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ABSTRACT

FINITE DIFFERENCE SCHEMES FOR INTEGRAL EQUATIONS WITH
MINIMAL REGULARITY REQUIREMENTS

Wesley Cameron Davis
Old Dominion University, 2021
Director: Dr. Richard D. Noren

Volterra integral equations arise in a variety of applications in modern physics and

engineering, namely in interactions that contain a memory term. Classical formulations of

these problems are largely inflexible when considering non-homogeneous media, which can

be problematic when considering long term interactions of real-world applications. The use

of fractional derivative and integral terms naturally relax these restrictions in a natural way

to consider these problems in a more general setting. One major drawback to the use of

fractional derivatives and integrals in modeling is the regularity requirement for functions,

where we can no longer assume that functions are as smooth or as well behaved as their

classical counterparts.

This work outlines the derivation and application of a class of stable and convergent

finite difference methods to discretize weakly singular integrals which occur in Volterra inte-

gral equations. This derivation is motivated by classical discretizations that arise in Caputo

fractional derivatives. We present a time-fractional diffusion equation as a case study to

develop the finite difference scheme, where the Laplace transform is used to pose the prob-

lem equivalently as a Volterra integral equation, which is then discretized. A generalized

scheme is presented to consider a much wider class of integral equations, which allows for the

consideration of applications of the Fourier transform. This ultimately allows for a natural

discretization of both time- and space-fractional diffusion and differential equations. Some

natural physical applications are considered to fully utilize these schemes.

The novelty of these schemes is in its simplicity and efficiency when compared to

classic methods of discretization, especially for Caputo fractional derivatives. Typical dis-

cretizations in the fractional derivative form over-assume regularity to discretize a full deriva-

tive term, which subsequently restricts the admissible solution space. Other considerations

from discretizing the fractional derivative form include negatively impacting the rate of con-

vergence from the remaining fractional integration term, which is recovered by the use of



non-uniform mesh partitions to recover some of the order of convergence.
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CHAPTER 1

INTRODUCTION AND RELATED WORKS

Fractional derivatives naturally generalize the classical definition of the derivative to convey

the rate of change of a function in non-homogeneous material. This presents a much wider

class of differential equations and partial differential equations with fractional derivative

terms that naturally arise in many areas of physic and engineering ([1],[4], [18],[22], [23],[30],

[32], [40], and [56]). These types of equations have been studied over the last several decades

in various manners, beginning with the nature and derivation of systems of equations that

arise from the physical phenomena. One of the major goals in its infancy was to demonstrate

the existence and uniqueness of solutions to many of these equations, as well as any of the

semigroups of the equations to consider a wider class of physical phenomena, as seen in [2],

[16], [17], and [28].

The existence and uniqueness of solutions to these types of equations impose regularity

restrictions based on the order of derivative present in the differential equations. In partic-

ular, for fractional derivative terms, then fractional orders of regularity are imposed on the

solutions to satisfy a classical solution in general. Some of the framework for this discussion

can be found in [12], [16], [17], [25], [26], [44], and [51], and the problem in over-assuming

regularity of the function is discussed further in [45] and [46]. As a result, solutions to

these types of equations can run into regularity issues depending on the order of fractional

derivative imposed. The regularity of the solutions is paramount to how physically viable

these solutions are, and how practical they are in terms of modeling physical phenomena, as

seen in [13], [29] [22], [45], [55]. While the existence and uniqueness of solutions is still an

ongoing topic as newer partial differential equations arise, over time the interest has shifted

to numerically discretizing fractional differential equations and fractional partial differential

equations.

The numerical analysis of these fractional differential equations and fractional partial

differential equations has been an ongoing discussion over the past several decades. Classical

methods of discretization include deriving finite difference methods and linear interpolation

for the fractional derivative terms, as showcased in [43], [56], and [47]. Finite difference

methods have served as the standard for a great number of years, but one of the largest

drawbacks is the over-assumption of regularity in full differential form. This suggests that
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the problem is forced to be too unique, as seen in [45], which means that not all physical

phenomena can be simulated numerically in a stable manner. Linear interpolation suffers

from the same issues, generally speaking, but the difference between the two lies in the

derivation of the scheme. This difference is highlighted because classical finite difference

methods are derived by using Taylor series expansions of functions to obtain an estimate for

any given point on a grid [9], [20], [21], [53]. This tool is highly effective in practice, but

without careful consideration, can force the scheme to be too rigid.

More recent work involving fractional differential and fractional partial differential equa-

tions focus on analyzing a time-fractional diffusion equation with a simple Laplacian operator

in the space variable. In particular, the most popular method of discretizing a fractional

diffusion equation is the so-called L1-method, where a second order linear interpolation is

applied to the Caputo fractional derivative to discretize the derivative under the integral.

This time stepping method is a natural approach, but it suffers on the regularity and the rate

of convergence approach, as seen in [8], [9], [22], [23], and [34]. One of the ways to mitigate

the rate of convergence concern is to re-discretize the problem on non-uniform and quasi-

uniform meshes to minimize the error term on certain subintervals [34], [35], [46], [56]. As a

consequence, the weak singularity near the origin for these problems is better approximated,

and attains a better rate of convergence in this ad-hoc method.

Another area of improvement presented for the L1-method is the re-writing of the scheme

to consider nonsmooth initial data, as seen in [22],[23], and [29]. These results presented

have lasting implications, and allow for a greater class of functions to be approximated, but

ultimately suffers from some of the same issues as before. Since the scheme is rewritten

to better handle nonsmooth initial data, the scheme is more complex, and ultimately takes

much longer to numerically simulate experiments as a result.

Fast solver methods have been another focus in recent years, where the memory term

from the fractional derivative is approximated with a minimal amount of points [33]. Since

the memory term is discretized as a summation of all of the previous time steps, many

operations are devoted to storing the information from previous time steps and summing

the new data. One flaw is the over-assumption of regularity in the memory term, which can

lead to instability if not carefully treated. In short, in differential form, fractional differential

equations and fractional partial differential equations suffer from the regularity requirement

when numerically discretizing them.

This work bridges the gap between sensibility and practicality in its approach in discretiz-

ing differential equations with a fractional derivative term. This is highlighted by allowing
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for a much wider class of functions to be numerically approximated that would normally

fail to converge numerically in differential form, while maintaining an optimal rate of con-

vergence. As seen in the literature, this is also accomplished by solving a weak formulation

of the given problem, but typically fractional derivatives still prove problematic in a weak

sense. Since the methods outlined here completely relax the regularity assumptions on the

objective function and on the integral kernel, far more physical problems can be modeled,

and with exact regularity.

This work begins by analyzing the L1-method and applying a Laplace transform to

a Caputo time-fractional diffusion equation to obtain a Volterra Integral equation with a

Laplacian term in Chapter 1. From there, a Cα and C1 in-time schemes are constructed

analogously to the lemmas in [56], with an optimal rate of convergence in both scenarios.

Due to the nature of the convolution Volterra integral, term, the truncation error aids in

the numerical convergence for certain forcing functions f . The stability and convergence

of both schemes is proven, followed by some numerical examples illustrating these findings.

Of particular interest is the reduction in condition number from the scheme outlined in

[56] by a large factor, which is detailed further in Appendix C. One of the major questions

that necessitate the findings in Chapter 2 is why the C1 in-time scheme provided a rate of

convergence of O(τ 1+α), where τ is the size of uniform subinterval of the time mesh, and

whether other schemes can be constructed analogously.

In Chapter 2, Volterra integral equations with convolution kernels are considered, where

a Taylor series expansions is used to construct schemes that are γ-order accurate, where now

0 < γ ≤ 5. In particular, any order γ scheme can be derived under this construction, however

for γ > 5 the schemes are not always stable, hence are no longer guaranteed to numerically

converge. Fractional-order regularity is addressed with regularity barriers, which further

supports the findings in Chapter 1 and from [8]. Additionally, an invertibility criterion in

derived to properly implement the schemes numerically, but does not outright prevent nu-

merical convergence, as demonstrated in the numerical examples for Chapter 2. Further, the

stability and convergence of the γ-order accurate schemes is proven with mild assumptions

on the integral kernel. Notably, the standard assumption of a decreasing integral kernel is

only required for γ-order accurate approximation for γ > 2, which allows for a wide class of

problems to be approximated with minimal regularity assumed.

The link between Chapters 2 and 3 are readily apparent from the Laplace transform of the

time-fractional diffusion equation, where Volterra integral equations can be obtained from

time-fractional differential equations in a similar form. Chapter 4 addresses how this notion
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can extend in a rather natural way to consider the Fourier transform instead, namely with

the ultimate goal to address space-fractional differential equations. By applying a Fourier

transform to the time-fractional diffusion equation instead, we find that the resulting integral

equation is now a Fredholm integral equation with a convolution integral kernel as well.

Interestingly enough, the resulting Fredholm equation can be rewritten as a Volterra

equation from the convolution integral kernel, so the results in Chapter 3 and from Chapter

2 can be applied similarly. Some numerical results are presented that validate the findings of

the finite difference schemes and their results under this new construction. For real-analytic

functions, often seen in the heat equation and other physical problems, simple trigonometric

interpolation can be used on the resulting Fredholm equation with an optimal order of

convergence, as seen in [26].

Chapters 5 and 6 present two case studies on applying these techniques in a meaning-

ful way to physical problems. Chapter 5 considers the works in [1] and [49] and applies a

Laplace transform to a time-fractional version of Theis’s groundwater flow equation to obtain

a Volterra equation in one-dimensional cylindrical coordinates. One major consideration is

inclusion of a aquifer, which suggests a mild singularity near the origin. By applying Neu-

mann boundary conditions on Theis’s fractional partial differential equation, axi-symmetric

diffusion of water can be modeled and discretized meaningfully as a Volterra integral equa-

tion. The full discrete problem is derived using a C1 order accurate scheme.

Chapter 6 contrasts the previous chapters by considering a nonlinear Volterra integral

equation from the works in [15] and [13]. The Taylor series expansion argument is now re-

cast to approximate any nonlinear function, where in there a quartic function is the objective

function to discretize under the integral. Two prospective methods are proposed that are

founded in the results in the previous chapters, where the positive and negative aspects are

presented for both methods.
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CHAPTER 2

AN α-ORDER STABLE AND CONVERGENT FINITE DIFFERENCE

SCHEME FOR THE TIME-FRACTIONAL DIFFUSION EQUATION

We begin with a treatment of the Caputo time-fractional diffusion equation, by using the

Laplace transform, to obtain a Volterra integro-differential equation. We derive and utilize

a numerical scheme that is derived in parallel to the L1-method for the time variable and a

standard fourth order approximation in the spatial variable. The main method derived in

this paper has a rate of convergence of O(kα +h4) for u(x, t) ∈ Cα([0, T ];C6(Ω)), 0 < α < 1,

which improves previous regularity assumptions that require C2[0, T ] regularity in the time

variable. We also present a novel alternative method for a first order approximation in

time, under a regularity assumption of u(x, t) ∈ C1([0, T ];C6(Ω)), while exhibiting order of

convergence slightly more than O(k) in time. This allows for a much wider class of functions

to be analyzed which was previously not possible under the L1-method. We present numerical

examples demonstrating these results and discuss future improvements and implications by

using these techniques.

2.1 INTRODUCTION

Fractional differential equations have been of great interest to various fields in physics,

engineering, and mathematics over the past several decades, as seen in [10,11] and many

others. Many applications of fractional diffusion equations are studied due to their physical

applications, we refer to [10-16] for a small survey of relevant and related works. In their

2014 article [56], Zhang et al. established a numerical scheme for the one-dimensional time-

fractional order diffusion equation with initial and boundary conditions

Dαt u(x, t) =
∂2

∂x2
u(x, t) + f(x, t), x ∈ Ω, t ∈ [0, T ], (1)

u(x, 0) = φ(x), x ∈ [0, 1] and u(0, t) = u(1, t) = 0,

with α ∈ (0, 1) order Caputo fractional time derivative defined by

Dαt u(x, t) =
1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s
(t− s)−α ds,
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where Γ(x) =
∫∞

0
e−ttx−1 dt. Various authors have placed various hypotheses on the PDE

in their analysis, see [1,2,15,16]. This problem was solved numerically in [56] on the domain

[0, 1] × [0, T ] with numerical accuracy of order O(k2−α + h4) by application of a 4th order

spatial and a 2nd-order in time scheme, where k denotes the time mesh size and h denotes

the space mesh size, with a constant that depends on Tα. The 2nd-order time scheme is the

so-called L1-method, which has been studied extensively in previous works, see [22], [29],

[46],[55], and [56] for further discussion. One of the main issues with the L1-method is the

strength of regularity it requires, namely that the function must lie in u(x, ·) ∈ C2[0, T ]

because of the derivative under the integral. Typical solutions to (1) may only lie in Cα[0, T ]

due to the nature of the fractional derivative (c.f [46] and [17]), see [22], [23], [29], [45], and [55]

for further discussion. In contrast, our response to this issue is to apply the Laplace transform

to reformulate the problem (1) into an equivalent form. Based on the new formulation, we are

able to construct two time discretizations tailored towards the weaker regularity assumptions

of Cα[0, T ] and C1[0, T ] for both u(x, ·) ∈ Cα[0, T ] and u(x, ·) ∈ C1[0, T ], respectively. We

will use the same 4th order discrete spatial Laplacian operator as in [56]. Under such

weaker regularity setting, when u(x, ·) ∈ Cα[0, T ], our analysis shows that the order of

convergence is O(kα). This is achieved by utilizing a fractional Taylor series expansion of

the objective function, which is further detailed in [53]. It’s worth to mention that for a class

of functions in Cα[0, T ], a convergence rate of O(k) can be obtained using the results outlined

in [11],[30], [34], and [35]. In addition, by slightly strengthening the regularity assumption

to have u(x, ·) ∈ C1[0, T ], we can modify the scheme such that it provides an optimal

convergence rate of O(h4 + k1) but numerical experences show an even better convergence

rate of O(h4 + k1+α).

Existence, uniqueness, and monotonicity results were established in [17] by A. Friedman

for the solution of a generalization of equation (2), see Corollary 1 of [2, p.143]. Applications

are referenced as well in [2, p.146-147]. More recently, M. Stynes et al were able to obtain

existence and uniqueness for the solution of a generalization of equation (2) in [46], see

Theorem 2.1 of [46] for further discussion.

The remainder of the paper is organized as follows. Section 2 presents the preliminaries

and the existence and uniqueness of a solution to this newly transformed equation. Section

3 defines the numerical schemes and establishes the necessary lemmas for our a priori error

estimates. Section 4 contains the statements of our main theorems presented. Section 5

presents some numerical examples illustrating our results. Finally, we conclude our findings

in Section 6.
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2.2 PRELIMINARIES

We will transform (1) into its equivalent form

u(x, t) = φ(x) +

(
a1−α ∗

(
∂2u

∂x2
+ f

))
(x, t), (2)

where a1−α(t) =
tα−1

Γ(α)
by application of the Laplace transform under the hypotheses of The-

orem A from [46], which we state below. Let {(λi, ψi) : i = 1, 2, ...} be the eigenvalues and

eigenfunctions for the Sturm-Liouville two-point boundary value problem

Lψi = −p∂
2ψi
∂x2

+ cψi = λiψi on (0, 1), ψi(0) = ψi(1) = 0,

where the eigenfunctions are normalized by requiring ‖ψi‖2 = 1 for all i. Let 〈f, g〉 =∫
Ω
f(x)g(x) dx denote the usual L2 inner product over a given domain Ω. Define the fractional

power Lγ of the operator L for each γ ∈ R with corresponding domain

D(Lγ) =

{
g ∈ H2

0 (0, 1) :
∞∑
i=1

λ2γ
i |〈g, ψi〉| <∞

}
⊂ L2(0, 1).

Further, we will use the Sobolev space norm

‖g‖Lγ =

(
∞∑
i=1

λ2γ
i |〈g, ψi〉|

)1/2

, for all g ∈ D(Lγ).

Theorem (2.1 of [46]). Let φ ∈ D(L5/2), f(·, t) ∈ D(L5/2), ft(·, t) ∈ D(L1/2), and

ftt(·, t) ∈ D(L1/2) for each t ∈ (0, T ] with

‖f(·, t)‖L5/2 + ‖ft(·, t)‖L1/2 + tρ ‖ftt(·, t)‖L1/2 ≤ C1

for all t ∈ (0, T ] and some constant ρ < 1 where C1 is a constant independent of t. Then,

(1) has a unique solution u that satisfies the initial and boundary conditions pointwisely, and

there exists a constant C such that∣∣∣∣dkudxk
∣∣∣∣ ≤ C for k=0,1,2,3,4 (3)∣∣∣∣dludtl
∣∣∣∣ ≤ C(1 + tα−l) for l=0,1,2. (4)

Lemma 2.2.1. Assume the hypothesis of Theorem 2.1 of [46]. Then the function u = u(x, t)

satisfies (1) if and only if it satisfies (2).
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Proof. We use the convolution theorem (see Chapter 6, Section 1.3 of [4, p.135] )

L (a ∗ b) = L (a)L (b) if (a ∗ b)(t) =

∫ t

0

a(t− s)b(s) ds

and the facts

L (aα)(z) = zα−1 and L (h′)(z) = zL (h)(z)− h(0)

to obtain

L (Dαt u(x, t)) = (zL (u(x, ·))(z)− φ(x))zα−1

Applying the Laplace transform to equation (1) we obtain after some algebra,

(zL (u(x, ·))(z)−φ(x))zα−1 =

[
L

(
∂2u

∂x2
(x, ·)

)
+ L (f(x, ·))(z)

]
L (u(x, ·))(z) = z−1φ(x) + z−α

[
L

(
∂2u

∂x2
(x, ·)

)
+ L (f(x, ·))(z)

]
.

By inverting the Laplace transform, we get the equivalent Volterra integral equation

u(x, t) = φ(x) + a1−α ∗
(
∂2u

∂x2
+ f

)
(x, t).

Since the steps are reversible and our formal manipulations are valid by Theorem A, then

the result follows.

Remark 2.2.2. The manipulations in the prior lemma use the assumptions from Theorem

2.1 of [46] in order to guarantee our a priori estimates that are derived in sections 3 and 4.

With the equivalence established between (1) and (2), next we provide the finite differ-

ence schemes and the a priori error estimates in the following sections. The existence and

uniqueness of a solution to (2) is presented in Appendix A. We now examine the consistency,

stability, and convergence of multiple numerical schemes for (2) based on the regularity of

the solution in the time-variable.

2.3 FULLY DISCRETIZED NUMERICAL SCHEMES

In [22], [23],[29], and [56], a fully discrete scheme was derived for the L1-method in the

time variable and analyzed as such. By utilizing the Laplace transform, we are able to

derive an equation with a different integral kernel than the fractional derivative operator as

defined before. Therefore, we will derive two convergent numerical schemes for this newly

transformed equation for both a first and an α-order approximation to (2) in time. The

schemes are defined by the degree of regularity that will be assumed, therefore we will
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construct an α-order accurate scheme for functions that are Cα[0, T ] in time and a first-

order accurate scheme for functions that are C1[0, T ] in time. From there, we will utilize a

standard fourth-order stable spatial operator that was utilized in [56] to arrive at the fully

discretized equations.

We will use the notations and state key results from [56] that extend to our work. Divide

the time interval [0,T] into N intervals where 0 = t0 < t1 < ... < tN = T . Denote the time

steps as

τn = tn − tn−1, 1 ≤ n ≤ N,

and the mesh size of the partition

τmax = max
1≤j≤N

τj.

We will derive the numerical results for any temporal mesh provided, see Theorems 3.1, 3.2,

4.3, and 4.6 for these results. Having established the unique solution to (2) in section 2.1,

we shall denote the grid function by

v = {vi : 0 ≤ i ≤M}, where M > 0, h =
1

M
, and xi = ih,

and the grid operator

Hhvi =


1

12
(vi+1 + 10vi + vi−1), 1 ≤ i ≤M − 1,

vi, i = 0 or i = M.
(5)

When 1 ≤ i ≤M − 1,

Hhu(xi, tn) =
1

12
u(xi−1, tn) +

10

12
u(xi, tn) +

1

12
u(xi+1, tn)

= Hh

[
u(xi, 0) +

1

Γ(α)

∫ tn

0

(tn − s)α−1

(
∂2u

∂x2
(xi, s) + f(xi, s)

)
ds

]
= Hhu(xi, 0) +

1

Γ(α)

∫ tn

0

(tn − s)α−1

(
Hh

∂2u

∂x2
(xi, s) +Hhf(xi, s)

)
ds. (6)

We present the discretization in the space variable for (2), which was used in [56].

Lemma (4.1 of [56]). Let f(x) and ξ(s) be functions such that f(x) ∈ C6[xi−1, xi+1] and

ξ(s) = 5(1− s)3 − 3(1− s)5, then

f ′′(xi+1) + 10f ′′(xi) + f ′′(xi−1)

12
=
f(xi+1)− 2f(xi) + f(xi−1)

h2

+
h4

360

∫ 1

0

[f (6)(xi − sh) + f (6)(xi + sh)]ξ(s) ds.
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2.3.1 A Cα[0, T ] IN TIME SCHEME

In general, the solution to (1) has a regularity of Cα[0, T ] in the time variable, so we

must also consider an appropriate scheme with that regularity. We achieve such relaxation

by utilizing a fractional Taylor series expansion, which is presented in [53]. The following is

an analogue of Lemma 2.1 of [56].

