU‡ , AND YAOHANG LI§

Abstract. Randomized algorithms for low-rank matrix approximation are investigated, with
the emphasis on the fixed-precision problem and computational efficiency for handling large matrices.
The algorithms are based on the so-called QB factorization, where Q is an orthonormal matrix. First,
a mechanism for calculating the approximation error in the Frobenius norm is proposed, which enables
efficient adaptive rank determination for a large and/or sparse matrix. It can be combined with
any QB-form factorization algorithm in which B’s rows are incrementally generated. Based on the
blocked randQB algorithm by Martinsson and Voronin, this results in an algorithm called randQB EI.
Then, we further revise the algorithm to obtain a pass-efficient algorithm, randQB FP, which is
mathematically equivalent to the existing randQB algorithms and also suitable for the fixed-precision
problem. Especially, randQB FP can serve as a single-pass algorithm for calculating leading singular
values, under a certain condition. With large and/or sparse test matrices, we have empirically
validated the merits of the proposed techniques, which exhibit remarkable speedup and memory
saving over the blocked randQB algorithm. We have also demonstrated that the single-pass algorithm
derived by randQB FP is much more accurate than an existing single-pass algorithm. And with data
from a scenic image and an information retrieval application, we have shown the advantages of the
proposed algorithms over the adaptive range finder algorithm for solving the fixed-precision problem.

Key words. adaptive rank determination, randomized algorithm, low-rank matrix approxima-
tion, pass-efficient algorithm, fixed-precision problem

AMS subject classifications. 15A18, 65F30, 65F15, 68W20, 60B20

DOI. 10.1137/17M1141977

1. Introduction. Low-rank matrix factorizations, like the partial singular value
decomposition (SVD) and the rank-revealing QR factorization, play a crucial role in
data analysis and scientific computing. In recent years, techniques based on random-
ization have been investigated for performing the computation and low-rank factor-
ization of large matrices [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. They involve the same or fewer
floating-point operations (flops) than classical algorithms and are more efficient by
exploiting modern computing architectures.

A basic idea of the randomized techniques is using random projection to approx-
imate the dominant subspace of a matrix. For an m × n matrix A, suppose the
orthogonal basis vectors of this approximate subspace form an m × k orthonormal
matrix Q. Then, we have [1, 2]

(1) A ≈ QB,

where B is a k × n matrix, and

(2) B = QTA.

∗Received by the editors August 3, 2017; accepted for publication (in revised form) by P. Drineas
July 17, 2018; published electronically August 30, 2018.

http://www.siam.org/journals/simax/39-3/M114197.html
Funding: This work was partially supported by the NSFC under grants 61872206, 6172811,

and NSF under grant 1066471.
†BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing 100084,

China (yu-wj@tsinghua.edu.cn).
‡Department of Computer Science and Technology and Institute for Interdisciplinary Information

Sciences, Tsinghua University, Beijing 100084, China (guyu13@mails.tsinghua.edu.cn).
§Department of Computer Science, Old Dominion University, Norfolk, VA 23529 (yaohang@cs.

odu.edu).

1339

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/simax/39-3/M114197.html
mailto:yu-wj@tsinghua.edu.cn
mailto:guyu13@mails.tsinghua.edu.cn
mailto:yaohang@cs.odu.edu
mailto:yaohang@cs.odu.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1340 WENJIAN YU, YU GU, AND YAOHANG LI

matrix. We call this QB approximation of matrix A in this work.
The basic randQB algorithm
Input: A, k, s.
Output: Q, B.
(1) Ω= randn(n, k + s)
(2) Q = orth(AΩ)

(3) B = QTA

(a) The randQB algorithm

The blocked randQB algorithm
Input: A, ε, b.
Output: Q, B .
(1) for i = 1, 2, 3, · · ·
(2) Ωi= randn(n, b)
(3) Qi = orth(AΩi)

(4) Qi = orth(Qi −
∑i−1

j=1 QjQ
T
j Qi)

(5) Bi = QT
i A

(6) A = A−QiBi

(7) if ‖A‖ < ε then stop
(8) end for

(9) Q = [Q1 · · · Qi]; B = [BT
1 · · · BT

i]
T .

(b) The randQB b algorithm

Fig. 1. The randomized algorithms for the QB factorization.

Standard factorizations, e.g., SVD, can be further performed on the smaller matrix
B, to obtain the low-rank factorizations of A.

The approximation presented by (1) and (2) can also be regarded as a kind of low-
rank factorization of A, called QB factorization or QB approximation in this work. In
[2], a basic randomized scheme for computing the QB approximation was presented, as
shown in Figure 1(a). For producing close to optimal rank-k approximation, the over-
sampling scheme using a random Gaussian matrix Ω with k+ s columns is employed,
where s is a small integer. We use randQB to denote this algorithm.

Usually, the problem of low-rank matrix approximation falls into two categories:
• the fixed-rank problem, where the rank parameter k is given,
• the fixed-precision problem, where we seek Q and B with as small as possible

size such that ‖A−QB‖ < ε, where ε is a given accuracy tolerance.
A blocked variant of the randQB algorithm proposed in [1], i.e., the randQB b

algorithm in Figure 1(b), is suitable for the fixed-precision problem. It incrementally
builds the factors Q and B based on the combination of the randQB algorithm and
the blocked Gram–Schmidt scheme and measures the approximation error by explicitly
maintaining the residual matrix. However, it is inefficient or even fails for handling a
large matrix, because maintaining the residual matrix is costly in runtime and memory
usage.

In this work, the randomized algorithms for the fixed-precision problem are inves-
tigated considering their adaptability to large and/or sparse matrices. First, a mecha-
nism is proposed for calculating the error of QB approximation in the Frobenius norm
during the iterative process of building Q and B. It does not require maintaining
the residual matrix (or updating matrix A) and thus avoids fill-in while handling a
sparse A. This mechanism is also applicable to other iterative computing procedures,
e.g., the trQRCP algorithm [14]. Second, the algorithm is further revised to largely
reduce the number of passes over matrix A, in order to adapt the scenarios where the
cost of accessing matrix A is expensive. These techniques result in two algorithms
called randQB EI and randQB FP, which inherit the merits of randQB/randQB b
algorithms and have extra benefits. Numerical experiments are carried out on a mul-
ticore computer to validate the efficiency and accuracy of the proposed algorithms
for handling large or sparse matrices in practical scenarios. The results show that
our randQB EI and randQB FP algorithms have up to 3X speedup and 3X memory

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1341

saving over an implementation of the randQB b algorithm for dense matrices. They
also exhibit up to 22X speedup over the implementation of the randQB b algorithm
for sparse matrices. Compared with the single-pass algorithm and the adaptive ran-
domized range finder in [2], the proposed algorithms exhibit much better accuracy
or avoid the large overestimation of the sizes of Q and B. For reproducibility, we
have shared the MATLAB codes of the proposed algorithms and experimental data
on https://github.com/WenjianYu/randQB auto.

2. Technical preliminaries. This section summarizes the background we need
for presenting the proposed techniques. Throughout the paper, we measure vectors
with their Euclidean norm. Two kinds of matrix norm are usually considered: Frobe-
nius norm and spectral norm (l2-norm). The spectral norm of a matrix is relatively
difficult to calculate, though it is often more informative for noisy data [23]. The
Frobenius norm ‖A‖F = (

∑
i,j |A(i, j)|2)1/2 is easier for calculation and thus more

widely used in data analysis and machine learning applications [10]. We measure
matrices with their Frobenius norm by default. We also assume that all matrices are
real valued, although the generalization to complex matrices is of no difficulty.

