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A three-dimensional numerical model is applied in this study to illustrate the elec-

trical response of a thermoelectric generator (TEG) during transient heat flux at the

hot side. In this work, various types of thermal boundary conditions are considered

to evaluate the performance of the TEG. Thus, a TEG under pulsed heat flux is

studied numerically, and the numerical model is verified by experimental results.

With the consideration of a defined reference geometry, different heat flux frequen-

cies are applied in order to evaluate the corresponding electrical output by the

TEG. In addition, variation of the module performance for various TEG leg lengths

and its cross-sectional area are studied over a wide range of heat fluxes. The results

indicate that the open circuit voltage in the experiment is in a good agreement with

the open circuit voltage in the simulation results. The results show that the range of

power oscillation reduces at higher frequency of the applied heat flux. Furthermore,

the variability of the output power increases as the thermoelectric element

length increases and the area of the element reduces. Published by AIP Publishing.
https://doi.org/10.1063/1.5040166

I. INTRODUCTION

A thermoelectric generator (TEG) is a device that works on the principle of the Seebeck

effect, enabling it to convert thermal energy directly into electricity. Many researchers have

considered a wide range of applications for thermoelectric devices. Wang et al.1 and Qing

et al.2 investigated a TEG which was a full-fledged wearable for the human body. Amatya and

Ram3 linked solar parabolic concentrators to a Hi-Z thermoelectric to produce electrical power.

Samson et al.4 studied TEG for energy harvesting in an aircraft to supply energy for the wire-

less sensor node. Goudarzi et al.5 used the TEG for harvesting waste heat from domestic wood

stoves. In automotive heat recovery applications, Bass et al.6 used 72 high impedance (Hi-Z)

13 W bismuth-telluride thermoelectrics for truck engines in order to generate a power of 1 kW.

Components of typical TEG modules contain n-type and p-type semiconductor legs con-

nected in series electrically and sandwiched between two layers of ceramic substrates. By

applying thermal energy on one side and connecting the other side to a heat sink, the tempera-

ture difference created across the module causes charge carriers to migrate from the high-

temperature side to the low temperature side; thus, the different amount of charges on the cold

and hot sides generates an internal electrical field.7

In most studies in the field of thermoelectrics, heat load and imposed heat flux on the hot

side of the TEG have been considered the steady state,8–10 while the heat source has transient

a)Author to whom correspondence should be addressed: alr@et.aau.dk

1941-7012/2018/10(6)/064705/10/$30.00 Published by AIP Publishing.10, 064705-1

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY 10, 064705 (2018)

https://doi.org/10.1063/1.5040166
https://doi.org/10.1063/1.5040166
https://doi.org/10.1063/1.5040166
mailto:alr@et.aau.dk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5040166&domain=pdf&date_stamp=2018-12-18


behavior in many practical applications. Thus, the amount of demand for various applications has

been limited. To expand the application of TEGs, transient heat flux has been considered11–13

also with phase change materials14 in heat recovery from industries such as car brake manufactur-

ing and pulsed laser in materials processing.15 Yamashita et al.16 showed that the efficiency of

TEGs can be enhanced by the application of periodic temperature. Therefore, input temperature

on the hot side is one of the parameters with a high impact on the TEG performance.

Although the cold side temperature is affected by the hot side temperature, the performance

of TEGs enhances as the applied heat flux and, thus, the temperature on the hot side increase.

Nevertheless, if the temperature difference between the two sides enhances, the conversion per-

formances can be improved. Therefore, in the TEG systems, not only the optimal design of the

heat sink and heat source is important, but also optimization of the TEG module is simulta-

neously critical in order to enhance electrical output of the TEG.17,18 One of the key parameters

affecting the performance of TEG is the geometry of the thermoelectric elements. Min and

Rowe19 chose three types of commercial TEGs with various lengths at a temperature of 120 �C
from the heat sources. By 55% reduction in the TEG length, they achieved 48% improvement

in electrical power output. Sahin and Yilbas20 and Rezania et al.21 addressed a shape parameter

which relates the output electricity of TEG and geometry of thermoelectric elements. They con-

cluded that the device efficiency can be influenced considerably by changing the shape parame-

ter of the TEG leg.