Theorem 2.3.1. For 0 < α < 1 and for g(t) ∈ Cα[0, T ], it follows that for C > 0 and for

each 1 ≤ n ≤ N ,∫ tn

0

g(s)(tn − s)α−1 ds =
n∑
k=1

∫ tk

tk−1

g(tk)(tn − s)α−1 ds+Rn
t , (7)

where

|Rn
t | ≤ C max

0≤t≤tn
|Dαt g(t)|(τmax)α

Proof. We begin with the fractional derivative Taylor expansion of g(s) at the point s = tk,

see Theorem 3.1 of [53], where s ∈ [tk−1, tk], tk ∈ [0, tn] for each k = 1, 2, ..., N . Utilizing

Corollary 2.4 of [12], we then have for some ξ ∈ (tk−1, tk),

g(s)− g(tk) =
(tk − s)α

Γ(α + 1)
Dαt g(ξ).

Define

(Rt)
n =

n−1∑
k=1

∫ tk

tk−1

(g(s)− g(tk)) (tn − s)α−1 ds.

Then,

|(Rt)
n| ≤ max

0≤t≤tn
|Dαt g(t)|

n∑
k=1

∫ tk

tk−1

|(tk − s)α|
Γ(α + 1)

(tn − s)α−1 ds

≤ max
0≤t≤tn

|Dαt g(t)|
∫ tn

0

(τmax)
α (tn − s)α−1

Γ(α + 1)
ds

=
(τmax)

α

Γ(α + 1)
max

0≤t≤tn
|Dαt g(t))|(tn − 0)α

α

≤ Tα(τmax)
α

αΓ(α + 1)
max

0≤t≤tn
|Dαt g(t)|. (8)

Therefore, for a uniform mesh, we further have the result |Rn
t | ≤ Cτα.
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Define

ank =
1

Γ(α)

∫ tk

tk−1

(tn − s)α−1ds, (9)

=
1

Γ(α + 1)
[(tn − tk−1)α − (tn − tk)α] .

We further define

f1−α(x, t) =

∫ t

0

(t− s)α−1

Γ(α)
f(x, s) ds (10)

to denote the forcing function term in the approximate equation. By applying the Hh

operator, Lemma 4.1 of [56], Lemma 2.2, and the previously stated discretization to (2), we

have the fully discretized approximate equation for uni ≈ u(xi, tn) with initial and boundary

conditions  Hhu
n
i = Hhφ(xi) +Hhf1−α(xi, tn) +

∑n
k=1

ank
h2

[
uki+1 − 2uki + uki−1

]
u0
i = 0, un0 = unM = 0,

(11)

for each n = 0, 1, ..., N, i = 0, 1, ...,M .

2.3.2 A C1[0, T ] IN TIME SCHEME

Previously we saw that for g ∈ Cα[0, T ], we can construct a one-point scheme in time

that has the corresponding error of O(kα). We now derive a two-point first-order scheme for

g ∈ C1[0, T ] that has the corresponding error of O(k1).

Theorem 2.3.2. For 0 < α < 1 and for g(t) ∈ C1[0, T ], it follows that∫ tn

0

g(s)(tn − s)α−1 ds =
n∑
k=1

g(tk−1) + g(tk)

2

∫ tk

tk−1

(tn − s)α−1 ds+Rn
t , (12)

for each n, 1 ≤ n ≤ N , where

|Rn
t | ≤ (τn + τmax)

Tα

2α
max

0≤t≤tn
|g′(t)|, .

Proof. We begin by writing the integral as∫ tn

0

g(s)(tn − s)α−1 ds =

∫ tn−1

0

g(s)(tn − s)α−1 ds+

∫ tn

tn−1

g(s)(tn − s)α−1 ds.
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The first integral on the right hand side is rewritten as∫ tn−1

0

g(s)(tn − s)α−1 ds =
n−1∑
k=1

∫ tk

tk−1

g(s)(tn − s)α−1 ds

=
n−1∑
k=1

∫ tk

tk−1

(
g(s)− g(tk−1) + g(tk)

2

)
(tn − s)α−1 ds

+

∫ tk

tk−1

(
g(tk−1) + g(tk)

2

)
(tn − s)α−1 ds

=
n−1∑
k=1

g(tk−1) + g(tk)

2

∫ tk

tk−1

(tn − s)α−1 ds+ (R1)n,

where

(R1)n =
n−1∑
k=1

∫ tk

tk−1

(
g(s)− g(tk−1) + g(tk)

2

)
(tn − s)α−1 ds.

By utilizing the Taylor expansion of g(s) for s ∈ (0, tn−1),

|(R1)n| ≤ max
0≤t≤tn−1

|g′(t)|
n−1∑
k=1

∫ tk

tk−1

∣∣∣tk − s− τk
2

∣∣∣ (tn − s)α−1 ds

≤ τmax
2

max
0≤t≤tn−1

|g′(t)|
∫ tn−1

0

(tn − s)α−1 ds

=
τmax

2
max

0≤t≤tn−1

|g′(t)|
(
tαn
α
− ταn

α

)
≤ τmaxT

α

2α
max

0≤t≤tn−1

|g′(t)|. (13)

In a similar manner, by the Taylor expansion of g(s) for s ∈ (tn−1, tn), we have∣∣∣∣g(s)− g(tn−1) + g(tn)

2

∣∣∣∣ ≤ τn
2

max
tn−1≤t≤tn

|g′(t)|, tn−1 < s < tn.

Therefore, the approximation error in the interval [tn−1, tn] satisfies

|(R2)n| =
∣∣∣∣∫ tn

tn−1

(
g(s)− g(tk−1) + g(tk)

2

)
(tn − s)α−1 ds

∣∣∣∣
≤ τnT

α

2α
max

tn−1≤t≤tn
|g′(t)|. (14)

Finally, since

Rn
t = (R1)n + (R2)n =

n∑
k=1

∫ tk

tk−1

(
g(s)− g(tk−1) + g(tk)

2

)
(tn − s)α−1 ds,

by combining the error estimates (13) and (14), we have the desired result.
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We remark that under these assumptions, we may obtain a first order accurate scheme

for g(t) ∈ C1[0, T ]. The L1-method requires the function g(t) ∈ C2[0, T ] based on a Taylor

series argument, so the regularity assumption for the L1-method cannot be relaxed to allow

g(t) ∈ C1[0, T ] due to the nature of the Caputo Fractional Derivative. In section 5, we will

see that this scheme exhibits superconvergence for this C1[0, T ] scheme. In a similar manner

to the Cα scheme, we may now write the discrete approximate equation for uni ≈ u(xi, tn)

with initial and boundary conditions as
Hhu

n
i = Hhφ(xi) +Hhf1−α(xi, tn)

+
∑n

k=1

ank
2h2

[
uki+1 − 2uki + uki−1

]
+

ank
2h2

[
uk−1
i+1 − 2uk−1

i + uk−1
i−1

]
,

u0
i = 0 , un0 = unM = 0,

(15)

which is to be solved for {uni }n=0,1,...,N, i=0,1,...,M as before. We now examine the stability of

each of these methods presented in order to guarantee the convergence of each scheme.

2.4 ERROR ESTIMATES

Before we establish stability and convergence of the numerical methods used, we will

make use of the definitions in [1, p.202]. Let

Vh = {v = (v0, v1, ..., vM)|v0 = vM = 0}.

For any grid function v, w ∈ Vh, we will define the following (c.f [56]):

δxvi−1/2 =
1

h
(vi − vi−1)

δ2
xvi =

1

h
(δxvi+1/2 − δxvi−1/2)

〈v, v〉h = h

M∑
i=0

vi · vi

L2 norm ‖v‖h =
√
〈v, v〉h

H1 semi-norm ‖δxv‖h =

√√√√h

M∑
i=1

(δxvi−1/2)2

H1 norm ‖v‖1,h =

√
‖v‖2

h + ‖δxv‖2
h

Where ‖Hhv‖h and ‖δ2
xv‖h are defined in a similar manner. By applying Lemma 4.2 of [56],

then

‖v‖h ≤
1√
6
‖δxv‖h .
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Following [56], define

〈v, w〉A = h
M∑
i=1

(δxvi−1/2 · δxwi−1/2)− h2

12
h

M−1∑
i=1

δ2
xvi · δ2

xwi,

and

‖v‖A =
√
〈v, v〉A.

They further go on to show that, by Lemma 4.3 of [56],

−h
M−1∑
i=1

(Hhvi) · δ2
xwi = 〈v, w〉A,

which establishes that ‖·‖A and ‖δx·‖h are equivalent.

2.4.1 CONSISTENCY, STABILITY, AND CONVERGENCE RESULTS

With the preliminaries established in section 2, we will present the main theorems of this

paper. We begin with deriving the consistency of the schemes (11) and (15) and then the

stability for each. With both these proofs, we are able to assert the convergence of each

scheme, which is then demonstrated in the next section. We have a similar set of results

for the numerical scheme (11) for functions g(t) ∈ Cα[0, T ]. Beginning with the consistency

results, we will provide each theorem as follows:

Theorem 2.4.1. Let u(x, t) ∈ Cα([0, T ];C6(Ω)) and let {uni |0 ≤ i ≤ M, 1 ≤ n ≤ N} be the

solution of the scheme (11), with a uniform grid used in the spatial domain. Further, let

φ ∈ D(L5/2), f(·, t) ∈ D(L5/2), ft(·, t) ∈ D(L1/2), and ftt(·, t) ∈ D(L1/2) for each t ∈ (0, T ].

Then, u is a unique solution to (2), with resulting approximation error

‖u(xi, tn)− uni ‖∞ ≤
Tα

Γ(α + 1)

(
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+
(τmax)

α

α
max

0≤t≤T
|Dαt u(x, t)|

)
. (16)

Proof. By Theorem A, there exists a unique solution to (2). Denote the residual of the

approximation in space (Rx)
n(xi, tn) by

(Rx)
n(xi, tn) =

h4

360

∫ 1

0

[
∂6u

∂x6
(xi − sh, tn) +

∂6u

∂x6
(xi + sh, tn)

]
ds (17)

for all t ∈ [0, 1]. We may then bound (Rx)
n(xi, tn) by∣∣∣∣(Rx)

n(xi, tn)

∣∣∣∣ =

∣∣∣∣ h4

360

∫ 1

0

(
∂6u

∂x6
(xi − sh, tn) +

∂6u

∂x6
(xi + sh, tn)

)
ds

∣∣∣∣∣∣∣∣(Rx)
n(xi, tn)

∣∣∣∣ ≤ h4

360

∫ 1

0

(∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

)
ds

=
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞
.
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In a similar manner, we bound the residual of the approximation in time (Rt)
n(xi, tn) by

(Rt)
n(xi, tn) ≤ Tα(τmax)

α

αΓ(α + 1)
max

0≤t≤tn
|Dαt u(x, t)|, (18)

as seen in Theorem 3.1. By combining the above, we have

‖u(xi, tn)− uni ‖∞ =

∥∥∥∥∫ tn

0

(tn − s)α−1

Γ(α)
Rn
x(xi, s) ds+Rn

t

∥∥∥∥
∞

(19)

≤‖Rn
x(xi, tn)‖∞

∥∥∥∥ tαn
Γ(α + 1)

∥∥∥∥
∞

+ ‖Rn
t (xi, tn)‖∞ (20)

≤ Tα

Γ(α + 1)

(
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+
(τmax)

α

α
max

0≤t≤tn
|Dαt u(x, t)|

)
. (21)

Therefore, under a uniform partition of the time domain, the approximation error of (11) is

O(h4 + τα).

Theorem 2.4.2. Suppose {uni |0 ≤ i ≤ M, 1 ≤ n ≤ N} is the solution of the scheme (11).

Then, for any size temporal mesh described before, the discrete difference scheme (11) is

unconditionally stable to f and φ, where

‖un‖2
A ≤ ‖φ‖

2
A +

Tα

Γ(α + 1)
max

1≤l≤N

∥∥Hhf
l
∥∥2

h

Proof. Recall that

ank =
1

Γ(α)

∫ tk

tk−1

(tn − s)α−1ds,

=
1

Γ(α + 1)
[(tn − tk−1)α − (tn − tk)α] .

We consider the scheme (11) after combining the initial and boundary conditions. By omit-

ting the residual term Rn
i and by substituting the exact solution Uk

i with its approximation

uki into (11), we have:

Hhu
n
i = Hhu

0
i +

n∑
k=1

ank
(
δ2
xu

k
i +Hhf

n
i

)
.

By multiplying both sides by −2hδ2
xu

n
i and summing over each i, then

2 ‖un‖2
A + 2

n−1∑
k=1

ank
∥∥δ2

xu
k
∥∥2

h
= 2〈u0, un〉A − 2

n∑
k=1

ank〈Hhf, δ
2
xu

n〉h

≤
(∥∥u0

∥∥2

A
+ ‖un‖2

A

)
+

n∑
k=1

ank
(
‖Hhf

n‖2
h +

∥∥δ2
xu

n
∥∥
h

)
⇒ ‖un‖2

A ≤ ‖φ‖
2
A +

n∑
k=1

ank max
1≤l≤N

∥∥Hhf
l
∥∥2

h
1 ≤ n ≤ N.

Finally, since
∑n

k=1 a
n
k = Tα

Γ(α+1)
when n = N , we see the result holds.
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To further see the convergence of the numerical scheme, denote εni := u(xi, tn)− uni . The

error equations are then obtained:

Hhε
n
i =

n∑
k=1

ankδ
2
xε
n
i +Rn

i (22)

εn0 = εnM = 0, 1 ≤ n ≤ N

ε0i = 0, 0 ≤ i ≤M.

We present the error convergence rate for the scheme (11):

‖εn‖2
∞ ≤

∥∥ε0∥∥2

A
+

Tα

Γ(α + 1)
‖Rn

i ‖
2
h

≤ Tα

Γ(α + 1)

(
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+

(
ταmax

Γ(α + 1)

)
max

0≤t≤T
|Dαt u(x, t)|

)2

‖εn‖∞ ≤

√
Tα

Γ(α + 1)

(
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+

(
ταmax

Γ(α + 1)

)
max

0≤t≤T
|Dαt u(x, t)|

)
.

Hence, the scheme (11) is both stable and consistent, hence it is convergent. Therefore, by

[3, theorem 2.1] we have the following immediate results:

Theorem 2.4.3. Let u(x, t) ∈ Cα([0, T ];C6(Ω)) and let {uni |0 ≤ i ≤ M, 1 ≤ n ≤ N} be

the solution of the scheme (11), with a uniform grid used in the spatial domain and any

grid spacing used in the temporal direction. Further, let φ ∈ D(L5/2), f(·, t) ∈ D(L5/2),

ft(·, t) ∈ D(L1/2), and ftt(·, t) ∈ D(L1/2) for each t ∈ (0, T ]. Then, it holds for some C > 0

‖u(xi, tn)− uni ‖∞ ≤

√
Tα

Γ(α + 1)
C
(
h4 + ταmax

)
, 1 ≤ n ≤ N. (23)

We now examine the consistency and stability results for the scheme (15).

Theorem 2.4.4. Let u(x, t) ∈ C1([0, T ];C6(Ω)) and let {uni |0 ≤ i ≤ M, 1 ≤ n ≤ N} be the

solution of the scheme (15), with a uniform grid used in the spatial domain. Further, let

φ ∈ D(L5/2), f(·, t) ∈ D(L5/2), ft(·, t) ∈ D(L1/2), and ftt(·, t) ∈ D(L1/2) for each t ∈ (0, T ].

Then, u is a unique solution to (2), with resulting approximation error

‖u(xi, tn)− uni ‖∞ ≤
Tα

Γ(α + 1)

(
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+

(
τn + τmax

2

)∥∥∥∥∂u∂t
∥∥∥∥
∞

)
. (24)

Proof. The proof is identical to Theorem 4.1 and is therefore omitted.

We remark that as α→ 0 then
Tα

Γ(1 + α)
→ 1. Also, as α→ 1 then

Tα

Γ(1 + α)
→ T . The

following corollary is immediate from the previous theorem.
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Corollary 2.4.4.1. Under a uniform partition of the time domain where τn = τ for all n,

then the approximation error of (15) is O(h4 + τ).

We also have a theorem asserting the stability of the discrete scheme and derives the

corresponding error equations of the scheme:

Theorem 2.4.5. Suppose {uni |0 ≤ i ≤ M, 1 ≤ n ≤ N} is the solution of the scheme (15).

Then, for any size temporal mesh described before, the discrete difference scheme (15) is

unconditionally stable to f and φ, where

‖un‖2
A ≤ ‖φ‖

2
A +

Tα

Γ(α + 1)
max

1≤l≤N

∥∥Hhf
l
∥∥2

h

Proof. The proof is identical to Theorem 4.2, and is therefore omitted.

The error equations are then obtained:

Hhε
n
i =

n∑
k=1

ankδ
2
xε
n
i + annR

n
i (25)

εn0 = εnM = 0, 1 ≤ n ≤ N

ε0i = 0, 0 ≤ i ≤M.

By applying (17) and by applying the previous stability analysis, we have the immediate

error convergence result

‖εn‖2
A ≤

∥∥ε0∥∥2

A
+

Tα

Γ(α + 1)
‖Rn

i ‖
2
h

≤ Tα

Γ(α + 1)

(
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+

(
τn + τmax

2

)∥∥∥∥∂u∂t
∥∥∥∥
∞

)2

,

‖εn‖A ≤

√
Tα

Γ(α + 1)

(
h4

180

∥∥∥∥∂6u

∂x6

∥∥∥∥
∞

+

(
τn + τmax

2

)∥∥∥∥∂u∂t
∥∥∥∥
∞

)
.

That is, the scheme (15) is both stable and consistent, hence it is convergent, see [7-9] for

further details. Therefore, by [3, theorem 2.1] we have the following immediate results:

Theorem 2.4.6. Let u(x, t) ∈ C1([0, T ];C6(Ω)) and let {uni |0 ≤ i ≤ M, 1 ≤ n ≤ N} be

the solution of the scheme (15), with a uniform grid used in the spatial domain and any

grid spacing used in the temporal direction. Further, let φ ∈ D(L5/2), f(·, t) ∈ D(L5/2),

ft(·, t) ∈ D(L1/2), and ftt(·, t) ∈ D(L1/2) for each t ∈ (0, T ]. Then, it holds for some C > 0

‖u(xi, tn)− uni ‖∞ ≤

√
Tα

Γ(α + 1)
C
(
h4 + τmax

)
, 1 ≤ n ≤ N. (26)
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We also have a corollary detailing the use of a truncation of the exact solution to generate

the data at u(x, t1).

Corollary 2.4.6.1. Let uh,1(x, t1) = φ(x)+
φ′′(x)tα1
Γ(α + 1)

+(f ∗a1−α)(x, t1). Then, the truncation

error

‖eh,1‖∞ = ‖u(x, t1)− uh,1(x, t1)‖∞ ≤ Cτ 2α
max

(∥∥φ(4)(x)
∥∥
∞ + ‖f(x, t1)‖∞

)
Proof. Consider the exact solution u(x, t) of (2) which is generated from (110). That is,

u(x, t) = φ(x) +
φ′′(x)tα

Γ(α + 1)
+
φ(4)(x)t2αΓ(1/2)

4αΓ(α + 1/2)
+O(t3αφ(6)(x))

+ (f ∗ a1−α)(x, t) + ((f ∗ a1−α) ∗ a1−α)(x, t) +O(t3α).

Hence, the truncation error at the first time step t1 is, after ignoring the higher order terms,

‖eh,1‖∞ =

∥∥∥∥φ(4)(x)t2α1 Γ(1/2)

4αΓ(α + 1/2)
+ ((f ∗ a1−α) ∗ a1−α)(x, t1)

∥∥∥∥
∞

≤ Ct2α1 ‖φ(x)‖∞

+

∥∥∥∥∫ t1

0

(t1 − s)α−1

Γ(α)

(∫ s

0

(s− v)α−1f(x, v)

Γ(α)
dv

)
ds

∥∥∥∥
≤ Ct2α1 ‖φ(x)‖∞ + ‖f(x, t1)‖∞

∥∥∥∥∫ t1

0

sα(t1 − s)α−1

Γ(α)

∥∥∥∥
∞

= Ct2α1 ‖φ(x)‖∞ + ‖f(x, t1)‖∞

∥∥∥∥ Γ(1/2)t2α1
4αΓ(α + 1/2)

∥∥∥∥
∞

≤ Ct2α1 (‖φ(x)‖∞ + ‖f(x, t1)‖∞) ,

which yields the desired results.

Remark. By letting t1 = τ, φ(x) = 0, and where f(x, τ) = (τ +O(τ 1+α))X(x), we have the

truncation error in corollary 2.4.6.1 after neglecting the terms of order O(τ 1+α) :

‖eh,1‖∞ = ‖u(x, t1)− uh,1(x, t1)‖∞ ≤ Cτ 1+2α ‖X(x)‖∞ .