2.1. Randomized algorithms. To produce a rank-k factorization for an m×n
matrix A, with the basic randQB algorithm in Figure 1(a) one obtains an m × l
orthonormal matrix Q and an l × n matrix B, where l > k due to oversampling.
With this QB approximation, the standard factorizations can be efficiently computed.
For example, the standard SVD algorithm can be performed on B, which results in

B = ŨΣ̃Ṽ
T

. Then,

(3) A ≈ QB = QŨΣ̃Ṽ
T
.

The first k columns of matrices QŨ and Ṽ and the k × k upper-left submatrix of Σ̃
approximate the rank-k SVD factors of A. Similarly, by changing the factorizations
made on B, one obtains the approximate QR factorization and CUR factorization,
etc. [1, 4]. Notice that the accurate truncated SVD provides the optimal low-rank
approximation [15]. However, computing accurate SVD of a large matrix is costly, and
in many applications the optimality is not necessary. It is thus acceptable to compute
the approximate low-rank factorizations for gains in computational efficiency.

The approximation error of the randomized algorithm is a random variable. The
authors of [2] have studied the properties of the error in terms of spectral and Frobe-
nius norms and given the bounds on their expectation and variance.

The truncated QR factorization with column pivoting can also be used for low-
rank matrix approximation [11, 12]. Classical pivoted QR factorization has the dis-
advantage that it is hard to be parallelized or to take usage of BLAS-3 operation.
Recently, the pivoted QR factorization was largely accelerated through utilizing a
randomized technique, which achieves the efficiency comparable to the unpivoted QR
decomposition [13, 14]. This makes the truncated pivoted QR factorization competi-
tive for low-rank approximation. Notice that QR factorization can be regarded as a
special case of the QB factorization. Therefore, one of the techniques proposed here
(cf. section 3) could benefit the solution of the fixed-precision problem based on QR
factorizations, as well.

The major computation of the randQB algorithm lies at the multiplication of
A and Ω. If A is sparse or a structured matrix (often implicitly defined) for which
matrix-vector products can be rapidly evaluated, the cost of multiplication can be

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://github.com/WenjianYu/randQB_auto

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1342 WENJIAN YU, YU GU, AND YAOHANG LI

largely reduced (even to O(m + n) flops). The implicitly defined structured matrix
often arises from physical problems, such as a discretized integral operator applied
via the fast multipole method and similar techniques [24] and is sometimes referred
to as an implicit sparse matrix.

For the fixed-precision problem, an adaptive randomized range finder was pro-
posed in [2]. It employs the incremental sampling approach with a probabilistic error
estimator to determine the size of Q and B. It is based on the statement that

(4) ‖A−QQTA‖2 ≤ 10

√
2

π
max
i=1,...,r

‖(A−QQTA)ω(i)‖

with probability at least 1− 10−r [2]. Here ‖ · ‖2 stands for the spectral norm, ω(i) is
a random vector, and r is a small integer, e.g., r = 10. However, the error estimator
often overestimates the approximation error, yielding much larger output matrices
than what is necessary.

The randQB b algorithm in [1] is based on the single-vector version of randQB
algorithm with the Gram–Schmidt procedure, which allows one to construct the QB
factorization and to evaluate its error step by step. In order to exploit blocking
to attain high performance of linear algebraic computation, the algorithm is then
converted to the blocked randQB algorithm in Figure 1(b), where step (6) is for
calculating the residual matrix. Therefore, the randQB b algorithm allows a precise
error calculation for the fixed-precision problem. Notice that in step (4) there is a
reorthogonalization operation which eases the accumulation of round-off error under
floating point arithmetic.

The blocked randQB algorithm is able to produce Q and B in smaller sizes than
the adaptive randomized range finder. However, explicitly maintaining the residual
matrix brings extra time and memory cost if a large matrix A is handled. This
disadvantage becomes more serious if A is also sparse, because the fill-in phenomena
leads to a dense residual matrix.

In order to reveal the difference among the relevant randomized algorithms, we
give a brief comparison of them for the fixed-rank problem, presented as Table 1. svds
denotes the MATLAB built-in command for truncated SVD [21], which is based on
a Krylov subspace iterative method. trQRCP denotes the randomized pivoted QR
factorization [14]. randQB FP is one of the contributions in this paper, which is a
pass-efficient algorithm (cf. section 4). To depict the performance of the algorithms in
the situation where the cost of accessing matrix entries is expensive (e.g., A are stored
in slow memory) [2], we include the number of passes over matrix A in Table 1. From
the table, we see that the randQB FP algorithm inherits the merits of the randQB
algorithm and is also suitable for the fixed-precision problem.

Table 1
Properties of the randomized algorithms for the fixed-rank matrix approximation. (P is a small

integer for power scheme, and b is the block size.)

svds randQB randQB b trQRCP randQB FP
Computational efficiency low high high high high

Adaptive rank determination no no yes yes† yes

Number of passes over matrix αk* 2 or 2+2P 4k/b 3k/b+ 1 1 or 1+2P ‡

* α is a number larger than 1.
† This was not mentioned in [14]. For more detail, please see Remark 3.2.
‡ Suppose matrix A is stored in the row-major format.

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1343

3. An efficient Frobenius-norm error indicator and its application. In
this section, we first propose an error indicator for measuring the approximation
error in the Frobenius norm and an efficient framework for solving the fixed-precision
problem of QB factorization. Then, the randQB EI algorithm is derived based on the
blocked randQB algorithm. Finally, the accuracy and validity of the error indicator
in floating point arithmetic is discussed.

3.1. An error indicator. We first give a theorem regarding the Frobenius norm
of the error of the QB approximation.

Theorem 1. Let A be an m×n matrix. Q denotes an m×k orthonormal matrix
(k < m), and B = QTA. Then,

(5) ‖A−QB‖2F = ‖A‖2F − ‖B‖2F.

Proof. Due to the property of the Frobenius norm, we know for any matrix M ,

(6) ‖M‖2F = tr(MTM),

where tr(·) calculates the trace of a matrix. Because Q is orthonormal and B = QTA,

(7)

(A−QB)T (A−QB) = (A−QQTA)T (A−QQTA)

= ATA− 2ATQQTA + ATQQTQQTA

= ATA−ATQQTA

= ATA−BTB.

Now, applying the trace operation to both sides of (7), and according to (6), we obtain
(5).

Theorem 1 suggests that, if we have access to B and ‖A‖F is known a priori,
we can calculate the error of QB approximation without referring to the residual
matrix. This leads to a framework for solving the fixed-precision problem, presented
as Algorithm 1. It suits any algorithm that incrementally generates the rows of B,
including randQB b, trQRCP, and the randQB FP algorithm presented in section 4.
Below we prove the correctness of Algorithm 1.

Algorithm 1 A framework for solving the fixed-precision QB factorization problem

Input: an m× n matrix A; desired accuracy tolerance ε.
Output: Q, B, such that ‖A−QB‖F < ε.

