
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2021

A Unified Framework for Parallel Anisotropic Mesh Adaptation A Unified Framework for Parallel Anisotropic Mesh Adaptation

Christos Tsolakis
Old Dominion University, ctsolakic@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tsolakis, Christos. "A Unified Framework for Parallel Anisotropic Mesh Adaptation" (2021). Doctor of
Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/ask4-r595
https://digitalcommons.odu.edu/computerscience_etds/132

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/132?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A UNIFIED FRAMEWORK FOR PARALLEL ANISOTROPIC

MESH ADAPTATION

by

Christos Tsolakis
B.S. Mathematics, July 2014, Aristotle University of Thessaloniki, Greece

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2021

Approved by:

Nikos Chrisochoides (Director)

Michael A. Park (Member)

Andrey Chernikov (Member)

Desh Ranjan (Member)

Charles E. Hyde (Member)

ABSTRACT

A UNIFIED FRAMEWORK FOR PARALLEL ANISOTROPIC MESH
ADAPTATION

Christos Tsolakis
Old Dominion University, 2021

Director: Dr. Nikos Chrisochoides

Finite-element methods are a critical component of the design and analysis procedures

of many (bio-)engineering applications. Mesh adaptation is one of the most crucial compo-

nents since it discretizes the physics of the application at a relatively low cost to the solver.

Highly scalable parallel mesh adaptation methods for High-Performance Computing (HPC)

are essential to meet the ever-growing demand for higher fidelity simulations. Moreover, the

continuous growth of the complexity of the HPC systems requires a systematic approach to

exploit their full potential. Anisotropic mesh adaptation captures features of the solution

at multiple scales while, minimizing the required number of elements. However, it also in-

troduces new challenges on top of mesh generation. Also, the increased complexity of the

targeted cases requires departing from traditional surface-constrained approaches to utiliz-

ing CAD (Computer-Aided Design) kernels. Alongside the functionality requirements, is

the need of taking advantage of the ubiquitous multi-core machines. More importantly, the

parallel implementation needs to handle the ever-increasing complexity of the mesh adap-

tation code.

In this work, we develop a parallel mesh adaptation method that utilizes a metric-based

approach for generating anisotropic meshes. Moreover, we enhance our method by inter-

facing with a CAD kernel, thus enabling its use on complex geometries. We evaluate our

method both with fixed-resolution benchmarks and within a simulation pipeline, where the

resolution of the discretization increases incrementally. With the Telescopic Approach for

scalable mesh generation as a guide, we propose a parallel method at the node (multi-core)

for mesh adaptation that is expected to scale up efficiently to the upcoming exascale ma-

chines. To facilitate an effective implementation, we introduce an abstract layer between

the application and the runtime system that enables the use of task-based parallelism for

concurrent mesh operations. Our evaluation indicates results comparable to state-of-the-art

methods for fixed-resolution meshes both in terms of performance and quality. The inte-

gration with an adaptive pipeline offers promising results for the capability of the proposed

method to function as part of an adaptive simulation. Moreover, our abstract tasking layer

allows the separation of different aspects of the implementation without any impact on the

functionality of the method.

iv

Copyright, 2021, by Christos Tsolakis, All Rights Reserved.

v

“It is not knowledge, but the act of learning, not possession but the act of getting there,

which grants the greatest enjoyment.”

— Carl Friedrich Gauss (1777 - 1855)

vi

ACKNOWLEDGMENTS

They say “it takes a village to raise a child” and I believe that something similar is true for

a Ph.D. First and foremost, I would like to thank my advisor Nikos Chrisochoides for the

countless hours of discussions and for giving me the chance to be part of a wide spectrum

of projects that allowed to build a more general perspective about parallel mesh generation.

Also, I would like to thank my committee members: Mike Park, Andrey Chernikov, Desh

Ranjan, and Charles E. Hyde for their time reviewing my thesis and their advice and help

throughout my Ph.D. studies.

Generating and collecting the experimental data was accomplished thanks to the advice

and lessons I took from multiple sources. In particular, I would like to thank Hiroaki

Nishikawa for the CFD II class that taught me enough about CFD solvers to be able to

use SU2 and produce the results of the evaluation section. Moreover, his unique style

of presentations and the enthusiasm he brings into them, will always be a template for

my presentations. I would like also to thank the UGAWG (Unstructured Grid Adaptation

Working Group) and especially Mike Park and Todd Michal for inviting me to their monthly

meetings, which gave me a unique opportunity to have a peek into their mesh adaptation

projects and how they apply to both research and industrial level applications. I also thank

both of them along with Adrien Loseille for their patience and help towards writing our

joined papers. The UGAWG’s GitHub repository was a valuable resource for this thesis.

Almost all evaluation cases have been created based on material publicly available on the

repository or described in detail in their papers. I would like to thank Beckett Zhou for

spending many hours explaining to me CFD simulations at a high level and giving me

insights about isotropic mesh adaptation in the context of our joined paper.

Special thanks to Gagik Gavalian, Christian Weiss and Charles E. Hyde for introducing

us to some of the notions of Nuclear Femtography and showing us alternative uses of meshes

in the context of our joined projects.

In 2017, I had the luck to be selected for the Argonne Training Program on Extreme-

Scale Computing. Marta Garćıa Mart́ınez and the rest of the team at ANL offered us a

unique experience that fueled me with ideas for the rest of my Ph.D. journey and beyond.

Also, I would like to thank a few of my professors that I had classes with, and in

particular, Michele Weigle for the Information Visualization class that improved significantly

the graphs presented in this thesis. Andrey Chernikov for all his classes that provided a

solid theoretical foundation for my training as a graduate student and Desh Ranjan for both

vii

of the Algorithms classes that had a great balance of challenge and enjoyment.

In addition, I would like to thank Fotis Drakopoulos for helping me adjust when I

first arrived in the United States but also for the insights he gave me when it comes to

mesh generation in general. CDT3D, the central library used in this thesis, was initially

created as part of his thesis. I am really happy and honored to be able to contribute

and extend this project. Also, I thank my colleagues and friends Juliette Pardue, Daming

Feng, Jing Xu, Eleni Adam, and Kevin Garner for making our lab an enjoyable place to

be and the opportunity to work on a number of projects with them. Thomas Kennedy

for checking in periodically in our lab and igniting discussions about software engineering

and programming languages. Olga Karadimou and Polykarpos Thomadakis, my very good

friends and roommates, made life around Hampton Roads more enjoyable. On top of his

friendship, I would like to thank Polykarpos for the countless hours we spent discussing

about design and abstractions of his runtime project. Although its use in this thesis is

limited, it drew, maybe subconsciously, my attention to the idea of separation of concerns

and ultimately to the final chapter of this thesis which is derived from a joined paper.

I would like also to extend my thanks to a few commonly unsung heroes such as the people

working at the CS main office and especially Ariel Sturtevant, Phyllis Woods, and Christy

Chavis for taking care of our paperwork and always helping us with any issues. Special

thanks to Danella Zhao the Graduate Program Director at the time of my graduation for

making sure everything is submitted on time. Moreover, I would like to thank the Office of

Visa & Immigration Service Advising for taking special care of the international students

throughout our studies. Special thanks also to the HPC group of ODU and in particular to

Terry Stilwell, Min Dong, Wirawan Purwanto, and John Pratt for promptly taking care of

all our questions and issues regarding the high performance clusters of ODU.

Last but not least, I would like to thank my parents and brother for their continuous

support and love throughout my studies and Maria for her companionship and support. I

would like to extend my thanks to all my friends back in Greece who kept the communication

between us alive and for coming up with ideas for get-together online events.

This research was sponsored in part by the NASA Transformational Tools and Technolo-

gies Project (NNX15AU39A) of the Transformative Aeronautics Concepts Program under

the Aeronautics Research Mission Directorate, NSF grant no. CCF-1439079, the Richard

T. Cheng Endowment, SURA grant no. CNF19-04 & CNF20-01, the Modeling and Simula-

tion and the Dominion Scholar Fellowships of Old Dominion University. Experiments were

supported by the Research Computing clusters at Old Dominion University.

viii

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xii

Chapter

1. INTRODUCTION . 1
1.1 AIM OF THIS WORK . 2
1.2 OUTLINE . 3

2. BACKGROUND . 5
2.1 PARALLEL MESH GENERATION PREVIOUS WORK REVIEW 5
2.2 METRIC SPACES IN THE CONTEXT OF MESH ADAPTATION 33

3. PARALLEL METRIC-BASED ADAPTATION . 45
3.1 ISOTROPIC MESH GENERATION . 46
3.2 METRIC-BASED ADAPTATION WITHIN THE CDT3D LIBRARY 48
3.3 HANDLING GEOMETRY THROUGH METRIC SPACES 57
3.4 SPECULATIVE IMPLEMENTATION IN THE CONTEXT OF THE TELE-

SCOPIC APPROACH . 61

4. EVALUATION . 68
4.1 MESH ADAPTATION AT CONSTANT COMPLEXITY 68
4.2 MESH ADAPTATION WITHIN AN ADAPTIVE PIPELINE 98

5. A TASKING FRAMEWORK FOR PARALLEL MESH OPERATIONS 117
5.1 RELATED WORK . 119
5.2 METHOD . 121
5.3 CASE STUDIES . 126

6. CONCLUSION . 147

7. FUTURE WORK . 150

REFERENCES . 153

APPENDICES

ix

Page

A. MESH ADAPTATION FOR OTHER DISCIPLINES . 184
A.1 FEMTOGRAPHY DATA . 184
A.2 ADAPTIVE MESH GENERATION FOR MEDICAL DATA 190

B. PARALLEL MESH GENERATION CHALLENGES . 196
B.1 POWER CONSUMPTION ASPECTS OF MESH GENERATION 196
B.2 PARALLEL CONSTRAINED MESH REFINEMENT IN THREE DIMEN-

SIONS. 199

VITA. 220

x

LIST OF TABLES

Table Page

1. Classification of CRTCPODM 1.0 based on the criteria of this section. 12

2. Classification of CRTCPODM 2.0 based on the criteria of this section. 12

3. Classification of CRTCCDT3D based on the criteria of this section. 13

4. Classification of UBCEdge-Face Flip based on the criteria of this section. 14

5. Classification of UChileTightly based on the criteria of this section. 14

6. Classification of MITDelaunay based on the criteria of this section. 15

7. Classification of GMUData Decomp. based on the criteria of this section. 16

8. Classification of CRTCPDR 1.0, CRTCPDR 2.0 & CRTCPDR.PODM based on the criteria of this
section. 17

9. Classification of UBCPoint Insertion based on the criteria of this section. 18

10. Classification UCLouvainGmsh based on the criteria of this section. 18

11. Classification of Imperialpragmatic based on the criteria of this section. 20

12. Classification of RPIOmega h based on the criteria of this section. 21

13. Classification of LaRCrefine based on the criteria of this section. 22

14. Classification of BoeingEPIC based on the criteria of this section. 23

15. Classification of CEMEFEdge op. based on the criteria of this section. 23

16. Classification of GMUDiscrete DD based on the criteria of this section. 24

17. Classification of RPIDiscrete DD based on the criteria of this section. 24

18. Classification of INRIAFeflo.a based on the criteria of this section. 25

19. Classification of RPIContinuous DD based on the criteria of this section. 26

20. Classification of BrownLepp based on the criteria of this section. 27

21. Classification of INRIADecoupled based on the criteria of this section. 27

22. Classification of SwanseaDiscrete DD based on the criteria of this section. 28

23. Classification of CRTCA. Front based on the criteria of this section. 29

xi

Table Page

24. Classification of CRTCVGRID based on the criteria of this section. 29

25. Classification of UChileDecoupled based on the criteria of this section. 30

26. Classification of SwanseaContinuous DD: based on the criteria of this section. 30

27. Summary table, Dis. D. : Discrete Domain Decomposition, Cont. D. : Continuous
Domain Decomposition. 31

28. Classification of our method. 32

29. Weak scaling performance of refine, CDT3D and Feflo.a for complexities between
50,000 and 20,000,000. 83

30. Total running times of Feflo.a, CDT3D and refine for the blast case. 88

31. Breakdown of the total running time for Feflo.a. 88

32. Performance data of adaptive iterations. 107

33. Characteristics of the baseline implementation of the parallel mesh operations
ported to the tasking framework. 128

34. Percent (%) improvement of running time with respect to the baseline implemen-
tation for the Point Creation and Local Reconnection operations. 136

35. Percent (%) improvement of running time with respect to the baseline implemen-
tation of the Edge Collapse and Smoothing operations. 137

36. Percent (%) improvement of total running time with respect to the baseline im-
plementation. 138

37. Number of vertices for each of the representations of Figure 78. 185

38. Number of lower dimensional faces of n-dimensional cube and simplex elements. . . 186

39. Results applying mesh adaptation to the A-PBNRR pipeline. 194

40. Classification of the method of this section. 199

41. Overhead introduced by our method as percentage of the total running time. 210

42. Percentage of different types of messages. 211

xii

LIST OF FIGURES

Figure Page

1. The Telescopic Approach. 7

2. Attributes of the taxonomy presented in this section. 10

3. Visualization of a metric tensor M = P diag(λ1, λ2, λ3)P T as an ellipsoid. 37

4. Metric Intersection. 41

5. Refinement Zones for Large Eddy Simulation over a delta wing configuration. . . . 46

6. High-level pipeline of isotropic CDT3D as presented in [85]. 47

7. Pipeline of the presented approach. 48

8. Encroachment rules of the centroid-based point-creation method. 50

9. Topological Flips utilized by CDT3D for local reconnection. 52

10. Effect of boundary refinement to the quality of the final mesh. 53

11. Search Space for Smoothing Operation. 55

12. Effect of the new vertex smoothing method on top of the improvements of the
previous subsection. 55

13. Quality improvement adding Vertex Smoothing. 57

14. Decomposition of the B-rep of the cube-cylinder case. 58

15. Deviation Improvement. 61

16. Steps of speculative edge collapse. 64

17. Speedup and efficiency of the two main modules of CDT3D
(see also Figure 7). 65

18. Efficiency breakdown of the mesh adaptation and quality improvement modules
of CDT3D (see also Figure 7). 65

19. Breakdown of the mesh adaptation time into the basic operations of CDT3D (see
also Figure 7). 67

20. Breakdown of the total time of CDT3D (see also Figure 7). 67

21. Cube with polar-2 analytic metric, complexity of 7,600. 70

xiii

Figure Page

22. Comparison of the mean ratio of the generated grids for the Cube case in linear
and logarithmic scales. 71

23. Comparison of the edge lengths of the generated grids for the Cube case in linear
and logarithmic scales. 71

24. Speedup results for the cube case. 72

25. Constituent solids of the cube-cylinder case along with end-result. 73

26. Input mesh (a) and adapted result (b) - (d) for the three analytic metrics. 74

27. Quality comparison of the Linear case. 75

28. Quality comparison of the Polar-1 case. 77

29. Quality comparison of the Polar-2 case in the log scale. 78

30. Delta wing with multiscale metric in laminar flow, 50,000 complexity. 79

31. Speedup data for the delta wing adapted from 50,000 complexity to 500,000
complexity. 80

32. Speedup data for the delta wing adapted from 50,000 complexity to 10,000,000
complexity. 81

33. Comparison of the mean ratio of the generated meshes for the delta wing 500,000
complexity case in linear and logarithmic scales. 84

34. Comparison of the edge lengths of the generated meshes for the delta wing
500,000 complexity case in linear and logarithmic scales. 84

35. Stability data for the delta wing 50,000 to 500,000 complexity case using refine,
EPIC and CDT3D . 85

36. Adapted mesh of the spherical blast case. 86

37. Speedup data for blast case. 87

38. Comparison of the edge lengths of the generated meshes for the spherical blast
case in linear and logarithmic scales. 89

39. Comparison of the mean ratio of the generated meshes for the spherical blast
case in linear and logarithmic scales. 89

40. Decomposition of the the input B-rep models for the hemisphere-cylinder-fixed
and the onera-m6 cases. 90

xiv

Figure Page

41. Adapted meshes by CDT3D for the hemisphere-cylinder at 30, 000 and 100, 000
target complexity respectively. 91

42. Mean ratio and Edge Length quality measures for the hemisphere-cylinder-fixed
case at 30,000 complexity. 93

43. Mean ratio and Edge Length quality measures for the hemisphere-cylinder-fixed
case at 100, 000 complexity. 94

44. Adapted meshes by CDT3D for the onera-m6 case at 30, 000 and 100, 000 target
complexity respectively. 95

45. Mean ratio and Edge Length quality measures for the onera-m6 case at 30,000
complexity. 96

46. Mean ratio and Edge Length quality measures for the onera-m6 case at 100, 000
complexity. 97

47. Mesh Adaptation pipeline. 98

48. Software pipeline utilized in the adaptive pipelines of this study. 99

49. Convergence rates for CDT3D and refine for the three scalar fields. 102

50. Adapted meshes for the three fields. 103

51. Adapted mesh of the delta wing at three different complexities. 105

52. Streamlines and Contour slices of the Mach number of the solution. 106

53. Lift and drag coefficients as evaluated by SU2 compared against results presented
in [100](AIAA2020) [148](JCP2010) and [122](ADIGMA2010). 106

54. Initial mesh generated by ref bootstrap. 108

55. Final iteration of the adaptive loop. 108

56. Location of pressure cross section. 109

57. Values of the pressure coefficient as evaluated by the solver versus the experiment
across the 7 sections of Figure 56. 110

58. The JSM geometry. 111

59. Initial coarse mesh created by ref bootstrap. 112

xv

Figure Page

60. Final mesh and coloring of the wing by the local Mach number. 114

61. Simulation results. 115

62. Values of the pressure coefficient as evaluated by the solver versus the experiment
across the 7 sections of Figure 62a. 116

63. Pseudocodes of the speculative approach applied on a Delaunay-based algorithm
and a local reconnection operation. 118

64. Different tasking paradigms employed in this work. 123

65. Mesh operations in CDT3D . 127

66. Comparison of high level constructs and the flat model. 130

67. Comparison of the three task creation strategies. 131

68. Effect of grainsize for each operation for omp-2-level. 132

69. Effect of grainsize for each operation for tbb-2-level. 133

70. Effect of grainsize for each operation for abt-2-level. 134

71. Performance improvements over the baseline implementation for using the 2-level
and hierarchical strategies and optimal grainsizes. 135

72. Total running time with optimal grainsizes for each back-end and task creation
strategy. 139

73. Stability data and visualization of the generated mesh for the
CDT3D case-study. 140

74. Flowchart of the tasking version of PODM . 143

75. Effect of scheduling limit using the tbb back-end. Right zoom-in in
range 0.5-2.0. 144

76. Normalized meshing time of the tasking version of PODM for two different values
of the schedule limit. 145

77. Stability data and visualization of the generated mesh of the PODM case-study. 146

78. Different types of tessellations applied on a dataset. 184

79. Pipeline of our approach. 186

xvi

Figure Page

80. Two- and three-dimensional demonstration of the approach. 188

81. Decimation of a 2d histogram that corresponds to a binomial Gaussian
distribution. 188

82. An error-based adaptive pipeline based for Nuclear Femtography data. 189

83. High-level A-PBNRR pipeline. 190

84. Optimizing landmark distribution. 192

85. Visualization of the metric construction for mesh adaptation. 193

86. Different approaches to constructing a metric utilizing the minimum ellipsoid
method. 194

87. Data of power-aware analysis. 198

88. Steps of the PCDM method in three dimensions. 201

89. A configuration where a remote point was rejected by TetGen. 204

90. Double torus, the initial mesh of our experiments 67,000 hexahedra,
80,600 points. 205

91. Double torus with interfaces highlighted. 206

92. Flowchart of the method. 209

93. Scalability results running on the double torus and generating 10 million elements
per process. 210

94. A configuration of subdomains and interfaces that could lead to a deadlock. 214

95. Refinement procedure. 215

96. Splitting a segment. 216

97. Splitting a face. 217

98. Handling an incoming message. 218

99. Processing pending points. 219

100. Assembling a compound token. 219

1

CHAPTER 1

INTRODUCTION

Among the cornerstones of the scientific method, is the use of experiments to validate or

contradict a hypothesis. Due to the intricacies and the cost of physical experiments, nu-

merical simulations are often utilized as an alternative. One of the most popular numerical

methods for simulations is the Finite-element Method (FEM) [268] which is used for ob-

taining numerical solutions to differential equations arising from several fields such as fluid

flows, structural analysis, and registration of medical data.

Mesh Generation, i.e., the process of discretizing the problem space into primitive/sim-

pler geometric shapes such as triangles and tetrahedra, plays a central role in FEM. A

mesh allows decomposing a complex domain into elementary elements where approxima-

tion is possible. Moreover, it enables capturing local features of the solution by altering

the fidelity of the approximation locally. The fidelity at which one captures the features

of the numerical solution during a simulation directly relates to the local size of the mesh,

thus making the need for mesh size variation a necessity. However, the locations of these

features are not always known a-priori. This vicious cycle can be broken by the use of

error-based mesh adaptation [16]. Error-based mesh adaptation modifies a mesh based on

some error-estimator so that it can accurately capture features of the underlying solution

automatically.

A subfield of physics that FEM and mesh adaptivity are used extensively is the Com-

putational Fluid Dynamics (CFD) [10], which is a critical component of the design and

analysis of aerospace vehicles. CFD is concerned with simulations involving the flow of a

fluid (liquid or gas), and its interaction with contact surfaces. A primal example is the in-

teraction of aircraft components with the atmosphere at different flight conditions. In 2014,

NASA published the CFD Vision 2030 Study [237], a technical report that includes findings

and recommendations for advancing the capabilities of the CFD simulations in the future.

Among the findings of the study is that: “Mesh generation and adaptivity continue to be

significant bottlenecks in the CFD workflow, [...] Additionally, adaptive mesh techniques

offer great potential, but have not seen widespread use due to issues related to software

complexity, inadequate error estimation capabilities, and complex geometries.” In [203] the

authors document the current status of mesh adaptation and provide recommendations in

order to achieve the goals set by the CFD Vision study. Among them is to incorporate cur-

rent parallel mesh adaptation methods with load-balancing techniques in order to be able

2

to achieve good performance on the available and upcoming architectures. In-line with this

recommendation is the Telescopic Approach for CFD simulations that was proposed in [61].

The Telescopic Approach lays down a design that allows to exploit the concurrency that

exists at multiple levels in parallel and adaptive simulations. The design spans across the

multiple memory hierarchies of a High Performance Computing (HPC) machine (shared,

distributed-shared (DSM), distributed with or without out-of-core capabilities) and maps

different algorithmic layers to the appropriate level of memory based on the intensity of

communication between the meshing kernels.

1.1 AIM OF THIS WORK

Our goal is to create a building block that will serve as the core mesh adaptation module

of the Telescopic Approach in the context of FEM simulations. Building upon previous work

(CDT3D) [82], we design and implement a method for parallel mesh adaptation that offers

new features in terms of functionality, performance and portability. In particular, we deliver

a parallel mesh adaptation kernel that it is designed to be a building block of the Telescopic

Approach and will run within the limits of a multi-core node. Moreover, to aid towards

meeting the requirements set in [237] and the recommendations of [203], we interfaced

CDT3D with a Computer-Aided-Design (CAD) kernel in order to enable handling curved

geometries.

Our process is guided by the following parallel mesh generation attributes [62,250]:

1. Stability is the requirement that the quality of the mesh generated in parallel must

be comparable to that of a mesh generated sequentially [59]. The quality is defined

in terms of the density and shape of the elements evaluated by some quality measure,

and the number of the elements (fewer is better).

2. Reproducibility which we introduced in [62]. It is separated into two forms. Strong

Reproducibility requires that the mesh generation code, when executed with the same

input, produces identical results under the following modes of execution: (i) contin-

uous without restarts, and (ii) with restarts and reconstructions of the internal data

structures. Weak Reproducibility requires that the mesh generation code, when exe-

cuted with the same input, produces results of the same quality under the following

modes of execution: (i) continuous without restarts, and (ii) with restarts and recon-

structions of the internal data structures.

3. Robustness is the ability of the software to correctly and efficiently process any input

3

data. Automation is critical for massively parallel computations, because operator

intervention is impractical.

4. Scalability is the ability of a method to obtain speedup proportional to the number of

processors [115]. Amdahl’s law [8] suggests that the speedup is always limited by the

inverse of the sequential fraction of the software. Therefore, all nontrivial stages of the

computation must be parallelized to leverage the current and emerging architectures

designed to deliver a million- to billion-way concurrency.

5. Code Reuse is a result of a modular design of the parallel software that builds upon

previously designed sequential or parallel meshing code, such that it can be replaced

and/or updated with minimal effort. Code Reuse is feasible only if the code satisfies

the Reproducibility criterion.

1.2 OUTLINE

The rest of this document is organized as follows. Chapter 2 presents the two major

pillars of our work. Specifically, Section 2.1 provides an extensive review of past and current

parallel mesh generation methods. Moreover, it suggests a taxonomy that classifies the

methods based on attributes pertinent to parallel mesh generation and in the context of the

Telescopic Approach. Section 2.2 provides a concise description of notions related to metric

spaces, a core component of our approach to parallel mesh adaptation.

Chapter 3 describes the implementation of our method in detail, highlighting the im-

provements in terms of both functionality and performance. In Chapter 4, we focus on

the first four of the above criteria by evaluating our method on a series of different cases.

In particular, Section 4.1 presents data on benchmarks that target a fixed mesh resolution

and compares our results with state-of-the-art parallel mesh adaptation methods. Also, in

Section 4.2, we evaluate our method within an end-to-end simulation pipeline, where the

resolution of the discretization increases iteratively and compare our results with similar

analyses present in the literature.

Having presented data on both our functionality and performance improvements we turn

our attention into the Code-reuse aspect and in particular to the question of how one can

future-proof [99] such a mesh generation application. Since hardware and software evolves

rapidly, traditional approaches to thread and load balancing often suffer a cost when ported

to a new environment. In Chapter 5, we present our attempt to solve this issue based on

the notion of separation of concerns [77]. The presented approach decouples functionality

4

aspects of mesh generation codes from performance. In particular, it illustrates a method

and presents performance data regarding the use of tasking in place of manually managing

threading and load balancing.

In summary, the goal of this dissertation is to create a new parallel anisotropic mesh

adaptation method that can serve as building block for scalable parallel mesh generation.

Based on our previous experience, we will use the Telescopic Approach (described in detail

in the next chapter) as a case study. The contributions of this thesis are:

(C1) A parallel mesh adaptation method with high parallel efficiency on a single multi-core

node.

(C2) The method exhibits comparable quality and performance against state-of-the-art

methods.

(C3) The parallel mesh adaptation method can interface with a CAD kernel allowing to

accept a wider variety of inputs.

(C4) Validation of the method within an adaptive pipeline.

(C5) A General Tasking Framework that aids towards separating the concerns of function-

ality from performance for speculative parallel mesh generation methods.

5

CHAPTER 2

BACKGROUND

This thesis builds on top of two pillars. First is Parallel Mesh Generation, the process of

discretizing the computation space using geometrical objects such as triangles and tetrahedra

while utilizing single or multiple machines in parallel. Section 2.1 presents a thorough

review of several parallel mesh generation methods and suggests a taxonomy to classify

these methods.

The second is that of Metric Spaces and in particular, their use in the context of mesh

adaptation. A metric space is a set of objects, three-dimensional points for example, along

with a function that defines how to measure distances between its objects. At first regard,

it may seem a very simplistic construct, however, one can use it to guide the process of mesh

adaptation. Section 2.2 provides all the definitions and properties of metric spaces that are

pertinent to this thesis.

2.1 PARALLEL MESH GENERATION PREVIOUS WORK REVIEW

There is a plethora of parallel mesh generation methods that have been implemented over

the past decades. Still, there is no up-to-date comprehensive taxonomy and classification of

them introduced over the last 15 years. In this section, we build upon previous work in this

subject [57] and extend it by augmenting more classification attributes and including new

methods that appeared in the literature since then.

There are several parallel mesh generation methods that utilize structured [45], hexa-

hedral [195], and octree [39] meshes but these are not covered in this review neither are

mesh multiplication [136] methods [126,193,194,255] that split each element in self-similar

elements. Three-dimensional parallel triangulation methods [23, 27, 93, 141, 155] that are

designed to update the convex hull of a fixed point set instead of producing a high quality

mesh suitable for simulations are also excluded. Parallel methods that rely solely on mesh

smoothing [24, 96, 112, 222] are not covered as well. Instead, we focus on three-dimensional

tetrahedral mesh generation and mesh adaptation methods and classify them according to

a number of attributes described below.

6

2.1.1 CLASSIFICATION ATTRIBUTES

Our classification builds on top of the observation that parallel mesh generation is a mem-

ory intensive operation [12] and therefore communication is a crucial factor when it comes

to characterizing a parallel mesh generation method. This classification is in-line with the

Telescopic Approach suggested in [61] which applies a combination of decomposition tech-

niques for current and emerging architectures with multiple memory/network hierarchies

as shown in Figure 1. Parallel mesh generation methods often (over-)decompose the origi-

nal mesh generation problem into n smaller sub-problems, which are solved (i.e., meshed)

concurrently using n� p cores [57]. The amount of communication required when solving

the generated sub-problems defines the coupling between them. In particular, methods that

require high amount of communication between the different meshing tasks are categorized

as Tightly-Coupled (lower left section of Figure 1). Methods that reduce the coupling of

the meshing tasks by grouping them into (partially) independent “super tasks” are char-

acterized as Partially-Coupled (middle-left section of Figure 1). Methods that decompose

the problem into (almost) independent tasks that require only minimal (or no) interaction

between them are classified as Loosely Coupled (middle-right section of Figure 1). Finally,

methods that generate independent meshing tasks where no communication is required are

categorized as Decoupled (upper right section of Figure 1).

The design of the Telescopic Approach is part of a long term goal for parallel mesh gen-

eration and adaptation at the Center for Real-Time Computing (CRTC)1 to achieve and

sustain concurrency on current and emerging systems. To accomplish this goal, concurrency

is exploited at different scales (levels) corresponding to the latency and the bandwidth of

different network/memory hierarchies in order to orchestrate communication and synchro-

nization.

The implementation of the Telescopic Approach relies on multiple abstractions used in

the parallel mesh generation community [57]: element, cavity, data-region, and subdomain.

These abstract data types vary in granularity and complexity (i.e., type and size of the data

structures) and type/intensity of communication/synchronization required to implement

their basic operations. The type/intensity of communication/synchronization determines

their mapping to different layers of memory/network hierarchy. For example, concurrency

at the element or cavity level is permitted only in the shared memory of the cores within a

single-chip, bulk and locally synchronous exchange of data among data-regions is permitted

1https://crtc.cs.odu.edu (Accessed 2021-06-01).

https://crtc.cs.odu.edu

7

Lo
o

se
ly

 C
o

u
p

le
d

Pa
rti

al
ly

 C
o

u
p

le
d

Ti
gh

tl
y

C
o

u
p

le
d

Data Decomposition

Domain Decompositi
on

Parallel Optimistic
(or Speculative)

Parallel Data Refinement

Parallel Constrained

Node
(72 Cores)

Compute Blade
(4 nodes)

Chassis
(16 Blades)

Cabinet
(3 Chassis)

Parallel Decoupled

D
ec

o
u

p
le

d

Fig. 1: The Telescopic Approach.

only within the distributed shared memory of a few nodes and asynchronous communi-

cation of data-buffers is permitted over distributed memory of several hundreds of nodes

and/or tens of racks. Given these constraints, from the chip (lower left in Figure 1) to the

distributed-memory node levels (upper right in Figure 1), the Telescopic Approach deploys:

1. Parallel Optimistic (PO) layer [95, 187], which is a Tightly-Coupled method, and is

designed to explore concurrency at the CPU level (Node in Figure 1) within the limits

of shared memory, using speculative/optimistic execution (explained below). The

shared memory domain allows sustaining high volume of communication at low cost.

2. Parallel Data Refinement (PDR) layer [48, 62], which is a Partially-Coupled method,

and targets multiple CPUs across different nodes (Compute Blades in Figure 1). It

can exploit both shared and distributed memory hardware and relies on decomposing

the data (versus the mesh) in such a way that limits the communication to bulk-

synchronous steps.

3. Parallel Constrained (PC) layer [52], which is a Loosely-Coupled method, and targets

nodes across different Compute Blades (Chassis in Figure 1) and requires only small

8

amounts of asynchronous communication. This method relies on domain decomposi-

tion methods for constructing its subdomains.

4. Parallel Decoupled (PD) layer [152], which is a Decoupled method, and targets nodes

across different Chassis (Cabinets in Figure 1) and requires no communication.

In summary, Coupling can be defined as:

Coupling: Measures how much the parallel tasks depend on each other. The coupling

can be Tight, Partial or Loose. If no dependency between the parallel tasks exists, a

method is called Decoupled [57].

This is the main focus of this work since it the most general and can be abstracted. The

rest of the classification attributes are defined as follows:

Synchronization: Refers to the level the execution units (threads or processes) are syn-

chronized. It can be Local, including only a few of the execution units or, it can

be Global. Global synchronization involves barriers or some other form of collective

blocking operation. It should be noted that initialization and finalization of the paral-

lel procedure are excluded since they are unavoidably a blocking operation. Methods

that can reach a common state without blocking for each other while still exchanging

information are called Asynchronous [52].

Granularity: Refers to the size of the atomic unit of work. In the literature different

granularity levels have been used for the same atomic units of work based on the

context. For example, the parallel Delaunay method of [95] is considered by the

authors a fine-grained approach since the atomic unit is a cavity. However, later

in [94] a finer level of granularity is exploited by introducing lower-level atomic units

within a single cavity. For this study, we will consider a single point, element or cavity

to be the Fine level while, a group of cavities or mesh subdomains will be considered

a Coarse level of granularity.

Method: Refers to the mesh operation that is parallelized. Historically, mesh multipli-

cation was used [11], Delaunay and Advancing Front methods have also been used

extensively [247]. Some approaches (e.g., [114, 128, 181, 197]) which favor modularity

have separated the mesh generation procedure into multiple independent modules such

as point insertion, local reconnection, edge contraction, etc., while others [159] use a

single operator for all of them.

9

Programming Model: Describes the main toolkit for the implementation of the paral-

lel code: POSIX threads (Pthreads), Open Multi-Processing (OpenMP)2, Message

Passing Interface (MPI)3, etc.

Decomposition: An essential component of every parallel algorithm. For mesh genera-

tion Data and Domain decomposition are the most common [57]. The distinction

is sometimes difficult since a group of vertices and tetrahedra can act both as data

and a subdomain. The difference is in the way the decomposed data are handled.

Domain decomposition methods treat subdomains as meshes that can be processed

independently. Mesh operations are constrained within the subdomains and, depend-

ing on the coupling, some care may need to be taken for shared elements between

subdomains. Data decomposition methods do not take into account the geometry of

the input. Instead, they treat elements as shared data and use different methods to

resolve read-write dependencies that can arise during different mesh operations. For

domain decomposition, we have two subcategories [57].

Discrete: Refers to the decomposition of an existing volume mesh. Graph-based

methods applied on the dual mesh such as METIS [138], Zoltan [74], and Scotch [54]

belong to these. Another approach is to use general sorting-based methods such

as Cuthill-McKee [68] or more specialized ones such as Hilbert curves [206],

PQR [58], etc.

Continuous: Refers to decomposition of the initial surface mesh by creating continu-

ous separators. It can be thought as a geometrical construction problem. If done

correctly, it can guarantee very good quality of separators (in terms of dihedral

angles for example). For two dimensions a method based on Medial Axis [31]

has been already presented in [151]. For three dimensions, to the best of our

knowledge, generating a Medial Axis object for general inputs is still an open

problem, although commercial tools for generating it exist [37, 103].

Progressive: Relates to how the parallel process is bootstrapped and how load balancing

is handled. To the best of our knowledge, it appears in its first form as “variable

granularity” in [51] and was later described in detail in [62]. A method that starts

from very few units of work and generates more upon runtime which are then shared

dynamically among execution units is considered to be progressive. On the other hand,

2https://www.openmp.org (Accessed 2021-05-31).
3https://www.mpi-forum.org (Accessed 2021-05-31).

https://www.openmp.org
https://www.mpi-forum.org

10

if the starting point is a mesh decomposition with a predetermined number of work

units, or if load balancing is done by globally redistributing the mesh, then the method

is called non-progressive.

Figure 2 summarizes the attributes used in this section. For the rest of the section, several

parallel mesh generation methods will be presented grouped with respect to their coupling.

Each method will be described briefly and then categorized based on the above criteria. To

ease cross-referencing we also introduce a naming scheme: Research Groupname where name

is the name of the software (if it is defined in the cited literature) or one of its distinctive

characteristics based on the above criteria.

Parallel Mesh
Generation

Characteristics

Progressive
No

Yes

Decomposition

Continuous Domain

Discrete Domain

Data

Programming
Model

...

Pthreads

MPI

Method

...

Advancing-Front

Delaunay

Granularity
Coarse

Fine

Syncronization
Global

Local

Coupling

Decoupled

Loosely

Partially

Tightly

Fig. 2: Attributes of the taxonomy presented in this section.

11

2.1.2 TIGHTLY-COUPLED METHODS

Tightly-Coupled methods are characterized by intense communication. For this class of

methods, the communication can be direct through messages or indirect through access-

ing regions of shared memory, which due to false sharing and cache invalidation creates

overheads. Moreover, synchronization primitives and constructs such as locks and barriers

add to the overall overhead. Many of the approaches in this section employ Speculative

execution (also known as optimistic). Speculative execution is a technique used in several

applications ranging from processors [249] to databases [143]. It allows for the exploitation

of more concurrency out of a problem by executing steps of a procedure ahead of time prior

to resolving data dependencies between the steps themselves. In the case where steps are

not needed, pre-computed results may either be disregarded or additional steps may be

required to rollback to the previous state of the process. The correctness of this scheme,

in the context of parallel algorithms, has been proven in [135] with the introduction of the

notion of Virtual Time and validated in the context of Parallel Discrete Event Simulations

within the Time Warp system.

CRTCPODM 1.0: One of the first tightly coupled methods for mesh generation is presented

in [59, 188]. This method is based on the Delaunay kernel for introducing new points into

the mesh. This approach exploits parallelism using MPI. The first step of this approach is

a decomposition of the initial mesh using METIS [138]. Once the mesh is distributed, each

meshing process executes the Delaunay kernel on a sub-mesh of the decomposition. This

method treats each subdomain as a Delaunay sub-mesh in contrast to other methods (see

for example [52]) that treat the subdomain as a Constrained Delaunay sub-mesh, so the

Delaunay cavity can expand between two subdomains. In this case, a distributed breadth-

first search is used to collect all the elements of the cavity. The meshing process will then

attempt to lock all the elements in the cavity in order to perform the point insertion. It is of

importance that the dependencies are evaluated upon runtime and not as a pre-processing

step. This characteristic gives this method the name speculative or optimistic. It is also

worth mentioning that the method uses locks on vertices instead of the tetrahedra of a cavity

since (a) the vertices of a cavity stay the same when a Delaunay point insertion is performed

and (b) pathological cases of neighboring cavities are avoided. Although the number of

rollbacks was low, the high number of messages resulted in sub-optimal performance. Still,

this approach acts directly upon touched data which improves cache utilization and allows

tolerating more than 80% of system latencies. The classification of this method appears in

Table 1.

12

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CRTCPODM 1.0 Tightly Local Coarse Delaunay MPI Data No

TABLE 1: Classification of CRTCPODM 1.0 based on the criteria of this section.

CRTCPODM 2.0: In [93] a tightly-coupled Parallel Delaunay Triangulation algorithm was

presented. Cavity and expansion and locking of vertices are performed similarly to the

previous approach but in a shared memory setting utilizing atomic operations. Later in [95]

this approach was extended to a Parallel Delaunay Refinement method that was able to

handle medical image data and optimized for Distributed Shared Memory machines (DSM)

using a hierarchical load balancing algorithm between the threads. This algorithm was

designed to reduce the remote-memory access and allowed the method to achieve more

than 82% weak-scalability speedup on 144 cores. Although the performance improvement is

significant, there are signs that the speedup of this method deteriorates at a higher number

of cores. The source of inefficiency was not a problem inherent to the approach but rather

a limitation of the hardware. In particular, on DSM machines the cost of remote memory

access is high because the shared memory address space is emulated using low-level software.

Moreover, the physical distance between the nodes incurs unavoidably an overhead for every

remote memory access. A locality-aware implementation [87] improved this issue but only

by a moderate amount. The classification of CRTCPODM 2.0 appears in Table 2. The progressive

characteristic comes from the fact that this method uses work stealing to continuously equi-

distribute the load among the threads.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CRTCPODM 2.0 Tightly Local Fine Delaunay Pthreads Data Yes

TABLE 2: Classification of CRTCPODM 2.0 based on the criteria of this section.

13

CRTCCDT3D: The speculative/optimistic approach has been applied to operations beyond

Delaunay point insertion. In [85] the authors use the same underlying idea to parallelize a

local reconnection method. As before, the cavity is evaluated and locked upon runtime, and

if the locking is successful an appropriate topological flip is performed in order to improve

the objective function. In contrast with the previous algorithms, where the Delaunay kernel

is the only meshing operation in this work the local reconnection was only a step of a wider

set of operations, and since only one operation was parallelized this method performs global

synchronization between each mesh operation. This fact as well as the well-known Amdahl’s

law [8] that is applicable to every parallel code, constrained the efficiency of the code. Still,

compared to a state-of-the-art local reconnection approach, the proposed method enhances

user productivity by lowering the execution time significantly while delivering comparable

quality. The classification of CRTCCDT3D appears in Table 3.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CRTCCDT3D Tightly Local Fine Flips Pthreads Data Yes

TABLE 3: Classification of CRTCCDT3D based on the criteria of this section.