We now have two convergent schemes that were previously not possible under the usual

L1-method. Further, when compared to the L1-method, we do not lose any order of con-

vergence due to the integral kernel. That is, we are able to relax the L1-method hypothesis

of g(t) ∈ C2[0, T ] to g(t) ∈ C1[0, T ] and further to Cα[0, T ] while obtaining an order of

convergence equal to the order of regularity.
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2.4.2 CONDITIONING OF THE SCHEME

Given the numerical approximation schemes (15) and (11), we wish to investigate the

condition number of the matrix of coefficients attached to the uni term. In appendix B, the

numerical scheme was rewritten as a matrix equation to be solved for all time and space

steps. In particular, the coefficient matrices I∗α and I∗2 are inverted to solve the numerical

approximation schemes (11) and (15). We define the condition numbers in a similar fashion

to [50] by

κ2,α = ‖I∗α‖2

∥∥I∗α−1
∥∥

2

κ2,2 = ‖I∗2‖2

∥∥I∗2−1
∥∥

2
,

where the matrix p-norm is defined for any matrix I∗ ∈ Cm,n by

‖I∗‖p = sup
x 6=0

‖I∗2x‖p
‖x‖p

,

with corresponding vector norm for the vector x

‖x‖p =

(∑
i

xpi

)1/p

.

We remark that the constructions for the matrices I∗α and I∗2 depend entirely on τ , h, and

α. Given the C1 approximation scheme (15), we compute the condition number κ2,2 for

a numerical experiment with u(x, t) = sin(πx)t1.01, φ(x) = 0, u(0, t) = u(1, t) = 0, given

N = 10, 20, 40, 80, 160 and M = 100. In a similar manner, we can also compute the condition

number κ2,α for a numerical experiment with u(x, t) = sin(πx)tα, φ(x) = 0, u(0, t) = u(1, t) =

0, given N = 10, 20, 40, 80, 160 and M = 100. The table of condition numbers κ2,2 and κ2,α

for 0 < α < 1 are detailed in full in appendix C. In the next section, we shall consider a

simple numerical experiment that illustrates our theoretical results.

2.5 NUMERICAL EXPERIMENT

We will consider the following two test problems for our numerical experiments:
u(x, t) = sin(πx)t1.01, u(0, t) = u(1, t) = 0, φ = u(x, 0) = 0,

f1−α(x, t) = sin(πx)

[
t+

Γ(2.01)π2tα+1.01

Γ(α + 2.01)

]
= a1−α(t) ∗ f(x, t),

(27)


u(x, t) = sin(πx)tα, u(0, t) = u(1, t) = 0, φ = u(x, 0) = 0,

f1−α(x, t) = sin(πx)

[
tα +

4−απ5/2t2α

Γ(α + 1/2)

]
= a1−α(t) ∗ f(x, t),

(28)
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which will satisfy u(x, t) ∈ C1[0, T ] in time for the first problem and u(x, t) ∈ Cα[0, T ] for

the second problem. We define M to be the number of partitions of the spatial domain,

E1(M,N) to be the L∞ error norm over the total mesh for functions in C1[0, T ], and rate1 =

log2

(E1(M,N/2)

E1(M,N)

)
under a uniform time mesh. In this manner, Eα and rateα are defined

analogously. For all numerical experiments, we fix M = 25 space grid points and and T = 1.
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We have the following results when considering the first problem using the first-order

scheme:

Table 1: Numerical error for u(x, t) = sin(πx)t1.01 using a midpoint scheme

Numerical Error for u(x, t) = sin(πx)t1.01, using scheme (15)
α N E1(M,N) rate1

0.05 10 0.15621 –
20 0.07707 1.092
40 0.03802 1.0195
80 0.01875 1.0197
160 0.00925 1.02
320 0.00456 1.0203

0.25 10 0.13324 –
20 0.06321 1.0757
40 0.02981 1.0844
80 0.01397 1.0938
160 0.00650 1.1037
320 0.00300 1.114

0.5 10 0.11029 –
20 0.04762 1.2117
40 0.01996 1.2543
80 0.00812 1.2792
160 0.00321 1.338
320 0.00124 1.3747

0.75 10 0.08773 –
20 0.03230 1.4416
40 0.01118 1.5309
80 0.00368 1.6043
160 0.00116 1.6588
320 3.5928e–4 1.6962

0.95 10 0.06893 –
20 0.02145 1.6839
40 0.00619 1.7932
80 0.00170 1.8655
160 4.5245e–4 1.9085
320 1.1852e–4 1.9326
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The results for the second problem utilizing the α-order scheme is as follows:

Table 2: Numerical error for u(x, t) = sin(πx)tα, using an α-order scheme

Numerical Error for u(x, t) = sin(πx)tα, using scheme (11)
α N Eα(M,N) rateα
0.05 10 0.0260 –

20 0.0250 0.0551
40 0.0240 0.0552
80 0.0231 0.0554
160 0.0223 0.0556

0.25 10 0.0588 –
20 0.0481 0.2878
40 0.0393 0.2937
80 0.0319 0.3003
160 0.0258 0.3077

0.5 10 0.0385 –
20 0.0249 0.6265
40 0.0158 0.6618
80 0.0097 0.7017
160 0.0058 0.7443

0.75 10 0.0370 –
20 0.0208 0.8356
40 0.0114 0.8618
80 0.0062 0.8904
160 0.0033 0.9178

0.95 10 0.0470 –
20 0.0238 0.979
40 0.0120 0.9863
80 0.0061 0.9916
160 0.0030 0.9953
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The previous table shows that for various values of α, the error estimate improves with an

increase in the number of space and time steps used in the mesh partitioning while preserving

a rate of convergence approaching O(k1+α) in the first example. For the second example, we

exhibit a rate of convergence that is better than expected, which is especially noticeable for

α ≥ 0.5. As a result, our method exhibits a better rate of convergence than predicted, under

these relaxed regularity assumptions. We remark that such examples are not numerically

stable by utilizing the traditional L1 method, as outlined in [56]. We further remark that

for the numerical example with exact solution as in (28), full order of convergence in time

can be obtained by using a linear interpolant scheme [11, 30, 34, 35]. However, their results

do not extend to general functions in Cα[0, T ].

By corollary 2.4.6.1, if we instead replace u(xi, t1) with its approximation derived from

the exact solution, we instead have the following improved results for a small amount of time

steps due to the truncation error. For this example, we have u(xi, t1) = f1−α(xi, t1) These

results are summarized in the following table:

Table 3: Numerical Error for u(x, t) = sin(πx)t2 with truncation error for u(x, t1)

Numerical Error for u(x, t) = sin(πx)t2 with truncation error for u(x, t1)
α N E1(M,N) rate1

0.05 10 0.0840 –
20 0.0370 1.1821
40 0.0179 1.046

0.25 10 0.0435 –
20 0.0157 1.4744
40 0.0067 1.222

0.5 10 0.0189 –
20 0.0046 2.0227
40 0.0017 1.4294

0.75 10 0.0079 –
20 0.0014 2.4636
40 2.7567e–4 2.3859

0.95 10 0.0050 –
20 7.76962e–4 2.6739
40 1.1287e–4 2.7832
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CHAPTER 3

THE GENERALIZED METHOD FOR UP TO FIFTH ORDER ACCURACY

We obtain new numerical schemes for weakly singular integrals of convolution type called

Caputo fractional order integrals using Taylor and fractional Taylor series expansions and

grouping terms in a novel manner. A fractional Taylor series expansion argument is utilized

to provide fractional-order approximations for functions with minimal regularity. The re-

sulting schemes allow for the approximation of functions in Cγ[0, T ], where 0 < γ ≤ 5. A

mild invertibility criterion is provided for the implicit schemes. Consistency and stability are

proven separately for the whole-number-order approximations and the fractional-order ap-

proximations. The rate of convergence in the time variable is shown to be O(τ γ), 0 < γ ≤ 5

for u ∈ Cγ[0, T ], where τ is the size of the partition of the time mesh. Crucially, the assump-

tion of the integral kernel K being decreasing is not required for the scheme to converge in

second-order and below approximations. Optimal convergence results are then proven for

both sets of approximations, where fractional-order approximations can obtain up to whole-

number rate of convergence in certain scenarios. Finally, numerical examples are provided

that illustrate our findings.

3.1 INTRODUCTION

We begin by recalling the Caputo fractional time-derivative [9,10] of a given function f(t)

is
C
0 D

α
t f(t) =

1

Γ(1− α)

∫ t

0

df(s)

ds
(t− s)−α ds, 0 < α < 1, (29)

which is a fractional derivative of order α. In [8], the Laplace transform was applied to the

fractional order diffusion initial-boundary value problem

C
0 D

α
t u(x, t) =

∂2

∂x2
u(x, t) + g(x, t), x ∈ [0, 1], t ∈ [0, T ], (30)

u(x, 0) = φ(x), u(0, t) = u(1, t) = 0, (31)

to obtain the integral equation

u(x, t) = φ(x) +

∫ t

0

(t− s)α−1

Γ(α)

(
∂2

∂x2
u(x, s) + g(x, s)

)
ds. (32)
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Equation (32) was then studied numerically and convergent schemes were developed for

this integral equation inspired by the works presented in [36]-[41], [46], [47], and [56]. The

regularity of equation (2) has been considered in [8], [40], [46], and others. Our discussion

of the regularity of these schemes is motivated by the findings in [16], [17], and [28]. We will

derive and examine numerical schemes to discretize integrals of the form (32), motivated by

the principles in [17], [26], [43], [44], and [48]. Equations of the form (32) have numerous

engineering and physics applications, see [46], [47] and [56]. One of the major advantages of

applying the Laplace Transform to a fractional derivative term, as seen in [8], is the ability to

relax the regularity assumption for fractional derivative discretizations in the time variable

while preserving an optimal convergence rate. Namely, we now have the ability to relax

the regularity assumption from requiring the objective function u(t) ∈ C2[0, T ] under the

well known L1-method (c.f [56]) to u(t) ∈ Cγ[0, T ], where 0 < γ ≤ 2. Further, we can

strengthen this assumption to u(t) ∈ Cγ[0, T ], where 2 < γ ≤ 5 while obtaining optimal

rate of convergence. This is achieved by a Taylor series expansion to obtain convergence

results for whole number values of γ, and by using a fractional Taylor series expansion to

approximate functions with a fractional order of regularity, see [53]. By requiring more

regularity than u(t) ∈ C2[0, T ] in the usual L1-method, we are able to obtain a higher

order of convergence, as seen in Theorems 3.6 and 3.7. This method naturally generalizes

to any convolution type-quadrature where the kernel function K is positive, nonincreasing,

and satisfies K ∈ L1[0, T ], as seen in Theorems 3.4 and 3.5. The space variable can be

discretized by a stable finite difference operator presented in [8] and [56] to obtain a rate of

convergence in the space variable of O(h4), where h denotes the size of the partition of the

space variable interval. This ultimately yields a rate of convergence in both space and time

for u(x, t) ∈ Cγ([0, T ];C6[0, 1]) of O(τ γ +h4), where τ is the size of the partition of the time

variable interval. We remark that a standard finite difference operator in the space variable

can relax the regularity in space to u(x, t) ∈ Cγ([0, T ];C4[0, 1]), where special consideration

must be taken to ensure stability in the space variable.

The remainder of this chapter is organized as follows. Section 2 will provide discretiza-

tions for fractional integrals of the form found in (32), and a general scheme is established

for convolution integrals based on the integral kernel. We obtain general schemes of orders

up to 5th order of accuracy in time. Section 3 establishes all of the necessary consistency,

stability, and convergence results for each of these schemes, in addition to a discussion of the

implementation of the schemes. We also prove optimal order of convergence of our stable

schemes, and the instability of schemes of order 6 and above are presented as well. The
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main results are featured in Theorems 3.4 through 3.7. Section 4 presents numerical solu-

tions of fractional integral equations demonstrating orders of convergence predicted by our

theoretical results.

3.2 DISCRETIZED NUMERICAL SCHEMES

In order to discretize the Caputo fractional integral (32), let 0 = t0 < t1 < ... < tN = T

be a uniform partition, define τ =
T

N
= tk − tk−1, k = 1, ..., N where N is the number of

partitions of the time interval [0, T ] and let s ∈ (0, T ). Then,

f(s) = f(tk) + (s− tk)f ′(tk) +
(s− tk)2

2!
f ′′(tk) +

(s− tk)3

3!
f ′′′(tk) + ... . (33)

From the above, similar Taylor expansions centered at any given tk can be constructed for

each of the previous points tk−1, tk−2, ..., t1, t0 ∈ [0, tk]. We will use the notation A = O(h) if
A

h
is bounded. We obtain

f(tk) = f(tk) (34)

f(tk−1) = f(tk)− τf ′(tk) +
τ 2

2!
f ′′(tk)−

τ 3

3!
f ′′′(tk) +O(τ 4)

f(tk−2) = f(tk)− 2τf ′(tk) +
(2τ)2

2!
f ′′(tk)−

(2τ)3

3!
f ′′′(tk) +O(τ 4)

...

f(t0) = f(tk)− kτf ′(tk) +
(kτ)2

2!
f ′′(tk)−

(kτ)3

3!
f ′′′(tk) +O(τ 4).

We will use the following equations to find the j-th order approximation of f(s) for any

point s ∈ (0, T ) and each k = 0, ..., N

j−1∑
i=0

cki f(tk−i) = f(s) +O((s− tk)j) (35)

j−1∑
i=0

cki f(tk−i) =

j−1∑
i=0

(s− tk)i

i!
f (i)(tk) +O((s− tk)j). (36)

We replace each f(tk−i) by its Taylor expansion about the point tk, neglect the higher order

terms and solve the system resulting from equating coefficients of

f(tk), f
′(tk), ..., f

(j−1)(tk). For example, a second order approximation of f(s) is obtained

from

ck0f(tk) + ck1 (f(tk)− τf ′(tk)) = f(tk) + (s− tk)f ′(tk),
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by equating the coefficients of f(tk) and f ′(tk) to obtain the system of equations

ck0 + ck1 = 1

−ck1τ = (s− tk).

Solving the above yields ck1 =
tk − s
τ

, ck0 = 1 − tk − s
τ

. As an example, we may numerically

approximate the integral as seen in [8] using ck0 and ck1 as solved for above:∫ tn

0

(tn − s)α−1

Γ(α)
f(s) ds =

n∑
k=1

∫ tk

tk−1

(tn − s)α−1

Γ(α)
f(s) ds

≈
n∑
k=1

∫ tk

tk−1

(tn − s)α−1

Γ(α)

(
ck0f(tk) + ck1f(tk−1)

)
ds.

We remark that under this construction, we satisfy the condition s ∈ [tk−1, tk]. This directly

implies that the coefficients c0 and c1 presented above are nonnegative. We now provide the

values of the coefficients for each scheme up to 4th order accuracy. Higher order schemes

can be derived using the equation (35). In this way, the general method is outlined below.

We remark that in general, ci = ci(s) for each i = 0, 1, ..., j − 1. For fixed k = 1, 2, ..., N

First order accurate:

ck0 = 1,

f(s) = f(tk) +O(τ).

Second order accurate:

ck0 = 1− tk − s
τ

, ck1 =
tk − s
τ

, k ≥ 1,

f(s) = ck0f(tk) + ck1f(tk−1) +O(τ 2).

Third order accurate:

ck0 =
(τ + s− tk)(2τ + s− tk)

2τ 2
, ck1 =

(tk − s)(2τ + s− tk)
τ 2

,

ck2 =
(s− tk)(τ + s− tk)

2τ 2
, k ≥ 2,

f(s) = ck0f(tk) + ck1f(tk−1) + ck2f(tk−2) +O(τ 3).
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Fourth order accurate:

ck0 =
(τ + s− tk)(2τ + s− tk)(3τ + s− tk)

6τ 3
,

ck1 =
(tk − s)(2τ + s− tk)(3τ + s− tk)

2τ 3
,

ck2 =
(s− tk)(τ + s− tk)(3τ + s− tk)

2τ 3
,

ck3 =
(tk − s)(τ + s− tk)(2τ + s− tk)

6τ 3
, k ≥ 3,

f(s) = ck0f(tk) + ck1f(tk−1) + ck2f(tk−2) + ck3f(tk−3) +O(τ 4).

Fifth order accurate:

ck0 =
(τ + s− tk)(2τ + s− tk)(3τ + s− tk)(4τ + s− tk)

24τ 4
,

ck1 =
(tk − s)(2τ + s− tk)(3τ + s− tk)(4τ + s− tk)

6τ 4
,

ck2 =
(s− tk)(τ + s− tk)(3τ + s− tk)(4τ + s− tk)

4τ 4
,

ck3 =
(tk − s)(τ + s− tk)(2τ + s− tk)(4τ + s− tk)

6τ 4

ck4 =
(tk − s)(τ + s− tk)(2τ + s− tk)(3τ + s− tk)

24τ 4
, k ≥ 4,

f(s) = ck0f(tk) + ck1f(tk−1) + ck2f(tk−2) + ck3f(tk−3) + ck4f(tk−4)O(τ 5).

As a generalization of the previous examples, after replacing each f(tk−i) with its Taylor

series, we equate the coefficients of f(tk), f
′(tk), ..., f

(j−1)(tk) and neglect the higher order

terms to obtain the following system of equations from (35)

V T
τ
~ckj = ~ykj , (37)
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where

V T
τ =



1 1 1 ... 1

0 −τ −2τ ... −(j − 1)τ

0 (−τ)2 (−2τ)2 ... (−(j − 1)τ)2

...

0 (−τ)j−1 (−2τ)j−1 ... (−(j − 1)τ)j−1


(38)

~ckj =



ck0

ck1

ck2

...

ckj−1


, ~ykj =



1

(s− tk)
(s− tk)2

...

(s− tk)j−1


. (39)

Notice that V T
τ is the transpose of the usual Vandermonde matrix [52] which has the deter-

minant

det(V T
τ ) = det(Vτ ) =

∏
1≤i<n≤j

(xn − xi)

=
∏

1≤i<n≤j

(n− i)τ 6= 0,

because, recall xj =
jT

N
and τ =

T

N
6= 0. This directly implies that the matrix V T

τ is invert-

ible under this condition. The following lemma is immediate from the above considerations.

Lemma 3.2.1. Equation (37) has a unique solution, ~ckn for each n ≤ N, n ∈ N and each

k = 1, ..., N .

We now compute the unique solution ensured by the previous lemma. From [52], we can

establish the generalized inverse of the Vandermonde matrix to solve (37).

Theorem 3.2.2. Let τ > 0. Then, (37) has a unique solution ~ckn for each j = 1, 2, ..., N, N ∈
N and k ≥ j, with the solution

~cki =



∑
1≤n≤j

(s− tk)n−1(−1)j−i



∑
1≤m1<...,mj−i≤j
m1,...,mj−1 6=n

xm1 ...xmj−i

∏
1≤i<n≤j

(τ(n− i))

 , 1 ≤ i < j,

∑
1≤n≤j

(s− tk)n−1 1∏
1≤i<n≤j

(τ(n− i))
, i = j,

(40)
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where xn = nτ .

Proof. From Lemma 3.2.1, we may invert the matrix V T
τ to obtain the solution

~ckj = (V T
τ )−1 ~ykj ,

which, from [52], each entry of (V T
τ )−1 = [vin], 1 ≤ i, j ≤ n is calculated by

vin =



(−1)j−i



∑
1≤m1<...,mj−i≤j
m1,...,mj−1 6=n

xm1 ...xmj−i

∏
1≤i<n≤j

(τ(n− i))

 , 1 ≤ i < j,

1∏
1≤i<n≤j

(τ(n− i))
, i = j,

so we may solve component-wise to find each entry of ~cj , from

(V T
τ )−1 ~ykj =

∑
1≤n≤j

viny
k
n.

Thus,

~cki = (V T
τ )−1 ~ykj =

∑
1≤n≤j

viny
k
n (41)

=



∑
1≤n≤j

(s− tk)n−1(−1)j−i



∑
1≤m1<...,mj−i≤j
m1,...,mj−1 6=n

xm1 ...xmj−i

∏
1≤i<n≤j

(τ(n− i))

 , 1 ≤ i < j,

∑
1≤n≤j

(s− tk)n−1 1∏
1≤i<n≤j (τ(n− i))

, i = j.

Remark 3.2.3. By utilizing the fractional Taylor series expansion instead for f(s) on [0, T ],

as discussed in [53], we obtain similar results to those outlined in Theorem 2.2. This can

further relax the regularity assumption to f(s) ∈ Cα[0, T ] for 0 < α < 1.
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Using the fractional Taylor series expansion, we define an α-order scheme by the following:

α order accurate:

ck0 = 1,

f(s) = f(tk) +O(τα).

We now examine the consistency, stability, and convergence of these schemes based on the

generalized scheme

f(s) =
n−1∑
i=0

cki f(tk−i) +O((s− tk)n). (42)

3.3 NUMERICAL CONSISTENCY, STABILITY, AND

CONVERGENCE

3.3.1 NUMERICAL CONSISTENCY

We motivate our discussion of stability and convergence by examining the results pre-

sented in [2]. The main results of this paper are established in Theorems 3.3 through 3.7.