1: Q = []; B = []; # empty matrices
2: E = ‖A‖2F # initialization of the error indicator
3: for i = 1, 2, 3, . . . , do
4: Generate Qi and Bi, s.t. [Q,Qi] is orthonormal and Bi = QT

i A.
5: Q = [Q, Qi]

6: B =

[
B
Bi

]

7: E = E − ‖Bi‖2F # update the error indicator
8: if E < ε2 then stop
9: end for

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1344 WENJIAN YU, YU GU, AND YAOHANG LI

Theorem 2. After the ith iteration of loop in Algorithm 1 is executed,

(8) E(i) = ‖A−Q(i)B(i)‖2F,

where E(i), Q(i), and B(i) denote the values of E, Q, and B after the ith iteration
of the loop is executed, respectively.

Proof. Based on step 7 of Algorithm 1 and the property of the Frobenius norm,

(9) E(i) = ‖A‖2F −
i∑

j=1

‖Bj‖2F = ‖A‖2F − ‖B(i)‖2F.

Because Q(i) is an orthonormal matrix and B(i) = Q(i)TA, (8) can be obtained by
applying Theorem 1.

From Theorem 2, we see that E in Algorithm 1 equals to the square of the ap-
proximation error. It is an error indicator updated through calculating the Frobenius
norm of Bi. This yields two benefits: we no longer need to maintain the residual
A−QB, and the approximation error can be calculated with very small cost.

Steps 7 and 8 in Algorithm 1 can be replaced by a row-by-row calculation scheme.

7a: for j = 1, 2, . . . ,mi do # mi denotes the number of rows of Bi

7b: E = E − ‖Bi(j, :)‖2F
8a: if E < ε2 then
8b: remove Bi(j + 1 : mi, :) from B; remove Qi(:, j + 1 : mi) from Q
8c: stop
8d: end if
8e: end for

This adds negligible cost but allows us to determine the certain row of Bi where the
accuracy tolerance is just attained. It makes the column (row) number of outputted Q
(B) an arbitrary integer, instead of a multiple of block size b in randQB b algorithm.

Remark 3.1. If A is an implicit sparse matrix, the proposed framework needs
more effort for calculating its Frobenius norm. The columns of A can be solved by
multiplying A with the canonical basis vectors. Therefore, the cost for calculating
‖A‖F will be O(n(m+ n)) flops, if each matrix-vector product costs O(m+ n) flops.
This might be affordable, as the Frobenius norm is a property of the matrix and we
need to compute it just once.

3.2. The randQB EI algorithm. The combination of Algorithm 1 and the
randQB b algorithm results in Algorithm 2 (called randQB EI), whose steps 4–7
replace step 4 in Algorithm 1. Notice that step 7 in Algorithm 2 looks the same as
step (5) in the randQB b algorithm but is actually different. And, step (3) in the
randQB b algorithm becomes step 5 in Algorithm 2, which is the blocked Gram–
Schmidt orthogonalization of AΩi (notice B = QTA).

Due to Theorem 2 and the orthogonality of Q, we have the following proposition.

Proposition 1. The randQB EI algorithm (Algorithm 2) is equivalent to the
randQB b algorithm, when executed in exact arithmetic.

Assuming that multiplying two dense matrices of sizes m × n and n × l costs
Cmmmnl flops, and performing an economic QR factorization of an m×n dense matrix

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1345

Algorithm 2 The randQB EI algorithm for the fixed-precision problem

Input: an m× n matrix A; desired accuracy tolerance ε; block size b.
Output: Q, B, such that ‖A−QB‖F < ε.

1: Q = []; B = [];
2: E = ‖A‖2F
3: for i = 1, 2, 3, . . . , do
4: Ωi = randn(n, b)
5: Qi = orth(AΩi −Q(BΩi))
6: Qi = orth(Qi −Q(QTQi)) # reorthogonalization
7: Bi = QT

i A # no need to calculate QT
i (A−QB)

8: Q = [Q, Qi]

9: B =

[
B
Bi

]

10: E = E − ‖Bi‖2F
11: if E < ε2 then stop
12: end for

costs Cqrmnmin(m,n) flops, we can analyze the flop counts of the relevant algorithms
and compare their performance for handling a dense A. If TrandQB and TrandQB b

denote the runtime of the algorithms randQB and randQB b, respectively, [1] then

(10) TrandQB ∼ 2Cmmmnl + Cqrml
2 ,

(11) TrandQB b ∼ 3Cmmmnl + Cmmml
2 +

2

t
Cqrml

2,

where l is the number of columns in the resulting matrix Q, and t satisfies l = tb.
Note that b is practically much smaller than l (say, b =10 or 20), although the optimal
choice of block size depends strongly on what hardware is used [1].

For the randQB EI algorithm, the runtime can be similarly depicted:

(12) TrandQB EI ∼ 2Cmmmnl + Cmm(2m+ n)l2 +
2

t
Cqrml

2 .

Because l is usually much smaller than m and n, we see that the flop count of
randQB EI is about 2/3 of that of randQB b and is comparable to that of the basic
randQB algorithm. Notice that Cqr is several times larger than Cmm. So, the flop
count of randQB EI could be smaller than that of randQB in the situation where
t is a large number. If A is sparse, this would more possibly happen, because the
randQB algorithm loses the benefit brought by the BLAS-3 operation.

The advantage of randQB EI over randQB b becomes more prominent if A is
a sparse matrix. With the proposed error indicator, we no longer need the residual
matrix. In contrast, it is always a dense matrix in the randQB b algorithm and costs
much larger memory and induces many more computations.

Remark 3.2. Algorithm 1 can also be combined with the trQRCP algorithm [14].
Although trQRCP generates a column permutation matrix as well, it does not affect
the Frobenius norm of each partial or the entire matrix of B. Therefore, this will pro-
duce another efficient algorithm for adaptive low-rank matrix approximation, which
also adapts to sparse matrices.

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1346 WENJIAN YU, YU GU, AND YAOHANG LI

3.3. Floating point arithmetic. Below we discuss the accuracy of the error
indicator in floating point arithmetic. We use E(·) and Er(·) to denote the functions
of error and relative error, respectively.

As the error indicator E = ‖A‖2F − ‖B‖2F, its calculated value Ê cannot be
accurate when E is very small, due to the cancellation in calculation. In floating-
point arithmetic, the machine precision εmach characterizes the maximum relative
error of converting a real number to its floating-point representation, i.e.,

(13) ∀x, |Er(x)| ≤ εmach.

According to the definition of Frobenius norm, ‖A‖2F is the summation of squares of
matrix entries. Therefore, the relative error of ‖A‖2F is bounded by 2εmach. The same
thing applies to ‖B‖2F. So,

(14)

|E(E)| = |E(‖A‖2F − ‖B‖2F)| ≤ |E(‖A‖2F)|+ |E(‖B‖2F)|
≤ 2εmach(‖A‖2F + ‖B‖2F)

< 4εmach‖A‖2F.

If we want to guarantee that E has a relative error no more than δ, i.e., |E(E)| ≤ δE,
we shall enforce

(15) 4εmach‖A‖2F ≤ δE.

This means the preset accuracy tolerance ε, which is larger than
√
E at the termina-

tion of the algorithm, should satisfy

(16) ε >
√
E ≥

√
4εmach‖A‖2F

δ
=

√
4εmach
δ
‖A‖F.

So, we obtain the following theorem.

Theorem 3. Suppose matrix A and accuracy tolerance ε are the input to the

randQB EI algorithm. If ε >
√

4εmach

δ ‖A‖F, the relative error of the calculated error

indicator E must be no more than δ, e.g., if ε > 2.1 × 10−7‖A‖F, the error of E is
within 1% in the double-precision floating arithmetic, where εmach ≈ 1.11× 10−16.