Nevertheless, state-of-the-art in this field lacks the study on the effect of TEG geometry on

its electrical response based on the properties of the applied heat pulse. Thus, the width and the

depth of the TEG elements can have an impact on the efficiency of the TEG, so that 3D simula-

tion of the TEG is required for a detailed study. In the present work, several types of transient

heat fluxes are applied on the TEG, and electrical response and performance of the TEG are stud-

ied. Then, a 3D model of the TEG with different thermal boundary conditions is simulated under

various types of periodic heat on the hot side of the TEG. Furthermore, the performance of the

TEG from simulation and experimental results is compared for the validation study in this work.

II. COMPUTATIONAL METHOD

The model for thermoelectric can be expressed by the heat transfer equation22

qC
@T

@t
þr:q00 ¼ Q0; (1)

where q; C; T; t; q00, and Q0 are the density, C heat capacity, temperature, time, heat flux, and

density of Joule heating energy, respectively. The continuity of electric current is expressed as

r:J ¼ @qc

@t
; (2)

where qc denotes the charge density and J is the electric current flux. The joule heating energy

is expressed as follows:

Q0 ¼ J:E; (3)

q00 ¼ �krT þ P0J; (4)

where E and P0 denote the electric field and the Peltier coefficient, respectively, which depend

on the reversible Seebeck effect and the irreversible Joule effect

P0 ¼ ST; (5)

J ¼ �rrV � rSrT: (6)
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By substituting Eqs. (3) and (6) into Eqs. (1) and (2), the thermoelectric equations can be writ-

ten as follows:

qC
@T

@t
þr: �krT þ ST �rrV � rSrTð Þð Þ ¼ �rrV � rSrTð Þ �rVð Þ; (7)

�r r2V þ Sr2Tð Þ ¼ @qc

@t
: (8)

The material properties of the thermoelectric model in the simulations and the TEG with 97

uni-couples used in the experiments are shown in Table I.

The maximum power generation by the TEG is23

_Wmax ¼
S2DT2

4R
; (9)

where the SDT term represents the Seebeck voltage and R is the total internal electrical resis-

tance of the TEG

R ¼
qepLp

Ap
þ qenLn

An
: (10)

In Eq. (10), Rp, Lp, Ap, Rn, Ln, and An denote the electrical resistivity in p-type, length of p-

type, area of the p-type, electrical resistivity in n-type, length of n-type, and area of the n-

type.

III. BOUNDARY CONDITIONS

In the present work, a uni-couple TEG is simulated by COMSOL Metaphysics. As shown

in Fig. 1, heat transfer and electric current from the coupled mechanism predicts the device per-

formance. The temperature on the higher surface of the top ceramic, in contact with the heat

source, is identified by the variation of the applied heat flux. A fixed value of the heat transfer

coefficient equal to 50 KW=m2:K is applied to the cold side of the bottom ceramic substrate.

The initial temperature of the components and the ambient temperature are taken to be 300 K.

In this work, the space among the thermoelements in the TEG used for the experiments is filled

by the non-conductive insulation material; therefore, heat loss from the component wall

exposed to the other elements and surrounding is taken to be zero, -n.q¼ 0. Table II shows the

dimensions of the TEG components used in this study.

IV. EXPERIMENTAL SETUP AND VALIDATION

An experimental setup [see Fig. 2(a)] is used to study the transient behavior of the TEG. In

order to reduce the heat losses from the side of the TEG, the experiments are carried out in a

TABLE I. Material properties used in the simulation.

Material

Electrical

conductivity (S/m)

Heat capacity

at constant

pressure ð J
kg:KÞ

Density

ðkg
m3Þ

Thermal

conductivity ð W
m:KÞ

Seebeck

coefficient ðV
K
Þ

Relative

conductivity

Copper 5:998� 107 385 8700 400

Bismuth telluride-BiTe3 Sigma Tð Þa 154 7700 k Tð Þb p=ntype : 6S(T)c 1

Alumina-AD-995 880 3700 30

aSigma Tð Þ ¼ �4� 10�15T6 þ 10�11T5 � 10�8T4 þ 7� 10�6T3 � 0:002T2 þ 0:3283T � 19:919.
bK ðTÞ ¼ 4� 10�17T6 � 4� 10�12T5þ10�8T4 � 9�10�6T3 þ 0:0038T2 � 0:8272T þ 73:158.
cS Tð Þ ¼ 6ð�3� 10�18T6 þ 7� 10�15T5�7� 10�12T4 þ 4� 10�9T3 � 10�6T2 þ 0:0002T � 0:0167Þ.
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vacuum chamber that provides thermal insulation for the system from the ambient. An

ULTRAMIC 600 heater supplied by Keysight B2900-smu is used to apply the heat flux to the

TEG and to keep the hot side of the TEG at the desired temperature. Due to high power intensity

and low thermal mass of the heater, it is possible to provide a fast thermal load with high temper-

ature differences on the hot side of the TEG. The temperatures are sensed by T-type thermocou-

ples with a diameter of 50 lm and a nominal time response of 20 ms. The Keysight 34972 data

logger is used to log data every 30 ms. The experimental setup shown in Fig. 2(b) contains the

heater, cooler, and measurement system. Silicon thermal paste with a thermal conductivity of 3.1

W=m K is used to guarantee the proper thermal contact between heat transfer layers.