The quadrature studied in [2] is of the form∫ T

0

φ(s) ds = τ
N∑
j=0

wjφ(jτ) +O(τR), (43)

where R ∈ N. From [2], if φ ∈ CR[0, T ] then there exists of a sequence of constants, {cl},
such that ∫ T

0

φ(s) ds− τ
N∑
j=0

wjφ(jτ)

=
R∑

l=ρ+1

τ l(rlcl){φ(l−1)(T )− φ(l−1)(0)}+O(τR).

We will compare these results to the ones established in the previous section to prove stability

and assert convergence. Our goal is to rewrite the integrand φ(s) = K(tn − s)f(s) as a

convolution integral, where we may relax the continuity assumptions on the kernel function

K. We begin by recalling some basic definitions for quadrature methods. From (1.15) of [2],

a quadrature method of the form (43) is said to be consistent if it satisfies

N∑
j=0

wj = N.
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We will relate (43) and our findings in the previous section. We use the notation dγe = a,

where a is the smallest integer that satisfies a ≥ γ.

Lemma 3.3.1. Let γ > 0, f ∈ Cγ[0, T ], and K ∈ L1[0, T ]. Then, if wkj is given by (46) for

any tn ∫ tn

0

f(s)K(tn − s) ds =
n∑
k=1

dγe−1∑
j=0

wkj f(tk−j) +O(τ γ). (44)

Proof. By utilizing the Taylor expansion for f(s) about the point tk, we may readily obtain a

similar quadrature rule by using Theorem 3.2.2 and the definition of each cj(s) defined in (40).

By further remarking that for each s ∈ [tk−1, tk], then we may write O((tk− s)γ) = O(τ γ) to

find ∫ tn

0

f(s)K(tn − s) ds =
n∑
k=1

∫ tk

tk−1

f(s)K(tn − s) ds (45)

=
n∑
k=1

∫ tk

tk−1

dγe−1∑
j=0

ckj (s)f(tk−j) +O((s− tk)γ)

K(tn − s) ds

=
n∑
k=1

dγe−1∑
j=0

f(tk−j)

∫ tk

tk−1

ckj (s)K(tn − s) ds+O(τ γ).

By letting

wkj =

∫ tk

tk−1

ckj (s)K(tn − s) ds, (46)

we arrive at the conclusion.

The following remark is a natural extension of the first lemma, which allows for direct

comparison to prove stability using the Theorem 3.7 in [2].

Remark 3.3.2. By expanding the series

n∑
k=1

dγe−1∑
j=0

wkj f(tk−j) +O(τ γ),

and by collecting all of the repeating terms for each f(tk−j), we may condense the double

summation into a single summation term

n∑
k=1

dγe−1∑
j=0

wkj f(tk−j) =
n∑
k=0

(wk0 + wk+1
1 + ...+ wk+γ−1

γ−1 )f(tk), (47)
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where we define w0
0 = 0 to satisfy the previous lemma. Further, by defining, for fixed 0 <

γ ≤ 5,

w̃γk = wk0 + wk+1
1 + ...+ wk+γ−1

γ−1 , (48)

we arrive at a form identical to the generalized quadrature rule posed in [2], namely

n∑
k=1

dγe−1∑
j=0

wkj f(tk−j) +O(τ γ) =
n∑
k=0

w̃γkf(tk) +O(τ γ). (49)

Theorem 3.3.3. The approximation scheme (44) combined with (49) is consistent for any

0 < γ ≤ 5, where γ is the order of approximation.

Proof. From the consistency requirement in [2], we must show that the scheme (49) satisfies,

for any time step τ > 0,

∫ tn

0

φ(s) ds = τ
n∑
j=0

wn−jφ(jτ) +O(τR),

n∑
j=0

wj = n,

(50)

for any fixed γ. That is, we have from Remark 3.3.2

n∑
k=0

w̃γk =
n∑
k=0

wk0 + wk+1
1 + ...+ wk+γ−1

γ−1

=
n∑
k=1

dγe−1∑
j=0

wkj

=
n∑
k=1

dγe−1∑
j=0

∫ tk

tk−1

ckj (s)K(tn − s) ds

=
n∑
k=1

∫ tk

tk−1

dγe−1∑
j=0

ckj (s)

K(tn − s) ds.

From (37), the first equation in the Vandermonde matrix requires

dγe−1∑
j=0

ckj (s) = 1,

hence,

n∑
k=0

w̃γk =
n∑
k=1

∫ tk

tk−1

K(tn − s) ds =

∫ tn

0

K(tn − s) ds.
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On the other hand, by relabelling the coefficients of (50) and by noting that kτ = tk,∫ tn

0

f(s)K(tn − s) ds = τ

n∑
j=0

wn−jf(jτ)K(tn − jτ) +O(τR)

= τ
n∑
k=0

wn−kf(tk)K(tn − tk) +O(τR). (51)

By equating (49) and (51), we have

τ
n∑
k=0

wn−kK(tn − tk) =
n∑
k=0

w̃γk =

∫ tn

0

K(tn − s) ds.

Since each wn−k ≥ 0 under this construction, we select {wk}nk=0 to satisfy
∑n

k=0 wk = n.

Thus, we have for the scheme (49)

∫ tn

0

f(s)K(tn − s) ds = τ
n∑
k=0

wn−kf(tk)K(tn − tk) +O(τR)

n∑
k=0

wk = n,

hence the scheme (49) is consistent. For simplicity and for implementation, we take wk = 1

for each k to trivially satisfy these conditions since w0
0 = w0 = 0.

3.3.2 INVERTIBILITY CRITERIA

Given a Volterra integral equation of the second kind

u(t) = f(t) +

∫ t

0

K(t, s)u(s) ds,

the numerical approximation of order γ to the integral is at the time t = tk

u(tk) ≈ f(tk) +

∫ tk

0

K(t, s)

dγe−1∑
i=0

cki (s)u(tk−i)

 ds

= f(tk) +

dγe−1∑
i=0

u(tk−i)

∫ tk

0

K(t, s)cki (s) ds,

which is solved for each k = 1, 2, ..., N . As a result, we can rearrange the above to yield the



35

approximate equation

u(tk)

(
1−

∫ tk

tk−1

K(tk, s) c
k
0(s) ds

)
= f(tk)

+

∫ tk

tk−1

K(tk, s)

dγe−1∑
i=1

cki (s)u(tk−i)

 ds

+
k−1∑
j=1

∫ tj

tj−1

K(tk, s)

dγe−1∑
i=0

cki (s)u(tj−i)

 ds,

hence,

u(tk) =

(
1−

∫ tk

tk−1

K(tk, s) c
k
0(s) ds

)−1(
f(tk)

+

∫ tk

tk−1

K(tk, s)

dγe−1∑
i=1

cki (s)u(tk−i)

 ds

+
k−1∑
j=1

∫ tj

tj−1

K(tk, s)

dγe−1∑
i=0

cki (s)u(tj−i)

 ds

)
.

That is, for an implicit scheme, we must restrict

1−
∫ tk

tk−1

K(tk, s) c
k
0(s) ds 6= 0,

or equivalently, ∫ tk

tk−1

K(tk, s) c
k
0(s) ds 6= 1.

In practice, since γ is the pre-determined order of approximation and K is given, we can

select an appropriate order of approximation or an appropriate choice of parameters for K.

Additionally, when considering a traditional Volterra integral equation of the form

u(t) + λ

∫ t

0

K(t, s)u(s) ds = f(t), λ > 0,

where K is a positive integral kernel and K ∈ L1[0, T ], a routine discretization using the

method above yields the invertibility criterion

1 + λ

∫ tk

tk−1

K(tk, s) c
k
0(s) ds 6= 0,



36

which is never obtained since λ, K, and ck0 are positive on the interval [tk−1, tk]. Therefore,

the application of the schemes in this case is trivial without need for further consideration.

The implementation of these schemes is detailed further in appendix B.

3.3.3 NUMERICAL STABILITY AND CONVERGENCE

As a remark, the consistency results hold for any γ > 0 using this argument, but the

stability results do not hold in general for γ > 5. We must further satisfy stability require-

ments in order to prove the convergence of these schemes for any order 0 < γ ≤ 5. From [2],

we have the following theorem asserting stability under arbitrary quadrature rules.

Theorem. (3.7 of [2]) The stability polynomial

Σ(µ;λτ) =(1− λτw0K(0))µN − λτw1K(τ)µN−1 − ...

− λτwNK(nτ) (52)

is Schur, if |λτ |
∑N

k=0 |wkK(kτ)| < 1. Assuming each wk ≥ 0 and satisfy
∑N

k=0 wk = N , the

recurrence for

y(t) = f(t) + λ

∫ tn

tn−T
K(tn − s)y(s) ds

when K(t) ≡ 1 for t ∈ [0, T ] is stable whenever |λT | < 1, given τ > 0.

The Schur polynomial β(µ) in [2] is said to satisfy the requirement that the zeros of β lie

inside the complex unit disc, namely |µn| < 1 for all n = 0, 1, ..., N . This proof is achieved

by the use of Rouche’s theorem (c.f Theorem 3.8 of [6]), which requires that for α and β

analytic functions in µ inside and on the contour Γ ⊂ C, we have |β(µ)| < |α(µ)| for each

µ ∈ Γ. This proof is completed by letting Γ be the unit disc such that |µ| = 1, α(µ) = µN ,

and β(µ) = −λh
(
w0k(0)µN + w1k(h)µN−1 + ...+ wNk(τ)

)
. We remark that under these

results, we must simply satisfy the requirement that each w̃γk ≥ 0 in (49) to satisfy a similar

stability criterion for this generalized quadrature. This immediately leads to two stability

results.

Theorem 3.3.4. Let K be a positive function in L1[0, T ] and let τ > 0. Then, the approxi-

mation scheme (49) is stable for 0 < γ ≤ 2, where γ is the order of approximation.

Proof. The case where γ = 1 is immediate since ck0 = 1, hence w̃k1 ≥ 0. For γ = 2, recall
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that since ck0(s) > 0 on [tk−1, tk], c
k+1
1 (s) > 0 on [tk, tk+1], and K(s) > 0, then

w̃k2 = wk0 + wk+1
1 (53)

=

∫ tk

tk−1

ck0(s)K(s) ds+

∫ tk+1

tk

ck+1
1 (s)K(s) ds

≥ min
s∈[t1,T ]

(K(s))

(∫ tk

tk−1

ck0(s) ds+

∫ tk+1

tk

ck+1
1 (s) ds

)

= min
s∈[t1,T ]

(K(s))

(∫ tk+1

tk

ck+1
0 (s) ds+

∫ tk+1

tk

ck+1
1 (s) ds

)
= min

s∈[t1,T ]
(K(s))

(∫ tk+1

tk

ck+1
0 (s) + ck+1

1 (s) ds

)
= min

s∈[t1,T ]
(K(s)) τ ≥ 0.

Using similar analysis we are able to come to the same conclusion for γ = α and γ = 1 + α,

given 0 < α < 1. Therefore, when γ ∈ [1, 2], the scheme (49) is stable.

We require additional assumptions on the integral kernel K to ensure that the scheme is

stable in the case where the order of approximation to (49) is any order 2 < γ ≤ 5.

Theorem 3.3.5. Let K be a positive, nonincreasing function in L1[0, T ] and let τ > 0. The

approximation scheme (49) is stable for any 2 < γ ≤ 5 order of accuracy.

Proof. We begin by showing that w̃γk ≥ 0 for each k = 1, 2, ..., n. That is, we use the

relationship established in Remark 3.3.2. We will present the argument for the cases where

γ = 3, 4, 5 and deduce the pattern from there. We remark that under the construction found

in Theorem 3.2.2 that for j = 2, 4, 6, ... then ckj (s) < 0, provided s ∈ [tk−1, tk]. Therefore,

when γ = 3, we have

w̃k3 = wk0 + wk+1
1 + wk+2

2

=

∫ tk

tk−1

ck0(s)K(s) ds+

∫ tk+1

tk

ck+1
1 (s)K(s) ds+

∫ tk+2

tk+1

ck+2
2 (s)K(s) ds

≥ K(tk+1)

(∫ tk

tk−1

ck0(s) ds+

∫ tk+1

tk

ck+1
1 (s) ds+

∫ tk+2

tk+1

ck+2
2 (s) ds

)

= K(tk+1)

(∫ tk+2

tk+1

ck+2
0 (s) ds+

∫ tk+2

tk+1

ck+2
1 (s) ds+

∫ tk+2

tk+1

ck+2
2 (s) ds

)

= K(tk+1)

(∫ tk+2

tk+1

ck+2
0 (s) + ck+2

1 (s) + ck+2
2 (s) ds

)
= K(tk+1)τ ≥ 0.
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Hence, when γ = 3, the scheme (49) is stable. When γ = 4, the argument is similar, but

we must account for the extra positive term in wk+3
3 . That is, by recalling from (48) that

w̃k4 = w̃k3 + wk+3
3 , where

w̃k3 ≥ K(tk+1)

(∫ tk

tk−1

ck0(s) ds+

∫ tk+1

tk

ck+1
1 (s) ds+

∫ tk+2

tk+1

ck+2
2 (s) ds

)
.

Here,

w̃k4 =wk0 + wk+1
1 + wk+2

2 + wk+3
3

≥K(tk+1)

(∫ tk+1

tk

ck+1
0 (s) + ck+1

1 (s) + ck+1
2 (s) ds

)
+

∫ tk+3

tk+2

ck+3
3 (s)K(tk+3) ds

=K(tk+1)

(∫ tk+3

tk+2

1− ck+3
2 (s) ds

)
+

∫ tk+3

tk+2

ck+3
2 (s)K(tk+3) ds

=

∫ tk+3

tk+2

K(tk+1) + (K(tk+1)−K(tk+3))ck+3
2 (s) ds ≥ 0.

Since K is nonincreasing, K(tk+1) ≥ K(tk+3), and since ck+3
2 (s) < 0 where s ∈ [tk+2, tk+3]

by translating over to the correct interval, we then require −1 ≤ ck+3
2 (s), s ∈ [tk+2, tk+3] to

ensure that ∫ tk+3

tk+2

K(tk+1) + (K(tk+1)−K(tk+3))ck+3
2 (s) ds ≥

∫ tk+3

tk+2

K(tk+3) ds,

≥ 0.

To satisfy the requirement, we find that the minimum attained on the interval s ∈ [tk+2, tk+3]

for the function ck+3
2 (s) is found at s = tk+3 +

−4 +
√

7

3
τ by the Extreme Value Theorem and

by evaluating the derivative of ck+3
2 (s) on the interval s ∈ [tk+2, tk+3]. Hence, the minimum

value for ck+3
2 (s) is

ck+3
2 (tk+3 +

−4 +
√

7

3
τ) =(

−4 +
√

7

3

)(
1 +
−4 +

√
7

3

)(
3 +
−4 +

√
7

3

)
2τ 2

=
20− 14

√
7

54
≈ −0.31 ≥ −1.
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Therefore, when γ = 4, the scheme is stable. We now consider the case where γ = 5. In this

case, we have a similar argument where γ = 4, but we add an additional negative term in

wk+4
4 (s) < 0 for s ∈ [tk+3, tk+4]. Thus, by recalling that

w̃k5 = w̃k3 + wk+3
3 + wk+4

4 ,

we have

w̃k5 =wk0 + wk+1
1 + wk+2

2 + wk+3
3 + wk+4

4

≥K(tk+1)

(∫ tk+2

tk+1

ck+2
0 (s) + ck+2

1 (s) + ck+2
3 (s) ds

)

+K(tk+3)

(∫ tk+2

tk+1

ck+3
2 (s) + ck+2

4 (s) ds

)

=K(tk+1)

(∫ tk+2

tk+1

1− ck+2
2 (s)− ck+2

4 (s) ds

)

+K(tk+3)

(∫ tk+2

tk+1

ck+3
2 (s) + ck+2

4 (s) ds

)

=

∫ tk+2

tk+1

K(tk+1) + (K(tk+1)−K(tk+3))
(
ck+2

2 (s) + ck+2
4 (s)

)
ds.

We must restrict −1 ≤ ck+2
2 (s) + ck+2

4 (s) < 0 to ensure the stability of the scheme. We

remark that under the construction of the coefficients ck+2
2 and ck+2

4 , there is a common

factor of (s − tk+2) and (s − tk+2 + τ), hence ck+2
2 (s) + ck+2

4 (s) = 0 when s = tk+2 and

s = tk+2− τ = tk+1. Since ck+2
2 , ck+2

4 < 0 for s ∈ (tk+1, tk+2), then we may apply the extreme

value theorem again to assert that ck+2
2 (s) + ck+2

4 (s) attains a minimum value on [tk+1, tk+2].

Hence, the minimum of ck+2
2 (s) + ck+2

4 (s) is attained at s ≈ tk+2 − 0.416τ , with a minimum

value of

ck+2
2 (tk+2 − 0.416τ) + ck+2

4 (tk+2 − 0.416τ) ≈ −0.603912 ≥ −1.

Therefore, the scheme is stable when γ = 5.

We will now show that the above condition no longer holds when γ = 6. By repeating
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the same argument for when γ = 6, we have

w̃k6 =wk0 + wk+1
1 + wk+2

2 + wk+3
3 + wk+4

4 + wk+5
5

≥K(tk+1)

(∫ tk+2

tk+1

ck+2
0 (s) + ck+2

1 (s) + ck+2
3 (s) + ck+2

5 ds

)

+K(tk+3)

(∫ tk+2

tk+1

ck+3
2 (s) + ck+2

4 (s) ds

)

=K(tk+1)

(∫ tk+2

tk+1

1− ck+2
2 (s)− ck+2

4 (s) ds

)

+K(tk+3)

(∫ tk+2

tk+1

ck+3
2 (s) + ck+2

4 (s) ds

)

=

∫ tk+2

tk+1

K(tk+1) + (K(tk+1)−K(tk+3))
(
ck+2

2 (s) + ck+2
4 (s)

)
ds,

where we again must satisfy −1 ≤ ck+2
2 (s)+ck+2

4 (s) < 0 to ensure the stability of the scheme.

Using the same argument as before, we find that there exists a minimum for s ∈ (tk+1, tk+2),

then we may apply the extreme value theorem again to assert that ck+2
2 (s) + ck+2

4 (s) attains

a minimum value on [tk+1, tk+2]. Using the definition of the coefficients ck+2
2 and ck+2

4 as

defined by (40), we find that the minimum exists at the point s = tk+2 − 0.38843τ with the

minimum value ck+2
2 (s) + ck+2

4 (s) = −1.05315 � −1. A similar analysis holds for each of the

fractional order schemes and is therefore omitted. Hence, the condition is no longer satisfied

and thus the scheme fails to be stable for when γ = 6, which completes the proof.

With the consistency and stability results, we are now ready to present the convergence

analysis. We first define the infinity norm by ‖·‖∞ = max{·}.

3.3.4 NUMERICAL CONVERGENCE

We now consider an arbitrary stable scheme of the form (49) up to order γ where 0 < γ ≤
5. We present the convergence results for the usual Taylor series expansion first, followed by

the fractional Taylor series expansion results.

Theorem 3.3.6. Let 0 ≤ s ≤ tn for any prescribed tn ∈ [0, T ]. Let K ∈ L1[0, T ] be positive

and nonincreasing on [0, T ] and let τ > 0. Let f(s) ∈ Cγ[0, T ] satisfy the stable scheme (49)

up to some order γ = 1, 2, 3, 4, 5, where γ is the order of approximation. Then, for some

C > 0, ∥∥∥∥∥
∫ tn

0

f(s)K(tn − s) ds−
n∑
k=0

w̃γkf(tk)

∥∥∥∥∥
∞

≤ Cτ γ. (54)
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Proof. We fix γ ≥ 1 such that for some C > 0 by utilizing (44) and (49),∥∥∥∥∥
∫ tn

0

f(s)K(tn − s) ds−
n∑
k=1

w̃γkf(tk)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
n∑
k=1

∫ tk

tk−1

(
1

dγe!
max

0≤t≤tn
|f (γ)(s)|(tk − s)γ

)
K(tn − s) ds

∥∥∥∥∥
∞

≤ 1

dγe!
max

0≤t≤tn
|f (γ)(s)|τ γ

∥∥∥∥∥
n∑
k=1

∫ tk

tk−1

|K(tn − s)| ds

∥∥∥∥∥
∞

=
1

dγe!
max

0≤t≤tn
|f (γ)(s)|τ γ

∥∥∥∥∫ tn

0

|K(tn − s)| ds
∥∥∥∥
∞

≤ Cτ γ,

where C =
1

dγe!

∥∥∥∥∫ tn

0

|K(tn − s)| ds
∥∥∥∥
∞

=
1

dγe!
‖K‖L1[0,T ] <∞.

For the fractional order regularity assumption, we have the following convergence rate

results.