Notice that, as an error indicator for the fixed-precision problem, E should have
sufficient accuracy (e.g., with relative error ∼ 1% or less). Otherwise, the outputted
QB factorization would not satisfy the preset accuracy tolerance.

Besides, the orthogonality of Q also affects the accuracy of E. As the number
of columns in Q increases, its orthogonality gradually degrades. This issue occurs
for Q produced either by a single run of QR factorization (based on Householder
transformation) or by a Gram–Schmidt procedure followed by the reorthogonalization
step. We will investigate its effect in the following experiment.

An n×n matrix A is constructed to have singular values according to a decaying
exponential. Two instances are tested, with singular value σj = e−j/20 and σj =
e−j/200, j = 1, 2, . . . , respectively. The results obtained from executing randQB EI
algorithm (b = 10) and randQB algorithm with different values of rank parameter l
are shown in Figure 2. Note that for some large value of l, the error indicator can
be of negative value, such that it cannot be drawn in the log-scale plot. From the
figure, we can validate the correctness of Theorem 3. Providing that the square of

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1347

150 200 250 300 350 400 450

l

10 -18

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6 error indicator(randQB)

error indicator(randQB_EI)

error 2 (randQB)

error 2 (randQB_EI)

||Q*Q-I|| (randQB)

||Q*Q-I|| (randQB_EI)

(a) n = 3,000, σj = e−j/20

3200 3400 3600 3800 4000

l

10 -16

10 -15

10 -14

10 -13

10 -12

error indicator(randQB)

error indicator(randQB_EI)

error 2 (randQB)

error 2 (randQB_EI)

||Q*Q-I|| (randQB)

||Q*Q-I|| (randQB_EI)

(b) n = 20,000, σj = e−j/200

Fig. 2. Normalized error indicator E/‖A‖2F, error square ‖A−QB‖2F/‖A‖
2
F, and the loss of

orthogonality of Q vs. Q’s column number l in randQB algorithm and randQB EI algorithm.

error ‖A−QB‖2F/‖A‖2F > (2.1× 10−7)2 = 4.4× 10−14, the error indicator matches
the square of error very well. This holds even when l is larger than 3,000, which
corresponds to the situation with larger accumulated round-off error. In Figure 2, the
value of ‖QTQ− I‖∞ 1 is also plotted, which reveals the loss of orthogonality of Q.
The results show that this issue is not severe in both the randQB and randQB EI
algorithms, although it gradually increases as the columns of Q are increased.

Remark 3.3. Theorem 3 suggests the limitation of the error indicator and the pro-
posed algorithms for the fixed-precision problem. It means that the efficient frame-
work for adaptive rank determination would not work, in double-precision floating
arithmetic, for the problem with the accuracy tolerance ε less than 2.1× 10−7‖A‖F.

4. A pass-efficient algorithm for the QB factorization. The technique in
last section efficiently solves the fixed-precision problem measured in the Frobenius
norm. However, the randQB EI algorithm is not suitable for the scenarios where
accessing matrix entries is very expensive (e.g., A is too large and has to be stored
on hard disk), as it visits A for considerable time (see Table 1). In this section, we
propose a pass-efficient algorithm which largely reduces the number of passes over A.

4.1. The version without reorthogonalization. We first consider the fixed-
rank problem where the rank parameter k is given. A preliminary pass-efficient algo-
rithm (presented as Algorithm 3) can be derived from the randQB b or randQB EI
algorithm. The steps correspond to those of randQB EI in Algorithm 2, one by one,
except that the applications of A are moved out of the loop, and step 6 for reorthog-
onalization is ignored. In Algorithm 3, step 6 is the same as step 4 of randQB EI
algorithm, and steps 7 and 8 correspond to step 5 of randQB EI. In step 9, R−Ti is the
inverse of the transpose of an upper triangular matrix Ri. This step can be regarded
as solving linear equations with the coefficient matrix RT

i , which is implemented by
the “\” operator in MATLAB.

1This measure of loss of orthogonality follows Cleve Moler’s blog with the title “Compare Gram–
Schmidt and Householder Orthogonalization Algorithms” posted on October 17, 2016.

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1348 WENJIAN YU, YU GU, AND YAOHANG LI

Algorithm 3 A preliminary pass-efficient algorithm for fixed-rank QB factorization

Input: A ∈ Rm×n, k, s, block size b.
Output: Q, B.

1: Q = []; B = []; l = k + s;
2: Ω = randn(n, l)
3: G = AΩ
4: H = ATG
5: for i = 1, 2, 3, . . . , l/b do
6: Ωi = Ω(:, (i− 1)b+ 1 : ib)
7: Y i = G(:, (i− 1)b+ 1 : ib)−Q(BΩi)
8: [Qi, Ri] = qr(Y i)
9: Bi = R−Ti (H(:, (i− 1)b+ 1 : ib)T −ΩT

i B
TB)

10: Q = [Q, Qi]

11: B =

[
B
Bi

]

12: end for

Because Y i = QiRi,

(17) Qi = Y iR
−1
i .

Substituting it into step 7 of the randQB EI algorithm, we have

(18)

Bi = (Y iR
−1
i)TA

= R−Ti Y T
i A

= R−Ti (G(:, (i− 1)b+ 1 : ib)T −ΩT
i B

TQT)A

= R−Ti ((ATG(:, (i− 1)b+ 1 : ib))T −ΩT
i B

TQTA)

= R−Ti (H(:, (i− 1)b+ 1 : ib)T −ΩT
i B

TB).

This means that step 9 of Algorithm 3 is equivalent to step 7 of randQB EI. Therefore,
we obtain the following proposition.

Proposition 2. Algorithm 3 is mathematically equivalent to the fixed-rank ver-
sion of the randQB EI algorithm without reorthogonalization.

4.2. The version with reorthogonalization. In reality, the loss of orthogo-
nality among the columns of {Q1,Q2, . . . , } occurs due to the accumulation of round-
off error. This means the reorthogonalization step, i.e., step 6 in Algorithm 2, cannot
be ignored. Below we derive the revisions to Algorithm 3 to address this issue.

The reorthogonalization step can be expressed as

(19) Q̃iR̃i = Qi −QQTQi,

where Q̃i 6= Qi and R̃i 6= I due to the loss of orthogonality. Q̃i is better orthogonal
to the previously generated {Q1,Q2, . . . ,Qi−1} than Qi. Now, we need to derive a
formula for calculating Bi which does not involve A explicitly. Based on (17),

(20) Q̃i = (I −QQT)Y iR
−1
i R̃

−1
i .

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1349

So, the corresponding formula for Bi is

(21)

B̃i =Q̃
T

i A

=(R̃iRi)
−TY T

i (I −QQT)A

=(R̃iRi)
−T (ΩT

i A
T −ΩT

i B
TQT)(A−QB),

where the formula of Y i and the equality B = QTA is made use of. The product of
the last two brackets can be further simplified.

(22)

(ΩT
i A

T −ΩT
i B

TQT)(A−QB)

= HT
i −GT

i QB −ΩT
i B

TB + ΩT
i B

TQTQB

= HT
i − Y T

i QB −ΩT
i B

TB.