In the experiments, the change in the temperature on the cold and hot sides with respect to

time is shown in Fig. 3. The hot side temperature of the TEG starts to rise from 23 �C and con-

tinues with a periodic shape to its maximum temperature at 80 �C; then, at time equal to 125 s,

the temperature decreases gradually to reach 23 �C. A large heat sink, in comparison with the

size of the TEG, is used in the experiments; therefore, the cold side temperature remains almost

constant, while the hot side temperature changes. By applying the temperatures on the hot and

cold sides of the TEG in the simulation, the results show that the open circuit voltage behavior

follows electrical potential in the experiments. The open circuit voltage at the beginning of the

test is 0 V, while its trend follows temperature variations on the hot side. The error according

to the root-mean-square deviation (RMSD) method24 in experimental and simulation results

is 5.44.

FIG. 1. Boundary condition of the simulated uni-couple and the TEG used in the experiments with the same dimensions as

mentioned in Table II.

TABLE II. Dimensions of the TEG components.

Parameter Wcr Lcr Hcr Wleg Lleg Hleg Wtelec

Size (mm) 0.6 1.2 0.1 0.4 0.4 0.7 0.4

Parameter Ltelec Htelec Wbelec Lbelec Hbelec Llel Wlel

Size (mm) 1 0.05 0.4 0.5 0.1 0.1 0.1

064705-4 Yazdanshenas et al. J. Renewable Sustainable Energy 10, 064705 (2018)



V. RESULTS AND DISCUSSION

To examine the effect of the thermal load on the output voltage of the TEG, two sam-

ple times are chosen from the reference geometry with a frequency of 0.25 Hz, while a heat

flux of 150 KW=m2 is applied on the TEG hot side. Figure 4 shows the temperature and

voltage distribution in a studied uni-couple. As the temperature on the hot side drops

at t¼ 28.3 s, the open circuit voltage follows the temperature variation and decreases.

The highest temperature at the time of 30 s generates the highest open circuit voltage in the

uni-couple.

FIG. 2. (a) Experimental setup and (b) schematic of the test setup with the configuration of the heater, TEG, and heat sink.
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Since external surfaces of the thermoelectric legs in the simulations are assumed to be insu-

lated from the surrounding, the internal heat transfer, such as natural convection and radiative

heat transfers, among the thermoelectric legs is zero. Therefore, as shown in Fig. 5, the temper-

ature variation along the thermoelectric leg is linear. The temperature at the cold side of the

TEG is constant over time due to the high heat transfer coefficient imposed at the cold side of

the TEG, while the hot side temperature changes over time as the applied heat flux fluctuates.

The thermal conductivity of the ceramic substrates and the interconnectors is large compared to

the thermal conductivity of the semiconductor legs, and therefore, the temperature from the top

FIG. 3. Comparison between simulation and experimental results of open circuit voltage in TEG with 97 uni-couples under

the transient thermal boundary condition.

FIG. 4. The temperature and electrical potential on thermoelectric elements at the frequency of 0.25 Hz: (a) the temperature

contour at 28.3 s, (b) electrical potential contour at 28.3 s, (c) the temperature contour at 30 s, and (d) electrical potential

contour at 30 s.
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FIG. 5. Temperature profile along the centerline of the thermoelectric elements at t¼ 24.985 s, t¼ 26.667 s, t¼ 28.308 s,

t¼ 29.99 s, and t¼ 31.632 s, heat flux¼ 150 KW=m2, and frequency¼ 0.25 Hz.

FIG. 6. Variation of open circuit power and temperature of the cold and hot sides of the reference geometry at different

heat flux frequencies, (a) f¼ 1 Hz, (b) f¼ 0.5 Hz, (c) f¼ 0.125 Hz, (d) f¼ 0.0625 Hz, and (e) constant heat flux.
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and bottom surfaces of the TEG to the hot and cold sides of the legs, respectively, remains

almost constant in compression with the temperature variation along the legs.