Theorem 3.3.7. Let 0 ≤ s ≤ tn for any prescribed tn ∈ [0, T ]. Let K ∈ L1[0, T ] be positive

and nonincreasing on [0, T ] and let τ > 0. Let f(s) ∈ Cγ[0, T ] satisfy the stable scheme (49)

up for any γ ∈ (0, 5) − {1, 2, 3, 4}, where γ is the order of approximation. Let γ = n + α,

where n = 0, 1, 2, 3, 4 and 0 < α < 1. Then, for some C > 0,∥∥∥∥∥
∫ tn

0

f(s)K(tn − s) ds−
n∑
k=0

w̃γkf(tk)

∥∥∥∥∥
∞

≤ C max
(
τ γ, τn+1

)
. (55)

Proof. By fixing γ = n + α where γ ∈ (0, 5) − {1, 2, 3, 4} and 0 < α < 1, we have for some

C1 > 0, ∥∥∥∥∥
∫ tn

0

f(s)K(tn − s) ds−
n∑
k=1

w̃γkf(tk)

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
n∑
k=1

∫ tk

tk−1

f(s)−
dγe−1∑
j=0

ckj (s)f(tk−j)

K(tn − s) ds

∥∥∥∥∥∥
∞

≤ C max
(
τ γ, τn+1

) ∥∥∥∥∥
n∑
k=1

∫ tk

tk−1

K(tn − s) ds

∥∥∥∥∥
∞

= C max
(
τ γ, τn+1

) ∥∥∥∥∫ tn

0

|K(tn − s)| ds
∥∥∥∥
∞

≤ C ‖K‖L1[0,T ] max
(
τ γ, τn+1

)
,

where ‖K‖L1[0,T ] <∞.
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We present an example demonstrating that the kernel K improves this estimate accord-

ingly.

Example 3.3.8. Let K(t) = tα−1 for 0 < α < 1 and consider an order α approximation to

f(s) from the scheme (49). Then, we define

|Rn| :=
∫ tn

0

(tn − s)α−1|f(s)− f(tk)| ds

=
n∑
k=1

∫ tk

tk−1

∣∣(s− tk−1)α − τα +O
(
C
0 D

2α
t f
)∣∣ (tn − s)α−1 ds

≤
n∑
k=1

∫ tk

tk−1

τα(tn − s)α−1 ds

≤ τα

α
max

1≤k≤n
τα

= Cτ 2α,

which is attained under a uniform mesh size. However, if 2α > 1, we obtain the secondary

estimate of Cτ , since then it is the maximum of that and Cτ 2α.

3.4 NUMERICAL EXAMPLES

Our first example is a Volterra equation of the second kind with kernel K(t) = tα−1

u(t) = f(t) +

∫ t

0

u(s)(t− s)α−1 ds (56)

u(0) = 0, ∀ t ∈ [0, T ], (57)

where we consider the exact solution u(t) = t6+α− t9/2. We define N to be the number of in-

tervals in a uniform partition of the time domain [0, T ], E3,∞(N) to be the maximum error at-

tained over the total mesh for a third order accurate scheme, and rate3 = log2

(
E3,∞(N/2)

E3,∞(N)

)
.

Analogously, we will define E4,∞(N), Eα,∞(N), rate4, and rateα for the fourth-order accurate

and α-order accurate schemes. We will take α = 0.1, 0.4, 0.5, 0.7, 0.9 in this example. The

numerical results are as follows.
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Table 4: Numerical Error for u(t) = t6+α − t9/2, T=1 using a third-order scheme

Numerical Error for u(t) = t6+α − t9/2, T=1 using a third-order scheme
α N E3,∞(N) rate3

0.1 10 0.0010 –
20 0.0002 2.6369
40 2.4729e–5 2.7585
80 3.4911e–6 2.8245
160 4.7969e–7 2.8635

0.4 10 0.1148 –
20 0.0144 2.992
40 0.0020 2.8689
80 0.0003 2.9013
160 3.4531e–5 2.9364

0.5 10 0.0049 –
20 0.0008 2.6731
40 0.0001 2.8254
80 1.4432e–5 2.9052
160 1.8719e–6 2.9468

0.7 10 0.0022 –
20 0.0003 2.7754
40 4.3309e–5 2.8883
80 5.6279e–6 2.944
160 7.1747e–7 2.9716

0.9 10 0.0012 –
20 0.0002 2.8067
40 2.2852e–5 2.905
80 2.9506e–6 2.9532
160 3.7479e–7 2.9769

By applying the fourth order scheme to the first example, we have the following results.
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Table 5: Numerical Error for u(t) = t6+α − t9/2, T=1 using a fourth-order scheme

Numerical Error for u(t) = t6+α − t9/2, T=1 using a fourth-order scheme
α N E4,∞(N) rate4

0.1 10 0.0003 –
20 2.2041e–5 3.6373
40 1.6168e–6 3.769
80 1.1313e–7 3.8371
160 7.6929e–9 3.8783

0.4 10 0.0362 –
20 0.0028 3.7128
40 0.0002 3.7667
80 1.3999e–5 3.8564
160 9.2778e–7 3.9154

0.5 10 0.0021 –
20 0.0002 3.5777
40 1.2673e–5 3.7898
80 8.537e–7 3.8919
160 5.5542e–8 3.9421

0.7 10 0.0008 –
20 6.2265e–5 3.691
40 4.3148e–6 3.8511
80 2.8369e–7 3.9269
160 1.822e–8 3.9607

0.9 10 0.0004 –
20 3.417e–5 3.7087
40 2.3549e–6 3.859
80 1.5441e–7 3.9308
160 9.8935e–9 3.9642

When we have α = 0.25, we have spurious and large blowup for small values of N , but

as N → ∞, we still exhibit the appropriate order of convergence, and hence still preserve

the stability condition. For example, using the fourth order scheme for the second example,

with α = 0.25, we have the following rate of convergence for up to N = 10240:
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Table 6: Numerical blowup for u(t) = t6, α = 0.25, T=1 using a fourth order scheme

Numerical rate for u(t) = t6, T=1 using a fourth order scheme
α N rate4

0.25 10 –
20 −9.1682
40 −53.279
80 −300.81
160 127.59
320 11.223
640 4.3639
1280 3.8026
2560 3.8409
5120 3.8947
10240 4.223

Another consequence of the α-order accurate scheme is that we can also numerically

approximate u(t) when the exact function is not known. Consider equation (56) where

f(t) = t2α and u(t) is unknown. Since the exact solution is not known explicitly, we instead

compute the error using the two mesh principle as outlined in [46] and the references therein.

Given a uniform time mesh, we define un to be the numerical approximation to u at time

t = tn for N total grid points, and zn to be the numerical approximation to u at time t = tn

for 2N total grid points. Then, the maximum error considered between the two meshes is

computed by Eα,∞(N) = max1≤n≤N |un − z2n|. We then define the rate of convergence in

this case by

rateα = log2

(
Eα,∞(N/2)

Eα,∞(N)

)
.

When α = 0.05, 0.25, 0.5, 0.75, 0.95, we have the following numerical results.
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Table 7: Numerical Error for (56), f(t) = t2α using an α-order scheme, u unknown

Numerical Error for (56), f(t) = t2α using an α-order scheme, u unknown
α N Eα,∞(N) rateα
0.05 10 – –

20 5.0445e–5 –
40 4.8623e–5 0.0531
80 4.6863e–5 0.0532
160 4.5163e–5 0.0533

0.25 10 – –
20 0.0025 –
40 0.0019 0.3858
80 0.0014 0.4054
160 0.0011 0.4263

0.5 10 – –
20 0.0053 –
40 0.0029 0.8886
80 0.0015 0.9193
160 0.0008 0.9422

0.75 10 – –
20 0.0100 –
40 0.0052 0.9566
80 0.0026 0.9753
160 0.0013 0.9859

0.95 10 – –
20 0.0126 –
40 0.0064 0.9797
80 0.0032 0.9893
160 0.0016 0.9944

Our second example is the Volterra equation of the second kind that is motivated by

the findings in [56] and [8]. This particular equation is obtained by applying the Laplace

transform to equation (1.2) of [56] to obtain:

u(x, t) = φ(x) +

∫ t

0

(
g(x, s) +

∂2u

∂x2
(x, s)

)
(t− s)α−1

Γ(α)
ds (58)

u(x, 0) = φ(x), u(t, 0) = u(t, 1) = 0 (59)

on the interval x ∈ [0, 1], t ∈ [0, 1], which has the initial condition φ(x) = 0 and the exact

solution u(x, t) = sin(πx)t1−α. We apply a fixed fourth order Laplacian operator in space

as in [56] and the α order scheme presented in Section 3 to analyze the problem. By fixing

M = 25 space steps and using α = 0.05, 0.25, 0.5, 0.75, 0.75, 0.95, we have the following

numerical results.
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Table 8: Numerical Error for u(x, t) = sin(πx)t1−α, using an α-order scheme

Numerical Error for u(x, t) = sin(πx)t1−α, using an α-order scheme
α N Eα,∞(N) rateα
0.05 10 0.0078 –

20 0.0046 0.7578
40 0.0026 0.8156
80 0.0015 0.8490
160 0.0008 0.8713

0.25 10 0.0226 –
20 0.0132 0.7730
40 0.0077 0.7767
80 0.0045 0.7806
160 0.0026 0.7856

0.5 10 0.0385 –
20 0.0249 0.6265
40 0.0158 0.6618
80 0.0097 0.7017
160 0.0058 0.7443

0.75 10 0.1757 –
20 0.1197 0.5537
40 0.0763 0.6497
80 0.0456 0.7426
160 0.0258 0.8219

0.95 10 0.4118 –
20 0.2767 0.5735
40 0.1683 0.7172
80 0.0948 0.8284
160 0.0507 0.9025

Of particular interest is the cases where α ≥ 1/2, which validate the findings in Example

3.8. By further applying a second order scheme, consistent with the L1-method presented

in [56], we obtain a better rate of convergence under an equivalent assumption of u(x, t) ∈
C2([0, T ];C6([0, 1])). By letting u(x, t) = sin(πx)t2, fixing M = 25 space steps and using

α = 0.05, 0.25, 0.5, 0.75, 0.75, 0.95, we have the following numerical results.
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Table 9: Numerical Error for u(x, t) = sin(πx)t2, using a second-order scheme

Numerical Error for u(x, t) = sin(πx)t2, using a second-order scheme
α N E2,∞(N) rate2

0.05 10 0.0003 –
20 9.6628e–5 1.7965
40 2.6866e–5 1.8467
80 7.3283e–6 1.8742
160 1.9731e–6 1.893

0.25 10 0.0011 –
20 0.0003 1.822
40 7.912e–5 1.9255
80 2.0521e–5 1.9469
160 5.2743e–6 1.9601

0.5 10 0.0014 –
20 0.0004 1.9458
40 9.5596e–5 1.9746
80 2.4128e–5 1.9862
160 6.0645e–6 1.9922

0.75 10 0.0016 –
20 0.0004 1.9777
40 0.0001 1.992
80 2.5174e–5 1.9968
160 6.2976e–6 1.9991

0.95 10 0.0016 –
20 0.0004 1.9951
40 0.0001 1.9984
80 2.5856e–5 1.9995
160 6.4628e–6 2.0003
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We further remark that the scheme does not provide a rate of convergence beyond the reg-

ularity assumption of the scheme. That is, given a function u(x, t) ∈ C2+α([0, T ];C6([0, 1]))

and using a second-order in time approximation, we will only exhibit a second-order rate of

convergence. Consider the function u(x, t) = sin(πx)t2+α, fixing M = 25 space steps and

using α = 0.05, 0.25, 0.5, 0.75, 0.75, 0.95, we have the following numerical results.

Table 10: Numerical Error for u(x, t) = sin(πx)t2+α, using a second-order scheme, demon-
stating regularity barrier

Numerical Error for u(x, t) = sin(πx)t2+α, using a second-order scheme
α N E2,∞(N) rate2

0.05 10 0.0004 –
20 0.0001 1.8014
40 2.8677e–5 1.8482
80 7.822e–6 1.8743
160 2.1069e–6 1.8924

0.25 10 0.0015 –
20 0.0004 1.822
40 0.0001e–5 1.9255
80 2.0521e–5 1.9469
160 5.2743e–6 1.9601

0.5 10 0.0014 –
20 0.0004 1.9458
40 9.5596e–5 1.9746
80 2.4128e–5 1.9862
160 6.0645e–6 1.9922

0.75 10 0.0016 –
20 0.0004 1.9777
40 0.0001 1.992
80 2.5174e–5 1.9968
160 6.2976e–6 1.9991

0.95 10 0.0016 –
20 0.0004 1.9951
40 0.0001 1.9984
80 2.5856e–5 1.9995
160 6.4628e–6 2.0003
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CHAPTER 4

EXTENSIONS OF THE FINITE DIFFERENCE SCHEMES UNDER A

FOURIER TRANSFORM

We present a treatment of a time-fractional diffusion equation by using Fourier transform in

the spatial variable and the Laplace transform in the time variable. The resulting equation

allows us to consider a wider class of functions and allows for the relaxation of regularity

assumptions on the spatial variable. When applying the Fourier transform to a diffuison

equation, a Fredholm integral equation with a convolution integral kernel is formed. We

apply a finite difference scheme in the transformed space variable and can consider func-

tions u(x, t) ∈ Cα([0, T ];Cγ[Ω]), 0 < γ ≤ 2, with a first order rate of convergence inde-

pendent on the choice of γ, due to the integral kernel. By applying a fractional-order

scheme to the time variable and trigonometric interpolation to the space variable, we can

ultimately functions u(x, t) ∈ Cα
(

[0, T ];Cm,β
2π [Ω]

)
with a resulting order of convergence

O

(
N−α +

ln(M)

Mm+β

)
, where M is the number of partitions in the space variable, and N is

the number of partitions in the time variable. By strengthening the regularity assumption

to instead u(x, t) ∈ Cα ([0, T ];C∞[Ω]), we obtain a resulting order O(τα+e−Ms(u)). We then

present one numerical examples which demonstrates these results in the space variable for

the difference scheme.

4.1 INTRODUCTION

We motivate our discussion based on the findings in [8] and [56], where the one-dimensional

time-fractional diffusion equation with initial and boundary conditions

Dαt u(x, t) =
∂2

∂x2
u(x, t) + f(x, t), x ∈ [0, 1], t ∈ [0, T ], (60)

u(x, 0) = φ(x), u(0, t) = u(1, t) = 0, (61)

with α ∈ (0, 1) order Caputo fractional time derivative defined by

Dαt u(x, t) =
1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s
(t− s)−α ds,

where Γ(x) =
∫∞

0
e−ttx−1 dt. A numerical scheme was derived in [56] using the L1-method to

treat the fractional time derivative term, and a fourth-order spatial discretization was used
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to treat the Laplacian operator. A parallel to the L1-method was derived in [8] by utilizing

the Laplace transform to turn the time-fractional derivative operator into a time-fractional

convolution integral by use of convolution theory. The advantage of this method was in the

regularity assumptions used on the objective function u(x, t), and the numerical convergence

rate was optimal under lesser regularity assumptions. We wish to use the Fourier transform

and its properties (c.f [7], [10], [14], and [19]) on (60) to obtain similar results, and ultimately

provide exponential convergence results by utilizing trigonometric interpolation in the spatial

variable for real-analytic functions. We define the Fourier transform by

F (f(x);ω) =

∫ ∞
−∞

f(x)e−2πixω dx

and the Inverse Fourier transform by

F−1
(
f̂(ω);x

)
=

∫ ∞
−∞

f̂(ω)e2πixω dω.

The main propertiy used here is the derivative transform property, where

F
(
dnf(x)

dxn
;ω

)
=

∫ ∞
−∞

dnf(x)

dxn
e−2πixω dx

= (−2πiω)nF (f(x);ω)

by repeated applications of integration by parts. The existence and uniqueness to a solution

of (60) was studied in [8] based on the findings in [17]. We now state the result of applying

the Fourier transform to (60).

Lemma 4.1.1. Let u(x, t) be the unique solution of (60) with compact support on [0, T ]×Ω.

Then, u(x,t) satisfies (60) if and only if it satisfies

u(x, t) =

∫
Ω

|x− ω| (f(ω, t)−Dαt u(ω, t)) dω (62)

Proof. By applying the Fourier transform to both sides of (60), we have after defining



52

û(ω, t) = F (u(x, t);ω)

F (Dαt u(x, t);ω) = F
(
∂2

∂x2
u(x, t) + f(x, t);ω

)
Dαt û(ω, t) = (−iω)2û(ω, t) + f̂(ω, t)

Dαt û(ω, t) = −ω2û(ω, t) + f̂(ω, t)

û(ω, t) =
1

ω2

(
f̂(ω, t)−Dαt û(ω, t)

)
F−1 (û(ω, t);x) = F−1

(
1

ω2

(
f̂(ω, t)−Dαt û(ω, t)

)
;x

)
u(x, t) = F−1

(
1

ω2
;x

)
∗ F−1

(
f̂(ω, t)−Dαt û(ω, t);x

)
u(x, t) =

∫ ∞
−∞

(x− ω)sgn(x− ω) (Dαt u(ω, t)− f(ω, t)) dω

=

∫ ∞
−∞
|x− ω| (Dαt u(ω, t)− f(ω, t)) dω.

Finally, since u is defined only to have compact support, then

u(x, t) =

∫
Ω

|x− ω| (Dαt u(ω, t)− f(ω, t)) dω.

Since the steps are reversible under the Fourier transform, the proof is complete.

The result is a Fredholm integral equation (c.f [51], [25]) in the space variable, and a

fractional differential equation in the time variable.

Remark 4.1.2. We remark that the integral kernel K(x) = |x| satisfies K ∈ L1(Ω) provided

that µ(Ω) <∞, where µ denotes the usual Lebesgue measure of a set. Further, K(x) = |x| is

not differentiable at x = 0, hence K(x−ω) = |x−ω| is not differentiable along the diagonal

line x = ω, and by extension,∫
Ω

K(x− ω) dω =

∫
Ω

|x− ω| dω =
|x− ω|2

2

∣∣∣∣
Ω

is also not differentiable along the lines of the endpoints of the interval of integration x = x0

and x = xf where Ω = [x0, xf ] ⊂ R1. Moreover, along any subinterval of integration which

arises by discretizing the integral using the finite difference method outlined in Chapters 1

and 2 the integral ∫ xj

xj−1

K(xj − ω) dω =

∫ xj

xj−1

|xj − ω| dω =
|xj − ω|2

2

∣∣∣∣xj
xj−1

is not differentiable on the endpoint of each subinterval of integration on the lines x = xj

where x0 < x1 < x2 < ... < xf , for j = 1, 2, ...,M , where xf = xM .
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4.2 SPATIAL DISCRETIZATION AND TRIGONOMETRIC

INTERPOLATION

Let xm = mπ/M , m = 1, 2, ..., 2M − 1 be the uniform partition of the space variable.

We now present two discretizations in the space variable for (62), using a finite difference

approach and a trigonometric interpolation approach. Each method has unique advantages

due to the integral term combined with the regularity assumptions. The finite difference

approach will construct a scheme that obtains optimal order of convergence for a first-order

approximation and is absolutely stable, which is not guaranteed under a first-order dis-

cretization of the problem in fully-differential form. For diffusion and sub-diffusion problems

that assume less regularity in the space variable than the usual u ∈ Cm,β
2π [0, 1], we can use a

scheme with an appropriate regularity assumption and still obtain optimal convergence.

4.2.1 FINITE DIFFERENCE APPROACH

The finite difference method outlined in the previous chapter can be applied to discretize

the integral ∫
Ω

|x− ω|g(ω) dω

under the same considerations. Before constructing the scheme, we remark that the integral

kernel K(x) = |x| is an increasing function and is not differentiable on the diagonal line

x = w in convolution form. The finite difference method was proved to be stable and

convergent for any K ∈ L1[Ω] for up to second-order accurate schemes. Therefore, we will

apply the second order finite difference scheme to provide optimal convergence for the given

regularity. We define h = π/M for convenience. The stable second-order approximation is

defined by

ck0 = 1− xm − ω
h

, ck1 =
xm − ω
h

,

g(ω) = ck0g(xm) + ck1g(xm−1) +O(h2).

The semi-discrete form of the problem reads for each m = 1, 2, ...,M

u(xm, t) =

∫
Ω

|xm − ω|
(
Dαt
(
cm0 u(xm, t) + cm1 u(xm−1, t) +O(h2)

)
− f(ω, t)

)
dω,

≈
M∑
i=1

∫ xi

xi−1

|xm − ω|
(
Dαt
(
ci0u(xi, t) + ci1u(xi−1, t)

)
− f(ω, t)

)
dω. (63)

There are two suitable approaches to discretizing the problem in the time variable. On the

one hand, we may directly apply the L1 method as outlined in [56]. Given 0 = t0 < t1 <
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... < tn, tk − tk−1 = τk for all k = 1, 2, ..., n and the local truncation error rn, we recall the

traditional L1 method approximation to the Caputo fractional derivative:

Dαt u(x, tn) =
1

Γ(1− α)

n∑
k=1

u(x, tk)− u(x, tk−1)

tk − tk−1

∫ tk

tk−1

(tn − s)−α ds+ rn.

Dαt u(x, tn) ≈ 1

Γ(1− α)

n∑
k=1

u(x, tk)− u(x, tk−1)

tk − tk−1

∫ tk

tk−1

(tn − s)−α ds. (64)

From [56] and many others before, it is shown that rn = O(τ 2−α) for a uniform mesh τk = τ .