In the deduction, Gi and Hi denote G(:, (i− 1)b+ 1 : ib) and H(:, (i− 1)b+ 1 : ib)
in Algorithm 3, respectively. Therefore,

(23) B̃i = (R̃iRi)
−T (HT

i − Y T
i QB −ΩT

i B
TB) .

Based on (19) and (23), we can derive the version with reorthogonalization for
Algorithm 3. We just need to replace the ninth step with the following steps.

9a: [Qi, R̃i] = qr(Qi −Q(QTQi))

9b: Ri = R̃iRi

9c: Bi = R−Ti (H(:, (i− 1)b+ 1 : ib)T − Y T
i QB −ΩT

i B
TB)

Notice that Qi and Bi are overwritten to stand for Q̃i and B̃i, respectively. Based
on Proposition 2 and the above deduction, we see that the pass-efficient algorithm
with reorthogonalization is also mathematically equivalent to the fixed-rank versions
of randQB EI and randQB b algorithms.

This algorithm with fewer passes over A is called randQB FP. Based on the
notation in section 3, its flop count analysis is as follows.

(24) TrandQB FP ∼ 2Cmmmnl + 2Cmm(m+ n)l2 +
2

t
Cqrml

2 ,

where t satisfies l = tb. Compared with the randQB EI algorithm, the randQB FP
algorithm has a slightly larger flop count. However, while handling a dense A its
actual runtime may be shorter because it lumps the multiplications with A.

Remark 4.1. The round-off error may affect the accuracy of Bi, and it increases
as the number of iterations increases. However, this may not be an issue for practical
low-rank approximation problems. In section 5, we will present numerical experiments
to validate the effectiveness of the randQB FP algorithm, which shows it works very
well for many applications with the rank parameter up to several thousands or the
relative Frobenius-norm error of approximation as small as 10−7.

Remark 4.2. The randQB FP algorithm can derive a single-pass algorithm, if
matrix A is stored in the row-major format or is revealed row(s) by row(s). Suppose
Ai,: denotes the ith row of A. With it we have the ith row of G, Gi,: = Ai,:Ω. Then,

because H = ATG =
∑
iA

T
i,:Gi,:, the ith term in this summation can be obtained.

With all rows of A, in this way we can accomplish steps 3 and 4 in the randQB FP
algorithm with only one pass over A. It should be pointed out that this algorithm is
not a general single-pass algorithm, as it has the restriction of the matrix. For more
general single-pass algorithms for low-rank matrix approximation, please refer to the
recent work [22].

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1350 WENJIAN YU, YU GU, AND YAOHANG LI

4.3. The inclusion of power iteration scheme. The error of randomized
QB factorization could be large for the matrix whose singular value decays slowly [2].
So, the power iteration scheme has been proposed to relieve this weakness [1, 2, 7].
Conceptually, the power iteration means replacing A with (AAT)PA, where P is
an integer. However, in floating-point computation any singular components smaller

than σ1ε
1/(2P+1)
mach will be lost. This makes the orthonormalization steps after the

applications of A and AT necessary, and P should not be set to a large number.
Incorporating the power iteration, we have the randQB FP algorithm for the fixed-
precision problem presented as Algorithm 4, where the error indicator E is utilized.

Algorithm 4 The randQB FP with power scheme for the fixed-precision problem

Input: A ∈ Rm×n, desired accuracy tolerance ε, block size b, power parameter P .
Output: Q, B, such that ‖A−QB‖F ≤ ε.

1: Q = []; B = [];
2: Ω = randn(n, l̃), where l̃ is a sufficiently large number.
3: for i = 1 : P do
4: G = orth(AΩ)
5: Ω = orth(ATG)
6: end for
7: G = AΩ
8: H = ATG
9: E = ‖A‖2F

10: for i = 1, 2, 3, . . . , do
11: Ωi = Ω(:, (i− 1)b+ 1 : ib)
12: Y i = G(:, (i− 1)b+ 1 : ib)−Q(BΩi)
13: [Qi, Ri] = qr(Y i)
14: [Qi, R̃i] = qr(Qi −Q(QTQi))
15: Ri = R̃iRi

16: Bi = R−Ti (H(:, (i− 1)b+ 1 : ib)T − Y T
i QB −ΩT

i B
TB)

17: Q = [Q, Qi]

18: B =

[
B
Bi

]

19: E = E − ‖Bi‖2F
20: if

√
E < ε then stop

21: end for

In Algorithm 4, a sufficient large value of l̃ should be set according to problem-
specific experience and the concern of computing time. If the set l̃ is not large enough
for attaining the specified accuracy criterion, we need to regenerate the Ω matrix and
rerun the algorithm to collect additional columns/rows of Q and B. This situation
and the power scheme both increase the number of passes over A. But compared
to other algorithms for the fixed-precision problem, this fixed-precision randQB FP
algorithm involves much fewer passes over A.

5. Numerical results. In this section we compare the proposed algorithms
against several existing algorithms in terms of execution time, memory usage, and
accuracy. All experiments are carried out on a Linux server with two 12-core Intel
Xeon E5-2630 CPUs at 2.30 GHz and 32GB RAM. For comparison of speed, the
proposed algorithms have been implemented in C based on the codes shared by the
authors of [1, 16]. The program is coded with OpenMP derivatives and compiled
with the Intel ICC compiler with MKL libraries [17], to take full advantage of the

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1351

2000 4000 10000 20000 40000

10
−1

10
0

10
1

n

T
im

e
(s

)

randQB

randQB_EI

randQB_FP

randQB_b [1]

(a) Without the power scheme

2000 4000 10000 20000 40000

10
−1

10
0

10
1

n

T
im

e
(s

)

randQB(P=1)

randQB_EI(P=1)

randQB_FP(P=1)

randQB_b(P=1) [1]

(b) With the power scheme

Fig. 3. Runtime of the randomized QB-factorization algorithms for dense matrices (l = 200).

multicore CPUs. The QR factorization and other basic linear algebra operations are
implemented through LAPACK routines which are automatically executed in parallel.

5.1. Comparison of speed. We compute the QB factorization of an n×n ma-
trix A. The matrix is stored in RAM, though the pass-efficient algorithm randQB FP
is suitable for handling a large matrix stored on hard disk. For the latter situation,
the runtime advantage of randQB FP can be estimated by the number of passes over
A. Here we want to show that randQB FP has little sacrifice while owning the pass-
efficient property. Notice the singular value distribution of the matrix is immaterial
for this runtime comparison. Four algorithms are compared:

• The randQB algorithm in Figure 1(a);
• The randQB b algorithm in Figure 1(b), obtained from [16];
• The randQB EI algorithm presented in section 3;
• The randQB FP algorithm presented in section 4.

We compare their speed using both dense and sparse matrices, both as a function of
the dimension of the matrix and the parameter l denoting the number of the output
Q’s columns. The block size is b = 20 for the randQB b, randQB EI, and randQB FP
algorithms. For each runtime measurement, the average time over 20 runs is reported.
Notice that the compared randQB b algorithm is an efficient parallel implementation
open-sourced in [16], also based on Intel MKL libraries.

In the first experiment we test the algorithms on dense matrices of varying size.
n ranges from 2,000 to 40,000. The value of l is always 200. The results are shown
in Figure 3 for the situations without and with the power scheme. The data of the
blocked randQB algorithm for the matrix with n = 40,000 are not available due to the
unreasonably long runtime of the program from [16]. From the results in Figure 3(a),
we see that the randQB EI and randQB FP algorithms are 2.4X (13.47s vs. 31.78s)
and 4.0X (8.01s vs. 31.78s) faster than the implementation of randQB b algorithm,
respectively, when n = 32,000. If the power scheme is imposed, the acceleration ratios
decrease to 1.8X and 3.0X, respectively, which are still remarkable. The randQB
algorithm has the fastest computational speed, but its advantage over the randQB FP
algorithm becomes marginal when the matrix size is large.

