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ABSTRACT

HIGH-ORDER POSITIVITY-PRESERVING L2-STABLE SPECTRAL COLLOCATION
SCHEMES FOR THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS

Johnathon Keith Upperman
Old Dominion University, 2021
Director: Dr. Nail Yamaleev

High-order entropy stable schemes are a popular method used in simulations with the

compressible Euler and Navier-Stokes equations. The strength of these methods is that they

formally satisfy a discrete entropy inequality which can be used to guarantee L2 stability of

the numerical solution. However, a fundamental assumption that is explicitly or implicitly

used in all entropy stability proofs available in the literature for the compressible Euler and

Navier-Stokes equations is that the thermodynamic variables (e.g., density and temperature)

are strictly positive in the entire space–time domain considered. Without this assumption,

any entropy stability proof for a numerical scheme solving the compressible Navier-Stokes

equations is incomplete. Unfortunately, if the solution loses regularity the positivity as-

sumption may fail to hold for a high-order entropy stable scheme unless special care is

taken. To address this problem, we present a new class of positivity-preserving, entropy sta-

ble spectral collocation schemes for the 3-D compressible Navier-Stokes equations. The key

distinctive property of our method is that it is proven to guarantee the pointwise positivity

of density and temperature for compressible viscous flows. The new schemes are constructed

by combining a positivity-violating entropy stable method of arbitrary order of accuracy

and a novel first-order positivity-preserving entropy stable method discretized on the same

Legendre-Gauss-Lobatto (LGL) collocation points used for the high-order counterpart. The

proposed framework is general and can be directly extended to other SBP-SAT-type schemes.

Numerical results demonstrating accuracy and positivity-preserving properties of the new

spectral collocation schemes are presented for viscous and inviscid flows with nearly vacuum

regions, very strong shocks, and contact discontinuities.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Computational fluid dynamics (CFD) is used to gain insight into many physical phe-

nomena ranging from applications in aerospace, automobiles, microe-electronics, ships, and

astrophysics [1, 2]. In many instances, researchers look for agreement between results ob-

tained with CFD simulations and experimental results gathered from physical measurements;

thus, CFD can play a key role in validating experimental results. Furthermore, CFD can

be used to estimate physical information related to a given phenomenon that is not easily

measured experimentally, by using more easily measured and theoretically derived quantities

as conditions for a CFD simulation.

The majority of CFD codes used in industry applications are first- or second-order accu-

rate Reynolds averaged Navier-Stokes (RANS) solvers [1, 2, 3]. Thus, third-order or higher

accurate schemes are considered high-order in the aerospace community [2] and we adopt

this convention. Although RANS simulations have found successful application in modeling

steady viscous transonic and supersonic flows in aerospace applications, they lack the ability

to reliably predict turbulent-separated flows where wind tunnel testing is still the preferred

method of obtaining reliable design related data [1, 4]. In particular, first- and second-order

methods tend to over dissipate unsteady vortices and hence perform poorly in tracking them

over long periods of time unless computationally cost prohibitive meshes are used. The long

term behavior of unsteady vortices are not negligible either. For example, they play a signif-

icant role in the aerodynamic forces experienced by helicopters [1, 2]. The shortcomings of

RANS methods suggest that large-eddy simulations (LES) and direct numerical simulations

(DNS) in conjunction with high-order methods are needed for more accurate and reliable

simulations of complex turbulent flows [1, 2, 3]. However, there are still major obstacles

preventing high-order LES and DNS from realizing their potential as robust CFD tools used
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throughout industry. On the hardware side, high-order LES and DNS methods are currently

too computationally expensive for current computer hardware. Indeed, the current and fore-

seeable hardware landscape places significant constraints on the design of numerical schemes

beyond simply being amenable to parallel computing [1]. Other obstacles for high-order LES

and DNS methods include: they are more complicated to implement than low-order meth-

ods, they are typically less robust and slower to converge to steady state, they require more

memory for implicit time stepping, and there is a lack of robust high-order mesh generators

[2].

High-order numerical algorithms have the potential to greatly improve the simulation

accuracy of time dependent flows given their increased accuracy per degree of freedom,

faster error convergence rate, and smaller numerical errors in terms of both dispersion and

dissipation [2, 5, 6]. Unfortunately, high-order methods perform poorly in the presence of

discontinuities or under-resolved features in the flow. In particular, large-magnitude features

such as shock waves, contact discontinuities, strong thermal gradients, and thin shear layers

(collectively referred to as ‘sharp features’) can lead to Gibbs oscillations that destroy the

accuracy of the solution and may also lead to simulation breakdown [3].

Many numerical methods have been developed to stabilize high-order numerical schemes

in the presence of sharp features. The methods are commonly referred to as ‘shock capturing’

methods (we adopt this convention), despite the fact that they are typically designed to

stabilize the numerical solution for all sharp features. The literature on shock capturing

methods is extensive with origins dating back over seventy years [7]. Methods for detecting

regions with sharp features include employing some combination of physics-based sensors

that look for strong compression (shock waves), or other high-gradient features such as shear

and thermal layers (e.g., see [3, 8, 9, 10]). Other methods detect non-smooth features by

inspecting the smoothness of the numerical solution (e.g., see [11, 12, 13, 14, 15, 16, 17]).

Once a sharp feature has been detected, most numerical methods use some combination of

filtering [18], limiters (e.g., see [19, 20, 21]) or artificial viscosity (e.g., see [11, 12, 16, 17, 22,

23]) to stabilize the solution. A typical pitfall of many stabilization methods is that they

rely on heuristics and parameters that need to be tuned for individual problems and hence

they lack sufficient robustness for industry adaptation.
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A robust method for stabilizing a numerical scheme should have mathematically prov-

able properties that are consistent with physical properties of the continuous equations. In

this regard, numerical schemes for the compressible Navier-Stokes equations have been de-

veloped that discretely mimic the non-linear entropy stability properties (i.e. the second

law of thermodynamics) of the continuous equations. Schemes that discretely (or, at least

semi-discretely) possess a physical entropy inequality are called entropy stable. Assuming

positive density and temperature, L2 bounds on the conservative variables can be derived

from entropy stability (see Section 2.3.2 and [24, 25, 26, 27]). Notice that the development

of entropy stable schemes is not new for low-order methods (e.g., see [28, 29, 30]). However,

in the last two decades much has been accomplished towards producing robust high-order

entropy stable schemes (e.g., see [5, 12, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

and references therein).

Although high-order entropy stable schemes formally satisfy the discrete entropy in-

equality, the entropy stability alone is not enough to guarantee L2 stability of the numerical

solution. A fundamental assumption that is explicitly or implicitly used in all entropy stabil-

ity proofs available in the literature for the compressible Euler and Navier-Stokes equations

is that the thermodynamic variables (e.g., density and temperature) are positive in the en-

tire space–time domain considered. Note that this assumption is critical and without this

assumption any discrete entropy stability proof for the compressible Navier-Stokes equations

is incomplete. What makes the problem even more difficult is that no theoretical results on

positivity of weak solutions of the compressible Navier-Stokes equations are currently avail-

able in the literature. The Navier-Stokes equations themselves do not guarantee positivity

of density and temperature or impossibility of existence of vacuum regions. The lack of the-

oretical results on positivity of thermodynamic variables for the compressible Navier-Stokes

equations hinders the development of robust high-order accurate numerical methods, thus

indicating that new positivity-preserving numerical schemes must be developed for this class

of problems.

Despite the numerous papers on high-order entropy stable methods for the compress-

ible Navier-Stokes equations, papers on positivity-preserving methods for the compressible



4

Navier-Stokes equations are very rare. In [45], a positivity-preserving first-order finite dif-

ference scheme based on the Rusanov artificial dissipation has been developed for the 3-D

compressible Navier-Stokes equations on Cartesian uniform grids. Note that the positiv-

ity proof in this paper relies on some special memetic properties of the 1st-order finite

difference operators on uniform grids, which are not available for other discretizations or

unstructured grids. Another first-order positivity-preserving scheme for the compressible

Navier-Stokes equations was developed in [46]. This pressure correction scheme is based

on staggered-in-space discretizations and solves the internal energy balance instead of the

total energy conservation equation. The scheme is unconditionally stable and reduces to a

projection method in the limit of the vanishing Mach number. Recently, Zhang presented

a positivity-preserving high-order discontinuous Galerkin (DG) scheme for the compressible

Navier-Stokes equations in [47]. This method provides only so-called weak positivity of the

thermodynamic variables, where the positivity is guaranteed for element averages but not

the individual collocation points that are directly used for approximation of the governing

equations. A limiting procedure is applied in [47] to filter out negative values at the collo-

cation points. The entropy stability of this filtering process is not clear and obscured by the

presence of collocation points with potentially undefined entropy prior to limiting. Further-

more, the positivity-preserving DG scheme developed in [47] imposes very severe constraints

on the time step, which is about an order of magnitude less than that of the baseline method

for high degree polynomial bases. Note that the actual time step constraint may be much

stiffer, because the lower bound on the artificial viscosity coefficient, which is required for

providing the positivity, may grow dramatically, as the velocity gradients increase. Recently,

a positivity-preserving scheme for the compressible Navier-Stokes equations has been pro-

posed by Guermond et al. [48]. This approach relies on the invariant domain preserving [49]

approximation of the Euler equations and the Strang’s operator splitting technique that is

at most 2nd-order accurate.

To our knowledge, there are no formally high-order numerical schemes that provide both

entropy stability and pointwise positivity of the thermodynamic variables (e.g., density and

temperature) for the 3-D compressible Navier-Stokes equations. This discouraging fact also

implies that there are no L2–stable high-order schemes for the compressible 3-D Navier-Stokes
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equations. This lack of stability results is yet one more reason for why there are no robust

high-order numerical methods for solving the compressible 3-D Navier-Stokes equations at

high Mach and Reynolds numbers in realistic geometries.

1.2 THESIS ORGANIZATION AND SUMMARY OF RESULTS

In this thesis, we construct new, entropy stable, high-order spectral collocation flux-

limiting schemes and artificial dissipation operators that provide pointwise positivity of den-

sity and temperature for the 3-D unsteady compressible Navier-Stokes equations at high

Mach and Reynolds numbers on unstructured curvilinear grids. Much work has already

been done to develop entropy stable spectral collocation element methods of arbitrary order

of accuracy (e.g, see [5, 12, 31, 34, 36, 37, 38, 39]). These methods are similar to strong

form, nodal discontinuous Galerkin spectral element methods which currently show the most

promise for overcoming the aforementioned hardware challenges involved in solving the com-

pressible Navier-Stokes equations on complex grids [1]. Hence, the specific high-order method

we have modified serves as a good candidate for future DNS and LES models; however, we

emphasize that many of the tools developed herein can be generally applied.

The key idea of the new methodology is to construct a first-order positivity-preserving

entropy stable scheme defined on the same Legendre-Gauss-Lobatto collocation points used

for the high-order operators and combine it with the high-order entropy stable spectral collo-

cation scheme that does not in general guarantee positivity of the thermodynamic variables.

Both the low- and high-order schemes use artificial dissipation operators that are based on

the Brenner regularization of the compressible Navier-Stokes equations. In troubled elements

where the density and/or temperature become negative, the proposed scheme combines the

high-order fluxes with the corresponding 1st-order inviscid and artificial dissipation fluxes

and imposes an appropriate constraint on the time step size to guarantee the pointwise pos-

itivity of both density and temperature. In contrast to the existing positivity-preserving

schemes that rely on the monotonicity properties of the Rusanov-type artificial dissipation,

the proposed method minimizes the amount of artificial dissipation required for pointwise

positivity of the thermodynamic variables, which is critical for accurate prediction of viscous

flows.
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In Chapter 2, we will review the 3-D compressible Navier-Stokes equations in both Carte-

sian and curvilinear coordinates. In the review, we will cover entropy stability and the L2

stability of the conservative variables that is implied by entropy stability. In particular, we

present a new form of the bounds for the L2 stability of the conservative variables. Lastly,

we introduce the 3-D Brenner-Navier-Stokes equations, their entropy stability properties,

and the general form of the Brenner regularization we use.

In Chapter 3, we introduce high-order diagonal-norm summation-by-parts operators and

their key properties that are used in developing high-order entropy stable numerical schemes.

In this chapter, we also introduce the notation used in this thesis for discrete terms.

In Chapter 4, we introduce an entropy stable 3-D spectral collocation scheme of arbitrary

order of accuracy that lacks positivity properties. We also discuss how this scheme can be

regularized using a high-order discretization of the Brenner viscous flux.

In Chapter 5, we construct the artificial viscosity coefficient that is used to control the

amount of artificial dissipation added in each element. Critically, this artificial viscosity is

built so that it depends on a combination of physics-based and residual-based sensors.

In Chapter 6, we present the tools we developed for preserving positivity while main-

taining all desired properties: high-order accuracy in smooth regions, conservation, entropy

stability, and freestream preservation on curvilinear grids. We end by discussing implemen-

tation details for the proposed high-order positivity-preserving flux-limiting scheme.

In Chapter 7, we present numerical results obtained from simulations using our proposed

scheme. In particular, we show that our proposed scheme is more accurate for an under-

resolved 3-D viscous shock than its non-regularized counterpart; furthermore, once enough

resolution is added, the regularization in our scheme vanishes. We demonstrate the robust-

ness of our scheme by simulating both an inviscid and viscous shock diffraction problem

involving a shock of Mach number 200. The ability of our scheme to solve steady state

problems is demonstrated by solving a shock wave / laminar boundary layer interaction

problem with inflow Mach number of 6.85. A 2-D hypersonic cylinder problem with inflow

Mach number of 17.605 is also solved on a curvilinear mesh, demonstrating the ability of the

proposed scheme to maintain stability on curvilinear meshes. Finally, we solve the 3-D vis-

cous Taylor-Green vortex problem with Mach number 10 to demonstrate how our numerical
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scheme may perform for under-resolved turbulent flows.
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CHAPTER 2

THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS

2.1 CARTESIAN COORDINATES

The 3-D compressible Navier-Stokes equations in conservation law form in the Cartesian

coordinates (x1, x2, x3) are given by

∂U

∂t
+

3∑
m=1

∂F xm

∂xm
=

3∑
m=1

∂F (v)
xm

∂xm
, ∀ (x1, x2, x3) ∈ Ω, t ≥ 0,

U (x1, x2, x3, t) = G(B) (x1, x2, x3, t) , ∀ (x1, x2, x3) ∈ Γ, t ≥ 0,

U (x1, x2, x3, 0) = G(0) (x1, x2, x3, 0) , ∀ (x1, x2, x3) ∈ Ω,

(1)

where U is a vector of conservative variables, and F xm , and F (v)
xm are the inviscid and viscous

fluxes associated with the xm coordinate, respectively. The boundary data, G(B) and the

initial condition, G(0), are assumed to be bounded in L2∩L∞. In addition, G(B) is assumed to

contain boundary data that are entropy stable in the sense that the corresponding boundary

conditions satisfy the entropy inequality.

The vector of conservative variables is given as

U =
[
ρ ρV1 ρV2 ρV3 ρE

]>
, (2)

where ρ denotes the density, V =
[

V1 V2 V3

]>
is the velocity vector, and E is the

specific total energy. The specific total energy obeys E = 1
ρ

(IE + KE) where IE = P
γ−1

is

the internal energy, P is the pressure, and KE = ρ‖V ‖
2

2
is the kinetic energy. The inviscid

fluxes, F xm ,m = 1, 2, 3, are given by

F xm =
[
ρVm ρVmV1 + δm,1P ρVmV2 + δm,2P ρVmV3 + δm,3P ρVmH

]>
, (3)

where H is the specific total enthalpy and δi,j is the Kronecker delta.
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The viscous fluxes, F (v)
xm ,m = 1, 2, 3, are defined as

F (v)
xm =

[
0 τ1,m τ2,m τ3,m

3∑
i=1

τi,mVi + κ ∂T
∂xm

]>
. (4)

The viscous stresses are given by

τi,j = µ

(
∂Vi

∂xj
+
∂Vj

∂xi
− δi,j

2

3

3∑
n=1

∂Vn

∂xn

)
, (5)

where µ(T ) is the dynamic viscosity and κ(T ) is the thermal conductivity.

To close the Navier-Stokes equations, Eq. (1), the following constituent relations are used:

h = cPT , H = h+
1

2
V >V , P = ρRT , R =

Ru

Mw

,

where T is the temperature, Ru is the universal gas constant, Mw is the molecular weight

of the gas, and cP is the specific heat capacity at constant pressure. Finally, the specific

thermodynamic entropy is given as

s =
R

γ − 1
log

(
T

T∞

)
−R log

(
ρ

ρ∞

)
, γ =

cP
cP −R

, (6)

where T∞ and ρ∞ are reference temperature and density, respectively.

2.2 CURVILINEAR COORDINATES

To solve the Navier-Stokes equations in complex geometries, we recast these equations

in curvilinear coordinates. An unstructured grid in the physical domain is generated by

individually mapping a reference domain (ξ1, ξ2, ξ3) ∈ Ω̂ = [−1, 1]3 onto each grid element in

the physical domain (x1, x2, x3) ∈ Ω. Assuming that each individual transformation

x = x(ξ) (7)
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is a diffeomorphism, it can be described by the following Jacobian matrix:

∂(x)

∂(ξ)
=


∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3

 , J =

∣∣∣∣∂(x)

∂(ξ)

∣∣∣∣ .

In the present analysis, only static curvilinear unstructured grids are considered. For possible

generalization of the proposed methodology to dynamic grids, we refer the reader to [34].

Taking into account that the following identity, which is called the geometric conservation

law (GCL), holds [50]
3∑
l=1

∂
∂ξl

(
J ∂ξl
∂xm

)
= 0, m = 1, 2, 3, (8)

the Navier-Stokes equations can be recast in the curvilinear coordinates (ξ1, ξ2, ξ3) as follows:

∂JU

∂t
+

3∑
m,l=1

∂

∂ξl

(
F ξl − F

(v)
ξl

)
= 0,

F ξl ≡
3∑

m=1

J
∂ξl
∂xm

F xm , F
(v)
ξl
≡

3∑
m=1

J
∂ξl
∂xm

F (v)
xm .

(9)

Note that the GCL equation (8) guarantees that any physically meaningful constant

vector of conservative variables U = const is a solution of the Navier-Stokes equations

(9). Though, the GCL equation (8) are satisfied exactly at the continuous level, this is not

necessarily the case at the discrete level [50]. A discussion on how the corresponding metric

coefficients should be discretized to satisfy the GCL equation is presented elsewhere (e.g.,

see [36, 50, 51, 52]).

2.3 ENTROPY STABILITY

A necessary condition for selecting a unique, physically relevant solution among possibly

many weak solutions of Eq. (1) is the entropy inequality. It is well known that the entropy

inequality holds for the Navier-Stokes equations in the Cartesian and curvilinear coordinates

(e.g., see [34, 36]). For convenience, we repeat here the derivation of the entropy inequality

for the Navier-Stokes equations for the case of time-independent curvilinear coordinates.
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The compressible Navier-Stokes equations are equipped with a convex scalar entropy

function S and the corresponding entropy flux F , which are given by

S = −ρs,

F = −ρsV ,
(10)

where s is the thermodynamic entropy defined by Eq. (6) and V is the velocity vector.

Note that the mathematical entropy S has the opposite sign from the thermodynamic en-

tropy. Thus, the mathematical entropy across a shock decreases rather than increases. This

nomenclature is used throughout the paper.

The entropy function S satisfies the following properties:

1. S(U ) is strictly convex and its Hessian matrix, ∂2S
∂U2 , is positive definite provided that

ρ > 0 and T > 0 ∀x ∈ Ω, thus yielding a one-to-one mapping from the conservative to

entropy variables that are defined as follows:

W> ≡ ∂S
∂U

=
[

h
T
− s− V >V

2T
V1

T
V2

T
V3

T
− 1
T

]>
. (11)

2. The entropy variables satisfy the following compatibility relations for all inviscid fluxes

of the compressible Navier-Stokes equations:

W>∂F xm

∂xm
= W>∂F xm

∂U

∂U

∂xm
=
∂Fxm
∂U

∂U

∂xm
=
∂Fxm
∂xm

, m = 1, 2, 3, (12)

where Fxm is the entropy flux in the m-th spatial direction.

3. The entropy variables symmetrize the compressible Navier-Stokes equations, which can

be recast in terms of W as follows:

∂U

∂W

∂W

∂t
+

3∑
m=1

∂F xm

∂W

∂W

∂xm
=

3∑
l,m=1

∂

∂xl

(
Cl,m

∂W

∂xm

)
, (13)

with the symmetry conditions ∂U
∂W

=
(
∂U
∂W

)>
, ∂Fxm

∂W
=
(
∂Fxm
∂W

)>
, and Cl,m = (Cm,l)

>.
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Furthermore, ∂U
∂W

=
(
∂2S
∂U2

)−1

is positive definite, and the matrices Cl,m satisfy the fol-

lowing inequality:
3∑

l,m=1

∂W >

∂xl
Cl,m

∂W

∂xm
≥ 0, ∀∂W

∂xm
∈ R5, (14)

provided that ρ > 0 and T > 0 ∀x ∈ Ω. Note that the term on the right–hand side of

Eq. (13) is a recast form of the viscous fluxes in terms of entropy variables, that is,

F (v)
xm =

3∑
j=1

Cm,j
∂W

∂xj
. (15)

It has been proven by Godunov in [53] that if (1) is symmetrized by introducing new variables

W and ϕ is a convex function ofW , then the entropy function and the corresponding entropy

flux satisfy the following equations:

ϕ = W>U − S, (16)

ψm = W>F xm −Fxm , m = 1, 2, 3, (17)

where the functions ϕ and ψxm are called the entropy potential and entropy potential flux,

respectively.

2.3.1 ENTROPY INEQUALITY

We now show that, if temperature and density remain positive, the entropy inequal-

ity holds for the compressible Navier-Stokes equations in the time-independent curvilinear

coordinates. Contracting Eq. (9) with the entropy variables given by Eq. (11) yields

I︷ ︸︸ ︷
W >∂JU

∂τ
+

3∑
m,l=1

II︷ ︸︸ ︷
W > ∂

∂ξl

(
J
∂ξl
∂xm

F xm

)
=

3∑
l,n=1

III︷ ︸︸ ︷
W > ∂

∂ξl

(
Ĉl,n

∂W

∂ξn

)
. (18)
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The matrices Ĉl,n on the right-hand side of Eq. (18) are given by

Ĉl,n ≡
3∑

m,j=1

J
∂ξl
∂xm

Cm,j
∂ξn
∂xj

. (19)

For further details on how Cm,j and Ĉl,n are constructed, see [52].

Using W > = ∂S
∂U

, the term I in Eq. (18) can be manipulated as follows:

I = J
∂S
∂U

∂U

∂τ
=
∂(JS)

∂τ
. (20)

Using the compatibility relations (Eq. (12)), the term II is reduced to

II =
3∑

l,m=1

J
∂ξl
∂xm

∂S
∂U

∂F xm

∂ξl
+ W >F xm

∂

∂ξl

(
J
∂ξl
∂xm

)
=

3∑
l,m=1

∂

∂ξl

(
J
∂ξl
∂xm
Fxm

)
+

3∑
m=1

W >F xm

3∑
l=1

∂

∂ξl

(
J
∂ξl
∂xm

)
.

(21)

The last term in Eq. (18) can be manipulated as follows:

III =
3∑

l,n=1

∂

∂ξl

(
W >Ĉl,n

∂W

∂ξn

)
− ∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
. (22)

Integrating Eq. (18) over the computational domain and taking into account Eqs. (20–22),

we have

∫
Ω̂

∂(JS)

∂τ
dΩ̂ +

∫
Ω̂

3∑
l,m=1

∂

∂ξl

(
J
∂ξl
∂xm
Fxm

)
dΩ̂ =

∫
Ω̂

[
3∑

l,n=1

∂

∂ξl

(
W >Ĉl,n

∂W

∂ξn

)
− ∂W

∂ξl

>
Ĉl,n

∂W

∂ξn

]
dΩ̂,

(23)

where we have used the GCL equations given by Eq. (8). Using the integration-by-parts
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(IBP) formula, the above equation can be recast in the following form:

∫
Ω̂

∂(JS)

∂τ
dΩ̂ =

3∑
l,m=1

∮
Γ

(
W >Ĉl,m

∂W

∂ξm
− J

∂ξl
∂xm
Fxm

)
nξldΓ̂

−
3∑

l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂,

(24)

where nξl is the ξl component of the outward facing unit normal of the reference element.

Taking into account that the matrices Ĉl,m satisfy Eq. (14) and assuming that the bound-

ary conditions are entropy stable, Eq. (24) becomes

∫
Ω̂

∂(JS)

∂τ
dΩ̂ =

d

dτ

∫
Ω̂

JSdΩ̂ ≤ 0. (25)

Equation (25) represents the entropy inequality in the domain which is only valid under

the assumption of positive density and temperature. Note that for the Euler equations

with smooth solutions that satisfy the positivity assumption, Eq. (25) becomes an equality.

Although the entropy inequality depends on the positivity assumption, there are no general

positivity proofs for the 3-D compressible Navier-Stokes equations; hence, a proof that the

entropy inequality holds generally is incomplete. The entropy inequality (25) is only a

necessary condition, which is not by itself sufficient to guarantee convergence to a physically

relevant weak solution of the Navier-Stokes equations.

2.3.2 L2 BOUND ON U

Not only is the entropy inequality (25) a necessary condition for the solution, it can also

provide an L2 bound on U (e.g., see [25, 26, 27]). Indeed, in Chapter 5 of [25] Dafermos

shows that if a system of conservation laws possesses a convex entropy function, S(U ), then

a global bound on S implies an L2 bound on the solution U [31].
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Minimum eigenvalue of SUU bound

We first present the derivation of the L2 bound on U for the 3-D Navier-Stokes equations

in curvilinear coordinates by following closely the derivation for the 1-D Navier-Stokes equa-

tions presented in [24]. The derived bound is written in terms of the minimum eigenvalue of

SUU .

Define a new entropy S̄ = S − S(U 0)−SU (U 0)>(U −U 0) where U 0 is a user-defined

constant non-zero state. In this derivation, we leave U 0 unspecified, but assume that it

is constructed so that certain constraints are satisfied–and we discuss example U 0 which

satisfy these constraints. Note that the associated entropy variables are

W̄ ≡ S̄U = SU − SU (U 0) = W −W0 (26)

and hence the compatability relation for the associated entropy flux is

∂F̄xm
∂U

= S̄U
∂F xm

∂U
=
∂Fxm
∂U

−W0
∂F xm

∂U
. (27)

Contracting Eq. (9) with the new entropy variables given by Eq. (26) yields

I︷ ︸︸ ︷
W̄
>∂JU

∂τ
+

3∑
m,l=1

II︷ ︸︸ ︷
W̄
> ∂

∂ξl

(
J
∂ξl
∂xm

F xm

)
=

3∑
l,n=1

III︷ ︸︸ ︷
W̄
> ∂

∂ξl

(
Ĉl,n

∂W

∂ξn

)
. (28)

Using W > = ∂S̄
∂U

, the term I in Eq. (28) can be manipulated as follows:

I = J
∂S̄
∂U

∂U

∂τ
=
∂(J S̄)

∂τ
. (29)

Using Eq. (26) and the GCL equations given by Eq. (8), the term II is reduced to

II =
3∑

l,m=1

∂

∂ξl

(
J
∂ξl
∂xm
Fxm

)
−W >

0

∂

∂ξl

(
J
∂ξl
∂xm

F xm

)

=
3∑

l,m=1

∂

∂ξl

(
J
∂ξl
∂xm

(
Fxm −W >

0 F xm

))
.

(30)
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The last term in Eq. (28) can be manipulated as follows:

III =
3∑

l,n=1

∂

∂ξl

(
W̄
>
Ĉl,n

∂W

∂ξn

)
− ∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
. (31)

Integrating Eq. (28) over the computational domain, taking into account Eqs. (29–31),

using the integration-by-parts (IBP) formula, and comparing with Eq. (24) we have:

∫
Ω̂

∂(J S̄)

∂τ
dΩ̂ =

3∑
l,m=1

∮
Γ

(
W̄
>
Ĉl,m

∂W

∂ξm
− J

∂ξl
∂xm

(
Fxm −W >

0 F xm

))
nξldΓ̂

−
3∑

l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂

=

∫
Ω̂

∂(JS)

∂τ
dΩ̂

+
3∑

l,m=1

∮
Γ

(
−W >

0 Ĉl,m
∂W

∂ξm
+ J

∂ξl
∂xm

W >
0 F xm

)
nξldΓ̂

=

∫
Ω̂

∂(JS)

∂τ
dΩ̂ +

3∑
l,m=1

∮
Γ

J
∂ξl
∂xm

W >
0

(
−F (v)

xm + F xm

)
nξldΓ̂,

(32)

where nξl is the ξl component of the outward facing unit normal of the reference element.

Assume that we have entropy stable boundary conditions so that Eq. (24) implies

∫
Ω̂

∂(JS)

∂τ
dΩ̂ ≤ −

3∑
l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂. (33)

Assume further that Eq. (32) implies
∫

Ω̂
∂(JS̄)
∂τ

dΩ̂ ≤
∫

Ω̂
∂(JS)
∂τ

dΩ̂ . For example, consider

thermally insulated no slip boundary walls:

V |Γ = 0,
3∑

l,m=1

∂ξl
∂xm

∂T

∂xm
nξl

∣∣∣∣∣
Γ

= 0. (34)

In this case, Eq. (24) implies

∫
Ω̂

∂(JS)

∂τ
dΩ̂ = −

3∑
l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂. (35)
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and if we select V 0 = 0, ρ0 > 0, and T0 > 0, then we also have
∫

Ω̂
∂(JS̄)
∂τ

dΩ̂ =
∫

Ω̂
∂(JS)
∂τ

dΩ̂.

Through Taylor expansion of S around U 0 we have

S(U ) = S(U 0) + SU (U 0)> (U −U 0) +
1

2
(U −U 0)> SUU (U (θ)) (U −U 0) , (36)

for some state U (θ) = U 0(1 − θ) + θU where θ ∈ (0, 1). Note that since density is

additive and internal energy is concave, if we assume ρ, T > 0 then ρ0, T0 > 0 implies

that ρ(θ), T (θ) > 0. Therefore, Smin
UU (t) > 0 where Smin

UU (t) is the minimal eigenvalue of

SUU (U (θ), t) in space at time t. We should note that Eq. (36) is not a Taylor expansion

in space (in which case, the necessary smoothness of the corresponding spatial derivatives

would be highly questionable near discontinuous features such as shocks), but instead the

partial derivatives are with respect to the conserved variables.

Notice that by definition S̄ = S − S(U 0) − SU (U 0)>(U − U 0) =

1
2

(U −U 0)> SUU (U (θ)) (U −U 0). Hence, if we integrate in time to t = T we have

∫
Ω̂

∂(J S̄)

∂τ
dΩ̂ ≤

∫
Ω̂

∂(JS)

∂τ
dΩ̂ ≤ −

3∑
l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂,

∫
Ω̂

J S̄(U (·, T ))dΩ̂ ≤
∫

Ω̂

J S̄(U (·, 0))dΩ̂−
T∫

0

3∑
l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂,

∫
Ω̂

J
1

2
(U −U 0)> SUU (U (θ(T ))) (U −U 0) dΩ̂ ≤

∫
Ω̂

J S̄(U (·, 0))dΩ̂−

T∫
0

3∑
l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂.

(37)

Let

C(T ) =

∫
Ω̂

J S̄(U (·, 0))dΩ̂−
T∫

0

3∑
l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂ ≤

∫
Ω̂

J S̄(U (·, 0))dΩ̂.

It follows from (37), that

2Smin
UU (T )

∫
Ω̂

J (U −U 0)> (U −U 0) dΩ̂ ≤ 4C(T ).
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Since

U >U = (U −U 0 + U 0)>(U −U 0 + U 0)

= (U −U 0)>(U −U 0) + U >
0 U 0 + 2(U −U 0)>U 0

≤ 2(U −U 0)>(U −U 0) + 2U >
0 U 0,

we have that ∫
Ω̂

JU >(T )U (T )dΩ̂ ≤ 4
C(T )

Smin
UU (T )

+ 2

∫
Ω̂

JU >
0 U 0dΩ̂, (38)

which is the desired L2 bound on the solution U at time T .

An alternative approach using LDL> decomposition

Given that the bound in Eq. (38) depends on the minimum eigenvalue of SUU it would

be nice to know what the minimum eigenvalue of SUU is. To our knowledge, the full set

of eigenvalues of SUU are unknown (we are only aware of the eigenvalue R
P

of multiplicity

2). Hence, we present an alternative bound based on identities obtained from the LDL>

decomposition of SUU (see Appendix C). We make all the same assumptions that led us to

the bound given by (38).

It follows from (254) and (255) of Appendix C that

(U −U 0)> SUU (U (θ(T ))) (U −U 0) ≥ (ρ− ρ0)2

b1(θ)
,

(U −U 0)> SUU (U (θ(T ))) (U −U 0) ≥ (ρVi)
2

bi+1(θ)
, i = 1, 2, 3,

(U −U 0)> SUU (U (θ(T ))) (U −U 0) ≥ (ρE − ρ0E0)2

b5(θ)
,

b1(θ) =
ρ(θ)

R
, bi+1(θ) =

P(θ) + ρ(θ)V 2
i (θ)

R
, i = 1, 2, 3,

b5(θ) =
P2(θ)γ + P(θ)ρ(θ)‖V (θ)‖2γ +

(
ρ(θ)‖V (θ)‖2

2

)2

Rρ(θ)
.

(39)

Let bmax
i (t) > 0 be the maximal value of bi(U (θ), t) in space at time t. It follows from (37),
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that

2

bmax
1 (T )

∫
Ω̂

J(ρ− ρ0)2dΩ̂ ≤4C(T ),

2

bmax
i+1 (T )

∫
Ω̂

J(ρVi)
2dΩ̂ ≤4C(T ), i = 1, 2, 3,

2

bmax
5 (T )

∫
Ω̂

J(ρE − ρ0E0)2dΩ̂ ≤4C(T ).

(40)

Therefore, ∫
Ω̂

Jρ2dΩ̂ ≤4bmax
1 (T )C(T ) + 2

∫
Ω̂

Jρ2
0dΩ̂,∫

Ω̂

J(ρVi)
2dΩ̂ ≤2bmax

i+1 (T )C(T ), i = 1, 2, 3,∫
Ω̂

J(ρE )2dΩ̂ ≤4bmax
5 (T )C(T ) + 2

∫
Ω̂

J(ρ0E0)2dΩ̂.

(41)

It is not ideal to have the bmax
i terms present in the bound, since e.g. the L2 bound of

density in Eq. (41) depends on the current L∞ norm of density through bmax
1 (T ). The

minimum eigenvalue of SUU bound given by Eq. (38) likely has a similar issue though since

R
P

is an eigenvalue of SUU . However, the presence of the bmax
i terms in the bounds are

counter-balanced by the fact that

C(T ) =

∫
Ω̂

J S̄(U (·, 0))dΩ̂−
T∫

0

3∑
l,n=1

∫
Ω̂

∂W

∂ξl

>
Ĉl,n

∂W

∂ξn
dΩ̂ ≤

∫
Ω̂

J S̄(U (·, 0))dΩ̂

can only decrease with time. Hence, the cumulative dissipation in time acts to pull down

the weight of the current bmax
i value in the bound.