Further, this method requires the function u ∈ C2([0, T ];C2(Ω)), which is a much stronger

regularity requirement than necessary. Still, by applying the approximation (64) to the

Caputo time-fractional derivative term in (63), we obtain:

u(xm, tn) ≈
∫

Ω

|xm − ω|
(
− f(ω, t) +

1

Γ(1− α)

n∑
k=1

aknc
k
0 (u(xm, tk)− u(xm, tk−1))

tk − tk−1

+
aknc

k
1 (u(xm−1, tk)− u(xm−1, tk−1))

tk − tk−1

)
dω, (65)

which is to be solved for each m = 1, 2, ...,M , n = 1, 2, ..., N . We remark that under this

construction, now we can assume exact regularity in the space variable, hence here we can

assume u ∈ C2([0, T ];C2[Ω]) at the cost of assuming more regularity in the time variable.

This tradeoff can be further mitigated by taking a Laplace transform in the time variable in

addition to the Fourier transform. We remark that the order of the transforms is irrelevant.

Lemma 4.2.1. Let u(x, t) be the unique solution of (60) with compact support on [0, T ]×Ω.

Then, u(x,t) satisfies (60) if and only if it satisfies

Iα(u(x, t); s) =

∫
Ω

|x− ω| (u(ω, t)− Iα(f(ω, t); s)) dω, (66)

Iα(u(x, t); s) =

∫ t

0

(t− s)α−1

Γ(α)
u(x, s) ds.

For the Fourier Transform formulation, the approximation schemes and the theory therein

still hold by rewriting the integral term as a sum of two Volterra integrals in the following

way:

u(x) +

∫
Ω

|x− ω|u(ω) dω = F (x), Ω = [a, b]

u(x) +

∫ x

a

(x− ω)u(ω) dω +

∫ b

x

(ω − x)u(ω) dω = F (x),

F (x) =

∫
Ω

|x− ω|f(ω) dω,
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where both integral kernels are positive and are in L1 for finite intervals of integration.

However, since the integral kernel K(x) = |x| is not differentiable at the origin, we find that

the rate of convergence to the approximation to u(x, t) is limited by the integral kernel in

this case. That is, the second-order approximation to the Fredholm integral equation

u(x) +

∫
Ω

|x− ω|u(ω) dω = F (x)

F (x) =

∫
Ω

|x− ω|f(ω) dω,

where u ∈ C2[Ω] is obtained by applying the Fourier transform to the diffusion equation

with compact support defined on a compact interval Ω ⊂ R1

u(x) + uxx(x) = f(x), x ∈ Ω

u(x) = 0, x /∈ Ω

only attains a first-order rate of convergence O(M−1). We juxtapose the first-order and

α−order accurate schemes which require less regularity, u ∈ C1[Ω] for the first-order accurate

scheme and u ∈ Cα[Ω] for the α−order accurate scheme, both of which also attain a first-

order rate of convergence O(M−1).

4.2.2 TRIGONOMETRIC INTERPOLATION

We recall the definition of the trigonometric polynomial defined in [26]

u(x) =
α0

2
+

n∑
k=1

[αk cos(kx) + βk sin(kx)], (67)

subject to the interpolation property u(xm) = gm, m = 1, 2, ..., 2M − 1. Each coefficient is

given by

αk =
1

M

2M−1∑
j=0

gm cos kxm, k = 0, ..., n, (68)

βk =
1

M

2M−1∑
j=0

gm sin kxm, k = 1, ..., n− 1. (69)

Define the trigonometric interpolation operator, PM , for M equidistant interpolation points

by the sum of the Lagrange basis functions (c.f (11.13) of [26])

PM(g) =
2M−1∑
j=0

|Lj(x)| (70)

Lj(x) =
1

2M

{
1 + 2

M−1∑
k=1

cos k(x− xj) + cosM(x− xj)

}
(71)
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for x ∈ [0, 2π] and j = 0, ..., 2M − 1. Theorem 11.4 and Lemma 11.5 of [26] provide basic

stability estimates for the trigonometric interpolation operator Pn, which we employ in this

paper.

Theorem. (11.4 of [26]) For M ≥ 2, the trigonometric interpolation operator with 2M

equidistant interpolation points has norm

‖PM‖∞ < 3 +
2

π
ln(2M).

Lemma. (11.5 of [26]) The trigonometric interpolation operator satisfies

‖PMu‖2 ≤
√

3π ‖u‖∞

for all M ∈ N and all continuous 2π-periodic functions u.

As a caveat, the estimate from Theorem 11.4 of [26] implies directly that ‖PM‖∞ → ∞
as n→∞. We denote the space of 2π-periodic Hölder continuous functions by C0,α

2π , where

0 < α ≤ 1. Analogously, we define the space of 2π-periodic and m-times Hölder continuously

differentiable functions by Cm,α
2π , equipped with the norm

‖g‖m,α = ‖u‖∞ +
∥∥u(m)

∥∥
0,α

In its semi-discrete form, for m = 1, 2, ..., 2M − 1, the semi-discrete scheme reads after

applying the trigonometric interpolation operator PM to both sides

PMu(x, t) =

∫
Ω

|x− ω| (PMf(ω, t)− PMDαt u(ω, t)) dω.

When evaluated at each xm ∈ [0, 1], m = 1, 2, ..., 2M − 1, we have

PMu(xj, t) =

∫ 1

0

|xj − ω| (f(ω, t)− PMDαt u(ω, t)) dω. (72)

The following theorem proves numerical convergence for the discrete equation (72), which

follows from the steps outlined in Theorem 11.6 of [26].

Theorem 4.2.2. Let m ∈ N ∪ {0} and 0 < β ≤ 1. Then for the semi-discrete approximate

equation (72), we have

‖PMu− u‖L∞[0,1] ≤ C
ln(M)

Mm+β
‖u‖m,β ,

for u ∈ Cm,β
2π [0, 1] and for some constant C dependent on m and β.
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Proof.

‖PMu− u‖L∞[0,1] =

∥∥∥∥∫ 1

0

|xj − ω| (PMDαt u(ω, t)−Dαt u(ω, t)) dω.

∥∥∥∥
∞
.

Let pM be the best approximation of u with respect to the trigonometric polynomials of the

form (67) and the maximum norm. Then, by Jackson’s theorem (c.f [3]), there exists some

c > 0 independent of u such that

‖pM − u‖L∞[0,1] ≤
c

Mm+β
‖u‖m,β .

Next, by writing

PMu− u = PM(u− pM)− (u− pM),

we obtain

‖PMu− u‖L∞[0,1] = ‖xj − ω‖L1[0,1] ‖PM(u− pM)− (u− pM)‖L∞[0,1]

≤ 1

2
‖PM‖∞ ‖u− pM‖L∞[0,1] +

1

2
‖u− pM‖L∞[0,1]

=
1

2
(1 + ‖PM‖∞) ‖u− pM‖L∞[0,1]

≤ (2 +
1

π
ln(2M))

c

Mm+β
‖u‖m,β

≤ C
ln(M)

Mm+β
‖u‖m,β ,

where C =

(
2 +

ln(2)

π

)
K.

By further restricting the regularity assumption to have u be a Real-analytic and 2π-

periodic function, we obtain exponential convergence with the following results. The follow-

ing theorem is a direct analogue to Theorem 11.7 of [26].

Theorem 4.2.3. Let u : R × [0, T ] → R2 be analytic and 2π-periodic. Then there exists a

strip D = R × (−s, s) ⊂ C with s > 0 such that u can be extended to a holomorphic and

2π-periodic bounded function u : D × [0, T ]→ C× R. Then the error for the trigonometric

interpolation can be estimated by

‖PMu− u‖∞ ≤ C
coth(

s

2
)

2 sinh(Ms)
, (73)

where C is the bound for the holomorphic function u on D × [0, T ].
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Proof. Let 0 < σ < s be arbitrary. Utilizing the construction outlined in Theorem 11.7 of

[26], we obtain the representation

u(x, t)− (PMu)(x, t) =
1

2π
sin(Mt)<


∫ iσ+2π

iσ

i cot

(
ω − x

2

)
sin(Mω)

u(ω, t) dω


Next, for =ω = σ, we have the inequalities

| sin(Mω)| ≥ sinh(Mσ) and | cot(ω/2)| ≤ coth(σ/2).

Utilizing the above inequalities and the results in Theorem 4.2.2, we obtain the result after

sending σ → s.

Thus, when the objective function is analytic in the space variable, we can obtain expo-

nential order of convergence using trigonometric interpolation.

4.2.3 NUMERICAL EXAMPLE

As a proof of concept, we will consider a basic diffusion equation with varying regularity

requirements to demonstrate the findings of the finite difference schemes when applied to

the Fourier transform. Consider the test diffusion equation

u(x) + uxx(x) = f(x), x ∈ Ω

u(x) = 0, x /∈ Ω,

which can be Fourier Transformed to yield the Fredholm integral equation

u(x) +

∫
Ω

|x− ω|u(ω) dω = F (x) (74)

F (x) =

∫
Ω

|x− ω|f(ω) dω.

The first-order approximation to the above Fredholm integral equation, as outlined in Chap-

ter 2, is

u(xm) +
M∑
j=1

(u(xm) +O(∆x))

∫ xm

xm−1

|xm − ω| dω = F (xm), x ∈ [x0, xf ]

F (x) =

∫
Ω

|x− ω|f(ω) dω,
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which is equivalent to the α order approximation, where ∆x =
xf − x0

M
for a uniform parti-

tion of the interval Ω, which is to be solved for each m = 1, 2, ...,M . By contrast, the second

order approximation, using the methods and definitions outlined in Chapter 2, is

u(xm) +
M∑
j=1

(u(xm) +O(∆x))

∫ xm

xm−1

|xm − ω|(cm0 (ω) + cm−1
1 (ω)) dω = F (xm)

F (x) =

∫
Ω

|x− ω|f(ω) dω, x ∈ [x0, xf ].

To address the lack of data at the node x−1 we supplement the exact data at that node in

each approximation u(x0) = u0. Consider the test function u(x) = xα, α > 0, x ≥ 0, which

has the forcing function

F (x) = xα +

(
2

α + 1
− 2

α + 2

)
xα+2 +

1

α + 2

(
xα+2
f + xα+2

0

)
− x

α + 1
(xα+1

f + xα+1
0 ).

The regularity requirement for the choice of u(x) = xα satisfies u ∈ Cα[Ω], where α > 0. By

letting Ω = [0, 1], M = 10, 20, 40, 80, 160 space steps, and using α = 0.05, 0.25, 0.5, 0.75, 0.95,

we have the following numerical results for the first and second-order schemes.
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Table 11: Numerical Error for u(x) = xα, using a first-order scheme

Numerical Error for u(x) = xα, using a first-order scheme
α M Eα,∞(N) rateα
0.05 10 0.1203 –

20 0.0585 1.0396
40 0.0288 1.021
80 0.0143 1.0126
160 0.0071 1.0085

0.25 10 0.1034 –
20 0.0498 1.0528
40 0.0244 1.0298
80 0.0120 1.0184
160 0.0060 1.0123

0.5 10 0.0910 –
20 0.0438 1.0549
40 0.0215 1.0284
80 0.0106 1.0154
160 0.0053 1.0087

0.75 10 0.0834 –
20 0.0402 1.0539
40 0.0197 1.0262
80 0.0098 1.0131
160 0.0049 1.0067

0.95 10 0.0791 –
20 0.0381 1.0535
40 0.0187 1.0255
80 0.0093 1.0125
160 0.0023 1.0062

For the second order scheme, note that the rate of convergence similar, while the maxi-

mum error is higher than using the first-order scheme.
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Table 12: Numerical Error for u(x) = xα, using a second-order scheme

Numerical Error for u(x) = xα, using a second-order scheme
α M E2,∞(N) rate2

0.05 10 0.2053 –
20 0.1014 1.0178
40 0.0503 1.0107
80 0.0251 1.0058
160 0.0125 1.003

0.25 10 0.2313 –
20 0.1053 1.0174
40 0.0523 1.0108
80 0.0260 1.0058
160 0.0130 1.003

0.5 10 0.2242 –
20 0.1110 1.0169
40 0.0550 1.0107
80 0.0274 1.0058
160 0.0137 1.003

0.75 10 0.2368 –
20 0.1171 1.0163
40 0.0581 1.0106
80 0.0289 1.0058
160 0.0144 1.003

0.95 10 0.2480 –
20 0.1226 1.0158
40 0.0609 1.0104
80 0.0303 1.0058
160 0.0151 1.003

Both scenarios pose better-than-expected results, since u ∈ Cα[Ω], where here 0 < α <

1. By [9], the order of convergence should be O(∆xα). This suggests that the order of

convergence cannot be superseded by the regularity of the Kernel function after integration.

Finally, consider the test function u(x) = |x|, Ω = [−1, 1], using the first and second-order

schemes. Note that now u is continuous but not differentiable at the origin. The numerical

results for both schemes are as follows:
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Table 13: Numerical Error for u(x) = |x|, using a first-order scheme

Numerical Error for u(x) = |x|, using a first-order scheme
M E2,∞(N) rate2

10 2.0784 –
20 0.2792 2.8962
40 0.1092 1.3542
80 0.0502 1.1208
160 0.0242 1.0526
320 0.0120 1.0246
640 0.0059 1.0119

Table 14: Numerical Error for u(x) = |x|, using a second-order scheme

Numerical Error for u(x) = |x|, using a second-order scheme
M E2,∞(N) rate2

10 15.79 –
20 1.2642 3.6427
40 0.4008 1.6572
80 0.1682 1.2532
160 0.0788 1.0935
320 0.0382 1.0443
640 0.0188 1.0216

For the second order scheme, note that the rate of convergence similar, while the max-

imum error is higher than using the first-order scheme. This effect is exaggerated when

examining the test problem u(x) = |x|.
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CHAPTER 5

APPLICATIONS TO GROUNDWATER FLOW

5.1 INTRODUCTION

We motivative this discussion based on the framework paper [1], which presents a time-

fractional order derivative to model groundwater flow under Thiem’s groundwater flow equa-

tion. The ODE form of Theim’s groundwater flow equation is seen as

Drr
αΦ(r) +

1

r
Φ(r) = 0, 1 < α ≤ 2, (75)

where r is the distance from the pump used in testing, Φ(r) measures the level of water as

a function of distance, and subject to the initial condition Q = 2πTDr(Φ(rb)), and

Dα
r (f(r)) =

1

Γ(n− α)

dn

drn

∫ r

0

(r − s)n−α−1f(s) ds, n− 1 ≤ α ≤ n (76)

is the n-th order Caputo fractional derivative with parameter α. For the unsteady, momen-

tary state equation, Theis [49] introduced an equation that derived a relationship between

the flow of groundwater and the conduction of heat as

SDtΦ(r, t) = TDrrΦ(r, t) +
1

r
DrΦ(r, t). (77)

In [1], a time-fractional version of (76) was presented by
SDα

t Φ(r, t) = TDrrΦ(r, t) +
1

r
DrΦ(r, t)

Φ(r, 0) = 0, limr→∞Φ(r, t) = 0

r ∈ (0, R], t ∈ [0, T ],

(78)

where now Q = 2πTDr(Φ(rb, t)) is the discharge rate of the groundwater from the aquifer,

T is the transmissivity of the aquifer, and rb is the radius of the borehole. One of the

main advantages of this formulation is the ability to include the variability of the medium

which the groundwater flows through. Numerical comparison between equation (78) and

experimental data from observation is presented in [1], showing that (78) accurately models

the physical phenomena that is observed in reality. We seek to numerically compute (78) to

provide an arbitrarily accurate prediction of the rate of change of water over time, through
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various materials. One of the main obstacles in numerically discretizing (78) is the time-

fractional derivative term, the shortcomings of which were initially presented in [56] and

[8]. Namely, the usual L1-method, utilized in [56], only provides up to order k1−αaccuracy

while requiring the function to lie in C2[0, T ] in the time variable, where k is the time-step

size. By utilizing the Laplace transform in [8], an equivalent equation was established with a

fractional convolution integral instead of a fractional derivative term. Generalized schemes

for this fractional convolution integral term were studied further in [9], which provided more

accurate and stable schemes up to order γ accuracy for γ < η, η > 6 where the function is

required to lie in Cγ[0, T ] in the time variable. To fully utilize the results in [9], we begin by

applying the Laplace Transform to (78) to recover a fractional integral term. Existence and

uniqueness of a solution to (78) was presented in [1] utilizing both transform methods and

by utilizing the Boltzmann transformation, which we will use for the following lemma.

Lemma 5.1.1. Let Φ(r, t) ∈ C1[0, T ]× C2[0, R] be the solution to (78) by

Φ(r, t) =
Q

4πT

∞∑
n=0

Eα,1

(
−S
T
λ2
nt
αJ0(λnr)

)
, (79)

where Eα,1 is the Mittag-Leffler function Eα,1 =
∞∑
n=0

tnα

Γ(nα + 1)
, λn are the eigenvalues of the

Sturm-Liouville spatial equation resultant from (78), and

J0(r) =
∞∑
k=0

(−1)k

k!Γ(k + 1)

(r
2

)2k

is the Bessel function of the first kind. Then, Φ(r, t) satisfies equation (78) if and only if it

satisfies

Φ(r, t) =

∫ t

0

(t− s)α−1

Γ(α)

(
T

S
DrrΦ(r, s) +

1

Sr
DrΦ(r, s)

)
ds. (80)

Proof. We define the Laplace transform in the time variable as

L(f(t); s) =

∫ ∞
0

f(t)e−st dt (81)

and we denote the Laplace transform of a function by L(f(t); s) = f̂(s). Using the same

technique as in Lemma 2.1 of [8] , we apply the Laplace transform to equation (78) to obtain

L (SDα
t Φ(r, t); s) = L (TDrrΦ(r, t); s) + L

(
1

r
DrΦ(r, t); s

)
, (82)
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which, after some algebra and applying the given initial condition, yields

sα−1
(

Φ̂(r, s)− Φ̂(r, 0)
)

=
T

S
DrrΦ̂(r, t) +

1

Sr
DrΦ̂(r, t) (83)

ˆΦ(r, s) = s−α
(
T

S
DrrΦ̂(r, t) +

1

Sr
DrΦ̂(r, t)

)
(84)

Φ(r, t) =

∫ t

0

(t− s)α−1

Γ(α)

(
T

S
DrrΦ(r, s) +

1

Sr
DrΦ(r, s)

)
ds, (85)

where the inverse Laplace transform was applied in the final step, which yields the result.

5.2 FULL DISCRETIZATION OF (85)

With the existence and uniqueness of a solution to equations (78) and (85), we now wish

to provide a numerical scheme to the integral equation (85). We recall the results from [9]

to present the stable discretization in the time variable for any level of regularity in the time

variable. One of the key advantages of using the schemes presented in both [8] and [9] is the

ability to have any level of regularity in the time variable, while providing the same order

of convergence, which is not possible under the usual L1-method. We present Lemma 3.1 of

[9] to discretize equation (85).

Lemma (3.1 of [9]). Let 0 ≤ s ≤ tn for any prescribed tn ∈ [0, T ]. Let γ denote the

order of the desired approximation to the function f(s), let φ(s) = f(s)K(tn − s) such that

f(s) ∈ Cγ[0, T ] and K(tn − ·) ∈ L1[0, T ] . Then, for an order γ scheme, as described in

Theorem 2.2 of [9], we have∫ tn

0

φ(s) ds =
n∑
k=1

γ−1∑
j=0

wkj f(tk−j) +O(ε) (86)

=
n∑
k=1

w̃γkf(tk−j) +O(ε), (87)

where w̃γk is defined in Remark 3.2 of [9].

The scheme (86) was shown to be stable up to some order η > 6 and thus convergent, see

Theorem 3.6 of [9]. We now present a spatial discretization of (85) to obtain a fully discretized

PDE. Let M denote the number of partitions of the spatial mesh, and let ∆r denote the

size of the partition for a uniformly spaced mesh. For each ri ∈ (0, R], i = 1, 2, ...,M , we

utilize a similar Taylor series expansion argument seen in [27] to equation (85) to define the
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following discretizations:

DrrΦ(ri) := δrrΦ(ri) =
Φ(ri−1)− 2Φ(ri) + Φ(ri+1)

∆r2
+O(∆r4), (88)

DrΦ(ri) := δrΦ(ri) =
Φ(ri+1)− Φ(ri−1)

∆r
+O(∆r2). (89)

By applying both discretizations to (85), the resulting approximation equation is

Φ(ri, tn) =
n∑
k=1

w̃γk

(
T

S
δrrΦ(r, tk) +

1

Sri
δrΦ(r, tk)

)
, (90)

which is to be solved for each ri ∈ (0, R], tn ∈ [0, T ]. The consistency of the scheme (90)

is immediate from the consistency of the scheme (86) and the discretizations (88) and (89).

We present an alternative discretization under the assumption of axi-symmetric diffusion

due to the lack of the point r = 0. This alternative model can model the phenomena of the

fractional groundwater flow under a rather mild homogeneity assumption of the media of

diffusion.