Here we only show the runtime results with the power parameter P = 1, as for
many applications this already achieves sufficient accuracy.

The memory costs for some large matrices are listed in Table 2. For the randQB,
randQB EI, and randQB FP algorithms, the memory cost is mainly due to storing

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1352 WENJIAN YU, YU GU, AND YAOHANG LI

Table 2
The memory usage of the randomized QB-factorization algorithms for dense matrices (l = 200).

n randQB randQB EI randQB FP randQB b [1]

16,000 2,308 MB 2,303 MB 2,357 MB 6,237 MB
24,000 4,792 MB 4,796 MB 4,873 MB 13,618 MB
32,000 8,253 MB 8,253 MB 8,356 MB 23,931 MB
40,000 12,694 MB 12,581 MB 12,714 MB N.A.

2000 4000 10000 20000 50000
10

−2

10
−1

10
0

10
1

n

T
im

e
(s

)

randQB

randQB_EI

randQB_FP(CSR)

randQB_FP(COO)

randQB_b [1]

(a) Without the power scheme

2000 4000 10000 20000 50000
10

−2

10
−1

10
0

10
1

n

T
im

e
(s

)

randQB(P=1)

randQB_EI(P=1)

randQB_FP(CSR,P=1)

randQB_FP(COO,P=1)

randQB_b(P=1) [1]

(b) With the power scheme

Fig. 4. Runtime of the randomized QB-factorization algorithms for sparse matrices (l = 200).

matrix A. For the randQB b algorithm, it needs additional memory to store the resid-
ual matrix and the product of QB. So, the proposed algorithms consume about 1/3 of
that used by the blocked randQB algorithm. If we allow that A can be overwritten by
the residual matrix, the memory cost of the randQB b algorithm [1] can be reduced,
but will still be 2X larger than the proposed algorithms. For the largest case with
n = 40,000, the randQB b algorithm actually requests more memory than the size of
RAM (∼ 32 GB), which explains the aforementioned long runtime of randQB b.

The second experiment is about the algorithms’ efficiency for sparse matrices.
We generate sparse matrices with roughly 0.3% nonzero elements. They are stored
in compressed sparse row (CSR) format [18]. The runtimes of the algorithms are
shown in Figure 4. The results of the randQB b algorithm for the matrices with
n ≥ 40,000 are not available due to unreasonably long runtime. In contrast, it only
takes a couple of seconds for the other algorithms to process the largest matrix with
n = 48,000. We see that the proposed algorithms take usage of the sparsity, while
the blocked randQB algorithm cannot. The speedup ratios of the former to the
latter increase as the matrix size increases. For n = 32,000, the randQB EI and
randQB FP algorithms are more than 22X and 14X faster than the implementation of
randQB b algorithm, respectively. Different from the situation for dense matrices, the
randQB EI algorithm becomes faster than randQB FP. This implies that lumping the
multiplications of a sparse matrix all together brings less benefit. And, randQB EI
could run faster than the randQB algorithm for a matrix size over 48,000. This can
be explained by the comparison of (10) and (12), the inefficiency of orthogonalizing
the whole matrix of l columns, and that the sparse matrix removes the benefit of
BLAS-3 operation to randQB. Another interesting phenomenon is that if we instead
store a large sparse matrix with the COO (coordinate) format, the runtime of the

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1353

Table 3
The memory usage of the randomized QB-factorization algorithms for sparse matrices (l = 200).

n randQB randQB EI randQB FP randQB b [1]

16,000 162 MB 174 MB 223 MB 6,153 MB
24,000 232 MB 239 MB 312 MB 13,572 MB
32,000 293 MB 303 MB 402 MB 23,917 MB
40,000 338 MB 359 MB 488 MB N.A.
48,000 405 MB 426 MB 582 MB N.A.

200 400 600 800 1000
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

l

T
im

e
(s

)

randQB

randQB_EI

randQB_FP

randQB_b [1]

(a) Without the power scheme

200 400 600 800 1000
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

l

T
im

e
(s

)

randQB(P=1)

randQB_EI(P=1)

randQB_FP(P=1)

randQB_b(P=1) [1]

(b) With the power scheme

Fig. 5. Runtime of the randomized QB-factorization algorithms for a dense matrix (n = 8,000)
with varying value of l.

randQB FP algorithm can be reduced by 30%. This means that the COO format is
more adaptive to parallel computing. If we set P = 1, similar observations regarding
the experimental results can be drawn, as shown in Figure 4(b).

The memory cost of these algorithms is listed in Table 3, from which we see more
prominent memory saving of the proposed algorithms over the randQB b algorithm.
While compared with randQB, the proposed algorithms consume comparable memory.

Last, we test a dense matrix with size n = 8,000, and vary the value of l. The
trends of the runtime are plotted in Figure 5. It shows that the randQB EI and
randQB FP algorithms without the power scheme are about 1.9X and 2.5X faster
than randQB b, respectively. If the power scheme is imposed, the speedup ratios to
randQB b decrease, but randQB FP is still more than 2X faster than randQB b.

5.2. Comparison of accuracy. Three kinds of matrices are tested standing for
different distribution patterns of singular values:

• Matrix 1 (slow decay): A = UΣV , where U and V are randomly drawn
matrices with orthonormal columns, and the diagonal matrix Σ has diagonal
elements σj = 1/j2.

• Matrix 2 (fast decay): A is formed just like Matrix 1, but the diagonal
elements of Σ is given by σj = e−j/7. It reflects a fast decay of singular
values.

• Matrix 3 (S-shape decay): A is built in the same manner as Matrices 1 and
2, but the diagonal elements of Σ are given by σj = 0.0001+(1+ej−30)−1. It
makes the singular values first hover around 1, then decay rapidly, and finally
level out at about 0.0001.

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1354 WENJIAN YU, YU GU, AND YAOHANG LI

0 20 40 60 80 100 120 140 160 180 200
10

−4

10
−3

10
−2

10
−1

10
0

l

||
A

−
Q

B
||
/|
|A

||

SVD

randQB_EI(P=0)

randQB_EI(P=1)

randQB_EI(P=2)

randQB_FP(P=0)

randQB_FP(P=1)

randQB_FP(P=2)

randQB_b(P=0)

randQB_b(P=1)

randQB_b(P=2)

(a) Errors of Matrix 1 whose singular values decay slowly

0 10 20 30 40 50 60 70 80 90 100

10
−6

10
−4

10
−2

10
0

l

||
A

−
Q

B
||
/|
|A

||

SVD

randQB_EI(P=0)

randQB_EI(P=1)

randQB_FP(P=0)

randQB_FP(P=1)

randQB_b(P=0)

randQB_b(P=1)

(b) Errors of Matrix 2 whose singular values decay rapidly

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

l

||
A

−
Q

B
||
/|
|A

||

SVD

randQB_EI(P=0)

randQB_EI(P=1)

randQB_FP(P=0)

randQB_FP(P=1)

randQB_b(P=0)

randQB_b(P=1)

(c) Errors of Matrix 3 with S-shape decay of singular values

Fig. 6. Errors of different algorithms for approximating the test matrices (n = 2,000, b = 10).