UBCEdge-Face Flip: Another method that utilizes the speculative approach for face and edge

flips in a slightly different manner is presented in [264]. In this method, the flip operation

is separated in stages which are linked utilizing global synchronization between the threads.

First, all candidate flips are checked with respect to whether they optimize the objective

function or not, in parallel, with no synchronization. A face and edge migration step follows

in an attempt to equi-distribute the load between the threads. The cavities are then locked

using an optimistic approach. A second edge and face migration step smooths out any load

imbalances and finally, the flips are performed in parallel with no synchronization. The

classification of this method appears in Table 4.

14

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

UBCEdge-Face Flip Tightly Global Fine Flips OpenMP Data Yes

TABLE 4: Classification of UBCEdge-Face Flip based on the criteria of this section.

UChileTightly: In [217] the authors create a parallel mesh generator utilizing the Longest

edge propagation path (Lepp) [214] algorithm speculatively. Lepp recursively splits elements

by giving priority to their longest edge. Each application of Lepp on an element evaluates a

propagation path that corresponds to a group of tetrahedra that are going to be split. Uti-

lizing this approach in a multi-threaded environment can result in intersecting propagation

paths. To remedy this issue, elements contained in a path are locked speculatively. Failure

to lock any required element results in releasing all currently locked elements and aborting

the refinement of the current element. Table 5 presents the classification of this method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

UChileTightly Tightly Local Fine Lepp Pthreads Data Yes

TABLE 5: Classification of UChileTightly based on the criteria of this section.

MITDelaunay: To the best of our knowledge, the first parallel Delaunay method was pre-

sented in [192]. The input for this method is a coarse mesh which is decomposed into

subdomains using axis-aligned planes. The mesh generation process is based on alternating

between a point insertion stage and a load balancing/migration stage. For points whose De-

launay cavity is completely inside a subdomain, the point insertion is performed as usual. If

however, the cavity expands between subdomains, the process attempts to globally lock the

remote elements. If the locking is successful, a request is sent to the owners of the elements

in order to bring them locally. To reduce the idle time while waiting for the requests to be

satisfied, each process inserts a number of points up to a pre-specified limit while, keeping

15

a buffer of pending points allowing thus to overlap some communication with computation.

The classification of this method is presented in Table 6.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

MITDelaunay Tightly Global Coarse Delaunay MPI Data No

TABLE 6: Classification of MITDelaunay based on the criteria of this section.

2.1.3 PARTIALLY-COUPLED METHODS

Partially-Coupled methods cover the majority of the current and past mesh generation

methods. They are characterized by a moderate amount of communication, far smaller

than the one of the tightly-coupled methods. Due to this reason, the Telescopic Approach

assigns this method right above the tightly coupled methods. The reduced amount of com-

munication they offer allows them to be implemented efficiently both at the shared and the

distributed memory level. This section will be further divided based on the decomposition

method.

2.1.3.1 Partially-Coupled Methods based on Data Decomposition

GMUData Decomp.: The first, to the best of our knowledge, multithreaded partially-coupled mesh

generation method utilizing data decomposition was presented in [156]. The method is based

on the advancing-front point generation method and local reconnection is used to improve

the quality of newly-created elements. Data are decomposed by decomposing the active

front using an octree. Within each octree leaf, points are generated in parallel by advancing

from the active faces. Inter-leaf faces are inactive initially. A shift of the octree along the

axes is used to transform the inter-leaf faces to intra-leaf. For edge flipping, the objective

function is evaluated in parallel for each candidate flip, which is straightforward since it

is only a read operation. The topological transformation is then performed sequentially.

According to the author of [156], this decoupling of evaluation and application of the flip

16

was selected because the objective function evaluation is the most resource-heavy part of

the local reconnection algorithm. It should be noted that in this work, there is an effort

to introduce the Progressive characteristic by estimating the work imbalance between the

leaves and splitting them in an effort to equi-distribute the workload by over-decomposing

the input. The classification of this method appears in Table 7.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

GMUData Decomp. Partially Global Coarse A. Front c$doacross Data Yes

TABLE 7: Classification of GMUData Decomp. based on the criteria of this section.

CRTCPDR 1.0: A few years later, the Parallel Delaunay Refinement (PDR), (later renamed

to Parallel Data Refinement) method emerged [50,53]. The main focus of this method was

scheduling Delaunay refinement in different regions of the mesh in a way that rollbacks were

guaranteed to be eliminated. In this way, the correctness was handled by the scheduler of

the method, thus allowing the reuse of Commercial-off-the-self (COTS) software to generate

the mesh. The three-dimensional implementation utilized TetGen [235] as a Delaunay mesh

generator and an octree constructed over an initial coarse mesh was used for data decom-

position. Moreover, since the octree was used only as a scheduling mechanism there were

no artificial boundaries imposed which could affect the mesh quality. The fact that Delau-

nay refinement follows strict mathematical rules for the evaluation of the cavity, allowed

PDR to express the octree leaf size as a function of the element size of the initial coarse

mesh. In this way, a pre-processing stage of the initial coarse mesh involving refinement up

to a specific size, guarantees that no cavity will expand beyond the neighboring leaves in

the subsequent parallel step, thus making possible to schedule leafs that share no common

neighbors concurrently. This method utilizes local synchronization since, only the refine-

ment of neighboring leaves need to be synchronized. Since the work unit in this method is

a region enclosed by a leaf, the method is considered coarse-grained. Later version of this

algorithm [62] (CRTCPDR 2.0) refines the octree as the same time with the mesh producing

17

thus more work units as refinement progresses offering the Progressive attribute discussed

earlier. The PDR method was revisited as part of the Telescopic Approach but this time

utilizing CRTCPODM 2.0 which is presented in Section 2.1.2. The shared memory implementa-

tion was able to achieve about 160 speedup on 256 cores [89] while the hybrid distributed

memory implementation reached about 450 speedup on 900 cores [88]4. It should be noted

that this method utilizes parallelism at two levels. The first is on the PDR level with the

scheduler assigning for refinement as many leaves as it is possible based on the available

work and workers. At the second level, each worker executes an instance of CRTCPODM 2.0

which is multithreaded, thus gaining a significant speedup by the combined efficiency of

both methods. Table 8 presents the classification for all three variants of PDR.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CRTCPDR 1.0 Partially Local Coarse Delaunay Pthreads Data No

CRTCPDR 2.0 Partially Local Coarse Delaunay Pthreads Data Yes

CRTCPDR.PODM Partially Local Coarse Delaunay MPI+Pthreads Data No

TABLE 8: Classification of CRTCPDR 1.0, CRTCPDR 2.0 & CRTCPDR.PODM based on the criteria of
this section.

UBCDelaunay: A scheduling approach for refinement similar to PDR but utilizing global

synchronization was presented in [264]. Initially, a uniform octree is laid upon the mesh,

and elements that fall within a leaf are assigned to the leaf for refinement. In contrast to the

original PDR method, the refinement is performed in multiple passes where an independent

set of leaves is selected and refined. To exploit more concurrency, a dynamic octree is created

within each leaf, with its size initialized to the leaf itself. This “second-level” octree is refined

progressively along with the mesh in order to provide more concurrency. It is worth noting

that, the second level leaves are not refined to the desired size at once. Instead, several

passes are applied, each one targeting elements only above a specific size. The reason is

that before each pass the leaves may get split offering thus more concurrency to the system.

4In both cases speedup is measured in terms of weak scalability.

18

Table 9 presents the classification of this method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

UBCDelaunay Partially Global Coarse Delaunay OpenMP Data Yes

TABLE 9: Classification of UBCPoint Insertion based on the criteria of this section.

UCLouvainGmsh: In [176, 211, 212], the authors separated the Delaunay mesh refinement

into two steps: (a) point creation (circumcenter evaluation) and (b) point insertion. The

separation of parallel refinement in two steps reduces the problem to that of parallel De-

launay triangulation of an a-priori known dataset which was first solved for 2D in [30]. In

contrast to the previous methods, this approach performs a partitioning step of the candi-

date points by sorting them along space-filling curves. The mesh is also partitioned using a

similar approach. Each thread then attempts to insert points starting from a different part

of the curve thus, having a low probability of overlapping with another cavity. If a cavity or

a point location walk crosses the boundary of a partition the insertion is aborted. If there

are any rejected points, the data are re-partitioned by shifting and rotating the curves. This

method was recently extended to flip-based mesh improvement operations [175]. Both the

refinement and the mesh improvement operations are present in the open-source package

Gmsh [111]. The same approach was applied later to a parallel local reconnection and

smoothing method by a different group [229]. The classification of UCLouvainGmsh appears

in Table 10.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

UCLouvainGmsh Partially Global Coarse Delaunay & Flips OpenMP Data No

TABLE 10: Classification UCLouvainGmsh based on the criteria of this section.

19

Up to this point all the partially-coupled methods decompose the input in order to

eliminate or reduce the chance of a cavity overlap. A different approach first presented

in [137] for bisection methods, in [96] for mesh optimization methods and later analyzed

theoretically in [239,254] for Delaunay methods is to directly compute all cavities and choose

an independent set of these. Although, this approach incurs a significant overhead upfront,

the cost is amortized by the absence of synchronization during the application of the mesh

operations.

Imperialpragmatic
5: Parallel execution in the Pragmatic library utilizes a partially-coupled

approach for distributed memory machines. The domain is decomposed prior to re-meshing,

mesh vertices are distributed to the different subdomains. The re-meshing algorithm is

then applied to all the subdomains independently. Subdomain interfaces are fixed during

refinement to prevent inconsistencies while avoiding frequent communications. Once the

refinement phase is completed on all subdomains, a re-partitioning phase is used to reduce

intersections between the old and the new interfaces. The re-partitioning is carried out using

a custom diffusion-based algorithm, where the interfaces are slightly shifted into one of its

neighboring domains. Synchronization across partitions is achieved using message passing

and is implemented by MPI. This process is repeated until good element quality is obtained

everywhere in the domain. Pragmatic modifies the input mesh through a series of local

edge-based mesh manipulations. First, iterative applications of coarsening (edge collapse),

edge/face swapping, and refinement (edge splitting) is used to optimize the resolution and

the quality of the mesh. Second, an element-shape-constrained Laplacian smoothing step

fine-tunes the mesh element shape measure. The element internal shape function that is

optimized is the functional defined in [153]. New surface points are optionally projected

onto a CAD model through the EGADS API [121]. Pragmatic aims at generating quality

meshes for a wide range of numerical simulations, notably for geophysics applications, and

it has been integrated with the PETSc library [18, 21] Pragmatic initially implemented a

tightly-coupled approach at the element level using a hybrid (MPI+Threads) programming

model [114]. However, following the essentially message passing nature of PETSc and other

packages from its environment, Pragmatic parallel development priorities have been rede-

fined and now is relying on message passing programming paradigm everywhere. More than

crafting a perfectly scalable code, Pragmatic aims at being good enough in the various sit-

uations that arise from real-world both 2D and 3D adaptive simulations. An open-source

5Software description reflects original author’s perspective. Received as part of personal communication
with Nicolas Barral on May 2018.

20

implementation of this method is available at [113]. Table 11 presents the classification of

this method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

Imperialpragmatic Partially Global Coarse Edge op. & MPI Data No

Flips

TABLE 11: Classification of Imperialpragmatic based on the criteria of this section.

RPIOmega h
6: Omega h is an open-source mesh adaptation library [128,130], developed by

Rensselaer Polytechnic Institute and subsequently by Sandia National Laboratories. The

core algorithm in Omega h consists of two loops: one loop of alternating between edge split-

ting and edge collapsing to satisfy length, followed by another loop that uses edge swapping

and edge collapsing to improve element shape. For parallel execution, each pass of cavity

modifications is executed in parallel on a distributed mesh. First, a maximal independent

set of cavities to modify is selected, using a modified version of Luby’s algorithm [168]. A

single layer of element ghosting (i.e., using data replication) along subdomain boundaries

is needed so that for every cavity there exists a subdomain with all the elements required

for the cavity computation and triangulation. After the completion of a triangulation phase

and before the creation of the next independent set, Omega h deploys an element trimming

phase where duplicate elements are eliminated. This guarantees the partial components

(i.e., subsets of independent cavities) of the next independent set are entirely within single

MPI rank. Third, cavities are modified locally within each MPI rank using a multithreaded

approach, which creates a new mesh structure to represent the modified mesh.

6Software description reflects original author’s perspective. Received as part of personal communication
with Daniel Ibanez on June 2018.

21

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

RPIOmega h Partially Global Coarse Edge op. & MPI+Kokkos Data No

Flips

TABLE 12: Classification of RPIOmega h based on the criteria of this section.

2.1.3.2 Partially-Coupled Methods based on Domain Decomposition

For the next two methods we use descriptions directly taken from [251] that reflect the

understanding of the original authors.

LaRCrefine: refine relies on the implementation of a partially-coupled approach that ex-

ploits coarse-grain parallelism at the subdomain level using domain decomposition and a

homogeneous programming model in a distributed memory environment. The parallel exe-

cution strategy is described in [197]. The interior portion of each subdomain is modified in

parallel while the border regions between subdomains are fixed. Elements that span bound-

aries and need to be modified to improve metric conformity are marked for future refinement.

A combined load-balancing and migration is performed to equalize the number of nodes on

each partition while penalizing elements marked for modification that span subdomains af-

ter migration. The re-partitioning step provides edge weights to either ParMETIS [223] or

Zoltan [75] graph-based partitioning libraries. The current load-balancing and migration

approach has improved parallel scaling properties over the transcript approach described

in [197]. refine uses a combination of edge split and collapse operations proposed in [181] to

modify long and short edges toward unity length in the metric. Node relocation is performed

to improve adjacent element shape. A new ideal node location of the node is created for each

adjacent element. A convex combination of these ideal node locations is chosen to yield a new

node location update that improves the element shape measure in the anisotropic metric [3].

Moreover, refine utilizes pliant smoothing [134] improving significantly over the results pre-

sented in Ref. [250]. Geometry is accessed through the EGADS [119] and EGADSlite [120]

application program interface. The source code refine is available at [198]. Table 13 presents

the classification of LaRCrefine.

22

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

LaRCrefine Partially Global Coarse Edge op. & Flips MPI Discrete D. No

TABLE 13: Classification of LaRCrefine based on the criteria of this section.

BoeingEPIC: EPIC uses a partially-coupled approach that exploits coarse-grain paral-

lelism at the subdomain level in a distributed memory environment. Given the initial mesh,

EPIC partitions the mesh into subdomains and performs a complete mesh operator pass

consisting of refinement, coarsening, element reconnection, and smoothing operations on

the interior of each subdomain while temporarily freezing the mesh at partition boundaries.

After each mesh operator pass, EPIC updates the decomposition by shifting elements be-

tween subdomains. Subdomain re-balancing uses an optimization technique that attempts

to maintain an equal work-load balance between subdomains while ensuring that frozen

mesh edges near partition boundaries are moved to the interior of a subdomain with each

re-balancing step. Multithreading can be used to parallelize the mesh operators at the sub-

domain level, but has only been implemented for a subset of mesh operations. This incom-

plete multithreading implementation has seen limited use to date. The EPIC anisotropic

mesh adaptation process [181] provides a modular framework for anisotropic unstructured

,esh adaptation that can be linked with external flow solvers. EPIC relies on repeated use

of mesh operator passes to modify a mesh such that element edge lengths match a given

anisotropic metric tensor field. The metric field on the adapted mesh is continuously in-

terpolated from the initial metric field. Several methods are available to pre-process the

metric to limit minimum and maximum local metric sizes, control metric stretching rates

and/or anisotropy, and ensure smoothness of the resulting distribution. In addition, the

metric distribution can be limited relative to the initial mesh and/or to the local geome-

try surface curvature. The surface mesh is maintained on an IGES geometry definition [9]

with geometric projections and a local regridding. EPIC is routinely used on production

applications at the Boeing Company and has been applied on several workshop cases where

the parallel implementation makes it practical for large scale problems [180, 182]. Table 14

presents the classification of this method.

23

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

BoeingEPIC Partially Global Coarse Edge op. & Flips MPI Discrete D. No

TABLE 14: Classification of BoeingEPIC based on the criteria of this section.

CEMEFEdge op.: In [67] and in its anisotropic evolution [76] the authors employ an iterative

method alternating between mesh adaptation and mesh re-partitioning. Each iteration

performs mesh adaptation while keeping the subdomain boundaries fixed. The re-partition

step redistributes the mesh elements by shifting the subdomain boundaries. Instead of the

traditional approach that uses the dual graph for mesh partitioning, this method uses a

diffusive algorithm that acts directly on the mesh. Weights based on the local mesh quality

are used in order to migrate groups of low-quality elements in the same subdomain. Table 15

presents the classification of this method. This method has been applied [63,64] to the open-

source software MMG [183] which resulted into ParMMG [184]. A similar approach by a

different group is presented in [43].

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CEMEFEdge op. Partially Global Coarse Edge op. & MPI Discrete D. No

Flips

TABLE 15: Classification of CEMEFEdge op. based on the criteria of this section.

GMUDiscrete DD: A two level parallel mesh generation algorithm combining MPI and OpenMP

with a Parallel Advancing Front mesh generation algorithm is presented in [157]. This

method decomposes an initial coarse mesh by applying recursive bisection and space-filling

curves. The domains are refined using the parallel advancing front scheme of GMUData Decomp.

presented in the previous section. During subdomain migration, few layers of elements along

24

the subdomain interfaces, which function as “buffer zones”, are sent as well. The extra lay-

ers aid towards eliminating low-quality elements between the boundaries of the subdomains.

Finally, mesh improvement is applied in a decoupled fashion by fixing the elements between

the subdomains and applying the operation only to the internal elements. Table 16 presents

the classification of the method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

GMUDiscrete DD Partially Global Coarse A. Front & MPI+OpenMP Discrete D. No

Flips

TABLE 16: Classification of GMUDiscrete DD based on the criteria of this section.

RPIDiscrete DD: In contrast to the methods presented so far, the method described in [4,72]

deals with parallelism by creating mesh-specific data structures [228] designed to handle

concurrent read and write access in a distributed memory environment. This method utilizes

template-based refinement and edge-face swaps for quality improvement. Moreover, it has

been extended for metric-based adaptation [219]. Each mesh operator pass is coupled with

a global synchronization step where all the processes commit and receive modifications of

the boundary elements. Table 17 presents the classification of the method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

RPIDiscrete DD Partially Global Coarse Templates & MPI Discrete D. No

Flips

TABLE 17: Classification of RPIDiscrete DD based on the criteria of this section.

25

For the next method we use a description directly taken from [251] that reflects the

understanding of the original author.

INRIAFeflo.a: Feflo.a employs a partially coupled, coarse-grained approach that exploits

parallelism at the subdomain level in a shared memory environment. The initial mesh is

decomposed in multiple levels (i.e., domain decomposition). The initial volume is split and

adapted in parallel while treating the interface between subdomains as a constrained surface.

Once the initial subdomains are complete, a new set of subdomains is constructed entirely of

the constrained interface elements of the previous subdomains. This process recurses until

all the constrained elements are adapted [159]. Feflo.a is an adaptation code developed at

INRIA7 that can process manifold or nonmanifold surface and/or volume meshes composed

of simplicial elements. It creates a unit mesh [158,162] in two steps. The first step improves

the edge length distribution with respect to the input metric field. Only classical edge-

based operators (insertion and collapse) are used during this step. The second step is the

optimization of mesh element shape measures with node smoothing and tetrahedra edge and

face swaps. For the surface mesh adaptation, a dedicated surface metric is used to control the

deviation of the metric and surface curvature. This surface metric is then combined with the

input metric. New points created on the surface are evaluated on a (fine) background surface

mesh and optionally on a geometry model via the EGADS application program interface

(API) [119]. The classical edge-based operators are implemented by a unique cavity-based

operator [164, 165]. This cavity-based operator simplifies code maintenance, increases the

success rate of mesh modifications, has a constant execution time for many different local

operations, and robustly inserts boundary layer mesh [163]. When the cavity operator is

combined with advancing-point techniques, it outputs metric-aligned and metric-orthogonal

meshes [160]. Table 18 presents the classification of the method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

INRIAFeflo.a Partially Global Coarse Uniq. Cavity Unix-sockets Discrete D. No

TABLE 18: Classification of INRIAFeflo.a based on the criteria of this section.

7https://www.inria.fr/en (Accessed 2021-06-01)

https://www.inria.fr/en

26

RPIContinuous DD: Among the partially coupled methods, is also one that uses a continuous

domain decomposition scheme and was presented in [73]. In particular, a continuous octree-

based domain decomposition method is used away from the boundary of the mesh while

close to the boundary the method utilized a discrete domain decomposition method. This

method generates first a distributed octree over the initial surface mesh with the size of the

terminal nodes governed by the spacing requirements of the problem. The internal octree

leaves are then refined using templates that guarantee conformity with no communication.

For the octree leaves that intersect the input surface, the method utilizes an advancing front

technique to fill the space while keeping shared interfaces between subdomains fixed. The

octree leaves that intersect the input surface are re-partitioned to make the fixed interfaces

internal but also for load balancing purposes. Table 19 presents the classification of the

method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

RPIContinuous DD Partially Global Coarse A. Front & MPI Continuous D. No

Templates

TABLE 19: Classification of RPIContinuous DD based on the criteria of this section.

BrownLepp: The Lepp method is revisited in [42] where the authors use an asynchronous

method for refining the mesh in parallel. The input for this method is a coarse mesh

which is decomposed using the Chaco graph partitioning library [123]. Each process will

then alternate between two states. First, refining the tetrahedra using the Lepp method.

For propagation paths that span among different subdomains asynchronous messages will

be send to neighboring subdomains that contain the point to be inserted along the shared

boundary. During the second state, the method processes the incoming messages by inserting

the suggested points achieving thus a conforming interface. The process continues until no

further points are inserted. Table 20 presents the classification of the method.

27

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

BrownLepp Loosely Asynchronous Coarse Lepp MPI Discrete D. No

TABLE 20: Classification of BrownLepp based on the criteria of this section.

2.1.4 DECOUPLED METHODS

On the top of the Telescopic Approach are the decoupled methods which pre-process

the initial input in a way that the generated subdomains can be refined with no need for

further communication. Pre-processing often involves refining the interfaces between the

subdomains so that they meet the target spacing. Moreover, in some cases extra care is

taken to improve the quality of the separators and/or ensure they conform to the Delaunay

property. An efficient method to produce separators in two dimensions involves the use of

the Medial Axis object [31]. In three dimensions however, to the best of our knowledge,

there is no parallel tetrahedral mesh generation method that takes advantage of it, although

commercial tools for generating the 3D Medial Axis exist [37,103].

INRIADecoupled: One of the first parallel mesh generation methods appears in [101]. Start-

ing from a surface mesh this method computes a separator surface S using an Inertia Axis

Decomposition method. A subset of the surface points V is then projected on S and se-

ries of operations involving a restricted Voronoi diagram, Dual Delaunay triangulation and

convex hull evaluations are used to extract the edges of the original surface that cross S.

These edges are refined to their final spacing and become part of the separator between the

subdomains. Finally, the subdomains are refined using GHS3D [108] in each subdomain.

The authors of this method note that in some cases the partitioning procedure may fail

and it has to be restarted from scratch with a new surface separator. Table 21 presents the

classification of the method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

INRIADecoupled Decoupled None Coarse Delaunay - Continuous D. No

TABLE 21: Classification of INRIADecoupled based on the criteria of this section.

28

SwanseaDiscrete DD: In [220] the authors present a decoupled Delaunay-based parallel

mesh generation method. First, a coarse volume mesh is partitioned sequentially based on

a greedy method while making sure that no topological issues are created. While still in

the master process, the subdomain interfaces are refined and their quality is improved by

applying flips and vertex smoothing. Once the pre-processing is complete, the subdomains

are sent to the available processes and their volume is refined in parallel introducing points

using a Delaunay-based method. The final mesh satisfies the Delaunay property but only

within each subdomain. Table 22 presents the classification of this method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

SwanseaDiscrete DD Decoupled None Coarse Delaunay MPI Discrete D. No

TABLE 22: Classification of SwanseaDiscrete DD based on the criteria of this section.

CRTCA. Front: Pre-refinement of subdomain interfaces was also utilized by the authors

of [132]. For this method, an initial coarse mesh is decomposed by METIS [138] and then

the boundaries of each subdomain are extracted. The triangles of the shared boundary are

refined to the target using a 2D Delaunay method. Once the pre-processing is complete

the subdomains are packed and sent to different processes that utilize an Advancing Front

technique to refine the volume of the mesh. To remedy the low quality of elements near the

artificial boundaries, the internal vertices of the tetrahedra attached to the boundary are

smoothed. Table 23 presents the classification of this method. Similar approaches appear

in [238] and [47]. In the former, the authors utilize recursive bisection of the subdomain

interface edges that guarantees conforming subdomain interfaces by construction and utilize

NetGen [226] as volume mesh generator. The second approach uses a surface simplification

technique on the subdomain interfaces to improve the quality of mesh around the separators

and a fine-grained advancing front method to refine the subdomain interfaces to their target

spacing. A Delaunay-based method is then used in each subdomain for refining the internal

of the subdomains.

29

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CRTCA. Front Decoupled None Coarse A. Front MPI Discrete D. No

TABLE 23: Classification of CRTCA. Front based on the criteria of this section.

CRTCVGRID: Another parallel mesh generation method that utilizes an advancing front

technique and in particular VGRID [207, 208] is presented in [263]. Starting from a sur-

face mesh refined at the target spacing, this method recursively bisects the subdomains by

creating an interface mesh that decouples the two subdomains. The interface is created by

instructing VGRID to generate elements along an imaginary plane that splits a subdomain

in two. The sizing of the elements along the imaginary plane matches the final spacing

and thus the generated elements can remain fixed during the rest of the procedure. The

decoupled subdomains are then packed and sent to workers that refine them independently

and with no communication. Table 24 presents the classification of this method.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CRTCVGRID Decoupled None Coarse A. Front MPI Discrete D. No

TABLE 24: Classification of CRTCVGRID based on the criteria of this section.

UChileDecoupled: Reference [215] presents an earlier version of UChileTightly. This par-

allel method works by (over-)decomposing the initial mesh and applying Lepp at each sub-

domain. Since the shared edges are refined at all neighboring subdomains to the same level

governed by the global sizing criteria and not other topological optimization is performed,

the interfaces of the subdomains are guaranteed to be conforming. Table 25 presents the

classification of this method.

30

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

UChileDecoupled Decoupled None Coarse Lepp MPI Discrete D. No

TABLE 25: Classification of UChileDecoupled based on the criteria of this section.

SwanseaContinuous DD: In [145] the authors utilize a recursive algorithm that decomposes

the input surface triangulation using axis-aligned planes. The intersection of the surface tri-

angulation with each plane creates a piece-wise linear curve which after some pre-processing

becomes a simple closed loop. The loop is refined to its terminal spacing with a 2D Delaunay

method and is “glued” back to the original surface. Having refined to its terminal size the

subdomain interfaces allows to refine the rest of the subdomain with no communication.

The final mesh satisfies the Delaunay property but only within each subdomain. Table 26

presents the classification of this method. Same method was presented in [133] by a different

group utilizing Triangle [231] and TetGen [235] for the 2D and 3D Delaunay parts of the

algorithm respectively.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

SwanseaContinuous DD Decoupled None Coarse Delaunay MPI Continuous D. No

TABLE 26: Classification of SwanseaContinuous DD: based on the criteria of this section.

2.1.5 SUMMARY

The different mesh generation approaches and parallel methods utilized over the last 15

years led to a diverse landscape of parallel mesh generation methods. However, the lack

of classification criteria impedes researchers from obtaining a comprehensive view of the

field. In this section, we provided an initial attempt defining a set of criteria for classifying

31

parallel mesh generation methods and applied them to methods that appear in [57] and new

approaches that have emerged since then. Table 27 summarizes our taxonomy.

Name Coupling Sync. Gran. Method P. Model Decomp. Prog.

CRTCPODM 1.0 Tightly Local Coarse Delaunay MPI Data No

CRTCPODM 2.0 Tightly Local Fine Delaunay Pthreads Data Yes

CRTCCDT3D Tightly Local Fine Flips Pthreads Data Yes

UBCEdge-Face Flip Tightly Global Fine Flips OpenMP Data Yes

UChileTightly Tightly Local Fine Lepp Pthreads Data Yes

MITDelaunay Tightly Global Coarse Delaunay MPI Data No

GMUData Decomp. Partially Global Coarse A. Front c$doacross Data Yes

CRTCPDR 1.0 Partially Local Coarse Delaunay Pthreads Data No

CRTCPDR 2.0 Partially Local Coarse Delaunay Pthreads Data Yes

CRTCPDR.PODM Partially Local Coarse Delaunay MPI+Pthreads Data No

UBCDelaunay Partially Global Coarse Delaunay OpenMP Data Yes

UCLouvainGmsh Partially Global Coarse Delaunay &Flips OpenMP Data No

Imperialpragmatic Partially Global Coarse Edge op. & Flips MPI Data No

RPIOmega h Partially Global Coarse Edge op. & Flips MPI+Kokkos Data No

LaRCrefine Partially Global Coarse Edge op. & Flips MPI Dis. D. No

BoeingEPIC Partially Global Coarse Edge op. & Flips MPI Dis. D. No

CEMEFEdge op. Partially Global Coarse Edge op. & Flips MPI Dis. D. No

GMUDiscrete DD Partially Global Coarse A. Front & Flips MPI+OpenMP Dis. D. No

RPIDiscrete DD Partially Global Coarse Templates & Flips MPI Dis. D. No

INRIAFeflo.a Partially Global Coarse Uniq. Cavity Unix-sockets Dis. D. No

RPIContinuous DD Partially Global Coarse A. Front & Templates MPI Cont. D. No

BrownLepp Loosely Asynch. Coarse Lepp MPI Dis. D. No

INRIADecoupled Decoupled None Coarse Delaunay - Cont. D. No

SwanseaDiscrete DD Decoupled None Coarse Delaunay MPI Dis. D. No

CRTCA. Front Decoupled None Coarse A. Front MPI Dis. D. No

CRTCVGRID Decoupled None Coarse A. Front MPI Dis. D. No

UChileDecoupled Decoupled None Coarse Lepp MPI Dis. D. No

SwanseaContinuous DD Decoupled None Coarse Delaunay MPI Cont. D. No

TABLE 27: Summary table, Dis. D. : Discrete Domain Decomposition, Cont. D. : Contin-
uous Domain Decomposition.

Using as a guide the Telescopic Approach for parallel mesh generation, we built our tax-

onomy based on its defining characteristic; the coupling between the generated sub-problems.

The coupling governs the amount of communication between the subproblems which is one

of the main overheads when it comes to parallel applications in general. Synchronization is

32

often another big source of overhead in parallel application and as such is included in our

classification. Incorporating granularity in our criteria allows to distinguish methods that

exploit parallelism at the element versus the subdomain level. Also, it allows to describe hy-

brid methods that operate at multiple granularities at the same time. The meshing method

and Programming model are self-explanatory and depend on the implementation of each

method. Finally, we used the decomposition method and the characterization of whether

a method is progressive or not. The former is an essential part of every parallel algorithm

that defines how the work units are created while, the latter indicates whether the method

redistributes work implicitly by continuously moving work units from one process to the

other or not.

As noted in the introduction, the goal of this dissertation is to create the meshing

building block for the Telescopic Approach. This means that by design we are focusing

on a Tightly-coupled method designed to explore concurrency at the CPU level within the

limits of shared memory. Moreover, we will be utilizing the speculative approach which has

been found in the past [95,187] to perform very well at this layer of the memory hierarchy.

The speculative approach will be applied at the element and vertex level, thus making our

method fine-grained. Our programming model includes both manual methods for managing

resources such as Pthreads, but also supports tasking environments. Details about the use of

tasking environments appear in Section 5. Finally, we will adopt the Data Decomposition

scheme of the previous isotropic implementation [82, 85] that enables the method to be

progressive and extend it based on the needs of new parallel operations as described in

Section 3. Table 28 summarizes the characteristics of our approach based on the criteria of

this section. To the best of our knowledge the method presented in this work is the first

tightly-coupled speculative fine-grained method for anisotropic 3D mesh adaptation.

Coupling Sync. Gran. Method P. Model Decomp. Prog.

Tightly Local Fine Edge op. & Flips Pthreads/task-based Data Yes

TABLE 28: Classification of our method.

33

2.2 METRIC SPACES IN THE CONTEXT OF MESH ADAPTATION

One of the important characteristics when generating a mesh is to keep its size low since

it relates directly to the computational cost of the solver. Orthogonal to the low compu-

tational cost is the requirement of capturing both large and small features of the solution.

Historically, the mesh would be further refined on regions of interest based on a-priori

knowledge of the problem [189]. However, as the demand for more complex simulations

arises, identifying regions of interest is not only difficult due to the complex configurations

and flows but in some cases infeasible due to the high cost of human intervention.

Early attempts to control the mesh density at regions of interest relied on re-distributing

the points of a structured grid [246]. Mesh multiplication techniques approach the prob-

lem by splitting elements into self-similar elements [11]. In [25] the authors create overset

meshes of different resolutions driven by estimates of the local truncation error. The need

for capturing anisotropic features, i.e., features with different variations in each direction,

pushed the research towards unstructured meshes. In [204] the authors drive their advanc-

ing front point creation method by producing a point spacing governed by error-estimators.

The first use of a two-dimensional Delaunay method to create anisotropic elements appears

in [177]. The author captures the anisotropy of a two-dimensional mesh using a three-

dimensional control surface that encodes local size and orientation via its curvature. The

Delaunay cavity evaluation is then modified to correspond to isotropic evaluations on the

high-order surface. Creating anisotropic meshes with the Delaunay method was revisited

in [109], but this time the error estimator was provided in the form of a symmetric positive

definite matrix. The use of a symmetric positive definite matrix allows inducing a metric

that can be used to evaluate geometrical quantities such as the length while taking into

consideration the local orientation and size requirements. They also introduced the idea

of the unit mesh. The crux of this approach is to transform the problem of creating the

best mesh by creating one mesh with all its edge lengths equal to 1 when measured by

the new metric. The idea of metric-based mesh generation through unit meshes has been

extended and improved over the years. Its effectiveness has been demonstrated in a wide

variety of mesh adaptation problems [5, 161, 167]. Moreover, theoretical work [166] showed

that the notion of the unit mesh, when coupled with the appropriate metric, can control

the interpolation error obtained on a metric-adapted mesh.

Apart from the unit mesh approach, there are several other strategies for generating

anisotropic meshes based on frame fields [196], convex functions [98], anisotropic Voronoi

methods based on geodesic distances [144, 147], Delaunay methods [32], and particle-based

34

approaches [265]. These approaches are out of the scope of this work since many of them

focus on two-dimensional or surface meshing only, and they target mainly graphics applica-

tions.

Another approach for generating anisotropic meshes is through the use of higher di-

mensional spaces [41, 71, 149, 266]. These approaches are reminisced of the Delaunay-based

approach discussed above [177]. The basis of these methods is a theorem [186] that proves

the existence of a map between Riemannian spaces and higher dimensional Euclidean spaces.

In practice, this approach transforms the problem of generating an anisotropic mesh in R3

to that of generating an isotropic mesh in Rn where n > 3. Some approaches [41, 149, 266]

generate the mesh directly in Rn through the use of n-dimensional Voronoi diagrams. Oth-

ers [71] perform only predicate and length computations in Rn while generating a mesh in

R3. The latter allows to re-use all the widely-used meshing operations such as edge-face

flips and vertex smoothing in higher dimensional Riemannian spaces.

In this work, we adopt the unit-mesh approach for creating metric-adapted meshes. The

choice is based on the fact that it is more established and well-tested on a wide variety of CFD

applications [6]. In contrast, the higher-dimensional embedding method is a relatively new

approach used mainly in graphics applications. Moreover, a general approach for creating

the required mapping from an arbitrary Riemannian metric to a self-intersection-free high

dimensional Euclidean space only recently appeared in the literature [266].

The rest of the chapter presents the most important definitions and properties of the

Euclidean and Riemannian metric spaces, which provide a theoretical framework for using

metric tensors and metric-based geometrical evaluations in the context of mesh adaptation.

The material is drawn in part from [2, 20, 80, 161, 166, 171, 200] and summarized here for

completeness. Section 2.2.1 introduces the notion of the metric tensor and describes spaces

equipped with a constant metric tensor. Also, it addresses aspects related to how geometrical

evaluation such as lengths and angles can be adapted to take into account the metric tensor

information. In Section 2.2.2, we introduce spaces where the metric tensor varies from point

to point. This construction is closer to the metric-based adaptation problem where the

sizing and orientation requirements vary from point to point. Finally, in Section 2.2.3 we

present a few metric operations that are used throughout this work.

35

2.2.1 EUCLIDEAN METRIC SPACES

Informally, the Euclidean metric space can be thought as a transformed space near the

vicinity of a point. In the context of mesh adaptation, the mesh in the vicinity of the

point is transformed through affine transformations8 in order to create an isotropic mesh in

the transformed space. Choosing the transformations appropriately, results in a mesh that

exhibits the desired sizing and orientation in the physical space. One of the characteristics

of Euclidean spaces is that it enables to alter the way we measure geometrical quantities by

the introduction of a new metric which is built on top of positive definite matrices.

Definition 1 (Positive Definite Matrix). A real symmetric 3×3 matrix M is called positive-

definite iff ∀u ∈ R3, u 6= 0 =⇒ uTMu > 0.

Remark 1. For a positive-definite matrix M, the bi-linear function 〈u, v〉M := uTMv

defines an inner product in R3.

Remark 2. It can be shown that every inner product on a real vector space can induce a

vector space norm by the map ‖u‖M =
√
〈u, u〉M and subsequently a metric via the formula

dM(x, y) = ‖x − y‖M. Due to this property, the terms metric tensor and metric are used

interchangeably in the metric-based adaptation literature and throughout this thesis.

The pair (R3,M) := (R3, dM) constitutes therefore a metric space. For the rest of the

chapter, it will be called a Euclidean Metric Space or simply a Euclidean Space. In

a metric space, notions such as length, angle, area, and volume, which are of particular

interest in mesh generation, can be defined by substituting the identity metric with the one

induced by the positive-definite matrix M:

length of a segment `M(x, y) = dM(x, y) (1)

angle between non-zero vectors cos(θM) =
〈u, v〉M
‖u‖M‖v‖M

, θM ∈ [0, π] (2)

Notice that by using M = I, where I is the identity matrix, we recover the familiar

formulas. Next, we introduce a general transformation map from the physical space (R3, I)

to the Euclidean space (R3,M). The first step to derive this map is given by the spectral

theorem of linear algebra [241]:

8An affine transformation between two vector spaces can be defined as a linear transformation plus a
shift [241]: T (−→v) = A−→v +−→v0 . A linear transformation is a transformation that satisfies the linear property:
T (c−→v + d−→w) = cT (−→v) + dT (−→w). Examples of affine transformations are rotation, translation, scaling,
reflection, etc.

36

Theorem 1 (Spectral Decomposition). If M ∈ Rn×n is a symmetric matrix then it can be

factorized as: M = PDP T where P is an orthogonal matrix whose columns are eigenvectors

of M and D := diag(λ1, λ2, . . . , λn) the diagonal matrix of the eigenvalues of M .

This theorem enables also the representation of the metric tensor as an ellipsoid centered

at the point where the metric tensor is defined. This representation stems from the fact

that a unit ball centered at a point c can be defined as B(c) = {x ∈ R3 : (x− c)T (x− c) ≤
1} = {x ∈ R3 : 〈x− c, x− c〉 ≤ 1}. Substituting the natural inner product 〈·, ·〉 with 〈·, ·〉M
one gets a unit ball in (R3,M) and it can be shown that it corresponds to an ellipsoid back

in the physical space:

BM(c) = {x ∈ R3 : 〈x− c, x− c〉M ≤ 1} = {x ∈ R3 : (x− c)TM(x− c) ≤ 1}
= {x′ ∈ R3 : (Px′ − Pc′)TPDP T (Px′ − Pc′) ≤ 1} where x′ = P Tx (3)

= {x′ ∈ R3 : (x′ − c′)TD(x′ − c′) ≤ 1} since PP T = I3

=

{
x′ ∈ R3 :

(
x′1 − c′1
1/λ1

)2

+

(
x′2 − c′2
1/λ2

)2

+

(
x′3 − c′3
1/λ3

)2

≤ 1

}
(4)

In (3) we transform the space by applying a rotation based on matrix P . The rotation results

in aligning the coordinate axis with the eigenvectors of M. Thus, equation (4) defines an

ellipsoid centered at c with semi-axes aligned to the eigenvectors of M and their lengths

given by 1√
λi

, see also Figure 3.

As noted in [166] the spectral decomposition enables the definition of the map

D
1
2P T : (R3, I)→ (R3,M)

x 7→ D
1
2P Tx, where D

1
2 := diag

(√
λ1,
√
λ2,
√
λ3

)
This function maps a vector from the physical space to the Euclidean space induced byM.