5.2.1 AXI-SYMMETRIC DIFFUSION AND DISCRETIZATION

Given the Volterra equation (85), we may consider the physical phenomenon where in-

stead the following Neumann boundary conditions are imposed:
SDα

t Φ(r, t) = TDrrΦ(r, t) +
1

r
DrΦ(r, t)

Φ(r, 0) = 0, limr→∞Φ(r, t) = 0,
∂Φ(0, t)

∂r
= 0

r ∈ [0, R], t ∈ [0, T ],

(91)

which models the axi-symmetric diffusion of water from a cylindrical tube to a point r. This

physical assumption more accurately models the injection of water into the ground, which

can model groundwater flow accurately as well. Using the same Fourier Transform, we may

arrive at the axi-symmetric parallel to (85) in

Φ(r, t) =

∫ t

0

(t− s)α−1

Γ(α)

(
T

S
DrrΦ(r, s) +

1

Sr
DrΦ(r, s)

)
ds, (92)

Φ(r, 0) = 0, lim
r→∞

Φ(r, t) = 0,
∂Φ(0, t)

∂r
= 0 (93)

r ∈ [0, R], t ∈ [0, T ], (94)

We present a numerical example illustrating the presence of axi-symmetric diffusion in this

form, equivalently expressed by (90), with one extra consideration made for the point at
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ri = 0. Since there is a factor of
1

ri
, we must consider a different PDE discretization at

ri = 0. Because of the Neumann boundary condition (98), we utilize L’Hospital’s rule, as

described in Section 3.5.6 of [27] to obtain

lim
r→0

1

r

∂Φ

∂r
=
∂2Φ

∂r2
. (95)

Hence, the Volterra equation (92) at r = 0 is instead

Φ(r, t) =
(1 + T )

SΓ(α)

∫ t

0

(t− s)α−1DrrΦ(r, s) ds (96)

under axi-symmetric conditions. The resulting discretization under this assumption is the

same except for r0 = 0, which instead has the following discretization:

Φ(r0, tn) =
(1 + T )

SΓ(α)

∫ t

0

(t− s)α−1δrrΦ(r, s) ds (97)

Φ(r0, tn) ≈ (1 + T )

SΓ(α)

n∑
k=1

w̃γk
2Φ(r1, tk)− 2Φ(r0, tk)

∆r2
(98)

where under axi-symmetry we may assume that r−1 = r1 without loss of generality, due to

symmetry over all angles.



68

CHAPTER 6

FURTHER APPLICATIONS TO NONLINEAR VOLTERRA INTEGRAL

EQUATIONS

6.1 INTRODUCTION

In their work [31], Lighthill presented a nonlinear Volterra integral equation describing

the temperature distribution of the surface of a projectile moving through some laminar

layer by

F (z)4 =
−1

2
√
z

∫ z

0

F ′(s)

(z3/2 − s3/2)1/3
ds,

F (0) = 1 F (t)→ 0, t→∞.

By applying an Abel type inversion, Franco et a.l in [15] rewrote the integral equation in an

equivalent form:

F (z) = 1− 3
√

3

2π

∫ z

0

xF (x)4

(z3/2 − x3/2)2/3
dx, z ∈ [0, 1],

which, after some careful re-writing and transformation, was then rewritten in Diogo et al.

[13] as

y(t) = 1− 3
√

3

2π

∫ t

0

s1/3y(s)4

(t− s)2/3
ds, t ∈ [0, 1], (99)

where now y(t) = F (t2/3) and K(t) = t−2/3. A generalization of this Abel-type nonlinear

integral equation considers instead an integral kernel of K(t) = t−α, where 0 < α < 1, which

results in the equation

y(t) = 1− 3
√

3

2π

∫ t

0

s1−αy(s)4

(t− s)α
ds, t ∈ [0, 1], 0 < α < 1. (100)

The regularity of (100) was shown in Lemma 2.1 of [13] where y ∈ C1,2/3(ε, 1], for 0 < ε <

R3/2 and R ≈ 0.106. That is,

y(t) ∈ C1[ε, 1] and |y′(t)| ≤ Cy(t− ε)−2/3, t ∈ (ε, 1].
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The Euler’s method defined in [13] for the nonlinear integral equation (100) is as follows.

For the numerical approximation to the solution of y of equation (100), the method for each

k = 1, 2, ..., N is
y0 = 1

yk = 1− 3
√

3

2π

k−1∑
j=0

∫ tj+1

tj

ds

(tk − s)2/3
t
1/3
j y4

j , k = 1, 2, ..., N
(101)

Our aim is to instead discretize equation (100) using a Taylor-series expansion of the non-

linear function N(s, y(s)) = s1−αy(s)4 for 0 < α < 1 to solve the problem numerically over

the domain t ∈ [0.1]. We define a uniform mesh of the domain [0, T ] by tk
N
k=0 ∈ [0, T ] for

N > 0 such that t0 = 0 and tK = T . Further, we define τ = τk = tk − tk−1 to be the size

of the partition of the mesh for each k = 1, 2, ..., N . We recall the definition of the Taylor

series expansion for a nonlinear function N(y(s)) about the point t = tk ∈ [0, tk]:

N(y(tk)) = N(y(tk))

N(y(tk−1)) = N(y(tk))− τN ′(y(tk))y
′(tk) +

τ 2

2!
(N ′(y(tk))y

′(tk))
′ −O(τ 3)

N(y(tk−2)) = N(y(tk))− 2τN ′(y(tk))y
′(tk) +

2τ 2

2!
(N ′(y(tk))y

′(tk))
′ −O(τ 3)

...

N(y(t0)) = N(y(tk))− kτN ′(y(tk))y
′(tk) +

kτ 2

2!
(N ′(y(tk))y

′(tk))
′ −O(τ k)

In other words, the implicit j-th order approximation the nonlinear function to N(y(s)) at

the point tk ∈ [0, tk] is found by solving the system of linear equations:

j−1∑
i=0

ckiN(y(tk−i)) = N(y(s)) (102)

=

j−1∑
i=0

(s− tk)i

i!
(N(y(tk)))

(i) +O((s− tk)j), (103)

The regularity of the solution implies that we can investigate a first and second-order scheme

under this construction. We remark that by instead considering the fractional Taylor series

expansion, as detailed in [53], we can solve a similar system of equations to provide the

optimal fractional-order accuracy from y ∈ C1,2/3(ε, 1]. In particular, the second order

scheme will achieve the optimal order of convergence, which is consistent with the fractional

Taylor series expansion. There are two potential methods to investigate.
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6.2 METHOD 1: EXPLICIT SCHEME

One such method of analysis is to instead investigate the stability and convergence of the

modified explicit Euler’s method by
y0 = 1

yk = 1− 3
√

3

2π

k−1∑
j=1

∫ tj

tj−1

s1/3ds

(tk − s)2/3
y4
j , k = 1, 2, ..., N,

(104)

where the s1/3 is not approximated in addition to y. A second order approximation to the

scheme is thus defined:

ck0 = 1− tk − s
τ

, ck1 =
tk − s
τ

,

N(y(s)) = ck0N(y(tk)) + ck1N(y(tk−1)) +O(τ 2).

6.3 METHOD 2: IMPLICIT SCHEME

When we solve the system of equations (102) for j = 1, we quickly find that ck0 = 1,

hence the numerical method to approximate the solution y of the equation (100) is
y0 = 1

yk = 1− 3
√

3

2π

k∑
j=1

∫ tj

tj−1

ds

(tk − s)2/3
t
1/3
j y4

j , k = 1, 2, ..., N.
(105)

Similarly, we can define the second order approximation to the solution y of equation (100)

by solving (102) for j = 2, which yields ck0 = 1 − tk − s
τ

, ck1 =
tk − s
τ

. This results in the

numerical method
y0 = 1

yk = 1− 3
√

3

2π

k∑
j=1

∫ tj

tj−1

(
ck0(s)y4

j t
1/3
j + ck1(s)y4

j−1t
1/3
j−1

)
ds

(tk − s)2/3
, k = 1, 2, ..., N.

(106)

While this scheme closely resembles the previous ones, the difference is in the stability crite-

rion and the implementation in the numerical examples. To implement the above schemes,

we may rewrite the above in the following manner:
y0 = 1√

3

π
γjy

4
k + yk − Γk = 0, k = 1, 2, ..., N,

(107)
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where γj,Γk are defined according to the order of approximation (c.f appendix B for a similar

construction). This results in solving the quartic equation ax4 + dx + e = 0 to implement

the scheme. The generalized solution to the quartic equation ax4 + bx3 + cx2 + dx + e = 0

was presented as an extension of Ferrari’s method, using the works of [54]. Here, we find the

solution of a quartic equation using:

x1,2 =
−b
4a
− S ± 1

2

√
−4S2 − 2p+

q

S

x3,4 =
−b
4a

+ S ± 1

2

√
−4S2 − 2p− q

S
,

p =
8ac− 3b2

8a2

q =
b3 − 4abc+ 8a2d

8a3
,

S =
1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)

Q =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
,

∆0 = c2 − 3bd+ 12ae

∆1 = 2c3 − 9bcd+ 27b2e+ 27ad2 − 72ace.

In the implicit method (107), we have a :=

√
3

π
γj, b = c = 0, d = 1, e = −Γk, which

simplifies some of the above to yield p = 0 and q =
8π

γj
√

3
> 0. Further, we immediately

note that then ∆0 =
−12γjΓk

√
3

π
< 0 and ∆1 =

27
√

3γj
π

> 0, hence Q > 0. By combining
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the above, we arrive at

S =
1

2

√
−2

3
p+

1

3a

(
Q+

∆0

Q

)

=
1

2

√
π

3γj
√

3

(
Q+

∆0

Q

)

=
1

2

√√√√ π

3γj
√

3

(
Q− 12γjΓk

√
3

πQ

)

=
1

2

√√√√√√√√√
π

3γj
√

3

 3

√
∆1 +

√
∆2

1 − 4∆3
0

2
− 12γjΓk

√
3

π
3

√
∆1 +

√
∆2

1 − 4∆3
0

2

,
(108)

which can be analyzed a priori to select the numerical solution of u to accurately approximate

the exact solution. Since this method relies strongly on knowing the exact solution at all

times, this method is not always practical. We conjecture that the implicit scheme would

be more practical by restricting the space of functions considered to be purely positive or

negative to help accommodate this scheme, but this can be overcome by simply choosing

the explicit scheme. Further, with the explicit scheme, one can also apply the stable first-

order approximation to equation (100) to fully satisfy the regularity requirement that y ∈
C1,2/3(ε, 1] .
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CHAPTER 7

CONCLUDING REMARKS

Fractional derivatives and fractional partial differential equations play a major role in gener-

alizing physical phenomena to accommodate a wide array of media. Their presence demands

special attention to their solutions, as well as their numerical treatment, to be able to prop-

erly implement and further investigate these phenomena. It is therefore pivotal that these

problems require exact regularity and exhibit an optimal rate of convergence to best model

these problems.

When written in differential form, classical discretizations often over-assume regularity

for the solution to the underlying fractional partial differential equation as in [43] and [44].

This doubly penalizes any numerical discretization twofold, from restricting the class of

admissible functions to model as well as from limiting the rate of convergence negatively

based on the integral kernel on the fractional derivative term. These penalties automatically

severely limits the practicality of modeling the differential equation in differential form. The

use of the Laplace Transform is a natural choice to preserve the fractional derivative and

the underlying structure of the problem, while posing the previously-troublesome fractional

derivative term as a convolution integral instead. Other integral transformations with a

convolution property and a derivative-resolving property are natural choices to resolve such

issues.

Previous methods of discretization, such as the L1-method and other fast solvers of a

similar nature as in [22], [23], [29], [32], and [56], exhibit such issues despite their accom-

plishments. While some of these issues are shored up using non-uniform and quasi-uniform

time-meshes in their discretization, the regularity issue still persists and cannot be as eas-

ily shirked. More recent works pose the problem in a weak formulation by integrating the

problem over a suitable time domain, but ultimately, the rate of convergence issue prevails

instead. This dichotomy of a trade-off of rate of convergence versus regularity in differential

formulation lends to the richness of problems that arise naturally here, as noted in [45].

This work sets out establishing the equivalency of the time-fractional diffusion equation

and its equivalent Volterra integral equation by a routine application of the Laplace trans-

form, which is then solved for the time-fractional diffusion term. By inverting the Laplace

transform, a convolution integral term arises from the Laplacian term and the forcing func-

tion, which is unique to this formulation. This isometric transform preserves the regularity
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requirement in both variables, while writing the equation as a full integral equation with

a Laplacian term. Two schemes are derived in Chapter 2 that naturally take advantage of

this new formulation, which better conform to the regularity requirements of the underlying

equation. The α-order accurate scheme required u(t) ∈ Cα[0, T ], the minimal regularity

requirement for the underlying equation, and the midpoint scheme required a modest in-

crease in regularity in assuming u(t) ∈ C1[0, T ]. In the numerical experiments presented,

the spacial regularity assumed was u(x) ∈ C6([0, 1]), yet this regularity assumption was only

made to match the results in the literature [56]. In the time variable discretization, this

ultimately led to the superconvergence in the case of the midpoint scheme with a rate of

convergence resembling O(τ 1+α). While the superconvergence property is appreciated, it

was not immediate from the discretization if this could be further improved upon, or if there

were more schemes that could be derived analogously.

Chapter 3 investigates the unanswered questions that arise from the end of chapter 2,

where then the question of optimal schemes is better answered. Ultimately, the midpoint and

the α-order accurate scheme are not the only optimal schemes, which led to the derivation

of the γ-order accurate scheme, with regularity assumption u(t) ∈ Cγ[0, T ], where now

0 < γ ≤ 5. The Taylor series and fractional Taylor series expansion approach outlined

in Chapter 2 generalized naturally to develop these new schemes. While the Taylor series

expansion theory suggested that any order of approximation can be achieved in this manner,

the stability of the scheme ultimately serves as a barrier for the level of approximation.

One key result links the results in [2] for quadrature methods to establish general stability

provided the integral kernel K ∈ L1[0, T ] is positive. In particular, the assumption that K is

nonincreasing is only mandatory for second-order approximations and above. This suggests

that other integral transforms are not only viable, but sensible depending on the underlying

equations.

Chapter 4 demonstrates the use of the Fourier transform under a similar construction

when applied to traditional diffusion equations. With the results from chapter 3, stable

and convergent schemes can be applied to the Fourier transform equivalent of a diffusion

equation, which resulted in a Fredholm integral equation with integral kernel K(x) = |x|.
This natural extension is examined numerically with minimal regularity assumed, while

attaining positive results for the first-order scheme. For higher levels of regularity assumed,

the use of trigonometric interpolation can be utilized instead to discretize the problem akin

to [26]. Once again these results generalize nicely beyond a standard diffusion equation, due

to the use of the Fourier transform and by reforming the differential equation as a convolution
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integral equation.

Chapter 5 and chapter 6 illustrate these same ideas in two separate physical applications.

Chapter 5 investigates a similar time-fractional partial differential equation arising from

groundwater flow mechanics as in [1] and [49]. The polar equation setting is natural when

considering axial symmetry to model quasi-uniform distribution of groundwater from an

aquifer at a central location. The presence of a time-fractional derivative in a polar diffusion

equation lends naturally to a Laplace transform, which is provided with a discrete scheme

to satisfy all physical conditions. By contrast, chapter 6 instead investigates temperature

distribution of the surface of a projectile moving through laminar flow as in [13], [15], and

[31]. Featured here is a nonlinear Volterra integral equation, which two suitable methods of

discretization are presented based on the findings in previous chapters.
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APPENDIX A

EXISTENCE AND UNIQUENESS OF A SOLUTION TO (2)

Consider the Hilbert space L2(0, 1) and let σ(A) denote the spectrum of the operator A =

− ∂2

∂x2
which is a strictly positive self-adjoint operator on the dense subspace H2

0 (0, 1). The

operator valued equation (λI − A)(X) = 0 has the solution

(λI − A)(X) = (λX − A(X)) = 0

= X ′′ + λX = 0

⇒ Xλ(x) = sin(
√
λx), with Eigenvalues λn = (nπ)2.

Now, let

δA = inf
y 6=0, y∈H2

0 ((0,1))

(Ay, y)

(y, y)
= π2.

It is easy to see that a1−α(t) =
tα−1

Γ(α)
is positive, decreasing on (0,∞), and a1−α ∈

C(0,∞) ∩ L1(0, 1). Therefore, we may apply Theorem 4.1 from [17] to see that the op-

erator S(t) defined as

S(t)x0 =

∫ ∞
δA

Sλ(t)dEλx0 (x0 ∈ L2(0, 1)),

is the fundamental solution of (2), as defined in [17]. Here, Sλ = Sλ(t) is the solution of the

scalar equation

Sλ(t) = 1− λ
∫ t

s

a1−α(t− τ)Sλ(τ) dτ, (109)

and Eλ is the resolution of the identity for A and because the operator-valued function

S = S(t) is a fundamental solution,

S ∈ L1 ((0, T ];B (L2(0, 1))), and for almost all t ∈ [0, T ]

S(t) = I − A
∫ t

0

a1−α(t− τ)S(τ) dτ
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where B (L2(0, 1)) is the space of all bounded linear operators of L2(0, 1) and I is the identity

operator. If φ(x) =
∞∑
n=1

an sin(nπx) ∈ H2
0 (0, 1) then

∞∑
n=1

|an|2n2 <∞, and

Aφ(x) =

∫ ∞
δA

λdEλφ(x)

=
∞∑
n=1

λnan sin(nπx)

=
∞∑
n=1

(πn)2an sin(nπx).

Let â1−α(s) = L(a1−α(t)). Define g(s) = sâ1−α(s) = s(s−α) = s1−α. We may calculate Sλ

using the following from [17]:

Sλ = L−1

(
1

s+ λg(s)

)
= L−1

(
1

s+ λs1−α

)
= L−1

(
s−1

1 + λs−α

)
= Eβ(−λtα),

where Eβ is the well known Mittag-Leffler function,

Eβ(z) =
∞∑
n=0

zn

Γ(1 + nβ)
, see Theorem 6.1.1 of [5] for more details. Now, from the above

calculations,

S(t)φ(x) =

∫ ∞
δa

Sλ(t)dEλφ(x) =
∞∑
n=1

Sλn(t)an sin(nπx)

=
∞∑
n=1

∞∑
m=0

[
(−λntα)m

Γ(mα + 1)

]
an sin(nπx)

=
∞∑
n=1

an sin(nπx)
∞∑
m=0

[
(−λntα)m

Γ(mα + 1)

]
. (110)

Then

u(x, t) = S(t)φ(x) + (S ∗ f)(x, t)

is, in closed form, the unique solution of (2), ensured by Theorem A.
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APPENDIX B

NUMERICAL IMPLEMENTATION

From chapter 2, for a Volterra integral equation of the second kind

u(t) = f(t) +

∫ t

0

K(t, s)u(s) ds,

consider the numerical approximation ũ of order γ to the integral equation at the time t = tn

ũ(tn) = f(tn) +
n∑
k=1

dγe−1∑
j=0

ũ(tk−j)

∫ tk

tk−1

ckj (s)K(tn − s) ds, (111)

where 0 < γ ≤ 5, which is solved for each n = 1, 2, ..., N . We assume that the initial value

u(t0) = u0. For simplicity, for the first dγe time values we use the exact value ũ(tx) = u(tx),

x = 0, 1, ..., dγe to begin iterating. The approximation can be rewritten as an implicit

scheme:

ũ(tn) =f(tn) +
n−1∑
k=1

dγe−1∑
j=0

ũ(tk−j)

∫ tk

tk−1

ckj (s)K(tn − s) ds

+

dγe−1∑
j=0

ũ(tn−j)

∫ tn

tn−1

cnj (s)K(tn − s) ds

ũ(tn) =f(tn) +
n−1∑
k=1

dγe−1∑
j=0

ũ(tk−j)

∫ tk

tk−1

ckj (s)K(tn − s) ds

+

dγe−1∑
j=1

ũ(tn−j)

∫ tn

tn−1

cnj (s)K(tn − s) ds+ ũ(tn)

∫ tn

tn−1

cn0 (s)K(tn − s) ds

ũ(tn)

(
1−

∫ tn

tn−1

cn0 (s)K(tn − s) ds
)

= f(tn) +

dγe−1∑
j=1

ũ(tn−j)

∫ tn

tn−1

cnj (s)K(tn − s) ds

+
n−1∑
k=1

dγe−1∑
j=0

ũ(tk−j)

∫ tk

tk−1

ckj (s)K(tn − s) ds,

where then the left hand side is entirely dependent on the data from previous steps on the

right hand side. In general, f(t) is known for all t, so then the approximation scheme requires
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solving

ũ(tn) =

(
1−

∫ tn

tn−1

cn0 (s)K(tn − s) ds
)−1[

f(tn) +

dγe−1∑
j=1

ũ(tn−j)

∫ tn

tn−1

cnj (s)K(tn − s) ds

+
n−1∑
k=1

dγe−1∑
j=0

ũ(tk−j)

∫ tk

tk−1

ckj (s)K(tn − s) ds
]
,

which is to be solved for each n = 1, 2, ..., N , provided that the invertibility criterion

1−
∫ tn

tn−1

cn0 (s)K(tn − s) ds 6= 1

is satisfied. In the 1-dimensional case above, the implementation is a direct time-marching

algorithm with the known data on the right-hand side, where the data ũ(tn) is stored for

each n to compute the memory term from previous time steps.