For each kind, we generate a 2,000×2,000 matrix, for which we compare the errors of
the proposed techniques and the blocked randQB scheme [1] for varying l values. The
results are shown in Figure 6, where we see that the proposed techniques have just
the same accuracy as the blocked randQB algorithm. If we use the power scheme,
even with a power parameter as small as P = 1, the errors of the randQB EI and
randQB FP algorithms are remarkably reduced. And, the power schemes with P =
1 and P = 2 produce indistinguishable results for the tested matrices. Both are
extremely close to the optimal results from SVD.

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1355

1 · · · i 1 · · · i

A single-pass algorithm for low-rank approximation
Input: A, l.

Output: Q, Q̃, B̂ such that A ≈ QB̂Q̃
T
.

(1) Ω = randn(n, l); Ω̃ = randn(m, l);

(2) Y = AΩ; Ỹ = AT Ω̃;

(3) Q = orth(Y); Q̃ = orth(Ỹ);

(4) B̂ = (Ω̃
T
Q)−1Ỹ

T
Q̃ .

Fig. 7. An existing single-pass algorithm for low-rank matrix factorization [2].

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

l

||
A

−
Q

B
||
/|
|A

||

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

10
2

l

||
A

−
Q

B
||
/|
|A

||

SVD

single−pass[2]

randQB_FP

Fig. 8. The approximation errors of the two single-pass algorithms and truncated SVD for
Matrix 1 (left) and Matrix 2 (right).

5.3. Performance of the single-pass algorithm. Without the power scheme,
the randQB FP algorithm is a single-pass algorithm (see Algorithm 3). This is because
G = AΩ and H = ATG can be executed through one pass over matrix A, providing
that A is in the row-major format. Another single-pass algorithm was proposed in [2],
as a remedy to the randQB algorithm. It is shown in Figure 7, whose step (3) produces

matrices Q and Q̃ such that A ≈ QQTAQ̃Q̃
T

. Then, a small matrix B̂ = QTAQ̃

is approximately solved in step (4), because Q̃
T
Ỹ ≈ Q̃

T
ATQQT Ω̃ = B̂

T
QT Ω̃.

This single-pass algorithm corresponds to the low-rank factorization in the form of

A ≈ QB̂Q̃
T

. Obviously, it includes more approximations and is not equivalent to the
randQB algorithm. In contrast, Algorithm 3 is mathematically equivalent to randQB
(see Proposition 2) and is supposed to be more accurate. With Matrices 1 and 2 from
section 5.2, we can compare the accuracy of the both algorithms, whose results are
plotted in Figure 8.

From Figure 8 we see that the approximation error of the single-pass algorithm in
[2] is often one order of magnitude larger than that of our randQB FP based algorithm.
Actually, it does not even decrease as the rank of the approximation matrix increases.
We also calculate the top 50 singular values, and the oversampling with s = 10 is
applied to the both algorithms. The results are shown in Figure 9, along with those
obtained from the randQB algorithm, where the results of randQB FP and randQB
are indistinguishable. For the matrix with slow decay of singular value the result
from randQB FP shows moderate accuracy on the top singular values, whose error is
usually orders of magnitude smaller than that of the single-pass algorithm in [2].

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1356 WENJIAN YU, YU GU, AND YAOHANG LI

10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

σ j

10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

σ j

single−pass [2]

randQB_FP

randQB

SVD

single−pass [2]

randQB_FP

randQB

SVD

Fig. 9. The computational results of top singular values for Matrix 1 (left) and Matrix 2 (right).

Table 4
The results on solving the fixed-precision problems based on three test matrices.

Matrix
ε

randQB EI randQB FP Truncated SVD RangeFinder [2]

type Rank Time(s) Error Rank Time(s) Rank Time(s) Rank Time(s)

Matrix 1
1e-2 15 1.19 9.3e-3 15 3.13 15

123
115 1.1

1e-4 327 8.29 9.98e-5 328 3.71 313 2,084 29.1

Matrix 2
1e-4 66 2.16 8.37e-5 66 2.73 65

115
101 1.1

1e-5 82 2.68 8.86e-6 82 3.17 81 113 1.1

Matrix 3
1e-2 33 1.56 4.1e-3 33 3.62 32

126
3,618 87.8

1.5e-3 1,588 18.7 1.499e-3 1,587 15.8 1,587 7,916 379

5.4. Results of solving the fixed-precision problems. In this subsection
we test the proposed algorithms with some fixed-precision problems. The optimal
solution is the factorization with the smallest sizes of Q and B, which corresponds
to a lower amount of subsequent computation. It can be achieved by first calculating

SVD of the input matrix A, and then checking (
∑min(m,n)
j=k+1 σ2

j)1/2, where σj is A’s jth
singular value, to determine the smallest k satisfying the accuracy criterion. Here, we
always consider the accuracy criterion with a relative tolerance: ‖A−QB‖F < ε‖A‖F.

The proposed algorithms are compared with the SVD based method and the
adaptive randomized range finder (Algorithm 4.2 in [2]). The row-by-row calculation
scheme mentioned in section 3 is implemented into our algorithms. The experiments
are carried out with MATLAB on the aforementioned Linux server. The built-in
commands like “svd,” “qr,” etc., are employed, which naturally take advantage of
parallel computing.

For the randQB FP algorithm, we empirically set l̃ = 50b. With a suitable value of
b, this produces a large enough l̃ for attaining the accuracy criteria in the experiments.
A more sophisticated approach for setting l̃ and b can be investigated in the future.

We first construct the three kinds of matrices in section 5.2, each of 8,000× 8,000
size, and test them with the four methods. Their results are shown in Table 4. For
randQB EI and randQB FP, the power scheme with P = 1 is used. The block
size is set to b = 10 in all tests, except the last one for which b = 40. In Table
4, “ε” stands for the threshold for relative error, and “error” means the relative
Frobenius-norm error of the produced QB factorization. From the table we see that
the results of randQB EI and randQB FP algorithms all satisfy the set accuracy
demands. And, the corresponding ranks (i.e., the number of columns in Q) are

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1357

Table 5
The results on solving the fixed-precision problems based on two real data.

Matrix ε Parameters
randQB EI randQB FP Truncated SVD RangeFinder [2]

Rank Time(s) Error Rank Time(s) Rank Time(s) Rank Time(s)

Image 0.1

P=1, b=10 468 8.1 0.0999 471 3.25

426 44.2 2,913 79.0
P=1, b=20 468 4.23 0.0999 472 4.44

P=2, b=10 441 9.98 0.0999 443 3.47
P=2, b=20 441 5.76 0.0999 443 7.26

AMiner 0.5
P=1, b=50 2440 108 0.4999 2,449 143

2,115 1,049 8,018 399
P=2, b=50 2,229 134 0.4999 2,242 205

(a) original image (b) compressed image (10% error)

Fig. 10. The original image and the compressed image obtained with the proposed algorithm.

very close to the optimal values from the SVD based approach. As for the runtime,
the proposed algorithms are usually several tens times faster than SVD. Notice that
our MATLAB programs are less optimized than the built-in svd command. So,
more significant speedup could be expected for the implementation in C. Although
the adaptive range finder is built on a theory with spectral norm of matrix, in our
experiments it always produces a QB factorization satisfying the accuracy demand in
Frobenius norm. However, its results (factor matrices) are much larger than necessary.