Using the above map in conjunction with common geometric formulas, one can transform

results from the physical space to the Euclidean space. For example, notice that we can

recover the definition of the inner product in M since,

〈u, v〉M = 〈D 1
2P Tu,D

1
2P Tv〉 =

(
D

1
2P Tu

)T
·D 1

2P Tv = uTMv

and thus recover equations (1) and (2). Also, using the algebraic properties of the mixed

37

−→
P1

1√
λ1

−→
P2

1√
λ2

−→
P3

1√
λ3

Fig. 3: Visualization of a metric tensor M = P diag(λ1, λ2, λ3)P T as an ellipsoid. The

orthonormal eigenvectors ~P1, ~P2, ~P3 define the principal directions of the ellipsoid while the
quantities 1√

λi
the length of the semi-axes.

product one can evaluate the volume of a parallelepiped K in the Euclidean space (R3,M)

as a scalar multiple of its volume in (R3, I):

|K|M = 〈x, (y ×M z)〉M =
〈(
D

1
2P T

)
x,
((
D

1
2P T

)
y ×

(
D

1
2P T

)
z
)〉

= det
((
D

1
2P T

)
x,
(
D

1
2P T

)
y,
(
D

1
2P T

)
z
)

= det
((
D

1
2P T

)
(x, y, z)

)
= det

(
D

1
2

)
· det

(
P T
)
· det(x, y, z)

=
√

det(M) · 1 · 〈x, (y × z)〉 =
√

det(M)|K|I (5)

where |K|I is the volume of the parallelepiped in the physical space. This formula can then

be used to measure the volume of a tetrahedron in the Euclidean space since its volume is

given by 1
6
〈x, (y×z)〉 where x, y, z are the vectors emanating from a vertex of the tetrahedron.

2.2.2 RIEMANNIAN METRIC SPACES

In a Euclidean space, the metric tensor is a constant matrix; if one allows the metric

tensor to vary smoothly over the computational domain, then the Riemannian Metric

space or simply Riemannian space is defined. Even though, in a Riemannian space there

is no global definition of the inner product, it is still a useful construct for mesh adaptation

38

purposes, since in most applications, the metric varies within the domain. In practice,

the metric tensor is defined only at the vertices of a mesh so, to be able to calculate the

above geometric quantities at any point of the domain we need to approximate the value

of the metric tensor field throughout the computational domain. Following the widely used

approach, we utilize the Log-Euclidean interpolation framework introduced in [14]. One of

the main advantages of this scheme over the ones used previously in the literature is that

the interpolation operator is commutative, thus allowing the combination of metric tensors

in any order. Moreover, in [181] the Log-Euclidean framework was found to be superior in

comparison to the power average and the simultaneous matrix reduction methods [33] in

various numerical evaluations. In the Log-Euclidean framework the value of the metric at

an arbitrary point of the domain is interpolated as follows:

Given a set of vertices xi , i = 1, . . . , k and Mi =M(xi) their corresponding metrics, then

for a point x of the domain with barycentric coordinates ai

x =
k∑
i=1

ai · xi, with
k∑
i=1

ai = 1,

the interpolated metric is defined by

M(x) =Mmean(x) = exp

(
k∑
i=1

ai lnMi

)
(6)

Notice that since Mi are positive definite, they have positive eigenvalues and therefore the

exponential and logarithm of the metrics are well defined and given by

ln(M) := P ln(D)P T and exp(M) := P exp(D)P T ,

where ln(D) := diag (ln(d1), ln(d2), ln(d3)) and exp(D) := diag (exp(d1), exp(d2), exp(d3)).

The length of a segment in an adapted mesh plays critical role in the quality of the mesh

and it is one of the metrics used in this work to quantify the quality of the generated mesh.

In differential geometry the length of a vector u = xy is computed using the integral [205]:

`M(xy) =

∫ 1

0

‖γ′(t)‖M dt where γ(t) = x+ t · u (7)

However, this evaluation is expensive sinceM varies along the edge. In practice, we use the

variational law presented in [2]:

39

Definition 2. Let e = p1p2 be an edge of the mesh and M1 := M(p1),M2 := M(p2) the

corresponding metric tensor on the endpoints of the edge. Without loss of generality, assume

that `M1(e) > `M2(e), the length of e can then be approximated by:

`M(e) = `M1(e)
a− 1

a ln(a)
, where a =

`M1(e)

`M2(e)
. (8)

Formally, in a Riemannian space the volume is evaluated using a continuous version of

formula (5). However, in order to avoid the expensive calculations, we interpolate the metric

on the centroid of the element and then use the Euclidean volume formula (5).

Finally, the measures used to report mesh quality also need to be adapted. In this work,

we adopted the mesh quality measures used by the Unstructured Grid Adaptation Working

Group9. The edge lengths are evaluated using:

Le =

La−Lb

log(La/Lb)
|La − Lb| > 0.001

La+Lb

2
otherwise

La = (vTeM(a)ve)
1
2 , Lb = (vTeM(b)ve)

1
2

, (9)

where ve is the vector along edge ab. Since the goal is to create a unit mesh, edges of length

below or above 1 are considered sub-optimal. The Mean Ratio [154] shape measure is also

approximated in the discrete metric,

Qk =
36

31/3

(
|k|
√

det(Mmean)
) 2

3∑
e∈L v

T
eMmeanve

, (10)

where ve is the vector along the edge e of element k, |k| the isotropic volume of the element,

Mmean is the interpolated metric tensor evaluated at the centroid of element k, and L the

set of all edges of k. The measure is normalized by the volume of an equilateral element

and as such its range is [0, 1] with 1 being the optimal quality for an element.

In this section we presented the Riemannian space merely as a way to compute lengths

within the metric-based adaptation context. However, its usefulness is far beyond this usage.

It has been shown that using the notion of Riemannian spaces in metric-based adaptation,

one can move from the ill-posed problem of generating the “best” mesh that minimizes the

linear interpolation error of a function evaluated on a mesh, to the well-posed problem of

evaluating a continuous metric field that minimizes the interpolation error [166].

9https://ugawg.github.io/ (Accessed 2021-05-31).

https://ugawg.github.io/

40

2.2.3 METRIC OPERATIONS

In the last section of this chapter, we describe a few important operations on metric ten-

sors. In particular, we present a method for intersecting different metric tensors at a given

point. This operation will become especially useful in later chapters where we combine met-

rics from different sources. We also present the notion of metric complexity which provides

a way to control the level of refinement of a metric-adapted mesh globally. Controlling the

metric complexity enables the creation of successively adapted meshes that will enable us

in Section 4.2 to create an error-based adaptive pipeline. Finally, we describe briefly the

construction of the multiscale metric, the method adopted in this work for constructing

metric fields.

2.2.3.1 Metric Intersection

During adaptation, we may have more than one metric tensor defined at a vertex. An

example is a metric tensor based on the error coming from the CFD solver and the second

being constructed based on the curvature of the geometry. Moreover, the user may need

to impose additional constraints such as a global maximum edge size or, in general, any

other kind of metric limiting [181]. One approach to combine multiple metrics is metric

intersection.

If we visualize the metric tensors as ellipsoids (see Figure 3) then the metric intersection

procedure can be seen as evaluating the largest ellipsoid included in the intersection of the

other two (see Figure 4). The metric intersection can be evaluated through simultaneous

diagonalization of the two metrics [33]. Formally, the simultaneous diagonalization of two

positive definite matrices A and B produces a basis P that can be used to diagonalize

both matrices simultaneously, i.e., A = PDAP
T and B = PDBP

T [125]. Using these

decompositions one can define a new positive definite matrix C = P diag(max(ei, di))P
T ,

where ei, di the diagonal elements of DA and DB respectively. C corresponds to the largest

ellipsoid included in the intersection of the ellipsoids of A and B [1]. In practice, we adopt

the approach presented in [20] which we describe here for completeness.

41

(a) (b)

(c) (d)

Fig. 4: Metric Intersection. (a) Two metric tensors to be intersected. (b) The metric
corresponding to the intersection result. (c) The intersection result and the first metric. (d)
The intersection result and the second metric.

Given two metric tensorsM1,M2, we first transform both matrices by multiplying them

by (M−1/2
1)10 :

M1 =M−1/2
1 M1M−1/2

1 = I
M2 =M−1/2

1 M2M−1/2
1

Then, we diagonalize M2, M2 = PDP T . P can be used to diagonalize M1 trivially:

M1 = PIP T . The new metric can then be calculated as:

M1∩2 = P diag(max(di, 1))P T

Finally, we apply the inverse transformation to return to physical space:

M1∩2 =M1/2
1 M1∩2M1/2

1

10Since M is positive definite, M−1/2
1 can be defined by means of spectral decomposition: M−1/2

1 :=
P diag(1/

√
λ1, 1/

√
λ2, 1/

√
λ3)PT .

42

Geometrically, this process corresponds to transforming both metric tensors using M−1/2
1

which reduces M1 to a unit circle thus making the rest of the process trivial. For more

algorithms around intersections of ellipses and metric tensors one can refer to [80].

2.2.3.2 Metric Complexity

Traditionally, mesh convergence studies use a parameter h representing the edge length of

a uniform mesh in order to create a series of successively refined meshes that reduce the

approximation error [216]. In the context of metric-based adaptation, a single parameter

based on edge length is not sufficient to capture the sizing requirements since, it depends

on the direction of the element. To resolve this issue, the notion of metric complexity of

a continuous metric is introduced [166]. To demonstrate its practicality, we first rearrange

the spectral decomposition of the metric tensor at a point x, M(x) = PDP T as follows:

M(x) = d
2
3 (x)P (x)

r−2

1 (x) 0 0

0 r−2
2 (x) 0

0 0 r−2
3 (x)

P T (x)

where,

ri =
h3
i

h1h2h3

and d =
1

h1h2h3

=
√
λ1λ2λ3

In this representation we introduced d the density of the metric field. Increasing or decreas-

ing d does not affect the orientation or the anisotropic stretching ratio11. Based on d we

define the complexity C of M:

C(M) =

∫
Ω

d(x) dx =

∫
Ω

√
det(M(x)) dx (11)

In practice, the metric field is known only on mesh vertices so, one can evaluate the metric

complexity of a discrete metric with:

C(M) =
N∑
i=1

√
det(Mi)Vi (12)

where Vi is the volume of the Voronoi dual surrounding each node. The complexity allows to

quantify the global level of accuracy. In fact, it can be shown that it is equal to approximately

11One can show that d
2
3 r−2

i = λi [166] so, a scalar multiple of d results into scaling all eigenvalues by the
same factor.

43

half the number of vertices of a unit mesh covering the domain [166]. It also allows to define

a series of successively “denser” meshes that can be used in place of the traditional h-refined

series of meshes. The complexity of a metric can be scaled to a target value using:

Mtarget =

(Ctarget
C(M)

)2/d

M, (13)

where d is the dimension of the problem which is 3 throughout this work. Since the complex-

ity is defined based on the density, increasing (resp. decreasing) it, will create a uniformly

refined (resp. coarsened) mesh with the same orientation and element shape locally and the

same distribution of elements across the domain.

2.2.3.3 Metric Construction - Multiscale Metric

Having established a way to control the size and orientation of the mesh locally through

metric tensors, it remains to specify how to construct metric tensors at each point of the

mesh. There are several different methods to construct a metric tensor, among others, the

multiscale metric [161], output-based metrics [90] and optimization schemes [259]. For this

work, the multiscale error metric is selected due to its wide use, simplicity and availability

in open-source projects such as the refine adaptation mechanics [198]. This approach has

been confirmed both theoretically [166] and experimentally [167] in a number of applications.

Moreover, it can be shown that the multiscale metric controls the Lp-norm interpolation

error of the scalar field that is constructed from.

The multiscale metric is evaluated as follows [5, 161, 200]: Given a mesh along with the

discrete values of a scalar field evaluated at each mesh vertex, the Hessian is reconstructed

at each vertex. The Hessian H is then factorized into eigenvectors and eigenvalues by means

of spectral decomposition: H = PDP T . The factors are recombined into a metric tensor by

taking the absolute value of the eigenvalues in order to guarantee positive definitenessM1 =

P |D|P T [109]. The metric tensor is then scaled locally based on its determinant M2 =

det(M1)−1/(2p+d)M1, where p is the power of the norm used to control the interpolation

error which is L2 and d is the dimension of the problem which is 3 throughout this work.

Finally, the metric is scaled globally to the target complexity using equation (13):

M =

(Ctarget
C(M2)

)2/d

M2. (14)

The final step in constructing a metric field is the application of gradation. The gradation

44

aims at putting constraints over the largest size deduced from a metric and smoothing the

metric transition between edge-connected vertices. In this work we adopt the mixed-space-

gradation method presented in [2] and utilize its implementation in refine [198].

45

CHAPTER 3

PARALLEL METRIC-BASED ADAPTATION

Our approach to parallel mesh adaptation builds on top of the Telescopic Approach (see Fig-

ure 1 in page 7). The Telescopic Approach lays down a design that allows to exploit the

concurrency that exists at multiple levels in parallel and adaptive simulations. The design

spans across the multiple memory hierarchies of an exascale machine and maps different

algorithmic layers to the appropriate level of memory based on the intensity of communi-

cation between the meshing kernels. The lowest, closest to the hardware layer, that can

sustain high volume of communication at low cost, is the Parallel Optimistic layer which

is designed to explore concurrency at the CPU level within the memory limits of a shared

memory node, using speculative/optimistic execution. In [85] we presented a fine-grained

speculative scheme for local reconnection for generating isotropic meshes. This chapter

describes implementation details in:

• Extending existing mesh operations by (i) making them metric-aware, and (ii) making

them applicable for boundary adaptation (Section 3.2).

• Introducing initial support for geometrical models (Section 3.3).

• Applying the speculative fine-grained scheme beyond the local reconnection operation

(Section 3.4).

The method presented in this section belongs to the wider class of tightly coupled meth-

ods. Tightly Coupled methods are described in detail in Section 2.1.2. To the best of our

knowledge the method presented in this work is the first tightly-coupled speculative fine-

grain method for parallel 3D anisotropic mesh adaptation. There are however a number of

mesh adaptation methods that utilize data or domain decomposition. The most pertinent to

this work are refine, EPIC , Feflo.a, Pragmatic and Omega h. Their parallel characteristics

and mesh adaptation features are already discussed in Section 2.1.

46

3.1 ISOTROPIC MESH GENERATION

The metric-based approach of this thesis builds on top of CDT3D [82]. CDT3D is a

mesh generation toolkit developed at the CRTC lab12 of Old Dominion University. Its

main characteristics are stability, end-user-productivity and modular design. End-user-

productivity for isotropic mesh generation was demonstrated in [85] where CDT3D was

compared against a state-of-the-art advancing front mesh generator. Its modular design

allowed in [267] the addition of refinement zones for the isotropic method than enable its

use on Large Eddy Simulations (see Figure 5).

Fig. 5: Refinement Zones for Large Eddy Simulation over Delta wing. Left: Refinement
zones used in [267]. Each polyhedron defines different sizing constrains. Right: Simulation
results.

Figure 6 offers a high-level description of the isotropic mesh generation pipeline. The

isotropic CDT3D accepts a triangulated surface mesh as an input which it kept constrained

throughout the meshing process. In the first stage, the triangulated surface mesh is recov-

ered using methods based on Delaunay tetrahedralization [236]. In practice, recovering the

boundary is accomplished by creating a boundary conforming tetrahedral mesh, i.e., all the

12https://crtc.cs.odu.edu (Accessed 2021-31-15).

https://crtc.cs.odu.edu

47

faces of the input surface appear as a face of some tetrahedron. The robustness of boundary

recovery implementation has been evaluated extensively, and it was found in-par with state-

of-the-art boundary recovery methods [82]. Mesh refinement introduces points iteratively

into the mesh using advancing front point creation and direct insertion. The advancing front

method offers great control on point density and especially on the growth of the spacing be-

tween the generated points. The spacing of the points is initialized by the spacing (i.e., edge

lengths) of the surface mesh. The growth of the size of the tetrahedra follows an exponential

distribution with parameters controlled by the user. After each point creation iteration, the

connectivity of the mesh is optimized in parallel using a fine-grained topological scheme for

local reconnection [85], optimizing a combined criterion of the Delaunay in-sphere criterion

and the maximization of the minimum edge-weight [22] used. The combined criterion is

evaluated for every set of two/three neighboring tetrahedra that a face/edge flip can be

applied. The configuration that improves the combined criterion is then used. In the last

stage, the mesh quality is improved using a combination of mesh smoothing, parallel local

reconnection, and heuristics to target the improvement of low quality elements. Extensive

evaluation of the effectiveness of the quality improvement step against state-of-the-art local

reconnection methods can be found in [85].

Delaunay
Tetrahedralization

Boundary Recovery

Vertex Smoothing

Sliver Removal
with Heuristics

Adv. Front Type
Point Creation

Point Insertion

Parallel
Local-Reconnection

Parallel
Local-Reconnection

Initial Construction
Mesh Refinement Quality Improvement

Fig. 6: High-level pipeline of isotropic CDT3D as presented in [85].

48

3.2 METRIC-BASED ADAPTATION WITHIN THE CDT3D LIBRARY

As with any software project, the goal is to maximize code reuse while introducing

additional features, which in this case, is the metric-based adaptivity. To achieve this,

one can decompose a mesh operation into topological and geometrical steps. Topological

steps access and modify only the connectivity information (a 2-3 flip, for example, see

Figure 9a) and as such, there is no need for modifications for metric adaptation. On the

other hand, geometrical steps, such as evaluating a predicate that decides whether a flip

should be performed, will need to incorporate the metric information. The rest of this section

presents the most significant modifications required to enable metric adaptation in CDT3D .

Moreover, CDT3D is extended in order to handle CAD-based information. Figure 7 depicts

the metric-adaptive pipeline built and evaluated throughout this work. Its components are

described in the following sections.

Point Insertion (Seq.)

Local Reconnection

Mesh Adaptation

Vertex Smoothing

Vertex Smoothing

Local Reconnection

Quality Improvement

Edge Collapse

Edge Collapse

Incremental
CAD Projection

Point Creation

Fig. 7: Pipeline of the presented approach. Dotted modules are utilized only when CAD
data are available.

49

3.2.1 POINT CREATION STRATEGIES FOR ANISOTROPIC MESH ADAP-

TATION

The isotropic version of CDT3D generates points using an advancing front scheme. In

particular, a collection of faces between active13 and inactive tetrahedra called the front is

first identified and then points are created in a direction perpendicular to each front face [82].

Utilizing metric-based distance evaluations and taking into account the orientation matrix

of the metric can be used to create a metric-adaptive advancing front scheme. This scheme

brings all the benefits of an advancing front method as well as the ability to create metric-

aligned meshes as presented in [160,170,172].

In an earlier attempt, we extended CDT3D with a metric-based advancing front scheme

[252]. In particular, we coupled CDT3D with the open-source MMGS software [70, 183]

which offers 3D surface metric-based adaptation capabilities. The pipeline consisted of

extracting the surface of the input mesh and adapting it using MMGS, then creating a

boundary conforming mesh employing boundary recovery, and finally generating a mesh

using the input mesh as a background mesh that provides the metric field values. This

approach, however, has several issues. First, the sequential nature of the surface adapta-

tion operation quickly becomes a bottleneck. Moreover, this approach requires to recover

the boundary of an anisotropic mesh each time, and although CDT3D ’s surface recovery

algorithm has shown to be robust even in low quality triangulations [82], it is expected to

have issues in highly stretched anisotropic meshes. Finally, disregarding the previous mesh

and regenerating one from scratch at each adaptive iteration requires more time especially,

when dealing with larger meshes and targeting a constant metric complexity.

To overcome these issues, we introduced a new centroid-based point creation method.

The centroid-based method will check the edge lengths of an active element in the metric

space, and if any of them does not satisfy the spacing requirements, it will produce its

centroid as a candidate point. If the tetrahedron has a boundary face, or if any of its

edges is a ridge (i.e., it is between two different surface markers) encroachment rules similar

to those used in Constrained Delaunay refinement [233] are utilized. The candidate point

will be checked for encroachment (in the metric space) against the boundary face, and

if encroachment occurs, the candidate is rejected and the centroid of the boundary face

becomes the new candidate. The same procedure is applied for the new point which is

checked for encroachment against any ridge edges, see Figure 8 for more details. Once a

13A tetrahedron is considered active, if it does not satisfy the spacing or quality requirements.

50

Function GenerateCandidatePoints(t)

Input: An active tetrahedron t
Result: Candidate point(s) for element t
candidatePoints = {}
c← centroid(t)
for boundary face f of t do

if c encroaches upon f then
if all edges of f are long then

p← centroid(f)
for ridge edge e of f do

candidatePoints.append(midpoint(e))
end for
if candidatePoints is empty then // no ridge was found

candidatePoints.append(c)
end if

else
for long edge e of f do

candidatePoints.append(midpoint(e))
end for

end if

else
candidatePoints.append(c)

end if

end for
if candidatePoints is empty then

/* empty means that either there are no boundary faces or no

encroachment occurs. In either case we keep the original point.

*/

candidatePoints.append(c)

end if
return candidatePoints

1
Fig. 8: Encroachment rules of the centroid-based point-creation method.

candidate is created, the metric is interpolated using formula (6) of page 38. Depending on

its location we use 2, 3 or 4 points if it lies on an edge, face or inside a tetrahedron. Inspired

by [170], we store alongside the metric value at a point M(p) its logarithm log(M(p)).

Although this requires more space, it reduces significantly the time required for metric

interpolation.

51

Similarly to the isotropic code, the candidate points are compared to each other for

proximity (in the metric space) and candidates too close to each other are disregarded.

This step minimizes the number of short edges created at each iteration, thus allowing to

employ edge collapse only at the end as a post-processing step (see also Figure 7). A similar

approach called Anisotropic Filtering has been presented in [160].

3.2.2 LOCAL RECONNECTION IN METRIC SPACES

The local reconnection stage of CDT3D iterates over active tetrahedra of the mesh and

optimizes their connectivity. A local reconnection pass consists of four types of flips [146]

depicted in Figure 9. The flip operations are purely topological transformations, however,

the criteria they use are based on geometrical quantities, and as such, they need to be

modified in order to incorporate the metric-based information. The first criterion used in

conjunction with a 2-3/3-2 flip is Delaunay-based: face abc will be replaced with edge ed if

d is in the circumsphere of abce (see Figure 9a). Extensions of the Delaunay criterion for

metric spaces has been suggested in [33] where the authors express the equations that derive

the circumcenter of a tetrahedron using metric-based lengths. However, they mention that

no general solution to these equations was found. To circumvent this issue, they provide

approximations of the criterion based on the Delaunay measure. Let K = (x1, x2, x3, x4) be

a tetrahedron, the Delaunay measure of a point p with respect to K is defined as:

αM(p,K) =
dM(OK , p)

dM(OK , x1)
(15)

where, OK is the circumcenter of K evaluated in metricM. If αM(p,K) < 1 then p is in the

circumsphere of K. Notice that we did not specify M explicitly. In fact, by incorporating

the metric from 1, 2 or even all 4 points of K one can get better approximations of the

Delaunay criterion [33]. In this work, we adopt the criterion presented [79], that uses not

only metric information from K put also from the point p itself:
αMp(p,K) < 1

4∑
i=1

αMxi
(p,K) + αMp(p,K) < 5

(16)

In practice, this criterion consists into evaluating the traditional Delaunay criterion in 5

different euclidean metric spaces and averaging the results. Similarly, in order to optimize

the connectivity on the surface of the mesh, a 3D in-circle test (in the metric space) is

52

a
a

b
b

c
c

d

e

a c

d

e
a

b

d

e

b

c

d

e

(a) 2-3 and 3-2 flips.

a
a

a

a

b b b

b

c
c

d

d

e

e

ff

b

c

a

c
d

e

a

b

b

a

c

d

e

d

a

b

f f

f

e

(b) The three configurations of a 4-4 flip.

a
a

b
b

c
c

d

e

a c

d

e

d

e

c

b

(c) 2-2 Flip, abd and abe are boundary
faces.

Fig. 9: Topological Flips utilized by CDT3D for local reconnection.

coupled with a 2-2 Flip. In particular, a surface edge ab is flipped for ed if d is in the

circumcircle of abc (see Figure 9c).

The second criterion used is the maximization of the minimum Laplacian edge weight

of an element K [22]. This criterion is combined with the 2-3/3-2 and the 4-4 Flips (see

Figure 9a and 9b). In isotropic mesh generation it consists in evaluating the following

quantity:

Q(K) = max
i=1...6

〈nFi,1
, nFi,2

〉
6|K|

where Fi,1, Fi,2 are the two faces attached to the i-th edge of a tetrahedron K and nFi,1
, nFi,2

the respective face normals. The algorithm performs a flip only if the new configuration

maximizes this value. For the anisotropic case, the formula for Q(K) is adapted using

a metric tensor M interpolated on the centroid of K. Moreover, in order to avoid the

numerically expensive evaluation of the normals, the formula is replaced with one that uses

53

only inner products [172]:

QM(K) = max
i=1...6

〈ei, ej〉M · 〈ei, ek〉M − 〈ei, ei〉M · 〈ej, ek〉M
6|K|M

(17)

The new 2-2 Flip we added in CDT3D along with the ability to insert points on the

boundary introduces essentially the ability to perform boundary refinement at the same

time with the volume. The lack of this capability in our previous approach [250] resulted in

sub-optimal results. Figure 10 compares the quality of our method prior and after adding

boundary refinement capabilities. The introduction of boundary refinement capabilities

improved the quality of the mesh by an order of magnitude.

10 3 10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC (Boeing)
Feflo.a (INRIA)
CDT3D (SciTech 2019)

10 3 10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

CDT3D (Scitech 2019)
CDT3D + boundary ref. (O1)

Fig. 10: Effect of boundary refinement to the quality of the final mesh. Left: Mesh quality
of the initial implementation compared to other mesh adaptation methods [250]. Right:
Mesh quality after the introduction of boundary refinement.

54

3.2.3 VERTEX SMOOTHING

During the Quality Improvement step of the isotropic mesh generation pipeline of CDT3D

(see Figure 6) the user can enable a combination of Laplacian [38] and optimal point place-

ment smoothing [82] applied upon all mesh vertices not lying on the boundary in order

to further improve the mesh quality. Utilizing these methods for metric-based adaptation

did not yield a substantial improvement in mesh quality while, on the other hand, added

a significant overhead in the running time. As an alternative, a different vertex relocation

strategy was employed. First, only vertices with at least one attached element that has mean

ratio shape measure below 0.1 are considered. This value is based upon common practices

present in the literature [129, 251]. Moreover, a non-smooth optimization method similar

to the one presented in [97] was employed by optimizing the minimum value of the mean

ratio measure among all the elements attached to the vertex. For simplicity, the current

implementation does not utilize the integer programming-based solution presented in [97]

or the computation of the active set of the gradients used in [140] in order to determine the

optimal search direction. Instead, it uses a reduced search space comprised by the segments

that connect the vertex to be relocated with the centroids of the faces of its cavity (see

Figure 11 left). This search space was found to be sufficient for the cases of this study.

Once the search space is determined, the vertex will be moved incrementally along all the

search directions and the position that optimizes the quality will be selected.

For vertices lying on the surface, the search space is constrained to the segments that

connect the moving vertex to the midpoints of the edges of the corresponding surface cavity

(see Figure 11 right). If the vertex lies on a ridge the search directions are only two; towards

either ends on the ridge. Along with the optimization criterion the method always ensures

that no elements are inverted and thus no subsequent untangling step is needed. Figure 12

depicts the effect of the new vertex smoothing algorithm as part of the quality improvement

loop of Figure 7 on top of previous optimizations.

55

Fig. 11: Search Space for Smoothing Operation. Left: The search space of the blue point
includes the 10 segments that connect the point to the centroids of the faces of the cavity.
One of these segments is shown here in red. Right: For a point of the surface of the mesh,
the search space consists of the edges that connect the moving point to the midpoints of
the edges of the surface cavity.

10 3 10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

CDT3D (Scitech 2019)
CDT3D + boundary ref. (O1)
CDT3D + (O1) + quality impr.

Fig. 12: Effect of the new vertex smoothing method on top of the improvements of the
previous subsection.

56

3.2.4 EDGE COLLAPSE

The goal of an edge collapse operation is to remove edges with length smaller than a

target value. It can also be used to make a mesh coarser or even create an empty mesh

with almost no volume points which can serve as a starting point for an advancing front

method [160]. In the context of the isotropic mesh generation, CDT3D utilizes it to improve

quality and spacing in regions of the mesh where colliding fronts of the advancing front

method create edges smaller that the target spacing. Its value is even greater for anisotropic

mesh adaptation especially when the mesher is integrated in an adaptive loop due to the

fact that the optimal mesh spacing is not known a-priori and thus an adaptation iteration

may require to coarsen previously over-refined regions of the mesh.

In this work, the edge collapse operation is utilized as a pre- and post-refinement op-

eration (see Figure 7). The pre-refinement step removes short edges present in the input

mesh. By default an edge is considered short if it is smaller than 1/
√

2 as measured by the

metric-based length (see equation (1) in page 35). Depending on the input mesh, the user

may increase this value in order to create a coarser initial mesh which can lead to better

quality of the final mesh. This configuration is used later in the blast case presented in sec-

tion 4.1.3.2, a similar approach appears in [181]. The post-refinement use of the operation

allows to remove any short edges created during refinement. Its configuration is similar to

the pre-refinement step.

The ability to adapt the boundary of the mesh at the same time with the volume,

along with the new smoothing operation and the addition of a metric-based edge collapse

enhanced the quality of the generated mesh by 3 orders of magnitude with respect to our

initial attempt. Figure 13 presents our earlier data along with our new improved approach.

57

10 3 10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

CDT3D (Scitech 2019)
CDT3D + boundary ref. (O1)
CDT3D + (O1) + quality impr. (O2)
CDT3D + (O2) + Edge Collapse

10 3 10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC (Boeing)
Feflo.a (INRIA)
CDT3D (SciTech 2019)
CDT3D (latest)

Fig. 13: Quality improvement adding Vertex Smoothing. Left: Effect of the edge collapse
new vertex smoothing method on top of the improvements of the previous subsection. Right:
Our new improved approach versus our previous results presented in [250].

3.3 HANDLING GEOMETRY THROUGH METRIC SPACES

Up until this point of the chapter, we considered as our input a surface mesh or, in

general, a volume mesh conforming to the surface. Another very important representation

is the geometrical description of the surface of the input model. Industrial applications

as well as several high-quality research-focused workshops such as the High-Lift prediction

workshop14, the International Workshop on High-Order CFD Methods15, the Sonic Boom

Prediction Workshop16, and the Geometry and Mesh Generation workshop17 make extensive

use of geometrical descriptions since many flow quantities of interest depend on the geometry.

Building a mesh based on the geometrical description of the problem is essential for these

studies. Moreover, accessing geometrical information while adapting the mesh leads to a

better domain discretization and thus more accurate solution.

There are many methods that can be used to build this representation but tradition-

ally CFD simulations, and the engineering community in general, leaned towards the use

of the Boundary Representation method (BREP or B-rep) [243]. The B-rep method uses a

combination of topological entities (Faces, Edges and Vertices) along with their geometrical

14https://hiliftpw.larc.nasa.gov (Accessed 2021-05-31).
15https://how5.cenaero.be (Accessed 2021-05-31).
16https://lbpw.larc.nasa.gov (Accessed 2021-05-31).
17http://www.gmgworkshop.com (Accessed 2021-05-31).

https://hiliftpw.larc.nasa.gov
https://how5.cenaero.be
https://lbpw.larc.nasa.gov
http://www.gmgworkshop.com

58

description as (analytic) surfaces, curves and points. B-rep data can also hold boolean oper-

ations such as intersection and union between entities as well as higher-level operations such

as extrusion and sweeping [119]. The topological description holds adjacency information

that allows to find all entities connected to a given one. For example, Figure 14 depicts part

of the topological decomposition of the B-rep of a simple model. The model is composed

out of 7 Faces (green). The right face is further decomposed into its constituent 5 Edges

and 5 Vertices. Similar decomposition is stored for the rest of the faces but it is omit-

ted for brevity. The geometrical information includes a two-variable parametric description

f(u, v), (called uv-parametrization), for each Face, a single variable parametric description

f(t), (called t-parametrization), for each Edge and the coordinates of each Vertex. For the

rest of this chapter we will use the notions Geometrical Face/Edge/Vertex when referring

to the B-rep entities to avoid confusion with entities of the mesh itself.

Fig. 14: Decomposition of the B-rep of the cube-cylinder case18.

B-rep data are usually handled by a Computer-Aided Design (CAD) kernel which is

responsible both for generating B-rep data and for handling queries to them. More details

18Acquired from https://github.com/UGAWG/adapt-benchmarks. (Accessed on 2021-05-31).

https://github.com/UGAWG/adapt-benchmarks

59

about the B-rep method, its advantages and disadvantages as well as how it compares to

other methods can be found in [102,243]. A detailed description of the importance but also

the challenges that arise by using a CAD system during mesh adaptation appears in [202].

In this section, based on the material of [202], we provide a high-level summary of two

approaches that can be used to incorporate geometrical information to a meshing procedure

and describe in detail our implementation within the CDT3D library.

The B-rep information can be incorporated into a mesh generator in at least two ways.

The first option is to build a surrogate geometry by constructing a discrete, often high order,

surface mesh that captures all the features of the input geometry at a desired resolution.

This approach has the advantage of controlling the fidelity of the constructed representation.

Also, it allows fixing inconsistencies of the continuous representation that can occur due to

different tolerances of each continuous patch. One can construct a surrogate geometry even

when a geometrical description is not available based on the input surface mesh. This

approach is currently utilized by the Feflo.a and EPIC mesh adaptation software [202].

Although quite powerful, this approach is out of the scope of this work due to its complexity

and the fact that our focus is to provide a minimal implementation that can add preliminary

Geometry support to CDT3D .

The second approach, which is used in this work, is to maintain an association between

each boundary vertex of the mesh and its adjacent geometric entities. This approach allows

to query the appropriate Geometrical entity through the CAD kernel. It has the disad-

vantage of inheriting the issues present in the B-rep model but, it provides access to the

CAD kernel in a simple manner. Moreover, it aligns better with our goals which is to intro-

duce preliminary support for B-rep data to our mesh adaptation method. Currently, this

approach is also favored by the refine mesh mechanics suite [198].

In practice, we introduced in each mesh vertex a pointer to the lowest dimension geomet-

ric entity that is adjacent to. This information together with topological and geometrical

queries to the geometry kernel allows to evaluate uv (or t) parameters for any mesh ver-

tex. The current implementation makes use of the EGADS geometry kernel [121] through

a generic API which could be adapted for another CAD kernel in the future.

Geometry information is used throughout the mesh adaptation procedure in several ways.

First, newly introduced boundary points are projected to the surface using a dedicated

module (see Figure 7) right after vertex insertion. Projection is performed by evaluating

the closest point p′ of the B-rep to a given mesh vertex p. This capability is provided by

the CAD kernel. The mesh vertex p is then relocated to p′ only if this operation does not

60

create any inverted elements attached to vertex p. If it does, we try to move p to (p+ p′)/2,

i.e., the midpoint between the two points. This procedure is applied recursively until we

find a valid position or reaching a recursion limit which we set to 5. Mesh vertices that were

placed in an intermediate position are recorded and they are included for projection in the

next iteration of the algorithm. The local reconnection that will be applied on the vicinity

of point p may enable to move the point closer to its projection in a subsequent iteration.

Projecting a mesh vertex to the B-rep involves a Newton-Raphson root finding method and

therefore its speed and result depends heavily on the initial guess of the projected point.

To speedup the procedure, we approximate the uv (or t) parameters of a newly created

point during the point creating module based on the values of the vertices belonging to the

triangle or edge being split. This approximate uv (or t) parameters are then cached for this

point and they are used as initial guess during the next projection stage.

Information of the analytic expression of the underlying surface is also used to minimize

the deviation of the discrete surface mesh form its analytic description. In practice, the

deviation is evaluated as the dot product between the normal of a discrete triangle and the

normal of the geometry surface evaluated at the centroid of discrete triangle [202], (see also

Figure 15). The deviation is minimized as part of the local reconnection pass (see Figure 7)

using 2-2 Flips (see Figure 9c). The Edge Collapse operation can also use deviation of the

surface cavity as an extra quality criterion when deciding whether a surface edge should be

collapsed. Controlling the deviation not only produces a mesh that approximates the surface

better, but makes the operations more robust avoiding cases that will lead to tangling the

mesh.

Geometry constrains such as curvature and feature size can be expressed also as lengths

and directional information and can be therefore encapsulated into yet another metric [110]

which is combined with the solution based information via metric intersection (see Sec-

tion 2.2.3.1). In this work, we follow the approach presented in [202] and its implementation

in the refine mesh mechanics suite [198] in order to build a feature-based metric derived

from the geometry model. When utilizing CAD projection, we also found advantageous to

perform vertex smoothing at the end of the adaptive iteration (see Figure 7) allowing to

improve the quality on the vicinity of the projected vertices.

61

a

b

c
d

a

b

c
d

Fig. 15: Deviation Improvement. A flip of the edge bd for ac reduces the deviation between
the discrete normals (red solid vectors) and the analytic normals computed at the centroids
of the triangles (blue dashed vectors).

3.4 SPECULATIVE IMPLEMENTATION IN THE CONTEXT OF THE

TELESCOPIC APPROACH

In this section, the speculative fine-grained scheme presented in [85] is extended to the

operations presented in the previous sections. The speculative or optimistic method lies on

the bottom (closer to the CPU) of the Telescopic Approach [61] and it is designed to take

advantage of the low cost of communication inside the chip by utilizing direct memory access

among the threads. In contrast to higher levels of the Telescopic Approach, no explicit data

decomposition is performed. Instead, each thread will attempt to perform an operation

while capturing the necessary dependencies on the fly. Failure to do so results in a rollback

and the method will try again later if the operation is still applicable.

3.4.1 SPECULATIVE LOCAL RECONNECTION KERNEL

The fine-grained speculative scheme for local reconnection employed by CDT3D has been

already presented in detail in [85]. We provide here only a summary. CDT3D maintains

at any time a list of “active” (i.e., eligible for reconnection) elements. This list is split into

“buckets” (i.e., sublists) which are then distributed among the threads. The elements within

a bucket have no geometrical relation and the grouping is performed only for enabling an

efficient and simple work sharing algorithm [85]. After the buckets are formed, each thread

iterates its buckets and attempts to lock the vertices of the cavity of a flip using atomic

operations. For the flips presented in this work (see Figure 9), it boils down to the element

itself and some of its face neighbors. If the attempt is successful, the objective function is

62

evaluated before the flip and after for each of the applicable flips. If the new flip improves

the objective function (which can be either of the two mentioned above), then it is applied

otherwise, the element connectivity remains unchanged. The thread will then unlock all the

vertices and proceed to the next element of the bucket. Unsuccessful attempt to lock any

part of a cavity results into unlocking any acquired vertices and moving to the next element

in the bucket. The skipped element will be revisited (if it is not deleted as part of another

flip) in a subsequent iteration. The algorithm iterates until no flip can be applied or if a

maximum limit of iterations is reached.

3.4.2 PARALLEL POINT CREATION KERNEL19

The point creation kernel is structured in a similar fashion to the local reconnection

kernel. After the buckets are formed, they are assigned to different threads and each thread

iterates the elements of its bucket in order to generate candidate points for insertion.

New candidate points are compared against existing mesh vertices and currently candi-

dates for proximity (in the metric space). This check allows to avoid the creation of points

too close to each other that will impact the quality and the local density requirements. A

similar approach named Anisotropic Filtering is presented in [160]. Once a point passes all

proximity tests it is stored in the list of the contained element. Storing the candidate points

in the contained element gives a significant advantage; both the proximity checks and the

subsequent point insertion step (see Figure 7) can be performed in constant time since the

point location step of the direct insertion kernel will only require constant time to execute.

In contrast to local reconnection, the point creation step does not perform any topological

modification and thus no cavity locks are required. Moreover, vertices are allocated into

thread-local memory pools [49] and thus vertex allocation can be performed asynchronously.

The only step that requires synchronization is when it comes to adding the candidate point

to the internal list of the contained element. Our experiments showed that this lock is short-

lived and making use of spinlocks is a sufficiently efficient solution to handle concurrency.

3.4.3 SPECULATIVE EDGE COLLAPSE AND VERTEX SMOOTHING

The data structures of CDT3D have been designed for efficiency and low memory con-

sumption and as such only vertices, tetrahedra and surface triangles are stored explicitly

in memory [82]. This however, impedes the creation of an efficient edge collapse operation

19Parallel implementation was developed in collaboration with Fotis Drakopoulos.

63

based on the element-lists described above since the same edge will be visited multiple times

as it can be adjacent to an arbitrary number of elements. Moreover, the lack of a dedicated

edge object does not allow to iterate through the edges and locate those that require collaps-

ing. Although, the edge information could be generated once and maintained throughout the

mesh adaptation procedure, it was found to affect significantly the runtime of the method

since it increases the amount of book-keeping after each topological modification [82].