2.4 3-D BRENNER-NAVIER-STOKES EQUATIONS

In the present analysis, the Navier-Stokes equations are regularized by adding artificial

dissipation in the form of the diffusion operator of the Brenner-Navier-Stokes equations

introduced in [54, 55]. The Brenner-Navier-Stokes equations can be obtained from Eq. (1)

by replacing the mass velocity V of the inviscid fluxes, F xm , with the volume velocity V v
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which is given by V v = V + σ∇ρ/ρ, thus leading to

∂U

∂t
+

3∑
m=1

∂F xm

∂xm
=

3∑
m=1

∂F
(B)
xm

∂xm
, ∀ (x1, x2, x3) ∈ Ω, t ≥ 0, (42)

where σ is the volume diffusivity and the viscous fluxes, F
(B)
xm ,m = 1, 2, 3, are defined as

F (B)
xm = F (v)

xm + σ
∂ρ

∂xm

[
1 V E

]>
. (43)

The entropy stability of the Brenner-Navier-Stokes equations is proven in a manner iden-

tical to what was was done in Section 2.3. The only difference is that the viscosity matrices

Cl,l, l = 1, 2, 3 of Eq. (15) have the Brenner contribution but Eq. (14) still holds provided

that ρ > 0 and T > 0 ∀x ∈ Ω. We label the Brenner-Navier-Stokes viscosity matrices C
(B)
m,j

and note that

F (B)
xm =

3∑
j=1

C
(B)
m,j

∂W

∂xj
,

C
(B)
l,m = (C

(B)
m,l )

>,

3∑
l,m=1

∂W >

∂xl
C

(B)
l,m

∂W

∂xm
≥ 0, ∀∂W

∂xm
∈ R5.

(44)

Despite that Eqs. (1) and (42) are very similar to each other, the Brenner-Navier-Stokes

equations possess some remarkable properties that are not available for the Navier-Stokes

equations. In contrast to Eq. (1), the Brenner-Navier-Stokes equations guarantee existence

of a weak solution and uniqueness of a strong solution, ensure global-in-time positivity of

the density and temperature, satisfy a large class of entropy inequalities, and is compatible

with a minimum entropy principle [56, 24, 57, 58]. For further discussion on satisfying the

large class of entropy inequalities, see appendix Section A.4.

Capitalizing on these remarkable properties of the Brenner-Navier-Stokes equations, we

propose to regularize the Navier-Stokes equations by adding the following dissipation term
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to Eq. (1):

∂U

∂t
+

3∑
m=1

∂F xm

∂xm
=

3∑
m=1

[
∂F

(v)
xm

∂xm
+
∂F

(AD)
xm

∂xm

]
, (45)

where the the artificial dissipation flux F
(AD)
xm can be obtained from the viscous flux of the

Brenner-Navier-Stokes equations,F
(B)
xm , by setting µ = µAD, σ = cρµ

AD/ρ, and κ = cTµ
AD.

The coefficient µAD is an artificial viscosity and cT and cρ are positive tunable coefficients.

In this paper, we used cρ = 0.9 and cT = cρ
cP
γ

in order to satisfy the necessary and sufficient

condition given by Eq. (232) for the Brenner-Navier-Stokes viscosity flux (43) to satisfy (44)

for a much larger classs of entropies [59, 60] as discussed in Section A.4.

By construction, Eq. (45) preserves some key properties of the Brenner-Navier-Stokes

equations including conservation, entropy stability, and positivity of thermodynamic vari-

ables. Herein, we propose to develop a new numerical scheme that replicates these properties

of the regularized Navier-Stokes equations (45) at the discrete level.
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CHAPTER 3

OPERATORS AND NOTATION FOR REPRESENTING DISCRETE

NUMERICAL SCHEMES

3.1 HIGH-ORDER SBP OPERATORS

3.1.1 HIGH–ORDER DIAGONAL-NORM SUMMATION-BY-PARTS OPER-

ATORS

The derivatives in (9) are discretized by spectral collocation operators that satisfy the

summation-by-parts (SBP) property [37, 61]. In the one-dimensional setting, this mimetic

property is achieved by approximating the first derivative with a discrete operator, D, in the

form:

D = P−1Q. (46)

The local mass P and stiffness Q matrices satisfy the following properties:

P = P>, v>Pv > 0, ∀v 6= 0,

Q = B −Q>, B = diag(−1, 0, . . . , 0, 1).
(47)

Only diagonal-norm SBP operators are considered herein, which is critical for proving the

entropy inequality at the discrete level.

In the one-dimensional setting, the physical domain is divided into K non-overlapping

elements [xk1, x
k
Np

] with K + 1 nonuniformly distributed points, so that xk1 = x
(k−1)
Np

. The

discrete solution inside each element is defined on Legendre-Gauss-Lobatto (LGL) points,

xk =
[
xk1, . . . , x

k
Np

]>
. These local points xk are referred to as solution points. We represent

non-discrete variables on this grid through projection uk(t) =
[
uk(x

k
1, t), . . . ,uk(x

k
Np
, t)
]>

.

Using Eqs. (46, 47), it can be shown that the one-dimensional discrete derivative operator,
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D, satisfies the following SBP property:

vTPDu = vTQu = vT (B −QT )u = vNpuNp − v1u1 − (Dv)TPu. (48)

3.1.2 TELESCOPIC FLUX FORM

Along with the solution points, we also define a set of intermediate points x̄k =[
x̄k0, . . . , x̄

k
Np

]>
prescribing bounding control volumes around each solution point. These

points referred to as flux points form a complementary grid whose spacing is precisely equal

to the diagonal elements of the positive definite matrix P in Eq. (47), i.e.,

∆x̄ = P1, (49)

where x̄ =
[
x̄0, . . . , x̄Np

]>
is a vector of flux points, 1 = [1, . . . , 1]>, and ∆ is an Np×(Np+1)

matrix corresponding to the two-point backward difference operator [37, 33].

As has been proven in [62], all discrete SBP derivative operators can be recast into the

following telescopic flux form:

P−1Qf = P−1∆f̄ , (50)

where f̄ is a pth-order flux vector defined at the flux points. The above telescopic flux form

satisfies the following generalized SBP property:

v>PP−1∆f̄ = f̄NpvNp − f̄0v1 −
Np−1∑
j=1

f̄j(vj+1 − vj) = v>B̃f̄ − v>∆̃f̄ , (51)

where

∆̃ =



0 −1 0 0 0 0

0 1 −1 0 0 0

0 0
. . . . . . 0 0

0 0 0 1 −1 0

0 0 0 0 1 0


, B̃ =



−1 0 0 0 0 0

0 0 0 0 0 0

0 0
. . . . . . 0 0

0 0 0 0 0 0

0 0 0 0 0 1


.
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3.1.3 EXTENSION TO THREE DIMENSIONS

In the general three dimensional case on unstructured grids, simulations are performed on

the union of piecewise smooth subdomains/elements Ωk(x
i) through the use of the reference

domain Ω̂(ξi) = [−1, 1]3 as described in section 2.2. The discrete solution points on Ω̂(ξi) are

formed by taking tensor products of the one-dimensional LGL points on [−1, 1]. We adopt

the convention that a superscript “i” for the computational ξi or physical xi coordinates refers

to the associated direction and the subscript indexes the solution point on the element. For

example, the Np = (p + 1)3 solution points on the reference domain can be written as the

tuples (N = p+ 1)

(
ξ1

1 , ξ
2
1 , ξ

3
1

)
,
(
ξ1

2 , ξ
2
1 , ξ

3
1

)
, . . . ,

(
ξ1
N , ξ

2
1 , ξ

3
1

)
,
(
ξ1

1 , ξ
2
2 , ξ

3
1

)
, . . . ,

(
ξ1
N , ξ

2
N , ξ

3
N

)
.

Letting only the ith component of ~ξ vary, we recover the one-dimensional LGL grid.

From this perspective, we see how the flux points as defined in Section 3.1.2 for 1-D elements

generalize to the 3-D reference element. For example, the flux points corresponding to letting

only the ξ1 component vary can be written as the tuples

(
ξ̄1

0 , ξ
2
1 , ξ

3
1

)
,
(
ξ̄1

1 , ξ
2
1 , ξ

3
1

)
, . . . ,

(
ξ̄1
N , ξ

2
1 , ξ

3
1

)
,
(
ξ̄1

0 , ξ
2
2 , ξ

3
1

)
, . . . ,

(
ξ̄1
N , ξ

2
N , ξ

3
N

)
.

Every solution point has 6 surrounding flux points that again prescribe a bounding control

volume. The 6 flux points surrounding the solution point ~ξijk are ~ξi−1jk =
(
ξ̄1
i−1, ξ

2
j , ξ

3
k

)
and

~ξi,j,k =
(
ξ̄1
i , ξ

2
j , ξ

3
k

)
in the ξ1 direction and similarly written in the other two directions. The

solution and flux points on the physical element Ωk(x
i) are obtained directly through the

mapping ~x
(
~ξ
)

for that element. We adopt the convention of using the reference domain

index for the physical domain when there is no ambiguity about which element we are on:

i.e. we may write ~x
(
~ξijk

)
= ~xijk.

Discretizing the curvilinear form of the Navier-Stokes equations given in Eq. (9) re-

quires differentiating in the computational directions. For this purpose, we can extend the
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one-dimensional SBP operators in Section 3.1.1 via tensor products to multiple spatial di-

mensions. The multidimensional tensor product operators are

Dξ1 = (DN ⊗ IN ⊗ IN ⊗ I5) , Pξ1 = (PN ⊗ IN ⊗ IN ⊗ I5) ,

Pξ1,ξ2 = (PN ⊗ PN ⊗ IN ⊗ I5) , P = (PN ⊗ PN ⊗ PN ⊗ I5) ,

P̂ = (PN ⊗ PN ⊗ PN) , P⊥,ξ1 = (IN ⊗ PN ⊗ PN ⊗ I5) ,

(52)

with similar definitions for other directions and operators Qξi , ∆ξi and Bξi . We will also

use the following notation Pijk = Pi,iPj,jPk,k and Pij = Pi,iPj,j where Pi,i is the scalar ith

diagonal entry of PN .

To simplify notation when dealing with domain boundaries, on the ath element we use

the indicator function

χ(BC)
a (~ξijk) =

 1, if ~ξijk is on a domain boundary

0, otherwise
. (53)

To pick off only terms at domain boundary faces we use

B
(BC)

ξ1,a =
(

diag
[
−χ(BC)

a (~ξ1jk) 0 . . . 0 χ
(BC)
a (~ξNjk)

]
⊗ IN ⊗ IN ⊗ I5

)
, (54)

with identical definitions in the other computational directions.

Similarly, we define the indicator function

χ(Int)
a (~ξijk) =

 1, if ~ξijk is on an interior element face

0, otherwise
. (55)

3.2 NOTATION FOR DISCRETE TERMS

Here we introduce the notation that is used to express the discrete terms in this disser-

tation.
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3.2.1 2-D ARRAYS

Frequently, we need to describe a term which has a list of components (of fixed length)

at every solution point or some subset of flux points on an element. Such 2-D arrays, we

represent using bold font. For example, all of the following represent 2-D arrays used in

the dissertation: U, ˆ̄fl, f̂
(v)
l , ĝl, etc. We use the convention that ĝl(~ξijk) refers to the list of

components of ĝl at the solution point ~ξijk and ˆ̄fl(~ξijk) refers to the components of ˆ̄fl at the

flux point ~ξijk.

Although a term which has only a scalar value at each solution point (or some subset of

the flux points) could be called a 1-D array, we treat them as 2-D arrays (with component

list length of 1).

2-D arrays at flux points

We continue the convention of using an over bar (e.g. ˆ̄fl) to indicate quantities stored at

some subset (possibly all) of the flux points. However, many 2-D arrays with an over bar

in this dissertation are not stored at all of the flux points on an element. The ambiguity

arises from the interpolation step of the 3-D equivalent of Eq. (50). The ambiguity for

such quantities is removed since we only use the over bar for a flux quantity when we

have differentiated it and the differentation always happens in the computational direction

corresponding to the flux direction e.g. P−1
ξ1 ∆ξ1

ˆ̄f1 where the quantity ˆ̄f1 has values only at

flux points of the form ~ξijk and ˆ̄f1 represents a flux in the 1st computational direction i.e.

the “1” tells you the direction of interpolation and the flux.

Operations on 2-D arrays

We combine 2-D arrays using two different operations. To illustrate these, we consider

two arbitrary 2-D arrays stored at the solution points such that the components A(~ξijk) and

B(~ξijk) or of equal length:

A =
[

A(~ξ111) A(~ξ211) . . . A(~ξNNN)
]
,

B =
[

B(~ξ111) B(~ξ211) . . . B(~ξNNN)
]
.

(56)
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The first operation is implied by juxtaposition and produces a scalar quantity:

A>B = B>A =
N∑

i,j,k=1

A(~ξijk) ·B(~ξijk), (57)

where A(~ξijk) ·B(~ξijk) is the usual dot product. If the 2-D array C has components C(~ξijk)

of length 1 at every solution point, then

C>B = B>C =
N∑

i,j,k=1

C(~ξijk)B(~ξijk), (58)

where now C(~ξijk) simply scales the array B(~ξijk) and C>B is a 1-D array with the same

length as the length of B(~ξijk).

The second operation produces a new 2-D array with scalar components at each solution

point:

C = A�B = B�A,

C(~ξijk) = A(~ξijk) ·B(~ξijk).
(59)

2-D arrays with multidimensional tensor product operators

The set of 2-D arrays where one dimension indexes the solution (or flux) points can be

mapped through a bijection to a set of 4-D arrays. The mapping is

(A(~ξijk))a 7→ Aaijk, (60)

where (A(~ξijk))a is the ath component of A(~ξijk). Since this mapping is a bijection, we use

both representations interchangeably. Through this mapping, it is easiest to understand the

action of the multidimensional tensor product operators. For example,

((Dξ1A)(~ξijk))a =

Np∑
n=1

DinA
a
njk, (61)
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where Din is the (i, n) component of the 1-D derivative operator D of Eq. (46).

3.2.2 BLOCK DIAGONAL MATRICES

The 2-D arrays discussed in Section 3.2.1 store 1-D arrays at each solution point. When

a term has a 2-D matrix at each solution point, we enclose the term in square brackets. For

example, a term which is the 5 by 5 identity matrix at every solution point is written [I].

Note that [I] is understood to be a block diagonal matrix with Np blocks of dimension 5 by

5.

Assume that the block diagonal matrix [I] stores the 5 by 5 matrix I(~ξijk) at the solution

point ~ξijk. Assume that the 2-D array A has A(~ξijk) of length 5. If we write B = [I]A, then

that means B is the 2-D array such that B(~ξijk) = I(~ξijk)A(~ξijk) where the usual vector

matrix multiplication is implied.

3.2.3 THE 1N AND 0N 2-D ARRAYS

The 2-D arrays 1n and 0n are useful in forming many identities where 1n(~ξijk) =[
1 1 . . .

]>
and 0n(~ξijk) =

[
0 0 . . .

]>
. The subscript n determines the length of

1n(~ξijk) and 0n(~ξijk) so that e.g. 13(~ξijk) =
[

1 1 1
]>

.

3.2.4 1-D ARRAYS

Section 3.2.1 describes the notation for 2-D arrays which contain 1-D arrays (e.g. vector

of conserved variables) at each solution point. Sometimes, we wish to speak generally about

a particular type of 1-D array or scalar without referencing solution points. In that case,

we use bold italics for 1-D arrays and non-bold for scalars. For example, u, ν, and w will

be used to denote a vector of conserved, primitive, and entropy variables, respectively. The

vector of primitive variables are: ν =
[
ρ ~V T

]>
.
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3.2.5 USE OF ~

Since many of the arrays of interest are of length 5, we use the over arrow symbol (e.g.

~x) to distinguish those 2-D arrays that store length 3 arrays at each solution point and 1-D

arrays of length 3.
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CHAPTER 4

ENTROPY STABLE HIGH-ORDER DISCRETIZATIONS

4.1 BASELINE 3-D SPECTRAL COLLOCATION SCHEME OF

ARBITRARY ORDER OF ACCURACY

In this section, we present the baseline 3-D spectral collocation scheme [36, 37, 52]. While

this scheme has multiple important properties that we will discuss, it is prone to spurious

oscillations in the presence of discontinuities and lacks positivity properties. The purpose of

this dissertation is to present a modification of this baseline scheme that addresses both of

these shortcomings.

4.1.1 METRIC TERMS AND SATISFYING THE DISCRETE GCL EQUA-

TION

The non-discrete GCL equation given in Eq. (8) can be enforced at the discrete level

[50, 51]. To implement this method, we first calculate the arrays D̂ξix
j from which we

compute the array of discrete pointwise Jacobians, J, directly. Although one could then

use matrix inversion or exact formulas to obtain the discrete J ∂ξl

∂xm
, these will not satisfy

the discrete GCL equation exactly. The discrete approximation of the scalar J ∂ξl

∂xm
at the

solution point ~ξijk is denoted âlm(~ξijk). The block diagonal matrix [âlm] contains blocks with

entries âlm(~ξijk)I5×5 where I5×5 is the identity matrix of size 5. The specific formulas for

âlm(~ξijk) are recorded elsewhere (e.g., see [36, 50, 51, 52]). Note that âlm(~ξijk) is continuous

at element interfaces and satisfies the following GCL equation

3∑
l=1

Dξl [â
l
m]15 = 05, m = 1, 2, 3, (62)

where 15 serves the purpose of transforming the diagonal matrices into vectors at each

solution point. Equation (62) is the typical manner of writing the discrete GCL equation
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(e.g., see [36, 52]), but we also make use of the equivalent statement

3∑
l=1

D̂ξl â
l
m = 01, m = 1, 2, 3. (63)

We use the notation ~̂ai to refer to the array with components

~̂al(~ξijk) =
[

âl1(~ξijk) âl2(~ξijk) âl3(~ξijk)
]>
.

The discrete metric terms, [âlm], are used to discretely transform fluxes in the Cartesian

coordinate system to contravariant form. Let fxm represent an array containing the numerical

approximations to a given flux in the Cartesian direction xm at the solution points. We write

f̂l = f̂ξl =
3∑

m=1

[âlm]fxm to denote the contravariant form of the flux in the ξl direction.

4.1.2 BASELINE SEMI-DISCRETE SCHEME AND ENTROPY ANALYSIS

Now we discuss the baseline 3-D spectral collocation scheme of arbitrary order of accuracy

[36, 37, 52] that we intend to regularize. The semi-discrete form of the baseline scheme to

solve Eq. (9) can be written

Ût +
3∑
l=1

P−1
ξl

∆ξl
ˆ̄fl −Dξl f̂

(v)
l =

3∑
l=1

P−1
ξl

ĝ
(BC)
l + P−1

ξl
ĝ

(Int)
l , (64)

where Û = [J ] U, and the discontinuous formulation requires the use of the penalty ĝ
(BC)
l

to enforce boundary conditions, and ĝ
(Int)
l to couple element interfaces. The block diagonal

matrix [J ] contains blocks with entries J(~ξijk)I5×5 where I5×5 is the identity matrix of size 5.

We write ĝ
(BC)
l = ĝ

(BC,I)
l + ĝ

(BC,v)
l where ĝ

(BC,I)
l represents the boundary penalties related to

the inviscid terms and ĝ
(BC,v)
l the boundary penalties related to the viscous terms. Similarly,

ĝ
(Int)
l = ĝ

(Int,I)
l +ĝ

(Int,v)
l . In the following subsections, we will present the basic details of how

the terms in Eq. (64) are constructed and conclude with a discussion of entropy stability.

Since the exact form of ĝ
(BC)
l depends on the boundary condition in question, we will only

discuss ĝ
(Int)
l here. Constructing entropy stable domain boundary penalties through ĝ

(BC)
l

is non-trivial and an open area of research (e.g., see [5, 36]). In Appendix B, we discuss the
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form of ĝ
(BC)
l that we used for obtaining the numerical results in Chapter 7.

Baseline viscous terms

The entropy stability of all high-order viscous terms in this dissertation depend on the

discretization of the gradient of the entropy variables which can be written as [31, 36, 37]

Θxj =
3∑
l=1

[âlj][J
−1]
(
Dξlw + P−1

ξl
ĝΘ
l

)
= wxj + gΘ

j ,

ĝΘ
1 (~ξijk) =

1

2

(
δ1i∆1w(~ξ0jk) + δNi∆1w(~ξNjk)

)
,

∆1w(~ξijk) = w(~ξi+1jk)−w(~ξijk),

(65)

where we use similar definitions in each computational direction. The value w(~ξN+1jk) is

the value collocated with w(~ξNjk) on the neighboring element or associated with a boundary

condition (similar definition for w(~ξ0jk) and other directions). We use the Kronecker Delta

function δij.

The contravariant viscous fluxes, f̂
(v)
l , are constructed as follows

f̂
(v)
l =

3∑
m=1

[âlm]f
(v)
xm , f

(v)
xm =

3∑
j=1

[c
(v)
m,j]Θxj . (66)

For each 1 ≤ a, b ≤ 3, [c
(v)
a,b ] is a block diagonal matrix with blocks that are 5× 5, [

(
c

(v)
a,b

)T
] =

[c
(v)
b,a ], and

3∑
a=1

3∑
b=1

vT [c
(v)
a,b ]v ≥ 0,∀v i.e. the full viscous tensor is symmetric positive semi-

definite (SPSD). See [52] for the exact form of the c
(v)
a,b matrices.

We further decompose the viscous interface penalties as the sum of an entropy conser-

vative term and entropy dissipative term ĝ
(Int,v)
l = ĝ

(Int,v,C)
l + ĝ

(Int,v,D)
l that are now given.

For all fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

ĝ
(Int,v,C)
1 (~ξi) =

χ(Int)(~ξi)

2

3∑
m=1

â1
m(~ξi)

(
δ1i∆1f

(v)
xm (~ξ0) + δNi∆1f

(v)
xm (~ξN)

)
ĝ

(Int,v,D)
1 (~ξi) = χ(Int)(~ξi)

(
−δ1iΛ

(v)(~ξ0, ~ξ1)∆1w(~ξ0) + δNiΛ
(v)(~ξN+1, ~ξN)∆1w(~ξN)

) (67)
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where identical definitions hold for other computational directions. Note that the local dis-

continuous Galerkin (LDG) penalties, ĝ
(Int,v,C)
l and ĝΘ

l , can be written in a slightly more

general form involving an extra parameter (often denoted “α”) [31, 37], but in this disser-

tation we simply use the symmetric LDG value of α = 0 and avoid referencing α to reduce

complexity.

For the exact form of the matrix Λ(v) that we used, see [31]. Here we note that Λ(v)

is SPSD and is scaled by the physical viscosity so that it is zero for inviscid flows. Note

that the entropy stability of the physical viscous terms is well established (see e.g. [36, 37,

52]) and for convenience we have included a proof in Section A.2 of the appendix given by

Lemma 19.

Baseline inviscid terms

We begin by noting that a two point matrix f̄(S)(·, ·) is said to satisfy the entropy con-

sistency condition [30] if for any two physical states ua and ub it satisfies:

(wa −wb)
> f̄(S)(ua,ub) = ~ψa − ~ψb . (68)

The contravariant inviscid fluxes at the flux points, ˆ̄fl, are constructed as follows for all fixed

1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

for 1 ≤ i ≤ N − 1,

ˆ̄f1(~ξi) =
N∑

R=i+1

i∑
L=1

2qL,Rf̄(S)(U(~ξL),U(~ξR))
~̂a1(~ξL) + ~̂a1(~ξR)

2
,

and for i ∈ {0, N},
ˆ̄f1(~ξi) = f̄(S)(U(~ξi),U(~ξi))~̂a

1(~ξi),

(69)

with similiar definitions for the other computational directions and for f̄(S)(·, ·) any two-

point, consistent, entropy consistent inviscid interface flux can be used. We used the flux of

Chandrashekar [35]; however, there are multiple options [44] and we show in Section 6.1.5

that our method for ensuring positivity is not dependent on a particular choice. The ˆ̄fl fluxes

in the other directions are handled similarly.
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We further decompose the inviscid interface penalties as the sum of an entropy conser-

vative term and entropy dissipative term ĝ
(Int,I)
l = ĝ

(Int,I,C)
l + ĝ

(Int,I,D)
l that are now given.

For all fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

ĝ
(Int,I,C)
1 (~ξi) = χ(Int)(~ξi)

(
−δ1i

(
ˆ̄f1(~ξ1)− f̄(S)(U(~ξ1),U(~ξ0))~̂a1(~ξ1)

)
+ δNi

(
ˆ̄f1(~ξN)− f̄(S)(U(~ξN+1),U(~ξN))~̂a1(~ξN)

))
,

ĝ
(Int,I,D)
1 (~ξi) = χ(Int)(~ξi)

(
−δ1iM

Y(U(~ξ0),U(~ξ1), ~̂a1(~ξ1))∆1w(~ξ0)

+δNiM
Y(U(~ξN+1),U(~ξN), ~̂a1(~ξN))∆1w(~ξN)

)
,

(70)

with identical definitions for the other computational directions. The SPSD matrix MY we

used is the entropy dissipative characteristic flux proposed by Merriam [26] that dissipates

each characteristic wave based on the magnitude of its eigenvalue. The exact form of this

flux is discussed in Section 6.1.4.

The entropy stability of the high-order inviscid flux is proven by way of the following

theorem found in [36, 52].

Theorem 1. The contravariant inviscid flux defined in Eq. (69) is entropy conservative and

satisfies the identity
3∑
l=1

w>P−1
ξl

∆ξl
ˆ̄fl =

3∑
l=1

P−1
ξl

∆ξl
ˆ̄F

(S)
l , (71)

where the local entropy flux ˆ̄F
(S)
l is constructed as follows. For all fixed 1 ≤ j, k ≤ N and

~ξi = ~ξijk, we have

for 1 ≤ i ≤ N − 1,

ˆ̄F
(S)
1 (~ξi) =

N∑
R=i+1

i∑
L=1

2qL,RF̄(S)(U(~ξL),U(~ξR))
~̂a1(~ξL) + ~̂a1(~ξR)

2
,

and for i ∈ {0, N},
ˆ̄F1(~ξi) = F̄(S)(U(~ξi),U(~ξi))~̂a

1(~ξi),

(72)
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with identical definitions in other directions and

F̄(S)(ua,ub) =
(wa +wb)

>

2
f̄(S)(ua,ub)−

ψa +ψb
2

. (73)

Furthermore, if the two-point nondissipative flux f̄(S)(·, ·) satisfies Tadmor’s [30] criterion

f̄(S)(ua,ub) =

∫ 1

0

g(wa + η(wb −wa)) dη, g(wa) = f(ua), (74)

then both
3∑
l=1

P−1
ξl

∆ξl
ˆ̄fl and

3∑
l=1

P−1
ξl

∆ξl
ˆ̄F

(S)
l are design-order accurate.

Proof. See [36, 52].

Remark 1. The two-point entropy conservative flux of Chandrashekar [35] satisfies Eq. (68)

but has not been shown to satisfy Eq. (74). A posteriori accuracy tests demonstrate design-

order convergence for smooth problems.

From Theorem 1, it follows that

3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄fl =

3∑
l=1

1>1 P̂⊥,ξlB̂ξlF̂l. (75)

As has been shown in [36, 37, 52], entropy conservation follows quickly from Eq. (75) and

the definition of ĝ
(Int,I)
l . For reference, we give a proof of this claim in Lemma 21.

Entropy stability of the baseline scheme

The semi-discrete entropy stability analysis is performed by contracting the entropy vari-

ables, w>, with the semi-discrete equation (64) and integrating over the entire domain.

Given that W> ≡ ∂S
∂U

, the semi-discrete time derivative is manipulated for diagonal-norm

SBP operators as w>PÛt = 1>1 PŜt where Ŝ = [J ] S. The details of this analysis have been

dissected elsewhere (e.g., see [31, 36, 37, 52]). Summing over the K elements in the global
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domain and applying Lemmas 18, 19, and 21, we have

K∑
k=1

1>1 P̂Ŝkt =
K∑
k=1

3∑
l=1

w>k P⊥,ξl
[
−∆ξl

ˆ̄fl,k +Qξl f̂
(v)
l,k + ĝ

(BC)
l,k + ĝ

(Int)
l,k

]
=

K∑
k=1

3∑
l=1

[
w>k P⊥,ξl

[
B

(BC)

ξl,k
f̂

(v)
l,k + ĝ

(BC,v)
l,k + ĝ

(BC,I)
l,k

]
+
(
ĝ

(BC,Θ)
l,k

)>
P⊥,ξl f̂

(v)
l,k + 1>1 P̂⊥,ξlB̂

(BC)

ξl,k
F̂l,k

]
−

K∑
k=1

[
H

(v,D)
k + L

(Int,v,D)
k + L

(Int,I,D)
k

]
,

(76)

where H
(v,D)
k , L

(Int,v,D)
k , and L

(Int,I,D)
k are all non-negative and L

(Int,I,D)
k is the entropy con-

tribution from ĝ
(Int,I,D)
l as described in Lemma 18. Hence, we see that the baseline spectral

collocation scheme of arbitrary order of accuracy is entropy stable up to entropy stable

boundary conditions. Furthermore, the entropy stability at boundary faces depends solely

on how ĝ
(BC,v)
l,k , ĝ

(BC,I)
l,k , and ĝ

(BC,Θ)
l,k are chosen.

4.2 BASELINE 3-D SPECTRAL COLLOCATION SCHEME WITH

HIGH-ORDER ARTIFICIAL DISSIPATION

The baseline 3-D spectral collocation scheme given by Eq. (64) discussed in Section 4.1

performs poorly in under-resolved smooth regions and at discontinuities such as shock waves.

In such regions, the Gibbs oscillations generated by the scheme not only destroy the accuracy

of the solution, but they can also lead to negative densities and temperatures. One approach

to alleviate this problem is to regularize the scheme by an additional high-order viscous

term controlled by an artificial viscosity. In [11], high-order artificial Brenner dissipation

was used to regularize the 1-D form of the spectral collocation scheme given by Eq. (64). In

this section, we generalize the method in [11] to the 3-D Navier-Stokes equations.

The baseline 3-D spectral collocation scheme with high-order Brenner dissipation is given

by

Ût +
3∑
l=1

P−1
ξl

∆ξl
ˆ̄fl −Dξl

[
f̂

(v)
l + f̂

(ADp)
l

]
=

3∑
l=1

P−1
ξl

[
ĝ

(ADp)
l + ĝl

]
, (77)

where ĝl = ĝ
(BC)
l +ĝ

(Int)
l represents all of the penalties from Eq. (64). The high-order Brenner
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dissipation terms, f̂
(ADp)
l and ĝ

(ADp)
l , are constructed in a manner identical to the viscous

terms of Eq. (64) as discussed in Section 4.1.2. The only difference is that the contravariant

Brenner fluxes, f̂
(ADp)
l , are constructed as follows

f̂
(ADp)
l =

3∑
m=1

[âlm]f
(ADp)
xm , f

(ADp)
xm =

3∑
j=1

[c
(B)
m,j]Θxj , (78)

where again we have that for each 1 ≤ a, b ≤ 3, [c
(B)
a,b ] is a block diagonal matrix with blocks

that are 5 × 5, [
(
c

(B)
a,b

)T
] = [c

(B)
b,a ], and

3∑
a=1

3∑
b=1

vT [c
(B)
a,b ]v ≥ 0, ∀v i.e. the full viscous tensor

is symmetric positive semi-definite (SPSD). The form of [c
(B)
a,b ] at a given solution point is

straightforwardly obtained from [c
(v)
a,b ] (found in [52]) and Eq. (43). See appendix Section A.3.

To ensure consistency, maintain design-order accuracy in smooth resolved regions, and

control the amount of dissipation added in under-resolved or discontinuous regions, we use

µ = µAD where the artificial viscosity, µAD, is described in Chapter 5. The mass and

heat viscosity at each solution point are set as σ(~ξijk) = cρµ
AD(~ξijk)/ρ(~ξijk), and κ(~ξijk) =

cTµ
AD(~ξijk) (see Section 2.4).

In Section 2.4, we discussed how Brenner’s modification to the 3-D compressible Navier-

Stokes Equations preserves the entropy stability estimate of the Navier-Stokes Equations

(25). The same is true at the discrete level as follows from Lemma 19. The total entropy of

the discrete scheme (77) evolves as follows

K∑
k=1

1>1 P̂Ŝkt =
K∑
k=1

3∑
l=1

[
w>k P⊥,ξl

[
B

(BC)

ξl,k
f̂

(v+ADp)
l,k + ĝ

(BC,v+ADp)
l,k + ĝ

(BC,I)
l,k

]
+
(
ĝ

(BC,Θ)
l,k

)>
P⊥,ξl f̂

(v+ADp)
l,k + 1>1 P̂⊥,ξlB̂

(BC)

ξl,k
F̂l,k

]
−

K∑
k=1

[
H

(v+ADp,D)
k + L

(Int,v+ADp,D)
k + L

(Int,I,D)
k

]
,

(79)

where f̂
(v+ADp)
l,k = f̂

(ADp)
l,k + f̂

(v)
l,k etc. We have simply added the entropy contribution (as

described by Lemma 19) of the artificial Brenner dissipation to Eq. (76).
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CHAPTER 5

ARTIFICIAL VISCOSITY

The pointwise, scalar artificial viscosity, µAD, controls the artificial dissipation and is

used for both the high- and low-order artificial dissipation operators. The artificial viscosity

is constructed based on the smoothness of the numerical solution and the physical behavior

of the fluid. The steps for constructing the artificial viscosity are

1. Use Eq. (81) to form the entropy residual, R, on every element.

2. Use Eq. (85) to form the entropy residual sensor, Sn, using the entropy residual on

every element.

3. For elements where Sn > 0, compute the compression sensor, Cn, using Eq. (87) and

pressure sensor, Pn, using (89).

4. For elements where Sn > 0, obtain the local reference length for viscosity, hk, as

described in Section 5.4.2.

5. Finally, obtain µAD as described in Section 5.4.3 by first forming µkmax where µkmax = 0

if Sn = 0.

Notice that for most simulations Sn > 0 for only a small subset of the elements in the

domain at a given time step; hence, only a small fraction of elements will need to compute

Cn, Pn, hk, or µkmax which greatly reduces the computational demand of the proposed

algorithm.

In this section, we make use of the following globally defined parameter

δ =

(
1

K

) 1
d

, (80)

where d is the dimensionality of the grid and K is the total number of elements used. We

also use L∗ which is a grid-dependent length parameter. For simple grids, L∗ =

(
K∑
i=1

Vi

) 1
d

where Vi is the volume on the ith element.
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5.1 ENTROPY RESIDUAL

To make the discrete entropy residual consistent with the entropy stability properties of

the scheme, we approximate the finite element residual of the entropy equation on the kth

element as follows:

R = w � Ûbase
t −

3∑
l=1

(
−D̂ξlF̂l + D̂ξl

(
w � f̂

(v)
l

)
− (Θξl)� f̂

(v)
l

)
, (81)

where Ûbase
t is Ût in Eq. (64). Note that no alternative form of the penalty terms are included

in R−w�Ûbase
t because the interface penalties are already design-order and serve as a good

measure of the error present in the numerical solution.

There are several advantages of this approach. First of all, Eq. (81) does not explicitly

involve the time derivative term, thus eliminating the spurious entropy production due to

an approximation of St which is usually not entropy stable. Also, if a high-order Runge-

Kutta method is used to discretize St, the above entropy residual is design-order accurate

at any Runge-Kutta stage. Furthermore, the entropy residual given by Eq. (81) measures

spurious entropy production due to the spatial discretization of the continuous governing

equations and reaches its maximum values in regions where the numerical solution contains a

discontinuity or is under-resolved. Another attractive feature of Eq. (81) is its computational

efficiency. Half of the residual, w� Ûbase
t , is essentially free since we always calculate Ûbase

t .