We then test the algorithms with two real data. One is from a scenic image, and
the other is from an information retrieval application “AMiner” [19]. The colored
image is represented by a 9,504 × 4,752 matrix. The other is an 8,130 × 100,000
keyword-person matrix produced with the term frequency and inverse document fre-
quency model [20]. This sparse matrix has about 0.2% nonzero elements. The com-
putational results are listed in Table 5, with different power parameters and block
sizes. They again validate that the proposed algorithms can automatically satisfy
the accuracy criterion. And, with P = 2 the result of rank is substantially reduced,
approaching the optimal value. For the same power scheme, setting larger block size
b we can reduce the runtime of randQB EI. In contrast, the runtime of randQB FP
increases with the block size, as we have set l̃ = 50b. Notice that with the relative
error tolerance ε = 0.1, the image is largely compressed (∼ 7X size reduction), with
little loss of quality (see Figure 10). And, the singular value of the AMiner matrix
decays very slowly, but even with large approximation error its low-rank approxi-
mation could bring improved performance of information retrieval (cf. [20], section
11.3).

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1358 WENJIAN YU, YU GU, AND YAOHANG LI

For the second data, which is a large sparse matrix, the Krylov subspace iterative
method svds [18, 20] is also tested. However, it costs 2,281 seconds for computing
the first 1,000 singular values/vectors. It is much slower than executing svd to the
matrix’s dense version. Besides, svd requests more than 20 GB memory, while the
proposed randomized algorithms only costs 3 GB memory or so for this case.

6. Conclusions. Efficient techniques are proposed for the fixed-precision low-
rank approximation of large matrices. Our contributions are as follows.

• A simple and accurate error indicator in the Frobenius norm is proposed,
which enables efficient rank determination and can be used in the blocked
randQB algorithm [1] and other incremental QB-form factorization algo-
rithms (like that in [14]). We have proved its accuracy and validity for the
problems with relative accuracy tolerance larger than 2.1× 10−7. Numerical
experiments on large dense and sparse matrices have shown that the proposed
rank determination scheme brings several to several tens times speedup and
memory saving to the blocked randQB algorithm, without loss of accuracy.

• Based on the blocked randQB algorithm, we propose a pass-efficient algorithm
called randQB FP. It is mathematically equivalent to the blocked randQB al-
gorithm, but reduces the passes over matrix A to the fewest. The randQB FP
algorithm also suits the fixed-precision problem and can derive a single-pass
algorithm under a certain condition. Numerical results have validated the effi-
ciency and accuracy of the randQB FP algorithm and shown that the derived
single-pass algorithm is much more accurate than an existing counterpart.

• Real data are tested to demonstrate the effectiveness of the proposed algo-
rithms for the fixed-precision problem. Compared with the adaptive range
finder approach [2], the proposed algorithms run faster and produce much
smaller factor matrices while attaining the accuracy criterion.

Future work includes extending and applying the proposed algorithms to more
practical data mining and machine learning scenarios.

Acknowledgments. The authors thank Prof. P.-G. Martinsson for sharing the
source code of the blocked randQB algorithm, which makes this work possible. The
authors are also grateful to Prof. Jie Tang with Tsinghua University for providing the
data of Aminer.

REFERENCES

[1] P.-G. Martinsson and S. Voronin, A randomized blocked algorithm for efficiently computing
rank-revealing factorizations of matrices, SIAM J. Sci. Comput., 38 (2016), pp. S485–S507.

[2] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[3] P. Drineas and M. W. Mahoney, RandNLA: Randomized numerical linear algebra, Commun.
ACM, 59 (2016), pp. 80–90.

[4] S. Voronin and P.-G. Martinsson, RSVDPACK: Subroutines for Computing Partial Singular
Value Decompositions Via Randomized Sampling on Single Core, Multi Core, and GPU
Architectures, preprint, arXiv:1502.05366v3 [math.NA], 2016.

[5] S. Eriksson-Bique, M. Solbrig, M. Stefanelli, S. Warkentin, R. Abbey, and I. C. F.
Ipsen, Importance sampling for a Monte Carlo matrix multiplication algorithm, with ap-
plication to information retrieval, SIAM J. Sci. Comput., 33 (2011), pp. 1689–1706.

[6] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
II: Computing a low-rank approximation to a matrix, SIAM J. Sci. Comput., 36 (2006),
pp. 158–183.

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST FIXED-PRECISION RANDQB 1359

[7] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component
analysis, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1100–1124.

[8] H. Ji and Y. Li, GPU accelerated randomized singular value decomposition and its applica-
tion in image compression, in Proceedings of the Modeling, Simulation, and Visualization
Capstone Conference, Sulfolk, VA, 2014.

[9] T. Mary, I. Yamazaki, J. Kurzak, P. Luszczek, S. Tomov, and J. Dongarra, Performance
of random sampling for computing low-rank approximations of a dense matrix on GPUs,
in Proceedings of SC’2015, Austin, TX, 2015.

[10] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Mach. Learn.,
3 (2011), pp. 123–224.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[12] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[13] P. G. Martinsson, G. Quintana-Orti, N. Heavner, and R. van de Geijn, Householder QR
factorization with randomization for column pivoting (HQRRP), SIAM J. Sci. Comput.,
39 (2017), pp. C96–C115.

[14] J. A. Duersch and M. Gu, Randomized QR with column pivoting, SIAM J. Sci. Comput., 39
(2017), pp. C263–C291.

[15] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psy-
chometrika, 1 (1936), pp. 211–218.

[16] S. Voronin and P. G. Martinsson, RandQR, http://amath.colorado.edu/faculty/martinss/
main codes.html, 2015.

[17] Intel Parallel Studio XE Cluster Edition for Linux, https://software.intel.com/en-us/
intel-parallel-studio-xe, 2017.

[18] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
[19] AMiner, http://www.aminer.org.
[20] L. Elden, Matrix Methods in Data Mining and Pattern Recognition, SIAM, Philadelphia, 2007.
[21] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large-Scale

Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.
[22] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for

low-rank matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1454–1485.
[23] H. Li, G. C. Linderman, A. Szlam, K. P. Stanton, Y. Kluger, and M. Tygert, Algorithm

971: An implementation of a randomized algorithm for principal component analysis, ACM
Trans Math Software, 43 (2017), 28.

[24] W. Yu and X. Wang, Advanced Field-Solver Techniques for RC Extraction of Integrated
Circuits, Springer, New York, 2014.

D
ow

nl
oa

de
d

08
/3

1/
18

 to
 1

66
.1

11
.6

8.
91

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://amath.colorado.edu/faculty/martinss/main_codes.html
http://amath.colorado.edu/faculty/martinss/main_codes.html
https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-parallel-studio-xe
http://www.aminer.org

	Efficient Randomized Algorithms for the Fixed Precision Low Rank Matrix Approximation
	Introduction
	Technical preliminaries
	Randomized algorithms

	An efficient Frobenius-norm error indicator and its application
	An error indicator
	The randQB_EI algorithm
	Floating point arithmetic

	A pass-efficient algorithm for the QB factorization
	The version without reorthogonalization
	The version with reorthogonalization
	The inclusion of power iteration scheme

	Numerical results
	Comparison of speed
	Comparison of accuracy
	Performance of the single-pass algorithm
	Results of solving the fixed-precision problems

	Conclusions
	References