For these reasons, the edge collapse operation is structured around iterating vertices

instead of tetrahedra. However, CDT3D has no global structure which holds all the vertices

and the actual vertex-based data are managed by thread-local memory pools [49] that make

the operation of iterating the vertices non-trivial. To overcome this issue one should first

observe that the memory pools described in [49] and utilized by CDT3D are designed as a

list of arrays. This implementation detail allowed us to build random-access iterators based

on the C++ API20 by defining the increment ++ operator appropriately so that it can jump

between the different arrays of the list. The new iterators not only offer simple access to

the underlying memory pools but, they do it in a cache-friendly manner. Moreover, this

streamlined design gives the opportunity to experiment with concurrent constructs such as

#pragma omp parallel for of OpenMP to exploit parallelism.

For edge coarsening the algorithm iterates through the vertices of the mesh and exploits

parallelism utilizing a #pragma omp parallel for schedule(guided) OpenMP construct.

Each thread picks and locks (speculatively) the vertex (a in Figure 16) corresponding to the

iterator value. Then it speculatively locks its adjacent vertices (blue in Figure 16). If any

of the locks fails, the thread will release any acquired locks and it will pick the next ver-

tex. Notice that locking the vertices implicitly grants exclusive access to all their adjacent

tetrahedra (red elements of Figure 16). Once the required locks have been acquired, the

edge lengths between the vertex a and the rest of the vertices of its cavity are evaluated. If

an edge with length less that a user-defined value is found (default : 1/
√

2 in metric space)

then the edge will be collapsed. Additional criteria such as skipping edge collapses that

will increase the surface deviation (see Section 3.3) are also applied for edges on the surface

of the mesh. Finally, the edge is collapsed by moving the second point to the first. The

guided scheduler was selected because it performs on average better for cases that require

different levels of coarsening such as the delta wing case and the blast case described later

in Section 4.1.3.

Vertex smoothing follows a similar pattern. The vertices are iterated in parallel and

20https://en.cppreference.com/w/cpp/iterator/random_access_iterator (Accessed 2021-06-01).

https://en.cppreference.com/w/cpp/iterator/random_access_iterator

64

Fig. 16: Steps of speculative edge collapse.

the vertex corresponding to the iterator value along with its adjacent vertices are locked

speculatively. Then, if any of the attached tetrahedra has quality below a user-provided

limit, the vertex will be relocated using the method described in Section 3.2.3. The procedure

is repeated for a fixed number of iterations. The quality metric and the limit are user-

configurable, for this study we use the mean ratio (see equation (10) in page 33) and a limit

of 0.1.

3.4.4 PARALLEL IMPLEMENTATION

In this section we discuss the efficiency of our parallel implementation for the metric-

based operations presented in the previous section as well as for the end-to-end mesh adap-

tation process.

As input we use a mesh of a delta wing with planar faces and 800, 000 metric complexity.

The input mesh has 1, 439, 310 vertices and 8, 470, 523 tetrahedra while, the target metric

has complexity 1, 600, 000. The difference in complexity causes the mesh size to double

during adaptation. The experiments were performed on the wahab cluster of Old Dominion

University using dual socket nodes equipped with two Intel®Xeon®Gold 6148 CPU @

2.40GHz (20 slots) and 368 GB of memory. The compiler is gcc 7.5.0 and the compiler

flags -O3 -DNDEBUG -march=native. Each run was repeated 5 times and the results were

averaged using the geometrical mean [91]. For the base case we ran the parallel code using

one core.

Figure 17 depicts the total efficiency of the method as well as its breakdown with respect

to the two main modules of CDT3D (see also Figure 7). The end-to-end efficiency is 92.3% at

40 cores. The efficiency for the Mesh Adaptation and Mesh Quality Improvement modules is

65

12 5 10 15 20 25 30 35 40
cores

0

5

10

15

20

25

30

35

40
sp

ee
du

p
Mesh Adaptation
Quality Improvement
Total
ideal

0

5

10

15

20

25

30

35

40

sp
ee

du
p

12 5 10 15 20 25 30 35 40
cores

0.92

0.94

0.96

0.98

1.00

ef
fic

ie
nc

y

Mesh Adaptation
Quality Improvement
Total
ideal

0.92

0.94

0.96

0.98

1.00

ef
fic

ie
nc

y

Fig. 17: Speedup and efficiency of the two main modules of CDT3D (see also Figure 7).

12 5 10 15 20 25 30 35 40
cores

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ef
fic

ie
nc

y

Mesh Adaptation (Total)
Point Creation
Local Reconnection
Edge Collapse
ideal

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ef
fic

ie
nc

y

(a)

12 5 10 15 20 25 30 35 40
cores

0.94

0.96

0.98

1.00

1.02

ef
fic

ie
nc

y Quality Improvement (Total)
Local Reconnection
Vertex Smoothing
ideal

0.94

0.96

0.98

1.00

1.02

ef
fic

ie
nc

y

(b)

Fig. 18: Efficiency breakdown of the mesh adaptation and quality improvement modules of
CDT3D (see also Figure 7).

90.5% and 94% respectively. Figure 18a presents a breakdown for the efficiency of the Mesh

Adaptation module. The Local Reconnection operation performs the best with more than

66

98% efficiency. The super-linear speedup is caused by the “buckets” described in Section 3.4.

Splitting the list of active elements into buckets and repeatedly performing reconnection over

the same bucket improves the cache locality. Point Creation benefits from the same construct

but its spin-lock implementation for updating the internal list of the contained element (see

Section 3.4.2) results into a lower efficiency. Edge Collapse exhibits a lower speedup in

comparison to the other two operations due to the generic OpenMP implementation that

was used to exploit parallelism. Still, this implementation of Edge Collapse delivers 80−85%

efficiency for up to 20 cores and 75 − 80% efficiency for more cores. At 25 cores the edge

collapse efficiency drops significantly. This is in part attributed to the dual nature of the

host machine. At 25 cores the code is using one and a half sockets and the OpenMP back-

end of the operation does not have any special treatment for accessing memory from a

different socket. For Quality improvement (see Figure 18b) the super-linear performance of

Local Reconnection is more prominent due to the (approximately) constant size of the mesh

during the Quality improvement phase (no vertices are introduced). The Vertex Smoothing

operation exhibits 93.4% efficiency on 40 threads. Notice also that the efficiency curve

of the Quality Improvement stage (black) follows the trends of the smoothing operation.

This is due to the fact that smoothing is the dominant operation in terms of time and also

because the efficiency of local reconnection is approximately constant. Figure 19 presents a

breakdown of the mesh adaptation module of CDT3D . Local reconnection accounts for more

than 75% of the total mesh adaptation time. The other two major parallel mesh operations

Point Creation and Edge Collapse, are responsible for less than 10% of the mesh adaptation

time. The effect of the sequential point insertion is becoming increasing higher as expected

by Amdahl’s law [8] but still it is less than 4% of the total time.

Figure 20 depicts the percentage of the total time that corresponds to each operation.

The time to smooth the vertices corresponds to about 60% of the total running time while,

mesh adaptation takes about 12% of the total time.

67

1 5 10 15 20 25 30 35 40
cores

0

20

40

60

80

100
%

 o
f T

ot
al

 M
es

h
Ad

ap
ta

tio
n

tim
e

4.92 5.25 5.14 5.11 4.71 4.94 4.92 4.86 4.830.10 0.50 1.02 1.60 2.03 2.38 2.86 3.45 3.74

83.62 81.88 80.85 80.10 79.89 77.13 78.18 77.36 76.75

4.99 5.65 5.97 5.85 5.92 7.81 5.87 5.89 5.93
0.03 0.20 0.37 0.56 0.63 0.91 1.11 1.28 1.37
6.34 6.52 6.66 6.78 6.81 6.83 7.06 7.16 7.38

Mesh Adaptation Components
Other
CAD Projection
Edge Collapse
Local Reconnection (MA)
Point Insertion (Seq.)
Point Creation0

20

40

60

80

100

Fig. 19: Breakdown of the mesh adaptation time into the basic operations of CDT3D (see
also Figure 7).

1 5 10 15 20 25 30 35 40
cores

0

20

40

60

80

100

%
 o

f T
ot

al
 ti

m
e

12.33 12.08 12.15 12.31 12.31 12.53 12.52 12.54 12.62

26.74 25.62 25.28 25.29 25.11 24.90 24.79 24.62 24.41

58.69 59.85 59.72 59.22 59.10 58.88 58.78 58.40 58.26

2.24 2.45 2.86 3.18 3.49 3.69 3.91 4.44 4.70

Other
Vertex Smoothing
Local Reconnection (QI)
Mesh Adaptation

0

20

40

60

80

100

Fig. 20: Breakdown of the total time of CDT3D (see also Figure 7).

68

CHAPTER 4

EVALUATION

The cases we use to evaluate our method are separated in two categories. First, in Sec-

tion 4.1, we focus on cases that target a fixed complexity and provide (i) quantitative results

with respect to parallel performance and (ii) qualitative with respect to metric conformity

of the adapted mesh. The goal of metric conformity is given a (mesh, metric) pair to create

a unit mesh [166] where the edges are unit-length and the elements are unit-volume with

respect to the given metric. In particular, we use equation (9) of page 39 to measure the

length of an edge and the mean ratio equation (10) of page 39. The parallel performance is

evaluated in terms of traditional metrics such as strong and weak speedup.

For the second group of cases, in Section 4.2, we build an adaptive pipeline with open-

source and publicly available tools and utilize our method as the mesh adaptation module.

The adaptive pipeline is an iterative process that creates a (mesh, metric) pair at each

iteration which we provide to our method. To evaluate the effectiveness of our approach as

part of the adaptation pipeline, we compare qualitative data derived from the adaptation

pipeline with results drawn from the literature.

4.1 MESH ADAPTATION AT CONSTANT COMPLEXITY

In this section, we evaluate our method using cases where the metric complexity remains

constant. We use two ways to specify the metric field. First, directly as an analytic function

F (p) = M(p) , p ∈ R3. This approach allows to study the metric conformity in isolation

to the metric construction method. The second approach uses solution-based metric fields

derived from a CFD solution. In particular, we use metric fields constructed from the

scalar field defined by the local Mach number of a flow The metric construction scheme

is the multiscale metric described in Section 2.2.3.3. The complexity of the geometries we

utilize increases incrementally and includes curved geometries with associated CAD data.

Specifically the cases of this section include:

• Analytic metric field defined over a planar surface (Section 4.1.1).

• Analytic metric fields defined over a curved surface (Section 4.1.2).

• Solution-based metric fields defined over a planar surface (Section 4.1.3).

• Solution-based metric fields defined over a curved surface (Section 4.1.4).

69

Before delving into the results, we define the analytic metric fields we use in this study which

are drawn from the first benchmark [129] of the Unstructured Grid Adaptation Working

Group (UGAWG)21.

Linear :=

h−2
x 0 0

0 h−2
y 0

0 0 h−2
z

 (18)

where:hx = hy = 10−1, hz = h0 + 2(0.1− h0)|z − 0.5|, h0 = 0.001

Polar-1 :=

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

h2
r 0 0

0 h2
θ 0

0 0 h2
z

 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (19)

where: r =
√
x2 + y2, θ = atan2(y, x), hr = hθ = 0.1, hz = h0 + 2(0.1− h0)|r − 0.5|,

h0 = 0.001

Polar-2 := Polar-1

where: d = 10 (0.6− r) and hθ =

 0.1 if d < 0

d/40 + 0.1(1− d) if d ≥ 0
(20)

Linear represents a shear layer in absence of curvature, while Polar-1 and Polar-2 a

curved shear layer. Polar-2 is derived from Polar-1 using a low gradation so it is possible

to satisfy with high-quality elements by resolving curvature in the tangential direction near

the layer.

Sections 4.1.1 and 4.1.3 include also quantitative performance data in terms of speedup

and total running time. The experimental set up for these data is the following: Both refine

and CDT3D were compiled using the intel 19.0.4.243 compiler and data were collected

on Old Dominion University’s wahab cluster using dual socket nodes each one featuring

two Intel®Xeon®Gold 6148 CPU @ 2.40GHz (20 slots) and 368GB of memory. Feflo.a

data for Section 4.1.1 and the strong scaling data of 4.1.3.1 were collected on a dual socket

machine equipped with two Intel®Xeon®E5-2697 v2 @ 2.70GHz (12 slots) CPUs, while

for Section 4.1.3.2 and the weak scaling data of 4.1.3.1 on a dual socket machine with two

Intel®Xeon®E5-2680 v2 @ 2.80GHz (20 slots) CPUs. The execution times and hardware

specifications are omitted for the EPIC results to protect proprietary data.

21https://ugawg.github.io/ (Accessed 2021-05-31).

https://ugawg.github.io/

70

4.1.1 ANALYTIC METRIC OVER PLANAR SURFACE

The first geometry is a unit cube with Polar-2 defined over the domain. The initial

mesh conforms to the Polar-2 metric with a complexity of 7,600 (see Figure 21). The values

of the metric field at the vertices of the mesh are scaled to 500,000 complexity for this test

using formula (13) from page 43. Adapted meshes with approximately 1,000,000 vertices

are expected. For this case we compare our method with EPIC , refine and Feflo.a.

Fig. 21: Cube with polar-2 analytic metric, complexity of 7,600.

Metric conformity results in terms of edge length histograms and mean ratio measure

are shown in Figures 22 and 23. The mean ratio is bounded between one and zero, where

a mean ratio near one indicates better metric conformity than a mean ratio near zero. In

linear scale, all methods appear to exhibit good overall quality with refine generating the

highest number of elements in the range [0.8, 1.0]. The log scale makes the differences more

prevalent. refine produces elements with the highest minimum mean ratio of 0.4, CDT3D

has the second best quality result, while the lowest mean ratio is around 0.01 for EPIC

and Feflo.a. The ideal edge length distribution is clustered tightly around unity. Figure 23

(left) reveals that refine, CDT3D and EPIC generated edges with less variance, while Feflo.a

produced both the shortest edges and the largest edges.

71

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

5

6

7
No

rm
al

ize
d

co
un

t
refine (NASA)
EPIC-ICS (Boeing)
CDT3D (ODU)
Feflo.a (INRIA)

10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC-ICS (Boeing)
CDT3D (ODU)
Feflo.a (INRIA)

Fig. 22: Comparison of the mean ratio of the generated grids for the Cube case in linear
and logarithmic scales.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Edge Length

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC-ICS (Boeing)
CDT3D (ODU)
Feflo.a (INRIA)

10 1 100 101

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC-ICS (Boeing)
CDT3D (ODU)
Feflo.a (INRIA)

Fig. 23: Comparison of the edge lengths of the generated grids for the Cube case in linear
and logarithmic scales.

The small target mesh size makes the strong scaling tests a challenge for a large number

of cores since the computation time per core becomes very small and the communication

overhead dominates the running time. The scaling results obtained using refine, CDT3D

and EPIC to adapt the initial 7,600 complexity grid to conform to the 500,000 complexity

as a function of number of cores is shown in Figure 24. Feflo.a is excluded from the scaling

72

results since the speedup gain is too small. This is due to the high startup cost of the

decomposition method which is not amortized for a small mesh. More details for this cost

appear in Section 4.1.3.2. All three methods exhibit linear scaling at low number of cores.

At higher core numbers, the speedup becomes constant for both EPIC and refine.

20 40 60 80 100 120 140
Cores

20

40

60

80

100

Sp
ee

du
p

refine (NASA) - xeon-6148
EPIC-ICS (Boeing)
ideal

5 10 15 20 25 30 35 40
Cores

5

10

15

20

25

30

35

40

Sp
ee

du
p

refine (NASA) - xeon-6148
EPIC-ICS (Boeing)
CDT3D (ODU) - xeon-6148
ideal

Fig. 24: Speedup results for the cube case. Left: Speedup for the cube case adapted from
7,600 complexity to 500,000 complexity. Right: Zoom-in view of the data for up to 40 cores.
(Base case is the sequential time of each software.).

4.1.2 ANALYTIC METRIC FIELDS ON CURVED SURFACES

The next test case introduces CAD data. In particular, we use the cube-cylinder case

described in [129]. The cube-cylinder case contains a cylinder of radius 0.5 oriented along

the z-axis positioned at x = 0, y = 0 and subtracted from a unit cube with its lower corner

positioned at (0, 0, 0). Figure 25 depicts the two solids as well as the end-result. The input

geometry is provided to CDT3D using the .egads file present at the repository22 of the

paper. As metric field we use Linear, Polar-1 and Polar-2.

For these three cases, the metric field is passed to CDT3D as an analytic function, thus

22https://github.com/UGAWG/adapt-benchmarks (Accessed 2021-06-01).

https://github.com/UGAWG/adapt-benchmarks

73

giving the ability to obtain an exact value each time we create a new point. A metric field

can be passed with the following API:

Fig. 25: Constituent solids of the cube-cylinder case along with end-result.

1 /∗∗
2 ∗ @br ie f API f o r an a n a l y t i c a l l y de f ined metr ic f i e l d .
3 ∗ @param x coo rd ina t e s o f the po int
4 ∗ @param M metr ic t en so r ho ld ing the M(x)
5 ∗/
6 void MetricTensorOnPoint (double ∗ x , MetricTensor ∗ M) ;

Listing 4.1: API for providing an analytic metric field.

For all three cases we start with the same mesh containing only 286 vertices (see Fig-

ure 26a) and perform three adaptive iterations by supplying each time the mesh of the

previous iteration as input.

74

(a) (b)

(c) (d)

Fig. 26: Input mesh (a) and adapted result (b) - (d) for the three analytic metrics.

4.1.2.1 Results using Linear

Figure 27 presents a comparison of the quality of the generated mesh in comparison to

the five methods included in the first benchmark of the UGAWG. The comparison data

are drawn from the paper’s repository23. For this case we compare CDT3D against EPIC ,

refine, Feflo.a, Pragmatic, and Omega h. Descriptions of all the methods appear in Sec-

tion 2.1.

The linear scale of the edge-lengths reveals that the peak of the distribution for CDT3D

is off-centered, similar to Feflo.a, but still within the limits of the rest of the method. The

log scale reveals that the longest edge produced is closer to the end of the specturm of the

23https://github.com/UGAWG/adapt-results (Accessed 2021-05-31).

https://github.com/UGAWG/adapt-results

75

other methods while the shortest is close to the value produced by refine. In terms of mean

ratio quality, CDT3D produces a value slightly above 0.1 which lies in the middle of the

results of the other methods.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Length

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

5

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

Fig. 27: Quality comparison of the Linear case.

76

4.1.2.2 Results using Polar-1

Figure 28 compares the quality of the generated mesh with the five methods included in the

first benchmark of the UGAWG. For refine we replaced the mesh of the paper’s repository

with one generated using the latest24 version since, the quality evaluation script of the refine

suite detects invalid elements in the original mesh. As discussed in the original paper [129]

the cube-cylinder-polar1 case put a lot of stress to the adaptation methods due to the

fact that the anisotropic layer is positioned exactly on the curved section of the mesh and

has a large tangential spacing. The effect on CDT3D can be seen mainly on the log scale of

the edge-length distribution where CDT3D produces produces few very long edges as well

as several shorter than ideal. Still, the results are within the trends of other methods. In

terms of the mean ratio measure, CDT3D performs better than Feflo.a and Pragmatic but

falls slightly behind the other methods. The latest version of refine performs the best in

both metrics in part due to added features since the publication of the original paper which

include the introduction of pliant smoothing [134] and the use of the cavity operator [159].

4.1.2.3 Results using Polar-2

Finally, Figure 29 presents the results of the evaluation for the Polar-2 case, which reduces

the tangential spacing of the metric at the curved boundary. Similar to the Linear case we

use the meshes provided in the paper’s repository for this evaluation. The trends of CDT3D

are similar to the previous two cases. The log scale of the edge length histogram reveals

that CDT3D produces a few edges smaller than most of the other methods. On the other

end of the spectrum, the longest edge of CDT3D is close to the one produces from Feflo.a

but shorter that refine. In terms of mean ratio measure, CDT3D produces a distribution

similar to the rest of the methods and a minimum value above 0.1, thus producing the third

best value after EPIC and Omega h.

24As of 2020-10-04.

77

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Length

0.5

1.0

1.5

2.0

2.5
No

rm
al

ize
d

co
un

t
EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

0.2 0.4 0.6 0.8 1.0
Mean Ratio

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100 101

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

Fig. 28: Quality comparison of the Polar-1 case.

78

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Length

0.5

1.0

1.5

2.0

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

5

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

Fig. 29: Quality comparison of the Polar-2 case in the log scale.

79

4.1.3 SOLUTION-BASED METRIC FIELDS ON PLANAR SURFACES

This section examines two cases, a delta wing with a solution-based metric field in

laminar flow and a box-shaped domain with a solution-based metric field corresponding to

a spherical blast problem.

4.1.3.1 Laminar flow over Delta wing

The next geometry, Figure 30, is a delta wing constructed of planar facets. A multiscale

metric [5] is constructed based on the Mach field of this subsonic laminar flow. The initial

mesh is adapted to a specified complexity of 50,000. Details of the verification of the

delta wing/mesh adaptation process is provided by [199]. The multiscale metric is scaled

to have a complexity of 500,000. Adapted meshes with approximately 1,000,000 vertices

are expected. In the second set of data, the complexity is scaled to 10,000,000 which

produces approximately 20,000,000 vertices, these mesh sizes are close to the maximum of

the verification study performed in [199].

Fig. 30: Delta wing with multiscale metric in laminar flow, 50,000 complexity.

80

Strong Scaling: The speedup of refine, CDT3D , and EPIC when adapting the initial

50,000 complexity mesh to conform to a 500,000 complexity metric field as a function of

the number of cores is shown in Figure 31. Similarly to Section 4.1.1, Feflo.a results are

omitted for the lower complexity case. At high core numbers, both EPIC and refine exhibit

improved scaling over the performance of the cube case due to the larger size of the initial

mesh for the delta wing. At lower core counts, refine exhibits the best scaling while CDT3D

falls between EPIC and refine. The superlinear scaling of refine is a result of the fact

that refine has optimizations such as reordering of the nodes for cache efficiency within

each partition, which have a computational complexity higher that O(n) where n is the

number of vertices in a partition. These optimizations favor configurations of many cores

but cause significant overhead to the sequential performance. However, they allow refine to

be within 10% of simulation time for inviscid simulations and 1% of the time for viscous

simulations when coupled with FUN3D in a distributed memory setting, which is also its

target configuration. Moreover, refine offers an “early termination” detection mechanism,

which is turned off for this case since it produces a lot of noise in the results. The total time

for refine for 1 core is 12,604 seconds and for 120 cores is 90 seconds while on a node of the

same cluster CDT3D requires 794 seconds for 1 core and 29 seconds for 40.

20 40 60 80 100 120 140
Cores

20

40

60

80

100

120

140

Sp
ee

du
p

refine (NASA) - xeon-6148
EPIC-ICS (Boeing)
ideal

5 10 15 20 25 30 35 40
Cores

10

20

30

40

50

60

Sp
ee

du
p

refine (NASA) - xeon-6148
EPIC-ICS (Boeing)
CDT3D (ODU) - xeon-6148
ideal

Fig. 31: Speedup data for the delta wing adapted from 50,000 complexity to 500,000 com-
plexity. Left: Speedup data for up to 128 cores. Right: Zoom-in view of the data for up to
40 cores (Base case is the sequential time of each software.).

81

When the complexity of the target mesh is scaled to 10,000,000, EPIC retains the same

scalability with the previous case as shown in Figure 32. CDT3D exhibits minor superlinear

speedup up until 30 cores and linear between 30 and 40. The origin of the superlinear

speedup is in part attributed to the increased throughput achieved by utilizing the cache

memory shared among the hardware threads. Feflo.a’s scaling becomes constant at 8 cores,

which is a result of the high startup cost of the decomposition method. More details for this

cost appear in the weak scaling section below. refine results are omitted from the graphs as

they exhibit the same issue as before with the sequential performance skewing the results

to highly superlinear trends.

20 40 60 80 100 120 140
Cores

20

40

60

80

100

120

140

Sp
ee

du
p

EPIC-ICS (Boeing)
ideal

5 10 15 20 25 30 35 40
Cores

5

10

15

20

25

30

35

40
Sp

ee
du

p
EPIC-ICS (Boeing)
CDT3D (ODU) - xeon-6148
Feflo.a (INRIA)
ideal

Fig. 32: Speedup data for the delta wing adapted from 50,000 complexity to 10,000,000
complexity. Left: Speedup data for up to 128 cores. Right: Zoom-in view of the data for
up to 40 cores (Base case is the sequential time of each software.).

82

Weak Scaling: The presented timing information provides limited insight on the poten-

tial behavior of the parallel methods for extreme-scale current and emerging architectures.

Amdahl’s law predicts that the serial fraction of the code reduces the potential for parallel

speedup as the number of cores grows. Traditionally, this issue is resolved by utilizing weak

scaling, also known as scaled speedup, for evaluating the performance of a parallel mesh

generation code by increasing the size of the mesh linearly to the number of cores, see for

example [52]. However, this approach does not reflect the workflow of a simulation utilizing

metric-based adaptation. A typical metric-based adaptation pass involves coarsening that

decreases the number of elements and node movement, which can be crucial to improving

the quality but depending on the algorithm may not affect the topology and thus the number

of elements of the mesh. In an attempt to overcome these issues, we focus on the original

definition of the scaled speedup, which is, that “the problem size scales with the number of

processors” [117].

In this work, we define the problem size to be the complexity of the target metric rather

than the number of elements in the mesh. Moreover, we do not use a constant step for

increasing the complexity, since it is common for metric adaptive simulations to use a larger

step for the first iteration [199]. Performing a fully adaptive simulation is reserved for the

next section. Instead, we simulate each solver → error-estimation → metric-construction

step by artificially scaling up the complexity of the input metric. In particular, we use as the

input to the first “iteration” using 1 core, the 50,000 complexity metric field of this section.

The input of the second iteration is created by increasing the complexity of the output mesh

of the previous step by a constant amount using formula (13) of page 40 at every vertex of

the mesh. The same procedure was applied for the rest of the steps. Table 29 presents the

results.

refine and CDT3D retain an almost constant time of approximately 10,000 seconds

and 1,000 seconds, respectively, as the problem size increases, which indicates a good weak

scaling speedup. Feflo.a is the fastest among the methods even considering the difference

between the machines that they were tested. On the other hand, it does not scale linearly

as the size of the problem increases. Similarly to the previous case, the overhead of domain

decomposition and distribution is a considerable amount for Feflo.a scaling from 6 seconds

at 2 cores to 108 seconds at 40 cores which corresponds to 30% of the total running time.

All three codes approach the expected number of elements with refine being closer. The

difference in number of elements could is attributed in part to the different adaptation

strategies as well as to the nature of the artificially scaled metric.

83

refine CDT3D Feflo.a

cores complexity # vertices te2e # vertices te2e # vertices te2e

1 50k → 500k 927,390 9,256.41 871,402 1,211.51 835,123 64.83

2 500k → 1m 1,853,974 10,136.44 1,633,955 919.39 1,777,724 78.77

4 1m → 2m 3,694,187 10,482.89 3,271,567 1,055.28 3,516,645 101.28

8 2m → 4m 7,358,456 12,188.41 6,477,760 1,080.14 6,980,611 147.43

16 4m → 8m 14,694,593 13,915.35 12,831,874 1,190.72 13,511,085 193.31

32 8m → 16m 29,333,956 14,254.48 25,539,415 1,451.30 26,885,124 288.47

40 16m → 20m 35,767,590 10,469.66 30,539,328 1,509.98 33,498,896 340.82

TABLE 29: Weak scaling performance of refine, CDT3D and Feflo.a for complexities be-
tween 50,000 and 20,000,000. te2e corresponds to the end-to-end time in seconds.

Quality data: Returning to the 500,000 complexity target metric, metric conformity

(characterized by element shape measure and edge length histograms of the generated

meshes) is shown in Figures 33 and 34, respectively. On a linear scale, all methods ap-

pear to exhibit good overall quality. The log scale makes the differences more prevalent.

refine’s mesh quality exhibits the best lower bound in the mean ratio measure and the

distribution with the smallest deviation in the edge length measure.

Stability: The concepts of Stability and Reproducibility were introduced in Section 1.1.

Adherence to these attributes is measured by evaluating the metric conformity of the same

case with different numbers of cores. Histograms of edge length in the metric are evaluated

for three codes for execution with different numbers of cores in Figure 35. refine, CDT3D ,

and EPIC show an almost perfect overlap of the histograms, but they do not produce

the same mesh (i.e., they offer a weak form of the Reproducibility attribute). Producing

metric conformity that is independent of the number of cores satisfies the requirement of

Stability. The mean ratio histograms result in the same conclusion that metric conformity

is independent of the number of cores for these tools and the mean ratio plot is omitted for

brevity.

84

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

5

6
No

rm
al

ize
d

co
un

t
refine (NASA)
EPIC_ICS (Boeing)
CDT3D (ODU)
Fefloa.a (INRIA)

10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC_ICS (Boeing)
CDT3D (ODU)
Fefloa.a (INRIA)

Fig. 33: Comparison of the mean ratio of the generated meshes for the delta wing 500,000
complexity case in linear and logarithmic scales.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Edge Length

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC_ICS (Boeing)
CDT3D (ODU)
Fefloa.a (INRIA)

10 1 100 101

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
EPIC_ICS (Boeing)
CDT3D (ODU)
Fefloa.a (INRIA)

Fig. 34: Comparison of the edge lengths of the generated meshes for the delta wing 500,000
complexity case in linear and logarithmic scales.

85

1003 × 10 1 4 × 10 1 6 × 10 1

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
1 core
10 cores
40 cores

10 1 100

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC-ICS (Boeing)
1 core
8 cores
16 cores

100

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

CDT3D (ODU)
1 core
10 cores
40 cores

Fig. 35: Stability data for the delta wing 50,000 to 500,000 complexity case using refine,
EPIC and CDT3D .

86

4.1.3.2 Spherical Blast

In order to complement the previous case where mesh refinement is the main operation,

the following case focuses mainly on coarsening operations. It corresponds to the numerical

solution (at one time step) of a spherical blast problem [159]. The target metric complexity

is 49,013, which corresponds to about 98,000 vertices in the final mesh. As initial input,

a uniform tetrahedral mesh of 1,900,000 vertices is provided. The adapted mesh is shown

in Figure 36.

Fig. 36: Adapted mesh of the spherical blast case. Left: Cross-cut of the domain. Right:
Zoom-in of the extracted part of the core.

For refine the number of sweeps was fixed and set to 40. This value was selected because

it allowed all cores to complete the adaptation while creating less noise in the timings since

no case could exit earlier, thus skewing the results. CDT3D was configured with a higher

collapse limit for the mesh preprocessing step (see Figure 7). This configuration was selected

because it gives more flexibility in the subsequent refining step and yields better quality in

the final mesh. A similar approach is used in Ref. [160] for generating an almost empty

mesh and subsequently a metric-orthogonal mesh.

87

Figure 37 depicts the strong scaling performance of Feflo.a, CDT3D and refine. refine

exhibits superlinear scalability for low number of cores (< 80) and almost linear for the rest

of the cases. In contrast, the speedup of CDT3D stagnates after 20 cores, which indicates

that there is not enough work to keep the additional cores busy. The same issue arises in

Feflo.a with the speedup stagnating at an earlier stage. Table 30 presents the total time for

this experiment in a shared memory setting (40 cores) and for refine we include distributed

memory results (up to 400 cores).

20 40 60 80 100 120 140
Cores

20

40

60

80

100

120

140

Sp
ee

du
p

refine (NASA) - xeon-6148
ideal

5 10 15 20 25 30 35 40
Cores

10

20

30

40

50

60

70

Sp
ee

du
p

refine (NASA) - xeon-6148
CDT3D (ODU) - xeon-6148
Feflo.a (INRIA) - xeon-2680
ideal

Fig. 37: Speedup data for blast case. Left: Speedup data for the blast case for up to 120
cores. Right: Zoom-in view of the data for up to 40 cores (Base case is the sequential time
of each software.).

A direct comparison of the times is not possible because as it is mentioned in the begin-

ning of the chapter the results of refine and CDT3D were collected on the same machine,

while for Feflo.a a different machine was used. Still, the table reveals that Feflo.a is faster

than CDT3D and refine using one core. However, using more than 10 cores CDT3D is 50%

faster and on 40 cores is more than two times faster than Feflo.a. On the other hand, refine

achieves a speedup of 67 on 40 cores and 328 on 400 cores; the superlinear speedup occurs

due to the reasons discussed in the delta wing case. The breakdown of the running time of

Feflo.a in Table 31 reveals that the main inefficiency is the subdomain creation step which

88

cores Feflo.a (s) CDT3D (s) refine (s)

1 62.82 152.41 62574.51

2 50.57 73.76 5311.00

10 30.41 22.02 1814.63

20 26.45 14.49 1252.03

40 27.42 13.46 921.39

200 - - 332.17

400 - - 190.36

TABLE 30: Total running times of Feflo.a, CDT3D and refine for the blast case.

takes a constant amount of time for all five runs. Moreover, Feflo.a utilizes a cavity-based

collapse operation [159] which always results in an edge collapse, whereas the standard col-

lapse algorithm utilized by CDT3D and refine rejects a fair amount of configurations which

revisits in a subsequent step.

cores Total Time Subdomain creation Mesh Adaptation

1 62.82 - 62.82

2 50.57 11.32 38.66

10 30.41 11.29 17.13

20 26.45 11.22 12.22

40 27.42 11.26 11.49

TABLE 31: Breakdown of the total running time for Feflo.a.

The quality of the generated meshes is in accordance with the results of the cases dis-

cussed earlier. refine achieves the smallest variance in edge lengths and a mean length of

0.9. Feflo.a follows a similar distribution with a tighter lower limit. CDT3D delivers a

89

wider distribution and few edges between 2 and 4 as well as a small number of edges below

0.1. For the mean ratio, refine delivers a mesh with minimum mean ratio quality of 0.3, for

Feflo.a the minimum is 0.2, while for CDT3D it is 0.1.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Edge Length

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
ize

d
co

un
t

refine (NASA)
CDT3D (ODU)
Feflo.a (INRIA)

10 1 100

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
CDT3D (ODU)
Feflo.a (INRIA)

Fig. 38: Comparison of the edge lengths of the generated meshes for the spherical blast case
in linear and logarithmic scales.

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

5

6

7

No
rm

al
ize

d
co

un
t

refine (NASA)
CDT3D (ODU)
Feflo.a (INRIA)

10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

refine (NASA)
CDT3D (ODU)
Feflo.a (INRIA)

Fig. 39: Comparison of the mean ratio of the generated meshes for the spherical blast case
in linear and logarithmic scales.

90

4.1.4 SOLUTION-BASED METRIC FIELDS ON CURVED SURFACES

In this section, we evaluate our method on two cases that utilize CAD data and fixed

complexity. We compare our method with results presented in [201]. In particular, we

focus on the fixed complexity cases that utilize a hemisphere-cylinder and the onera-m6

geometry. The input B-rep models were drawn from the UGAWG’s Github repository25.

Figure 40 depicts the input models as well as a decomposition of the B-rep models to its

constituent surfaces. The dataset of [201] contains five mesh adaptation codes EPIC , refine,

Feflo.a, Pragmatic, and Omega h. Descriptions of all the methods appear in Section 2.1. For

EPIC we use only the data generated using EPIC-ICSM ; which corresponds to EPIC with

the widest suite of mesh operations enabled (insertion, collapse, swaps and node movement)

since, it produces the highest quality among the configurations of EPIC presented in [201].

Fig. 40: Decomposition of the the input B-rep models for the hemisphere-cylinder-fixed
and the onera-m6 cases.

It should be noted that the graphs presented here have been generated using the meshes

available at the UGAWG’s Github repository. For the mean ratio measure we used the

definition of equation (10) of page 39 instead of the one presented in [201], so the graphs

we present and the ones in the original paper may differ slightly. This choice was done to

25https://github.com/UGAWG/solution-adapt-cases (Accessed 2021-05-31).

https://github.com/UGAWG/solution-adapt-cases

91

conform with the rest of the data in this thesis but also because the UGAWG have since

then switched to the same formula for mean ratio in their latest papers.

4.1.4.1 Hemisphere-Cylinder with fixed target complexity

The hemisphere cylinder case is designed as a model for a turbulent flow over a smooth

body of revolution in three dimensions. It corresponds to earlier wind tunnel studies [127]

and it is part of NASA’s Turbulence Modeling Resource26. The flow conditions are 0◦ angle

of attack, 0.6 Mach number and 0.35 million Reynolds number based on the diameter of

the cylinder. The metric field used in this case is generated by FUN3D-FV and refine by

applying the multiscale metric construction scheme (see Section 2.2.3.3) on the local Mach

number of the flow. Two target complexities are utilized at 30, 000 and 100, 000. The input

(mesh, metric) pairs were drawn from UGAWG’s Github repository27. Figure 41 depicts

the adapted meshes for the two metric complexities. The output meshes have 57, 114 and

191, 530 vertices respectively.

Fig. 41: Adapted meshes by CDT3D for the hemisphere-cylinder at 30, 000 and 100, 000
target complexity respectively.

Figure 42 presents quality results for the 30, 000 complexity case. The edge distribution

of CDT3D is centered around 1 and in general follows the trends of the rest of the mesh

26https://turbmodels.larc.nasa.gov (Accessed 2021-05-31).
27https://github.com/UGAWG/solution-adapt-results (Accessed 2021-05-31).

https://turbmodels.larc.nasa.gov
https://github.com/UGAWG/solution-adapt-results

92

adaptation methods. The use of the log scale for the Edge distribution reveals that CDT3D

generates the shortest edge. On the other hand, the longest edge generated is below that of

EPIC and Feflo.a. In terms of mean ratio CDT3D ’s minimum value is around 0.1 which is

higher that the minimum value for Pragmatic and Feflo.a, and very close to the values of

refine and EPIC .

Figure 43 presents quality results for the 100, 000 complexity case. The edge distribution

of CDT3D is slightly skewed to left of the ideal value 1 indicating a small amount of over-

refinement. Still, it is within the trends of the rest of the mesh adaptation methods. The

use of the log scale for the edge distribution reveals that CDT3D generates the shortest edge

with refine and Feflo.a being very close. On the other end of the spectrum, it generates

a maximum length smaller than Feflo.a and close to the rest of the methods. In terms of

mean ratio, CDT3D ’s minimum value is around 0.1 which is higher that the minimum value

for Pragmatic and Feflo.a and very close to the values of refine and EPIC .

93

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Length

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

5

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100 101

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

Fig. 42: Mean ratio and Edge Length quality measures for the hemisphere-cylinder-fixed
case at 30,000 complexity. The Edge Length in linear scale is cropped to the (0, 2) range.
The second row uses a log scale make differences more prevalent.

94

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Length

0.25

0.50

0.75

1.00

1.25

1.50

1.75
No

rm
al

ize
d

co
un

t
EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100 101

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

Fig. 43: Mean ratio and Edge Length quality measures for the hemisphere-cylinder-fixed
case at 100, 000 complexity. The Edge Length in linear scale is cropped to the (0, 2) range.
The second row uses a log scale make differences more prevalent.

95

4.1.4.2 ONERA M6 fixed complexity

The onera-m6 case is derived from the ONERA M6 experiment [224] and it is a well docu-

mented case in the CFD literature. It is part of NASA’s Turbulence Modeling Resource28.

The flow conditions are 3.06◦ angle of attack, 0.84 Mach number and 14.6 million Reynolds

number based on the root chord. The metric field used in this case is generated by FUN3D-

FV and refine applying the multiscale metric construction scheme (see Section 2.2.3.3) on

the local Mach number of the flow. Two target complexities are utilized at 30, 000 and

100, 000. The input (mesh, metric), pairs were drawn from UGAWG’s Github repository29.

Figure 44 depicts the adapted meshes for the two metric complexities. The output meshes

have 63, 285 and 191, 089 vertices respectively.

Fig. 44: Adapted meshes by CDT3D for the onera-m6 case at 30, 000 and 100, 000 target
complexity respectively.

Figure 45 depicts the quality of the adapted mesh at 30, 000 metric complexity. In the

Edge Length measure, CDT3D produces a histogram slightly skewed towards the left of 1

but still within the spectrum of the rest of the methods. The log scale reveals that shortest

and longest edge of CDT3D is close to the values produced by Feflo.a. In terms of the

mean ratio measure, the linear scale depicts similar trends. The log scale on the other hand,

reveals that CDT3D produces a mesh with minimum value above 0.1. This comes second

28https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html (Accessed 2021-05-31).
29https://github.com/UGAWG/solution-adapt-results (Accessed 2021-05-31).

https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html
https://github.com/UGAWG/solution-adapt-results

96

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Length

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
No

rm
al

ize
d

co
un

t
EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

5

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Omega_h (SNL)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

Fig. 45: Mean ratio and Edge Length quality measures for the onera-m6 case at 30,000
complexity. The second row uses a log scale to highlight the differences better.

only to Omega h’s result.

Figure 46 depicts the quality of the adapted mesh at 100, 000 metric complexity. The

results are similar to the lower complexity case. The edge length distributions are closer to

each other in both the linear and logarithmic scale. In terms of the mean ratio measure, the

logarithmic scale reveals that CDT3D produces the highest minimum value which is above

0.1.