The 2-dimensional case requires additional treatment depending on the numerical scheme

implemented in the other variable. In chapter 1, the α-order approximate problem considered

is 
Hhu

n
i = Hhφ(xi) +Hhf1−α(xi, tn) +

n∑
k=1

ank
h2

[
uki+1 − 2uki + uki−1

]
u0
i = 0, un0 = unM = 0,

which is solved for each n = 1, 2, ..., N , and each i = 1, 2, ...,M . By recalling the definition

of the Hh operator, we have

uni−1 + 10uni + uni+1

12
=

φi−1 + 10φi + φi+1 + fn1−α,i−1 + 10fn1−α,i + fn1−α,i+1

12

+
n∑
k=1

ank
h2

[
uki+1 − 2uki + uki−1

]
u0
i = 0, un0 = unM = 0.

We wish to rewrite the above in order to solve for each of the values of u at the time t = tn.

To do so, we group all of the un terms on one side as before. By omitting initial and boundary

conditions in the arithmetic, we obtain

uni−1 + 10uni + uni+1

12
=
φi−1 + 10φi + φi+1 + fn1−α,i−1 + 10fn1−α,i + fn1−α,i+1

12

+
n−1∑
k=1

ank
h2

[
uki+1 − 2uki + uki−1

]
+
ann
h2

[
uni+1 − 2uni + uni−1

]
uni−1 + 10uni + uni+1

12
−a

n
n

h2

[
uni+1 − 2uni + uni−1

]
= R.H.S.
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We can re-cast the above as a matrix equation, where then we can solve for each i = 1, 2, ...,M

simultaneously from

10

12
+

2ann
h2

1

12
− ann
h2

0 0 ... 0

1

12
− ann
h2

10

12
+

2ann
h2

1

12
− ann
h2

0 ... 0

0
1

12
− ann
h2

10

12
+

2ann
h2

1

12
− ann
h2

... 0

...

0 0 0 0 ...
10

12
+

2ann
h2





un0

un1

un2

...

unM


= R.H.S.

Namely, by defining the tridiagonal matrix for the α-order approximation (11)

I∗α =



10

12
+

2ann
h2

1

12
− ann
h2

0 0 ... 0

1

12
− ann
h2

10

12
+

2ann
h2

1

12
− ann
h2

0 ... 0

0
1

12
− ann
h2

10

12
+

2ann
h2

1

12
− ann
h2

... 0

...

0 0 0 0 ...
10

12
+

2ann
h2


,

where we solve for the vector {uni }i=0,1,...,M by inverting the matrix I∗α. We remark that

here, none of the main diagonal entries are never 0, thus the determinant of the matrix is

non-zero, thus can be inverted. Further, the entries of I∗α are entirely dependent on τ and

h, which suggests that the condition number of I∗α is fixed over each time step. The full

implementation of the scheme is achieved by re-casting the right hand side as a vector also,

where we use the known data from all previous time steps un−1
i and the known initial and
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forcing functions to obtain

R.H.S =



10φ0 + φ1 + 10f1−α,0 + f1−α,1

12
+

n−1∑
k=1

ank
−2uk0 + uk1

h2

φ0 + 10φ1 + φ2 + f1−α,0 + 10f1−α,1 + f1−α,2

12
+

n−1∑
k=1

ank
uk0 − 2uk1 + uk2

h2

φ1 + 10φ2 + φ3 + f1−α,1 + 10f1−α,2 + f1−α,3

12
+

n−1∑
k=1

ank
uk1 − 2uk2 + uk3

h2

...

φM−1 + 10φM + f1−α,M−1 + 10f1−α,M

12
+

n−1∑
k=1

ank
ukM−1 − 2ukM

h2



.

The full numerical implementation reads:



un0

un1

un2

...

unM


= I∗α

−1



10φ0 + φ1 + 10f1−α,0 + f1−α,1

12
+

n−1∑
k=1

ank
−2uk0 + uk1

h2

φ0 + 10φ1 + φ2 + f1−α,0 + 10f1−α,1 + f1−α,2

12
+

n−1∑
k=1

ank
uk0 − 2uk1 + uk2

h2

φ1 + 10φ2 + φ3 + f1−α,1 + 10f1−α,2 + f1−α,3

12
+

n−1∑
k=1

ank
uk1 − 2uk2 + uk3

h2

...

φM−1 + 10φM + f1−α,M−1 + 10f1−α,M

12
+

n−1∑
k=1

ank
ukM−1 − 2ukM

h2



,

which is solved for each n. In a similar manner, for the midpoint scheme derived in Chapter
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2, we can rewrite the approximation scheme (15) in a matrix equation by



un0

un1

un2

...

unM


= I∗2

−1



10φ0 + φ1 + 10f1−α,0 + f1−α,1

12
+

n−1∑
k=1

ank
−2uk0 + uk1

h2

φ0 + 10φ1 + φ2 + f1−α,0 + 10f1−α,1 + f1−α,2

12
+

n−1∑
k=1

ank
uk0 − 2uk1 + uk2

h2

φ1 + 10φ2 + φ3 + f1−α,1 + 10f1−α,2 + f1−α,3

12
+

n−1∑
k=1

ank
uk1 − 2uk2 + uk3

h2

...

φM−1 + 10φM + f1−α,M−1 + 10f1−α,M

12
+

n−1∑
k=1

ank
ukM−1 − 2ukM

h2



,

where I∗2 is defined in an analogous manner by

I∗2 =



10

12
+
ann
h2

1

12
− ann

2h2
0 0 ... 0

1

12
− ann

2h2

10

12
+
ann
h2

1

12
− ann

2h2
0 ... 0

0
1

12
− ann

2h2

10

12
+
ann
h2

1

12
− ann

2h2
... 0

...

0 0 0 0 ...
10

12
+
ann
h2


.

This naturally extends to a general γ-order approximation scheme, which can be defined
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similarly to the previous two. In this manner, we obtain



un0

un1

un2

...

unM


= I∗dγe

−1



10φ0 + φ1 + 10f1−α,0 + f1−α,1

12
+

n−1∑
k=1

dγe−1∑
j=0

c̃kj
−2uk0 + uk1

h2

φ0 + 10φ1 + φ2 + f1−α,0 + 10f1−α,1 + f1−α,2

12
+

n−1∑
k=1

dγe−1∑
j=0

c̃kj
uk0 − 2uk1 + uk2

h2

φ1 + 10φ2 + φ3 + f1−α,1 + 10f1−α,2 + f1−α,3

12
+

n−1∑
k=1

dγe−1∑
j=0

c̃kj
uk1 − 2uk2 + uk3

h2

...

φM−1 + 10φM + f1−α,M−1 + 10f1−α,M

12
+

n−1∑
k=1

dγe−1∑
j=0

c̃kj
ukM−1 − 2ukM

h2



,

where now

I∗dγe
−1 =



10

12
+
c̃n0
h2

1

12
− c̃n0

2h2
0 0 ... 0

1

12
− c̃n0

2h2

10

12
+
c̃n0
h2

1

12
− c̃n0

2h2
0 ... 0

0
1

12
− c̃n0

2h2

10

12
+
c̃n0
h2

1

12
− c̃n0

2h2
... 0

...

0 0 0 0 ...
10

12
+
c̃n0
h2
,


.

Here,

c̃kj =

∫ tk

tk−1

ckj (s)K(tn − s) ds,

c̃n0 =

∫ tn

tn−1

cn0 (s)K(tn − s) ds,

where cnk(s) and cn0 (s) are determined from the γ-order accurate scheme. Naturally, for the

first order scheme presented above, cn0 (s) = 1, so then c̃n0 = ann, as expected. This method

naturally extends to the results stated in Chapter 3.
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APPENDIX C

CONDITION NUMBERS FOR NUMERICAL EXPERIMENTS

Featured here are the tabulated values of the condition numbers κ2,2 and κ2,α for the two ma-

jor numerical experiments featured in Chapter 2. For the scheme (15), we consider the exact

solution u(x, t) = sin(πx)t1.01, φ(x) = 0, u(0, t) = u(1, t) = 0, given N = 10, 20, 40, 80, 160

and M = 25. Similarly, for the scheme (11), the condition number κ2,α is calculated

for a numerical experiment with u(x, t) = sin(πx)tα, φ(x) = 0, u(0, t) = u(1, t) = 0,

given N = 10, 20, 40, 80, 160 and M = 25. In both cases, the α values considered are

α = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95. As α and N increase, the condition number decreases and

the problem becomes more numerically stable.
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Table 15: Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15), where
0 < α ≤ 0.25

Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15)
α N κ2,2

0.05 10 206.9724
20 205.6623
40 204.3234
80 202.9556
160 201.5587

0.1 10 203.427
20 200.6241
40 197.7049
80 194.6693
160 191.5179

0.15 10 199.5268
20 195.0378
40 190.2884
80 185.2831
160 180.0298

0.2 10 195.2557
20 188.8822
40 182.0576
80 174.8045
160 167.1572

0.25 10 190.6
20 182.146
40 173.0228
80 163.3002
160 153.076
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Table 16: Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15), where
0.25 < α ≤ 0.5

Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15)
α N κ2,2

0.3 10 185.5491
20 174.8306
40 163.2278
80 150.9055
160 138.0816

0.35 10 180.0973
20 166.9535
40 152.754
80 137.826
160 122.5749

0.4 10 174.2445
20 158.5503
40 141.7218
80 124.3294
160 107.0253

0.45 10 167.9978
20 149.6763
40 130.2886
80 110.7271
160 91.9160

0.5 10 161.3723
20 140.4072
40 118.6418
80 97.3461
160 77.6851
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Table 17: Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15), where
0.5 < α ≤ 0.75

Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15)
α N κ2,2

0.55 10 154.3922
20 130.8379
40 106.9871
80 84.4986
160 64.6765

0.6 10 147.0911
20 121.0793
40 95.5351
80 72.453
160 53.1123

0.65 10 139.5124
20 111.2540
40 84.4856
80 61.4129
160 43.0892

0.7 10 131.7089
20 101.4905
40 74.0141
80 51.5071
160 34.5949

0.75 10 123.7414
20 91.9165
40 64.2610
80 42.7907
160 27.5354
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Table 18: Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15), where
0.75 < α < 1

Condition Number κ2,2 for u(x, t) = sin(πx)t1.01, using scheme (15)
α N κ2,2

0.8 10 115.6776
20 82.6522
40 55.3256
80 35.2543
160 21.7655

0.85 10 107.5901
20 73.8042
40 47.2647
80 28.8388
160 17.1158

0.9 10 99.5533
20 65.4610
40 40.0954
80 23.4516
160 13.4126

0.95 10 91.6412
20 57.6897
40 33.8015
80 18.9809
160 10.4921
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Table 19: Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11), where
0 < α ≤ 0.25

Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11)
α N κ2,2

0.05 10 227.5294
20 226.735
40 225.9185
80 225.0793
160 224.2171

0.1 10 225.3691
20 223.6372
40 221.8105
80 219.8856
160 217.8594

0.15 10 222.9534
20 220.1207
40 217.061
80 213.7644
160 210.2221

0.2 10 220.2595
20 216.1424
40 211.5996
80 206.6121
160 201.1663

0.25 10 217.2637
20 211.6594
40 205.3609
80 198.3434
160 190.6
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Table 20: Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11), where
0.25 < α ≤ 0.5

Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11)
α N κ2,2

0.3 10 213.9415
20 206.6304
40 198.29
80 188.9054
160 178.5081

0.35 10 210.2682
20 201.0185
40 190.3497
80 178.2939
160 164.9831

0.4 10 206.22
20 194.794
40 181.5285
80 166.5694
160 150.245

0.45 10 201.7746
20 187.9376
40 171.8485
80 153.8685
160 134.6452

0.5 10 196.9126
20 180.4443
40 161.3723
80 140.4072
160 118.6418
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Table 21: Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11), where
0.5 < α ≤ 0.75

Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11)
α N κ2,2

0.55 10 191.6186
20 172.3268
40 150.2073
80 126.4732
160 102.7518

0.6 10 185.8827
20 163.619
40 138.5056
80 112.4043
160 87.486

0.65 10 179.702
20 154.3782
40 126.4586
80 98.5579
160 73.2843

0.7 10 173.0823
20 144.6857
40 114.2864
80 85.2749
160 60.4692

0.75 10 166.0394
20 134.6458
40 102.2228
80 72.8465
160 49.2246
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Table 22: Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11), where
0.75 < α < 1

Condition Number κ2,α for u(x, t) = sin(πx)tα, using scheme (11)
α N κ2,2

0.8 10 150.8027
20 124.3825
40 90.4969
80 61.4911
160 39.6024

0.85 10 150.8027
20 114.0344
40 79.3164
80 51.3433
160 31.5471

0.9 10 142.6984
20 103.7471
40 68.8529
80 42.4559
160 24.9293

0.95 10 164.3488
20 93.6653
40 59.2332
80 34.8116
160 19.5782

By comparison, the condition numbers of the scheme presented in [56] are presented

below. Recall that in [56], the time-fractional diffusion equation is written in differential

form without the application of the Laplace transform. The L1-method is used to discretize

the time-fractional diffusion equation (1) for u ∈ C2[0, T ] and the same discrete Laplacian

operator from the numerical experiments here is applied in the space variable. The resulting

regularity requirements for the results in [56] require u ∈ C2([0, T ];C6[0, 1]). The numerical

experiment considered here has the exact solution u(x, t) = sin(πx)t2, consistent with the

numerical experiment featured in [56]. To accurately compare the conditioning of both

schemes, we consider N = 10, 20, 40, 80, 160 and M = 25. Similarly, the α values considered

are α = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,

0.95. The condition numbers κ2,2 are computed below. On average, the condition number for

the integral formulation is 15 times smaller than the differential form of the time-fractional

diffusion equation.
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Table 23: Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56], where
0 < α ≤ 0.25

Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56]
α N κ2,2

0.05 10 3631.00
20 3617.74
40 3604.11
80 3590.01
160 3575.73

0.1 10 3577.76
20 3547.95
40 3516.54
80 3483.50
160 3448.76

0.15 10 3519.56
20 3469.62
40 3415.82
80 3358.04
160 3296.17

0.2 10 3456.37
20 3382.42
40 3301.29
80 3212.76
160 3116.76

0.25 10 3388.09
20 3286.20
40 3172.72
80 3047.59
160 2911.05
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Table 24: Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56], where
0.25 < α ≤ 0.5

Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56]
α N κ2,2

0.3 10 3314.82
20 3181.03
40 3030.45
80 2863.56
160 2618.75

0.35 10 3236.70
20 3067.23
40 2875.35
80 2663.03
160 2433.96

0.4 10 3153.99
20 2945.10
40 2709.02
80 2449.62
160 2174.84

0.45 10 3067.06
20 2816.45
40 2533.65
80 2228.07
160 1912.24

0.5 10 2976.53
20 2681.49
40 2351.99
80 2003.80
160 1656.94
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Table 25: Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56], where
0.5 < α ≤ 0.75

Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56]
α N κ2,2

0.55 10 2882.43
20 2541.93
40 2167.14
80 1782.42
160 1414.77

0.6 10 2785.94
20 2399.33
40 1982.39
80 1569.15
160 1192.47

0.65 10 2687.59
20 2255.36
40 1800.93
80 1368.38
160 993.90

0.7 10 2588.13
20 2111.73
40 1625.68
80 1183.33
160 820.71

0.75 10 2488.38
20 1970.11
40 1459.11
80 1016.04
160 672.69
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Table 26: Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56], where
0.75 < α < 1

Condition Number κ2,2 for u(x, t) = sin(πx)t2, using L1 method in [56]
α N κ2,2

0.8 10 2389.15
20 1832.04
40 1303.11
80 867.31
160 548.28

0.85 10 2291.24
20 1689.03
40 1158.98
80 737.01
160 445.14

0.9 10 2954.44
20 1571.84
40 1027.44
80 624.25
160 360.54

0.95 10 2102.51
20 1451.78
40 908.68
80 527.66
160 291.72
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APPENDIX D

NUMERICAL EXPERIMENT ILLUSTRATIONS

The figures for numerical experiments (27), (28) and (56) are presented below. For numerical

experiments (27) and (28), we present the approximate solution uni when compared to the

exact solution u(x, t), and the grid error over the entire mesh is presented as well. The first

series of figures presents the exact solution u(x, t) = sin(πx)tα using the Cα approximation

to solve the discrete approximation equation (11). The second series of figures presents

the exact solution u(x, t) = sin(πx)t1.01 using the C1 approximation to solve the discrete

approximation equation (15). For numerical experiment (56), we present the approximation

to the scalar equation first where u is unknown, but where f(t) = tα and subsequently

where f(t) = t2α. Then, the scalar equation is presented for the third and fourth-order

approximate schemes where u is now known, where u(t) = t6+α − t9/2. The latter examples

feature α = 0.1, 0.25, 0.4, 0.5, 0.7, 0.9 to showcase the necessity of the invertibility criterion

that is presented in Chapter 2.

Figure 1: Numerical simulation of (28) with u(x, t) = sin(πx)tα, α = 0.05, M = 25 and
N = 160 time steps
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Figure 2: Numerical simulation of (28) with u(x, t) = sin(πx)tα, α = 0.25, M = 25 and
N = 160 time steps

Figure 3: Numerical simulation of (28) with u(x, t) = sin(πx)tα, α = 0.5, M = 25 and
N = 160 time steps
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Figure 4: Numerical simulation of (28) with u(x, t) = sin(πx)tα, α = 0.75, M = 25 and
N = 160 time steps

Figure 5: Numerical simulation of (28) with u(x, t) = sin(πx)tα, α = 0.95, M = 25 and
N = 160 time steps
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Figure 6: Numerical simulation of (28) with u(x, t) = sin(πx)t1.01, α = 0.05, M = 25 and
N = 160 time steps

Figure 7: Numerical simulation of (28) with u(x, t) = sin(πx)t1.01, α = 0.25, M = 25 and
N = 160 time steps
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Figure 8: Numerical simulation of (28) with u(x, t) = sin(πx)t1.01, α = 0.5, M = 25 and
N = 160 time steps

Figure 9: Numerical simulation of (28) with u(x, t) = sin(πx)t1.01, α = 0.75, M = 25 and
N = 160 time steps
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Figure 10: Numerical simulation of (28) with u(x, t) = sin(πx)t1.01, α = 0.95, M = 25 and
N = 160 time steps

Figure 11: Numerical simulation of (56) with u unknown, f(t) = tα, α = 0.05, N = 80 and
N = 160 time steps



108

Figure 12: Numerical simulation of (56) with u unknown, f(t) = tα, α = 0.25, N = 80 and
N = 160 time steps

Figure 13: Numerical simulation of (56) with u unknown, f(t) = tα, α = 0.5, N = 80 and
N = 160 time steps
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Figure 14: Numerical simulation of (56) with u unknown, f(t) = tα, α = 0.75, N = 80 and
N = 160 time steps

Figure 15: Numerical simulation of (56) with u unknown, f(t) = tα, α = 0.95, N = 80 and
N = 160 time steps
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Figure 16: Numerical simulation of (56) with u unknown, f(t) = t2α, α = 0.05, N = 80 and
N = 160 time steps

Figure 17: Numerical simulation of (56) with u unknown, f(t) = t2α, α = 0.25, N = 80 and
N = 160 time steps
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Figure 18: Numerical simulation of (56) with u unknown, f(t) = t2α, α = 0.5, N = 80 and
N = 160 time steps

Figure 19: Numerical simulation of (56) with u unknown, f(t) = t2α, α = 0.75, N = 80 and
N = 160 time steps
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Figure 20: Numerical simulation of (56) with u unknown, f(t) = t2α, α = 0.95, N = 80 and
N = 160 time steps

Figure 21: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 3, α = 0.1, N = 160
time steps
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Figure 22: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 3, α = 0.25, N = 160
time steps

Figure 23: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 3, α = 0.4, N = 160
time steps
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Figure 24: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 3, α = 0.5, N = 160
time steps

Figure 25: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 3, α = 0.7, N = 160
time steps
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Figure 26: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 3, α = 0.9, N = 160
time steps

Figure 27: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 4, α = 0.1, N = 160
time steps
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Figure 28: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 4, α = 0.25, N = 160
time steps

Figure 29: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 4, α = 0.4, N = 160
time steps
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Figure 30: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 4, α = 0.5, N = 160
time steps

Figure 31: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 4, α = 0.7, N = 160
time steps
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Figure 32: Numerical simulation of (56) with u(t) = t6+α − t9/2, γ = 4, α = 0.9, N = 160
time steps

Figure 33: Numerical simulation of (74) with u(x) = xα, γ = 1, α = 0.05, M = 160 space
steps
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Figure 34: Numerical simulation of (74) with u(x) = xα, γ = 1, α = 0.25, M = 160 space
steps

Figure 35: Numerical simulation of (74) with u(x) = xα, γ = 1, α = 0.5, M = 160 space
steps



120

Figure 36: Numerical simulation of (74) with u(x) = xα, γ = 1, α = 0.75, M = 160 space
steps

Figure 37: Numerical simulation of (74) with u(x) = xα, γ = 1, α = 0.95, M = 160 space
steps
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Figure 38: Numerical simulation of (74) with u(x) = |x|, γ = 1, M = 160 space steps

Figure 39: Numerical simulation of (74) with u(x) = |x|, γ = 2, M = 160 space steps
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