The other half of the residual involves calculating the divergence of the entropy flux which is

relatively cheap and for the viscous part we already have at our disposal Θξl and f̂
(v)
l (from

calculating Ûbase
t ).

5.2 RESIDUAL-BASED SENSOR

Once we are in possession of the entropy residual for a given element, we form the entropy

residual-based sensor. Before forming the element wise sensor, we form an intermediate point

wise sensor as follows:

r(~ξijk) =

R(~ξijk)

J(~ξijk)

max(
R(~ξijk)

J(~ξijk)
,d(~ξijk))

, (82)
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where at each solution point we use

d(~ξijk) =

κ‖∇Θ5‖T + µ
√

T

√√√√ 4∑
n=2

‖∇Θn‖+ ‖F‖+ ρδc


~ξijk

×

[
1

Pi,i
+

1

Pj,j
+

1

Pk,k

]
2

L∗
.

(83)

All quantities inside [. . .]~ξijk are evaluated at the solution point ~ξijk. We used the nota-

tion ∇Θa(~ξijk) =
[

Θa
x1 Θa

x2 Θa
x3

]>
~ξijk

where Θa
xj(
~ξijk) is the ath component of Θxj (see

Eq. (65)) at ~ξijk. The quantity c is the speed of sound.

If we ignore the δ term which is present partly to avoid division by zero and vanishes with

grid resolution, d(~ξijk) is directly related to the entropy residual R(~ξijk) defined in Eq. (81)

since e.g. the identity

w>(~ξijk)f
(v)
xm (~ξijk) = −κΘ5

xm(~ξijk)T(~ξijk) (84)

holds discretely and in general the residual of the physical viscous terms is in direct propor-

tion to the magnitude of the gradient of the entropy variable–except for the gradient of the

first component of the entropy variables.

The entropy residual sensor for the kth element, Snk, is formed as follows:

Snk0 = max(rk)max(1, p−1
p−1.5

),

Snk =

 Snk0, if Snk0 ≥ max(0.2, δ)

0, otherwise
,

(85)

where p is the polynomial order. Note that Snk0 is built so that if max(rk) < 1 (which

happens for under-resolved or discontinuous features that are not strong shocks), then the

sensor becomes smaller as the polynomial order grows. In our experience, away from strong

shocks, less dissipation is needed as the polynomial order grows. Also, note that although the

sensor is discontinuous across elements, the artificial viscosity constructed from the sensor

is continuous across elements.
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5.3 COMPRESSION AND PRESSURE GRADIENT SENSORS

If Snk > 0 for the kth element, then we test to see whether the element is in a region of

compression by obtaining the compression sensor, Cnk, and we also investigate the behavior

of the pressure gradient by obtaining the pressure sensor, Pnk. The purpose of these sensors

is to carefully identify regions where we can reduce the artificial viscosity used. Rather than

directly computing all of the necessary gradients, we make use of the already calculated Θxm

terms by forming

ν
(Θ)
xm =

[
∂ν

∂W

]
Θxm , (86)

where ν =
[
ρ ~V T

]>
is the array of primitive variables.

5.3.1 COMPRESSION SENSOR

The approximation of the velocity divergence obtained from ν
(Θ)
xm is denoted

(
∇ · ~V

)(Θ)

.

The compression sensor on the kth element, Cnk, is calculated using the integral of the

divergence over the element

Cnk = (Cnk0)b
arctan

[
s(Cnk0 − xs)

]
+ π

2

arctan [s(1− xs)] + π
2

,

Cnk0 = max

 −JP̂
(
∇ · ~V

)(Θ)

JP̂|
(
∇ · ~V

)(Θ)

|+ ε

, 0

 ,

(87)

where we found that b = 0.1, xs = 0.2, and s = 50 worked well for all problems we considered.

The goal is to keep Cnk close to 1 unless the compression in the element is relatively weak

(Cnk0 / 0.2) at which point we want Cnk to decrease fairly rapidly.

5.3.2 PRESSURE SENSOR

It is well known that the momentum equations of the Navier-Stokes equations contracted

with the velocity can be manipulated into an expression for the kinetic energy (e.g., see [56]).
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In that expression, we see the following relationship

∂KE

∂t
= − ~V · ∇P −KE∇ · ~V + . . . , (88)

where we have only written how the pressure gradient and velocity divergence change the

kinetic energy, “KE.” At the shock, we always have −KE∇· ~V ≥ 0 but the pressure gradient

term may have either sign. We have found that for shocks where − ~V · ∇P ≤ 0, we can use

less dissipation; hence, the pressure sensor aims to distinguish such regions.

Let (∇P)(Θ) denote the array containing the gradient of the pressure at the solution points

as obtained from the arrays ν
(Θ)
xm . Then, we define the pressure sensor, Pnk, as follows

Pnk = max

(
0,
Pnk0
Pnkd

)
,

Pnk0 = −
N∑

i,j,k=1

PijkJ(~ξijk) ~V (~ξijk) · (∇P)(Θ)(~ξijk),

Pnkd = ε+
N∑

i,j,k=1

PijkJ(~ξijk)‖ ~V (~ξijk)‖‖(∇P)(Θ)(~ξijk)‖.

(89)

5.4 ARTIFICIAL VISCOSITY COEFFICIENT

In this section, we discuss all the remaining steps for forming µAD. To minimize the

amount of artificial dissipation added at strong discontinuities and under-resolved flow fea-

tures, we follow the approach developed in [11] and determine the upper bound of the

artificial viscosity, µmax, based on the physics of the problem rather than numerics. µmax

is only nonzero in elements where Sn > 0 and is constant for each element. As has been

shown in [11, 63], the physical viscosity coefficient for the 1-D compressible Navier-Stokes

equations at the Prandtl number Pr = 3/4 is related to a velocity jump across a shock wave

and its thickness as follows:

µ∗ =
3(γ + 1)

32γ
ρ∗∆vδsh, (90)

where ∆v is a velocity jump across the shock, the subscript ∗ denotes a value of the corre-

sponding quantity at the sonic point, and δsh is the shock wave thickness. In [11], the shock
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thickness δsh is replaced with an averaged grid spacing hx/p and the velocity jump in Eq. (90)

is estimated as the difference of velocities at neighboring collocation points ∆v = |vj+1− vj|.

Note, however, that this approach may not provide enough dissipation at strong discontinu-

ities especially if the velocity field is nearly zero, which is quite common at the beginning of

time integration. To overcome this problem, in [12] the velocity jump ∆v in Eq. (90) was

replaced by the jump in the maximum eigenvalue of the inviscid flux Jacobian. Here, we

generalize the approach of [12] to the 3-D case.

5.4.1 LOCAL DERIVATIVES

The first step in forming µmax is to form locally defined derivatives d1
d1ξj

where the subscript

in “d1” is to indicate that these derivatives are taken using only nearest neighbors. Explicitly,

for the ath velocity component, for all fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

d1V a

d1ξ1
(~ξi) =


V a(~ξi+1)−V a(~ξi)

ξ1i+1−ξ1i
, if i ≤ p+1

2

V a(~ξi+1)−V a(~ξi−1)

ξ1i+1−ξ1i−1
, else if i ≤ p+1

2
+ 1

V a(~ξi)−V a(~ξi−1)

ξ1i−ξ1i−1
, otherwise

, (91)

where at the end points we also consider jumps formed using the collocated states (from the

element that shares the entire face) and take whichever has a larger magnitude. Identical

definitions follow for the other computational directions.

As in [12], we again use local derivatives of the square root of pressure:

d1

√
P

d1ξ1
(~ξi) =


√
γ

√
P(~ξi+1)−

√
P(~ξi)

ξ1i+1−ξ1i
, if i ≤ p+1

2

√
γ

√
P(~ξi+1)−

√
P(~ξi−1)

ξ1i+1−ξ1i−1
, else if i ≤ p+1

2
+ 1

√
γ

√
P(~ξi)−

√
P(~ξi−1)

ξ1i−ξ1i−1
, otherwise

. (92)

These computational derivatives are transformed using the inverse metrics, âlm, to obtain

d1V a

d1xj
and d1

√
P

d1xj
.
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5.4.2 LOCAL REFERENCE LENGTH FOR VISCOSITY

On the kth element where Snk > 0, we need to define a reference length, hk, that will be

used in forming µkmax. For nonuniform grids, defining a reference length to scale the artificial

viscosity by is nontrivial especially if one seeks a viscosity that is continuous across elements.

A length that is suitable for one element might be too small or large for a neighbor when

adjacent elements have relatively large differences in sizes. Furthermore, large aspect ratios

within a single element can make defining a good length for a given element difficult. We

have found that the following approach works well for all the grids and problems we have

tried.

Let Dix contain the tangential derivative in the ξi direction at a given point: Dix(~ξijk) =[
D̂ξix

1 D̂ξix
2 D̂ξix

3

]>
~ξijk

. We also define
[
d1 ~V
d1x

]
as the block diagonal matrix with entries

[
d1
~V

d1x

]
(~ξijk) =


d1V 1

d1x1
d1V 1

d1x2
d1V 1

d1x3

d1V 2

d1x1
d1V 2

d1x2
d2V 2

d1x3

d1V 3

d1x1
d1V 3

d1x2
d3V 3

d1x3


~ξijk

. (93)

We begin by forming an array of reference lengths, Lb, on the bth element defined at each

solution point as follows

Lb(~ξijk) = 2

[
3∏

a=1

‖Dax‖Ēa
]
~ξijk

,

Ēa(~ξijk) = Ea(~ξijk)
/ 3∑

m=1

Ea(~ξijk),

Ea(~ξijk) =

∥∥∥∥∥
[
d1
~V

d1x

]
Dax

‖Dax‖

∥∥∥∥∥
~ξijk

+ ε, a = 1, 2, 3,

(94)

where the factor of 2 accounts for the fact that the computational domain has edges of length

2. Next, we use Lk to find an average length on the kth element

ĥk =
1>1 P̂Lk

1>1 P̂11

, (95)
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where the computational domain volume is fixed: 1>1 P̂11 = 8. From ĥk, we obtain hk used

for forming the artificial viscosity as follows

hk =


[ ∏
j∈Nk

hvi

] 1
|Nk|

, if |Nk| > 0

0, otherwise

,

hvi =


[∏
j∈Ii

ĥj

] 1
|Ii|

, if |Ii| > 0

0, otherwise

,

(96)

where Ii contains the element indices of all elements that touch the ith global vertex and

have a nonzero ĥk, and Nk contains the global vertex indices of all vertices that touch the

kth element and have a nonzero hvi .

5.4.3 OBTAINING µAD

If Snk = 0 on the kth element, we set µkmax = 0. If Snk > 0, we form µkmax as follows

µkmax =

(
hk
)2

p

3(γ + 1)

32γ
zSnk max

1≤i,j,k≤N

zPnk,Cnk
√√√√ρ̄ 3∑

b=1

(
d1

√
P

d1xb

)2

+ ρ̄

P1,1

2

√√√√√ 3∑
a,b=1,
a6=b

(
d1V a

d1xb

)2

+ min(Ma, zCnk)

∣∣∣∣∣
3∑

a=1

d1V a

d1xa

∣∣∣∣∣


~ξijk

,

ρ̄(~ξijk) =
(
ρ(~ξijk)ρ(~ξi+1jk)ρ(~ξi−1jk)ρ(~ξij+1k)ρ(~ξij−1k)ρ(~ξijk+1)ρ(~ξijk−1)

) 1
7
,

Ma(~ξijk) =
‖ ~V (~ξijk)‖

c(~ξijk)
,

zSnk = min(0.5, 1.25(Snk − 0.2)) ≥ 0, zCnk = g(Cnk),

zPnk,Cnk = min(g(Pnk), g(Cnk)), g(x) =
P1,1

2
(1− x) + x,

(97)

where P1,1 is the smallest distance between flux points on the 1-D computational element,

for the density average collocated states are used from elements sharing the same entire face,

and c(~ξijk) is the speed of sound at the solution point ~ξijk. Note that µkmax is built to be
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most dissipative in the presence of shocks.

From µkmax, we obtain the following vertex viscosities

µvi = max
k∈Ii

µkmax, (98)

where Ii contains the element indices of all elements that touch the ith global vertex. Hence,

all elements that share the ith global vertex have the same viscosity, µvi , stored at the

ith global vertex. Therefore, the globally continuous artificial viscosity can be constructed

by obtaining µADk through tri-linear interpolation on the kth element using the 8 vertex

viscosities, µvi , obtained for the kth element.
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CHAPTER 6

PRESERVING POSITIVITY OF THE THERMODYNAMIC VARIABLES

6.1 FIRST-ORDER POSITIVITY-PRESERVING SCHEME

We now present a positivity-preserving, entropy stable first-order scheme for the regu-

larized 3-D compressible Navier-Stokes equations (45). This section is organized as follows.

First, we present the first-order scheme and discuss the first-order inviscid terms. Then, we

construct new Brenner and Merriam–Roe first-order fluxes used for density positivity and

semi-discrete entropy stability. At the end of this section, we present a new constraint on

the time step that ensures positivity of internal energy and show that the first-order scheme

is entropy stable.

Note that νi =
[
ρi ~V i Ti

]>
is used to denote the vector of primitive variables at the

ith solution point. We also make substantial use of the logarithmic, harmonic, arithmetic,

and geometric averages, which are denoted for quantities z1 and z2 by using the following

subscript notation: zL, zH , zA, and zG, respectively. Note that the following inequalities

hold for any z1 > 0, z2 > 0:

min(z1, z2) ≤ zH ≤ zG ≤ zL ≤ zA ≤ max(z1, z2),

zH < 2 min(z1, z2).
(99)

6.1.1 FIRST-ORDER SCHEME

The first-order scheme on a given element is constructed on the same LGL points used

for the high-order scheme. The first-order element treats solution points in a finite volume

manner with the flux points acting as control volume edges. The first-order scheme can be

written as

Ût +
3∑
l=1

P−1
ξl

∆ξl

[
ˆ̄f

(MR)
l − ˆ̄f

(AD1)
ˆ̄σ,l

− ˆ̄f
(AD1)
l

]
−Dξl f̂

(v)
l =

3∑
l=1

P−1
ξl

[
ĝl + ĝ

(AD1)
l

]
, (100)



48

where if we compare to the baseline scheme in Eq. (64) we notice that the physical viscosity,

f̂
(v)
l , is high-order and the high-order penalties, ĝl = ĝ

(BC)
l + ĝ

(Int)
l , are still present. The

inviscid terms have been replaced by the first-order approximation ˆ̄f
(MR)
l . We have also

added first-order artificial dissipation. We discuss the new terms in the following sections.

6.1.2 FIRST-ORDER INVISCID TERM

We write the inviscid term as the sum of entropy conservative and entropy dissipative

terms: ˆ̄f
(MR)
l = ˆ̄f

(EC)
l − ˆ̄f

(ED)
l . The entropy dissipative term, ˆ̄f

(ED)
l , acts to extend ĝ

(Int,I,D)
l

in Eq. (70) to the interior flux points and we will discuss its exact form in Section 6.1.4.

The role of ˆ̄f
(EC)
l is to replace the high-order inviscid fluxes, ˆ̄fl, of Eq. (69) with a first-

order approximation. The ˆ̄f
(EC)
l contribution is formed as follows for all fixed 1 ≤ j, k ≤ N

and ~ξi = ~ξijk we have

for 1 ≤ i ≤ N − 1,

ˆ̄f
(EC)
1 (~ξi) = f̄(S)(U(~ξi),U(~ξi+1))ˆ̄~a1(~ξi),

ˆ̄~a1(~ξi) =
N∑

R=i+1

i∑
L=1

2qL,R
~̂a1(~ξL) + ~̂a1(~ξR)

2
,

and for i ∈ {0, N},
ˆ̄f

(EC)
1 (~ξi) = f̄(S)(U(~ξi),U(~ξi))~̂a

1(~ξi),

(101)

where for f̄(S)(·, ·) any two-point, consistent, entropy consistent inviscid interface flux can be

used. We used the flux of Chandrashekar [35]. In other computational directions, ˆ̄f
(EC)
l has

an identical definition. Comparing Eq. (101) with Eq. (69) we note that they are equivalent

at the element faces (i ∈ {0, N}) and only differ at the interior interface fluxes.

In Eq. (101), we used the high-order interpolation of the metric terms to the flux points

which comes from the Q matrix. This was the only choice we could find that allowed us

to prove entropy conservation and freestream preservation of ˆ̄f
(EC)
l in Lemma 2. For the

high-order inviscid term of the scheme given by Eq. (64), ˆ̄fl, freestream preservation and

entropy conservation follow directly from the metric terms satisfying the discrete GCL (see

Eq. (62) and [36, 52]). In the following lemma, we show that the same holds for ˆ̄f
(EC)
l .
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Lemma 2. The inviscid term ˆ̄f
(EC)
l given by Eq. (101) is freestream preserving and

3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄f

(EC)
l =

3∑
l=1

1>1 P̂⊥,ξlB̂ξlF̂l

=
3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄fl,

(102)

where ˆ̄fl is the high-order inviscid term of the scheme given by Eq. (64) and
3∑
l=1

1>1 P̂⊥,ξlB̂ξlF̂l =

3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄fl comes from Eq. (75).

Proof. For freestream preservation, we assume a constant state on an element and want to

show that this implies
3∑
l=1

P−1
ξl

∆ξl
ˆ̄f

(EC)
l = 05 . Let u0 be the constant state on the element

and note that for any pairing of solution points ~ξijk and ~ξabc we have

f̄(S)(U(~ξijk),U(~ξabc)) = f̄(S)(u0,u0) = f(u0). (103)

We look at the contribution of
3∑
l=1

P−1
ξl

∆ξl
ˆ̄f

(EC)
l at a single point ~ξijk on the element:

[
3∑
l=1

P−1
ξl

∆ξl
ˆ̄f

(EC)
l

]
(~ξijk)

= f(u0)

[
ˆ̄~a1(~ξijk)− ˆ̄~a1(~ξi−1jk)

Pi,i
+

ˆ̄~a2(~ξijk)− ˆ̄~a2(~ξij−1k)

Pj,j
+

ˆ̄~a3(~ξijk)−
ˆ̄~a3(~ξijk−1)

Pk,k

]

= f(u0)


N∑
n=1

qi,n~̂a
1(~ξnjk)

Pi,i
+

N∑
n=1

qj,n~̂a
2(~ξink)

Pj,j
+

N∑
n=1

qk,n~̂a
3(~ξijn)

Pk,k


=
[

0 . . . 0
]>
,

(104)

where the second equality follows from an argument identical to the one used to prove

Eq. (50) and the last equality follows from the metric terms satisfying the discrete GCL

given by Eq. (63).

The entropy identity follows from scaling by the mass matrix and contracting with the
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entropy variables:

3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄f

(EC)
l =

3∑
l=1

w>P⊥,ξl∆ξl
ˆ̄f

(EC)
l

=
3∑
l=1

1̂>1 P̂⊥,ξl
[
w> �∆ξl

ˆ̄f
(EC)
l

]
=

3∑
l=1

1̂>1 P̂⊥,ξl
[
w> � B̃ξl

ˆ̄f
(EC)
l −w> � ∆̃ξl

ˆ̄f
(EC)
l

]
=

3∑
l=1

1̂>1 P̂⊥,ξl
[
B̂ξl

(
ψ̂l + F̂l

)
−w> � ∆̃ξl

ˆ̄f
(EC)
l

]
,

(105)

where we made use of Eq. (17) relating the entropy potential flux (ψ̂l), entropy flux (F̂l), and

the inviscid flux. Hence, it only remains to show that
3∑
l=1

1̂>1 P̂⊥,ξl
[
B̂ξlψ̂l −w> � ∆̃ξl

ˆ̄f
(EC)
l

]
=

0. Notice that

3∑
l=1

1̂>1 P̂⊥,ξl
[
B̂ξlψ̂l −w> � ∆̃ξl

ˆ̄f
(EC)
l

]
=

N∑
j,k=1

P̂⊥,ξ1(~ξijk)[
ψ̂1(~ξN)− ψ̂1(~ξ1)−

N−1∑
i=1

ˆ̄f
(EC)
1 (~ξi)

(
w(~ξi+1)−w(~ξi)

)>]
~ξ·jk

+ · · ·

=
N∑

j,k=1

P̂⊥,ξ1(~ξijk)

[
ψ̂1(~ξN)− ψ̂1(~ξ1)−

N−1∑
i=1

(
~ψ(~ξi+1)− ~ψ(~ξi)

)
ˆ̄~a1(~ξi)

]
~ξ·jk

+ · · ·

=
N∑

j,k=1

P̂⊥,ξ1(~ξijk)

[
N∑
i=1

~ψ(~ξi)
ˆ̄~a1(~ξi)−

N∑
i=1

~ψ(~ξi)
ˆ̄~a1(~ξi−1)

]
~ξ·jk

+ · · ·

=
N∑

i,j,k=1

P̂(~ξijk)~ψ(~ξijk)

[
ˆ̄~a1(~ξijk)− ˆ̄~a1(~ξi−1jk)

Pi,i
+

ˆ̄~a2(~ξijk)− ˆ̄~a2(~ξij−1k)

Pj,j
+ . . .

]

= 0,

(106)

where ~ψ(~ξi) =
[
ψx1(~ξi) ψx2(~ξi) ψx3(~ξi)

]>
, we made use of Eq. (68) for entropy con-

servatives fluxes, and again we use the discrete GCL Eq. (63). In light of Eq. (75),

which shows that
3∑
l=1

1>1 P̂⊥,ξlB̂ξlF̂l =
3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄fl, it now follows that Eq. (102) holds:

3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄f

(EC)
l =

3∑
l=1

1>1 P̂⊥,ξlB̂ξlF̂l =
3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄fl.
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6.1.3 FIRST-ORDER ARTIFICIAL DISSIPATION

Here, we discuss the first-order Brenner dissipation added through ˆ̄f
(AD1)
ˆ̄σ,l

, ˆ̄f
(AD1)
l and

ĝ
(AD1)
l to the first-order scheme given by Eq. (100). To facilitate proving both density

positivity and entropy stability, we begin by presenting a useful matrix based on the average

of two states.

Lemma 3. For two vectors of conservative variables u1 and u2 with positive density and

temperature, consider the matrix

νw(u1,u2) =



ρL
R

ρL
R

(V1)A
ρL
R

(V2)A
ρL
R

(V3)A
ρL
R

Eavg

0 TH 0 0 TH(V1)A

0 0 TH 0 TH(V2)A

0 0 0 TH TH(V3)A

0 0 0 0 T 2
G


, (107)

where

Eavg =
T 2
G

TL

R

γ − 1
+

~V (u1) · ~V (u2)

2
, (108)

and ~V (ui) is the velocity associated with state ui. The matrix is 1) consistent with ∂ν
∂w

, 2)

invertible and 3) satisfies the exact algebraic relation νw(u1,u2) (w2 −w1) = (ν2 − ν1).

Proof. We verified these claims in Mathematica.

Remark 2. We label the inverse of νw(u1,u2) as wν(u1,u2) and note that by Lemma 107

the following equality holds wν(u1,u2) (ν2 − ν1) = (w2 −w1).

The matrix νw(u1,u2) simplifies the process of finding 2-point approximations of other

matrices as shown by the next lemma.

Lemma 4. Let ~n be a non-zero direction vector and ~̄n = ~n
‖~n‖ =

[
n̄1 n̄2 n̄3

]>
. For two
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admissible states u1 and u2 with positive density and temperature, consider the matrix

c(B)
ν (u1,u2, ~n) = ‖~n‖2



σ 0 0 0 0

σ(V1)A 0 0 0 0

σ(V2)A 0 0 0 0

σ(V3)A 0 0 0 0

σEavg 0 0 0 κ


+

µ‖~n‖2



0 0 0 0 0

0
n̄2
1

3
+ 1 n̄2n̄1

3
n̄3n̄1

3
0

0 n̄2n̄1

3

n̄2
2

3
+ 1 n̄2n̄3

3
0

0 n̄3n̄1

3
n̄2n̄3

3

n̄2
3

3
+ 1 0

0 (V1)A + n̄1

3
~V A · ~̄n (V2)A + n̄2

3
~V A · ~̄n (V3)A + n̄3

3
~V A · ~̄n 0


,

(109)

where Eavg was defined in Eq. (108), ~V A is the arithmetic average of the velocities, and σ, µ,

and κ are the positive diffusion coefficients of the Brenner-Navier-Stokes flux (see Eq. (43)).

We have that

c(B)(u1,u2, ~n) = c(B)
ν (u1,u2, ~n)νw(u1,u2),

c(B)(u1,u1, ~n) =
3∑

l,m=1

nlC
(B)
l,m (u1)nm,

c(B)(u1,u2, ~n) = (c(B)(u1,u2, ~n))>,

V >c(B)(u1,u2, ~n)V > 0, ∀V ∈ R5 − {0},

(110)

where C
(B)
l,m are the viscosity matrices from (44).

Proof. We checked all of this using Mathematica. To show positive definiteness of

c(B)(u1,u2, ~n) for positive diffusion coefficients, we used the Cholesky decomposition
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c(B)(u1,u2, ~n) = LDL> where

L =



1 0 0 0 0

(V1)A 1 0 0 0

(V2)A
n̄1n̄2

d2
1 0 0

(V3)A
n̄1n̄3

d2

n̄2n̄3

d3
1 0

Eavg
3(V1)A+n̄1

~VA·~̄n
d2

(4−n̄2
3)(V2)A+n̄2n̄3(V3)A

d3
(V3)A 1


,

D = diag
(
‖~n‖2

[
ρL

σ
R

THµ
d2
3

THµ
d3

3+n̄2
1

THµ
4

4−n̄2
3

T 2
Gκ
])
,

(111)

d2 = n̄2
1+3 and d3 = 4n̄4

1+4n̄4
2+7n̄2

2n̄
2
3+3n̄4

3+n̄2
1(8n̄2

2+7n̄2
3). Since D has only positive entries

(when the diffusion coefficients are all positive), c(B)(u1,u2, ~n) is positive definite.

Remark 3. Let ∆w = w2 −w1 and ∆ν = ν2 − ν1. Assume that the two states represent

the cell averages of two adjacent volumes connected by a shared face. Let ~n be a direction

vector normal to the face connecting the two adjacent states. Locally on the shared face,

assume change only in the normal direction so that ∇W =
3∑
j=1

∂W
∂xj

n̄j ~̄n . Then it follows

that near the interface

3∑
m=1

F (B)
xm n̄m =

3∑
m,j=1

n̄mC
(B)
m,jn̄j

(
3∑
l=1

∂W

∂xl
n̄l

)

≈ c(B)(u1,u2, ~̄n)

(
3∑
l=1

∂W

∂xl
n̄l

)

≈ c(B)(u1,u2, ~̄n)

(
∆w

∆x

)
= c(B)

ν (u1,u2, ~̄n)

(
∆ν

∆x

)
,

(112)

where ∆x is an appropriate length term. In this sense we say that c
(B)
ν (u1,u2, ~n)∆ν

∆x
is a

consistent approximation of the normal Brenner flux at this interface. For the shear terms,

the approximation of ∇W is perhaps not ideal; however, we only use this approximation as

a method of introducing artificial dissipation.
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Remark 4. If we use the entropy consistent flux of Chandrashekar [35] we have

f̄(S)(u1,u2)~n =


ρL

ρL ~V A

ρLEavg

 ~V A · ~n+ Pavg


0

~n

~V A · ~n

 , (113)

where Pavg = RρATH . Hence if we replace the mass velocity ~V A · ~n with the normal volume

velocity ~V A ·~n+σ ρ2−ρ1
ρL∗∆x

which is consistent with Brenner’s modification of the Navier-Stokes

equations at the discrete level (see Section 2.4), we obtain the mass diffusion from Eq. (109)

f̄σ(S)(u1,u2)~n =


ρL

ρL ~V A

ρLEavg

 ~V A · ~n+


1

~V A

Eavg

σρ2 − ρ1

∆x
+ Pavg


0

~n

~V A · ~n



= f̄(S)(u1,u2)~n+ c(B)
ν (u1,u2, ~̄n)


1

0
...

 ρ2 − ρ1

∆x
.

(114)

The ˆ̄f
(AD1)
ˆ̄σ,l

, ˆ̄f
(AD1)
l and ĝ

(AD1)
l contributions are formed as follows for all fixed 1 ≤ j, k ≤ N

and ~ξi = ~ξijk we have

for 1 ≤ i ≤ N − 1,

ˆ̄f
(AD1)
1 (~ξi) =

c
(B)
ν (U(~ξi),U(~ξi+1), ˆ̄~a1(~ξi))√

J(~ξi)J(~ξi+1)

ν(~ξi+1)− ν(~ξi)

ξi+1 − ξi
,

ˆ̄f
(AD1)
ˆ̄σ,1

(~ξi) =
c

(B)
ν (U(~ξi),U(~ξi+1), ˆ̄~a1(~ξi), ˆ̄σ1(~ξi), µ = κ = 0)√

J(~ξi)J(~ξi+1)

ν(~ξi+1)− ν(~ξi)

ξi+1 − ξi
,

ˆ̄f
(AD1)
1 (~ξ0) = ˆ̄f

(AD1)
1 (~ξN) = ˆ̄f

(AD1)
ˆ̄σ,1

(~ξ0) = ˆ̄f
(AD1)
ˆ̄σ,1

(~ξN) = 0,

ĝ
(AD1)
1 (~ξi) =

(
ĝ

(AD1)
1 (~ξ1)δ1i + ĝ

(AD1)
1 (~ξN)δNi

)
,

ĝ
(AD1)
1 (~ξ1) =

c
(B)
ν (U(~ξ0),U(~ξ1), ˆ̄~a1(~ξ0))√

J(~ξ0)J(~ξ1)

ν(~ξ0)− ν(~ξ1)

P1,1

,

(115)

with identical definitions in other computational directions. As discussed in Section 2.4, for
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ˆ̄f
(AD1)
l one replaces µ, σ, and κ with artificial viscosity coefficients that depend on µAD ;

however, µAD is stored at the solution points and ˆ̄f
(AD1)
l is formed at the flux points. In

Section 6.3.5, we give explicit details of how the viscosity coefficients for ˆ̄f
(AD1)
l are formed.

The term ˆ̄f
(AD1)
ˆ̄σ,l

is added solely for the purpose of ensuring that the total Brenner first-order

mass diffusion at the flux point is sufficient for density positivity when needed and hence

uses only mass diffusion as specified by the variable ˆ̄σ1. See Sections 6.3.5 and 6.4 for full

details on how the artificial viscous coefficients are handled.

Lemma 5. The terms ĝ
(AD1)
l , ˆ̄f

(AD1)
ˆ̄σ,l

and ˆ̄f
(AD1)
l given by (115) are entropy stable.

Proof. This follows directly from Lemmas 4 and 18.

6.1.4 FIRST-ORDER MERRIAM–ROE FLUX

Recall that the inviscid term ˆ̄f
(MR)
l of Eq. (100) is written as the sum ˆ̄f

(MR)
l = ˆ̄f

(EC)
l −ˆ̄f

(ED)
l .

Here, we discuss the entropy dissipative term ˆ̄f
(ED)
l . Often, two-point entropy conservative

fluxes are stabilized through the use of Rusanov-type fluxes (e.g., see [47, 64]). Note, however,

that the Rusanov-type fluxes dissipate each characteristic wave regardless of the magnitude

of the corresponding eigenvalue associated with this wave, thus making them too dissipative.

A less dissipative and more refined approach is to use an entropy dissipative characteristic

flux proposed by Merriam in [26], which is herein referred to as the Merriam–Roe (MR) flux

and given by

f (MR)(u1,u2, ~n) = f̄(S)(u1,u2)~n−MY(u1,u2, ~n)∆w. (116)

For f̄(S)(·, ·) any two-point, consistent, entropy consistent inviscid interface flux can be used,

∆w = w2 − w1, MY(u1,u2, ~n) is a two-point consistent average of the matrix 1
2
Y|λ|YT .

The matrix Y is a matrix composed out of normalized eigenvectors of the flux Jacobian

f ′(W, ~n) = f ′(U, ~n) ∂U
∂W

which can be decomposed as follows:

f ′(W, ~n) = YλYT , ∂U
∂W

= YYT ,

λ = diag
(
−c‖~n‖+ ~V · ~n c‖~n‖+ ~V · ~n ~V · ~n ~V · ~n ~V · ~n

)
,

(117)
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where the exact form of Y can be found in [52]. The matrix MY(u1,u2, ~n) is SPSD if the

density and temperature values used to build the matrix are positive. For two admissible

states u1 and u2, there are many options for building MY(u1,u2, ~n) at an interface. In the

present analysis, we use the following average:

ν(u1,u2) =


ρL

~V (u1)T2+ ~V (u2)T1
T1+T2

TH

 , (118)

where ~V (u1) is the velocity vector of u1. With this average, we can write the first component

of MY(u1,u2, ~n)∆w in a form that facilitates proving density positivity:

(
MY(u1,u2, ~n)∆w

)
ρ

= ρLV(u1,u2, ~n) + ∆ρλc,

V(u1,u2, ~n) = −

∆(log T )

γ − 1
+

∆T
∥∥∥∆ ~V

∥∥∥2

8RgT 2
A

λc +
∆T

4TA(γ − 1)
(λ2 + λ3)

+ (λ3 − λ2)
∆ ~V · ~n

‖~n‖
√
TH

2TA
√
Rgγ

,

(119)

where λ1 = | ~V avg · ~n| , λ2 = | ~V avg · ~n − cavg ‖~n‖ | , λ3 = | ~V avg · ~n + cavg ‖~n‖ | ,

λc = λ1(γ−1)
2γ

+ λ2+λ3
4γ

, ~V avg =
~V 1T2+ ~V 2T1
T1+T2

, cavg =
√
RgTHγ , and ∆T = T2 − T1. This

method is significantly less dissiptive than the Rusanov–type dissipation, but a positivity

proof based on f (MR)(u1,u2, ~n) alone is not currently available–the issue being that one can-

not increase the mass diffusion term in Eq. (119) without changing the term V(u1,u2, ~n).

Of course, for forward Euler time integration, one can always simply solve the inequality for

density positivity to obtain a time step constraint that guarantees positivity, but then den-

sity remains in the time step constraint and it is difficult to compare the time step constraint

with the standard CFL condition. Our approach is to use f (MR)(u1,u2, ~n) and supplement

it with the Brenner mass diffusion to minimize the amount of dissipation introduced into

the numerical solution and ensure density positivity with a time step constraint comparable

to the standard CFL condition.

The ˆ̄f
(ED)
l contribution to ˆ̄f

(MR)
l of Eq. (100) is formed as follows for all fixed 1 ≤ j, k ≤ N
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and ~ξi = ~ξijk we have

for 1 ≤ i ≤ N − 1,

ˆ̄f
(ED)
1 (~ξi) = MY(U(~ξi),U(~ξi+1), ˆ̄~a1(~ξi))

(
w(~ξi+1)−w(~ξi)

)
,

ˆ̄f
(ED)
1 (~ξ0) = ˆ̄f

(ED)
1 (~ξN) = 0,

(120)

with identical definitions in other computational directions.

6.1.5 POSITIVITY OF DENSITY

We now discuss how positivity of density can be maintained for the first-order discretiza-

tion given by Eq. (100).