97

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Length

0.25

0.50

0.75

1.00

1.25

1.50

1.75
No

rm
al

ize
d

co
un

t
EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

0.2 0.4 0.6 0.8 1.0
Mean Ratio

1

2

3

4

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 1 100 101 102

Edge Length (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

10 2 10 1 100

Mean Ratio (log scale)

10 5

10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
co

un
t

EPIC (Boeing)
Feflo.a (INRIA)
Pragmatic (Imperial)
refine (NASA)
CDT3D (ODU)

Fig. 46: Mean ratio and Edge Length quality measures for the onera-m6 case at 100, 000
complexity. The second row uses a log scale to highlight the differences better.

98

4.2 MESH ADAPTATION WITHIN AN ADAPTIVE PIPELINE

Evaluating our approach with fixed target meshes not only simplifies the testing process,

but also gives a straightforward way to compare our method with other approaches based on

quantitative and qualitative metrics. However, as mentioned in the introduction, the goal of

generating meshes is to provide a domain discretization for the Finite-element solver which

is the ultimate consumer of meshes. In this section, we build a software pipeline around our

mesh adaptation method in order to evaluate its effectiveness for adaptive simulations.

In order to meet the ever-evolving and growing demands of the CFD community, a

simulation pipeline should be able to integrate a plethora of different tools. The T-infinity

project [191] demonstrates a series of different use-cases where a high-level Python interface

can be used to build sophisticated pipelines. In this work, we focus on a single pipeline

depicted in Figure 47 which is pertinent to mesh adaptation.

Initial Mesh

Solver
Error-Based Metric

Construction
Satisfies
bound ?

Mesh Adaptation Gi,�i
Gi +1Solution

Interpolation Gi,Si

Gi+1,S'i+1

Gi,Si

G0
Gi,Si

Fig. 47: Mesh Adaptation pipeline. Gi denotes the mesh at the i-th iteration. Si, S
′
i

the solver solution and the interpolated solution at the vertices of Gi, respectively. Mi

corresponds to the metric field associated with the vertices of Gi and derived from Si.

In Figure 47, the process is initialized with a (usually coarse) mesh G0 that captures all

the geometrical features of the input model at some user-defined accuracy. The solver then

evaluates a discrete solution of the problem of interest and stores it in each mesh element.

For simplicity, we assume that the solver in this case is vertex-based and the solution is

stored at each vertex of the mesh Si. The next block captures a user-defined condition that

99

controls the exit of the iterative process. It can be based on some target simulation quantity

or on the total number of iterations of the adaptive loop. The Metric Construction step

creates a metric field Mi at each vertex of Gi using Si that drives the adaptation process.

Mesh Adaptation modifies the mesh based on the provided metric field and generates a new

mesh Gi+1. Optionally, one can interpolate the solution of the previous iteration to the

new mesh thus producing S ′i+1. This step allows the solver to restart the calculation from

a state closer to the converged solution instead of starting from the freestream conditions

which is the default. Finally, the new mesh (and optionally the interpolated solution S ′i+1)

are passed to the solver for the next iteration of the loop.

ref bootstrap

initial mesh

CAD data

SU2

dat2solb

ref_metric_test

ref_intrep_test

ref_translate

solb2dat

CDT3D

solution.dat

solution-mach.solb

solution-metric.solb

new_mesh.meshb

solution-field.solb

new_mesh.meshb

interpolated_solution-field.solb

new_mesh.su2 interpolated_solution.dat

SU2 developers

CRTC-ODU

NASA/refine

Fig. 48: Software pipeline utilized in the adaptive pipelines of this study.

The corresponding software pipeline can be seen in Figure 48. For the cases of this

study, the input volume mesh is either given or created out of a CAD file using ref

bootstrap which is part of the refine mesh mechanics suite [198]. ref bootstrap uses

the EGADS [121] kernel in order to generate an initial surface triangulation of the input

100

CAD file. The surface mesh is then adapted based on the curvature and other geomet-

rical features. Adapting the surface in absence of a volume mesh gives greater flexibility

since the software is not constrained by the requirement of conformity to a volume after

each operation. A volume mesh is then generated using an external tool such as Tet-

Gen [235] or AFLR [173] and finally the volume mesh is adapted based on a metric field

derived by the geometrical features of the CAD input. SU2 will then produce a solution

file that holds values of the discrete solution at each vertex of the input mesh. dat2solb is

used to convert the solution to a libMeshb-compatible file [174]. The extracted Mach field

(solution-mach.solb) is then passed to ref metric test that creates a multiscale metric

field based on it (solution-metric.solb). The multiscale metric field can be optionally

intersected with a curvature- and feature-based metric built based on the geometrical fea-

tures of the input model. CDT3D will then use the metric field along with the mesh used by

SU2 to generate an adapted mesh (new mesh.meshb). If solution interpolation is utilized, we

pass the new mesh along with a .solb version of the SU2 solution to ref intrep test which

we then convert using solb2dat to an SU2-compatible file (interpolated solution.dat).

The values of the previous solution are interpolated using linear interpolation. Finally, the

adapted mesh is passed to SU2 after being converted to a .su2 mesh file along with the

interpolated solution if this was generated.

It should be noted that the metric field can be built using any solution variable besides

the local Mach number30. However, the use of the local Mach number is favored in the

literature, since it provides a “compound” scalar variable that varies in most flow regions,

thus allowing to capture most of the flow features [34,118].

For the rest of this section, we present results utilizing the above pipeline for four different

cases of increasing difficulty. First, an analytic field where the solver is replaced with an

analytic function in order to verify the rest of the components of the pipeline. Then, in

Section 4.2.2 we apply the pipeline on a flow over a model with planar faces. The goal of

this test case is to verify our implementation in absence of curved surfaces. Section 4.2.3

presents results utilizing a flow over a simple curved model. Finally, in Section 4.2.4 we

present results on one of NASA’s High-lift cases.

Since the solver, a major part of the pipeline, is an external and sophisticated project,

fine-tuning of its parameters and detailed convergence and error-analysis is outside the scope

of this thesis. Instead, the goal of this section is to show capability of our method to function

as part of an adaptive pipeline.

30The local Mach number is defined as the ratio of the local flow speed over the local speed of sound.

101

4.2.1 ANALYTIC SCALAR FIELDS

The adaptation pipeline of Figure 47 consists of many parts and the errors in each

component can have accumulative and unpredictable consequences in the final calculation.

In an effort to mitigate these issues, we first test CDT3D by replacing the CFD solver with

analytic metric fields. In particular, instead of solving a flow problem at each iteration, we

evaluate an analytic function at the vertices of the mesh. The adaptive iterations will create

a mesh that is expected to drive the interpolation error down. For this test, we will be

using the three analytic cases described in [100] and implemented in the refine suite. The

multiscale metric implementation of refine has been combined with several mesh adaptation

tools and verified separately in [100] and thus, we will only focus on the verification of the

adaptation procedure in CDT3D .

For each of the three analytic scalar fields ((21),(22),(23)) the adaptation pipeline starts

with a uniform tetrahedral mesh of the unit cube domain [0, 1]×[0, 1]×[0, 1] with 64 vertices.

In contrast to the analytic metric fields of Section 4.1 that provide the metric value directly,

for the cases of this section, we derive the metric field from a scalar field. In particular,

in each iteration a multiscale metric field is computed using F (x, y, z) as scalar field. The

metric is computed in the 2-norm and the gradation value is set to 3. The metric is then

passed to our method along with the mesh of the previous iteration.

sinfun3 := F (x, y, z) =

0.1 sin(50xyz) if xyz ≤ −1

50
π

sin(50xyz) if xyz ≤ 2
50
π

0.1 sin(50xyz) else

,

where xyz = (x− 0.4)(y − 0.4)(z − 0.4) (21)

tanh3 := F (x, y, z) = tanh
(
(x+ 1.3)20(y − 0.3)9z)

)
(22)

sinatan3 := F (x, y, z) = 0.1 sin(50xz) + tan−1 (0.1/(sin(5y)− 2xz)) (23)

For each field, 90 adaptive iterations are performed with the complexity increased at

every 10 iterations. The convergence plots in Figure 49 show the interpolation error of the

last 5 iterations at each complexity with respect to the finest generated mesh. Since, the

multiscale metric approximates linear interpolation error via a Hessian reconstruction, all

results are expected to exhibit second order convergence rate. For comparison, the same

adaptation procedure was performed using refine.

102

Fig. 49: Convergence rates for CDT3D and refine for the three scalar fields.

Figure 49 indicates that the convergence rate of CDT3D matches closely the rate of

refine and they both exhibit 2nd-order convergence. Figure 50 presents the adapted meshes.

CDT3D is able to recover the features of the scalar fields at both small and large scales.

103

Fig. 50: Adapted meshes for the three fields. Top: sinfun3, tanh3 and sinatan3 fields.
Bottom: Corresponding CDT3D adapted meshes at 256,000 target complexity.

104

4.2.2 LAMINAR SUBSONIC FLOW OVER A DELTA WING

For the next case, CDT3D is coupled within an adaptive pipeline that includes a CFD

solver. The input geometry is a delta wing with planar faces. The 3D delta wing simulation

conditions have been set so that they match the case used in the first three High-Order

Workshops [256]. This case is well studied in the literature and it is preferred due its simple

geometry and yet non-trivial flow features. Adaptive results in terms of mutliblock meshes

appear in [148], verification results for the multiscale, MOESS and output-based metrics

appear in [100] and [17].

The freestream conditions are 0.3 Mach, 4000 Reynolds number based on a unit root

chord length and 12.5◦ angle of attack. The wing surface is modeled as an isothermal no-slip

boundary with the freestream temperature equal to 273.15K. The Prandtl number is 0.72

and the viscosity is assumed constant. SU2 is configured with an initial CFL number of 1

and a final value of 5 with a ramping of 1.001. As linear solver FGMRES is used with the

ILU preconditioner. The error for the linear solver is set to 10−10 and the number of the

linear iterations to 10. The Roe convective scheme is used with MUSCL reconstruction and

the Van Albada edge limiter31.

For each iteration except the first, we also supplied an interpolated solution on the new

mesh based on the solution of the previous iteration. The metric is constructed based on the

local Mach field of the solution and the metric gradation value is set to 2.0. The complexity

of the metric is doubled every 5 iterations. The solution-based metric is intersected also

with a curvature- and feature-based metric built based on the geometrical features of the

wing. Although the geometry in this case is planar, the CAD kernel is utilized to validate

its implementation and coupling with CDT3D . We considered 7 metric complexity values

for this study: [50 000, 100 000, 200 000, 400 000, 800 000, 1 600 000, 3 200 000].

Figure 51 depicts the initial surface mesh of the delta wing as well as adapted meshes at

100, 000 and 800, 000 complexity respectively. The initial mesh has 901 vertices, the middle

corresponds to the 15th iteration with 377, 569 vertices and the last corresponds to the 25th

iteration and has 1, 467, 922 vertices. Figure 52 depicts streamlines and contour slices of the

final solution.

31We would like to thank Jayant Mukhopadhaya from Stanford University for his help configuring SU2
for this case.

105

Fig. 51: Adapted mesh at three different complexities. Left: Initial mesh, Middle: mesh at
100, 000 complexity, Right: mesh at 800, 000 complexity.

To access the quality of the results of the adaptation procedure and its coupling with

CDT3D , drag and lift coefficients are compared against the results presented in [122, 148],

and [100]. Figure 53 presents the results. Both the drag and the lift coefficients are within

less than 0.55% of all the reference values. The final values as evaluated by SU2 on the 35th

iteration are CD = 0.165396 and CL = 0.346937.

Table 32 presents performance data for every 5 iterations of the adaptive pipeline. SU2

is deployed on the ODU’s turing cluster32 that houses nodes with a variety of different

node specifications. The number of cores used by the solver was set so that it corresponds

to about 10,000 vertices per core and it was constrained to 300 to reduce the waiting time

in the job scheduler queue of the cluster. CDT3D is using one of turing’s nodes with two

sockets each one with a Intel®Xeon®CPU E5-2698 v3 @ 2.30GHz (16 cores) for a total of

32 cores.

To ease the comparison that involves different core counts and hardware specifications,

we include a core-hours33 column. Using core-hours allows to evaluate the performance of

the application with respect to the cost of running it on a shared cluster where charge is

common to take place in terms of core-hours. The running time of CDT3D occupies only a

small fraction of the adaptive pipeline.

32https://wiki.hpc.odu.edu/en/Cluster/Turing (Accessed 2021-04-20).
33core-hours = number of cores used by application * hours required for the execution.

https://wiki.hpc.odu.edu/en/Cluster/Turing

106

Fig. 52: Streamlines and Contour slices of the Mach number of the solution. (Simulation
performed on the half model).

Fig. 53: Lift and drag coefficients as evaluated by SU2 compared against results presented
in [100](AIAA2020) [148](JCP2010) and [122](ADIGMA2010).

107

iter. vertices tetrahedra solver (s) solver core-hours CDT3D (s) CDT3D core-hours

0 901 3,444 57.55 0.16 - -

5 97,896 563,930 2,833.51 7.87 62.70 0.56

10 192,098 1,114,412 3,301.11 18.34 47.43 0.42

15 377,569 2,203,660 2,897.73 32.20 108.49 0.96

20 749,290 4,391,974 3,865.75 85.91 198.79 1.77

25 1,467,922 8,641,694 3,476.85 154.53 374.51 3.33

30 2,897,903 17,108,219 2,777.01 232.96 766.87 6.82

35 5,726,724 33,883,975 3,281.82 273.49 1,519.19 13.50

TABLE 32: Performance data of adaptive iterations.

4.2.3 INVISCID ONERA M6 CASE

The next case introduces CAD data to the adaptation pipeline. We use an inviscid flow

based on the description of a turbulent case included NASA’s Turbulence Modeling Resource

(TMR)34. As mentioned in NASA’s website35 “The ONERA M6 wing is a classic CFD

validation case for external flows because of its simple geometry combined with complexities

of transonic flow [..] It has almost become a standard for CFD codes because of its inclusion

as a validation case in numerous CFD papers over the years.” The flow conditions for this

study are 3.06◦ angle of attack, 0.84 Mach number and freestream temperature equal to

300K. This case utilizes the ONERA M6 wing geometry (see Figure 40) of the previous

section. Figure 54 depicts the initial mesh generated by ref bootstrap.

SU2 is configured similarly to the previous case but using the JST as convective scheme

which we found to converge faster for this case. For each iteration except the first, we also

supplied an interpolated solution on the new mesh based on the solution of the previous

iteration. The metric is constructed based on the local Mach field of the solution and

the metric gradation value is set to 10. The complexity of the metric is doubled every

5 iterations. The solution-based metric is intersected also with a curvature- and feature-

based metric built based on the geometrical features of the wing. We considered 3 metric

complexity values for this study: [50 000, 100 000, 200 000].

34https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html (Accessed 2021-05-31).
35https://www.grc.nasa.gov/www/wind/valid/m6wing/m6wing.html (Accessed 2021-05-31).

https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html
https://www.grc.nasa.gov/www/wind/valid/m6wing/m6wing.html

108

Fig. 54: Initial mesh generated by ref bootstrap. The mesh conforms to the geometrical
features of the wing.

Fig. 55: Final iteration of the adaptive loop.

These flow conditions produce the typical “lambda” shock along the upper surface wing.

Figure 55 depicts the mesh as well as the corresponding contour plot of the local Mach

number for the final iteration of the adaptive loop.

To verify our results, we compare the pressure coefficient against two different datasets.

109

Fig. 56: Location of pressure cross section.

First, the experimental values of Case 2308 of [224] acquired from the TMR website36

that corresponds to our configuration. Also, we executed SU2 with the same configuration

on a structured grid generated using a customized mesh generation code [190] using the

input parameters suggested by the TMR website37. In particular, we used the level 2 mesh

(L2) that has 36, 865 points across the surface of the wing. For comparison, the final

mesh of our pipeline has 6, 898 points across the surface of the wing. Figure 56 depicts

the 7 sections along which the experimental and numerical results are compared. The

rest subfigures of Figure 57 compare the results generated using CDT3D and the pipeline

of Figure 48, the structured mesh, and the experimental values. The x axis denotes the

x-coordinate of the cross-section normalized by the local cord-length of the wind. The y

axis represents the local pressure coefficient which measures the pressure at a point relative

to the freestream conditions. The combination of CDT3D with SU2 generates results very

close to the experiment and the numerical solution obtained on the structured mesh. The

differences with the experimental values are in part due to the inviscid method used in this

simulation. We attempted to perform a viscous simulation using the same configuration but

we did not succeed obtaining converged results. Still, these results indicate that the meshes

produced by CDT3D in presence of simple curved geometries supplied as CAD data are

suitable for inviscid calculations and the results are close to the reference values.

36https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html (Accessed 2021-06-01).
37https://turbmodels.larc.nasa.gov/onerawingnumerics_grids.html (Accessed 2021-06-01).

https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html
https://turbmodels.larc.nasa.gov/onerawingnumerics_grids.html

110

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0
C p

section 1 : y/b 0.20

CDT3D+refine+SU2 inviscid
structured (L2) + SU2 inviscid
experiment

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

C p

section 2 : y/b 0.44

CDT3D+refine+SU2 inviscid
structured (L2) + SU2 inviscid
experiment

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

C p

section 3 : y/b 0.65

CDT3D+refine+SU2 inviscid
structured (L2) + SU2 inviscid
experiment

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

C p

section 4 : y/b 0.80

CDT3D+refine+SU2 inviscid
structured (L2) + SU2 inviscid
experiment

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

C p

section 5 : y/b 0.90

CDT3D+refine+SU2 inviscid
structured (L2) + SU2 inviscid
experiment

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

C p

section 6 : y/b 0.96
CDT3D+refine+SU2 inviscid
structured (L2) + SU2 inviscid
experiment

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

C p

section 7 : y/b 0.99

CDT3D+refine+SU2 inviscid
structured (L2) + SU2 inviscid
experiment

Fig. 57: Values of the pressure coefficient as evaluated by the solver versus the experiment
across the 7 sections of Figure 56.

111

4.2.4 INVISCID FLOW OVER THE JAXA STANDARD MODEL

As a final stress-test, we use the Japan Aerospace Exploration Agency (JAXA) Standard

Model (JSM). JSM was built as an attempt to study flow effects over a fairly complete

configuration instead of isolated aircraft components that were commonly used. There are

several experimental data available, see for example [131,261,262] but, we will focus on the

use of the JSM in the context the 3rd AIAA CFD High-Lift Prediction Workshop38. A

summary of the workshop’s results appear in [218]. In particular, we will study the case 2b

that excludes the pylon and the nacelle of the original model and uses an angle-of-attack

equal to 4.36◦ and a Mach number of 0.172. The JSM geometry is combined out of 200+

surfaces, modeling details of the aircraft including brackets, flaps and slats (see Figure 58).

Fig. 58: The JSM geometry.

SU2 is configured similarly to the inviscid ONERA M6 case of the previous section.

For each iteration except the first, we also supplied an interpolated solution on the new

mesh based on the solution of the previous iteration. For the first iteration, we used the

coarse mesh of Figure 59 created by ref boostrap of the refine mesh mechanics suite [198].

38https://hiliftpw.larc.nasa.gov/index-workshop3.html (Accessed 2021-06-01).

https://hiliftpw.larc.nasa.gov/index-workshop3.html

112

The metric is constructed based on the Mach field of the solution and the metric grada-

tion value is set to 1.5. The complexity of the metric is doubled every 5 iterations. The

solution-based metric is intersected also with a curvature- and feature-based metric built

based on the geometrical features of the model. We considered 8 metric complexity values

for this study: [50 000, 100 000, 200 000, 400 000, 800 000, 1 600 000, 3 200 000, 6 400 000]. The

final mesh contains 13, 227, 952 vertices, 478, 518 triangles and 78, 479, 450 tetrahedra.

Fig. 59: Initial coarse mesh created by ref bootstrap. # vertices 52,265, # triangles
57,240, # tetrahedra : 219,230.

Figure 60 depicts the upper surface of the wing of the final iteration along with the

distribution of the local Mach number around it. Notice that the method inserts more

points around the regions of higher variability of the local Mach number as expected. In

particular, the wakes of the slat brackets are resolved on the upper surface. These wakes

are initiated at the sharp edges of the brackets. Figure 61 depicts the final mesh along with

the final solution colored my the local Mach number. Zoom-in views of one of the generated

vortices are also provided.

To verify our results we compare the pressure coefficient values as evaluated by the solver

113

against experimental results acquired from High-lift workshop website39. Figure 62a depicts

the locations of Cp extraction along the wing of JSM. The rest subfigures of Figure 62

present results generated using our approach and the pipeline of Figure 48. In general,

the obtained results are close to the experimental values. Notice, however, that our results

overpredict the Cp values on the upper surface of the wing with corresponds to the upper

section of the blue datapoints. This is in part attributed to the fact that we used an inviscid

simulation instead of a viscous. Viscous simulations were attempted starting from a coarse

mesh but we didn’t succeed in obtaining a converged solution. Still, this case indicates that

the new functionality of CDT3D allows the method to handle fairly complicated CAD data

in combination with solution-based metric derived from inviscid calculations.

39https://hiliftpw.larc.nasa.gov/Workshop3/pressures.html (Accessed 2021-06-17).

https://hiliftpw.larc.nasa.gov/Workshop3/pressures.html

114

Fig. 60: Final mesh and coloring of the wing by the local Mach number.

115

Fig. 61: Simulation results. Top: Final mesh alongside the corresponding solution. Bottom:
Zoom-in of the blue regions of the top figure.

116

(a) Locations of experimental data measure-
ments.

1800 2000 2200 2400 2600 2800
x, mm

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

C p

A-A
CDT3D + refine + SU2 (inviscid)
experiment

2000 2200 2400 2600 2800
x, mm

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

C p

B-B
CDT3D + refine + SU2 (inviscid)
experiment

2100 2200 2300 2400 2500 2600 2700 2800
x, mm

3

2

1

0

1

C p

C-C
CDT3D + refine + SU2 (inviscid)
experiment

2200 2300 2400 2500 2600 2700 2800
x, mm

3

2

1

0

1

C p

D-D
CDT3D + refine + SU2 (inviscid)
experiment

2500 2600 2700 2800 2900 3000
x, mm

4

3

2

1

0

1

C p

E-E
CDT3D + refine + SU2 (inviscid)
experiment

2800 2900 3000 3100 3200
x, mm

5

4

3

2

1

0

1

C p

G-G
CDT3D + refine + SU2 (inviscid)
experiment

2950 3000 3050 3100 3150 3200 3250
x, mm

5

4

3

2

1

0

1

C p

H-H
CDT3D + refine + SU2 (inviscid)
experiment

Fig. 62: Values of the pressure coefficient as evaluated by the solver versus the experiment
across the 7 sections of Figure 62a.

117

CHAPTER 5

A TASKING FRAMEWORK FOR PARALLEL MESH

OPERATIONS

So far, we have presented significant advances in terms of both functionality and perfor-

mance. As the complexity of the methods and subsequently of the codes increases, the

need for abstracting logical parts of the method into separate modules becomes paramount.

Handling the ever-increasing complexity of mesh generation codes along with the intrica-

cies of newer hardware often results in codes that are both difficult to comprehend and

maintain. Different facets of codes such as thread management and load balancing are of-

ten intertwined, resulting in efficient but highly complex codes. Although platform-specific

and/or application-specific optimizations will always perform better than generic solutions,

abstract interfaces can last longer and allow for better interoperability between applications.

Choosing the right abstractions allows applications to build upon a generic framework while

enabling low-level software substrates to offer implementations that take advantage of the

underlying hardware. Moreover, abstractions provide space for future explorations; as newer

hardware (e.g., in the form of accelerators) becomes available, the application developer may

need to perform minimal to no changes while the underlying runtime system can add new

features opaquely.

The goal of this chapter is to present an approach for separating the concerns of function-

ality and performance, specifically for mesh operations. Figure 63 depicts the pseudocode

of two fine-grained speculative meshing operations. Note that the application developer

must manage and account for the meshing kernel, parallel correctness, and load balancing,

all within a single algorithm. Developing and maintaining such an application becomes

challenging since the developer has to keep all three parts in mind while modifying the

code. Moreover, re-using hardware-specific optimizations among different applications can

only be achieved by abstracting them outside of specific applications. Examples include

affinity-aware work schedulers, cache-optimized data structures, etc.

To demonstrate this method we will use two case studies, the parallel meshing operations

of CDT3D described in Section 3 that are common in most metric-based mesh adaptation

codes [250] and the Delaunay-based kernel of PODM [95]. For these two applications, we

explore how a tasking environment can be used to express speculative mesh operations

and how it allows to abstract the load balancing aspects of both case studies with small

(for PODM) to no (for CDT3D) impact to functionality. The results in Sections 5.3.1

118

(a) PODM pseudocode as presented in [95]. (b) CDT3D pseudocode as presented in [85].

Fig. 63: Pseudocodes of the speculative approach applied on a Delaunay-based algorithm
(left) and a local reconnection operation (right). Colored regions indicate the primal function
of the enclosed steps.

and 5.3.2 indicate not only low overhead, but even speedup with respect to the baseline

hand-optimized applications for some of the mesh operations. In summary, this chapter:

• Presents a high-level front-end that abstracts and unifies task management for adaptive

and irregular applications.

• Describes the design and implementation of the front-end for three major back-ends:

Intel®’s TBB, OpenMP, and Argobots.

119

• Illustrates how this front-end can be applied to two different speculative parallel un-

structured mesh generation codes.

• Provides an in-depth analysis of the effect of task granularity for each back-end and

the advantages and disadvantages of different task creation strategies.

5.1 RELATED WORK

A complete review of the current state-of-the-art tasking environments is outside the

scope of this section. A comprehensive taxonomy based on architectural characteristics

and user APIs appears in [245]. In the rest of this section, we focus on methods that

exploit concurrency through speculative execution. As mentioned in Section 2.1, Speculative

execution (also known as optimistic) is a technique that allows for the exploitation of more

concurrency out of a problem by executing steps of a procedure ahead of time, prior to

resolving data dependencies between the steps themselves.

There several efforts in the literature that facilitate speculative execution utilizing higher

level constructs. Among the many we list a few pertinent to this study such as the use of

transactional memory at the software level [209], compiler-assisted methods [7,40,210] and

libraries such as Galois [142], ParlayLib [28] and SPETABARU [36].

The Galois system [142] provides abstract set iterators, giving to the application de-

veloper the ability to extract parallelism out of the work-lists of a sequential application.

Custom data structures and a runtime scheduler are responsible for detecting and recovering

unsafe accesses to shared memory. The elegance of this approach is appealing but, for our

use-case, it would require extensive modifications of the worklists maintained by each ap-

plication. Also, to the best of our knowledge, its effectiveness for mesh generation has been

demonstrated only on simple sequential mesh triangulation codes. In contrast, in this work,

both use-cases build on top of an already-parallelized application that have demonstrated

comparable performance to state-of-the-art methods [95,251].

In [28,29] the authors revisit the idea of expressing speculative execution as a combina-

tion of nested parallelism and commutative operations suggested in [240] and propose the

use of deterministic reservations for dealing with a class of greedy algorithms. The main

idea is to split the operation into two phases. One that attempts to reserve the data de-

pendencies for a number of tasks speculatively, and then a commit phase that executes the

tasks that successfully reserved all their dependencies. The two-phase approach is similar

120

to the inspector-executor model [221]. However, an inspector-executor model is not suit-

able for our case due to the data-intensive nature of the targeted use-cases. In contrast,

our approach re-uses the speculative approach step already present in both use-cases and

merges the two steps in one. This approach acts directly upon touched data which improves

cache utilization and allows tolerating more than 80% of system latencies [187]. Moreover,

it avoids the synchronization required by a two-phase approach.

The SPETABARU tasking runtime system introduced in [36] can exploit concurrency

of task graphs through speculation. The task graph is built based on the user-defined data

dependencies between the tasks. The system manages the execution of tasks as well as

disregarding data from failed speculative attempts upon runtime. The library was origi-

nally created for Parallel Monte Carlo Simulations and it is primarily designed for parallel

applications that utilize graphs of tasks. This tasking system generates the graph utilizing

a single thread in a pre-processing step that generates all the tasks and evaluates the data

dependencies among them. This approach is inadequate for our target data-intensive appli-

cations for two reasons. First, dependency discovery and resolution is the most expensive

step, thus rendering the pre-processing step to a major bottleneck. Moreover, the continuous

generation of new elements (and therefore tasks) would require additional synchronization

points which would degrade performance significantly.

In [7] the authors incorporate Thread-Level Speculation in OpenMP. OpenMP is ex-

tended with the speculative directive which annotates a variable as the target of specu-

lative execution. A thread-local version of such variables is created for each thread. The

respective runtime monitors such variables and guarantees that all read accesses will return

the most up-to-date value. When a thread consumes an outdated version of a speculative

variable, it is stopped and restarted in order to consume the correct value of the variable.

For both of our applications the speculative execution is already part of the application code

and modifying it is outside the scope of this work. Moreover, the abstract front-end of our

approach gives access to additional back-ends beyond OpenMP.

Although many of the above approaches are close to our goals, most of them will require

nontrivial changes to the code required for the Parallel Correctness steps (see Figure 63) of

the algorithm which for this study we chose to keep as part of the meshing task. Moreover,

in contrast to all the presented approaches the starting point in this work is applications that

are already parallel instead of sequential. This comes with the benefit of having thread-safe

mechanisms in place for memory allocation and speculative locking, but also with higher

complexity due to their legacy nature. Also, the proposed approach can utilize a number

121

of different back-ends, including Argobots [227]. Argobots provides lightweight User Level

Threads (ULTs), capable of context switching with low overhead. Among others, ULTs are

employed to tolerate latencies in cases such as failing to acquire a lock or calling synchronous

MPI operations where regular tasks would block, along with the underlying hardware thread.

Instead, a ULT will implicitly release the hardware thread it runs on, allowing other ULTs

to use it. Argobots is an integral part of the PREMA runtime system [244] which in turn

is a building block of the Telescopic Approach [61].

In the context of mesh generation, speculative execution was introduced in [187] where

the authors execute the same meshing kernel across multiple processes without restricting

them on their local data. Instead, the meshing kernel is launched optimistically and the

data dependencies are discovered and captured on the fly. If some dependency cannot be

satisfied, the operation releases any captured dependencies, aborts its execution (rollback),

and reenters the scheduler’s pool. The speculative approach has already been utilized in

Delaunay triangulation methods [23,27,93], Delaunay Refinement [95] and Advancing-Front

[85] methods. However, in each case the approach was application- and method-specific. In

contrast, in this work we provide an abstract interface allowing the framework to be applied

not only across different mesh operations but also between different mesh applications.

Moreover, the approach in this work is method-agnostic, thus rendering the framework

extremely useful not only for other meshing methods but also for adaptive and irregular

applications in general.

5.2 METHOD

The proposed approach builds upon the observation that the speculative meshing oper-

ations of the two case studies can be decomposed into three components: Meshing, Parallel

Correctness and Load Balancing (see Figure 63). The Load Balancing part is handled by

the generic tasking framework presented in the following sections. Parallel Correctness is

expressed through the use of atomic locks upon the cavity (data dependencies) of each oper-

ation. For this study, the parallel correctness steps will remain part of the meshing task. The

implementation of generic tasking framework is composed of an application-facing front-end

which is agnostic to target hardware, and a back-end, which provides custom implementa-

tions for individual substrates.

122

5.2.1 FRONT-END: A GENERIC TASKING FRAMEWORK

The general approach used in this work is to decompose any given operation into non-

interruptible tasks that execute to completion. The framework supports both blocking calls

for creating many tasks (see Listing 5.1) and a fine-grained API for single task creation (see

Listing 5.2). This allows for the utilization of a range of tasking paradigms, from simple

fork-join models to hierarchical or recursive task creation (see Figure 64).

1 /∗∗
2 ∗ @br ie f launch ta sk s and wait u n t i l they a l l f i n i s h
3 ∗ @param u s e r t a s k a r g s vec to r o f task arguments
4 ∗ @param u s e r f un c the user func t i on to be executed ,
5 ∗ type should be void func (UserTaskArgs &) ,
6 ∗ @param g r a i n s i z e number o f e lements o f u s e r t a s k a r g s to group
7 ∗ i n t o a s i n g l e task
8 ∗/
9

10 template<typename UserTaskArgs , typename FunctionType>
11 void t a s k f o r (std : : vector<UserTaskArgs>& u s e r t a s k a r g s ,
12 FunctionType use r func ,
13 i n t g r a i n s i z e = 10)

Listing 5.1: Interface for launching several tasks at once.

1 /∗∗
2 ∗ @br ie f add a task to the i n t e r n a l queue
3 ∗ @param u s e r t a s k a r g s arguments o f the task
4 ∗ @param u s e r f un c the user func t i on to be executed ,
5 ∗ type should be void func (UserTaskArgs&)
6 ∗/
7

8 template<typename UserTaskArgs , typename FunctionType>
9 void c r ea t e an d s c hed u l e (UserTaskArgs& u s e r t a s k a r g s ,

10 FunctionType u s e r f un c)
11

12 /∗∗
13 ∗ @br ie f wait u n t i l a l l generated ta sk s have completed .
14 ∗/
15 void w a i t f o r a l l ()

Listing 5.2: Interface for creating a single task.

123

task for in Listing 5.1 is similar to the parallel-for paradigm. It accepts a func-

tion user func that implements the task operation as well as a vector user task args

of the different arguments for each task. Optionally, it can accept a grainsize which

controls the number of terminal tasks that will be generated. The number of terminal

tasks is user task args.size()/grainsize. Similar to std::for each, task for will ap-

ply user func on each element of the user task args vector. However, in contrast to

std::for each not all invocations of user func will be completed successfully. Some will

abort due to rollbacks. In this study, re-applying the operation on aborted tasks is han-

dled by the application logic since it was already present before the introduction of this

framework.

create and schedule in Listing 5.2 is a simple wrapper around the corresponding back-

end that generates a task and places it in the internal queue of the framework. This call

is not blocking and the execution of the task may start immediately on a different thread.

Finally, wait for all suspends the calling thread until the internal task queues are empty.

Fig. 64: Different tasking paradigms employed in this work. Left: flat model, Middle:
two-level task creation, Right: hierarchical task creation.

The tasking framework also provides the user with a unique thread id ∈ [0, nthreads).

This id is not pinned to any hardware thread, but it is guaranteed to stay fixed and unique

for the duration of the task execution. The thread id is required by both applications

of this study for two main operations. First, data dependency acquisition is implemented

utilizing atomic locks that hold the id of the owning thread [85, 95]. Also, both pieces of

124

software utilize the thread-aware memory management method described in [13] that uses a

thread id in order to access the appropriate thread-local memory pools that allow for the

allocation and deallocation of elements in a thread-safe manner.

5.2.2 TASK GENERATION STRATEGIES

One of the considerations of explicitly creating tasks is the overhead of task creation.

In the current implementation of task for, there is support for all three task creation

strategies of Figure 64. The flat model implements a basic fork-join paradigm [66]. It

creates all tasks sequentially and waits for them to complete. As a first attempt to reduce

the overhead, a 2-level task creation strategy was introduced. For this strategy, the

application thread will spawn sequentially 2 ·nthreads tasks that partition the range of the

user task args vector in equal parts. Each level 2 task will then iterate the assigned range

of the task vector and spawn a task for each task-argument. Finally, the hierarchical

model employs a divide-and-conquer scheme; it creates tasks recursively by creating two

child tasks that bisect the task range up to the point where the assigned range is smaller or

equal to the target grainsize. When the framework is used sequentially, no tasks are created

independently of the chosen strategy. Instead, the application thread will apply user func

sequentially on each item of the user task args vector.

5.2.3 IMPLEMENTATION

The above framework is implemented with three different back-ends: the Argobots run-

time system [227], Intel’s TBB framework [258] and OpenMP [69]. For each of the three

implementations we have incorporated the three task creation strategies of Figure 64 as

well as high level constructs specific to each back-end such as tbb::parallel for, #pragma

omp parallel for and #pragma omp taskloop for a total of 12 different execution back-

ends. We will use the notation backend-strategy to refer to tasking strategy strategy

implemented on top of the back-end backend.

5.2.3.1 Argobots back-end implementation details

Argobots is a low-level tasking framework developed to support higher level runtime systems,

so it does not provide optimized schedulers for fork-join parallelism out of the box. To

implement an optimized tasking framework for our needs, we developed custom scheduling

mechanisms using the interfaces provided. Each thread (execution stream in Argobots’

125

terminology) in the parallel environment is associated with a circular double-ended queue

(deque) which is thread-safe and lock-free [46]. Every new task is pushed to the top of the

deque of the thread that created it. When a thread finishes with the execution of a task, it

first checks its own deque; if there are tasks available, it pops the one residing at the top of

the deque and executes it. If its deque is empty, it will randomly pick one of the remaining

threads and try to steal the task at the bottom of its deque. By picking the task at the

top of the owned deque first, tasks that are hot in the cache are given priority. On the

other hand, stealing the task at the bottom of other threads’ deques: increases the chance

of picking tasks that will create more child tasks, allows more work to become available for

the stealing thread and results in a decreased number of steal attempts. We provide two

tasking flavors for this implementation - User Level Threads (ULTs) that can yield explicitly

and Tasklets that run to completion and can only block waiting for another tasklet created

using this framework. In this work, both case studies use tasklets as we only need to wait

for other tasks to complete and no other blocking operation is performed. Each task is

created using a abt::task create function call that asynchronously schedules a new task

and immediately returns a task handle. The task handle can then be used to check or wait

for the completion of the respective task’s execution. Internally, the call to wait for a task

completion will result in calling the scheduler and popping/stealing some other task.

5.2.3.2 TBB back-end implementation details

Intel®Thread Building Blocks (TBB)40 is a library that enables parallel programming

across different applications and architectures. It provides high level constructs such as

tbb::parallel for but also gives access to the lower level tasking queues. TBB uses tasks

to express parallelism thus making it a good candidate for this study. Tasks are expected to

be non-preemptive which is the case for both applications of this study and for speculative

operations in general. The scheduler switches the running thread only when a task is waiting

for its spawned children. For the hierarchical and the 2-level task creation strategy,

each level is enclosed in a tbb::task group that allows to wait until all tasks of the group

are completed. When using the lower level create and schedule, all generated tasks are

added to the same global tbb::task group thus allowing termination to be detected in a

convenient manner while still enabling work stealing among all threads. For comparison, we

also implemented a wrapper that passes the arguments of task for directly to the higher

40Recently Intel®Threading Building Blocks was renamed to Intel®oneAPI Threading Building Blocks
(oneTBB) to highlight that the tool is part of the oneAPI ecosystem.

126

level tbb::parallel for function.

5.2.3.3 OpenMP back-end implementation details

OpenMP is an API that enables parallel shared-memory programming with the use of

#pragmas making it easily accessible directly through the compiler. It is included in this

study since it is often the first step towards introducing parallelism for many scientific appli-

cations. Tasks are created using #pragma omp task and they are declared as untied which

gives them the opportunity to be scheduled on any available thread. For the hierarchical

strategy, it was also advantageous to prepend #pragma omp taskyield right before the

recursive step. This created an extra scheduling opportunity for the back-end. Without

it, it was noticed that a single thread would tend to run all the tasks it created, affecting

performance and greatly increasing the recursion tree size. For comparison, we also imple-

mented two more wrappers using higher level constructs. The first passes the arguments of

task for directly to #pragma omp for while the second passes to #pragma omp taskloop.

For the #pragma omp for, we chose the dynamic scheduler because it performs on average

better across the different mesh operations covered in this work.

5.3 CASE STUDIES

As case studies we use the parallel meshing operations present in CDT3D [82,85] and the

Delaunay-based kernel of PODM [95]. These two applications share a lot of common ideas

when it comes to parallel execution, but they also have some differences. As mentioned in

Figure 63, both applications utilize speculative execution for their meshing operations which

they implement similarly; the meshing kernel (blue sections) uses atomic locks speculatively

to guarantee correctness (green sections). This feature fits well with our approach since we

assume that each task should be non-interruptible and should execute to completion. Also,

they both integrate load balancing and thread management with the mesh application (red

sections), that our framework can abstract away.

PODM is built around a single mesh operation for modifying the mesh, thus reducing the

amount of code changes required. On the other hand, when it comes to parallel execution,

it has a number of optimizations that complicate the use of the tasking framework. In

particular, it uses a Hierarchical Load Balancing that ties worklists to specific threads in

order to improve data affinity and takes into account the cost of memory access when

moving load between threads. These optimizations result in a tight coupling between the

mesh operations and the load balancing parts of the code.

127

In contrast, in CDT3D the coupling between the threads and their data is lower. At a

high level it follows a fork-join pattern where sequential steps prepare global data structures

for parallel execution. This structure matches well with the task for API and reduces the

places where the code needs to be modified. Moreover, it utilizes a set of different mesh

operations that use both hand-optimized and generic work sharing methods which results

in varying impact on performance when transitioning to the tasking framework.

5.3.1 CASE STUDY I : PARALLEL MESH ADAPTATION SOFTWARE

(CDT3D)

CDT3D is composed of many modules depicted in Figure 65. With proper re-arrangement

of the modules one could implement different meshing applications as described in [253].

The configuration chosen for this study is optimized for metric-based adaptation and has

been already compared against state-of-the-art mesh adaptation codes in [251].

Point Insertion (Seq.)

Local Reconnection

Mesh Adaptation

Vertex Smoothing

Local Reconnection

Quality Improvement

Edge Collapse

Edge Collapse

Point Creation

Fig. 65: Mesh operations in CDT3D .