Sensitivity of thermo-electrical response of the TEG to the pulse frequency is considered

for the reference geometry. Figure 6 shows the variation of the temperature and power for 4

pulse frequencies. The results of compression among the studied frequencies indicate that lower

frequency creates higher fluctuation in temperature and power generation. The electrons migrate

more as the temperature difference of the leg is higher. Additionally, the power variation is

linked to the temperature of the hot and cold sides according to Eq. (6). Although the range

and average amount of applied heat flux in this study are the same for different frequencies, the

range of temperature and power variations is wider for lower frequency. This variation can

depend on the material properties such as thermal diffusion [see Eq. (7)].

The effect of different element lengths (0.1 mm, 0.4 mm, 1 mm, and 1.3 mm) is furthermore

considered in order to make a comparison among the performance of various TEG designs as

shown in Fig. 7. The boundary conditions in these simulations are the same as the reference

case. By applying a pulse frequency of 0.25 Hz and the reference heat flux on the hot side of

the TEG, the highest power is gained for the highest length, which has the highest thermal

resistance among the considered lengths. The Seebeck voltage depends on material properties

and dimension of the semiconductor and enhances as the length of the leg and, consequently,

the temperature difference between hot and cold sides increase.25 The Seebeck voltage is also a

geometry property and decreases as the leg length reduces. Since the power generation, more-

over, follows the temperature difference, it reaches zero when the hot side temperature of the

TEG is given sufficient time to reach the cold side temperature. This form of power generation

profile is seen for leg lengths shorter than 0.4 mm at f¼ 0.25 Hz.

For the reference geometry and under the same thermal boundary conditions, the effect of

different leg areas is also considered. As shown in Fig. 7, by considering parameters of the length

of the TEG, when the area of TEG increases under fixed heat flux, the hot side temperature drops

to balance the energy flow across the legs, so that the voltage generation reduces. The results

FIG. 7. Effect of TEG geometry on its performance with f¼ 0.25 Hz, (a) hot side temperature of TEG versus variation of

the leg length, (b) applied heat flux and power generation for different leg lengths, (c) hot side temperature of TEG versus

variation of the leg area, and (d) applied heat flux and power generation for different leg areas.
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indicate that the geometry of the TEG and properties of the heat flux (applied frequency in this

study) have a significant effect on the electrical response of the device. Nevertheless, there are

other critical parameters that need to be considered in the design of the optimal TEG module. As an

example, although a shorter leg causes a higher temperature difference, optimal variation of figure of

merit (ZT) of the materials needs to be taken into account in order to optimize the power generation

since the ZT of most materials reduces after a specific temperature. Furthermore, the mechanical

properties of the TEG module elements cause some restrictions, especially at high operating tempera-

tures, and need to be carefully considered.

VI. CONCLUSIONS

This study investigated the electrical response of TEGs under transient heat flux. Sensitivity of

the TEG to the variation of critical design parameters, such as pulse shape, heat flux, and geometry

of the TEG, is considered. The evaluation is carried out under a reference heat flux imposed on the

hot surface of the TEG. The effect of frequency of the applied heat flux and geometry of the ther-

moelements on electrical response of the TEG is considered. The simulation results were in a good

agreement with the experimental validation. The results show that the range of power oscillation

reduces as the frequency of the imposed heat flux increases. Nevertheless, the maximum power

generation enhances as the frequency reduces or the thermoelements have a longer length and a

smaller cross-sectional area. The results, furthermore, show that oscillation of the voltage generation

and output power is strongly dependent on the geometry of the TEG. The results of this study pro-

vide a guideline for geometry optimization of thermoelectric systems under transient heat sources.

NOMENCLATURE

A Area, m2

C heat capacity, J:ðkg:KÞ�1

E electric field, V:m�1

J electric current flux, A:m�2

k thermal conductivity, W:ðm:KÞ�1

L length, m
P0 Peltier coefficient

Q0 density of Joule heating energy, W:m�3

q00 heat flux, W:m�2

R electrical resistance, X
S Seebeck coefficient, V:K�1

T temperature, K

t time, s

V voltage, V
_W maximum power generation, W

Greek letters

q density, kg:m�3

qc charge density, C:m�3

qe electrical resistivity, X:m
r electrical conductivity, S:m

Subscripts

n n-type

p p-type
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