Theorem 6. Assume that explicit Euler in time is used for the discretization given by

Eq. (100) where we only assume that ˆ̄f
(MR)
l is some consistent inviscid interface flux. Let

Jijk = J(~ξijk), ρijk = ρ(~ξijk), and Uijk = U(~ξijk). Consider the update of the density

Jijkρijk = ρ̂ at the solution point ~ξijk. The density update depends only on the nearest neigh-

bors and we write the interface fluxes as ˆ̄f ρ1 (Uijk,Ui+1jk) = ˆ̄f ρ,+1 , ˆ̄f ρ1 (Uijk,Ui−1jk) = ˆ̄f ρ,−1

and similarly in other directions. Hence, we have

ρ̂n+1 = ρ̂n − τ

[
ˆ̄f ρ,+1 − ˆ̄f ρ,−1

Pii
+

ˆ̄f ρ,+2 − ˆ̄f ρ,−2

Pjj
+

ˆ̄f ρ,+3 − ˆ̄f ρ,−3

Pkk

]
. (121)

The numerical density fluxes can be written generally as the sum of a diffusive and non-

diffusive term: ˆ̄f
ρ,+/−
l = ˆ̄m

+/−
l −K+/−

l ∆
+/−
l ρ where ∆+

1 ρ = ρi+1jk−ρijk , ∆−1 ρ = ρijk−ρi−1jk

etc. Let ρ+
1,A =

ρijk+ρi+1jk

2
and ρ−1,A =

ρijk+ρi−1jk

2
with identical definitions in other directions.

If K
+/−
l ≥ K

+/−
l,min =

| ˆ̄m+/−
l |

2ρ
+/−
l,A

, then the above first–order FV scheme preserves the positivity of

the density ρ under the following CFL condition:

τ <
Jijk

2
3∑
l=1

K+
l +K−l
Pll

= τ sρ . (122)
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Proof. We split the discrete density equation as follows:

ρ̂n+1 =

(
ρ̂n

6
− τ

ˆ̄f ρ,+1

Pii

)
+

(
ρ̂n

6
+ τ

ˆ̄f ρ,−1

Pii

)
+ . . . (123)

Since all the interfaces are handled identically, we look at the first term:(
ρ̂n

6
− τ

ˆ̄f ρ,+1

Pii

)
=
ρ̂n

6
− τ

Pii
( ˆ̄m+

1 −K+
1 ∆+

1 ρ).

First, we assume that despite K+
1 ≥ K+

1,min =
| ˆ̄m+

1 |
2ρ+1,A

, K+
1 = 0. Then since K+

1 ≥
| ˆ̄m+

1 |
2ρ+1,A

we

have

(
ρ̂n

6
− τ

ˆ̄fρ,+1

Pii

)
= ρ̂n

6
= ρn

[
Jijk

6
− 2τK+

1

Pii

]
. Now, assume that K+

1 > 0. Then we have

ρ̂n

6
− τ

Pii
( ˆ̄m+

1 −K+
1 ∆+

1 ρ) =
ρ̂n

6
− τK+

1

Pii

(
ˆ̄m+

1

K+
1

−∆+
1 ρ

)
≥ ρ̂n

6
− τK+

1

Pii

(
2ρ+

1,A −∆+
1 ρ
)

= ρn
[
Jijk
6
− 2τK+

1

Pii

]
.

(124)

Therefore, summing over all interfaces, we have

ρ̂n+1 ≥ ρn

[
Jijk − 2τ

3∑
l=1

K+
l +K−l
Pll

]
> 0. (125)

Remark 5. While (122) is sufficient for density positivity, we have found that in practice

the following stricter time step constraint is better suited for ensuring stability and positivity

for multi-stage Runge-Kutta time integration

τ <
Jijk
12

min
l

(
Pll

max
(
K+
l , K

−
l

)) = τ Iρ , (126)

where the superscript I indicates that this time step condition preserves positivity of (124)

at each interface, but τ sρ only preserves positivity of the solution point. We use (126) in the

remainder of this dissertation.
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Remark 6. Since we require K
+/−
l ≥ | ˆ̄m+/−

l |
2ρ

+/−
l,A

, density is present in the time step constraints

(122) and (126). However, this does not impose a stricter constraint on the time step when

the density jump increases, because the ratio
2ρ

+/−
l,A

| ˆ̄m+/−
l |

can be bounded from below by a positive

nonzero value that is independent of density for all inviscid interface fluxes we have checked

(see below).

Remark 7. Note that we didn’t need to assume that ˆ̄f
(MR)
l was first-order or had a specific

stencil. However, if we use a high-order flux for ˆ̄f
(MR)
l , then the time step will contain a ratio

of density that cannot be removed and in discontinuous regions | ˆ̄m+/−
l | can be much larger

than one would obtain with a first-order stencil.

We now give three examples demonstrating how Theorem 6 and (126) can be used to

preserve density positivity of the scheme given by Eq. (100) when only minimum mass

diffusion is used i.e. K
+/−
l = K

+/−
l,min =

| ˆ̄m+/−
l |

2ρ
+/−
l,A

.

Positivity of density: Chandrashekar EC flux

Assume that for f̄(S)(·, ·) in (101) we use the flux of Chandrashekar [35] given by Eq. (113).

Assume further that ˆ̄f
(MR)
l = ˆ̄f

(EC)
l i.e. ˆ̄f

(ED)
l = 0 so that ˆ̄m

+/−
l = ρL ~V A · ~n where for

readability we suppress the +/− and l flux point identifiers. Then, we have that

K
+/−
l,min =

|ρL ~V A · ~n|
2ρA

≤ |
~V A · ~n|

2
, (127)

so that the time step constraints of Theorem 6 and (126) are comparable with the regular

CFL condition for supersonic flows and impose even weaker restrictions on the time step for

transonic and subsonic flows.

Positivity of density: Ismail and Roe EC flux

Assume that for f̄(S)(·, ·) in (101) we use the flux of Ismail and Roe [43]. Assume further

that ˆ̄f
(MR)
l = ˆ̄f

(EC)
l i.e. ˆ̄f

(ED)
l = 0 so that ˆ̄m

+/−
l = γ(ρc)L

(
~V
c

)
A
· ~n. where c is the speed of

sound and for readability we suppress the +/− and l flux point identifiers. Then, we have
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that

K
+/−
l,min =

|γ(ρc)L

(
~V
c

)
A
· ~n|

2ρA
≤ γ(ρc)A

2ρA

∣∣∣∣∣
(
~V

c

)
A

· ~n

∣∣∣∣∣ (128)

≤ γρmaxcA
2ρA

∣∣∣∣∣
(
~V

c

)
A

· ~n

∣∣∣∣∣ (129)

≤ γcA

∣∣∣∣∣
(
~V

c

)
A

· ~n

∣∣∣∣∣ , (130)

so that again we see the time step constraints of Theorem 6 and (126) are comparable with

the regular CFL condition and are not adversely influenced by the presence of density.

Positivity of density: Merriam–Roe flux

Here, we use Theorem 6 to prove density positivity for the full first-order scheme given

by Eq. (100).

Corollary 6.1. Assume that the EC flux of Chandrashekar [35] is used for (100). Assume

the notation of Theorem 6 and let ˆ̄~al+/− represent the metric term at the +/− interface in

the l direction. The semi-discrete scheme given by (100) preserves density positivity of the

solution point u when the explicit Euler in time method is used if at each interface of u we

have

[
λc +

σ‖ˆ̄~a‖2

JG∆ξ

]+/−

l

= K
+/−
l ≥ K

+/−
l,min

=
ρ

+/−
l,L

2ρ
+/−
l,A

∣∣∣ ~V A · ˆ̄~al+/− − V(u,u
+/−
l , ˆ̄~al+/−)

∣∣∣ ,
(131)

and the corresponding time step restriction given by (122) is satisfied. In particular, the

constraint on σ
+/−
l is

σ
+/−
l ≥ σ

+/−
l,min =

[
max

(
0,

ρL
2ρA

∣∣∣ ~V A · ˆ̄~a− V(u,u
+/−
l , ˆ̄~a)

∣∣∣− λc) JG∆ξ

‖ˆ̄~a‖2

]+/−

l

, (132)

where all terms are understood to come from the +/−, l interface in question based on the
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definitions already given in this section.

Proof. This follows directly from Theorem (6).

Remark 8. Note that the velocity and temperature averages in Eq. (118) were specifically

chosen to make V(u,u
+/−
l , ˆ̄~al+/−) density independent and to grow slowly in the case of

large temperature jumps so that (131) would not impose an unnecessarily strict time step

constraint. In particular, note that for the eigenvalues since TH < 2Tmin we have cavg <
√

2cmin. For the coefficients of the eigenvalues, only the logarithmic jump in temperature

doesn’t permit a formal upper bound–but for practical purposes we consider it bounded.

Hence, for moderate Mach numbers V(u,u
+/−
l , ˆ̄~al+/−) is bounded. As the Mach number

increases, V(u,u
+/−
l , ˆ̄~al+/−) grows without bound for the case of large velocity jumps at high

Mach numbers. However, one would already expect to need a strict time step constraint

for such flows; furthermore, the direct diffusion between neighbors in the scheme given by

Eq. (100) always acts to alleviate sharp two point jumps and, when necessary, the discretely

entropy stable velocity and temperature limiters of Section 6.2 can be used.

6.1.6 POSITIVITY OF INTERNAL ENERGY

When the explicit first-order Euler scheme is used to advance the solution in time, i.e.

Ûn+1 = Ûn + τÛt, (133)

so that τ is on the interval that preserves the positivity of ρn+1(~ξijk), the sign of the internal

energy at the next time level for the solution point ~ξijk is determined by the following

polynomial:

IE(un+1)ρn+1 =
( τ
J

)2
(
dE

dt

dρ

dt
− 1

2

∥∥∥∥dmdt
∥∥∥∥2
)

+
τ

J
(un)>


dE
dt

−dm
dt

dρ
dt

+ IE(un)ρn, (134)

where Ûn(~ξijk) = Jun, J(~ξijk) = J , ρn+1(~ξijk) = ρn+1, Ût(~ξijk) =
[

dρ
dt

dm
dt

dE
dt

]>
and

IE(un) is the internal energy of un. The above quadratic trinomial can be recast in the
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following form that illustrates the role of (wn)T Ût:

IE(un+1)ρn+1 =
( τ
J

)2
(
dE

dt

dρ

dt
− 1

2

∥∥∥∥dmdt
∥∥∥∥2
)
−

τ

J
IE(un)

[
γ − 1

Rg

(wn)T Ût +
dρ

dt

(
sn
γ − 1

Rg

− (γ + 1)

)]
+ IE(un)ρn.

(135)

The following lemma follows from these identities.

Lemma 7. Assume that ρn(~ξijk), IE(Un(~ξijk)) > 0 for all solution points in the domain.

Assume that the explicit Euler scheme in time given by Eq. (133) guarantees ρn+1(~ξijk) > 0

for all solution points for all 0 ≤ τ < τ ρ. Then, there exists 0 < τmin ≤ τ ρ such that

for all time steps 0 < τ < τmin the scheme preserves the positivity of internal energy, i.e.,

IE(Un+1(~ξijk)) > 0 for every solution point.

Proof. Since for all solution points IE(Un(~ξijk))ρ
n(~ξijk) > 0, the above quadratic trino-

mial in τ is either strictly positive, i.e., IE(Un+1(~ξijk))ρ
n+1(~ξijk) > 0 ∀τ > 0 (thus im-

posing no time step constraint for positivity of temperature), or a minimum positive root

τmin(~ξijk) of the quadratic equation IE(U(~ξijk)
n+1)ρ(~ξijk)

n+1 = 0 exists for which positivity

of IE(U(~ξijk)
n+1)ρ(~ξijk)

n+1 is guaranteed for all τ < τmin(~ξijk). Hence, a sufficient condi-

tion for internal energy positivity at the next time level for a scheme given by Eq. (133) is

that τ < τmin = min(τ ρ,min
ijk

(τmin(~ξijk))) (note that if τ ρ is sharp, then τ < τmin is also a

necessary condition).

To bound the internal energy at each solution point IE(Un+1(~ξijk)) from below, we can

choose τ ≤ τmin = min
ijk

(τmin(~ξijk)) where τmin(~ξijk) are redefined as follows. Let cIE be a

user-defined parameter 0 < cIE < 1. Then, τmin(~ξijk) is defined such that IE(Un+1(~ξijk)) ≥

cIEIE(Un(~ξijk)). Hence, the upper bound of τmin(~ξijk) is the minimum positive root of the

following quadratic equation:

0 =
( τ
J

)2
(
dE

dt

dρ

dt
− 1

2

∥∥∥∥dmdt
∥∥∥∥2
)

+
τ

J
(ũn)>


dE
dt

−dm
dt

dρ
dt

+ IE(ũn)ρn, (136)
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where ũni is uni with the temperature scaled by 1 − cIE. If no positive roots exist for this

equation, then for all τ > 0, IE(un+1
i ) > cIEIE(uni ); otherwise, there exists the minimum

positive root τmin
i such that for all τ ≤ τmin

i the following inequality holds: IE(un+1
i ) ≥

cIEIE(uni ).

We have stated above the necessary and sufficient condition for the positivity of internal

energy at all solution points when the explicit forward Euler scheme is used for time integra-

tion. This condition is used to enforce positivity of temperature as discussed in Section 6.4.

6.1.7 ENTROPY STABILITY OF THE FIRST-ORDER SCHEME

We summarize the entropy stability property of the first-order scheme given by Eq. (100).

Theorem 8. The semi-discrete first-order scheme given by Eq. (100) is entropy stable.

Proof. The first-order scheme given in Eq. (100) is

Ût +
3∑
l=1

P−1
ξl

∆ξl

[
ˆ̄f

(MR)
l − ˆ̄f

(AD1)
ˆ̄σ,l

− ˆ̄f
(AD1)
l

]
−Dξl f̂

(v)
l =

3∑
l=1

P−1
ξl

[
ĝl + ĝ

(AD1)
l

]
.

Entropy stability of the entire scheme follows from the entropy stability of the individual

terms. Recall that ˆ̄f
(MR)
l = ˆ̄f

(EC)
l − ˆ̄f

(ED)
l and Lemma 2 showed that ˆ̄f

(EC)
l has the same

element-wise contribution to the total entropy as the high-order EC flux of the baseline

scheme (64). Hence, the entropy stability of ˆ̄f
(EC)
l , f̂

(v)
l and ĝl follow directly from the

baseline scheme. The additional terms–ˆ̄f
(ED)
l , ˆ̄f

(AD1)
l ,ˆ̄f

(AD1)
ˆ̄σ,l

, and ĝ
(AD1)
l –are all formed from

2-point SPSD matrices and hence are entropy stable according to Lemma 18.

6.2 ENTROPY STABLE VELOCITY AND TEMPERATURE

LIMITERS FOR VISCOUS FLOWS

As discussed in the previous section, the physical viscous terms of the first-order scheme

are discretized by using the same high-order SBP operators used for the high-order scheme,

which improves the accuracy when the solution of the Navier-Stokes equations has enough

regularity. Note, however, that the high-order discretization of the viscous terms can signifi-

cantly increase the stiffness of the temperature positivity time step constraint. To overcome
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this problem, we construct new conservative, discretely entropy stable limiters that bound

the magnitude of the velocity and temperature gradients in troubled elements. The proposed

approach differs from the limiter in [64] in two distinct ways: 1) density is not altered at any

solution point and 2) we apply the limiter before negativity is encountered. The benefit of

(2) is that one can then prove discrete entropy stability.

6.2.1 BOUNDS ON VELOCITY AND TEMPERATURE

To bound the viscous fluxes in troubled elements, we propose to limit the deviation

of velocity and temperature values at solution points from the corresponding arithmetic

averages computed on the same high-order element. Note that this same limiting procedure

can be used to bound the deviation from other convex averages as well (e.g., cell averages).

Taking into account the contribution of velocity and temperature terms to the high-order

approximation of the gradient of entropy variables and consequently to the viscous fluxes,

we propose to impose the following bounds on (Vl)i and Ti at each solution point of the

troubled element:

|(Vl)i − ¯̄Vl| ≤
¯̄ρHh

¯̄TH
µ

, λ̃i
|Ti − ¯̄T |
Ti

¯̄T
≤

¯̄ρHh

µ
, (137)

where

λ̃i =
‖ ~V i + ~V ‖

2
+
ci + c( ¯̄T )

2
, (138)

¯̄q =
1

Np

Np∑
j=1

qj (139)

is the arithmetic average of a quantity q on a high-order element, ¯̄ρH is the harmonic average

of ρi and ¯̄ρ, µ is the physical viscosity coefficient, c( ¯̄T ) is the speed of sound associated with

the average temperature and h is a reference length for the element e.g. cubed root of the

volume. Note that the corresponding cell averages on a given high-order element can also

be used instead of the arithmetic averages in Eqs. (137) and (138).

We now construct velocity and temperature limiters such that they ensure the bounds
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given by Eq. (137) without changing the density at any solution point, preserve the conser-

vation of mass, momentum and energy, and can only decrease the discrete integral of the

mathematical entropy on a given element. The limiting procedure is broken into two steps.

The first step enforces the velocity bound while altering the temperature field in a pointwise

discretely entropy stable manner. The second step enforces the temperature bound by only

altering the energy equation in an elementwise entropy stable manner.

6.2.2 A LIMITER TO ENFORCE THE VELOCITY BOUND

First, we modify the velocity at each solution point on a given high-order element, so

that it satisfies Eq. (137). Let ~ξijk = ~ξa be some solution point on the element. To enforce

this velocity bound, we propose the following limiter:

Ûv
a = Ûa +

1

Pa
fv(Ua,θ

v), (140)

where Û(~ξijk)
v = Ûv

a, Pijk = Pa, θv =
[
θv1 θv2 θv3

]>
,

fv(Ua,θ
v) = ρmin



0 0 0

θv1 0 0

0 θv2 0

0 0 θv3

θv1
¯̄V1 θv2

¯̄V2 θv3
¯̄V3


(
~V − ~V a

)
, (141)

ρmin is the minimum density on the element and ~V is the arithmetic average of velocity on

the high-order element.

Note that the temperature after applying the velocity limiter is given by

T (Uv
a) = T (Ua) + ∆ ~VM(Ua,θ

v)∆ ~V , (142)
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where

M(Ua,θ
v) =

γ − 1

Rg

ρmin

ρaJaPa

diag
[
θv1

(
1− θv1ρmin

2ρaJaPa

)
θv2

(
1− θv2ρmin

2ρaJaPa

)
θv3

(
1− θv3ρmin

2ρaJaPa

) ]
,

(143)

and ∆ ~V = ~V − ~V a. Hence, if 0 ≤ θvl ≤ 2PaJa ρa
ρmin

∀ l then T (Uv
a) ≥ T (Ua) and S(Uv

a) ≤

S(Ua). As follows from Eqs. (140– 141), the velocity components of Ûv
a obey:

Vl(Û
v
a)− ¯̄Vl =

(
Vl(Ûa)− ¯̄Vl

)(
1− θvl

JaPa
ρmin

ρa

)
. (144)

Since ~V may be changed by the limiting procedure, enforcing the velocity bound at each

solution point on a given element should in principle be done iteratively, i.e., Eq. (144) can

be recast in the following form:

(Vl)
(m)
a − ¯̄V

(m−1)
l =

(
(Vl)

(m−1)
a − ¯̄V

(m−1)
l

)(
1− (θvl )

(m)

JaPa
ρmin

ρa

)
, (145)

where the superscript is the iteration number and ¯̄V
(m)
l = 1

Np

∑Np
j=1 (Vl)

(m)
j . Each iteration

begins by finding θva for all solution points on the element. If the lth velocity component of

Ûa violates the velocity bound given by Eq. (137), then we solve Eqs. (137, 144) for θvl and

set

(θvl )a = PaJa
ρa
ρmin

(
1−

¯̄ρHh
¯̄TH

µ| (Vl)a − ¯̄Vl|

)
, (146)

otherwise we set (θvl )a = 0. Finally, we calculate θvl as follows:

θvl = min(max
a

((θvl )a),min
a

(PaJa
ρa
ρmin

)), (147)

alter the vector of conservative variables at each point on the element according to Eq. (140),

update the velocity average, and repeat this iterative process until convergence. The key

properties of the proposed velocity limiter are given in Theorem 10. First, we prove the

following lemma.

Lemma 9. After the mth iteration of the method given by Eqs. (140– 141, 145–147), for
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any lth component of velocity there exist two solution points i
(m)
l,max and i

(m)
l,min such that for all

1 ≤ j ≤ Np on a given element

(Vl)
(m)

i
(m)
l,min

≤ (Vl)
(m)
j ≤ (Vl)

(m)

i
(m)
l,max

, (148)

(Vl)
(m−1)

i
(m)
l,min

≤ ¯̄V
(m−1)
l ≤ (Vl)

(m−1)

i
(m)
l,max

, (149)

where (Vl)
(m−1)

i
(m)
l,min

is the velocity at solution point i
(m)
l,min before the mth iteration.

Proof. We prove the existence of an i
(m)
l,max satisfying both inequalities. Let (Vl)

(m)
a =

max
1≤j≤Np

(Vl)
(m)
j so that the index “a” satisfies the role of i

(m)
l,max in (148). If a also sat-

isfies (149), then we can set a = i
(m)
l,max and hence such an i

(m)
l,max exists. Suppose that

(Vl)
(m−1)
a < ¯̄V

(m−1)
l . Then, there exists (Vl)

(m−1)
b > ¯̄V

(m−1)
l and by Eqs. (145) and (147)

we must have (Vl)
(m)
b ≥ ¯̄V

(m−1)
l . Note that we cannot have (Vl)

(m)
a > (Vl)

(m)
b ≥ ¯̄V

(m−1)
l since

then by Eq. (145) (Vl)
(m−1)
a > ¯̄V

(m−1)
l . Thus, (Vl)

(m)
a = (Vl)

(m)
b so that the bth solution point

satisfies (148) and (149). Hence, we can take b = i
(m)
l,max so that again we have found a solution

point i
(m)
l,max satisfying both (148) and (149). An identical argument holds for i

(m)
l,min.

Theorem 10. The iterative method given by Eqs. (140– 141, 145–147) is conservative and

pointwise entropy dissipative. Also, the maximum possible velocity variation after m itera-

tions is bounded as follows:

max
a

((Vl)
(m)
a )−min

a
((Vl)

(m)
a ) ≤ (max

a
((Vl)

(0)
a )−min

a
((Vl)

(0)
a ))

m∏
n=1

(
1− (θvl )

(n)

max
a

(PaJa ρa
ρmin

)

)
∀l.

(150)

Furthermore, this iterative method converges, so that the velocity at all solution points satisfy

the bound given by Eq. (137) upon convergence.

Proof. For each iteration, θvl is computed using Eq. (147), so that θvl ≤ mina(PaJa ρa
ρmin

)

and the temperature at each solution point may only increase as follows from Eq. (142).

Since the density at each solution point remains unchanged during this limiting procedure,

the mathematical entropy can only decrease. Therefore, this iterative method is pointwise



68

entropy dissipative. Conservation follows from the fact that at each iteration (θvl )
(m) is a

constant on each high-order element and
∑Np

a=1Pa(
1
Pafv(Ua,θ

v)) = 0.

Convergence follows from the fact the iteration given by Eq. ((140– 141, 145–147)) is

contractive. Indeed, let i
(m)
l,min and i

(m)
l,max be defined as in Lemma 9. Taking into account that

(θv)
(m)
l ≤ min

a
(PaJa ρa

ρmin
) ∀m and using Eq. (144), we have

max
a

((Vl)
(m)
a )−min

a
((Vl)

(m)
a ) = (151)

= (Vl)
(m)

i
(m)
l,max

− ¯̄V
(m−1)
l + ¯̄V

(m−1)
l − (Vl)

(m)

i
(m)
l,min

= ((Vl)
(m−1)

i
(m)
l,max

− ¯̄V
(m−1)
l )

(
1− (θvl )

(m)

P
i
(m)
l,max

J
i
(m)
l,max

ρmin

ρ
i
(m)
l,max

)

+ ( ¯̄V
(m−1)
l − (Vl)

(m−1)

i
(m)
l,min

)

(
1− (θvl )

(m)

P
i
(m)
l,min

J
i
(m)
l,min

ρmin

ρ
i
(m)
l,min

)

≤ ((Vl)
(m−1)

i
(m)
l,max

− (Vl)
(m−1)

i
(m)
l,min

)

(
1− (θvl )

(m)

max
a

(PaJa ρa
ρmin

)

)

≤
(

max
a

((Vl)
(m−1)
a )−min

a
((Vl)

(m−1)
a )

)(
1− (θvl )

(m)

max
a

(PaJa ρa
ρmin

)

)
...

≤
(

max
a

((Vl)
(0)
a )−min

a
((Vl)

(0)
a )
) m∏
n=1

(
1− (θvl )

(n)

max
a

(PaJa ρa
ρmin

)

)
.

Remark 9. The convergence rate of this iterative method depends on
min
a

(PaJaρa)

max
a

(PaJaρa)
. For LGL

grids with p > 1, this ratio is usually small. If large variations in density are present and

causing slow convergence, one could limit the entire vector of conserved variables which can

also be done in a discretely entropy stable manner. Note, however, for all test problems

presented in this dissertation, only one iteration of the above iterative method per Runge-

Kutta stage is sufficient to eliminate the stiffness of the time step constraint for temperature

positivity for each troubled element.
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6.2.3 A LIMITER TO ENFORCE THE TEMPERATURE BOUND

The second step is to enforce the bound on temperature, which is given by Eq. (137).

Similar to the velocity limiter, we modify the temperature at each solution point by using

the following limiter:

Ût
a = Ûa +

θt

Pa
ft(Ûa), (152)

where

ft(Ûa) = ρmin

[
0 0 0 0 ( ¯̄T − Ta)

]>
, (153)

and ¯̄T is the arithmetic average of temperature on a given high-order element. After applying

the limiter, the modified temperature is given by

T (Ût
a) = Ta +

γ − 1

Rg

( ¯̄T − Ta)
θtρmin

JaPaρa
, (154)

and obeys:

T (Ût
a)− ¯̄T = (Ta − ¯̄T )

(
1− γ − 1

Rg

θtρmin

JaPaρa

)
. (155)

If Ûa violates the temperature bound given by Eq. (137), then we set

θta = JaPa
ρa
ρmin

Rg

γ − 1

(
1− Ta

¯̄T

|Ta − ¯̄T |
¯̄ρHh

λ̃aµ

)
, (156)

otherwise we set θta = 0. Note that by construction, 0 ≤ θta ≤ 1, ∀a. Finally, the temperature

limiter is defined as follows:

θt = min

(
max
a

(θta),
Rg

γ − 1
min
a

(JaPa
ρa
ρmin

)

)
(157)

and the vector of conservative variables at all solution points on the element is modified

according to Eq. (152). Similar to the velocity limiter, the temperature limiting procedure

should in general be performed iteratively. The key properties of the proposed temperature

limiter are presented in the following theorem.

Theorem 11. The iterative temperature limiting procedure given by Eqs. (152, 153, 156,
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157) is conservative and elementwise entropy dissipative. Also, the maximum possible tem-

perature variation after m iterations is bounded as follows:

max
a

(T (m)
a )−min

a
(T (m)

a ) ≤ (max
a

(T (0)
a )−min

a
(T (0)

a ))
m∏
n=1

(
1− γ − 1

Rg

(θt)(n)

maxa(JaPa ρa
ρmin

)

)
.

(158)

Furthermore, this iterative method converges, so that the temperature at all solution points

satisfies the bound given by Eq. (137) upon convergence.

Proof. Conservation follows from the fact that (θt)(m) is a constant on each high-order ele-

ment and
∑Np

a=1Pa(
(θt)(m)

Pa ft(Û
(m−1)
a )) = 0.

Let us show that the temperature limiting procedure is elementwise entropy dissipative,

i.e.,

Np∑
a=1

PaJaS(Ut
a) ≤

Np∑
a=1

PaJaS(Ua). (159)

Note that it is sufficient to show that the entropy dissipates at the first iteration, because

the same argument holds for all other iterations as well. Let IL, IE and IG be the following

index sets: Ta <
¯̄T ∀a ∈ IL, Ta >

¯̄T ∀a ∈ IG, and Ta = ¯̄T ∀a ∈ IE. Taking into account that

dS(Ua(θ
t))

dθt
= − ρmin

JaPa

¯̄T − Ta
T (Ua(θt))

, (160)
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we have

d

dθt

Np∑
a=1

PaJaS(Ua(θ
t)) =

Np∑
a=1

PaJa
dS(Ua(θ

t))

dθt
= −ρmin

Np∑
a=1

¯̄T − Ta
T (Ua(θt))

= ρmin

(
−
∑
a∈IL

¯̄T − Ta
T (Ua(θt))

+
∑
a∈IG

Ta − ¯̄T

T (Ua(θt))

)

≤ ρmin

(
−
∑
a∈IL

¯̄T − Ta
¯̄T

+
∑
a∈IG

Ta − ¯̄T
¯̄T

)

=
ρmin

¯̄T

(
−
∑
a∈IL

¯̄T − Ta +
∑
a∈IG

Ta − ¯̄T

)

=
ρmin

¯̄T

(
−Np

¯̄T +

Np∑
a=1

Ta

)
= 0, (161)

so long as 0 ≤ θt ≤ Rg
γ−1

min
a

(JaPa ρa
ρmin

) which is the case when θt is selected according

to Eq. (157). Thus,
∑Np

a=1PaJaS(Ua(θ
t)) is non-increasing as a function of θt on ≤ θt ≤

Rg
γ−1

min
a

(JaPa ρa
ρmin

) and satisfies Eq. (159). The proof of the temperature bound given by

Eq. (158) relies on Eqs. (155, 157) and is nearly identical to the proof of the velocity bound

(Eq. (150)) and therefore not presented herein. Together Eq. (158) and Eq. (157) imply that

the temperature variation decreases with each iteration. Hence, the bound in (137) is met

after a finite number of iterations, because min
a

(Ta) ≤ T
(m)
a ≤ max

a
(Ta) ∀m and the following

lower bound holds:

T
(m)
a

¯̄T (m) ¯̄ρHh

λ̃
(m)
a µ

≥
(min

a
(Ta))

2 ¯̄ρHh[
max
a

(‖V ‖a) + c(max
a

(Ta))
]
µ
> 0, (162)

where ¯̄T (m) = 1
Np

∑Np
a=1 T

(m)
a represents the temperature average after the mth iteration.

We would like to emphasize again that only one iteration per each troubled element per

Runge–Kutta stage was sufficient to control the temperature positivity time constraint for

all test problems considered in this dissertation.
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6.2.4 CONSISTENCY OF THE VELOCITY AND TEMPERATURE LIMIT-

ING PROCEDURE

As has been mentioned above, the velocity and temperature limiters are only applied

in troubled elements. We use two criteria for determining troubled elements. The limiting

procedure is applied only when both criteria are met. The first criterion is that the time

step restriction for pointwise temperature positivity for the element must be stricter than

the global time step chosen based on density positivity and the CFL condition. To define

the second criterion for determining troubled elements where this limiting procedure should

be used, we note that the bounds in Eq. (137) require that the velocity and temperature

gradients are bounded from above by a quantity that is of the order of the Reynolds number

O(Re). Taking into account that such gradients occur at strong discontinuities, we flag all

troubled elements that satisfy the following condition:

Snk > Ctol, (163)

where 0 ≤ Snk ≤ 1 (85) is the entropy residual sensor for the kth element and Ctol is a user-

defined parameter that is set equal to 0.9 for all test problems considered in this dissertation.

As follows from Eq. (163), this condition is satisfied only in those elements where the residual

of the entropy equation is O(1), which occurs only if the solution is discontinuous or fully

unresolved. For smooth solutions, the entropy residual given by Eq. (81) is of the order

of O(hp−1), which implies that these elements will never be flagged for the velocity and

temperature limiting. Hence, the above limiting procedure is design-order accurate. It

should be pointed out that the velocity and temperature bounds given by Eq. (137) can

in principle be violated even for smooth solutions if the Reynolds number is O(1). Note,

however, that in this case, the condition (163) is not satisfied.

6.3 HIGH-ORDER POSITIVITY–PRESERVING SCHEME

In contrast to the limiting approach developed in [64], for which an entropy stability

proof is not available, we propose a novel limiting scheme that is design-order accurate (for

smooth solutions), entropy stable, and pointwise positive for the thermodynamic variables.
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This high-order positivity–preserving flux-limiting scheme is constructed by using a convex

combination of the positivity-violating high-order spectral collocation scheme (Eq. (64)) and

the first-order positivity–preserving finite volume scheme (Eq. (100)). The key properties of

this scheme are presented next.

6.3.1 POSITIVITY

We begin with some notation. Assume that the time derivative term in Eq. (9) is ap-

proximated by using the 1st-order explicit Euler scheme, so that on a given element we

have

Ûn+1
p = Ûn + τ

(
dÛ

dt

)
p

,

Ûn+1
1 = Ûn + τ

(
dÛ

dt

)
1

,

where Ûn+1
p and Ûn+1

1 are pth-order and first-order numerical solutions defined on the same

grid element with the same metric terms so that Ûn+1
p = [J ] Un+1

p and Ûn+1
1 = [J ] Un+1

1 .

Since the first-order scheme presented in Section 6.1 is positivity preserving, we assume

that at every ith solution point on the element IE((Ûn+1
1 )i) > 0 and (ρn+1

1 )i > 0, where

IE((Ûn+1
1 )i) is the internal energy associated with the 1st-order solution (Ûn+1

1 )i.

To combine the 1st- and pth-order schemes, we use a flux-limiting approach, which is

in fact equivalent to limiting the low- and high-order solution vectors of the conservative

variables. Indeed, the solution vector obtained using the flux-limiting approach can be

represented as follows:

Ûn+1(θf ) = Ûn + τ

(1− θf )

(
dÛ

dt

)
1

+ θf

(
dÛ

dt

)
p


= (1− θf )Ûn+1

1 + θfÛ
n+1
p (164)

= Ûn+1
1 + θf [Û

n+1
p − Ûn+1

1 ],

where the flux limiter θf , 0 ≤ θf ≤ 1, is a constant on a given high-order element.

Let us define a function ℵ , 0 < ℵ < 1, so that it approaches to zero and is bounded from
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below by a small positive number (e.g., 10−8) for elements where the solution is smooth and

goes to 1 for elements where the solution loses its regularity. In the present analysis, ℵ is

defined as follows:

ℵk = max(10−8, Lk), Lk = Snk max
i

(
|∆P |
2PA

)
, (165)

where 0 ≤ Snk ≤ 1 is the residual-based sensor given by Eq. (85) and 0 ≤ max
i

(
|∆P |
2PA

)
< 1 is

one half the maximum relative two–point pressure jump (including jumps at the interfaces)

on the kth element.

At each solution point, we define local lower bounds for density and internal energy as

follows:

ερi = (ρ1)n+1
i ℵ, εIEi = IE((Û1)n+1

i )ℵ. (166)

Note that since 0 ≤ Lk < 1, 0 < ερi < (ρ1)n+1
i and 0 < εIEi < IE((Û1)n+1

i ). We now prove the

following two lemmas.

Lemma 12. For every ith solution point, define the set

Hρ
i = {θf ∈ [0, 1] | ρn+1

i (θf ) ≥ ερi }.

The set Hρ
i can be written as Hρ

i = [0, θρi ] where 0 < θρi ≤ 1. Furthermore, we have the

following statements: (1) if 0 ≤ θf < θρi , then ρn+1
i (θf ) > ερi and (2) if θρi < 1, then

ρn+1
i (θρi ) = ερi .

Proof. This follows directly from the fact that ρn+1
i (θf ) given by Eq. (164) is a linear equation

in the variable θf with ρn+1
i (0) > ερi .