For this case-study, the focus will be: Point Creation, Local Reconnection, Edge Collapse,

and Vertex Smoothing. The common first step for porting the operations is to express

them in a way that is compatible with the API of the front-end presented in Figure 5.1.

The most natural choice is as an operation applied to an element. However, the baseline

implementation of CDT3D already uses “buckets” (i.e, lists of elements) for some of its

operations (see, for example, Figure 63b and references [82, 85]). In the context of the

presented mesh operations, “buckets” are used as simple strip partitioning method similar

128

Operation Work-
unit

Operator Baseline implementation

Local Reconnection “Bucket” Apply local reconnection be-
tween an element and its face
neighbors for each element of
a bucket

custom scheduling ([85])

Point Creation “Bucket” Generate candidate points for
each element of the bucket

custom scheduling ([85])

Edge Collapse Vertex Collapse small edges attached
to a mesh vertex

omp for schedule(guided)

Vertex Smoothing Vertex Improve the quality of the ele-
ments attached to a mesh ver-
tex by smoothing

omp for schedule(static)

TABLE 33: Characteristics of the baseline implementation of the parallel mesh operations
ported to the tasking framework.

to the chunk-size parameter of the #pragma omp parallel for scheduler. In an effort to

maximize code re-use of the application, we opted for the conventions of Table 33.

One important feature of the Operator in each case, is that it is built using the spec-

ulative/optimistic approach. In practice, it means that no data or domain decomposition

is applied to the mesh, but the operator will attempt to acquire its dependencies through

some exclusive locking mechanism upon execution. Failure to do so will result in unlocking

any acquired resources and exiting.

5.3.1.1 Performance Evaluation

For this evaluation, the code was recompiled picking the appropriate back-end implemen-

tation each time. The experiments were performed on the wahab cluster of Old Domin-

ion University using dual socket nodes equipped with two Intel®Xeon®Gold 6148 CPU @

2.40GHz (20 slots) and 368 GB of memory. The compiler is gcc 7.5.0 and the compiler

flags -O3 -DNDEBUG -march=native. gcc 7.5.0 comes with support of OpenMP version

4.5. For TBB, version 2021.1.1 was used. Each configuration was executed 10 times. All

times are normalized based on the performance of the baseline application unless other-

wise stated. The graphs below use the geometric mean [91] to summarize the results for

each configuration. The evaluation in the following paragraphs proceeds as follows: First,

we compare higher-level constructs (#pragma omp parallel for, #pragma omp taskloop

129

and tbb::parallel for) to the -flat strategy implemented using the three back-ends.

Next, we compare the -flat, -2-level, and -hierarchical strategies as implemented in

our framework. We then analyze and optimize the grainsize for each back-end and strat-

egy in order to derive the optimal grainsize for each operation. Finally, we compare our

framework using the optimal grasinsizes with the baseline application.

Higher-level parallel constructs and the flat model: For the first benchmark,

the flat tasking creation model is employed for each back-end and compared against

higher-level constructs such as #pragma omp parallel for, #pragma omp taskloop and

tbb::parallel for. As expected, all back-ends exhibit an overhead when using the flat

strategy compared to higher-level constructs due to the cost of sequentially creating all the

tasks. Figure 66 presents the running time normalized with respect to the baseline im-

plementation. omp-flat back-end suffers from the highest overhead especially when more

than 20 cores are used, which is the size of the socket for this machine. This trend is in

part attributed to the fact that the naive creation of tasks in the flat model along with the

untied specification allows any task to run on any core without any consideration about the

affinity of data with respect to the cores. The higher level constructs perform better than

their -flat counterparts. #pragma omp taskloop improves significantly over omp-flat by

merging multiple loop iterations into a single task, thus, decreasing the number of tasks

that need to be created and scheduled. Moreover, by creating and scheduling fewer tasks,

the number of context switches and cache-line invalidations is also reduced. #pragma omp

parallel for equipped with the dynamic scheduler performs even better thanks to the

absence of the overhead of task creation. tbb::parallel for outperforms the rest by dy-

namically adjusting the loop ranges assigned to each task, based on the number of threads,

the time for each task execution, and hardware occupancy.

Comparison between the flat, 2-level and hierarchical task creation strategies:

In Figure 67, the three task creation strategies are compared with each other. Both the

2-level and the hierarchical strategies reduce significantly the overhead in comparison

to the flat strategy. In the 2-level strategy, 2 · nthreads level 1 tasks that partition the

user task args vector are created sequentially. Then, each level 1 task generates tasks that

apply Operator to the appropriate unit of work based on Table 33. For this dataset, the

grainsize is set to 1, which results in creating a level 2 task for each unit of work. Both the

2-level and the hierarchical strategies exhibit higher overhead at 2 cores due to the fact

130

2 5 10 15 20 25 30 35 40
Cores

2

4

6

8

10

12

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
ba
se
lin
e

Total Time

abt-flat

tbb-flat

tbb-parallel-for

omp-flat

omp-taskloop

omp-parallel-for

2

4

6

8

10

12

2 5 10 15 20 25 30 35 40
Cores

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
ba
se
lin
e

Total Time

abt-flat

tbb-flat

tbb-parallel-for

omp-flat

omp-taskloop

omp-parallel-for

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 66: Comparison of high level constructs and the flat model. Left: Normalized total
running time of high level constructs and the flat model. Right: zoom-in at the range
0.5-2.0.

that more tasks are created in total. However, this overhead is amortized at a higher number

of cores. The dual socket nature of the machine affects the system by a smaller amount, in

comparison to the flat strategy, with the omp back-end suffering from the highest overhead

at about 7% on 40 cores. On the other hand, the abt and tbb back-ends achieve a small

improvement when using 40 cores.

The hierarchical task creation strategy creates tasks recursively by bisecting the

user task args vector and creating two child tasks each time. The algorithm continues up

until the target range reaches the grainsize, which is 1 in this dataset. abt-hierarchical

and tbb-hierarchical exhibit a higher overhead at 2 cores possibly due to the larger num-

ber of generated tasks. For more than 2 cores, the hierarchical strategy performs slightly

better than the 2-level. This is attributed, in part, to the fact that the hierarchical strat-

egy gives more flexibility in scheduling by having many smaller tasks running concurrently

(versus the 2-level which combines them in larger ones). This also creates more work-steal

opportunities for idle threads, while at the same time avoids the overhead of creating tasks

sequentially (contrary to the flat strategy). Results of applying the hierarchical strategy

with a grainsize of 1 using the omp back-end are omitted due to their high overhead which

reaches up to a 160x slowdown on 40 threads.

131

2 10 20 30 40
Cores

2

4

6

8

10

12

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
ba
se
lin
e

Total Time

abt-flat

tbb-flat

omp-flat

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

2

4

6

8

10

12

2 10 20 30 40
Cores

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
ba
se
lin
e

Total Time

abt-flat

tbb-flat

omp-flat

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 67: Comparison of the three task creation strategies. Left: Normalized total running
time of the three task creation strategies implemented across the three different back-ends.
The grainsize is fixed to 1. Right: zoom-in at the range 0.6-2.0.

Effect of grainsize for each task creation strategy: In the next dataset, we demon-

strate that the tasking framework in addition contributes towards automating the process

of performance tuning. Since the tasking framework uses the same scheduler across the four

different operations of this case-study, running the application repeatedly while scanning

through a set of different grainsize values and the available back-ends, we can obtain

optimal values for each operation.

The grainsize controls how many applications of Operator will be bundled into a single

task. In general, creating a high number of tasks (smaller grainsize) gives more flexibility

for load balancing by the scheduler. However, a high number of small tasks increases the

cost of load balancing. Previous studies on CDT3D [85] revealed a significant dependence

of the running time on the number of buckets created during local reconnection. In this

study, instead of targeting a fixed number of buckets, we fix the size of each bucket to 150

tetrahedra which was found to be ideal for the baseline application. Figures 68, 69 and 70

compare the effect of different grainsizes for each operation using the 2-level task creation

strategy.

The running time in each case is normalized based on the time achieved using a fixed

grainsize of 1. Overall, there are similar trends among the different back-ends. Point

Creation and Local Reconnection perform better with a smaller grainsize. This is due to

132

2 10 20 30 40
Cores

0.6

0.8

1.0

1.2

1.4
N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Point Creation Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.6

0.8

1.0

1.2

1.4

2 10 20 30 40
Cores

0.6

0.8

1.0

1.2

1.4

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Local Reconnection Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.6

0.8

1.0

1.2

1.4

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Edge Collapse Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Smoothing Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 68: Effect of grainsize for each operation for omp-2-level. Times are normalized based
on the time taken using grainsize = 1.

the fact that these operations already decompose their data into “buckets” (see Table 33)

and each “bucket” offers enough workload to amortize the cost of creating and handling

tasks. Using a higher grainsize creates fewer tasks, thus constraining the load balancer and

causes a loss in performance. On the other hand, Edge Collapse and Vertex Smoothing,

where the Operator is designed to accept a single vertex, benefit significantly from increasing

the grainsize. In particular, a grainsize of 128 for the Edge Collapse offers more than 30%

speedup in comparison to a value of 1 for the omp back-end and about 20% for the other two

back-ends. The gains for Vertex Smoothing are lower, but they also appear in the middle

of the range which we experimented.

The same analysis was also performed for the hierarchical strategy. abt-hierarchical

133

2 10 20 30 40
Cores

0.6

0.8

1.0

1.2

1.4
N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Point Creation Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.6

0.8

1.0

1.2

1.4

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Local Reconnection Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Edge Collapse Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Smoothing Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 69: Effect of grainsize for each operation for tbb-2-level. Times are normalized based
on the time taken using grainsize = 1.

and tbb-hierarchical obtain optimal performance for the same grainsize values, while for

omp-hierarchical the optimal values are 8192 for Edge Collapse and Vertex Smoothing,

32 for Vertex Creation and 1 for Local Reconnection. The graphs for the hierarchical

strategy are omitted for brevity. It should be noted that these values may not be the ideal

for a different configuration (hardware, meshing problem, etc.).

134

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Point Creation Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Local Reconnection Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Edge Collapse Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 10 20 30 40
Cores

0.5

0.6

0.7

0.8

0.9

1.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
gr
ai
ns
iz
e
=

1

Smoothing Time

2

4

8

16

32

64

128

256

512

1024

Grainsize

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 70: Effect of grainsize for each operation for abt-2-level. Times are normalized based
on the time taken using grainsize = 1.

Performance of 2-level and hierarchical task creation strategies utilizing opti-

mal grainsize: Finally, we compare the 2-level and hierarchical task creation strate-

gies utilizing the three different back-ends and the optimal grainsize values derived in the

previous paragraph. The performance data indicate significant improvements for some back-

ends especially for the least optimized mesh operations (Edge Collapse, Vertex Smoothing).

Figure 71 depicts the performance gains replacing the baseline implementation with the

tasking framework for each of the operations.

The grainsize is set to 1 for the Vertex Creation and Local Reconnection, 128 for Edge

Collapse and 64 for Vertex Smoothing when utilizing *-2-level, abt-hierarchical or

135

2 10 20 30 40
Cores

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

No
rm
al
ize
d
tim

e
 .
r.t
. b
as
el
in
e

Point Creation Time

abt-2level
tbb-2level
omp-2level
abt-hierarchical
tbb-hierarchical

omp-hierarchical
tbb-parallel-for
omp-parallel-for
omp-taskloop

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2 10 20 30 40
Cores

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
tim

e
w.
r.t
. b

as
el
in
e

Local Reconnection Time

abt-2le el
tbb-2le el
omp-2le el
abt-hierarchical
tbb-hierarchical

omp-hierarchical
tbb-parallel-for
omp-parallel-for
omp-taskloop

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) Percent (%) improvement over baseline for the Vertex Creation and Local Reconnection.

2 10 20 30 40
Cores

1

2

3

4

5

6

7

No
rm

al
ize

d
 im

e
w.

r.
. b

as
el

in
e

Edge Collapse Time

ab -2level
 bb-2level
omp-2level
ab -hierarchical
 bb-hierarchical

omp-hierarchical
 bb-parallel-for
omp-parallel-for
omp- askloop

1

2

3

4

5

6

7

2 10 20 30 40
Cores

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ize

d
tim

e
w.
r.t
. b

as
el
in
e

Smoothing Time

abt-2le el
tbb-2le el
omp-2le el
abt-hierarchical
tbb-hierarchical

omp-hierarchical
tbb-parallel-for
omp-parallel-for
omp-taskloop

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Percent (%) improvement over baseline for the Edge Collapse and Smoothing Operations.

Fig. 71: Performance improvements over the baseline implementation for using the 2-level

and hierarchical strategies and optimal grainsizes.

136

tbb-hierachical. For omp-hierarchical, we used the grainsizes mentioned in the previ-

ous paragraph. Tables 34 and 35 present the percent (%) improvement over the baseline

implementation.

Point Creation Local Reconnection

Cores Cores

2 10 40 2 10 40

abt-2level 5.03 0.82 1.47 1.45 0.79 2.01

tbb-2level 0.68 -0.85 -1.69 -0.13 -0.66 -0.35

omp-2level 1.16 -0.81 -26.42 0.25 -0.49 -4.11

abt-hierarchical 2.69 -3.54 -2.47 -0.02 0.67 2.04

tbb-hierarchical -2.22 -5.30 -6.65 -0.40 -1.20 -0.32

omp-hierarchical -4.24 -97.11 -127.64 -2.19 -73.31 -89.30

tbb-parallel-for -1.58 -3.79 -10.29 -0.59 -1.07 -2.78

omp-taskloop -6.64 -16.30 -38.80 -4.07 -7.35 -12.67

omp-parallel-for -3.39 -3.65 1.01 -0.22 -0.27 0.53

TABLE 34: Percent (%) improvement of running time with respect to the baseline imple-
mentation for the Point Creation and Local Reconnection operations.

The Point Creation and Local Reconnection operations benefit the least. The difference

in performance gains between the two pairs of operations is related to the fact that not

all operations use the same back-end in the baseline implementation (see Table 33). In

particular, the Point Creation and Local Reconnection operations utilize a custom work-

sharing approach described in [85] which has been optimized for the these operations. On

the other hand, the Edge Collapse and Vertex Smoothing operation were parallelized using

simple OpenMP primitives. Also, the first two operations operate on “buckets” (i.e., lists

of elements) instead of single elements thus introducing a-priori data decomposition which

may limit the effect of using different scheduling techniques.

abt-2level performs the best, offering up to 1.47% and 2.01% improvement on 40

cores for the Point Creation and Local Reconnection operations respectively. The Edge

137

Edge Collapse Smoothing

Cores Cores

2 10 40 2 10 40

abt-2level -0.46 10.88 12.05 -9.18 3.98 12.04

tbb-2level 7.74 10.60 13.42 -0.07 3.68 11.60

omp-2level 8.69 8.87 5.88 0.98 3.26 11.45

abt-hierarchical -5.44 5.75 9.67 -12.32 0.77 8.92

tbb-hierarchical 3.02 5.26 10.58 -3.17 0.49 8.62

omp-hierarchical -13.43 -76.16 -101.07 -17.42 -80.47 -96.60

tbb-parallel-for 2.28 3.86 6.86 -3.31 0.54 8.49

omp-taskloop -6.53 -8.32 -11.44 -14.47 -15.59 -21.59

omp-parallel-for -238.23 -469.65 -550.96 -3.16 1.89 10.67

TABLE 35: Percent (%) improvement of running time with respect to the baseline imple-
mentation of the Edge Collapse and Smoothing operations.

Collapse and Smoothing operations benefit more. tbb-2level performs the best for the

Edge Collapse operation delivering more than 13% improvement on 40 cores while for

Smoothing the best performing is abt-2level with up to 12% improvement over the

baseline implementation. For comparison, we also append data from the higher-level con-

structs (tbb::parallel for, #pragma omp parallel for, #pragma omp taskloop) (i.e.,

from Figure 66) which should serve as a reference point, since they provide the simplest way

to introduce tasks within an application. The higher-level constructs fail to improve the

performance for the operations that use custom scheduling and only some of them deliver

small gains for Edge Collapse and Vertex Smoothing. In particular, tbb::parallel for

delivers improvements for Edge Collapse and Smoothing and #pragma omp parallel for

exhibits some gains for Smoothing. However, the gains using the same back-ends within the

proposed approach are higher.

Figure 72 and Table 36 depict the overall results while utilizing the optimal grainsize

for each back-end and task creation strategy. Overall, abt-2level performs the best with

up to 5.81% improvement on 40 cores. tbb-2level offers a slightly smaller improvement

(4.72%) while omp-2level adds a small overhead (−0.52%) on 40 cores. Although, the

hierarchical strategy is able to exploit concurrency at an earlier stage, it does not perform

as well as the 2-level strategy. This is attributed, in part, to the fact that the 2-level

138

strategy generates almost half the number of tasks in comparison to the hierarchical

strategy. In particular, the 2-level strategy generates 2 · nthreads + n/grainsize tasks

while the hierarchical generates 2log2(n/grainsize)+1 − 1 = 2(n/grainsize) − 1 tasks where,

n number of work-units passed to task for (i.e., the length of vector user task args in

Listing 5.1)41. Since, in general, 2 ·nthreads� n and grainsize� n, the 2-level strategy

produces about half the number of tasks.

Total Time

Cores

2 10 40

abt-2level -2.81 2.31 5.81

tbb-2level -0.31 1.25 4.72

omp-2level 0.62 0.91 -0.52

abt-hierarchical -15.86 0.91 4.39

tbb-hierarchical -1.62 -0.31 2.79

omp-hierarchical -21.0 -83.01 -99.71

tbb-parallel-for -1.81 -0.30 1.40

omp-taskloop -19.17 -42.88 -49.97

omp-parallel-for -5.48 -8.57 -8.73

TABLE 36: Percent (%) improvement of total running time with respect to the baseline
implementation.

41h = log2(n/grainsize) is the depth of a perfect binary tree with n/grainsize terminal nodes. 2h+1 − 1
is the number of nodes for a perfect binary tree with depth h.

139

2 10 20 30 40
Cores

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

No
rm

al
ize

d
tim

e
w.
r.t
. b

as
el
in
e

Total Time

abt-2level
tbb-2level
omp-2level
abt-hierarchical
tbb-hierarchical

omp-hierarchical
tbb-parallel-for
omp-parallel-for
omp-taskloop

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Fig. 72: Total running time with optimal grainsizes for each back-end and task creation
strategy.

140

5.3.1.2 Stability of the Tasking Approach

Among the requirements for a parallel mesh generation code as presented in Section 2.1 is

the one of stability which requires that a mesh generated in parallel has comparable quality

with one generated sequentially by the same application. The stability of the baseline

application has been already demonstrated in [251]. In Figure 73a, we compare a mesh

quality measure among the different back-ends and task creation strategies of the previous

section. In particular, the histograms are built using the meshes generated at 40 cores in

Figure 71 and averaging the data over the 10 runs of the experiment. Even when using a

logarithmic scale there is no significant difference between the different back-ends with the

exception of the omp-2level back-end that produced slightly lower minimum value. Still,

the results are within the range (> 0.01) produced by other state-of-the-art approaches as

presented in [251].

10−2 10−1 100

Mean Ratio

10−5

10−4

10−3

10−2

10−1

100

N
or
m
al
iz
ed

co
un
t

abt-2level

tbb-2level

omp-2level

abt-hierarchical

tbb-hierarchical

omp-hierarchical

baseline

(a) (b)

Fig. 73: Stability data and visualization of the generated mesh of the CDT3D case-study.
Left: Comparison of the mean-ratio quality metric for the different back-ends. Right: Vi-
sualization of the mesh generated by the experiments in this section: Metric-adapted mesh
to a laminar flow over a delta wing.

141

5.3.2 CASE STUDY II: PARALLEL OPTIMISTIC DELAUNAY MESHING

(PODM)

The Parallel Optimistic Delaunay Meshing (PODM) method presented in [95] delivers

good parallel performance on DSM machines and high mesh quality along with provable

fidelity guarantees. In terms of meshing operations, PODM initializes the meshing proce-

dure with only 6 elements that decompose the bounding box of the input image. The mesh

is incrementally refined by inserting points generated based on rules that guarantee the

quality and fidelity of the mesh with respect to the input image. For more details, see Fig-

ure 63a. The point insertion procedure is built around the Bowyer-Watson kernel [35, 257]

which introduces new points in the mesh while simultaneously preserving the invariant that

after each point insertion, the mesh retains the Delaunay property. There are many ways

to decompose the Bowyer-Watson kernel into tasks. In the past, it has been decomposed

into compute data dependencies (cavity), collect data dependencies and update connectivity

tasks [60]. In higher dimensions (> 3), it is advantageous to decompose the data depen-

dency evaluation (i.e., cavity expansion) into many tasks [94]. Other approaches [93, 176],

transform the problem of Delaunay Mesh Refinement into two tasks: one of generating the

vertices to be added and one that updates the current triangulation by inserting the vertices.

In this study, in an effort to keep the problem complexity low and introduce only a small

amount of code changes, only two types of tasks will be used; one for scheduling an element

and one for refining it.

PODM caries many years of optimization for DSM machines [92]. However, as it hap-

pens with highly optimized codes, viewing them from a new perspective may reveal new

challenges. The optimizations and design decisions that made PODM very efficient put

constraints on the tasking implementation. The most important one, is that threading

is managed explicitly by the application and the Load Balancing section of Figure 63a is

responsible for populating the work-queue of each thread. In other words, the workload

distribution is explicit and tightly integrated with the application.

To overcome this issue, we use the thread id obtained by the threading environment

in order to access the appropriate queue in a thread-safe manner. Listing 5.3 presents a

high level pseudocode of the tasking version of PODM . It implements the flat model of

Figure 64 by decomposing the algorithm of Figure 63a into two tasks. ScheduleTask creates

tasks for a number of elements from a thread queue. Notice that the task created on line 19

can run with any thread id which implicitly enables work distribution between different

threads. Moreover, each thread will push the newly created elements into its private queue in

142

line 31. RefineBadElement encapsulates the blue section of Figure 63a and it will generate

the point to be inserted, calculate and lock its cavity (i.e., data dependencies) and apply

the Bowyer-Watson kernel as well as release any acquired locks in the end.

Figure 74 depicts a high level view of the execution flow of the tasking version. Initially,

ScheduleTask will span a task for each of the 6 elements of the initial mesh. Since the

initial mesh is very small, only some of the initial 6 tasks will be completed successfully due

to rollbacks. In the second round, ScheduleTask will create a task for each of the newly

created elements and the process continues until all thread Queues are empty. Notice that

this simple implementation has two major issues: Possibility of livelocks, occurring when

two tasks lock themselves in an infinite cycle trying to acquire different parts of overlapping

cavities, and the algorithm termination depending on empty thread-local queues. Thread-

local queues are accessed based on the thread id acquired from the tasking environment

which is, in general, random. Thus, there is a possibility that a non-empty thread Queue

may never get accessed. In these experiments, we didn’t notice any of the aforementioned

issues but there is still a chance that they might occur. In a follow-up study, we could

integrate our previous work on contention managers [95] that can treat both issues efficiently.

Line 16 of Listing 5.3 includes a limit on the number of elements to be scheduled at a

time. This is necessary since many of the generated tasks will be invalid by the time they run

because their corresponding element will have been deleted as part of an operation executed

on another cavity. Therefore, scheduling all available elements at once will generate a high

number of aborted tasks.

1 main ()
2 {
3 whi le (not a l l thread Queues are empty){
4 // Launch enough ScheduleTasks to keep a l l c o r e s
5 // busy
6 f o r (t i d : t h r e a d i d s)
7 task : : c r e a t e a n d s c h e d u l e t a s k (ScheduleTask) ;
8 task : : w a i t f o r a l l () ;
9 }

10 }
11 ScheduleTask ()
12 {
13 i n t t i d = task : : g e t t h r e a d i d () ;

143

14 i n t scheduled = 0 ;
15 whi le (scheduled < s c h e d u l e l i m i t &&
16 ! (thread Queue [t i d] . empty ()))
17 {
18 e l = thread Queue [t i d] . pop () ;
19 task : : c r e a t e a n d s c h e d u l e t a s k (e l , RefineTask) ;
20 scheduled++;
21 }
22 }
23

24 RefineTask (e l)
25 {
26 i n t t i d = task : : g e t t h r e a d i d () ;
27 s u c c e s s = e l . l o c k v e r t i c e s ()
28 i f (s u c c e s s) {
29 RefineBadElement (e l) ;
30 f o r (e l : new ly c r ea ted e l ement s)
31 thread Queue [t i d] . push (e l)
32 }

Listing 5.3: High level tasking-based pseudocode of PODM .

ScheduleTask

Re�neTask

Fig. 74: Flowchart of the tasking version of PODM .

144

5.3.2.1 Performance Evaluation

The hardware and compiler configuration is the same as in Section 5.3.1.1. Figure 75

depicts the effect of the different values of schedule limit to the runtime with respect to

the baseline application. Notice that for 1 thread the ideal value is low. Any limit below

128 performs equally well, while for 40 a value of 512 performs better since it provides the

system with more concurrency, albeit at the expense of more aborted tasks.

1 2 10 20 30 40
Cores

1

2

3

4

5

6

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
ba
se
lin
e

Meshing Time

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

scheduling limit

1

2

3

4

5

6

1 2 10 20 30 40
Cores

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
ba
se
lin
e

Meshing Time

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

scheduling limit

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Fig. 75: Effect of scheduling limit using the tbb back-end. Right zoom-in in range 0.5-2.0.

Finally, Figure 76 presents the best values among our experiments. The use of the tasking

framework adds only between 5% − 14% overhead with respect to the highly optimized

baseline application across the different number of cores. Of course, these results come with

the shortcomings mentioned above; but based on our previous experience, resolving them

should not negatively impact the performance.

The abt and omp back-ends exhibit much higher overheads in this case. Scheduling

decisions and the internal optimizations of tbb could be one of the reasons. Investigating

the cause of this overhead and optimizing the abt and omp back-end implementations of the

generalized framework could be investigated in the future.

145

1 2 5 10 15 20 25 30 35 40
Cores

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

N
or
m
al
iz
ed

ti
m
e
w
.r
.t
.
ba
se
lin
e

Meshing Time

tbb-256

tbb-512

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Fig. 76: Normalized meshing time of the tasking version of PODM for two different values
of the schedule limit.

5.3.2.2 Stability of the Tasking Approach

Similar to Section 5.3.1.2, Figure 77a compares a mesh quality measure (minimum dihedral

angle in this case) among the different tasking approaches of this case-study. In order to

satisfy the stability requirement the quality among the different execution back-ends should

be comparable. The histograms of Figure 77a are built using the meshes generated at 40

cores in the previous section and averaging the data over the 10 runs of the experiment. The

difference between the tasking approach and the baseline is marginal. The deviation from

the baseline is lower that of the previous case-study due to the different meshing method

used.

146

0 10 20 30 40 50 60 70
Minimum dihedral angle

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or
m
al
iz
ed

co
un
t

×106

tbb-256

tbb-512

baseline

(a) (b)

Fig. 77: Stability data and visualization of the generated mesh of the PODM case-study.
(a): Comparison of the minimum dihedral angle between the different back-ends. (b):
Visualization of the generated mesh along with contours of the dataset.

147

CHAPTER 6

CONCLUSION

In this work, we introduced a new parallel metric-based mesh adaptation method that can

serve as the parallel optimistic mesh adaptation module of the Telescopic Approach in the

context of CFD simulations. In particular, we extended the CDT3D library by adding new

parallel mesh operations, incorporating metric adaptivity (Section 3.2) and the ability to in-

terface with a CAD kernel (Section 3.3). The data of Section 3.4.4 indicate a well-optimized

implementation attaining more than 92% end-to-end efficiency on a single node. Our im-

plementation scales well within the shared node in comparison to state-of-the-art methods

as it is indicated by Section 4.1.3.1. Although, it falls behind in pure speed when compared

to well-optimized industrial codes such as Feflo.a from INRIA (see for example Table 29),

it exhibits better performance in terms of weak scalability. Moreover, it has a faster sequen-

tial and shared-memory implementation than the distributed-memory-optimized refine. In

terms of quality, our results indicate that our method produces meshes of comparable qual-

ity to state-of-the-art methods for a variety of configurations covering: (i) analytically pre-

scribed metric fields over both planar (Section 4.1.1) and curved (Section 4.1.2) domains,

(ii) solution-derived metric fields specified over planar geometries (Section 4.1.3) and in

the presence of CAD data (Section 4.1.4). Moreover, our data in Section 4.2 suggest that

CDT3D can be used in metric-based adaptive pipelines effectively.

Finally, our tasking framework presented in Chapter 5 was successfully applied to a

number of different meshing operations employing a speculative approach. The results of

Section 5.3.1 indicate performance improvements for CDT3D . These improvements are sig-

nificantly higher when compared to the straight-forward use of tasks which can lead up to

1200% slowdown for omp-flat in Figure 67 and higher than higher-level constructs that

are already present in some of the back-ends (#pragma omp parallel for, #pragma omp

taskloop, tbb::parallel for). In particular, Tables 34 and 35 indicate performance im-

provements of up to 13% for some meshing operations while, the results in Table 36 suggest

an improvement of up to 5.81% over the entire end-to-end application without any compro-

mise over the correctness and quality of the result. Moreover, the abstract front-end gives

a platform to explore multiple execution back-ends; Figures 66 and 67 show results over 12

different strategy-backend combinations which are accessible to the application developer

through a compile-time parameter. More importantly, it manages to separate functionality

148

and performance; a crucial step to the implementation of the Telescopic Approach. The gen-

eralized tasking framework facilitates the integration with the PREMA runtime system [244]

at the shared memory level by handing control of thread management and load balancing

from the application to the runtime system. This decoupling is expected to speedup the

implementation due to the improved encapsulation of the different methods and PREMA’s

more efficient management of hardware resources.

Revisiting the attributes we set in the introduction we have:

1. Stability: The stability of the parallel metric-adaptive method is studied and com-

pared to state-of-the-art methods in Section 4.1.3 and is summarized in Figure 35.

The quality of the generated mesh in parallel is comparable to the one generated

sequentially. Moreover, the stability holds even within the tasking framework as Sec-

tion 5.3.1.2 suggests.

2. Reproducibility: Our method offers weak reproducibility which is sufficient for most

flow solvers and adaptive processes. Indeed, the adaptive pipeline of Section 4.2

restarts the computation at each iteration and CDT3D is forced to reconstruct its

internal data-structures.

3. Robustness: Interfacing with a CAD kernel allows to accept a new class of inputs that

was impossible before. We cannot assert that our method offers industrial strength

robustness for CAD data, we have however introduced a flexible interface that can

handle inputs of varying complexity as Sections 4.1.4, 4.2.3 and 4.2.4 indicate.

4. Scalability: The strong and weak scaling data of Section 4.1.3 indicate that the

performance of our implementation for a single node is comparable to state-of-the-art

methods. Moreover, the parallel efficiency results of Section 3.4.4 indicate promising

scalability at higher number of cores in the context of the Telescopic Approach. Also,

based on the data of Table 32 the time required by CDT3D is only fraction of the

time of an adaptive iteration.

5. Code Reuse: Our tasking framework improves the encapsulation by hiding thread

management and load balancing away from the developer. Moreover, it offers easy

access and in a portable manner to a plethora of back-end and tasking strategies.

In summary, the goal of this dissertation was to create a new parallel anisotropic mesh

adaptation method that can serve as building block for scalable parallel mesh generation.

149

Our method is designed to be the speculative tightly-coupled parallel mesh adaptation

component of the Telescopic Approach, that exploits concurrency at the chip level. In this

dissertation we have demonstrated the following contributions:

(C1) A parallel mesh adaptation method with high parallel efficiency on a single multi-core

node (Sections 3.4.4 and 4.1.3).

(C2) The method exhibits comparable quality and performance against state-of-the-art

methods (Section 4.1).

(C3) The parallel mesh adaptation method can interface with a CAD kernel allowing to

accept a wider variety of inputs (Sections 4.1.4, 4.2.3 and 4.2.4).

(C4) Validation of the method within an adaptive pipeline (Section 4.2).

(C5) A General Tasking Framework that aids towards separating the concerns of function-

ality from performance for speculative parallel mesh generation methods (Section 5).

150

CHAPTER 7

FUTURE WORK

CDT3D is a shared memory software and it is designed to be a building block of the Tele-

scopic Approach for scalable parallel mesh generation and adaptivity. The next layer is the

Parallel Data Refinement layer which has been already implemented with both Delaunay-

based [89] and Advancing-front based methods [106]. Based on our group’s previous experi-

ence it is expected to achieve good scalability by combining the two approaches. There are

however challenges towards this direction related to minimizing the amount data movement

as identified by [88] and reducing the effect of the constrained faces to the final mesh quality

as discussed in [105]. An alternative approach would be to revisit the distributed speculative

approach presented in [187] and adapt it for CDT3D . In [187] a cavity could expand across

many subdomains due to the unconstrained nature of the method. In CDT3D however,

a cavity of a vertex (for smoothing and edge collapse) contains only elements attached to

the vertex itself, and a cavity of a flip or a point insertion operation contains face/edge

neighbors of a tetrahedron. In other words, all types of cavities include only immediate

neighbors derived by vertex/edge/face adjacency. This observation with the appropriate

software modifications could be used to create a pre-processing step that locks the inter-

face vertices of a subdomain and implicitly the elements attached to them (see for example

Figure 16). Such a pre-processing should cause CDT3D to avoid these elements and thus

artificially constrain the modifications within the subdomain. Interface elements could then

be exchanged using one of the element migration techniques utilized by the partially coupled

methods that employ discrete domain decomposition discussed in Section 2.1.3.2.

The generalized tasking framework facilitates the integration with the PREMA runtime

system [244] at the shared memory level by handing control of thread management and

load balancing from the application to the runtime system. This decoupling is expected to

speedup the implementation due to the improved encapsulation of the different methods and

PREMA’s more efficient management of hardware resources. For example, the application

independent tasking pools that the tasking framework offers can provide load balancing

across different instances of the same application occupying a common shared memory

space. This scenario fits well with our previous work [89] and the Parallel Data Refinement

layer of the Telescopic Approach.

The vertex smoothing operation can be further improved by incorporating a more com-

plete search space for the optimal node position such as the methods presented in [97,140].

151

Moreover, it could be extended to all vertices and not just the ones attached to low quality

elements providing an overall smoothed result which may provide better convergence rates

for the solver. Also, CAD information such as local curvature and local feature size could

be incorporated in order to optimize the quality of curved surfaces.

GPUs (Graphic Processing Units) are common in today’s supercomputers however, cur-

rently, CDT3D make no use of them. Extending the presented meshing operations so that

they can take advantage of the accelerators is expected to improve the running speed of

certain operations significantly. Figure 18 reveals that almost 95% of the total time is spent

on just two operations: the local reconnection and the vertex smoothing operation. Al-

though they both exhibit more than 90% efficiency, they can still be improved by the use

of accelerators. In particular, porting the inner floating-point-heavy kernels such as the

predicates of the Delaunay criterion and the min-max edge-weight measure to GPUs could

potentially reduce the running time significantly. Such a transition is not straightforward

since most of the data-structures of CDT3D are pointer-based. However, extracting the

combinatorial steps of the flip operations and the line search of the vertex smoothing into

asynchronous tasks that can be executed on the GPU could offer a compromise between

keeping the current data structures and taking advantage of the GPUs. Also, in the con-

text of the tasking framework there is a number of back-end systems that can utilize both

homogeneous and heterogeneous platforms including GPUs. Generic heterogeneous frame-

works such as SYCL42 and Kokkos43 provide already support for launching and managing

tasks on GPUs. Combining them with the tasking framework is expected to assist in hiding

latencies related to data transfers to and from the device as well as delays launching kernels.

Evaluating such a framework would also require the addition or extension of current mesh

operations for heterogeneous architectures.

Boundary layer mesh generation: As mentioned in Section 4.2 we didn’t succeed in

obtaining viscous results with our pipeline. This is in part attributed to the absence of

boundary layer mesh that many numerical methods expect. Although, fully unstructured

results have been reported with other solvers (see for example [201]), to the best of our

knowledge, SU2 has not been tested thoroughly within this context. Boundary layer can

be provided as an external procedure and integrated similarly to our work in [267]. A

similar approach that combines state-of-the-art boundary layer generation with adaptive

42https://www.khronos.org/sycl (Accessed 2021-05-27).
43https://kokkos.org (Accessed 2021-05-27).

https://www.khronos.org/sycl
https://kokkos.org

152

anisotropic method appears in [171]. Another path to explore is the generation of metric-

aligned meshes such as the ones presented in [160, 170]. Moreover, the use of specialized

metrics may also be suitable. For example, in [242] the authors report success by combining

wall-distance to their metric creation while, in [90] the authors review various output-based

metric construction schemes that could be evaluated.

Regarding our tasking approach, both case studies introduce a parameter (grainsize for

CDT3D and schedule limit for PODM) that controls the number of tasks created. Analyz-

ing the effect of this parameter in an application-independent manner allows to optimize

the parallel execution with no deep knowledge of the application. Still, in this study the

mesh size was constant and thus a more thorough study is needed in order to identify the

optimal values. As with any parameter optimization study, this could be performed utilizing

machine learning on pre-generated data. Moreover, the underlying tasking framework could

be equipped with an online machine learning method [124] that can choose the optimal

parameters based on runtime data.

Utilizing tasks in conjunction with the speculative approach could be further improved

by abstracting the Parallel Correctness sections of Figure 63. This could be achieved with

high level (but still application-specific) abstractions that lock and unlock the cavity of an

operation automatically. Also, aborted (due to rollbacks) tasks could be captured by the

framework and rescheduled (if they are still applicable).

The back-end of the task for front-end of Listing 5.1 is currently a compile-time pa-

rameter. However, there is no technical constrain that would prevent it from being an extra

argument of the front-end API. Providing the back-end as a parameter would allow to com-

bine the benefits of each back-end based on the operation being parallelized. For example,

although the accumulative gains of abt back-end in Table 36 are higher that the rest of the

back-ends, the data of Table 35 suggest that for certain operations (Edge Collapse) the tbb

back-end performs better. Giving the user the ability to select the appropriate back-end at

each task for invocation would allow to get the best performance at each operation.

153

REFERENCES

[1] F. Alauzet, “Adaptation de maillage anisotrope en trois dimensions. Application

aux simulations instationnaires en mécanique des fluides,” Ph.D. dissertation,

Université Montpellier II, Montpellier , France, 2003. https://tel.archives-ouvertes.

fr/tel-00363511

[2] F. Alauzet, “Size gradation control of anisotropic meshes,” Finite Elements in Analysis

and Design, vol. 46, no. 1–2, pp. 181–202, Jan. 2010, DOI: 10.1016/j.finel.2009.06.028

[3] F. Alauzet, “A changing-topology moving mesh technique for large displace-

ments,” Engineering with Computers, vol. 30, no. 2, pp. 175–200, Apr. 2014, DOI:

10.1007/s00366-013-0340-z

[4] F. Alauzet, X. Li, E. S. Seol, and M. S. Shephard, “Parallel anisotropic 3D mesh

adaptation by mesh modification,” Engineering with Computers, vol. 21, no. 3, pp.

247–258, May 2006, DOI: 10.1007/s00366-005-0009-3

[5] F. Alauzet and A. Loseille, “High-order sonic boom modeling based on adaptive meth-

ods,” Journal of Computational Physics, vol. 229, no. 3, pp. 561–593, 2010, DOI:

10.1016/j.jcp.2009.09.020

[6] F. Alauzet and A. Loseille, “A decade of progress on anisotropic mesh adaptation

for computational fluid dynamics,” Computer-Aided Design, vol. 72, pp. 13–39, Mar.

2016, DOI: 10.1016/j.cad.2015.09.005

[7] S. Aldea, A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano, “An OpenMP

extension that supports thread-level speculation,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 1, pp. 78–91, 2016, DOI: 10.1109/TPDS.2015.2393870

[8] G. M. Amdahl, “Validity of the single processor approach to achieving large scale com-

puting capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, ser. AFIPS ’67 (Spring). New York, NY, USA: ACM, 1967, pp. 483–485,

DOI: 10.1145/1465482.1465560

[9] American National Standards Institute, “Initial graphics exchange specification iges

5.3 (ansi-1996),” ANS US PRO/IPO-100-1996, Sep. 1996.

https://tel.archives-ouvertes.fr/tel-00363511
https://tel.archives-ouvertes.fr/tel-00363511
https://doi.org/10.1016/j.finel.2009.06.028
https://doi.org/10.1007/s00366-013-0340-z
https://doi.org/10.1007/s00366-005-0009-3
https://doi.org/10.1016/j.jcp.2009.09.020
https://doi.org/10.1016/j.cad.2015.09.005
https://doi.org/10.1109/TPDS.2015.2393870
https://doi.org/10.1145/1465482.1465560

154

[10] J. D. Anderson, Computational fluid dynamics the basics with applications, ser.

McGraw-Hill series in mechanical engineering. New York: McGraw-Hill, 1994. ISBN

0-07-001685-2

[11] F. Angrand, A. Dervieux, V. Billey, J. Periaux, and C. Pouletty, “2-D and 3-D Euler

flow calculations with a second-order accurate Galerkin finite element method,” in 18th

Fluid Dynamics and Plasmadynamics and Lasers Conference. American Institute of

Aeronautics and Astronautics, 1985, DOI: 10.2514/6.1985-1706

[12] C. D. Antonopoulos, F. Blagojevic, A. N. Chernikov, N. P. Chrisochoides, and D. S.