A similar statement can also be proven for the internal energy.

Lemma 13. For every ith solution point, define the set

HIE
i = {θf ∈ Hρ

i | IE(Ûn+1
i (θf )) ≥ εIEi },

where Hρ
i = [0, θρi ] was defined in Lemma 12. The set HIE

i can be written as HIE
i = [0, θIEi ]
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where 0 < θIEi ≤ θρi . Furthermore, we have the following statements: (1) if 0 ≤ θf < θIEi ,

then IE(Ûn+1
i (θf )) > εIEi and (2) if θIEi < θρi , then IE(Ûn+1

i (θIEi )) = εIEi .

Proof. For each ith solution point, if IE(Ûn+1
i (θρi )) ≥ εIEi , then we set θIE

i = θρi . Assume that

there is a solution point such that IE(Ûn+1
i (θρi )) < εIEi . Since ρn+1

i (θf ) ≥ ερi > 0 ∀θf ∈ [0, θρi ],

it follows from Eq. (134) that IE(Ûn+1
i (θf )) is a continuous function with respect to θf for

θf ∈ [0, θρi ]. Since IE(Ûn+1
i (0)) = IE((Ûn+1

1 )i) > εIEi and IE(Ûn+1
i (θρi )) < εIEi , it follows by

the intermediate value theorem that there exists θ∗i ∈ (0, θρi ) such that IE(Ûn+1
i (θ∗i )) = εIEi .

Let θIE
i = θ∗i (notice that once we establish (1) from the lemma statement we will have shown

that there is only one θ∗i ∈ (0, θρi ) such that IE(Ûn+1
i (θ∗i )) = εIEi ).

Now we show that for all 0 ≤ θf < θIE
i , we have IE(Ûn+1

i (θf )) > εIEi . By definition of εIEi ,

IE(Ûn+1
i (0)) > εIEi . For 0 < θf < θIE

i , we have

Ûn+1
i (θf ) = (1− θf )(Û1)n+1

i + θf (Ûp)
n+1
i (167)

=
θf
θIE
i

[
θIE
i

(
(Ûp)

n+1
i − (Û1)n+1

i

)
+ (Û1)n+1

i

]
+

(
1− θf

θIE
i

)
(Û1)n+1

i

=
θf
θIE
i

Ûn+1
i (θIE

i ) +

(
1− θf

θIE
i

)
(Û1)n+1

i .

Hence, due to the concavity of internal energy

IE(Ûn+1
i (θf )) ≥

θf
θIE
i

IE(Ûn+1
i (θIE

i )) +

(
1− θf

θIE
i

)
IE((Û1)n+1

i )

>
θf
θIE
i

εIEi +

(
1− θf

θIE
i

)
εIEi = εIEi .

(168)

Remark 10. Note that θIE
i in Lemma 13 can readily be found by solving the quadratic

equation analogous to Eq. (136).

For a given element, we define θIE = mini{θIE
i } > 0. By construction, IE(Ûn+1

i (θIE)) ≥ εIEi

and ρ(Ûn+1
i (θIE)) ≥ ερi for every solution point on the element. The solution at the (n+ 1)th

time level is set equal to Ûn+1(θIE), which preserves pointwise positivity of density and

internal energy.
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Remark 11. The above limiting is not immediately conservative for general Ûn+1
1 and

Ûn+1
p . We refer the reader to Section 6.3.3 which presents an implementation of this limiting

procedure in a way that preserves conservation.

6.3.2 DESIGN ORDER OF ACCURACY

We now show that the proposed limiting preserves the design order of accuracy for smooth

solutions and sufficient grid resolution. For simplicity, we assume that the grid resolution

depends on one parameter 0 < hx ≤ 1 such that all element edges are linearly proportional

to hx with an hx-independent constant of proportionality. In this section, ‖ · ‖ denotes the

Euclidean norm. Let Ûex
i (tn+1) denote the smooth exact solution at the ith solution point

when t = tn+1. For each solution point, we define a local admissible set

Aεi = {ui =
[
ρ ρ ~V ρE

]>
| IE(ui) ≥ εIEi , ρi ≥ ερi }

and assume that Ûex
i (tn+1) ∈ Aεi . Note that εIEi and ερi are positive user-defined parameters

that can be made arbitrarily small by selecting a sufficiently small value of the parameter

ℵ for a given element. In the present analysis, ℵ, which is given by Eq. (165), is set such

that it becomes smaller when the regularity of the numerical solution increases. We also

assume that the solution is sufficiently smooth such that ‖(Ûn+1
1 )i− (Ûn+1

p )i‖ ≤ ‖(Ûn+1
1 )i−

Ûex
i (tn+1)‖+ ‖Ûex

i (tn+1)− (Ûn+1
p )i‖ = O(hx), as hx → 0.

Let us show that ‖Ûn+1
i (θIE)−Ûex

i (tn+1)‖ = O((hx)p) for all solution points. If θIE
i = 1 ∀i

on a given element, then θIE = mini{θIE
i } = 1, Ûn+1(θIE) = Ûn+1

p and the result follows.

We now assume that θIE < 1. In this case, to prove the consistency of the limiting

procedure, it is sufficient to show that 1− θIE = O((hx)p−1). Indeed, if 1− θIE = O((hx)p−1),

then for every solution point we have

‖Ûn+1
i (θIE)− Ûex

i (tn+1)‖ ≤ (1− θIE)‖(Û1)n+1
i − Ûex

i (tn+1)‖

+ θIE‖(Ûp)
n+1
i − Ûex

i (tn+1)‖

= (1− θIE)O(hx) + θIEO((hx)p) = O((hx)p).

(169)
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To prove that 1 − θIE = 1 −min
i
{θIE

i } = O((hx)p−1), it is sufficient to show that if θIE
i < 1

(which is only possible if (Ûp)
n+1
i 6∈ Aεi), then 1− θIE

i = O((hx)p−1) ∀i. Assume that at the

ith solution point θIE
i < 1. Since θIE

i ≤ θρi , we only have to consider the following two cases:

1) θIE
i = θρi and θρi < 1, 2) θIE

i < θρi .

Case 1. Since θρi < 1, the following inequalities hold (ρp)
n+1
i < ερi ≤ ρex

i (tn+1), which lead

to (ρp)
n+1
i = ερi +O((hx)p). From Lemma 12 it follows that θρi satisfies

ρn+1
i (θρi ) = (ρ1)n+1

i + θρi ((ρp)
n+1
i − (ρ1)n+1

i ) = ερi . (170)

Thus,

1− θρi =
ερi − (ρp)

n+1
i

(ρ1)n+1
i − (ρp)

n+1
i

=
O((hx)p)

O(hx)
= O((hx)p−1). (171)

Taking into account that θIE
i = θρi , we also have 1− θIE

i = O((hx)p−1). Using 0 < θρi < 1 and

Eq. (171) yield

‖Ûn+1
i (θρi )− Ûex

i (tn+1)‖ ≤ ‖Ûn+1
i (θρi )− (Ûp)

n+1
i ‖+ ‖(Ûp)

n+1
i − Ûex

i (tn+1)‖

= (1− θρi )‖((Û1)n+1
i − (Ûp)

n+1
i ‖+O((hx)p)

= O((hx)p).

(172)

Case 2. Now, we assume that θIE
i < θρi . First, it should be noted that the internal energy

IE(Ûn+1
i (θρi )) is defined at i, because ρn+1

i (θρi ) ≥ ερi > 0. As in Case 1, Eq. (172) holds in this

case as well, because it has been proven by only assuming θρi < 1. Furthermore, if θρi = 1,

then Ûn+1
i (θρi ) = (Ûp)

n+1
i , which again implies that Eq. (172) holds. Using Eq. (172) yields

IE(Ûn+1
i (θρi )) = ρn+1

i (θρi )En+1
i (θρi )−

ρn+1
i (θρi )

2
‖ ~V

n+1

i (θρi )‖2

= IE(Ûex
i (tn+1)) +O((hx)p),

(173)

where En+1
i (θρi ) is the specific total energy of Ûn+1

i (θρi ). Since θIE
i < θρi , IE(Ûn+1

i (θρi )) <

εIEi ≤ IE(Ûex
i (tn+1)). Therefore, from Eq. (173) it follows that IE(Ûn+1

i (θρi )) = εIEi +O((hx)p).
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Using Eq. (167) for 0 < θ < θρi , we have

Ûn+1
i (θ) =

θ

θρi
Ûn+1
i (θρi ) +

(
1− θ

θρi

)
(Û1)n+1

i . (174)

Again, Ûn+1
i (θ) may have non-positive internal energy, but it has positive density. Hence,

for all θ ∈ (0, θρi ), IE(Ûn+1
i (θ)) is defined at i and the following bound holds:

IE(Ûn+1
i (θ)) =

θ

θρi
IE(Ûn+1

i (θρi )) +

(
1− θ

θρi

)
IE((Ûn+1

1 )i)

+
ρn+1
i (θρi )(ρ

n+1
1 )i

∥∥∥( ~V
n+1

1 )i − ~V
n+1

i (θρi )
∥∥∥2

θ
θρi

(
1− θ

θρi

)
2ρn+1

i (θ)

≥ θ

θρi
IE(Ûn+1

i (θρi )) +

(
1− θ

θρi

)
IE((Ûn+1

1 )i).

(175)

Note that there exists a unique θ∗i ∈ (0, θρi ) such that

θ∗i
θρi

IE(Ûn+1
i (θρi )) +

(
1− θ∗i

θρi

)
IE((Û1)n+1

i ) = εIEi . (176)

From Eq. (175) it follows that IE(Ûn+1
i (θ∗i )) ≥ εIEi and according to Lemma 13, θ∗i ≤ θIE

i .

Using Eq. (176) and Eq. (173), we have

1− θ∗i
θρi

=
εIEi − IE(Ûn+1

i (θρi ))

IE((Û1)n+1
i )− IE(Ûn+1

i (θρi ))
=
O((hx)p)

O((hx))
= O((hx)p−1). (177)

Equations (171) and (177) yield 1 − θ∗i = O((hx)p−1). Since θ∗i ≤ θIE
i < 1, it follows that

1− θIE
i = O((hx)p−1) ∀i and Eq. (169) holds.

6.3.3 HIGH-ORDER POSITIVITY-PRESERVING FLUX-LIMITING

SCHEME

We now present the semi-discrete form of the high-order positivity-preserving scheme.
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For the kth element, we have

dÛ

dt
= θkf

(
dÛ

dt

)
p

+ (1− θkf )

(
dÛ

dt

)
1

+

(
dÛ

dt

)
AD

,(
dÛ

dt

)
p

=
3∑
l=1

−P−1
ξl

∆ξl
ˆ̄fl +Dξl f̂

(v)
l + P−1

ξl
ĝl,(

dÛ

dt

)
1

=
3∑
l=1

−P−1
ξl

∆ξl
ˆ̄f

(MR)
l +Dξl f̂

(v)
l + P−1

ξl
ĝl,(

dÛ

dt

)
AD

=
3∑
l=1

P−1
ξl

∆ξl

[
(1− θkf )ˆ̄f

(AD1)
ˆ̄σ,l

+ ˆ̄f
(AD1)
l

]
+Dξl f̂

(ADp)
l

+ P−1
ξl

[
ĝ

(AD1)
l + ĝ

(ADp)
l

]
,

(178)

where 0 ≤ θkf ≤ 1 is the flux limiter computed independently in each element as described

in Section 6.4. Note that the flux limiting is only applied to the inviscid terms and the

mass diffusion term required for positivity of density. The term
(
dÛ
dt

)
p

is the baseline high-

order scheme with no artificial dissipation, where ĝl represents both the inviscid and viscous

penalties (see Section 4.1). The remaining terms from
(
dÛ
dt

)
1

and
(
dÛ
dt

)
AD

were described

in Sections 4.2 and 6.1.

The artificial dissipation terms are proportional to the residual-based sensor given by

(85). Therefore, in regions where the solution is sufficiently smooth and resolved the scheme

given by Eq. (178) becomes design-order accurate as described in Section 6.3.2.

6.3.4 CONSERVATION

Since θkf is set independently on each element, it is not immediately clear that the scheme

given by Eq. (178) is conservative for all 0 ≤ θkf ≤ 1. Let us show that the scheme is indeed

conservative.

Theorem 14. The high-order positivity–preserving flux-limiting scheme given by (178) is

conservative for all 0 ≤ θkf ≤ 1.

Proof. Collecting like terms in Eq. (178), shows that θkf only affects the amount of ˆ̄fl,
ˆ̄f

(MR)
l ,

and ˆ̄f
(AD1)
ˆ̄σ,l

used on the element. ˆ̄f
(AD1)
ˆ̄σ,l

is only defined at the interior flux points (see Eq. (115))
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and hence the flux differencing form immediately implies ˆ̄f
(AD1)
ˆ̄σ,l

is conservative. Therefore,

we need only note that we have

3∑
l=1

1>1 PP−1
ξl

∆ξl

[
θkf

ˆ̄fl + (1− θkf )ˆ̄f
(MR)
l

]
=

N∑
j,k=1

Pjk
N∑
i=1

[
θkf

(
ˆ̄f1(~ξījk)− ˆ̄f1(~ξī−1jk)

)
+(1− θkf )

(
ˆ̄f

(MR)
1 (~ξījk)− ˆ̄f

(MR)
1 (~ξī−1jk)

)]
+ · · ·

=
N∑

j,k=1

Pjk
[
θkf

(
ˆ̄f1(~ξNjk)− ˆ̄f1(~ξ1jk)

)
+(1− θkf )

(
ˆ̄f

(MR)
1 (~ξNjk)− ˆ̄f

(MR)
1 (~ξ1jk)

)]
+ · · ·

=
N∑

j,k=1

Pjk
[
ˆ̄f1(~ξNjk)− ˆ̄f1(~ξ1jk)

]
+

N∑
i,k=1

Pik
[
ˆ̄f2(~ξiNk)− ˆ̄f2(~ξi1k)

]
+

N∑
i,j=1

Pij
[
ˆ̄f3(~ξijN)− ˆ̄f3(~ξij1)

]
=

3∑
l=1

1>1 PP−1
ξl

∆ξl
ˆ̄fl,

(179)

where the second to last equality follows by comparing (101), (69), and (120). Hence,

conservation for the flux-limiting scheme given by Eq. (178) follows directly from conservation

of the baseline scheme given by Eq. (64).

6.3.5 ARTIFICIAL VISCOSITY FOR THE FLUX-LIMITING SCHEME

The construction of the artificial viscosity, µAD, was discussed in Chapter 5. Here, we

present how the viscosity is set for the flux-limiting scheme given by Eq. (178). The artificial

viscosity controls the artificial dissipation terms of
(
dÛ
dt

)
AD

in Eq. (178). If an element is

considered for flux limiting (i.e, θkf < 1) for positivity or dissipation purposes, then only the

first-order dissipation is used for that element, even if it is later determined that θkf = 1.

High-order elements considered for flux limiting are herein referred to as “limited elements.”

The artificial viscosity coefficient µAD presented in Chapter 5 is used to construct the
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first-order Brenner dissipation defined at element flux points, µ̄AD1 , and the pth-order Brenner

dissipation calculated at element solution points, µADp . Let V k
1 , V

k
2 , . . . , V

k
8 be the 8 vertices

of the kth element. Define an indicator function, χ(·), such that χ(V k
a ) = 1 if V k

a is collocated

with or on a limited element; otherwise, χ(V k
a ) = 0. Then, set µADp (V k

a ) = µAD(V k
a )(1 −

χ(V k
a )) and use tri-linear interpolation to obtain µADp at the remaining solution points.

Notice that for elements with limiting, µADp = 0 and only first-order Brenner dissipation is

used. The first-order dissipation is formed as follows for all fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk

we have

for 1 ≤ i ≤ N − 1,

µ̄AD1 (~ξī) =
µAD(~ξi) + µAD(~ξi+1)−

(
µADp (~ξi) + µADp (~ξi+1)

)
2

,

µ̄AD1 (~ξ0̄) = µAD(~ξ1)− µADp (~ξ1), µ̄AD1 (~ξN̄) = µAD(~ξN)− µADp (~ξN),

(180)

with identical definitions in the other computational directions. For the first-order artificial

dissipation, the cρ and cT coefficients are set equal to those of the pth-order counterpart (see

Section 2.4).

We would like for the first-order mass viscosity, σ̄AD1 , to be in proportion to µ̄AD1 with

the density scaling removed and to preserve density positivity when needed. The density

scaling in µ̄AD1 is removed by dividing through by the geometric average of density at the

interface in question. That is, for all fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

for 0 ≤ i ≤ N,

σ̄AD1 (~ξī) = max

χ(~ξī) (δ0,i + δN,i) σ̄min(~ξī), cρ
µ̄AD1 (~ξī)√
ρ(~ξi)ρ(~ξi+1)

 ,
(181)

where ρ(~ξ0) and ρ(~ξN+1) come from the collocated numerical or boundary state and identical

definitions are given in other directions. At every interface collocated with a limited element,

the first-order artificial mass viscosity is set so that density positivity is guaranteed through

σ̄min which is the minimum mass diffusion for density positivity for the first-order scheme

with the explicit Euler discretization in time given by σ
+/−
l,min in Corollary 6.1.
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If there exists one solution point on the element that would otherwise not have positive

density, we also require that the mass diffusion for all interior flux points be sufficient for

positivity. The total mass diffusion is increased through ˆ̄σ1 which is the mass diffusion used

by ˆ̄f
(AD1)
ˆ̄σ,l

in Eq. (178). Specficially, for all fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk we use

for 0 ≤ i ≤ N,

ˆ̄σ1(~ξī) = max
(
σ̄min(~ξī)− σ̄AD1 (~ξī), 0

)
,

(182)

with identical definitions in the other computational directions.

6.3.6 ENTROPY STABILITY

The entropy stability of the high-order positivity–preserving flux-limiting scheme given

by Eq. (178) is given by the following theorem.

Theorem 15. The total entropy of the high-order positivity–preserving flux-limiting scheme

given by Eq. (178) obeys the following semi-discrete statement:

K∑
k=1

1>1 P̂Ŝkt =
K∑
k=1

3∑
l=1

[
w>k P⊥,ξl

[
B

(BC)

ξl,k
f̂

(v+ADp)
l,k + ĝ

(BC,v+ADp+AD1)
l,k + ĝ

(BC,I)
l,k

]
+
(
ĝ

(BC,Θ)
l,k

)>
P⊥,ξl f̂

(v+ADp)
l,k + 1>1 P̂⊥,ξlB̂

(BC)

ξl,k
F̂l,k

]
−

K∑
k=1

[
H

(v+ADp+AD1,D)
k + (1− θkf )

(
H

(ˆ̄σ,D)
k +H

(MR,D)
k

)
+L

(Int,v+ADp+AD1,D)
k + L

(Int,I,D)
k

]
,

(183)

where we have

1. H
(v+ADp+AD1,D)
k , H

(MR,D)
k , H

(ˆ̄σ,D)
k , L

(Int,v+ADp+AD1,D)
k , L

(Int,I,D)
k ≥ 0.

2. H
(v+ADp+AD1,D)
k = H

(v,D)
k + H

(ADp,D)
k + H

(AD1,D)
k where all of the non-negative H

(·,D)
k

terms are described in Lemmas 18 and 19.

3. L
(Int,v+ADp+AD1,D)
k = L

(Int,v,D)
k +L

(Int,ADp,D)
k +L

(Int,AD1,D)
k where all of the non-negative

L
(Int,·,D)
k terms are described in Lemmas 18 and 19.
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4. ĝ
(BC,v+ADp+AD1)
l,k = ĝ

(BC,v)
l,k + ĝ

(BC,ADp)
l,k + ĝ

(BC,AD1)
l,k where ĝ

(BC,·)
l,k (~ξabc) =

ĝ
(·)
l,k(
~ξabc)χ

(BC)
k (~ξabc).

5. f̂
(v+ADp)
l,k = f̂

(v)
l,k + f̂

(ADp)
l,k .

Proof. The theorem follows by directly applying Lemmas 18, 19, or 21 to each term. In

particular, notice that Lemma 2 equates the entropy contributions of ˆ̄fl and ˆ̄f
(EC)
l where

ˆ̄f
(MR)
l = ˆ̄f

(EC)
l − ˆ̄f

(ED)
l . Therefore,

3∑
l=1

w>PP−1
ξl

∆ξl

[
θkf

ˆ̄fl + (1− θkf )ˆ̄f
(EC)
l

]
= w>PP−1

ξl
∆ξl

ˆ̄fl (184)

for all 0 ≤ θkf ≤ 1. Thus, we can apply Lemma 21 to θkf
ˆ̄fl + (1− θkf )ˆ̄f

(EC)
l together with the

inviscid penalties from ĝl.

6.3.7 FREESTREAM PRESERVATION

For curvilinear meshes, freestream preservation is an important property that is not

guaranteed and easily over looked.

Theorem 16. The high-order positivity–preserving flux-limiting scheme given by Eq. (178)

is freestream preserving.

Proof. For freestream preservation, we assume a globally constant state (including boundary

conditions) and want to show that this implies dÛ
dt

= 05.

Notice that all viscous terms in this dissertation–including artificial dissipation terms–

depend directly on two-point jumps in states or high-order computational derivatives of

states on an element. Hence, all viscous terms preserve freestream.

Thus, only the inviscid terms remain. The inviscid penalty given by Eq. (70) is also zero

since the single state and two state fluxes are equivalent at the interface. Finally, ˆ̄fl has been

proven to be freestream preserving [36, 52] and Lemma 2 proved that ˆ̄f
(EC)
l is also freestream

preserving.
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6.3.8 STABILITY PROPERTIES

The high-order positivity-preserving flux-limiting scheme given by Eq. (178) admits both

L1 and L2 stability statements which we discuss in this section.

L1 stability

Notice that having a conservative scheme implies that at the nth time level

K∑
k=1

1>1 P̂ρ̂
n
k =

K∑
k=1

1>1 P̂ρ̂
0
k +

n−1∑
i=0

Bi
ρ,

K∑
k=1

1>1 P̂Êt
n

k =
K∑
k=1

1>1 P̂Êt
0

k +
n−1∑
i=0

Bi
Et,

(185)

where we have summed over the K elements in the domain, ρ̂nk and Êt
n

k are the arrays of

density and total energy (scaled by the Jacobian) on the kth element at time level n and the

Bi terms represent the effect from the boundaries. In particular, if all boundary faces are

periodic we have Bi = 0 for all i. If we also have point-wise positivity, we get the following

theorem.

Theorem 17. Assume that the initial numerical solution at every solution point in the

domain has positive density and temperature. Furthermore, assume for all n ∈ N we have

cρmin

K∑
k=1

1>1 P̂ρ̂
0
k ≤

K∑
k=1

1>1 P̂ρ̂
0
k +

n−1∑
i=0

Bi
ρ ≤ cρmax

K∑
k=1

1>1 P̂ρ̂
0
k,

cEtmin

K∑
k=1

1>1 P̂Êt
0

k ≤
K∑
k=1

1>1 P̂Êt
0

k +
n−1∑
i=0

Bi
Et ≤ cEtmax

K∑
k=1

1>1 P̂Êt
0

k,

for fixed positive constants 0 < cEtmin ≤ cEtmax and 0 < cρmin ≤ cρmax. Then, the high-order

positivity-preserving flux-limiting scheme given by Eq. (178) admits the following discrete L1
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bounds on the solution at the nth time level

cρmin

K∑
k=1

1>1 P̂ρ̂
0
k ≤

K∑
k=1

1>1 P̂ |ρ̂
n
k | ≤ cρmax

K∑
k=1

1>1 P̂ρ̂
0
k,

cEtmin

K∑
k=1

1>1 P̂Êt
0

k ≤
K∑
k=1

1>1 P̂
∣∣∣Êt

n

k

∣∣∣ ≤ cEtmax

K∑
k=1

1>1 P̂Êt
0

k,

cEtmin

K∑
k=1

1>1 P̂Êt
0

k ≤
K∑
k=1

1>1 P̂
∣∣∣ÎEn

k

∣∣∣ ≤ cEtmax

K∑
k=1

1>1 P̂Êt
0

k,

cEtmin

K∑
k=1

1>1 P̂Êt
0

k ≤
K∑
k=1

1>1 P̂
∣∣∣K̂E

n

k

∣∣∣ ≤ cEtmax

K∑
k=1

1>1 P̂Êt
0

k,

(186)

where |ρ̂nk |,
∣∣∣Êt

n

k

∣∣∣, ∣∣∣ÎEn

k

∣∣∣, and
∣∣∣K̂E

n

k

∣∣∣ are the arrays of the absolute values of the discrete

density, total energy, internal energy, and kinetic energy on the kth element at time level n.

Proof. Pointwise positivity implies that |ρ̂nk | = ρ̂nk ,
∣∣∣Êt

n

k

∣∣∣ = Êt
n

k ,
∣∣∣ÎEn

k

∣∣∣ = ÎE
n

k , and
∣∣∣K̂E

n

k

∣∣∣ =

K̂E
n

k on every element. Hence, the bounds for density and total energy are an immediate

consequence of Eq. (185). Furthermore, the positivity of internal energy and kinetic energy

at every solution point in the domain implies the remaining bounds since at every solution

point the internal energy and kinetic energy are each bounded from above by the total energy

at that solution point.

L2 stability

We now discuss the discrete form of the L2 bound on the conservatives variables presented

in Section 2.3.2. We do not formulate the following as a theorem about the high-order

positivity-preserving flux-limiting scheme given by Eq. (178) because we did not use the

relaxation methods in [65, 66] to strictly enforce the condition in Eq. (191). This was

mostly a choice made out of practical considerations concerning time and code complexity.

Furthermore, from our numerical experiments on the test cases we considered, we have

observed that our scheme produces sufficiently non-oscillatory solutions and a temporal

evolution of the total entropy that is monotonically decreasing when plotted for problems

with entropy stable boundary conditions (with possible increases between time steps on the

order of the discretization error). The following discussion is to show how for a scheme that

guarantees pointwise-positivity such as the one given by Eq. (178), the remaining steps for a
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fully discrete L2 bound on the conservatives variables are entropy stable boundary conditions

and strictly enforcing the condition in Eq. (191).

Again, we define a new convex entropy S̄ = S − S(u0) − SU (u0)>(u − u0) where u0 is

a constant non-zero state with zero velocity and the associated entropy variables

w̄ ≡ S̄U = SU − SU (u0) = w −w0. (187)

From this new entropy, we form the 2-D array w̄k = wk − w0 on the kth element where

w0(~ξabc) = w0 for every solution point on every element. Contracting Eq. (178) with the

new entropy variables given by Eq. (187) yields

K∑
k=1

w̄>k P
dÛk

dt
=

K∑
k=1

w>k P
dÛk

dt
−w>0 P

dÛk

dt
. (188)

From Theorem 15, we know that

K∑
k=1

w>k P
dÛk

dt
= B −D,

where B contains terms related to the domain boundary and D ≥ 0. Assume that we have

entropy stable boundary conditions so that

K∑
k=1

w>k P
dÛk

dt
≤ −D.

Notice that we have

K∑
k=1

w>0 P
dÛk

dt
= w0

K∑
k=1

1>1 P
dÛk

dt
(189)

and since the scheme given by Eq. (178) is conservative (see Theorem 14), we know that
K∑
k=1

1>1 P dÛk

dt
depends only on the boundary. Again, we assume that we have boundary
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conditions so that

K∑
k=1

w̄>k P
dÛk

dt
≤

K∑
k=1

w>k P
dÛk

dt
≤ −D. (190)

For example, periodic boundary conditions would guarantee this.

We now introduce the superscript “n” to denote the time level. To obtain the fully

discrete L2 bound we need the semi-discrete statement of Eq. (190) to imply that

K∑
k=1

1>1 P̂ ˆ̄Sn+1
k ≤

K∑
k=1

1>1 P̂ ˆ̄Snk − τnDn, (191)

where Dn ≥ 0 represents the cumulative entropy dissipation over the time step (e.g. over all

the Runge–Kutta stages) and τn > 0 is the time step used to advance the solution from the

nth to the (n + 1)th time level. Obtaining an inequality like this is dependent on the time

discretization used. However, since S̄ is convex, one can apply the relaxation methods in

[65, 66] to enforce this condition for Runge-Kutta methods (explicit or implicit) or multistep

methods. Thus, we assume that Eq. (191) holds discretely. Hence, it follows that at the nth

time level we have

K∑
k=1

1>1 P̂ ˆ̄Snk ≤
K∑
k=1

1>1 P̂ ˆ̄S1
k −

n−1∑
i=1

τ iDi. (192)

Taylor expansion of S around u0 implies

Snk(~ξa) = S(Un
k(~ξa)) = S(u0) + SU (u0)>

(
Un
k(~ξa)− u0

)
+

1

2

(
Un
k(~ξa)− u0

)>
SUU (Ũn

k(θ(~ξa)))
(
Un
k(~ξa)− u0

)
,

(193)

where the state Ũn
k(θ(~ξa)) has positive density and temperature since u0 and Un

k(~ξa)

both do. Notice that by definition S̄nk(~ξa) = Snk(~ξa) − S(u0) − SU (u0)>(Un
k(~ξa) − u0) =

1
2

(
Un
k(~ξa)− u0

)>
SUU (Ũn

k(θ(~ξa)))
(
Un
k(~ξa)− u0

)
. Let Smin,n

UU be the minimum eigenvalue
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of all terms SUU (Ũn
k(θ(~ξa))) in the domain. Then, if we set

Cn−1 =
K∑
k=1

1>1 P̂ ˆ̄S1
k −

n−1∑
i=1

τ iDi ≤
K∑
k=1

1>1 P̂ ˆ̄S1
k,

we have

2Smin,n
UU

K∑
k=1

(Un
k −U0)>P [J ]k (Un

k −U0) ≤ 4Cn−1 (194)

and by pointwise application of Eq. (38) we have

K∑
k=1

(Un
k)>P [J ]k Un

k ≤ 4
Cn−1

Smin,n
UU

+ 2
K∑
k=1

U>0 P [J ]k U0, (195)

which is the fully-discrete analogue of the L2 bound on the solution given by Eq. (38).

For the fully-discrete analogue of the L2 bound on the solution given by Eq. (41) which

is based on the bounds obtained from the LDL> decomposition of SUU , we note that it

follows from (254) and (255) of Appendix C that

(
Un
k(~ξa)− u0

)>
SUU (Ũn

k(θ(~ξa)))
(
Un
k(~ξa)− u0

)
≥ (ρnk(~ξa)− ρ0)2

b1(Ũn
k(θ(~ξa)))

,

(
Un
k(~ξa)− u0

)>
SUU (Ũn

k(θ(~ξa)))
(
Un
k(~ξa)− u0

)
≥ ((m i)

n
k(~ξa))

2

bi+1(Ũn
k(θ(~ξa)))

, i = 1, 2, 3,

(
Un
k(~ξa)− u0

)>
SUU (Ũn

k(θ(~ξa)))
(
Un
k(~ξa)− u0

)
≥ (Etnk(~ξa)− E t0)2

b5(Ũn
k(θ(~ξa)))

,

b1(ua) =
ρa
R
, bi+1(ua) =

Pa + ρa(V
2
i )a

R
, i = 1, 2, 3 ,

b5(ua) =
P2
aγ + Paρa‖V a‖2γ +

(
ρa
‖V a‖2

2

)2

Rρa
,

(196)

where (m i)
n
k(~ξa) = ρnk(~ξa)(V i)

n
k(~ξa) represents the ith component of momentum and

Etnk(~ξa) = ρnk(~ξa)E
n
k(~ξa) is the total energy. Let bmax,n

i = max
1≤k≤K

max
1≤a≤Np

bi(Ũ
n
k(θ(~ξa))). Then
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we have

K∑
k=1

(ρnk)> P̂ρ̂nk ≤ 4bmax,n
1 Cn−1 + 2

K∑
k=1

ρ>0 P̂ρ̂0,

K∑
k=1

((m i)
n
k)> P̂(m̂ i)

n
k ≤ 2bmax,n

i+1 Cn−1, i = 1, 2, 3,

K∑
k=1

(Etnk)> P̂Êt
n

k ≤ 4bmax,n
5 Cn−1 + 2

K∑
k=1

Et>0 P̂Êt0,

(197)

which is the fully-discrete analogue of the L2 bound on the solution given by Eq. (41).

6.4 IMPLEMENTATION DETAILS

In this section, we discuss implementation details of the positivity preserving entropy

stable flux-limiting scheme given by Eq. (178).

6.4.1 FLUX LIMITER DETAILS

The flux limiter, θf , in Eq. (178) becomes less than one only on troubled elements for

which at least one of the thermodynamic variables at any solution point is negative or

the residual-based sensor given by Eq. (85) is nonzero and the two-point relative jump in

pressure exceeds its threshold value which is equivalent to the pressure jump across a Mach

1.75 shock. For each troubled element, the limiter θkf in Eq. (178) is determined such that

it satisfies the positivity constraints described in Section 6.3.1 and the following inequality:

θkf ≤ 1− Snk max
k

(
|∆P |
2PA

)
, where 0 ≤ Snk ≤ 1 is the residual-based sensor given by Eq. (85)

on the kth element and 0 ≤ max
k

(
|∆P |
2PA

)
≤ 1 is one half of the maximum relative two–point

pressure jump (including jumps at the interfaces) on the same element.

6.4.2 TIME STEP DETAILS

The time step constraint required for pointwise positivity of density is very similar to

the conventional CFL condition, as discussed in Section 6.1.5. As mentioned already, we use

the slightly stricter time step constraint of Eq. (126) instead of the one given by Theorem 6.

Applying Corollary 6.1, we see that the time step constraint of Eq. (126) at the ~ξijk solution



90

point on the element is given by:

τijk <
Jijk
12

min
l

 Pll

max
[
λc + σ‖ˆ̄~a‖2

JG∆ξ

]+/−

l


~ξijk

= (τ Iρ )ijk. (198)

For viscous flows, we augment the time step constraint of Eq. (198) to satisfy the linear

stability condition for diffusion as follows:

τijk ≤
CFL

1
(τIρ )ijk

+

(
µ

J2P2/3
ijk

3∑
b=1

‖~̂ab‖2

)
~ξijk

. (199)

For all test problems considered, we set CFL = 1. Furthermore, the safety parameter cIE,

which is used to determine the time step constraint required for positivity of internal energy

in Section 6.1.6, is set equal to 0.9.

6.4.3 ALGORITHM AND POSITIVITY

In Sections 6.1 and 6.3, we have proven that the baseline first-order scheme and the

corresponding high-order flux-limiting scheme preserve the positivity of density and inter-

nal energy under suitable time step constraints when the explicit forward Euler method is

used to discretize the time derivative terms. To generalize the proposed positivity-preserving

methods to high-order temporal discretizations, we use the third-order strong stability pre-

serving (SSP) Runge-Kutta scheme developed in [67], which can be represented as a convex

combination of forward Euler schemes. At each Runge-Kutta stage, the high-order positivity-

preserving entropy stable scheme is implemented according to the following algorithm.

Algorithm (Iterative positivity-preserving explicit SSP Runge-Kuta spectral collocation

method)

1. Compute
(
dÛ
dt

)
p

using Eq. (64).

2. Compute Snk for all k as described in Chapter 5.

3. For those elements where Snk > 0, we compute the artificial viscosity, µAD, defined in
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Chapter 5 and maximum relative pressure jump defined in Section 6.3.1.

4. At the first Runge-Kutta stage, compute the time step, τn, given by Eq. (199). Fur-

thermore, we require that τn ≤ 1.01τn−1, where τn−1 is the previous time step.