Nikolopoulos, “A multigrain Delaunay mesh generation method for multicore SMT-

based architectures,” Journal of Parallel and Distributed Computing, vol. 69, no. 7,

pp. 589–600, Jul. 2009, DOI: 10.1016/j.jpdc.2009.03.009

[13] C. D. Antonopoulos, X. Ding, A. Chernikov, F. Blagojevic, D. S. Nikolopoulos, and

N. Chrisochoides, “Multigrain parallel delaunay mesh generation: Challenges and

opportunities for multithreaded architectures,” in Proceedings of the 19th Annual In-

ternational Conference on Supercomputing, ser. ICS ’05. ACM, 2005, pp. 367–376.

ISBN 1-59593-167-8 DOI: 10.1145/1088149.1088198

[14] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Log-Euclidean metrics for fast and

simple calculus on diffusion tensors,” Magnetic Resonance in Medicine, vol. 56, no. 2,

pp. 411–421, Aug. 2006, DOI: 10.1002/mrm.20965

[15] S. B. Baden, D. B. Gannon, M. L. Norman, and N. P. Chrisochoides, Structured

Adaptive Mesh Refinement (Samr) Grid Methods. Berlin, Heidelberg: Springer-

Verlag, 1999. ISBN 978-0-387-98921-1 DOI: 10.1007/978-1-4612-1252-2

[16] T. J. Baker, “Mesh adaptation strategies for problems in fluid dynamics,” Finite

Elements in Analysis and Design, vol. 25, no. 3, pp. 243–273, Apr. 1997, DOI:

10.1016/S0168-874X(96)00032-7

[17] A. Balan, M. A. Park, S. Wood, and W. K. Anderson, “Verification of Anisotropic

Mesh Adaptation for Complex Aerospace Applications,” in AIAA Scitech 2020 Forum,

ser. AIAA SciTech Forum. American Institute of Aeronautics and Astronautics, Jan.

2020, DOI: 10.2514/6.2020-0675

[18] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley,

https://doi.org/10.2514/6.1985-1706
https://doi.org/10.1016/j.jpdc.2009.03.009
https://doi.org/10.1145/1088149.1088198
https://doi.org/10.1002/mrm.20965
https://doi.org/10.1007/978-1-4612-1252-2
https://doi.org/10.1016/S0168-874X(96)00032-7
https://doi.org/10.2514/6.2020-0675

155

D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith,

S. Zampini, H. Zhang, and H. Zhang, “PETSc users manual,” https://www.mcs.anl.

gov/petsc, Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.15, 2021.

[19] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali, “A load balancing frame-

work for adaptive and asynchronous applications,” IEEE Transactions on Parallel

and Distributed Systems, vol. 15, no. 2, pp. 183–192, Feb. 2004, DOI: 10.1109/T-

PDS.2004.1264800

[20] N. Barral, “Time-accurate anisotropic mesh adaptation for three-dimensional

moving mesh problems,” Ph.D. dissertation, UPMC, Nov. 2015. https://hal.inria.fr/

tel-01284113

[21] N. Barral, M. G. Knepley, M. Lange, M. D. Piggott, and G. J. Gorman, “Anisotropic

mesh adaptation in Firedrake with PETSc DMPlex,” in 25th International Meshing

Roundtable, 2016, Research Note.

[22] T. J. Barth, “Numerical aspects of computing high Reynolds number flows on unstruc-

tured meshes,” in 29th Aerospace Sciences Meeting. American Institute of Aeronautics

and Astronautics, 1991, DOI: 10.2514/6.1991-721

[23] V. H. F. Batista, D. L. Millman, S. Pion, and J. Singler, “Parallel geometric algorithms

for multi-core computers,” Computational Geometry, vol. 43, no. 8, pp. 663–677, Oct.

2010, DOI: 10.1016/j.comgeo.2010.04.008

[24] D. Beńıtez, E. Rodŕıguez, J. M. Escobar, and R. Montenegro, “Performance Evalua-

tion of a Parallel Algorithm for Simultaneous Untangling and Smoothing of Tetrahe-

dral Meshes,” in Proceedings of the 22nd International Meshing Roundtable, J. Sarrate

and M. Staten, Eds. Springer International Publishing, 2014, pp. 579–598. ISBN 978-

3-319-02335-9 DOI: 10.1007/978-3-319-02335-9 32

[25] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differen-

tial equations,” Journal of Computational Physics, vol. 53, no. 3, pp. 484–512, Mar.

1984, DOI: 10.1016/0021-9991(84)90073-1

[26] B. Berthou, D. Binosi, N. Chouika, L. Colaneri, M. Guidal, C. Mezrag, H. Moutarde,

J. Rodŕıguez-Quintero, F. Sabatié, P. Sznajder, and J. Wagner, “PARTONS: PAR-

tonic Tomography Of Nucleon Software,” The European Physical Journal C, vol. 78,

no. 6, p. 478, Jun. 2018, DOI: 10.1140/epjc/s10052-018-5948-0

https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1109/TPDS.2004.1264800
https://doi.org/10.1109/TPDS.2004.1264800
https://hal.inria.fr/tel-01284113
https://hal.inria.fr/tel-01284113
https://doi.org/10.2514/6.1991-721
https://doi.org/10.1016/j.comgeo.2010.04.008
https://doi.org/10.1007/978-3-319-02335-9_32
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1140/epjc/s10052-018-5948-0

156

[27] D. K. Blandford, G. E. Blelloch, and C. Kadow, “Engineering a Compact Parallel

Delaunay Algorithm in 3D,” in Proceedings of the Twenty-second Annual Symposium

on Computational Geometry, ser. SCG ’06. New York, NY, USA: ACM, 2006, pp.

292–300. ISBN 978-1-59593-340-9 DOI: 10.1145/1137856.1137900

[28] G. E. Blelloch, D. Anderson, and L. Dhulipala, “ParlayLib - A Toolkit for Parallel

Algorithms on Shared-Memory Multicore Machines,” in Proceedings of the 32nd ACM

Symposium on Parallelism in Algorithms and Architectures, ser. SPAA ’20. New

York, NY, USA: Association for Computing Machinery, Jul. 2020, pp. 507–509. ISBN

978-1-4503-6935-0 DOI: 10.1145/3350755.3400254

[29] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun, “Internally deterministic

parallel algorithms can be fast,” in Proceedings of the 17th ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming, ser. PPoPP ’12. New York, NY,

USA: Association for Computing Machinery, Feb. 2012, pp. 181–192. ISBN 978-1-

4503-1160-1 DOI: 10.1145/2145816.2145840

[30] G. E. Blelloch, G. L. Miller, and D. Talmor, “Developing a Practical Projection-based

Parallel Delaunay Algorithm,” in Proceedings of the Twelfth Annual Symposium on

Computational Geometry, ser. SCG ’96. New York, NY, USA: ACM, 1996, pp. 186–

195. ISBN 978-0-89791-804-6 DOI: 10.1145/237218.237357

[31] H. Blum, A Transformation for Extracting New Descriptors of Shape. Cambridge:

MIT Press, 1967, pp. 362–380. ISBN 978-0262230261

[32] J.-D. Boissonnat, K.-L. Shi, J. Tournois, and M. Yvinec, “Anisotropic Delaunay

Meshes of Surfaces,” ACM Transactions on Graphics, vol. 34, no. 2, pp. 14:1–14:11,

Mar. 2015, DOI: 10.1145/2721895

[33] H. Borouchaki, P. L. George, F. Hecht, P. Laug, and E. Saltel, “Delaunay mesh

generation governed by metric specifications. Part I. Algorithms,” Finite Elements

in Analysis and Design, vol. 25, no. 1, pp. 61–83, Mar. 1997, DOI: 10.1016/S0168-

874X(96)00057-1

[34] Y. Bourgault, M. Picasso, F. Alauzet, and A. Loseille, “On the use of anisotropic

a posteriori error estimators for the adaptative solution of 3D inviscid compressible

flows,” International Journal for Numerical Methods in Fluids, vol. 59, no. 1, pp.

47–74, 2009, DOI: 10.1002/fld.1797

https://doi.org/10.1145/1137856.1137900
https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1145/2145816.2145840
https://doi.org/10.1145/237218.237357
https://doi.org/10.1145/2721895
https://doi.org/10.1016/S0168-874X(96)00057-1
https://doi.org/10.1016/S0168-874X(96)00057-1
https://doi.org/10.1002/fld.1797

157

[35] A. Bowyer, “Computing Dirichlet tessellations,” The Computer Journal, vol. 24, no. 2,

pp. 162–166, Jan. 1981, DOI: 10.1093/comjnl/24.2.162

[36] B. Bramas, “Increasing the degree of parallelism using speculative execution in task-

based runtime systems,” PeerJ Computer Science, vol. 5, p. e183, Mar. 2019, pub-

lisher: PeerJ Inc. DOI: 10.7717/peerj-cs.183

[37] J. H. Bucklow, R. Fairey, and M. R. Gammon, “An automated workflow for high

quality CFD meshing using the 3D medial object,” in 23rd AIAA Computational

Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics,

2017, DOI: 10.2514/6.2017-3454

[38] W. R. Buell and B. A. Bush, “Mesh Generation - A Survey,” Journal of Engineering

for Industry, vol. 95, no. 1, pp. 332–338, Feb. 1973, DOI: 10.1115/1.3438132

[39] C. Burstedde, L. Wilcox, and O. Ghattas, “p4est: Scalable Algorithms for Paral-

lel Adaptive Mesh Refinement on Forests of Octrees,” SIAM Journal on Scientific

Computing, vol. 33, no. 3, pp. 1103–1133, Jan. 2011, DOI: 10.1137/100791634

[40] J. M. M. Caamaño, A. Sukumaran-Rajam, A. Baloian, M. Selva, and P. Clauss,

“APOLLO: Automatic speculative POLyhedral Loop Optimizer,” in IMPACT 2017 -

7th International Workshop on Polyhedral Compilation Techniques, Stockholm, Swe-

den, Jan. 2017, p. 8.

[41] P. C. Caplan, R. Haimes, D. L. Darmofal, and M. C. Galbraith, “Anisotropic

geometry-conforming d-simplicial meshing via isometric embeddings,” Procedia En-

gineering, vol. 203, pp. 141–153, Jan. 2017, DOI: 10.1016/j.proeng.2017.09.798

[42] J. G. Castaños and J. E. Savage, “Parallel refinement of unstructured meshes,” in

Proc. of IASTED International Conference Parallel and Distributed Computing and

Systems, Boston,MA, 1999.

[43] P. A. Cavallo, N. Sinha, and G. M. Feldman, “Parallel Unstructured Mesh Adaptation

Method for Moving Body Applications,” AIAA Journal, vol. 43, no. 9, pp. 1937–1945,

Sep. 2005, DOI: 10.2514/1.7818

[44] W. M. Chan and J. L. Steger, “Enhancements of a three-dimensional hyperbolic grid

generation scheme,” Applied Mathematics and Computation, vol. 51, no. 2, pp. 181–

205, 1992, DOI: 10.1016/0096-3003(92)90073-A

https://doi.org/10.1093/comjnl/24.2.162
https://doi.org/10.7717/peerj-cs.183
https://doi.org/10.2514/6.2017-3454
https://doi.org/10.1115/1.3438132
https://doi.org/10.1137/100791634
https://doi.org/10.1016/j.proeng.2017.09.798
https://doi.org/10.2514/1.7818
https://doi.org/10.1016/0096-3003(92)90073-A

158

[45] S. Chandra, X. Li, T. Saif, and M. Parashar, “Enabling scalable parallel implemen-

tations of structured adaptive mesh refinement applications,” The Journal of Super-

computing, vol. 39, no. 2, pp. 177–203, Feb. 2007, DOI: 10.1007/s11227-007-0110-z

[46] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in Proceedings of the

Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures,

ser. SPAA ’05. New York, NY, USA: Association for Computing Machinery, 2005,

pp. 21–28. ISBN 1581139861 DOI: 10.1145/1073970.1073974

[47] J. Chen, Z. Xiao, Y. Zheng, J. Zou, D. Zhao, and Y. Yao, “Scalable gener-

ation of large-scale unstructured meshes by a novel domain decomposition ap-

proach,” Advances in Engineering Software, vol. 121, pp. 131–146, Jul. 2018, DOI:

10.1016/j.advengsoft.2018.04.005

[48] A. Chernikov and N. Chrisochoides, “Parallel Guaranteed Quality Delaunay Uniform

Mesh Refinement,” SIAM Journal on Scientific Computing, vol. 28, no. 5, pp. 1907–

1926, Jan. 2006, DOI: 10.1137/050625886

[49] A. Chernikov, C. Antonopoulos, N. Chrisochoides, S. Schneider, and D. Nikolopou-

los, “Experience with Memory Allocators for Parallel Mesh Generation on Multicore

Architectures,” in International Conference on Numerical Grid Generation in Com-

putational Field Simulations, Forth, Crete, Greece, Sep. 2007.

[50] A. N. Chernikov and N. P. Chrisochoides, “Practical and Efficient Point Insertion

Scheduling Method for Parallel Guaranteed Quality Delaunay Refinement,” in Pro-

ceedings of the 18th Annual International Conference on Supercomputing, ser. ICS

’04. New York, NY, USA: ACM, 2004, pp. 48–57. ISBN 1-58113-839-3 DOI:

10.1145/1006209.1006217

[51] A. N. Chernikov and N. P. Chrisochoides, “Parallel 2D Graded Guaranteed Qual-

ity Delaunay Mesh Refinement,” in Proceedings of the 14th International Meshing

Roundtable, B. W. Hanks, Ed. Springer Berlin Heidelberg, 2005, pp. 505–517. ISBN

978-3-540-29090-2 DOI: 10.1007/3-540-29090-7 30

[52] A. N. Chernikov and N. P. Chrisochoides, “Algorithm 872: Parallel 2d constrained

delaunay mesh generation,” ACM Transactions on Mathematical Software, vol. 34,

no. 1, pp. 6:1–6:20, 2008, DOI: 10.1145/1322436.1322442

https://doi.org/10.1007/s11227-007-0110-z
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1016/j.advengsoft.2018.04.005
https://doi.org/10.1137/050625886
https://doi.org/10.1145/1006209.1006217
https://doi.org/10.1007/3-540-29090-7_30
https://doi.org/10.1145/1322436.1322442

159

[53] A. N. Chernikov and N. P. Chrisochoides, “Three-dimensional Delaunay Refinement

for Multi-core Processors,” in Proceedings of the 22nd Annual International Confer-

ence on Supercomputing, ser. ICS ’08. New York, NY, USA: ACM, 2008, pp. 214–224.

ISBN 978-1-60558-158-3 DOI: 10.1145/1375527.1375560

[54] C. Chevalier and F. Pellegrini, “PT-Scotch: A tool for efficient parallel graph

ordering,” Parallel Computing, vol. 34, no. 6, pp. 318–331, Jul. 2008, DOI:

10.1016/j.parco.2007.12.001

[55] L. P. Chew, Nikos Chrisochoides, and F. Sukup, “Parallel constrained Delaunay

meshing,” ASME APPLIED MECHANICS DIVISION-PUBLICATIONS-AMD, vol.

220, pp. 89–96, 1997. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.

8836&rep=rep1&type=pdf (Accessed 2015-05-13).

[56] N. Chrisochoides, K. Barker, D. Nave, and C. Hawblitzel, “Mobile object layer: a

runtime substrate for parallel adaptive and irregular computations,” Advances in

Engineering Software, vol. 31, no. 8-9, pp. 621–637, 2000, DOI: 10.1016/S0965-

9978(00)00032-6

[57] N. Chrisochoides, Numerical Solution of Partial Differential Equations on Parallel

Computers, ser. Lecture Notes in Computational Science and Engineering. Springer-

Verlag, 2006, vol. 51, ch. Parallel Mesh Generation, pp. 237–264, DOI: 10.1007/3-540-

31619-1 7

[58] N. Chrisochoides, E. Houstis, and J. Rice, “Mapping Algorithms and Software Envi-

ronment for Data Parallel PDE Iterative Solvers,” Journal of Parallel and Distributed

Computing, vol. 21, no. 1, pp. 75–95, Apr. 1994, DOI: 10.1006/jpdc.1994.1043

[59] N. Chrisochoides and D. Nave, “Parallel Delaunay mesh generation kernel,” Interna-

tional Journal for Numerical Methods in Engineering, vol. 58, no. 2, pp. 161–176, Sep.

2003, DOI: 10.1002/nme.765

[60] N. Chrisochoides and F. Sukup, “Task Parallel Implementation of the Bowyer-Watson

Algorithm,” in Proceedings of Fifth International Conference on Numerical Grid Gen-

eration in Computational Fluid Dynamics and Related Fields, 1996, pp. 773–782.

[61] N. P. Chrisochoides, “Telescopic Approach for Extreme-Scale Parallel Mesh Genera-

tion for CFD Applications,” in 46th AIAA Fluid Dynamics Conference. American

Institute of Aeronautics and Astronautics, 2016, DOI: 10.2514/6.2016-3181

https://doi.org/10.1145/1375527.1375560
https://doi.org/10.1016/j.parco.2007.12.001
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.8836&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.8836&rep=rep1&type=pdf
https://doi.org/10.1016/S0965-9978(00)00032-6
https://doi.org/10.1016/S0965-9978(00)00032-6
https://doi.org/10.1007/3-540-31619-1_7
https://doi.org/10.1007/3-540-31619-1_7
https://doi.org/10.1006/jpdc.1994.1043
https://doi.org/10.1002/nme.765
https://doi.org/10.2514/6.2016-3181

160

[62] N. P. Chrisochoides, A. Chernikov, T. Kennedy, C. Tsolakis, and K. M. Garner,

“Parallel Data Refinement Layer of a Telescopic Approach for Extreme-scale Parallel

Mesh Generation for CFD Applications,” in 2018 Aviation Technology, Integration,

and Operations Conference. American Institute of Aeronautics and Astronautics,

2018, DOI: 10.2514/6.2018-2887

[63] L. Cirrottola and A. Froehly, “Parallel Unstructured Mesh Adaptation Based on Iter-

ative Remeshing and Repartitioning,” 14th WCCM-ECCOMAS Congress 2020, Mar.

2021, DOI: 10.23967/wccm-eccomas.2020.270

[64] L. Cirrottola and A. Froehly, “Parallel unstructured mesh adaptation using iterative

remeshing and repartitioning,” INRIA Bordeaux, équipe CARDAMOM, Tech. Rep.

RR-9307, Nov. 2019. ttps://hal.inria.fr/hal-02386837

[65] F. Commandeur, J. Velut, and O. Acosta, “A VTK Algorithm for the

Computation of the Hausdorff Distance,” The VTK Journal, p. 839, Sep. 2011.

http://hdl.handle.net/10380/3322 (Accessed 2021-06-29).

[66] M. E. Conway, “A multiprocessor system design,” in Proceedings of the November

12-14, 1963, fall joint computer conference, ser. AFIPS ’63 (Fall). New York, NY,

USA: Association for Computing Machinery, Nov. 1963, pp. 139–146. ISBN 978-1-

4503-7883-3 DOI: 10.1145/1463822.1463838

[67] T. Coupez, H. Digonnet, and R. Ducloux, “Parallel meshing and remeshing,” Applied

Mathematical Modelling, vol. 25, no. 2, pp. 153–175, Dec. 2000, DOI: 10.1016/S0307-

904X(00)00045-7

[68] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,”

in Proceedings of the 1969 24th National Conference, ser. ACM ’69. New York, NY,

USA: ACM, 1969, pp. 157–172, DOI: 10.1145/800195.805928

[69] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory

programming,” IEEE Computational Science and Engineering, vol. 5, no. 1, pp. 46–

55, Jan. 1998, conference Name: IEEE Computational Science and Engineering. DOI:

10.1109/99.660313

https://doi.org/10.2514/6.2018-2887
https://doi.org/10.23967/wccm-eccomas.2020.270
ttps://hal.inria.fr/hal-02386837
http://hdl.handle.net/10380/3322
https://doi.org/10.1145/1463822.1463838
https://doi.org/10.1016/S0307-904X(00)00045-7
https://doi.org/10.1016/S0307-904X(00)00045-7
https://doi.org/10.1145/800195.805928
https://doi.org/10.1109/99.660313

161

[70] C. Dapogny, C. Dobrzynski, and P. Frey, “Three-dimensional adaptive domain

remeshing, implicit domain meshing, and applications to free and moving bound-

ary problems,” Journal of Computational Physics, vol. 262, pp. 358–378, 2014, DOI:

10.1016/j.jcp.2014.01.005

[71] F. Dassi, S. Perotto, H. Si, and T. Streckenbach, “A priori anisotropic mesh adaptation

driven by a higher dimensional embedding,” Computer-Aided Design, vol. 85, pp. 111–

122, 2016, DOI: 10.1016/j.cad.2016.07.012

[72] H. L. de Cougny and M. S. Shephard, “Parallel refinement and coarsening

of tetrahedral meshes,” International Journal for Numerical Methods in Engi-

neering, vol. 46, no. 7, pp. 1101–1125, Nov. 1999, DOI: 10.1002/(SICI)1097-

0207(19991110)46:7¡1101::AID-NME741¿3.0.CO;2-E

[73] H. L. de Cougny and M. S. Shephard, “Parallel volume meshing using face removals

and hierarchical repartitioning,” Computer Methods in Applied Mechanics and Engi-

neering, vol. 174, no. 3, pp. 275–298, May 1999, DOI: 10.1016/S0045-7825(98)00300-4

[74] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek,

“Parallel hypergraph partitioning for scientific computing,” in Proceedings of the

20th International Conference on Parallel and Distributed Processing, ser. IPDPS’06.

IEEE Computer Society, 2006, pp. 124–124. ISBN 978-1-4244-0054-6 Event-place:

Rhodes Island, Greece. DOI: 10.1109/IPDPS.2006.1639359

[75] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco,

J. Faik, J. E. Flaherty, and L. G. Gervasio, “New challenges in dynamic load bal-

ancing,” Applied Numerical Mathematics, vol. 52, no. 2–3, pp. 133–152, 2005, DOI:

10.1016/j.apnum.2004.08.028

[76] H. Digonnet, T. Coupez, P. Laure, and L. Silva, “Massively parallel anisotropic mesh

adaptation,” The International Journal of High Performance Computing Applications,

vol. 33, no. 1, pp. 3–24, Jan. 2019, publisher: SAGE Publications Ltd STM. DOI:

10.1177/1094342017693906

[77] E. W. Dijkstra, “On the role of scientific thought,” in Selected writings on computing:

a personal perspective. Berlin, Heidelberg: Springer-Verlag, 1982, pp. 60–66. ISBN

978-0-387-90652-2

https://doi.org/10.1016/j.jcp.2014.01.005
https://doi.org/10.1016/j.cad.2016.07.012
https://doi.org/10.1002/(SICI)1097-0207(19991110)46:7<1101::AID-NME741>3.0.CO;2-E
https://doi.org/10.1002/(SICI)1097-0207(19991110)46:7<1101::AID-NME741>3.0.CO;2-E
https://doi.org/10.1016/S0045-7825(98)00300-4
https://doi.org/10.1109/IPDPS.2006.1639359
https://doi.org/10.1016/j.apnum.2004.08.028
https://doi.org/10.1177/1094342017693906

162

[78] E. W. Dijkstra, “Shmuel Safra’s Termination Detection Algorithm,” in On a Method

of Multiprogramming, ser. Monographs in Computer Science, W. H. J. Feijen and

A. J. M. van Gasteren, Eds. New York, NY: Springer, 1999, pp. 313–332. ISBN

978-1-4757-3126-2 DOI: 10.1007/978-1-4757-3126-2 29

[79] C. Dobrzynski and P. Frey, “Anisotropic Delaunay Mesh Adaptation for Unsteady

Simulations,” in Proceedings of the 17th International Meshing Roundtable, R. V.

Garimella, Ed. Springer Berlin Heidelberg, 2009, pp. 177–194. ISBN 978-3-540-

87920-6 978-3-540-87921-3

[80] J. Dompierre, Y. Mokwinski, M.-G. Vallet, and F. Guibault, “On ellipse intersec-

tion and union with application to anisotropic mesh adaptation,” Engineering with

Computers, vol. 33, no. 4, pp. 745–766, Oct. 2017, DOI: 10.1007/s00366-017-0533-y

[81] J. J. Dongarra, “Performance of various computers using standard linear equations

software,” ACM SIGARCH Computer Architecture News, vol. 18, no. 1, p. 17, Mar.

1990, DOI: 10.1145/379126.379129

[82] F. Drakopoulos, “Finite Element Modeling Driven by Health Care and Aerospace

Applications,” Ph.D. dissertation, Computer Science, Old Dominion University, Nor-

folk,Virginia, Jul. 2017, ISBN: 9780355362169. DOI: 10.25777/p9kt-9c56

[83] F. Drakopoulos and N. P. Chrisochoides, “Accurate and fast deformable medical im-

age registration for brain tumor resection using image-guided neurosurgery,” Com-

puter Methods in Biomechanics and Biomedical Engineering: Imaging & Visualiza-

tion, vol. 4, no. 2, pp. 112–126, Mar. 2016, DOI: 10.1080/21681163.2015.1067869

[84] F. Drakopoulos, C. Tsolakis, A. Angelopoulos, Y. Liu, C. Yao, K. R. Kavazidi,

N. Foroglou, A. Fedorov, S. Frisken, R. Kikinis, A. Golby, and N. Chriso-

choides, “Adaptive Physics-Based Non-Rigid Registration for Immersive Image-

Guided Neuronavigation Systems,” Frontiers in Digital Health, vol. 2, 2021, DOI:

10.3389/fdgth.2020.613608

[85] F. Drakopoulos, C. Tsolakis, and N. P. Chrisochoides, “Fine-Grained Speculative

Topological Transformation Scheme for Local Reconnection Methods,” AIAA Journal,

vol. 57, no. 9, pp. 4007–4018, Jul. 2019, DOI: 10.2514/1.J057657

[86] A. Fedorov and N. Chrisochoides, “Tetrahedral Mesh Generation for Non-rigid Reg-

istration of Brain MRI: Analysis of the Requirements and Evaluation of Solutions,”

https://doi.org/10.1007/978-1-4757-3126-2_29
https://doi.org/10.1007/s00366-017-0533-y
https://doi.org/10.1145/379126.379129
https://doi.org/10.25777/p9kt-9c56
https://doi.org/10.1080/21681163.2015.1067869
https://doi.org/10.3389/fdgth.2020.613608
https://doi.org/10.2514/1.J057657

163

in Proceedings of the 17th International Meshing Roundtable, R. V. Garimella, Ed.

Springer, 2008, pp. 55–72. ISBN 978-3-540-87921-3 DOI: 10.1007/978-3-540-87921-

3 4

[87] D. Feng, A. N. Chernikov, and N. P. Chrisochoides, “Two-level locality-aware parallel

delaunay image-to-mesh conversion,” Parallel Computing, vol. 59, pp. 60–70, 2016,

DOI: 10.1016/j.parco.2016.01.007

[88] D. Feng, A. N. Chernikov, and N. P. Chrisochoides, “A hybrid parallel

Delaunay image-to-mesh conversion algorithm scalable on distributed-memory

clusters,” Computer-Aided Design, vol. 103, pp. 34–46, Oct. 2018, DOI:

10.1016/j.cad.2017.11.006

[89] D. Feng, C. Tsolakis, A. N. Chernikov, and N. P. Chrisochoides, “Scalable 3D Hybrid

Parallel Delaunay Image-to-mesh Conversion Algorithm for Distributed Shared Mem-

ory Architectures,” Comput. Aided Des., vol. 85, no. C, pp. 10–19, Apr. 2017, DOI:

10.1016/j.cad.2016.07.010

[90] K. J. Fidkowski and D. L. Darmofal, “Review of Output-Based Error Estimation and

Mesh Adaptation in Computational Fluid Dynamics,” AIAA Journal, vol. 49, no. 4,

pp. 673–694, 2011, DOI: 10.2514/1.J050073

[91] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the correct way

to summarize benchmark results,” Communications of the ACM, vol. 29, no. 3, pp.

218–221, Mar. 1986, DOI: 10.1145/5666.5673

[92] P. Foteinos, “Real-Time High-Quality Image to Mesh Conversion for Finite Element

Simulations,” Ph.D. dissertation, The College of William and Mary, United States,

Virginia, 2013. http://search.proquest.com/docview/1532219419

[93] P. Foteinos and N. Chrisochoides, “Dynamic Parallel 3D Delaunay Triangulation,”

in Proceedings of the 20th International Meshing Roundtable, W. R. Quadros,

Ed. Springer Berlin Heidelberg, 2011, pp. 3–20. ISBN 978-3-642-24734-7 DOI:

10.1007/978-3-642-24734-7 1

[94] P. Foteinos and N. Chrisochoides, “4D space–time Delaunay meshing for medical

images,” Engineering with Computers, vol. 31, no. 3, pp. 499–511, Oct. 2014, DOI:

10.1007/s00366-014-0380-z

https://doi.org/10.1007/978-3-540-87921-3_4
https://doi.org/10.1007/978-3-540-87921-3_4
https://doi.org/10.1016/j.parco.2016.01.007
https://doi.org/10.1016/j.cad.2017.11.006
https://doi.org/10.1016/j.cad.2016.07.010
https://doi.org/10.2514/1.J050073
https://doi.org/10.1145/5666.5673
http://search.proquest.com/docview/1532219419
https://doi.org/10.1007/978-3-642-24734-7_1
https://doi.org/10.1007/s00366-014-0380-z

164

[95] P. A. Foteinos and N. P. Chrisochoides, “High quality real-time Image-to-Mesh con-

version for finite element simulations,” Journal of Parallel and Distributed Computing,

vol. 74, no. 2, pp. 2123–2140, Feb. 2014, DOI: 10.1016/j.jpdc.2013.11.002

[96] L. Freitag, M. Jones, and P. Plassmann, “A Parallel Algorithm for Mesh Smoothing,”

SIAM Journal on Scientific Computing, vol. 20, no. 6, pp. 2023–2040, Jan. 1999, DOI:

10.1137/S1064827597323208

[97] L. A. Freitag and C. Ollivier-Gooch, “Tetrahedral mesh improvement using swapping

and smoothing,” International Journal for Numerical Methods in Engineering, vol. 40,

no. 21, pp. 3979–4002, Nov. 1997, DOI: 10.1002/1097-0207

[98] X.-M. Fu, Y. Liu, J. Snyder, and B. Guo, “Anisotropic simplicial meshing using local

convex functions,” ACM Transactions on Graphics, vol. 33, no. 6, pp. 182:1–182:11,

Nov. 2014, DOI: 10.1145/2661229.2661235

[99] F. J. Furrer, Future-Proof Software-Systems: A Sustainable Evolution Strategy.

Springer Vieweg, 2019. ISBN 978-3-658-19937-1 DOI: 10.1007/978-3-658-19938-8

[100] M. C. Galbraith, P. C. Caplan, H. A. Carson, M. A. Park, A. Balan, W. K. Ander-

son, T. Michal, J. A. Krakos, D. S. Kamenetskiy, A. Loseille, F. Alauzet, L. Frazza,

and N. Barral, “Verification of Unstructured Grid Adaptation Components,” AIAA

Journal, vol. 58, no. 9, pp. 3947–3962, 2020, DOI: 10.2514/1.J058783

[101] J. Galtier and P. L. George, “Prepartitioning as a way to mesh subdomains in parallel,”

in Proceedings of the 5th International Meshing Roundtable, Pittsburgh, Pennsylvania,

Oct. 1996, pp. 107–122.

[102] M. Gammon, “A review of common geometry issues affecting mesh generation,” in

2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and

Astronautics, 2018, DOI: 10.2514/6.2018-1402

[103] M. R. Gammon, J. H. Bucklow, R. Fairey, and S. Seebooa, “Flexible 3D medial

partitioning for CFD and FEA meshing,” in AIAA Scitech 2020 Forum. American

Institute of Aeronautics and Astronautics, 2020, DOI: 10.2514/6.2020-0901

https://doi.org/10.1016/j.jpdc.2013.11.002
https://doi.org/10.1137/S1064827597323208
https://doi.org/10.1002/1097-0207
https://doi.org/10.1145/2661229.2661235
https://doi.org/10.1007/978-3-658-19938-8
https://doi.org/10.2514/1.J058783
https://doi.org/10.2514/6.2018-1402
https://doi.org/10.2514/6.2020-0901

165

[104] R. R. Garlapati, G. R. Joldes, A. Wittek, J. Lam, N. Weisenfeld, A. Hans, S. K.

Warfield, R. Kikinis, and K. Miller, “Objective Evaluation of Accuracy of Intra-

Operative Neuroimage Registration,” Computational Biomechanics for Medicine, pp.

87–99, 2013, DOI: 10.1007/978-1-4614-6351-1 9

[105] K. Garner, “Parallelization of the Advancing Front Local Reconnection Mesh Gener-

ation Software Using a Pseudo-Constrained Parallel Data Refinement Method,” Mas-

ter’s thesis, Computer Science, Old Dominion University, 2020, DOI: 10.25777/appr-

3169

[106] K. M. Garner, P. Thomadakis, T. Kennedy, C. Tsolakis, and N. N. Chrisochoides,

“On the End-User Productivity of a Pseudo-Constrained Parallel Data Refinement

Method for the Advancing Front Local Reconnection Mesh Generation Software,” in

AIAA Aviation 2019 Forum. American Institute of Aeronautics and Astronautics,

Jun. 2019, DOI: 10.2514/6.2019-2844

[107] G. Gavalian and N. Chrisochoides, “Next-Generation Imaging Filters and

Mesh-Based Data Representation for Phase-Space Calculations in Nu-

clear Femtography (CNF19-04),” SURA Headquarters Washington DC, Aug.

2019. https://indico.jlab.org/event/335/contributions/5274/attachments/4377/5329/

NuclerFemtography-Aug-2019.pdf (Accessed 2021-07-01).

[108] P. L. George, F. Hecht, and E. Saltel, “Automatic mesh generator with specified

boundary,” Computer Methods in Applied Mechanics and Engineering, vol. 92, no. 3,

pp. 269–288, Nov. 1991, DOI: 10.1016/0045-7825(91)90017-Z

[109] P. L. George, F. Hecht, and M. G. Vallet, “Creation of internal points in Voronoi’s type

method. Control adaptation,” Advances in Engineering Software and Workstations,

vol. 13, no. 5, pp. 303–312, 1991, DOI: 10.1016/0961-3552(91)90034-2

[110] P. L. George, H. Borouchaki, F. Alauzet, P. Laug, A. Loseille, D. Marcum, and

L. Maréchal, “Mesh Generation and Mesh Adaptivity: Theory and Techniques,” in

Encyclopedia of Computational Mechanics Second Edition. Wiley, 2017, pp. 1–51.

ISBN 978-1-119-17681-7 DOI: 10.1002/9781119176817.ecm2012

[111] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with

built-in pre- and post-processing facilities,” International Journal for Numerical Meth-

ods in Engineering, vol. 79, no. 11, pp. 1309–1331, 2009, DOI: 10.1002/nme.2579

https://doi.org/10.1007/978-1-4614-6351-1_9
https://doi.org/10.25777/appr-3169
https://doi.org/10.25777/appr-3169
https://doi.org/10.2514/6.2019-2844
https://indico.jlab.org/event/335/contributions/5274/attachments/4377/5329/NuclerFemtography-Aug-2019.pdf
https://indico.jlab.org/event/335/contributions/5274/attachments/4377/5329/NuclerFemtography-Aug-2019.pdf
https://doi.org/10.1016/0045-7825(91)90017-Z
https://doi.org/10.1016/0961-3552(91)90034-2
https://doi.org/10.1002/9781119176817.ecm2012
https://doi.org/10.1002/nme.2579

166

[112] G. J. Gorman, J. Southern, P. E. Farrell, M. D. Piggott, G. Rokos, and P. H. J. Kelly,

“Hybrid OpenMP/MPI Anisotropic Mesh Smoothing,” Procedia Computer Science,

vol. 9, pp. 1513–1522, Jan. 2012, DOI: 10.1016/j.procs.2012.04.166

[113] G. J. Gorman, “PRAgMaTIc GitHub website,” https://meshadaptation.github.io,

2021, (Accessed 2021-05-21).

[114] G. J. Gorman, G. Rokos, J. Southern, and P. H. J. Kelly, “Thread-Parallel Anisotropic

Mesh Adaptation,” in New Challenges in Grid Generation and Adaptivity for Scientific

Computing, ser. SEMA SIMAI Springer Series. Springer, Cham, 2015, pp. 113–137.

ISBN 978-3-319-06053-8 DOI: 10.1007/978-3-319-06053-8 6

[115] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to parallel computing,

2nd ed. Harlow, England ; New York: Addison-Wesley, 2003. ISBN 0-201-64865-2

[116] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[117] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol. 31,

no. 5, pp. 532–533, May 1988, DOI: 10.1145/42411.42415

[118] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M.-G.

Vallet, “Anisotropic mesh adaptation: towards user-independent, mesh-independent

and solver-independent CFD. Part I: general principles,” International Journal for Nu-

merical Methods in Fluids, vol. 32, no. 6, pp. 725–744, 2000, DOI: 10.1002/(SICI)1097-

0363(20000330)32:6¡725::AID-FLD935¿3.0.CO;2-4

[119] R. Haimes and J. Dannenhoffer, “The Engineering Sketch Pad: A Solid-Modeling,

Feature-Based, Web-Enabled System for Building Parametric Geometry,” in 21st

AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics

and Astronautics, 2013, DOI: 10.2514/6.2013-3073

[120] R. Haimes and J. F. Dannenhoffer, III, “EGADSlite: A Lightweight Geometry Ker-

nel for HPC,” in 2018 AIAA Aerospace Sciences Meeting. American Institute of

Aeronautics and Astronautics, 2018, DOI: 10.2514/6.2018-1401

[121] R. Haimes and M. Drela, “On the construction of aircraft conceptual geometry for

high-fidelity analysis and design,” in 50th AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, 2012, DOI: 10.2514/6.2012-683

https://doi.org/10.1016/j.procs.2012.04.166
https://meshadaptation.github.io
https://doi.org/10.1007/978-3-319-06053-8_6
https://doi.org/10.1145/42411.42415
https://doi.org/10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
https://doi.org/10.2514/6.2013-3073
https://doi.org/10.2514/6.2018-1401
https://doi.org/10.2514/6.2012-683

167

[122] R. Hartmann, J. Held, T. Leicht, and F. Prill, “Error Estimation and Adaptive Mesh

Refinement for Aerodynamic Flows,” in ADIGMA - A European Initiative on the De-

velopment of Adaptive Higher-Order Variational Methods for Aerospace Applications,

ser. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, N. Kroll,

H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sørensen, Eds. Berlin,

Heidelberg: Springer, 2010, pp. 339–353. ISBN 978-3-642-03707-8 DOI: 10.1007/978-

3-642-03707-8 24

[123] B. Hendrickson and R. Leland, “The chaco users guide. version 1.0,” Sandia National

Labs., Albuquerque, NM (United States), Tech. Rep., 1993.

[124] S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online Learning: A Comprehensive

Survey,” arXiv:1802.02871 [cs], Oct. 2018, arXiv: 1802.02871.

[125] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. USA: Cambridge University

Press, 2012. ISBN 0521548233

[126] G. Houzeaux, R. de la Cruz, H. Owen, and M. Vázquez, “Parallel uniform mesh

multiplication applied to a Navier–Stokes solver,” Computers & Fluids, vol. 80, pp.

142–151, Jul. 2013, DOI: 10.1016/j.compfluid.2012.04.017

[127] T. Hsieh, “An investigation of separated flow about a hemisphere-cylinder at incidence

in the Mach number range from 0.6 to 1.5,” in 15th Aerospace Sciences Meeting.

American Institute of Aeronautics and Astronautics, 1977, DOI: 10.2514/6.1977-179

[128] D. Ibanez and M. Shephard, “Mesh adaptation for moving objects on shared memory

hardware,” in 25th International Meshing Roundtable, 2016, Research Note.

[129] D. Ibanez, N. Barral, J. Krakos, A. Loseille, T. Michal, and M. Park, “First benchmark

of the Unstructured Grid Adaptation Working Group,” Procedia Engineering, vol. 203,

pp. 154–166, Jan. 2017, DOI: 10.1016/j.proeng.2017.09.800

[130] D. A. Ibanez, “Conformal mesh adaptation on heterogeneous supercomputers,” Ph.D.

dissertation, Rensselaer Polytechnic Institute, Troy, New York, 2016.