5. For a given element, if Snk = 1 and max
k

(
|∆P |
2PA

)
> threshold then obtain

(
dÛ
dt

)
∗

using

dÛ
dt

from Eq. (178) with θkf = 0 and only first-order artificial dissipation. Otherwise,

obtain
(
dÛ
dt

)
∗

using θkf = 1 and only high-order artificial dissipation.

6. If
(
dÛ
dt

)
∗

does not preserve positivity and θkf = 1, then obtain
(
dÛ
dt

)
∗

using dÛ
dt

from

Eq. (178) with θkf = 0 and only first-order artificial dissipation.

7. If on the second or later Runge-Kutta stage,
(
dÛ
dt

)
∗

does not preserve positivity and

θkf = 0, then set τnnew = 0.5τn and restart from the first Runge-Kutta stage. For viscous

flows, if only temperature positivity was violated and Eq. (163) holds then apply one

iteration of the velocity and temperature limiting procedure described in Section 6.2

on that element at the beginning of every Runge-Kutta stage until the whole time step

is complete.

8. For the first Runge-Kutta stage, use the current
(
dÛ
dt

)
∗

to compute the time-step

constraint required for positivity of internal energy, which is given by Eq. (136) with

CIE = 0.9. For viscous flows, if this time step constraint is stricter than the current

global time step for some element and Eq. (163) holds for that element, then apply one

iteration of the velocity and temperature limiting procedure described in Section 6.2

on that element at the beginning of every Runge-Kutta stage until the whole time step

is complete.

9. For elements where
(
dÛ
dt

)
∗

uses θkf = 0, adjust θkf as described in Section 6.3 to obtain

dÛ
dt

.

10. Advance to the next Runge-Kutta stage.

By construction, the proposed scheme guarantees positivity of density and temperature at

the first Runge-Kutta stage. For subsequent Runge-Kutta stages, the new scheme, which can
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be represented as forward Euler steps, preserves the positivity of thermodynamic variables,

if the time step chosen at the first stage satisfies the time-step positivity constraint at the

remaining stages. If the scheme fails to preserve positivity on a later Runge-Kutta stage, one

can update the time step that meets the positivity constraint and repeat iterations until the

positivity constraint is met for all stages. Note, however, that for all test problems presented

in this dissertation, failing positivity on a later Runge-Kutta stage was extremely rare and

never required restarting the time step more than once. This potential issue can be avoided

by using an SSP multi-time step discretization as discussed in [64], but the above method

has been chosen herein because of its simplicity.
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CHAPTER 7

NUMERICAL RESULTS

We test the proposed positivity-preserving high-order limiting scheme on standard bench-

mark problems with smooth and discontinuous solutions. In all numerical experiments pre-

sented herein, the 3rd-order strong stability preserving (SSP) Runge-Kutta scheme developed

in [67] is used to advance the semi-discretization in time. Note that this scheme violates

the entropy stability property of the semi-discrete operator by a factor proportional to the

local temporal truncation error. As discussed in Section 6.4.3, the time step in our numer-

ical experiments is selected by using the Courant-Friedrich-Levy (CFL) condition given by

Eq. (199) and the density and temperature positivity constraints presented in Section 6.1.

In Section 7.2, we present 1-D results that we obtained using the method in [12]. In

Section 7.3, we present the results of 2-D and 3-D simulations using the proposed method

in this dissertation.

We use the following acronyms for the numerical schemes presented in this dissertation:

• ESSC-pW Solutions obtained using only the scheme of Eq. (64) with polynomial

order W will be denoted ESSC-pW (“Entropy Stable Spectral Collocation”).

• PPESAD-pW Solutions obtained using the proposed scheme of this dissertation

(Eq. (178)) with polynomial order W will be denoted PPESAD-pW (“Positivity Pre-

serving Entropy Stable Artificial Dissipation”).

• PPES-pW Solutions obtained using the proposed scheme of this dissertation

(Eq. (178)) with µAD artificially set to zero and polynomial order W will be denoted

PPES-pW (“Positivity Preserving Entropy Stable”).

We use the PPES-pW scheme to see the effects of the artificial dissipation introduced through

µAD, while maintaining positivity for a simulation where ESSC-pW fails to maintain posi-

tivity.
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7.1 NON-DIMENSIONAL 3-D COMPRESSIBLE NAVIER-STOKES

EQUATIONS

The numerical results presented in this chapter were obtained by simulating a non-

dimensional form of Eq. (45). The non-dimensional equations are obtained by introducing

a characteristic length L, velocity V∞, time L/V∞, density ρ∞, temperature T∞, dynamic

viscosity µ∞, thermal conductivity κ∞, and artificial viscosity Lρ∞V∞. The dimensionless

variables with the subscript asterisk are given by

xi = xi∗L, Vi = (Vi)∗V∞, t = t∗L/V∞, ρ = ρ∗ρ∞, T = T∗T∞, µ = µ∗µ∞,

κ = κ∗κ∞, µ
AD = µAD∗ Lρ∞V∞.

(200)

The characteristic Mach number is defined as Ma ≡ V∞/
√
γRT∞. The non-dimensional

form of Eq. (45) that we used, can be obtained by multiplying the first equation of

Eq. (45) by L/(ρ∞V∞), the momentum equations by L/(ρ∞V
2
∞), and the fifth equation

by L/(ρ∞V∞T∞cP). Hence, the non-dimensional form Eq. (45) can be written as (for the

remainder of this chapter, we omit the asterisks for clarity)

∂U

∂t
+

3∑
m=1

∂F xm

∂xm
=

3∑
m=1

[
∂F

(v)
xm

∂xm
+
∂F

(AD)
xm

∂xm

]
,

U =
[
ρ ρV1 ρV2 ρV3 ρE

]>
,

F xm =
[
ρVm ρVmV1 + δm,1P ρVmV2 + δm,2P ρVmV3 + δm,3P ρVmH

]>
,

F (v)
xm =

1

Re
F (visc)
xm (µ,

κ

Pr
),

F (AD)
xm = µAD

(
F (visc)
xm (1,

cT
cP

) +
cρ
ρ

∂ρ

∂xm

[
1 ~V E

]>)
,

F (visc)
xm (a, b) =

[
0 τ1,m(a) τ2,m(a) τ3,m(a)

3∑
i=1

τi,m(a)Vi(γ − 1)Ma2 + b ∂T
∂xm

]>
,

τi,j(a) = a

(
∂Vi

∂xj
+
∂Vj

∂xi
− δi,j

2

3

3∑
n=1

∂Vn

∂xn

)
,

P =
ρT

γMa2
, H = T +

(γ − 1)Ma2

2
‖ ~V ‖2, E =

T

γ
+

(γ − 1)Ma2

2
‖ ~V ‖2,

(201)

where we see that Eq. (201) contains the dimensionless parameters: Re ≡ Lρ∞V∞/µ∞
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the Reynolds number, Pr ≡ µ∞cP/κ∞ the Prandtl number, Ma ≡ V∞/
√
γRT∞ the Mach

number, and the adiabatic exponent of gas γ. For all numerical simulations, we used γ = 1.4.

7.2 1-D NUMERICAL RESULTS

We now present some of the 1-D numerical results that we obtained in [12]. The approach

in [12] differed from that discussed here in several ways involving mostly the artificial viscosity

and dissipation. Most significantly, in [12] we did not use the Mach number, compression

sensor, or pressure sensor when constructing µkmax for the artificial viscosity (see Eq. (97)).

Furthermore, the parameters cρ and cT were set equal to 0.25 and 0.25 cP
γ

, respectively.

Despite these differences, the main components of the algorithm are the same. For the

viscous flows in this section, we used a Prandtl number of Pr = 0.75 and we did not use

Sutherland’s law. For all results in this section we used Ma = 1/
√
γ so that P = ρT

γMa2
= ρT .

7.2.1 BLAST WAVE

To demonstrate the performance of the new high-order positivity-preserving entropy sta-

ble scheme for flows with very strong shocks and contact discontinuities, we solve the inviscid

and viscous blast wave flows with the initial conditions proposed by Woodward and Colella

[68]. For both the 1-D Euler and Navier-Stokes equations, the initial conditions are as

follows:

(ρ, v, P ) =


(1, 0, 1000), for − 0.5 ≤ x < −0.4

(1, 0, 0.01), for − 0.4 ≤ x ≤ 0.4

(1, 0, 100), for 0.4 ≤ x ≤ 0.5,

and the reflection boundary conditions are imposed on both the left and right boundaries.

The final time is set equal to t = 0.038. This test problem is characterized by the presence of

very large pressure and density jumps that may lead to discrete solutions with negative densi-

ties and temperatures if the high-order scheme alone is used for capturing these strong shock

waves and contact discontinuities. Density and pressure profiles computed with the new

high-order (p = 6) positivity-preserving spectral collocation scheme on 64, 128, 256–element

grids and the reference solution obtained with the third-order finite difference ESWENO

scheme developed in [69] on a uniform grid with 4, 000 cells for the inviscid blast wave flow
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Fig. 1: Density (first row) and pressure (second row) profiles computed with the PPESAD-
p6 scheme on uniform grids with 64, 128, 256 elements for the inviscid (left column) and
viscous (right column) blast wave flows at t = 0.038.

are presented in the left panel of Fig. 1. Along with the conventional inviscid blast wave

flow, we also consider the corresponding viscous counterpart with the Reynolds number of

103, which is solved by using the same high-order positivity-preserving flux-limiting scheme.

The right panel of Figure 1 shows the density and pressure profiles computed with new

high-order (p = 6) limiting scheme on the same grids used for the inviscid flow. These

results are compared with the reference solution obtained using the forth-order (p = 4)
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Fig. 2: The low- and high-order (p = 6) artificial viscosities obtained on the 256-element
grid for the inviscid (left panel) and viscous blast wave flows at t = 0.038.

positivity-preserving scheme on a very fine mesh with 2048 grid elements. As follows from

these numerical results, the new high-order (p = 6) spectral collocation limiting scheme

provides not only positivity of the thermodynamic variables, but also excellent dissipation

properties that allow us to capture the strong shocks within one element for both the viscous

and inviscid flows on all grids considered. Numerical solutions obtained with other polyno-

mial bases (p = 4, 5) demonstrate similar discontinuity-capturing properties and therefore

are not presented herein. For both the inviscid and viscous blast wave flows, the 1st-order

scheme is used only at the beginning of computation and only in elements containing the

strong shocks. The high-order artificial dissipation is used during the entire time interval

considered and is nonzero only at the strong shocks, as one can see in Figure 2. Another

attractive feature of the new entropy-based artificial dissipation method is that practically

no dissipation is added at the contact discontinuity.

The time step histories obtained using the 1-D form of the density and temperature pos-

itivity constraints given by Eqs. (126) and (134) as well as the conventional CFL condition

(formed like Eq. (199) but 1
(τIρ )ijk

is replaced by a term proportional to the pointwise maxi-

mum eigenvalue) with the CFL number set equal to 0.5 on the 256–element grid are shown in

Figure 3 for the inviscid (left panel) and viscous flows. For the inviscid blast wave flow, the
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Fig. 3: Time step histories for the inviscid (left panel) and viscous (Re = 103) blast wave
flows computed with the PPESAD-p6 scheme on 256-element uniform grid.

time step required for positivity of temperature (Eq. (134)) is 2–3 orders of magnitude higher

than that imposed by the density positivity and conventional CFL conditions, as one can

see in Figure 3. Note, however, that this behavior is qualitatively different for viscous flows.

As evident from Figure 3 (right panel), the time step required for positivity of temperature

for the Reynolds number Re = 103 is orders of magnitude smaller at the beginning of the

simulation. This stiffness of the time step constraint is caused by the presence of large

solution gradients at the initial instant in time. If not limited, the velocity and tempera-

ture gradients are extremely large near strong discontinuities, thus making the temperature

positivity time constraint (Eq. (134)) very stiff. The new velocity and temperature gradient

limiters presented in Section 6.2 weaken this constraint and allow the artificial dissipation

method to capture these strong shock waves and contact discontinuities without producing

negative densities and temperatures, while not imposing severe constraints on the time step

during the entire time interval considered as seen in Figure 3.
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Fig. 4: Density (first row) and pressure (second row) profiles computed with the PPESAD-
p5 scheme on uniform grids with 64, 128, 256 elements for the inviscid (left column) and
viscous (right column) double rarefaction wave problems at t = 0.15.

7.2.2 TWO RAREFACTION WAVES

The next test problem is a Riemann problem with two identical rarefaction waves. The

initial condition for this test flow is as follows:

(ρ, v, P ) =

 (1,−2, 0.1), if − 0.5 ≤ x ≤ 0

(1, 2, 0.1), if 0 < x ≤ 0.5.
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Fig. 5: The low- and high-order (p = 5) artificial viscosities obtained on the 256-element
grid at t = 0.0075 for the inviscid (left panel) and viscous (Re = 103) double rarefaction
wave problems.
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Fig. 6: Time step histories for the inviscid (left panel) and viscous (Re = 103) double
rarefaction wave flows computed with the PPESAD-p5 scheme on 256-element uniform grid.

The initial jump in the velocity profile leads to the development of two rarefaction waves

that move in opposite directions. As a result, a vacuum zone forms in the middle of the

domain. This is a very challenging problem especially for high-order schemes, because any
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spurious oscillations in the numerical solution may generate negative values of density and

pressure. The comparison of density and pressure profiles computed with the proposed

high-order (p = 5) positivity-preserving flux-limiting scheme and the exact solution of this

inviscid Riemann problem is presented in Figure 4. In addition to the 1-D Euler equations,

we also solve the corresponding Navier-Stokes equations at Re = 103 with the same initial

conditions. Figure 4 (right column) shows density and pressure profiles obtained with the

new high-order (p = 5) positivity-preserving spectral collocation scheme on a sequence of

uniform grids with 64, 128, 256 elements and references solutions computed using the high-

order (p = 4) entropy stable scheme on a very fine 2048–element uniform grid. For this

test problem, the low- and high-order artificial dissipations are added only at the beginning

of computation, while no artificial dissipation (except the Merriam-Roe dissipation added

at element interfaces) is used in the remainder of the simulation. As follows from these

comparisons, the discrete solutions are free of spurious oscillations for all grids considered

and converge to the exact and reference solutions for both the Euler and Navier-Stokes

equations, respectively.

Similar to the previous test case, we also compare histories of time steps that satisfy

the upper bound of the density and temperature positivity constraints and the standard

CFL conditions for inviscid and viscous flows with the CFL number set equal to 0.5. For

the inviscid flow, the time step required for positivity of temperature is greater than that

imposed by the inviscid CFL condition and the time step is solely determined by the density

positivity constraint over the entire time interval considered. Note, however, that for the

viscous flow at Re = 103, the time step imposed by the temperature positivity condition

(Eq. (134)) varies dramatically and from time to time becomes less than the time steps

defined by the density positivity and conventional CFL conditions. Another distinct feature

of the proposed high-order entropy stable scheme is that for the viscous flow, the time

steps required for positivity of density and temperature (Eqs. (126) and (134)) are in general

greater than the time step imposed by the standard CFL condition, as on can see in Figure 6.
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Fig. 7: Density (first row) and pressure (second row) profiles computed with the PPESAD-
p4 scheme on uniform grids with 64, 128, 256 elements for the inviscid (left column) and
viscous (right column) LeBlanc flows.

7.2.3 LEBLANC SHOCK TUBE PROBLEM

The last 1-D test problem considered is the LeBlanc shock tube problem with the follow-

ing initial condition:

(ρ, v, P ) =

 (1, 0, 6.666667× 10−2), for − 0.5 ≤ x < −0.2

(10−2, 0, 6.666667× 10−11), for − 0.2 ≤ x ≤ 0.5.
(202)
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Fig. 8: The low- and high-order (p = 4) artificial viscosities obtained on the 256-element
grid at t = 0.4 for the inviscid (left panel) and viscous LeBlanc flows.

Note that in contrast to the conventional LeBlanc shock tube problem, for which the ratio of

specific heats γ is 5/3, we use γ = 7/5. To demonstrate the performance of the new family

of high-order positivity-preserving artificial dissipation schemes, along with the 1-D Euler

equations, we also solve the Navier-Stokes equations with the Reynolds number of 105 and

the same initial condition given by Eq. (202). As one can see from Eq. (202), the initial

pressure and density values across the discontinuity drop down by nine and two orders of

magnitude, respectively. The presence of a very strong discontinuity and very low values of

the thermodynamic variables at the shock front make this shock tube flow a very challenging

problem, because even small amplitude oscillations may lead to negative values of density

or pressure. The density and pressure profiles computed by the positivity-preserving high-

order (p = 4) spectral collocation limiting scheme for the inviscid (left column) and viscous

LeBlanc flows on uniform grids with 64, 128, and 256 elements are shown in Figure 7. For

both the Euler and Navier-Stokes equations, the proposed high-order flux-limiting scheme

provides excellent discontinuity-capturing capabilities and leads to numerical solutions that

are nearly free of spurious oscillations, so that density and pressure at each solution point

always remain positive. Figure 8 shows the low- and high-order artificial viscosity coefficients

for the inviscid (left panel) and viscous flows at the final moment of time, t = 0.4. For the
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Fig. 9: Time step histories for the inviscid (left panel) and viscous (Re = 105) LeBlanc flows
computed with the PPESAD-p4 scheme on 256-element uniform grid.

inviscid flow, the first-order artificial dissipation is used only in the element containing the

shock, while the high-order dissipation is added in the neighboring element, thus damping

oscillation in the transition region. For the viscous flow, no first-order artificial dissipation is

used and the high-order dissipation is added only at the shock wave. Note that both the low-

and high-order artificial viscosities are nearly equal to zero at the contact discontinuity. For

all grids considered, the first- and high-order dissipation operators suppress high-amplitude

oscillations near the shock wave and contact discontinuity and provide the positivity of

density and pressure during the entire time interval of interest.

Histories of time steps that satisfy the upper bound of the density and temperature pos-

itivity constraints and the standard CFL condition for the inviscid (left panel) and viscous

(Re = 105) LeBlanc flows computed with the positivity-preserving high-order (p = 4) lim-

iting scheme on 256-element uniform grid are compared in Figure 9. Overall, the time step

histories for the inviscid and viscous LeBlanc flows demonstrate a similar behavior as those

obtained for the previous test problems. For the inviscid flow, the density positivity condi-

tion imposes the most strict constraint on the time step as compared with the temperature

positivity and CFL conditions during the entire time interval considered. A similar behavior

is observed for the viscous flow except that at the beginning of computation, the time step
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imposed by the temperature positivity condition is several orders of magnitude less than that

set by the density positivity and conventional CFL conditions. It should be noted that the

new velocity and temperature gradient limiters presented in Section 6.2 allow us to eliminate

this time step constraint and integrate the discretized Navier-Stokes equations with the time

step comparable to that used for the Euler equations.

7.3 2-D AND 3-D NUMERICAL RESULTS

We now present 2-D and 3-D numerical results obtained using the high-order positvity-

preserving flux-limiting scheme presented in this dissertation. While the slightly different

method used to obtain the 1-D results presented in Section 7.2 worked well for 1-D problems,

we found that the form presented in this dissertation was less dissipative for smooth features

and had a better convergence rate for steady state problems. In this section, we used cρ = 0.9

and cT = cρ
cP
γ

(see Eq. (232)). See Appendix B for an explicit discussion concerning the

implementation of boundary conditions used for the 2-D and 3-D numerical sections.

For the simulations that converge to a steady state, the following element-wise norm is

used to measure convergence

‖Ût‖L2,k =

√√√√ dÛ
dt

>

k
P [J−1]k

dÛ
dt k

1>5 P [J ]k 15

(203)

for the kth element. To measure global convergence of the K total elements in the domain,

we use

‖Ût‖L2 =

√√√√√√√√
K∑
k=1

dÛ
dt

>

k
P [J−1]k

dÛ
dt k

K∑
k=1

1>5 P [J ]k 15

. (204)

7.3.1 3-D VISCOUS SHOCK

We now consider the propagation of a 3-D viscous shock on uniform and non-uniform

grids. This problem possesses a smooth analytical solution; however, for insufficient grid

resolution the problem can appear to possess a shock discontinuity. Hence, we use this
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TABLE 1: Final L∞ and L2 errors and their convergence rates obtained with the ESSC
and PPESAD schemes for p = 4, 5, 6 for the viscous shock problem on uniform grids with
K3 number of elements. Bold numbers indicate simulations where PPESAD used artificial
dissipation. For all non-bold entries, the PPESAD simulation was identical to the ESSC
simulation.

ESSC PPESAD
K L∞ error rate L2 error rate L∞ error rate L2 error rate

p = 4
3 1.96 – 3.99e-2 – 0.76 – 3.99e-2 –
6 0.66 1.57 7.11e-3 2.49 0.66 0.21 7.11e-3 2.49
12 2.40e-2 4.78 5.50e-4 3.69 2.40e-2 4.78 5.50e-4 3.69
24 1.15e-3 4.39 2.38e-5 4.53 1.15e-3 4.39 2.38e-5 4.53
48 4.54e-5 4.66 9.27e-7 4.68 4.54e-5 4.66 9.27e-7 4.68

p = 5
3 1.93 – 2.69e-2 – 0.67 – 2.16e-2 –
6 9.95e-2 4.28 2.63e-3 3.36 9.95e-2 2.75 2.63e-3 3.03
12 5.07e-3 4.29 1.41e-4 4.22 5.07e-3 4.29 1.41e-4 4.22
24 1.40e-4 5.18 3.23e-6 5.44 1.40e-4 5.18 3.23e-6 5.44
48 2.74e-6 5.67 4.52e-8 6.16 2.74e-6 5.67 4.52e-8 6.16

p = 6
3 0.44 – 1.32e-2 – 0.42 – 1.31e-2 –
6 0.11 2.01 1.36e-3 3.27 0.11 1.97 1.36e-3 3.27
12 1.31e-3 6.37 3.27e-5 5.38 1.31e-3 6.37 3.27e-5 5.38
24 2.28e-5 5.85 2.95e-7 6.79 2.28e-5 5.85 2.95e-7 6.79
48 2.13e-7 6.74 3.04e-9 6.60 2.13e-7 6.74 3.04e-9 6.60

problem to test the ability of the proposed PPESAD scheme to detect and dissipate under-

resolved and discontinuous features in the flow, while not destroying accuracy or the error

convergence properties of the underlying ESSC scheme. The derivation of the analytical

solution and initial conditions can be found in [42, 52]. We rotated the planar shock so that

it propagates along the direction
[

1 1 1
]>

and is initially centered at the origin. We used

the following simulation parameters: Re = 50, Ma = 2.5, and Pr = 3/4. The simulation

was run from tinitial = 0 to tfinal = 0.1. We penalized against the exact solution at all domain

boundaries. We used two sets of grids. The first set of grids consisted of equal sized cubes

partitioning the domain −0.5 ≤ x, y, z ≤ 0.5. The second set of grids was formed from the

first set by randomly perturbing the coordinates of each vertex in the domain. Specifically,
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TABLE 2: Final L∞ and L2 errors and their convergence rates obtained with the ESSC and
PPESAD schemes for p = 4, 5, 6 for the viscous shock problem on non-uniform grids with
K3 number of elements. Bold numbers indicate simulations where PPESAD used artificial
dissipation. For all non-bold entries, the PPESAD simulation was identical to the ESSC
simulation.

ESSC PPESAD
K L∞ error rate L2 error rate L∞ error rate L2 error rate

p = 4
3 1.24 – 4.75e-2 – 0.68 – 4.03e-2 –
6 0.80 0.63 8.50e-3 2.48 0.56 0.27 8.20e-3 2.30
12 0.11 2.89 8.51e-4 3.32 0.11 2.37 8.51e-4 3.27
24 6.93e-3 3.96 4.96e-5 4.10 6.93e-3 3.96 4.96e-5 4.10
48 3.09e-4 4.49 1.54e-6 5.01 3.09e-4 4.49 1.54e-6 5.01

p = 5
3 3.15 – 3.30e-2 – 0.88 – 2.99e-2 –
6 0.34 3.20 4.13e-3 3.00 0.34 1.36 4.13e-3 2.86
12 4.37e-2 2.97 2.49e-4 4.05 4.37e-2 2.97 2.49e-4 4.05
24 2.30e-3 4.25 7.77e-6 5.00 2.30e-3 4.25 7.77e-6 5.00
48 3.50e-5 6.04 9.99e-8 6.28 3.50e-5 6.04 9.99e-8 6.28

p = 6
3 1.27 – 2.11e-2 – 0.52 – 1.99e-2 –
6 0.12 3.35 1.92e-3 3.46 0.12 2.07 1.92e-3 3.38
12 1.44e-2 3.11 7.33e-5 4.71 1.44e-2 3.11 7.33e-5 4.71
24 3.27e-4 5.46 1.20e-6 5.94 3.27e-4 5.46 1.20e-6 5.94
48 3.06e-6 6.74 7.56e-9 7.31 3.06e-6 6.74 7.56e-9 7.31

for a uniform grid with K3 total elements, the corresponding non-uniform grid with K3 total

elements was formed by adding r/K to each coordinate of each vertex in the domain where

the variable r is a random number that is generated for each coordinate of each vertex and

is in the set [0, 0.4). See Figure 10 for the 33 and 63 non-uniform grids.

For each simulation, we recorded the error of the numerical solution at t = tfinal. The

global L2 error on the K3 elements is calculated as

‖U−Uex‖L2 =

√√√√√√√√
K3∑
k=1

(
Ûk − Ûex

k

)>
P [J−1]k

(
Ûk − Ûex

k

)>
5
K3∑
k=1

1>5 P [J ]k 15

, (205)
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(a) (b)

Fig. 10: Initial density for the 3-D viscous shock on the 33 (left) and 63 (right) non-uniform
grids.

where Ûex
k is the array of conservatives variables for the exact solution on the kth element

(scaled by [J ]k). The global L∞ error is calculated as

‖U−Uex‖L∞ = max
1≤k≤K3

max
1≤i≤Np

‖Uex
k (~ξi)−Uk(~ξi)‖L∞ , (206)

where Np is the total number of solution points on an element. The final errors are presented

in Tables 1 and 2.

In Tables 1 and 2, bold numbers indicate simulations where PPESAD used artificial

dissipation. For all non-bold entries, the PPESAD simulation was identical to the ESSC

simulation. Recall that the PPESAD scheme is designed so that if θkf = 1 for all elements,

µAD is zero for all elements, and the velocity and temperature limiters of Section 6.2 are

not used, then the PPESAD scheme is equivalent to the ESSC scheme (see Eq. (178)). We

chose the Reynolds number large enough that the PPESAD scheme differed from the ESSC

scheme on the coarsest meshes, but the Reynolds number is also small enough that we can

see the PPESAD scheme reverting to the baseline ESSC scheme as grid resolution increases.

In particular, looking at Tables 1 and 2 we see that for all simulations on the 33 grids and

all p = 4 simulations on the 63 grids, the PPESAD scheme differs from the ESSC scheme.
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Furthermore, every time the PPESAD scheme simulation differed from the ESSC scheme it

acted in a way that either reduced or did not increase the error. Once the grid resolution

was sufficient for the ESSC scheme error to begin converging near design order accuracy,

the PPESAD scheme reverted to the ESSC scheme as it is supposed to do. Hence, these

results indicate that the proposed PPESAD scheme detects and dissipates under-resolved

and discontinuous features in the flow in a manner that is error reducing, while not destroying

accuracy or the error convergence properties of the underlying ESSC scheme.

7.3.2 FREESTREAM PRESERVATION ON 2-D CYLINDER

In Theorem 16, we prove that the high-order positivity–preserving flux-limiting scheme

given by Eq. (178) is freestream preserving. To demonstrate this, we simulate a uniform

state on a 2-D grid with a cylinder and elements that are genuinely curvilinear in a region

surrounding the cylinder. The grid has a total of 864 elements and is constructed in a manner

similar to the grids used in Section 7.3.6 for the hypersonic cylinder. See Figure 11. All

boundaries use the initial state for forming penalties and we simulate till tfinal = 10. The

initial state is ρ = 1, T = 1, and ~V =
[

cos(10◦) sin(10◦) 0
]>

. We used the following

simulation parameters: Re = 500, Ma = 3.5, and Pr = 0.7. To ensure that all terms in the

high-order positivity–preserving flux-limiting scheme given by Eq. (178) turn on during the

simulation, at every Runge-Kutta stage we randomly set the artificial viscosities µADp and

µ̄AD1 (see Section 6.3.5) up to a maximum near 1/Re, and the flux limiter (see Section 6.3.3)

in the range 0 ≤ θf < 1. See Figure 11 for the randomly generated values at t = 10.

As can be see from Figure 11, all terms in the high-order positivity–preserving flux-

limiting scheme given by Eq. (178) were used throughout the simulation. Nonetheless, the

final global L2 error (see Eq. (205)) was 2.84e−15 and the global L∞ error (see Eq. (206))

was 1.46e−13. Hence, this example confirms what we have proven in Theorem 16.

7.3.3 ENTROPY CONSERVATION FOR ISENTROPIC VORTEX

In Lemma 2, we prove that the first-order inviscid term is entropy conservative. To

demonstrate this, we simulate the rightward propagation of an inviscid isentropic vortex on

a randomly perturbed coarse grid (see Figure 12). This problem is an exact solution for
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(a) (b)

(c)

Fig. 11: Randomly generated low-order artificial viscosity (top-left), high-order artificial
viscosity (top-right), and flux limiter (bottom-left) are displayed for the PPESAD-p4 solution
of the freestream preservation problem at t = 10. The log10 of the artificial viscosities are
plotted. Element edges are displayed.

the Euler equations (e.g., see [34, 52]). For this inviscid problem, we used Ma = 0.3. All

boundaries are periodic. The vortex is initially centered at (0, 0), propagates to the right

and returns to the center by tfinal = 20.

Since this problem consists of a smooth inviscid flow with periodic boundary conditions,

the ESSC and PPES schemes semi-discretely conserve the total entropy in the domain–which

is initially zero–if all dissipation terms are turned off. Semi-discrete entropy conservation
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(a) (b)

Fig. 12: Time series plot (left) of the total entropy for the modified ESSC-p4 and PPES-p4
solutions of the isentropic vortex simulation. All entropy dissipative terms were turned off
(Brenner, interface penalties, etc.) and the PPES-p4 simulation used a randomly generated
flux limiter coefficient (right) in each element. Simulations were run on a K = 82 mesh with
interior vertices randomly perturbed (right).

implies that the evolution of the total entropy is proportional to the truncation error of the

temporal discretization. Hence, we turned off all dissipative terms for the ESSC and PPES

schemes and for the PPES scheme we randomly generated a flux limiter in each element

(see Section 6.3.3) in the range 0 < θf < 1. With this setup, the ESSC and PPES schemes

only differ by the presence of the first-order inviscid terms in the PPES scheme. Despite

this difference and the coarse randomly perturbed grid, both schemes conserve the discrete

total entropy up the to the order of the round off error for sufficiently small time steps–see

Figure 12. For both schemes, we used a constant ∆t = 2e−4.

7.3.4 2-D SHOCK DIFFRACTION

We now consider the diffraction of a rightward moving shock of Mach numbers 5.09 and

200 for viscous and inviscid flows. High speed shocks diffracting over sharp corners are well

known for producing negative densities and pressures in numerical simulations; hence, this

problem serves as an excellent example of the robustness of the proposed scheme.

The computational domain is shown in Figure 13. For all shock diffraction simulations,
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Fig. 13: The computational domain for the shock diffraction problem is bounded by the
boundary lines 1-6. The dashed line shows the initial location of the rightward moving
shock.

the boundary conditions are: outflow at boundaries 1 and 2, inflow at boundary 4, and

slip walls at boundaries 3 and 6. For the viscous flows, we use entropy stable adiabatic

no-slip wall boundary conditions at boundary 5. For the inviscid flows, we use slip wall

boundary conditions at boundary 5. See Appendix B for an explicit discussion concerning

the implementation of boundary conditions used for the 2-D and 3-D numerical sections.

For all shock diffraction simulations, Ma = 1/
√
γ so that P = ρT

γMa2
= ρT . The initial

conditions consist of a rightward moving shock of a given Mach number located at x = 0.5

and 6 ≤ y ≤ 12. On the right side of the shock, the initial conditions are ρ = 1.4, P = 1,

and ~V = 0. The left side of the shock is determined using the Rankine–Hugoniot conditions

and the given shock speed. For the viscous flows, we use the Blasius boundary layer solution

near the wall on the left side of the shock with freestream conditions corresponding to the

Mach number of the shock. Let Mas be the Mach number of the initial shock for a given

simulation. The simulations are integrated over the time interval 0 ≤ t ≤ 2.3∗5.09
Mas

. For the
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viscous simulations, Sutherland’s law is used, Pr = 0.75 and Re = 104.

(a) (b)

Fig. 14: The computational grid for the viscous shock diffraction problem. Note that in the
boundary layer along the no-slip wall and at the corner, a structured grid is used. Element
edges are displayed.

For all inviscid shock diffraction simulations, we used a uniform rectangular mesh with

∆x = ∆y and 40, 000 total elements. For the viscous shock diffraction simulations, we used

a grid with a total of 36, 027 elements. The grid for the viscous shock diffraction problem

has three regions: 1) the region that is a distance of 0.4 or more from boundary line 5, 2)

the boundary layer region which contains all points that are within a distance of 0.016 of

boundary line 5, and 3) the unstructured grid region which connects regions (1) and (2).

Region (2), the boundary layer region, used a uniform rectangular grid with ∆x = 1.5∆y

and had 6 elements in the wall normal direction; hence, in the boundary layer ∆y = 0.016/6.

Shock of Mach number 5.09

We begin by comparing the PPES-p4 and PPESAD-p4 solutions for a Mach number 5.09

shock. The ESSC scheme fails to preserve positivity for shocks of Mach number greater

than ≈ 3 (depending on the polynomial order) for this shock diffraction problem. However,
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(a) (b)

(c) (d)

Fig. 15: Density (top row) and pressure (bottom row) are shown for the viscous shock
diffraction problem with shock of Mach number 5.09. The left column shows the PPESAD-
p4 solution. The right column shows the PPES-p4 solution.

looking at the contour plots in Figure 17 of the flux limiter, θkf , for the inviscid and viscous

PPES-p4 solutions, we see that θkf = 1 almost everywhere except for a relatively small

number of elements including the shock regions and the corner. Recall, from Eq. (178),

that when θkf = 1 the PPES-p4 method is equivalent to the ESSC-p4 method for the kth

element for inviscid problems. For viscous problems, they are equivalent if the velocity and

temperature limiters of Section 6.2 are not used. The velocity and temperature limiters were
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(a) (b)

(c) (d)

Fig. 16: Density (top row) and pressure (bottom row) are shown for the inviscid shock
diffraction problem with shock of Mach number 5.09. The left column shows the PPESAD-
p4 solution. The right column shows the PPES-p4 solution.

used for the PPES-p4 solution of the viscous shock diffraction problem but only two elements

near (x, y) = (1, 5.94) used the limiters throughout the entire simulation. Therefore, we can

reasonably interpret the PPES-p4 solution as a close approximation to the ESSC-p4 solution.

Looking at Figure 15, we see that the PPESAD-p4 solution retains the features present

in the PPES-p4 solution for the viscous shock diffraction problem. In Figure 16, we see the

same result for the inviscid shock diffraction problem. For both comparisons, the solutions
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(a) (b)

Fig. 17: Flux limiter plot for the PPES-p4 solution of the inviscid (left) and viscous (right)
shock diffraction problem with shock of Mach number 5.09. Sub box in each figure shows
flux limiter for corner elements.

differ most in the shock region where y ≥ 6, where the shock strength is largest. The lack of

sufficient dissipation in this region causes the PPES-p4 solution to produce spurious oscilla-

tions that pollute the surrounding regions and serves to illustrate the important stabilization

role that µAD plays in forming the PPESAD-p4 solution.

Shock of Mach number 200

Now, we consider the shock diffraction problem for the case with an initial shock of

Mach number 200. The density, pressure, and artificial viscosity results for the inviscid and

viscous case of this problem can be seen in Figures 18 and 19. Notice that the contour color

range for the density plots goes up to ≈ 9, but the maximum values are ≈ 20. For both the

inviscid and viscous simulations, the maximum density values are obtained in the region near

(x, y) ≈ (1, 2.5). Everywhere else, the density is no greater than ≈ 9; hence, the maximum

color contour was chosen to be ≈ 9. Notice that the artificial viscosity near the shock for

the viscous solution is spread out over a wider area. This is partly due to the fact that the

viscous grid has significantly less resolution than the inviscid grid (outside the region near

the solid wall).
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(a) (b)

(c) (d)

Fig. 18: Density (top row) and pressure (bottom row) are shown for the viscous (left) and
inviscid (right) shock diffraction problem with shock of Mach number 200. All solutions were
obtained with the PPESAD-p5 scheme.

The inviscid simulation was not significantly more difficult to run (in terms of issues such

as stiffness) than the case of the inviscid shock of Mach number 5.09. We attribute this

largely to the fact that for the inviscid case the flux limiter can switch the scheme to fully

first-order when necessary (see Eq. (178)). Using a fully first-order scheme reduces the stencil

width which contributes to a less oscillatory solution in troubled regions such as at the shock.
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(a) (b)

(c) (d)

Fig. 19: High-order (left column) and low-order (right column) artificial viscosity (log10) of
the PPESAD-p5 solution of the inviscid (top row) and viscous (bottom row) shock diffraction
problem with shock of Mach number 200.

However, for the viscous case we always have the high-order physical viscous term. The high-

order physical viscous term for this problem creates significant stiffness immediately and

throughout the simulation (e.g., the initial temperature positivity constraint is ∆t / 10−14)

if not dealt with. Using the first-order artificial dissipation and inviscid terms alone is not

sufficient to reduce this stiffness adequately. Hence, the discretely entropy stable velocity

and temperature limiters of Section 6.2 must be used for this simulation. Unlike in the
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(a) (b)

Fig. 20: The cumulative usage of the temperature (left) and V1 (right) entropy stable limiters
are shown for the PPESAD-p5 solution of the viscous shock diffraction problem with shock
of Mach number 200. The Θt

k variable is plotted in the left sub figure and the (Θv
1)k variable

is plotted in the right sub figure, see Eq. (207).

case of the Mach 5.09 viscous shock diffraction problem and all the viscous 1-D problems

of Section 7.2, the bounds in Eq. (137) were not sufficiently small enough to cause the

velocity and temperature limiters to be used. Hence, if the bounds in Eq. (137) are used

for the viscous shock diffraction with shock of Mach number 200, the limiters never turn

on and the problem remains stiff. To fix this issue, we scaled the bounds in Eq. (137) by

max(1/h,
√
Re)/Re. This brought the bounds down sufficiently low enough for the limiters

to be used.

To visualize the usage of the velocity (θv1 and θv2 , see Eq. (140)) and temperature (θt,

see Eq. (152)) limiters which are element-wise constants for each iteration, we consider the

variables

(Θv
1)k =

∑
i=1

(θv1)k(RKi),

(Θv
2)k =

∑
i=1

(θv2)k(RKi),

Θt
k =

∑
i=1

(θt)k(RKi),

(207)
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where for the kth element Θt
k is the sum of the θtk values where the sum is taken over all

Runge-Kutta stages over the entire simulation. Recall that we used no more than one itera-

tion of the velocity and temperature limiters per Runge-Kutta stage. Looking at Figure 20,

we see that θt is used substantially more often than θv1 . This implies that the variation

in V1 was smaller than the modified upper bound given by Eq. (137) (and multiplied by

max(1/h,
√
Re)/Re) for most places in the domain for a majority of the simulation, but the

same was not true for the variation in temperature. Indeed, Figure 20 indicates that θv1 was

used immediately when the simulation started to reduce the V1 variation of the initial shock.

Then, θv1 was used again near the corner. Not surprisingly, θv2 was used in the same region

near the corner and in a similar amount, but was not used anywhere else.

7.3.5 2-D SHOCK WAVE / LAMINAR BOUNDARY LAYER INTERACTION

Shock boundary layer interactions (SBLI) occur in many physical applications that in-

volve transonic, supersonic, and hypersonic flows. The boundary-layer separation that re-

sults from a SBLI can lead to adverse effects such as, for example, reduced performance in

engine inlets, increased drag on airfoils, and surface heating especially for hypersonic flows

[70]. Given that SBLI are a significant source of performance degradation and shocks are

usually unavoidable in high speed flows, various techniques have been developed to try and

control the negative side effects [71]. Hence, a numerical scheme simulating the compressible

Navier-Stokes equations should be robust enough to produce accurate predictions for SBLI

problems with high Mach number shocks given their relevance in applications. Furthermore,

the computational setup we adapted from [72] results in an eventual steady state. Hence,

this test problem not only serves the purpose of testing the shock capturing and positivity

preserving capabilities of the proposed scheme, but it also tests the ability of the proposed

scheme to converge to a steady state.

We now consider the 2-D case of an oblique shock wave impinging on a flat plate over

which a laminar boundary layer is forming. The interaction of the shock with the boundary

layer produces separation of the flow and a subsequent recirculation bubble [72]. The flow

was originally studied experimentally and numerically in [73]. The particular computational

setup we use is from [72] and is shown in Figure 21. The initial conditions consist of a
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Fig. 21: The computational domain for the shock boundary layer interaction problem. The
incident shock makes an angle of θ with the solid wall. Slip wall boundary conditions are
used for the boundary y = 0, −0.2 ≤ x ≤ 0. For the Ma = 2.15 simulations, the maximum
y-value of the domain is 1 and for the Ma = 6.85 simulations it is 0.45.

uniform state where ρ = 1, T = 1, and ~V =
[

1 0 0
]>

. This initial state is also the

supersonic inflow state of inlet0 for the entire simulation. For inlet1, the inflow state is

defined so as to satisfy the Rankine-Hugoniot relations through the shock. Notice that θ is

the angle between the incident shock wave and the x-axis if the solid wall was an inviscid

wall and the shock was reflected at x = 1. Thus, the boundary between inlet1 and inlet0

(the diagonal dashed line in Figure 21) is determined by the line y = (1− x) tan(θ). On the

right boundary of the domain (see Figure 21), a portion of the outlet boundary is subsonic

which can lead to instabilities in the numerical simulation. Hence, for that subsonic region

of the right boundary we penalize against a state with a specified constant pressure (see

appendix Section B.5.4). Before the shock reflects off the solid wall, we use the average

pressure on a subset of x = 2 as the constant pressure. After the shock reflects, we use the

pressure predicted by the oblique shock wave theory as the constant pressure for the subsonic

outlet. The supersonic outlet uses no boundary condition. For all SBLI simulations, we used
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Sutherland’s law, Pr = 0.72, and Re = 105.

The Ma = 2.15 case

Fig. 22: The computational grid used for the Ma = 2.15 SBLI problem. Element edges are
displayed.

We begin by considering the case where Ma = 2.15 and θ = 30.8◦. For this choice of Ma

and θ, our setup is identical to that consider in [72]; hence, in Figure 23 we compare skin

friction and relative pressure (P/P0 = PγMa2) results with those found in [72]. The results

in [72] were obtained using a weak-form DG method that adds Godunov-type dissipation

at element interfaces with implicit time integration. For Ma = 2.15, the shock at the

leading edge is weak enough that, with p-restarting, the ESSC scheme can also be used for

comparison. We ran all Ma = 2.15 simulations on the grid presented in Figure 22 which is

comparable to the resolution of the fine grid in [72]. For the grid in Figure 22, the average

∆y of the first four elements near the solid wall in the normal direction is 0.0016 and the

smallest ∆x is 0.0026. As can be seen, the grid is stretched to provide more resolution in

the boundary layer and at x = 0 and x = 1. The grid in Figure 22 used a total of 17, 050
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Fig. 23: Skin friction (left) and relative pressure (right) profiles at the solid wall boundary
(y = 0) for the Ma = 2.15 oblique SBLI problem. The PPESAD-p4 and ESSC-p4 methods
used the grid in Figure 22. The reference [72] used p = 6 and K = 11, 041.

elements.

The PPESAD-p4 and ESSC-p4 simulations were run until the elements in the boundary

layer reached ‖Ût‖L2,k / 10−6. For the PPESAD-p4 solution, ‖Ût‖L2 = 6.51e−4. For the

ESSC-p4 solution, ‖Ût‖L2 = 5.30e−4. Notice that the PPESAD-p4 and ESSC-p4 solutions

are nearly indistinguishable for the skin friction and pressure plots at the wall in Figure 23;

thus, indicating that PPESAD-p4 does not over-dissipate. The slight variation from the

reference solution [72] in Figure 23 may be accounted for by the differences in the grid

resolution in the boundary layer.

In Figure 24, we compare the density, relative pressure, and Mach number plots for the

ESSC-p4 and PPESAD-p4 solutions. The results are similar which is reasonable given that

only high-order elements are used and the artificial dissipation used is small and nonzero in

relatively few elements (see Figure 25).
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(a) (b)

(c) (d)

(e) (f)

Fig. 24: Density (top row), relative pressure (middle row), and Mach number (bottom row)
are shown for the Ma = 2.15 oblique SBLI problem. The left column shows the PPESAD-p4
solution. The right column shows the ESSC-p4 solution. Maximum values not visible in the
plot occur at the compression corner, (x, y) = (0, 0).

The Ma = 6.85 case

Next, we consider the case where Ma = 6.85 and θ = 11.8◦ which also leads to a steady

state. For this case, the ESSC scheme was unable to maintain positivity beyond p = 2.

Hence, we compare the solution on two different grids for polynomial orders p = 4 and

p = 6. The medium grid used a total of 17, 920 elements and is shown in Figure 26. As

can be seen the grid is stretched in the x-direction so as to provide more resolution between

x = 0 and x = 1 where ∆x is constant and uniformly equal to ≈ 0.0034. In the y-direction,

∆y ≈ 0.017 above y = 0.2. Below y = 0.2, ∆y decreases to an average of ∆y ≈ 0.0034
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Fig. 25: High-order aritficial viscosity is shown for the PPESAD-p4 solution of theMa = 2.15
SBLI problem. Low-order artificial viscosity was globally zero for the PPESAD-p4 solution.

Fig. 26: The medium resolution computational grid used for the Ma = 6.85 SBLI problem.
Element edges are displayed.

for the 5 elements closest to the wall in the normal direction. The fine grid uses a total of

27, 990 elements and is stretched in the same manner as the medium grid. For 0 ≤ x ≤ 1,

∆x ≈ 0.002. Above y = 0.2, ∆y ≈ 0.017. Below y = 0.2, ∆y decreases to an average of

∆y ≈ 0.002 for the 5 elements closest to the wall in the normal direction.

The results from three different simulations are presented in this section. For one sim-

ulation, we used the medium grid and p = 4. The other two simulations used the fine grid

and p = 4, 6. All simulations were run until the elements in the boundary layer reached
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Fig. 27: Skin friction (left) and relative pressure (right) profiles at the solid wall boundary
(y = 0) for the Ma = 6.85 oblique SBLI problem. Solutions were obtained with the PPESAD
scheme on the medium (K = 17, 920) and fine grid for polynomial orders p = 4 and p = 6.

‖Ût‖L2,k / 10−6. For the medium grid simulation, ‖Ût‖L2 = 9.481e−4. For the fine grid

simulation with p = 4, ‖Ût‖L2 ≈ 0.1; however, looking at the global contour plot of ‖Ût‖L2,k

(see Figure 30) shows that ‖Ût‖L2,k is / 10−6 globally besides at the compression corner

where about 6 elements have 0.1 / ‖Ût‖L2,k / 20. The slow convergence of ‖Ût‖L2 for this

simulation may be partially explained by the the fact that the fine grid changes ∆x more

rapidly than the medium grid outside of 0 ≤ x ≤ 1 (e.g., for the fine grid ∆x changes by

a factor of 8 in the 8 elements leading up to x = 0, but the medium grid only changes by

a factor of 1.5). The other explanation is the lack of smoothness of the switches used in

the scheme. This latter issue is one we intend to address when generalizing our method to

implicit time integration. We also used the PPES-p4 method for the fine grid, but it had

the same convergence issue for ‖Ût‖L2 ; hence, we do not think it is the artificial dissipation

alone that causes the convergence issue. The fine grid PPESAD-p6 solution was obtained

using the PPESAD-p4 fine grid solution as initial conditions and the PPESAD-p6 solution

quickly obtained ‖Ût‖L2 = 4.5e−5.

In Figure 27, we compare the skin friction and relative pressure profiles of the three

simulations (P0 = 1/(γMa2)). Notice that the fine grid and medium grid solutions are close
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(a)

(b)

(c)

Fig. 28: Density (top), relative pressure (middle), and Mach number (bottom) of the
PPESAD-p6 fine grid solution are shown for the Ma = 6.85 oblique SBLI problem. Maxi-
mum values not visible in the plot occur at the compression corner, (x, y) = (0, 0).

to each other and the two solutions on the fine grid are nearly identical. Since the PPESAD-

p4 and PPESAD-p6 solutions were nearly identical, in Figure 28 we present the density,



128

(a)

(b)

Fig. 29: High-order (top) and low-order (bottom) artificial viscosity of the PPESAD-p6 fine
grid solution are shown for the Ma = 6.85 oblique SBLI problem. The low-order viscosity
is zero except for in six elements near (x, y) = (0, 0).

relative pressure, and Mach number results only for PPESAD-p6. Notice that the relative

pressure near (x, y) = (0, 0) is about six times larger than anywhere else in the domain.

Also, notice how the circulation bubble has shifted to the left as compared to the Ma = 2.15

results. in Figure 29, we plot the high-order and low-order artificial viscosities. In contrast

to the case for Ma = 2.15 where the low-order viscosity was globally zero, the low-order

artificial viscosity is nonzero when Ma = 6.85 but only at the compression corner for six

elements. Furthermore, the flux limiter (0 ≤ θkf ≤ 1 from Eq. (178)) is equal to 1 everywhere

except for the single element whose bottom right corner touches (x, y) = (0, 0). For this

element, θkf = 0.415. For the high-order artificial viscosity, we see a result similar to the

Ma = 2.15 simulation where the high-order artificial viscosity for the Ma = 6.85 simulation
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Fig. 30: Contour plot of log10 ‖Ût‖L2,k for the PPESAD-p4 fine grid solution of the Ma =

6.85 oblique SBLI problem. For the fine grid PPESAD-p6 solution, the spike in log10 ‖Ût‖L2,k

at the corner is not present.

is mostly zero everywhere except for at the shocks. The velocity and temperature limiters

of Section 6.2 were never used for this simulation.
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7.3.6 2-D HYPERSONIC CYLINDER

Fig. 31: The coarse grid used for the hypersonic cylinder problem. Element edges are
displayed.

In this section, we consider the hypersonic flow around a two-dimensional adiabatic cylin-

der of diameter 1. We use the same parameters used in [3]: Re = 376, 930, Ma = 17.605,

and Pr = 0.71. They do not appear to specify if they used Sutherland’s law in [3], but

based on our numerical results (we ran both cases), we believe that they did not. Hence,
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we present only results for the case with no Sutherland’s law. In [3], they used a slightly

larger domain than we used; however, our domain includes the essential region of the flow

and is nearly identical to the part of the domain they include in their figures. See Figure 31

for the domain we used. The initial conditions are a uniform state where ρ = 1, T = 1,

and ~V =
[

1 0 0
]>

. The boundary of the cylinder used adiabatic no-slip wall bound-

ary conditions. The left and right boundaries penalized against the initial state. For the

left boundary, this is an inflow boundary condition. For the right boundary, this was non-

problematic since the flow was supersonic. The top and bottom boundaries used no boundary

conditions. We used a coarse, medium, and fine grid for this problem. See Figure 31 for the

coarse grid we used. All grids were designed in the following manner. Rectangular elements

were used for 2 ≤ x ≤ 3. Region 1 consists of all points within 0.008 distance from the

wall. Region 1 used elements with two curved edges each of different constant radius with

respect to (x, y) = (0, 0). In region 1, ∆r was kept constant. For the coarse grid, there are 3

elements in the normal direction in region 1 and hence ∆r = 0.008/3. For the medium grid,

∆r = 0.008/4 and for the fine grid ∆r = 0.008/6 in region 1. The tangential resolution in

region 1 is determined by the number of edges radiating from the cylinder boundary. The

coarse grid used a total of 288 radial lines, the medium grid used 560, and the fine grid used

720. The grid is then stretched to be coarser closer to the boundaries. Elements more than

a distance of 1 away from (0, 0) are no longer curved. The coarse grid used 15, 840 total

elements, the medium grid used 39, 060, and the fine grid used 55, 260. We should note that

in [3] they used both a larger mesh and only 16, 000 elements total. The authors in [3] used

fourth-order hybridized discontinuous Galerkin (HDG) and third-order DIRK(3,3) schemes

with a novel form of artificial dissipation. They did not specify the resolution they used in

the boundary layer.

All solutions presented were obtained from (p−1)-restarting, beginning with p = 2. Time

averaging windows were chosen independently for each simulation based on the steadiness of

the upstream skin friction coefficient. For most p > 2 simulations, tfinal − tinitial = 5 and the

time averaging window was about 3/4 of that time. In Figure 32, we compare time-averaged

pressure and skin friction coefficient results with those obtained in [3]. Notice that there

is only a significant difference for the skin friction plots. Based on our numerical results,
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(a) (b)

Fig. 32: Time-averaged pressure (left) and skin friction (right) coefficients obtained with
the PPESAD scheme on the no-slip boundary cylinder wall for the hypersonic cylinder
simulation. The point (−0.5, 0) corresponds to θ = 0 and positive angles are associated with
clockwise rotation from the point (−0.5, 0). The reference solution used a fourth-order HDG
method on 16, 000 elements as described in [3].

the skin friction changes significantly with resolution; hence, we estimate that the boundary

layer resolution in [3] was comparable to the p = 2 coarse grid which is reasonable given

that they used a larger grid with only 16, 000 elements. Additionally, it is possible that in

[3] more artificial dissipation is added in the boundary region. Notice that the PPESAD-p5

solution in Figure 34 adds no artificial dissipation in the boundary layer. The same was

observed for the oblique SBLI problems in Figures 25 and 29. The velocity and temperature

limiters discussed in Section 6.2 were not used for the PPEASAD-p5 fine grid simulation.

Contour plots of the density, pressure, vorticity and Mach number are shown for the

PPESAD-p5 fine grid solution in Figure 33. The extremum vorticity values are obtained on

the cylinder wall. The contour level range is chosen over the smaller range of [−20, 20] so

that other features can be observed.

7.3.7 TAYLOR-GREEN VORTEX

We now present numerical results for the viscous, compressible Taylor-Green vortex

(TGV) problem at Mach numbers Ma = 2 and Ma = 10. Often, this test problem is

solved at low Mach numbers (e.g., the Ma = 0.1 case was considered in [52, 74] and the
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(a) (b)

(c) (d)

Fig. 33: Density (top left), pressure (top right), vorticity (bottom left), and Mach number
(bottom right) are shown for the PPESAD-p5 fine grid solution of the hypersonic cylinder
problem.

Ma = 0.08 case was considered in [36]) and is used as a test case for comparing how different

numerical schemes perform for under-resolved turbulent flows. However, in [75], simulations

were performed for Mach numbers in the range Ma = 0.5 to Ma = 2. We adopt the settings

used in [75] and compare our results for the Ma = 2 case. The settings are: Re = 400,

Pr = 0.7, and Sutherland’s law is used. The problem is solved on the periodic box defined
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(a) (b)

Fig. 34: High-order (left) and low-order (right) artificial viscosity (log10) of the PPESAD-p5
fine grid solution are shown for the hypersonic cylinder problem.

by 0 ≤ x, y, z ≤ 2π with the following initial conditions

ρ = 1 +
1

16
(cos 2x+ cos 2y)(cos 2z + 2),

V1 = sinx cos y cos z,

V2 = − cosx sin y cos z,

V3 = 0,

T = 1.

(208)

Uniform, rectangular grids with ∆x = ∆y = ∆z are used for all test cases; hence, we refer

to the grid with 8 total elements such that ∆x = π for all elements as the “23 grid”, for

example.

The Ma = 2 case

In [75], they used a hybrid compact eighth-order finite difference and seventh-order

weighted essentially non-oscillatory (FD-WENO) scheme with hyperviscosity for uniform

grids 1283, 2563, and 5123. In Figure 35, we compare the temporal evolution of the total

kinetic energy for the ESSC-p4 and PPESAD-p4 solutions to the results obtained in [75].

The 1283, 2563, and 5123 results for the time series plot of the total kinetic energy in [75]
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(a) (b)

Fig. 35: Time series plot of the total kinetic energy (left) and total entropy residual (right)
for the ESSC-p4 and PPESAD-p4 solutions of the Ma = 2 TGV problem on grids 43, 163

and 643. The FD-WENO reference solution is from [75].

(a) (b)

Fig. 36: Time series plot of the total kinetic energy (left) and total entropy residual (right)
for the PPES-p6 and PPESAD-p6 solutions of the Ma = 10 TGV problem on grids 43, 163

and 643.

were indistinguishable. As can be seen, the 43 and 163 PPESAD-p4 solutions dissipate the

total kinetic energy significantly more than their ESSC-p4 counterparts; however, this does
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not imply that the ESSC-p4 solution is overall more accurate. To see this, we look at Fig-

ure 37 where we see that for density and pressure the ESSC-p4 solution on 163 contains large

overshoots that aren’t present in the 643 solution; furthermore, it is clear from Figure 37

that the ESSC-p4 solutions on 163 and 643 for pressure, density, and V1 possess non-physical

oscillations. The PPESAD-p4 solution, on the other hand, recognizes that the resolution is

insufficient for the coarse grids and adds artificial dissipation to maintain a smooth, non-

oscillatory solution. The PPESAD-p4 solution recognizes the lack of sufficient resolution via

the entropy residual (R, Eq. (81)) and the residual-based sensor (Sn, Eq. (85)), then adds

artificial dissipation to reduce the entropy residual. As can be seen in Figure 35, for a given

grid the PPESAD-p4 scheme keeps the total entropy residual in the domain lower than the

ESSC-p4 scheme does.

The Ma = 10 case

For Ma ' 3, the ESSC scheme fails to preserve positivity (depending on the polynomial

order) for the viscous TGV problem; hence, we compare the PPESAD and PPES Ma = 10

solutions. In Figure 36, we see that the decay rate of the total kinetic energy for the two

methods for the 43 and 163 grids is fairly similar, but the PPES method is less dissipative. As

we would expect, this corresponds to the total entropy residual being typically larger for the

PPES method on those same grids. For the more resolved 643 grid, the total kinetic energy

decay rates are nearly identical. In Figure 38, we see that both the PPES and PPESAD

solutions appear to be free of spurious oscillations.
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(a) (b)

(c) (d)

(e) (f)

Fig. 37: Density (top row), pressure (middle row), and velocity component V1 = U (bottom
row) are plotted for the PPESAD-p4 and ESSC-p4 solutions of the Ma = 2 TGV problem
on the 163 (left column) and 643 (right column) grids. Data is obtained at time t = 2.5 from
the line intersected by the planes y = π and z = π.
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(a) (b)

(c) (d)

(e) (f)

Fig. 38: Density (top row), pressure (middle row), and velocity component V1 = U (bottom
row) are plotted for the p = 5 (left column) and p = 6 (right column) PPESAD and PPES
solutions of the Ma = 10 TGV problem on the 643 grid. Data is obtained at time t = 2.5
from the line intersected by the planes y = π and z = π.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

We have constructed a new class of positivity-preserving, entropy stable, spectral collo-

cation schemes of arbitrary order of accuracy for the 3-D compressible Navier–Stokes equa-

tions on unstructured curvilinear grids. To our knowledge, the proposed spectral collocation

methods are the first class of high-order schemes that provide both the pointwise positivity

preservation of thermodynamic variables and entropy stability property for the compressible

Navier-Stokes equations. In Chapter 7, the robustness of our method was tested on sev-

eral problems for which maintaining positivity is extremely non-trivial including the viscous

Leblanc problem and the diffraction of a viscous shock of Mach number 200. Furthermore,

we demonstrated through the 3-D viscous shock and Taylor-Green vortex problems that our

new method can increase the accuracy of a high-order scheme for under-resolved simulations

and does not destroy accuracy for sufficiently resolved simulations. We also demonstrated

the robustness of the method by simulating problems with steady state solutions (shock

boundary layer interaction problem) and problems with sharp features on curvilinear grids

(hypersonic cylinder problem).

Pivotal to the success of our proposed method is the residual-based sensor developed in

Chapter 5. This sensor plays many key roles in our scheme: it is the first step in screening

for under-resolved and discontinuous features, it scales the artificial viscosity, it controls

the flux-limiting on troubled elements, and it is one of the quantities used to determine

when the entropy stable velocity and temperature limiters for viscous flows can be used.

Without the residual-based sensor to tell the scheme when regularization is not necessary,

we would have certainly over-dissipated the 3-D viscous shock problem on sufficiently resolved

grids. Furthermore, the residual-based sensor is relatively cheap to obtain as compared to

constructing a host of physics-based sensors; hence, by being the first step in screening for

under-resolved features the residual-based sensor serves to save computational time.

The artificial viscosity coefficient constructed in Chapter 5 also involves several non-

trivial choices. While physics-based sensors can be useful for building an artificial viscosity,
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we chose to rely on them sparingly for constructing the artificial viscosity coefficient. The

physics-based sensors can only change the amount of dissipation within a range, but they do

not decide when dissipation is used. Additionally, we decided to construct the dissipation in

proportion to the regularity of the velocity and pressure fields instead of using more common

choices such as the max eigenvalue. This choice ensures that the artificial viscosity is smaller

for smooth regions and non-shock discontinuities, e.g. contact discontinuities. Lastly, the

choice to scale part of the artificial viscosity by the mach number led to a significant reduction

in the amount of dissipation added at solid walls and consequently more accurate results for

the shock boundary layer interaction problem.

The first-order positivity-preserving scheme developed in Chapter 6 relied on several new

contributions. While it is somewhat intuitive that mixing the first-order and high-order

inviscid terms can stabilize the numerical scheme at sharp features, developing first-order

inviscid terms that have the same element-wise entropy contribution and preserve freestream

for general curvilinear grids is not as straightforward, but highly necessary for building a

robust scheme. Hence, we consider Lemma 2 a significant contribution of this work. In

our numerical tests, Rusanov-type fluxes performed poorly as compared to the Merriam–

Roe flux. Yet, finding a Merriam–Roe flux for which the density contribution was as well

behaved as in Eq. (119) required substantial work. Hence, we consider Eq. (119) a significant

contribution. Although density positivity for first-order schemes is certainly not new, we

believe that Theorem 6 presents a sufficiently general and sharp requirement for developing

density positivity-preserving schemes. Furthermore, the two-point matrix νw in Lemma 107

greatly simplifies the process of moving between the primitive form of a proposed two-point

flux and the entropy variable form that is useful for proving entropy stability.

The discretely entropy stable velocity and temperature limiters presented in Section 6.2

are essential for viscous simulations at high mach numbers when only high-order viscous

terms are used. Using the necessary temperature positivity time step restriction given in

Section 6.1.6 and beginning a viscous simulation with the initial conditions of the Blastwave,

Leblanc or the Mach 200 shock diffraction problem immediately requires time steps smaller

than 10−14 and the situation does not significantly improve with first-order dissipation and

inviscid terms. However, the velocity and temperature limiters quickly act to reduce the
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strictness of the temperature positivity constraint. Indeed, the ability to enforce any velocity

and temperature variation constraint in a conservative and discretely entropy stable manner

over any set of points (we used elements) without changing the density field is quite powerful

and we anticipate that these new limiters may have additional utility beyond what we used

them for.

In Section 6.3, we present a flux-limiting method for combining a high-order positivity-

violating entropy stable spectral collocation scheme and a first-order positivity-preserving

entropy stable scheme defined on the same collocation points used for the high-order counter-

part. The positivity preservation and entropy stability properties are obtained by introducing

the low- and high-order artificial dissipation operators that mimic the corresponding diffusion

operators of the Brenner-Navier-Stokes equations. Since both schemes are defined on the

same set of collocation points, no interpolation is required between high- and low-order ele-

ments. The low- and high-order schemes are coupled by using the flux limiter that preserves

the conservation, positivity preservation, and entropy stability properties, thus facilitating

the rigorous L2-stability proof for the symmetric form of the discretized 3-D compressible

Navier-Stokes equations on curvilinear grids. An additional attractive property of the pro-

posed class of schemes is that the 1st-order artificial dissipation is only added in troubled

elements where the density or temperature becomes negative or the shock strength exceeds

the user-defined threshold, while in the rest of the computational domain the high-order

entropy stable scheme is used. Our numerical experiment show that the new flux-limiting

schemes demonstrate the high-order error convergence for smooth solutions and provide the

positivity of thermodynamic variables and excellent shock-capturing capabilities for discon-

tinuous flows.

While there are certainly still many roadblocks to overcome in developing next-generation

high-order numerical algorithms for LES and DNS, we believe that we have developed signif-

icantly general tools that can be used to stabilize and preserve positivity properties for other

high-order algorithms and may perhaps inspire future, improved methods for more general

settings.
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APPENDIX A

ENTROPY STABILITY PROOFS

A.1 ENTROPY STABILITY OF FIRST-ORDER SYMMETRIC

POSITIVE (SEMI-)DEFINITE FLUXES

The simplest manner of ensuring that a first-order flux is entropy stable is to write

it in terms of a symmetric positive (semi-)definite matrix multiplied by the jump in the

entropy variables. Since only semi-definiteness is required for entropy stability, we will

assume symmetric positive semi-definite matrices (SPSD), but the same statements hold for

SPD matrices as well. Since the entropy stability proofs of all such fluxes are essentially

identical, we record it here for a general flux for reference.

Lemma 18. Assume that Ût =
3∑
l=1

P−1
ξl

∆ξl
ˆ̄f

(dis1)
l + . . . where for all fixed 1 ≤ j, k ≤ N ,

0 ≤ i ≤ N , and ~ξi = ~ξijk we have

ˆ̄f
(dis1)
1 (~ξi) = M (dis1)(~ξi)

(
w(~ξi+1)−w(~ξi)

)
= M (dis1)(~ξi)∆1w(~ξi), (209)

where w(~ξ0) and w(~ξN+1) are taken from the collocated state (numerical or boundary con-

dition), M (dis1)(~ξi) is SPSD, and we use identical definitions in the other computational

directions.

Let

H(dis1)
a = w>a P

3∑
l=1

P−1
ξl

∆ξl
ˆ̄f

(dis1)
l,a (210)

denote the total entropy contribution of ˆ̄f
(dis1)
l on the ath element. Then, summing over the

K total elements in the domain we have

K∑
a=1

H(dis1)
a =

K∑
a=1

[
3∑
l=1

w>a P⊥,ξlB̃
(BC)

ξl,a
ˆ̄f

(dis1)
l,a −H(dis1,D)

a − L(Int,dis1,D)
a

]
, (211)
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where

H(dis1,D)
a =

N∑
j,k=1

Pjk
N−1∑
i=1

∆1wa(~ξijk)
ˆ̄f

(dis1)
1,a (~ξijk)

+
N∑

i,k=1

Pik
N−1∑
j=1

∆2wa(~ξijk)
ˆ̄f

(dis1)
2,a (~ξijk)

+
N∑

i,j=1

Pij
N−1∑
k=1

∆3wa(~ξijk)
ˆ̄f

(dis1)
3,a (~ξijk)

(212)

is non-negative and the entropy contribution of the interior interfaces is expressed by

L(Int,dis1,D)
a =

N∑
j,k=1

Pjk
2

[
∆1wa(~ξ0jk)

ˆ̄f
(dis1)
1,a (~ξ0jk)χ

(Int)
a (~ξ0jk)

+ ∆1wa(~ξNjk)
ˆ̄f

(dis1)
1,a (~ξNjk)χ

(Int)
a (~ξNjk)

]
+

N∑
i,k=1

Pik
2

[
∆2wa(~ξi0k)

ˆ̄f
(dis1)
2,a (~ξi0k)χ

(Int)
a (~ξi0k)

+ ∆2wa(~ξiNk)
ˆ̄f

(dis1)
2,a (~ξiNk)χ

(Int)
a (~ξiNk)

]
+

N∑
i,j=1

Pij
2

[
∆3wa(~ξij0)ˆ̄f

(dis1)
3,a (~ξij0)χ(Int)

a (~ξij0)

+ ∆3wa(~ξijN)ˆ̄f
(dis1)
3,a (~ξijN)χ(Int)

a (~ξijN)
]
,

(213)

which is also non-negative.

Proof. The generalized SBP property (51) gives us

H(dis1)
a = w>a

3∑
l=1

P⊥,ξl∆ξl
ˆ̄f

(dis1)
l,a

= w>a

3∑
l=1

P⊥,ξlB̃ξl
ˆ̄f

(dis1)
l,a −w>a

3∑
l=1

P⊥,ξl∆̃ξl
ˆ̄f

(dis1)
l,a

= w>a

3∑
l=1

P⊥,ξlB̃ξl
ˆ̄f

(dis1)
l,a −H(dis1,D)

a ,

(214)

which proves the claim in the absence of interior element faces. Summing the entropy

contribution of w>a
3∑
l=1

P⊥,ξlB̃ξl
ˆ̄f

(dis1)
l,a from each element at an interior face and then allocating

half to each element sharing the face we obtain the contribution of L
(Int,dis1,D)
a given in
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(213).

A.2 ENTROPY STABILITY OF HIGH-ORDER VISCOUS FLUXES

In this section, we present a general proof of entropy stability for high-order viscous

terms on curvilinear grids. We closely follow similar proofs that have been given for the

Navier-Stokes viscous terms (e.g. see [36, 37, 52]).

Lemma 19. Assume that Ût =
3∑
l=1

Dξl f̂
(visc)
l +P−1

ξl
ĝ

(visc)
l . . . where the dissipative term f̂

(visc)
l

can be written as

f̂
(visc)
l =

3∑
m=1

[âlm]f
(visc)
xm , f

(visc)
xm =

3∑
j=1

[c
(visc)
m,j ]Θxj . (215)

Assume that for each 1 ≤ a, b ≤ 3, [c
(visc)
a,b ] is a block diagonal matrix with blocks that are 5×5,

[
(
c

(visc)
a,b

)T
] = [c

(visc)
b,a ], and

3∑
a=1

3∑
b=1

vT [c
(visc)
a,b ]v ≥ 0,∀v i.e. the full viscous tensor is symmetric

positive semi-definite (SPSD). Assume that ĝ
(visc)
l = ĝ

(BC,visc)
l + ĝ

(Int,visc)
l where ĝ

(BC,visc)
l is

nonzero only at domain boundary faces and hence enforces the boundary conditions while

ĝ
(Int,visc)
l is only nonzero at all interior faces collocated with neighboring elements. Assume

that ĝ
(Int,visc)
l can be decomposed as the sum of an entropy conservative term and entropy

dissipative term ĝ
(Int,visc)
l = ĝ

(Int,visc,C)
l + ĝ

(Int,visc,D)
l where for all fixed 1 ≤ j, k ≤ N and

~ξi = ~ξijk we have

ĝ
(Int,visc,C)
1 (~ξi) =

χ(Int)(~ξi)

2

3∑
m=1

â1
m(~ξi)

(
δ1i∆1f

(visc)
xm (~ξi−1) + δNi∆1f

(visc)
xm (~ξi)

)
,

ĝ
(Int,visc,D)
1 (~ξi) = χ(Int)(~ξi)

(
−δ1iΛ

(visc)(~ξi−1, ~ξi)∆1w(~ξi−1)

+ δNiΛ
(visc)(~ξi+1, ~ξi)∆1w(~ξi)

)
,

(216)

where identical definitions hold for other computational directions and Λ(visc) is SPSD. Let

H
(visc)
k = w>k P

[
3∑
l=1

Dξl f̂
(visc)
l,k + P−1

ξl
ĝ

(visc)
l,k

]
(217)
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denote the total entropy contribution of f̂
(visc)
l and ĝ

(visc)
l on the kth element. Then, summing

over the K total elements in the domain we have

K∑
k=1

H
(visc)
k =

K∑
k=1

3∑
l=1

[
w>k P⊥,ξl

[
B

(BC)

ξl,k
f̂

(visc)
l,k + ĝ

(BC,visc)
l,k

]
+
(
ĝ

(BC,Θ)
l,k

)>
P⊥,ξl f̂

(visc)
l,k

]
−

K∑
k=1

[
H

(visc,D)
k + L

(Int,visc,D)
k

]
,

(218)

where ĝ
(BC,Θ)
l,k (~ξabc) = ĝΘ

l,k(
~ξabc)χ

(BC)
k (~ξabc),

H
(visc,D)
k =

3∑
m,j=1

(Θxm,k)
>P [J ]k[c

(visc)
m,j ]kΘxj ,k (219)

is non-negative, and the entropy contribution of ĝ
(Int,visc,D)
1 is expressed by L

(Int,visc,D)
k given

in Eq. (213) which is also non-negative.

Proof. We begin by inspecting the entropy contribution on a single element:

H
(visc)
k =

3∑
l=1

w>k P⊥,ξl
[
Qξl f̂

(visc)
l,k + ĝ

(visc)
l,k

]
=

3∑
l=1

[
w>k P⊥,ξl

[
Bξl f̂

(visc)
l,k + ĝ

(visc)
l,k

]
−w>k P⊥,ξlQ>ξl f̂

(visc)
l,k

]
=

3∑
l=1

[
w>k P⊥,ξl

[
Bξl f̂

(visc)
l,k + ĝ

(visc)
l,k

]
−
(
Dξlwk

)>P f̂
(visc)
l,k

]
.

(220)
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Note that

3∑
l=1

(
Dξlwk

)>P f̂
(visc)
l,k =

3∑
l=1

(
Dξlwk

)>P 3∑
m=1

[âlm]kf
(visc)
xm,k

=
3∑

m=1

3∑
l=1

(
Dξlwk

)>
[âlm]kPf

(visc)
xm,k

=
3∑

m=1

(wxm,k)
>P [J ]kf

(visc)
xm,k

=
3∑

m,j=1

(
Θxm,k − gΘ

m,k

)>P [J ]k[c
(v)
m,j]kΘxj ,k

= H
(visc,D)
k −

3∑
m=1

(
gΘ
m,k

)>P [J ]kf
(visc)
xm,k

= H
(visc,D)
k −

3∑
l=1

(
ĝΘ
l,k

)>P⊥,ξl f̂ (visc)
l,k .

(221)

Hence,

H
(visc)
k =

3∑
l=1

[
w>k P⊥,ξl

[
Bξl f̂

(visc)
l,k + ĝ

(visc)
l,k

]
−
(
Dξlwk

)>P f̂
(visc)
l,k

]
=

3∑
l=1

[
w>k P⊥,ξl

[
Bξl f̂

(visc)
l,k + ĝ

(visc)
l,k

]
+
(
ĝΘ
l,k

)>P⊥,ξl f̂ (visc)
l,k

]
−H(visc,D)

k .

(222)

If all faces were domain boundary faces, then Eq. (222) would directly imply the result

we intend to prove. Hence, we inspect the sum of the boundary terms in Eq. (222) at interior

domain faces. Given that ĝΘ
l , Bξl f̂

(visc)
l and ĝ

(visc)
l are only nonzero at element faces, it is

sufficient to consider a single point on one interior face for two general elements. We use

~ξL and ~ξR to denote the computational coordinates on two different elements that map to

the same physical coordinate at a shared element interface. Furthermore, since the element

wise defined computational directions may differ, we let f̂
(visc)
l (~ξL) = f̂ (visc)(~ξL) represent the

outward (relative to the ~ξL state element) normal flux for the ~ξL state. We split the sum of

the terms in Eq. (222) (not including H
(visc,D)
k ) from each element at each shared point as
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C +D where

D = P⊥(w(~ξL)− w(~ξR))>Λ(visc)(~ξL, ~ξR)(w(~ξL)− w(~ξR))>,

C = w(~ξL)>P⊥
[
f̂ (v)(~ξL)− 1

2

(
f̂ (v)(~ξR) + f̂ (v)(~ξL)

)]
+
P⊥
2

((
w(~ξR)− w(~ξL)

)>
f̂ (v)(~ξL)

)
+

w(~ξR)>P⊥
[
f̂ (v)(~ξR)− 1

2

(
f̂ (v)(~ξR) + f̂ (v)(~ξL)

)]
+
P⊥
2

((
w(~ξL)− w(~ξR)

)>
f̂ (v)(~ξR)

)
= 0,

(223)

where the scalar P⊥ is the scaling from P⊥,l at the given point and since C = 0 we see that

only the dissipative term D is present in Eq. (218) through the sum of L
(Int,visc,D)
k .

A.3 ENTROPY STABLE BRENNER-NAVIER-STOKES FLUXES

Brenner’s modification to the Navier-Stokes equations [54, 55] can be viewed as chang-

ing the Navier-Stokes viscous fluxes, F (v)
xm , to the Brenner-Navier-Stokes viscous fluxes,

F
(B)
xm ,m = 1, 2, 3, where

F (B)
xm = F (v)

xm + σ
∂ρ

∂xm

[
1 ~V E

]>
. (224)

This change can also be viewed as changing the viscosity matrices Cm,j of Eq. (15) to the

Brenner-Navier-Stokes viscosity matrices C
(B)
m,j where C

(B)
m,j = Cm,j, m 6= j and C

(B)
j,j = Cj,j +
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M (B), j = 1, 2, 3. The matrix M (B) is given by

M (B) = σ


1 0 . . .

~V 0 . . .

E 0 . . .

 ∂ν

∂W

=
ρσ

R



1 V1 V2 V3 E

V1 V 2
1 V1V2 V1V3 V1E

V2 V1V2 V 2
2 V2V3 V2E

V3 V1V3 V2V3 V 2
3 V3E

E V1E V2E V3E E 2


=
ρσ

R

[
1 ~V E

]
⊗
[

1 ~V E
]
,

(225)

where ν =
[
ρ ~V T

]T
are the primitive variables.

The entropy stability property of the Navier-Stokes (NS) viscosity matrices, Cm,j, that

was discussed in Section 2.3 also holds for the the Brenner-Navier-Stokes (BNS) viscosity

matrices, C
(B)
m,j, as well. In [59, 60] a much larger class of entropies were developed for the

Euler equations, but the NS viscosity matrices are only SPSD for one of them, the physical

entropy given by Eq. (10). In [57], a general viscous regularization of the Euler equations

were derived that was entropy dissipative for all the generalized entropies of [59, 60] and in

[57] the authors mention that their general viscous regularization is connected to the BNS

viscous term. Here, we explicitly give the conditions for C
(B)
m,j to be SPSD for all of the

generalized entropies of [59, 60] and the corresponding viscosity matrices.

A.4 ENTROPY STABILITY FOR GENERALIZED ENTROPIES

Let s (the specific thermodynamic entropy given by Eq. (6)) be twice differentiable for

an admissible state u with positive density and temperature and assume that f is a twice

differentiable functtion of a real variable. The generalized entropies in [60] are those functions

Sf = −ρf(s) which are strictly convex and in [60] it was shown that strict convexity holds

if and only if

f ′(s) > 0, f ′(s)
1

cP
− f ′′(s) > 0. (226)



156

Convexity of Sf gives us a one-to-one mapping from the conservative to generalized entropy

variables that are defined as follows:

W>
f ≡

∂Sf
∂U

= f ′(s)

[
h

T
− f(s)

f ′(s)
− V

>V

2T
,

V1

T
,

V2

T
,

V3

T
,− 1

T

]>
. (227)

Using the generalized entropy variables, we can attempt to symmetrize the BNS viscosity

matrices with respect to the generalized entropy variables by forming:

C
(B),f
m,j = C

(B)
m,j

∂W

∂Wf

, (228)

where

∂W

∂Wf

=

1

T



T γ−1

cf1
− cf2‖ ~V ‖2

2
cf4V1 cf4V2 cf4V3

‖ ~V ‖2cf3 c
f
2

2(γ−1)

cf2V1
T

f ′(s)
+ V 2

1 c
f
2 cf2V1V2 cf2V1V3 cf2V1

‖ ~V ‖2
2

cf2V2 cf2V2V1
T

f ′(s)
+ V 2

2 c
f
2 cf2V2V3 cf2V2

‖ ~V ‖2
2

cf2V3 cf2V3V1 cf2V3V2
T

f ′(s)
+ V 2

3 c
f
2 cf2V3

‖ ~V ‖2
2

−cf2 −cf2V1 −cf2V2 −cf2V3
T

f ′(s)
− cf2

‖ ~V ‖2
2


,

cf1 = f ′(s)
Rγ

cP
− f ′′(s)Rγ > 0, cf2 = f ′′(s)

(γ − 1)

cf1f
′(s)

,

cf3 = RγT − ‖
~V ‖2

2
(γ − 1), cf4 =

f ′′(s)

f ′(s)

cf3

cf1
.

(229)

Notice that for the case f(s) = s (i.e. the physical entropy) ∂W
∂Wf

= ∂W
∂W

is the identity since

f ′′(s), cf2 , c
f
4 = 0, cf1 = Rγ

cP
= γ − 1, and f ′(s) = 1.

We wish to derive conditions for which C
(B),f
m,j satisfy C

(B),f
m,j = (C

(B),f
j,m )>

C
(B),f
m,j = (C

(B),f
j,m )>,

3∑
l,m=1

AlC
(B),f
l,m Am ≥ 0, ∀Ai ∈ R5.

(230)

By comparing the entries (C
(B),f
1,1 )1,5 and (C

(B),f
1,1 )5,1 of the matrix C

(B),f
1,1 we immediately see
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a necessary condition for symmetry relating the mass and heat diffusion coefficients

T

f ′(s)

σρ

γ − 1
+ σc
‖ ~V ‖2

2
= (C

(B),f
1,1 )1,5 = (C

(B),f
1,1 )5,1 = κc + σcE ,

σc =
σρ

cf1

(
γ − 1

R
− f ′′(s)

f ′(s)

)
, κc = −cf2κT.

(231)

The necessary symmetry condition of (231) is satisfied for all physical states and f(s) satis-

fying (226) if and only if

σ =
γ − 1

R

κ

ρ
=

γ

cP

κ

ρ
. (232)

We denote the matrices C
(B),f
m,j where σ = γ−1

R
κ
ρ

as C
(Bs),f
m,j where the subscript s is added

because it can be verified that Eq. (232) is also sufficient for the symmetry property C
(Bs),f
m,j =

(C
(Bs),f
j,m )>. The matrices C

(Bs),f
m,j can be written as

for i= 1,2,3,

C
(Bs),f
i,i =

κd κdV1 κdV2 κdV3 κe

κdV1 µdLi,1 + κdV
2

1 κdV1V2 κdV1V3 (µdLi,1 + κe)V1

κdV2 κdV1V2 µdLi,2 + κdV
2

2 κdV2V3 (µdLi,2 + κe)V2

κdV3 κdV1V3 κdV2V3 µdLi,3 + κdV
2

3 (µdLi,3 + κe)V3

κe (µdLi,1 + κe)V1 (µdLi,2 + κe)V2 (µdLi,3 + κe)V3 µdMi + κf


,

κd =
κ

f ′(s)

γ − 1

R2

f ′(s)Rγ
cP
−Rf ′′(s)
cf1

≥ 0, κd = 0 iff κ = 0,

κe =
κ

f ′(s)

T

R
+ κd

‖ ~V ‖2

2
,

κf =
κ

f ′(s)

γ

γ − 1
T 2 +

κ

f ′(s)

T

R
‖ ~V ‖2 + κd

(
‖ ~V ‖2

2

)2

,

Li,j = 1 +
1

3
δi,j, Mi = Li,1V

2
1 + Li,2V

2
2 + Li,3V

2
3 ,

µd =
µ

f ′(s)
T,

(233)
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and

C
(Bs),f
1,2 =

(
C

(Bs),f
2,1

)>
=



0 0 0 0 0

0 0 −2
3
µd 0 −2

3
µdV2

0 µd 0 0 µdV1

0 0 0 0 0

0 µdV2 −2
3
µdV1 0 1

3
µdV1V2


,

C
(Bs),f
1,3 =

(
C

(Bs),f
3,1

)>
=



0 0 0 0 0

0 0 0 −2
3
µd −2

3
µdV3

0 0 0 0 0

0 µd 0 0 µdV1

0 µdV3 0 −2
3
µdV1

1
3
µdV1V3


,

C
(Bs),f
2,3 =

(
C

(Bs),f
3,2

)>
=



0 0 0 0 0

0 0 0 0 0

0 0 0 −2
3
µd −2

3
µdV3

0 0 µd 0 µdV2

0 0 µdV3 −2
3
µdV2

1
3
µdV2V3


.

(234)

Less trivially, we can show that Eq. (232) is also sufficient for the SPSD statement of (230).

Theorem 20. For κ, µ ≥ 0, states where ρ, T > 0, and f(s) satisfying (226), the viscosity

matrices C
(Bs),f
i,j i, j = 1, 2, 3 given by (233) and (234) have the property

C
(Bs),f
m,j = (C

(Bs),f
j,m )>,

3∑
l,m=1

AlC
(Bs),f
l,m Am ≥ 0, ∀Ai ∈ R5.

(235)
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Proof. The symmetry property C
(Bs),f
m,j = (C

(Bs),f
j,m )> was checked in Mathematica. To estab-

lish that
3∑

l,m=1

AlC
(Bs),f
l,m Am ≥ 0,∀Ai ∈ R5, we create a larger matrix

C(Bs),f =


C

(Bs),f
1,1 C

(Bs),f
1,2 C

(Bs),f
1,3

C
(Bs),f
2,1 C

(Bs),f
2,2 C

(Bs),f
2,3

C
(Bs),f
3,1 C

(Bs),f
3,2 C

(Bs),f
3,3

 (236)

and show that C(Bs),f is positive semi-definite, i.e. that

[
A1 A2 A3

]
C(Bs),f


A1

A2

A3

 ≥ 0, ∀Ai ∈ R5. (237)

Using Mathematica, we obtain the Cholesky decomposition, C(Bs),f = LDL>, where

D = diag
[
κd

4
3
µd µd µd κg κd 0 µd µd κg κd 0 0 0 κg

]
,

κg =
(γ − 1)κT 2

f ′(s)Rγ
cP
− f ′′(s)R

≥ 0, κg = 0 iff κ = 0,
(238)

where f ′(s)Rγ
cP
− f ′′(s)R > 0 follows from (226). Since D has only non-negative entries it

follows that C(Bs),f is positive semi-definite.

Remark 12. Notice that no condition was required for the dynamic viscosity µ besides

non-negativity. This implies that shear stress already satisfies (235) for all of the generalized

entropies of [60]. However, the thermal conductivity κ and mass diffusion σ only satisfy

(235) for all the generalized entropies of [60] if Eq. (232) is satisfied. In particular, it is only

the heat diffusion terms that prevent the Navier-Stokes equations from satisfying (235) for

all of the generalized entropies of [60].
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A.5 ENTROPY CONSERVATIVE INVISCID FLUXES

The high-order and first-order inviscid fluxes discussed in Sections 4.1.2 and 6.1.2, re-

spectively, have the same element-wise entropy contributions (see (75) of Theorem 1 and

(102) of Lemma 2). Since they also use the same penalties (70), they have the same global

entropy contribution which we present here for reference. This result is already known and

can be found in (or, is a straightforward consequence of results in) [36, 37, 52].

Lemma 21. Assume that Ût =
3∑
l=1

−P−1
ξl

∆ξl
ˆ̄fl + P−1

ξl
ĝl . . . for some flux ˆ̄fl such that

3∑
l=1

w>PP−1
ξl

∆ξl
ˆ̄fl =

3∑
l=1

1>1 P̂⊥,ξlB̂ξlF̂l. (239)

Furthermore, assume that ĝl = ĝ
(BC)
l +ĝ

(Int)
l where ĝ

(BC)
l is nonzero only at domain boundary

faces and hence enforces the boundary conditions while ĝ
(Int)
l is only nonzero at all interior

faces collocated with neighboring elements. Assume that for all fixed 1 ≤ j, k ≤ N and

~ξi = ~ξijk we have

ĝ
(Int)
1 (~ξi) = χ(Int)(~ξi)

(
−δ1i

(
ˆ̄f1(~ξ1)− f̄(S)(U(~ξ1),U(~ξ0))~̂a1(~ξ1)

)
+ δNi

(
ˆ̄f1(~ξN)− f̄(S)(U(~ξN+1),U(~ξN))~̂a1(~ξN)

))
,

(240)

for f̄(S)(·, ·) any two-point, consistent, entropy consistent inviscid interface flux and identical

definitions hold for the other computational directions. Let

H
(I)
k = w>k P

[
3∑
l=1

−P−1
ξl

∆ξl
ˆ̄fl,k + P−1

ξl
ĝl,k

]
(241)

denote the total entropy contribution of ˆ̄fl,k and ĝl,k on the kth element. Then, summing

over the K total elements in the domain we have

K∑
k=1

H
(I)
k =

K∑
k=1

3∑
l=1

[
1>1 P̂⊥,ξlB̂

(BC)

ξl,k
F̂l,k + w>k P⊥,ξlĝ

(BC)
l,k

]
. (242)

Hence, ˆ̄fl and ĝl discretely conserve the entropy in the domain up to the boundary conditions.
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Proof. The element-wise entropy contribution of ˆ̄fl is assumed to be given by Eq. (239).

Hence, we need only look at the entropy contribution of ĝl. Notice that

w>k PP−1
ξl

ĝl,k = w>k P⊥,ξlĝl,k. (243)

If all faces were domain boundaries, then Eq. (242) would be proven. Hence, we inspect

ĝl,k at interior domain faces. Equation (243) is the weighted sum of the pointwise entropy

variables multiplied by the pointwise penalty, ĝl,k. Hence, it is sufficient to consider the

sum of this product for two general elements at a single shared point. We use ~ξL and ~ξR

to denote the computational coordinates on two different elements that map to the same

physical coordinate at a shared element interface. The single state fluxes in ĝl,k are denoted

ˆ̄f(~ξL) and ˆ̄f(~ξR) and have the outward normal sign–relative to their respective elements. For

the two point flux, we write fL,R(S) and arbitrarily choose the sign that makes it outward for

the “L” element. We then have (note that the P scaling is the same for both elements at

the shared point so we ignore this scaling)

w(~ξL)>ĝ
(Int)
l (~ξL) + w(~ξR)>ĝ

(Int)
l (~ξR)

=w(~ξL)>
(

ˆ̄f(~ξL)− fL,R(S)

)
+ w(~ξR)>

(
ˆ̄f(~ξR) + fL,R(S)

)
=ψ(~ξL) + F (~ξL) + ψ(~ξR) + F (~ξR) +

(
w(~ξR)−w(~ξL)

)>
fL,R(S)

=F (~ξL) + F (~ξR),

(244)

where ψ(~ξL), ψ(~ξR), F (~ξL), and F (~ξR) are the outward (relative to their respective elements)

entropy potential fluxes and entropy fluxes (respectively) and we made use of Eqs. (17) and

(68). Given that we also have Eq. (239), it follows that at every interior interface, the sum

of the entropy contributions of ĝl and ˆ̄fl is zero and hence Eq. (242) now follows.
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APPENDIX B

BOUNDARY CONDITIONS

Here, we address the treatment of domain boundaries. We begin by writing the general

form of the boundary penalties for the various terms in the high-order positivity-preserving

scheme given by Eq. (178); then, we will discuss specific boundary conditions used in ob-

taining the results in Section 7.3.

B.1 FORM OF INVISCID BOUNDARY PENALTIES

The general form we used for the inviscid boundary penalties are identical to those given

in Eq. (70) for the interior interface penalties. The inviscid boundary penalties are decom-

posed as the sum of two terms ĝ
(BC,I)
l = ĝ

(BC,I,C)
l + ĝ

(BC,I,D)
l . Notice that, depending on the

implementation of the boundary conditions, ĝ
(BC,I,C)
l and ĝ

(BC,I,D)
l may not be entropy con-

servative or entropy dissipative, but we maintain the “C” and “D” superscripts to highlight

the parallel between these terms and those used at the interfaces (see Eq. (70)). For all fixed

1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

ĝ
(BC,I,C)
1 (~ξi) = χ(BC)(~ξi)

(
−δ1i

(
ˆ̄f1(~ξ1)− f̄(S)(U(~ξ1),U(~ξ0))~̂a1(~ξ1)

)
+ δNi

(
ˆ̄f1(~ξN)− f̄(S)(U(~ξN+1),U(~ξN))~̂a1(~ξN)

))
,

ĝ
(BC,I,D)
1 (~ξi) = χ(BC)(~ξi)

(
−δ1iM

Y(U(~ξ0),U(~ξ1), ~̂a1(~ξ1))∆1w(~ξ0)

+δNiM
Y(U(~ξN+1),U(~ξN), ~̂a1(~ξN))∆1w(~ξN)

)
,

(245)

with identical definitions for the other computational directions. The U(~ξN+1) and U(~ξ0)

states are specified by the boundary condition and are the only means of enforcing the

boundary conditions for the inviscid terms.
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B.2 FORM OF HIGH-ORDER VISCOUS BOUNDARY PENALTIES

The boundary penalties for f̂
(v)
l and f̂

(ADp)
l are enforced through ĝ

(BC,v)
l and ĝ

(BC,ADp)
l

respectively. In general form, the penalty ĝ
(BC,ADp)
l is identical to ĝ

(BC,v)
l ; hence, we write

ĝ
(BC,vp)
l as the general high-order viscous flux domain boundary penalty. The boundary

penalty is decomposed as the sum of two terms ĝ
(BC,vp)
l = ĝ

(BC,vp,C)
l + ĝ

(BC,vp,D)
l . As just

discussed for the inviscid case, depending on the implementation of the boundary conditions,

ĝ
(BC,vp,C)
l and ĝ

(BC,vp,D)
l may not be entropy conservative or entropy dissipative, but we

maintain the “C” and “D” superscripts to emphasize the similarity between these terms

and those used at the interior interfaces (see Eq. (67)). For all fixed 1 ≤ j, k ≤ N and

~ξi = ~ξijk we have

ĝ
(BC,vp,C)
1 (~ξi) =

χ(BC)(~ξi)

2

[
δ1i

(
f̂

(vp)
1 (~ξ1)− f̂

(vp,BC)
1 (~ξ0)

)
+ δNi

(
f̂

(vp,BC)
1 (~ξN+1)− f̂

(vp)
1 (~ξN)

)]
,

ĝ
(BC,vp,D)
1 (~ξi) = χ(BC)(~ξi)

(
−δ1iΛ

(vp)(~ξ0, ~ξ1)∆1w(~ξ0) + δNiΛ
(vp)(~ξN+1, ~ξN)∆1w(~ξN)

)
,

(246)

where identical definitions hold for other computational directions. Again, the U(~ξN+1) and

U(~ξ0) states are specified by the boundary condition at the face and are not necessarily the

same as those used for the inviscid boundary conditions. The boundary fluxes, f̂
(vp,BC)
1 , are

boundary condition dependent as well.

B.3 FORM OF BOUNDARY PENALTIES FOR THE GRADIENT OF

THE ENTROPY VARIABLES

The gradient of the entropy variables is penalized at domain boundaries through ĝ
(BC,Θ)
l .

Since ĝ
(BC,Θ)
l (~ξa) = ĝΘ

l (~ξa)χ
(BC)(~ξa), we already discussed ĝ

(BC,Θ)
l in Eq. (247), but we

repeat it here for convenience. For all fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

ĝ
(BC,Θ)
1 (~ξi) =

χ(BC)(~ξi)

2

(
δ1i∆1w(~ξ0) + δNi∆1w(~ξN)

)
,

∆1w(~ξijk) = w(~ξi+1jk)−w(~ξijk),

(247)

where we use similar definitions in each computational direction. The values w(~ξN+1) and
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w(~ξ0) are determined by the boundary condition.

B.4 FORM OF FIRST-ORDER BRENNER BOUNDARY

PENALTIES

The only remaining boundary penalty term in the high-order positivity-preserving scheme

given by Eq. (178) is the ĝ
(BC,AD1)
l contribution. Since ĝ

(BC,AD1)
l (~ξi) = χ(BC)(~ξi)ĝ

(AD1)
l (~ξi),

ĝ
(BC,AD1)
l was already specified by Eq. (115), but we repeat it here for convenience. For all

fixed 1 ≤ j, k ≤ N and ~ξi = ~ξijk we have

ĝ
(BC,AD1)
l (~ξi) = χ(BC)(~ξi)

(
ĝ

(BC,AD1)
l (~ξ1)δ1i + ĝ

(BC,AD1)
l (~ξN)δNi

)
,

ĝ
(BC,AD1)
l (~ξ1) =

c
(B)
ν (U(~ξ0),U(~ξ1), ˆ̄~a1(~ξ0))

J(~ξ1)

ν(~ξ0)− ν(~ξ1)

P1,1

,
(248)

with identical definitions in other computational directions. Note that the boundary condi-

tions are imposed by the states U(~ξN+1) and U(~ξ0).

B.5 PENALTIES FOR SPECIFIC BOUNDARY CONDITIONS

Now that we have discussed the general form of the boundary penalties, we will dis-

cuss specific boundary conditions. Except for at the no-slip wall boundaries, we used

ĝ
(BC,Θ)
l (~ξa) = 0. Although ĝ

(BC,ADp)
l is identical to ĝ

(BC,v)
l in general form, they are not

formed identically for every boundary condition. Except for at the no-slip wall boundaries,

ĝ
(BC,ADp)
l uses f̂

(ADp,BC)
l (~ξa) = 0 and the same U(~ξN+1) and U(~ξ0) states used by ĝ

(BC,v)
l .

B.5.1 NO BOUNDARY CONDITION

When “no boundary condition” penalties are used, we have U(~ξN+1) = U(~ξN) and

U(~ξ0) = U(~ξ1) for the inviscid penalties (see Eq. (245)), high-order viscous penalties

(see Eq. (246)), and for the first-order Brenner penalties (see Eq. (248)). Furthermore,

f̂
(v,BC)
l (~ξa) = 0 at such boundaries.
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B.5.2 SLIP WALL

Fix 1 ≤ j, k ≤ N and let ~ξi = ~ξijk. We use the entropy stable inviscid penal-

ties described in [5, 76]. The slip wall boundary condition uses the state ν(~ξN+1) =[
ρ ~V − 2( ~V · ~̂a1

‖~̂a1‖
) ~̂a1

‖~̂a1‖
T
]>
~ξN

with a similar definition for ν(~ξ0). The states ν(~ξN+1)

and ν(~ξ0) are used for the inviscid penalties (see Eq. (245)), high-order viscous penalties

(see Eq. (246)), and for the first-order Brenner penalties (see Eq. (248)). The physical

viscous boundary penalties use

f̂
(v,BC)
1 (~ξ0) =

3∑
m=1

â1
m(~ξ1)

3∑
j=1

[c
(v)
m,j]ν(~ξ0)Θxj(~ξ1),

f̂
(v,BC)
1 (~ξN+1) = −

3∑
m=1

â1
m(~ξN)

3∑
j=1

[c
(v)
m,j]ν(~ξN+1)Θxj(~ξN).

(249)

B.5.3 ENTROPY STABLE ADIABATIC NO-SLIP WALL

Fix 1 ≤ j, k ≤ N and let ~ξi = ~ξijk. The adiabatic no-slip wall boundary condition is

formed in the entropy stable manner described in [5]. The inviscid boundary penalties are

formed in exactly the same manner described in Section B.5.2 for slip walls. The viscous

penalties for the no-slip wall boundary condition use the states ν(~ξN+1) =
[
ρ − ~V T

]>
~ξN

and ν(~ξ0) =
[
ρ − ~V T

]>
~ξ1

. These states are used in forming the penalties for the

gradient of the entropy variables (see Eq. (247)), the high-order viscous boundary penalties

(see Eq. (246)) and the first-order Brenner penalties (see Eq. (248)). The high-order viscous

boundary penalties also make use of manufactured gradients of the entropy variables at the

wall face given by

Θxj(~ξN+1) =

[
∂W

∂ν

]
ν(~ξN+1)

diag
[
−1 1 1 1 −1

] [ ∂ν
∂W

]
ν(~ξN )

Θxj(~ξN), (250)



166

with a similar definition for Θxj(~ξ0). Using these boundary states, we have

f̂
(vp,BC)
1 (~ξ0) =

3∑
m=1

â1
m(~ξ1)

3∑
j=1

[c
(vp)
m,j ]ν(~ξ0)Θxj(~ξ0),

f̂
(vp,BC)
1 (~ξN+1) =

3∑
m=1

â1
m(~ξN)

3∑
j=1

[c
(vp)
m,j ]ν(~ξN+1)Θxj(~ξN+1).

(251)

B.5.4 CONSTANT PRESSURE FACE

Assume we know that on the face defined by fixed i = N and 1 ≤ j, k ≤ N the pressure

should be a constant value Pc. let ~ξN+1 = ~ξN+1jk. Then we use the state ν(~ξN+1) =[
Pc
RT

~V T
]>
~ξN

for the inviscid penalties (see Eq. (245)), high-order viscous penalties

(see Eq. (246)), and for the first-order Brenner penalties (see Eq. (248)). Furthermore,

f̂
(v,BC)
l (~ξN+1) = 0 at such boundaries.
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APPENDIX C

CHOLESKY DECOMPOSITION BASED IDENTITIES FOR ∂2S
∂U2

We record here for reference some identities that can be derived from the Cholesky

decomposition of ∂2S
∂U2 :

∂2S
∂U2

=LDL>

L =



1 0 0 0 0

−2(γ − 1)2V1
‖ ~V ‖2
c1

1 0 0 0

−2(γ − 1)2V2
‖ ~V ‖2
c1

4R2(γ−1)γT 2V1V2
c1c2

1 0 0

−2(γ − 1)2V3
‖ ~V ‖2
c1

4R2(γ−1)γT 2V1V3
c1c2

4R(γ−1)γTV2V3
c3

1 0

2(γ − 1)−2RT+(γ−1)‖ ~V ‖2
c1

−2R(γ−1)TV1c6
c1c2

−2(γ − 1)V2
c6
c3
− c5
c4

1


,

D = diag

[
c1

4R(γ−1)T 2ρ

c1+(γ−1)V 2
1 4RγT

Tρc1

Rc3
c1c2ρ

R
c1+

(
c4−c1c3

c3

)
c1c2ρ

R
γ−1

ρ

(ρE)2 γ
γ−1
−
(
ρ
‖~V‖2

2

)2

]
,

c1 =4R2γT 2 + (γ − 1)2‖ ~V ‖4 > 0, c2 = RT

(
1 +

4R(γ − 1)γTV 2
1

c1

)
> 0,

c3 =c1 + 4R(γ − 1)γT (V 2
1 + V 2

2 ) > 0,

c4 =c1c3 + 4R(γ − 1)γT
(
c1(V 2

1 + V 2
3 ) + 4R(γ − 1)γTV 2

1 ‖ ~V ‖2
)
> 0,

c5 =2(γ − 1)V3c6

(
c1 + 4R(γ − 1)γTV 2

1

)
, c6 = 2RγT + (γ − 1)‖ ~V ‖2 > 0,

(252)

where we have assumed positive density and temperature and it is clear that the di-

agonal entries of D are all strictly positive. We label the diagonal entries of D as

d1 = c1
4R(γ−1)T 2ρ

, d2 =
c1+(γ−1)V 2

1 4RγT

Tρc1
, . . . etc.

Let A =
[
a1 a2 a3 a4 a5

]>
be an arbitrary real array. Denote L>A =[

La1 La2 La3 La4 La5

]>
and notice that a5 = La5. The following inequality is an
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immediate consequence of Eq. (252):

A>
∂2S
∂U2

A =(L>A)>DL>A =
5∑

k=1

La2
kdk ≥ d5a

2
5 = a2

5

R

γ − 1

ρ

(ρE )2 γ
γ−1
−
(
ρ‖

~V ‖2
2

)2 . (253)

We would like to have bounds similar to (253) for ai i = 1, 2, 3, 4. Unfortunately, such

bounds are not obvious for the decomposition given by Eq. (252). However, this can easily

be remedied by simply changing the basis ordering of ∂2S
∂U2 and obtaining a new LDL>

decomposition. This is the approach we now take.

We briefly recall some ideas from linear algebra. Let ∂2S
∂U2

c

ab
be the matrix obtained from

∂2S
∂U2 after interchanging columns a and b. Furthermore, let ∂2S

∂U2 ab
be the matrix obtained from

∂2S
∂U2

c

ab
after interchanging rows a and b (the order of interchanging does not matter). Let Aab

be the array obtained from A by interchanging the a and b components. For example, A45 =[
a1 a2 a3 a5 a4

]>
. Given that the ith component of the matrix multiplication Mx

can be written as
∑

jMijxj, it is not difficult to see that ∂2S
∂U2

c

ab
Aab = ∂2S

∂U2A. Hence, ∂2S
∂U2 ab

Aab

has the same collection of components as ∂2S
∂U2A but in a different order and interchanging the

a component with the b component of ∂2S
∂U2 ab

Aab will give ∂2S
∂U2A. Furthermore, A>ab

∂2S
∂U2 ab

Aab =

A> ∂
2S
∂U2A for all a and b interchanges (a, b = 1, 2, 3, 4, 5).

We label the matrices in the Cholesky decomposition of ∂2S
∂U2 ab

as Dab =

diag
[
dab1 dab2 . . .

]
and Lab. It would be tedious to explicitly write all Dab and Lab; hence,

we only list the following:

d15
5 =

R

ρ
, d25

5 =
R

P + ρV 2
1

, d35
5 =

R

P + ρV 2
2

, d45
5 =

R

P + ρV 2
3

, (254)

from which we obtain the full set of bounds

A>
∂2S
∂U2

A =(L>15A15)>D15L
>
15A15 =

5∑
k=1

(La15)2
kd

15
k ≥ d15

5 a
2
1 = a2

1

R

ρ
,

A>
∂2S
∂U2

A ≥a2
i+1

R

P + ρV 2
i

, i = 1, 2, 3,

A>
∂2S
∂U2

A ≥a2
5

R

γ − 1

ρ

(ρE )2 γ
γ−1
−
(
ρ‖

~V ‖2
2

)2 = a2
5

Rρ

P2γ + Pρ‖ ~V ‖2γ +
(
ρ‖

~V ‖2
2

)2 .

(255)
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