[131] T. Ito, Y. Yokokawa, H. Ura, H. Kato, K. Mitsuo, and K. Yamamoto, “High-Lift De-

vice Testing in JAXA 6.5M X 5.5M Low-Speed Wind Tunnel,” in 25th AIAA Aerody-

namic Measurement Technology and Ground Testing Conference, ser. Fluid Dynamics

https://doi.org/10.1007/978-3-642-03707-8_24
https://doi.org/10.1007/978-3-642-03707-8_24
https://doi.org/10.1016/j.compfluid.2012.04.017
https://doi.org/10.2514/6.1977-179
https://doi.org/10.1016/j.proeng.2017.09.800

168

and Co-located Conferences. American Institute of Aeronautics and Astronautics,

Jun. 2006, DOI: 10.2514/6.2006-3643

[132] Y. Ito, A. M. Shih, A. K. Erukala, B. K. Soni, A. Chernikov, N. P. Chrisochoides, and

K. Nakahashi, “Parallel unstructured mesh generation by an advancing front method,”

Mathematics and Computers in Simulation, vol. 75, no. 5-6, pp. 200–209, Sep. 2007,

DOI: 10.1016/j.matcom.2006.12.008

[133] E. G. Ivanov, H. Andrä, and A. N. Kudryavtsev, “Domain Decomposition Approach

for Automatic Parallel Generation of 3D Unstructured Grids,” in ECCOMAS

CFD 2006: Proceedings of the European Conference on Computational Fluid Dy-

namics, 2006. http://resolver.tudelft.nl/uuid:076b639d-2296-4d4e-91e7-ac7069951eed

(Accessed 2021-05-21).

[134] F. J. Bossen and P. Heckbert, “A Pliant Method for Anisotropic Mesh Generation,”

in Proceedings of the 5th International Meshing Roundtable, Oct. 1998, pp. 63–74.

[135] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming Languages and

Systems, vol. 7, no. 3, pp. 404–425, Jul. 1985, DOI: 10.1145/3916.3988

[136] A. A. Johnson and S. K. Aliabadi, “Application of automatic mesh generation and

mesh multiplication techniques to very large scale free-surface flow simulations,” in

Proceedings of the 7th international conference on numerical grid generation in com-

putational field simulations, Whistler (Canada), Sep. 2000.

[137] M. T. Jones and P. E. Plassmann, “Computational results for parallel unstructured

mesh computations,” Computing Systems in Engineering, vol. 5, no. 4, pp. 297–309,

Aug. 1994, DOI: 10.1016/0956-0521(94)90013-2

[138] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Parti-

tioning Irregular Graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, Dec.

1998, DOI: 10.1137/S1064827595287997

[139] L. G. Khachiyan, “Rounding of Polytopes in the Real Number Model of

Computation,” Mathematics of Operations Research, vol. 21, no. 2, pp. 307–320,

1996. https://www.jstor.org/stable/3690235 (Accessed 2020-01-31).

[140] B. M. Klingner, “Improving tetrahedral meshes,” Ph.D. dissertation, University of

California, Berkeley, California, United States, 2008.

https://doi.org/10.2514/6.2006-3643
https://doi.org/10.1016/j.matcom.2006.12.008
http://resolver.tudelft.nl/uuid:076b639d-2296-4d4e-91e7-ac7069951eed
https://doi.org/10.1145/3916.3988
https://doi.org/10.1016/0956-0521(94)90013-2
https://doi.org/10.1137/S1064827595287997
https://www.jstor.org/stable/3690235

169

[141] J. Kohout, I. Kolingerová, and J. Žára, “Parallel Delaunay triangulation in E2 and E3

for computers with shared memory,” Parallel Computing, vol. 31, no. 5, pp. 491–522,

May 2005, DOI: 10.1016/j.parco.2005.02.010

[142] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew,

“Optimistic parallelism requires abstractions,” in Proceedings of the 28th ACM SIG-

PLAN Conference on Programming Language Design and Implementation, ser. PLDI

’07. New York, NY, USA: Association for Computing Machinery, Jun. 2007, pp.

211–222. ISBN 978-1-59593-633-2 DOI: 10.1145/1250734.1250759

[143] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency control,”

ACM Transactions on Database Systems, vol. 6, no. 2, pp. 213–226, Jun. 1981, DOI:

10.1145/319566.319567

[144] F. Labelle and J. R. Shewchuk, “Anisotropic Voronoi Diagrams and Guaranteed-

Quality Anisotropic Mesh Generation,” in in SCG ’03: Proceedings of the nineteenth

annual symposium on Computational geometry. ACM Press, 2003, pp. 191–200.

[145] B. G. Larwood, N. P. Weatherill, O. Hassan, and K. Morgan, “Domain decompo-

sition approach for parallel unstructured mesh generation,” International Journal

for Numerical Methods in Engineering, vol. 58, no. 2, pp. 177–188, Sep. 2003, DOI:

10.1002/nme.769

[146] C. L. Lawson, “Software for C1 Surface Interpolation,” in Mathematical Software,

J. R. Rice, Ed. Academic Press, Jan. 1977, pp. 161–194. ISBN 978-0-12-587260-7

DOI: 10.1016/B978-0-12-587260-7.50011-X

[147] G. Leibon and D. Letscher, “Delaunay Triangulations and Voronoi Diagrams for Rie-

mannian Manifolds,” in Proceedings of the Sixteenth Annual Symposium on Compu-

tational Geometry, ser. SCG ’00. New York, NY, USA: ACM, 2000, pp. 341–349.

ISBN 1-58113-224-7 DOI: 10.1145/336154.336221

[148] T. Leicht and R. Hartmann, “Error estimation and anisotropic mesh refinement for

3D laminar aerodynamic flow simulations,” Journal of Computational Physics, vol.

229, no. 19, pp. 7344–7360, Sep. 2010, DOI: 10.1016/j.jcp.2010.06.019

[149] B. Lévy and N. Bonneel, “Variational Anisotropic Surface Meshing with Voronoi Paral-

lel Linear Enumeration,” in Proceedings of the 21st International Meshing Roundtable,

https://doi.org/10.1016/j.parco.2005.02.010
https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1145/319566.319567
https://doi.org/10.1002/nme.769
https://doi.org/10.1016/B978-0-12-587260-7.50011-X
https://doi.org/10.1145/336154.336221
https://doi.org/10.1016/j.jcp.2010.06.019

170

X. Jiao and J.-C. Weill, Eds. Springer Berlin Heidelberg, 2013, pp. 349–366. ISBN

978-3-642-33573-0 DOI: 10.1007/978-3-642-33573-0 21

[150] K. Li, “Performance Analysis of Power-Aware Task Scheduling Algorithms on Mul-

tiprocessor Computers with Dynamic Voltage and Speed,” IEEE Transactions on

Parallel and Distributed Systems, vol. 19, no. 11, pp. 1484–1497, Nov. 2008, DOI:

10.1109/TPDS.2008.122

[151] L. Linardakis and N. Chrisochoides, “Delaunay Decoupling Method for Parallel Guar-

anteed Quality Planar Mesh Refinement,” SIAM J. Sci. Comput., vol. 27, no. 4, pp.

1394–1423, Jan. 2006, DOI: 10.1137/030602812

[152] L. Linardakis and N. Chrisochoides, “Algorithm 870: A Static Geometric Medial Axis

Domain Decomposition in 2d Euclidean Space,” ACM Transactions on Mathematical

Software, vol. 34, no. 1, pp. 4:1–4:28, Jan. 2008, DOI: 10.1145/1322436.1322440

[153] K. Lipnikov and Y. Vassilevski, “An adaptive algorithm for quasioptimal mesh gen-

eration,” Computational Mathematics and Mathematical Physics, vol. 39, no. 9, pp.

1468–1486, 1999.

[154] A. Liu and B. Joe, “Relationship between tetrahedron shape measures,” BIT Numer-

ical Mathematics, vol. 34, no. 2, pp. 268–287, Jun. 1994, DOI: 10.1007/BF01955874

[155] S. H. Lo, “3D Delaunay triangulation of 1 billion points on a PC,” Finite

Elements in Analysis and Design, vol. 102–103, pp. 65–73, Oct. 2015, DOI:

10.1016/j.finel.2015.05.003

[156] R. Löhner, “A parallel advancing front grid generation scheme,” International Journal

for Numerical Methods in Engineering, vol. 51, no. 6, pp. 663–678, Jun. 2001, DOI:

10.1002/nme.175

[157] R. Löhner, “Recent Advances in Parallel Advancing Front Grid Generation,” Archives

of Computational Methods in Engineering, vol. 21, no. 2, pp. 127–140, Jun. 2014, DOI:

10.1007/s11831-014-9098-8

[158] A. Loseille, “Unstructured mesh generation and adaptation,” in Handbook of Numer-

ical Methods for Hyperbolic Problems: Applied and Modern Issues, ser. Handbook of

Numerical Analysis, R. Abgrall and C.-W. Shu, Eds. Elsevier, 2017, vol. 18, pp.

263–302, DOI: 10.1016/bs.hna.2016.10.004

https://doi.org/10.1007/978-3-642-33573-0_21
https://doi.org/10.1109/TPDS.2008.122
https://doi.org/10.1137/030602812
https://doi.org/10.1145/1322436.1322440
https://doi.org/10.1007/BF01955874
https://doi.org/10.1016/j.finel.2015.05.003
https://doi.org/10.1002/nme.175
https://doi.org/10.1007/s11831-014-9098-8
https://doi.org/10.1016/bs.hna.2016.10.004

171

[159] A. Loseille, F. Alauzet, and V. Menier, “Unique cavity-based operator and hierarchical

domain partitioning for fast parallel generation of anisotropic meshes,” Computer-

Aided Design, vol. 85, pp. 53–67, Apr. 2017, DOI: 10.1016/j.cad.2016.09.008

[160] A. Loseille, “Metric-orthogonal Anisotropic Mesh Generation,” Procedia Engineering,

vol. 82, no. Supplement C, pp. 403–415, Jan. 2014, DOI: 10.1016/j.proeng.2014.10.400

[161] A. Loseille, A. Dervieux, P. Frey, and F. Alauzet, “Achievement of Global Second Or-

der Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes,”

in 18th AIAA Computational Fluid Dynamics Conference. American Institute of

Aeronautics and Astronautics, Jun. 2007, DOI: 10.2514/6.2007-4186

[162] A. Loseille and R. Lohner, “Anisotropic Adaptive Simulations in Aerodynamics,”

in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and

Aerospace Exposition. American Institute of Aeronautics and Astronautics, 2010,

DOI: 10.2514/6.2010-169

[163] A. Loseille and R. Löhner, “Robust Boundary Layer Mesh Generation,” in Proceedings

of the 21st International Meshing Roundtable, X. Jiao and J.-C. Weill, Eds. Springer

Berlin Heidelberg, 2013, pp. 493–511. ISBN 978-3-642-33573-0 DOI: 10.1007/978-3-

642-33573-0 29

[164] A. Loseille and V. Menier, “Serial and Parallel Mesh Modification Through a

Unique Cavity-Based Primitive,” in Proceedings of the 22nd International Meshing

Roundtable, J. Sarrate and M. Staten, Eds. Springer International Publishing, 2014,

pp. 541–558. ISBN 978-3-319-02335-9 DOI: 10.1007/978-3-319-02335-9 30

[165] A. Loseille, V. Menier, and F. Alauzet, “Parallel generation of large-size adapted

meshes,” in Procedia Engineering, ser. 24th International Meshing Roundtable,

vol. 124. Sandia National Laboratories, 2015, pp. 57–69. ISSN 1877-7058 DOI:

10.1016/j.proeng.2015.10.122

[166] A. Loseille and F. Alauzet, “Continuous Mesh Framework Part I: Well-Posed Contin-

uous Interpolation Error,” SIAM Journal on Numerical Analysis, vol. 49, no. 1, pp.

38–60, 2011, DOI: 10.1137/090754078

[167] A. Loseille and F. Alauzet, “Continuous Mesh Framework Part II: Validations and

Applications,” SIAM Journal on Numerical Analysis, vol. 49, no. 1, pp. 61–86, Jan.

2011, DOI: 10.1137/10078654X

https://doi.org/10.1016/j.cad.2016.09.008
https://doi.org/10.1016/j.proeng.2014.10.400
https://doi.org/10.2514/6.2007-4186
https://doi.org/10.2514/6.2010-169
https://doi.org/10.1007/978-3-642-33573-0_29
https://doi.org/10.1007/978-3-642-33573-0_29
https://doi.org/10.1007/978-3-319-02335-9_30
https://doi.org/10.1016/j.proeng.2015.10.122
https://doi.org/10.1137/090754078
https://doi.org/10.1137/10078654X

172

[168] M. Luby, “A simple parallel algorithm for the maximal independent set prob-

lem,” SIAM Journal on Computing, vol. 15, no. 4, pp. 1036–1053, 1986, DOI:

10.1137/0215074

[169] B. Lévy, “Robustness and efficiency of geometric programs: The Predicate Con-

struction Kit (PCK),” Computer-Aided Design, vol. 72, pp. 3–12, 2016, DOI:

10.1016/j.cad.2015.10.004

[170] D. Marcum and F. Alauzet, “Aligned Metric-based Anisotropic Solution Adap-

tive Mesh Generation,” Procedia Engineering, vol. 82, pp. 428–444, 2014, DOI:

10.1016/j.proeng.2014.10.402

[171] D. L. Marcum and F. Alauzet, “Unstructured Mesh Generation Using Advancing Lay-

ers and Metric-Based Transition for Viscous Flowfields,” in 21st AIAA Computational

Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics,

2013, DOI: 10.2514/6.2013-2710

[172] D. L. Marcum and F. Alauzet, “Unstructured Mesh Generation Using Advancing Lay-

ers and Metric-Based Transition for Viscous Flowfields,” in 21st AIAA Computational

Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics,

2013, DOI: 10.2514/6.2013-2710

[173] D. L. Marcum and N. P. Weatherill, “Unstructured grid generation using iterative

point insertion and local reconnection,” AIAA Journal, vol. 33, no. 9, pp. 1619–1625,

1995, DOI: 10.2514/3.12701

[174] L. Maréchal, “An easy way to access files in Gamma Mesh Format, the libMeshb

library,” https://github.com/LoicMarechal/libMeshb, 2021, (Accessed 2021-05-21).

[175] C. Marot, “Parallel tetrahedral mesh generation,” Ph.D. dissertation, UCL -

Université Catholique de Louvain, Belgium, 2020. http://hdl.handle.net/2078.1/

240626

[176] C. Marot, J. Pellerin, and J.-F. Remacle, “One machine, one minute, three billion

tetrahedra,” International Journal for Numerical Methods in Engineering, vol. 117,

no. 9, pp. 967–990, Mar. 2019, DOI: 10.1002/nme.5987

https://doi.org/10.1137/0215074
https://doi.org/10.1016/j.cad.2015.10.004
https://doi.org/10.1016/j.proeng.2014.10.402
https://doi.org/10.2514/6.2013-2710
https://doi.org/10.2514/6.2013-2710
https://doi.org/10.2514/3.12701
https://github.com/LoicMarechal/libMeshb
http://hdl.handle.net/2078.1/240626
http://hdl.handle.net/2078.1/240626
https://doi.org/10.1002/nme.5987

173

[177] D. J. Mavriplis, “Adaptive mesh generation for viscous flows using triangulation,”

Journal of Computational Physics, vol. 90, no. 2, pp. 271–291, Oct. 1990, DOI:

10.1016/0021-9991(90)90167-Y

[178] H. W. Meuer, “The TOP500 Project: Looking Back Over 15 Years of Supercomput-

ing Experience,” Informatik-Spektrum, vol. 31, no. 3, pp. 203–222, Jun. 2008, DOI:

10.1007/s00287-008-0240-6

[179] J. C. Meyer, “Implementation of an Energy-Aware OmpSs Task Scheduling Policy,”

Zenodo, Tech. Rep., Jul. 2013, DOI: 10.5281/zenodo.832011

[180] T. Michal, D. Babcock, D. Kamenetskiy, J. Krakos, M. Mani, R. Glasby, T. Erwin,

and D. L. Stefanski, “Comparison of Fixed and Adaptive Unstructured Grid Results

for Drag Prediction Workshop 6,” Journal of Aircraft, pp. 1–13, Dec. 2017, DOI:

10.2514/1.C034491

[181] T. Michal and J. Krakos, “Anisotropic Mesh Adaptation Through Edge Primitive

Operations,” in 50th AIAA Aerospace Sciences Meeting Including the New Horizons

Forum and Aerospace Exposition. American Institute of Aeronautics and Astronau-

tics, 2012, DOI: 10.2514/6.2012-159

[182] T. R. Michal, D. S. Kamenetskiy, and J. Krakos, “Anisotropic Adaptive Mesh Results

for the Third High Lift Prediction Workshop (HiLiftPW-3),” in 2018 AIAA Aerospace

Sciences Meeting. American Institute of Aeronautics and Astronautics, 2018, DOI:

10.2514/6.2018-1257

[183] Mmg Developers, “Mmg Github,” https://github.com/MmgTools/Mmg, Mar. 2021,

(Accessed 2021-05-19).

[184] Mmg Developers, “ParMmg Github,” https://github.com/MmgTools/ParMmg, Mar.

2021, (Accessed 2021-05-19).

[185] L. Mukhanov, D. S. Nikolopoulos, and B. R. De Supinski, “ALEA: Fine-Grain Energy

Profiling with Basic Block Sampling,” in 2015 International Conference on Parallel

Architecture and Compilation (PACT), Oct. 2015, pp. 87–98, iSSN: 1089-795X. DOI:

10.1109/PACT.2015.16

[186] J. Nash, “C1 Isometric Imbeddings,” Annals of Mathematics, vol. 60, no. 3, pp. 383–

396, 1954, DOI: 10.2307/1969840

https://doi.org/10.1016/0021-9991(90)90167-Y
https://doi.org/10.1007/s00287-008-0240-6
https://doi.org/10.5281/zenodo.832011
https://doi.org/10.2514/1.C034491
https://doi.org/10.2514/6.2012-159
https://doi.org/10.2514/6.2018-1257
https://github.com/MmgTools/Mmg
https://github.com/MmgTools/ParMmg
https://doi.org/10.1109/PACT.2015.16
https://doi.org/10.2307/1969840

174

[187] D. Nave, N. Chrisochoides, and L. P. Chew, “Guaranteed: Quality Parallel Delaunay

Refinement for Restricted Polyhedral Domains,” in Proceedings of the Eighteenth An-

nual Symposium on Computational Geometry, ser. SCG ’02. New York, NY, USA:

ACM, 2002, pp. 135–144. ISBN 1-58113-504-1 DOI: 10.1145/513400.513418

[188] D. Nave, N. Chrisochoides, and L. P. Chew, “Guaranteed-quality parallel Delaunay

refinement for restricted polyhedral domains,” Computational Geometry, vol. 28, no.

2–3, pp. 191–215, Jun. 2004, DOI: 10.1016/j.comgeo.2004.03.009

[189] Y.-W. Ning, P. Suprobo, G. D. Jeong, and E. C. Ting, “A regional mixed refinement

procedure for finite element mesh design,” Finite Elements in Analysis and Design,

vol. 13, no. 4, pp. 299–318, 1993, DOI: 10.1016/0168-874X(93)90046-S

[190] H. Nishikawa and B. Diskin, “Customized Grid Generation Codes for Benchmark

Three-Dimensional Flows,” in 2018 AIAA Aerospace Sciences Meeting, ser. AIAA

SciTech Forum. American Institute of Aeronautics and Astronautics, Jan. 2018,

DOI: 10.2514/6.2018-1101

[191] M. O’Connell, C. Druyor, K. B. Thompson, K. Jacobson, W. K. Anderson, E. J.

Nielsen, J.-R. Carlson, M. A. Park, W. T. Jones, R. Biedron, E. M. Lee-Rausch,

and B. Kleb, “Application of the Dependency Inversion Principle to Multidisciplinary

Software Development,” in 2018 Fluid Dynamics Conference. American Institute of

Aeronautics and Astronautics, Jun. 2018, DOI: 10.2514/6.2018-3856

[192] T. Okusanya and J. Peraire, “3D Parallel Unstructured Mesh Generation,” in Trends

in Unstructured Mesh Generation, ser. AMD (Series). Evaston, Illinois: American

Society of Mechanical Engineers, 1997, vol. 220, pp. 109–115.

[193] L. Oliker, R. Biswas, and H. N. Gabow, “Parallel tetrahedral mesh adaptation with

dynamic load balancing,” Parallel Computing, vol. 26, no. 12, pp. 1583–1608, Nov.

2000, DOI: 10.1016/S0167-8191(00)00047-8

[194] C. F. Ollivier Gooch, “Generation of Exascale Meshes by Subdivision of Coarse

Meshes,” in AIAA Scitech 2020 Forum, ser. AIAA SciTech Forum. American In-

stitute of Aeronautics and Astronautics, Jan. 2020, DOI: 10.2514/6.2020-1404

[195] S. J. Owen, M. L. Staten, and M. C. Sorensen, “Parallel Hex Meshing from Vol-

ume Fractions,” in Proceedings of the 20th International Meshing Roundtable, W. R.

https://doi.org/10.1145/513400.513418
https://doi.org/10.1016/j.comgeo.2004.03.009
https://doi.org/10.1016/0168-874X(93)90046-S
https://doi.org/10.2514/6.2018-1101
https://doi.org/10.2514/6.2018-3856
https://doi.org/10.1016/S0167-8191(00)00047-8
https://doi.org/10.2514/6.2020-1404

175

Quadros, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 161–178.

ISBN 978-3-642-24734-7 DOI: 10.1007/978-3-642-24734-7 9

[196] D. Panozzo, E. Puppo, M. Tarini, and O. Sorkine-Hornung, “Frame fields: anisotropic

and non-orthogonal cross fields,” ACM Transactions on Graphics, vol. 33, no. 4, pp.

134:1–134:11, Jul. 2014, DOI: 10.1145/2601097.2601179

[197] M. Park and D. Darmofal, “Parallel Anisotropic Tetrahedral Adaptation,” in 46th

AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics

and Astronautics, 2008, DOI: 10.2514/6.2008-917

[198] M. A. Park, “refine : grid adaptation framework,” https://github.com/nasa/refine,

(Accessed 2021-01-07).

[199] M. A. Park, A. Balan, W. K. Anderson, M. C. Galbraith, P. C. Caplan, H. A. Carson,

T. Michal, J. A. Krakos, D. S. Kamenetskiy, A. Loseille, F. Alauzet, L. Frazza, and

N. Barral, “Verification of unstructured grid adaptation components,” in AIAA Scitech

2019 Forum, 2019, DOI: 10.2514/6.2019-1723

[200] M. A. Park, A. Balan, F. Clerici, F. Alauzet, A. Loseille, D. S. Kamenetskiy, J. A.

Krakos, T. R. Michal, and M. C. Galbraith, “Verification of Viscous Goal-Based

Anisotropic Mesh Adaptation,” in AIAA Scitech 2021 Forum. American Institute of

Aeronautics and Astronautics, 2021, DOI: 10.2514/6.2021-1362

[201] M. A. Park, N. Barral, D. Ibanez, D. S. Kamenetskiy, J. A. Krakos, T. R. Michal,

and A. Loseille, “Unstructured Grid Adaptation and Solver Technology for Turbulent

Flows,” in 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics

and Astronautics, 2018, DOI: 10.2514/6.2018-1103

[202] M. A. Park, W. L. Kleb, W. T. Jones, J. A. Krakos, T. R. Michal, A. Loseille,

R. Haimes, and J. Dannenhoffer, “Geometry Modeling for Unstructured Mesh Adap-

tation,” in AIAA Aviation 2019 Forum, ser. AIAA AVIATION Forum. American

Institute of Aeronautics and Astronautics, Jun. 2019, DOI: 10.2514/6.2019-2946

[203] M. A. Park, J. A. Krakos, T. Michal, A. Loseille, and J. J. Alonso, “Unstructured

grid adaptation: Status, potential impacts, and recommended investments toward

CFD vision 2030,” in 46th AIAA Fluid Dynamics Conference. American Institute of

Aeronautics and Astronautics, 2016, DOI: 10.2514/6.2016-3323

https://doi.org/10.1007/978-3-642-24734-7_9
https://doi.org/10.1145/2601097.2601179
https://doi.org/10.2514/6.2008-917
https://github.com/nasa/refine
https://doi.org/10.2514/6.2019-1723
https://doi.org/10.2514/6.2021-1362
https://doi.org/10.2514/6.2018-1103
https://doi.org/10.2514/6.2019-2946
https://doi.org/10.2514/6.2016-3323

176

[204] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz, “Adaptive remeshing for

compressible flow computations,” Journal of Computational Physics, vol. 72, no. 2,

pp. 449–466, Oct. 1987, DOI: 10.1016/0021-9991(87)90093-3

[205] M. Perdigão do Carmo, Differential Geometry of Curves and Surfaces. Prentice-Hall,

Inc., 1976. ISBN 0132125897

[206] J. R. Pilkington and S. B. Baden, “Dynamic Partitioning of Non-Uniform Structured

Workloads with Spacefilling Curves,” IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 3,

pp. 288–300, Mar. 1996, DOI: 10.1109/71.491582

[207] S. Pirzadeh, “Recent progress in unstructured grid generation,” in 30th Aerospace

Sciences Meeting and Exhibit. Reno, NV, U.S.A.: American Institute of Aeronautics

and Astronautics, Jan. 1992, DOI: 10.2514/6.1992-445

[208] S. Pirzadeh, “Three-dimensional unstructured viscous grids by the advancing-layers

method,” AIAA Journal, vol. 34, no. 1, pp. 43–49, 1996, DOI: 10.2514/3.13019

[209] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August, “Specula-

tive parallelization using software multi-threaded transactions,” in Proceedings of

the fifteenth International Conference on Architectural support for programming lan-

guages and operating systems, ser. ASPLOS XV. New York, NY, USA: Associa-

tion for Computing Machinery, Mar. 2010, pp. 65–76. ISBN 978-1-60558-839-1 DOI:

10.1145/1736020.1736030

[210] L. Rauchwerger and D. Padua, “The LRPD test: speculative run-time parallelization

of loops with privatization and reduction parallelization,” ACM SIGPLAN Notices,

vol. 30, no. 6, pp. 218–232, Jun. 1995, DOI: 10.1145/223428.207148

[211] J.-F. c. Remacle, “A two-level multithreaded Delaunay kernel,” Computer-Aided De-

sign, vol. 85, pp. 2–9, Apr. 2017, DOI: 10.1016/j.cad.2016.07.018

[212] J.-F. c. Remacle, V. Bertrand, and C. Geuzaine, “A Two-Level Multithreaded

Delaunay Kernel,” Procedia Engineering, vol. 124, pp. 6–17, Jan. 2015, DOI:

10.1016/j.proeng.2015.10.118

[213] D. Q. Ren, E. Bracken, S. Polstyanko, N. Lambert, R. Suda, and D. D. Giannacopu-

los, “Power Aware Parallel 3-D Finite Element Mesh Refinement Performance Mod-

eling and Analysis With CUDA/MPI on GPU and Multi-Core Architecture,” IEEE

https://doi.org/10.1016/0021-9991(87)90093-3
https://doi.org/10.1109/71.491582
https://doi.org/10.2514/6.1992-445
https://doi.org/10.2514/3.13019
https://doi.org/10.1145/1736020.1736030
https://doi.org/10.1145/223428.207148
https://doi.org/10.1016/j.cad.2016.07.018
https://doi.org/10.1016/j.proeng.2015.10.118

177

Transactions on Magnetics, vol. 48, no. 2, pp. 335–338, Feb. 2012, DOI: 10.1109/T-

MAG.2011.2177814

[214] M.-C. Rivara, “Lepp-bisection algorithms, applications and mathematical proper-

ties,” Applied Numerical Mathematics, vol. 59, no. 9, pp. 2218–2235, Sep. 2009, DOI:

10.1016/j.apnum.2008.12.011

[215] M.-C. Rivara, C. Calderon, A. Fedorov, and N. Chrisochoides, “Parallel decoupled

terminal-edge bisection method for 3D mesh generation,” Engineering with Comput-

ers, vol. 22, no. 2, pp. 111–119, May 2006, DOI: 10.1007/s00366-006-0013-2

[216] P. J. Roache, “Perspective: A Method for Uniform Reporting of Grid Refinement

Studies,” Journal of Fluids Engineering, vol. 116, no. 3, pp. 405–413, Sep. 1994, DOI:

10.1115/1.2910291

[217] P. A. Rodriguez and M.-C. Rivara, “Multithread Lepp-Bisection Algorithm for Tetra-

hedral Meshes,” in Proceedings of the 22nd International Meshing Roundtable, J. Sar-

rate and M. Staten, Eds. Springer International Publishing, 2014, pp. 525–540. ISBN

978-3-319-02335-9 DOI: 10.1007/978-3-319-02335-9 29

[218] C. L. Rumsey, J. P. Slotnick, and A. J. Sclafani, “Overview and Summary of the

Third AIAA High Lift Prediction Workshop,” Journal of Aircraft, vol. 56, no. 2, pp.

621–644, Dec. 2018, DOI: 10.2514/1.C034940

[219] O. Sahni, A. Ovcharenko, K. C. Chitale, K. E. Jansen, and M. S. Shephard, “Parallel

anisotropic mesh adaptation with boundary layers for automated viscous flow simu-

lations,” Engineering with Computers, vol. 33, no. 4, pp. 767–795, Oct. 2017, DOI:

10.1007/s00366-016-0437-2

[220] R. Said, N. P. Weatherill, K. Morgan, and N. A. Verhoeven, “Distributed parallel De-

launay mesh generation,” Computer Methods in Applied Mechanics and Engineering,

vol. 177, no. 1-2, pp. 109–125, Jul. 1999, DOI: 10.1016/S0045-7825(98)00374-0

[221] J. Saltz, R. Mirchandaney, and K. Crowley, “Run-time parallelization and scheduling

of loops,” IEEE Transactions on Computers, vol. 40, no. 5, pp. 603–612, May 1991,

conference Name: IEEE Transactions on Computers. DOI: 10.1109/12.88484

https://doi.org/10.1109/TMAG.2011.2177814
https://doi.org/10.1109/TMAG.2011.2177814
https://doi.org/10.1016/j.apnum.2008.12.011
https://doi.org/10.1007/s00366-006-0013-2
https://doi.org/10.1115/1.2910291
https://doi.org/10.1007/978-3-319-02335-9_29
https://doi.org/10.2514/1.C034940
https://doi.org/10.1007/s00366-016-0437-2
https://doi.org/10.1016/S0045-7825(98)00374-0
https://doi.org/10.1109/12.88484

178

[222] S. P. Sastry and S. M. Shontz, “A parallel log-barrier method for mesh quality im-

provement and untangling,” Engineering with Computers, vol. 30, no. 4, pp. 503–515,

Oct. 2014, DOI: 10.1007/s00366-014-0362-1

[223] K. Schloegel, G. Karypis, and V. Kumar, “Parallel static and dynamic multi-constraint

graph partitioning,” Concurrency and Computation: Practice and Experience, vol. 14,

no. 3, pp. 219–240, 2002.

[224] V. Schmitt and F. Charpin, “Pressure Distributions on the ONERA-M6-Wing at

Transonic Mach Numbers,” in Experimental Data Base for Computer Program As-

sessment: Report of the Fluid Dynamics Panel Working Group 04. NATO Research

and Technology Organisation AGARD, May 1979, no. AR-138, pp. B1:1–B1:44.

[225] W. Schroeder, K. Martin, B. Lorensen, and I. Kitware, The Visualization Toolkit: An

Object-oriented Approach to 3D Graphics. Kitware, 2006. ISBN 978-1-930934-19-1.

https://books.google.com/books?id=rx4vPwAACAAJ

[226] J. Schöberl, “NETGEN An advancing front 2D/3D-mesh generator based on abstract

rules,” Computing and Visualization in Science, vol. 1, no. 1, pp. 41–52, Jul. 1997,

DOI: 10.1007/s007910050004

[227] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castelló,

D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé, S. Krishnamoorthy, J. Lif-

flander, H. Lu, E. Meneses, M. Snir, Y. Sun, K. Taura, and P. Beckman, “Argobots:

A Lightweight Low-Level Threading and Tasking Framework,” IEEE Transactions

on Parallel and Distributed Systems, vol. 29, no. 3, pp. 512–526, Mar. 2018, DOI:

10.1109/TPDS.2017.2766062

[228] E. S. Seol and M. S. Shephard, “Efficient distributed mesh data structure for parallel

automated adaptive analysis,” Engineering with Computers, vol. 22, no. 3-4, pp. 197–

213, Dec. 2006, DOI: 10.1007/s00366-006-0048-4

[229] M. Shang, C. Zhu, J. Chen, Z. Xiao, and Y. Zheng, “A Parallel Local Reconnection

Approach for Tetrahedral Mesh Improvement,” Procedia Engineering, vol. 163, pp.

289–301, Jan. 2016, DOI: 10.1016/j.proeng.2016.11.062

[230] S. Sharma, C.-H. Hsu, and W.-c. Feng, “Making a case for a Green500 list,” in Pro-

ceedings 20th IEEE International Parallel Distributed Processing Symposium, Apr.

2006, pp. 8 pp.–, iSSN: 1530-2075. DOI: 10.1109/IPDPS.2006.1639600

https://doi.org/10.1007/s00366-014-0362-1
https://books.google.com/books?id=rx4vPwAACAAJ
https://doi.org/10.1007/s007910050004
https://doi.org/10.1109/TPDS.2017.2766062
https://doi.org/10.1007/s00366-006-0048-4
https://doi.org/10.1016/j.proeng.2016.11.062
https://doi.org/10.1109/IPDPS.2006.1639600

179

[231] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh generator and delaunay

triangulator,” in Applied Computational Geometry Towards Geometric Engineering,

M. C. Lin and D. Manocha, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

1996, pp. 203–222. ISBN 978-3-540-70680-9 DOI: 10.1007/BFb0014497

[232] J. R. Shewchuk, “Delaunay Refinement Mesh Generation,” Ph.D. dissertation, School

of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May

1997, available as Technical Report CMU-CS-97-137.

[233] J. R. Shewchuk, “Tetrahedral Mesh Generation by Delaunay Refinement,” in Pro-

ceedings of the Fourteenth Annual Symposium on Computational Geometry, ser. SCG

’98. New York, NY, USA: ACM, 1998, pp. 86–95. ISBN 0-89791-973-4 DOI:

10.1145/276884.276894

[234] J. R. Shewchuk and H. Si, “Higher-Quality Tetrahedral Mesh Generation for Do-

mains with Small Angles by Constrained Delaunay Refinement,” in Proceedings of the

Thirtieth Annual Symposium on Computational Geometry. ACM, 2014, pp. 290:290–

290:299. ISBN 978-1-4503-2594-3 DOI: 10.1145/2582112.2582138

[235] H. Si, “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator,” ACM

Transactions on Mathematical Software, vol. 41, no. 2, pp. 11:1–11:36, 2015, DOI:

10.1145/2629697

[236] H. Si and K. Gärtner, “3D boundary recovery by constrained Delaunay tetrahedral-

ization,” International Journal for Numerical Methods in Engineering, vol. 85, no. 11,

pp. 1341–1364, Mar. 2011, DOI: 10.1002/nme.3016

[237] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and

D. Mavriplis, “CFD Vision 2030 Study: A Path to Revolutionary Computational

Aerosciences,” Langley Research Center, Tech. Rep. CR-2014-218178, Mar. 2014, DOI:

2060/20140003093

[238] S. Soner and C. Ozturan, “Generating Multibillion Element Unstructured Meshes

on Distributed Memory Parallel Machines,” Scientific Programming, vol. 2015, p.

e437480, May 2015, DOI: 10.1155/2015/437480

[239] D. A. Spielman, S.-H. Teng, A. Üngör, I. Shang-hua, and T. Alper, “Parallel Delaunay

Refinement: Algorithms and Analyses,” in Proceedings, 11th International Meshing

Roundtable, 2002, pp. 205–217.

https://doi.org/10.1007/BFb0014497
https://doi.org/10.1145/276884.276894
https://doi.org/10.1145/2582112.2582138
https://doi.org/10.1145/2629697
https://doi.org/10.1002/nme.3016
https://doi.org/2060/20140003093
https://doi.org/10.1155/2015/437480

180

[240] G. L. Steele, “Making asynchronous parallelism safe for the world,” in Proceedings

of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, ser. POPL ’90. New York, NY, USA: Association for Computing Machinery,

Dec. 1989, pp. 218–231. ISBN 978-0-89791-343-0 DOI: 10.1145/96709.96731

[241] G. Strang, Linear algebra and its applications, 2nd ed. New York: Academic Press,

1980. ISBN 012673660X

[242] H. Sukas and M. Sahin, “HEMLAB Algorithm Applied to the High-Lift JAXA Stan-

dard Model,” in AIAA Scitech 2021 Forum. American Institute of Aeronautics and

Astronautics, 2021, DOI: 10.2514/6.2021-1994

[243] N. J. Taylor and R. Haimes, “Geometry Modelling: Underlying Concepts and Require-

ments for Computational Simulation (Invited),” in 2018 Fluid Dynamics Conference.

American Institute of Aeronautics and Astronautics, 2018, DOI: 10.2514/6.2018-3402

[244] P. Thomadakis, C. Tsolakis, and N. Chrisochoides, “Multithreaded runtime framework

for parallel and adaptive applications,” IEEE Transactions on Parallel and Distributed

Systems., 2021, (under review).

[245] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,

P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer, K. Katri-

nis, E. Laure, and D. S. Nikolopoulos, “A taxonomy of task-based parallel program-

ming technologies for high-performance computing,” The Journal of Supercomputing,

vol. 74, no. 4, pp. 1422–1434, Apr. 2018, DOI: 10.1007/s11227-018-2238-4

[246] J. F. Thompson, “A survey of dynamically-adaptive grids in the numerical solution

of partial differential equations,” Applied Numerical Mathematics, vol. 1, no. 1, pp.

3–27, Jan. 1985, DOI: 10.1016/0168-9274(85)90026-1

[247] J. F. Thompson, B. K. Soni, and N. P. Weatherill, Handbook of grid generation,

N. Weatherill, B. Soni, and J. Thompson, Eds. CRC press, 1998. ISBN 978-0-8493-

2687-5 DOI: 10.1201/9781420050349

[248] M. J. Todd, Minimum-Volume Ellipsoids, ser. MOS-SIAM Series on Optimization.

Society for Industrial and Applied Mathematics, Jul. 2016. ISBN 978-1-61197-437-9

DOI: 10.1137/1.9781611974386

https://doi.org/10.1145/96709.96731
https://doi.org/10.2514/6.2021-1994
https://doi.org/10.2514/6.2018-3402
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1016/0168-9274(85)90026-1
https://doi.org/10.1201/9781420050349
https://doi.org/10.1137/1.9781611974386

181

[249] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,”

IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–33, Jan. 1967, DOI:

10.1147/rd.111.0025

[250] C. Tsolakis, N. Chrisochoides, M. A. Park, A. Loseille, and T. R. Michal, “Parallel

Anisotropic Unstructured Grid Adaptation,” in AIAA Scitech 2019 Forum. American

Institute of Aeronautics and Astronautics, 2019, DOI: 10.2514/6.2019-1995

[251] C. Tsolakis, N. Chrisochoides, M. A. Park, A. Loseille, and T. R. Michal, “Parallel

Anisotropic Unstructured Grid Adaptation,” AIAA Journal, Jan. 2021, accepted.

[252] C. Tsolakis, F. Drakopoulos, and N. Chrisochoides, “Sequential metric-based adap-

tive mesh generation,” in Modeling, Simulation, and Visualization Student Capstone

Conference, Suffolk, VA, Apr. 2018, pp. 25–35.

[253] C. Tsolakis, P. Thomadakis, and N. Chrisochoides, “Exascale-Era Parallel Adaptive

Mesh Generation and Runtime Software System Activities at the Center for Real-Time

Computing,” Oct. 2020, (presentation). (Accessed 2021-03-08).

[254] A. Üngör, “Parallel Delaunay refinement and space-time meshing,” Ph.D. dissertation,

University of Illinois at Urbana-Champaign, United States – Illinois, 2002. ISBN

9780493902661. https://search.proquest.com/docview/305620884

[255] X.-q. Wang, X.-l. Jin, D.-z. Kou, and J.-h. Chen, “A Parallel Approach for the Gen-

eration of Unstructured Meshes with Billions of Elements on Distributed-Memory Su-

percomputers,” International Journal of Parallel Programming, pp. 1–31, Sep. 2016,

DOI: 10.1007/s10766-016-0452-3

[256] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck,

R. Hartmann, K. Hillewaert, H. T. Huynh, N. Kroll, G. May, P.-O. Persson, B. v.

Leer, and M. Visbal, “High-order CFD methods: current status and perspective,”

International Journal for Numerical Methods in Fluids, vol. 72, no. 8, pp. 811–845,

2013, DOI: 10.1002/fld.3767

[257] D. F. Watson, “Computing the n-dimensional Delaunay tessellation with application

to Voronoi polytopes,” The Computer Journal, vol. 24, no. 2, pp. 167–172, Jan. 1981,

DOI: 10.1093/comjnl/24.2.167

https://doi.org/10.1147/rd.111.0025
https://doi.org/10.2514/6.2019-1995
https://search.proquest.com/docview/305620884
https://doi.org/10.1007/s10766-016-0452-3
https://doi.org/10.1002/fld.3767
https://doi.org/10.1093/comjnl/24.2.167

182

[258] T. Willhalm and N. Popovici, “Putting Intel® threading building blocks to work,” in

Proceedings of the 1st international workshop on Multicore software engineering, ser.

IWMSE ’08. New York, NY, USA: Association for Computing Machinery, May 2008,

pp. 3–4. ISBN 978-1-60558-031-9 DOI: 10.1145/1370082.1370085

[259] M. Yano and D. L. Darmofal, “An optimization-based framework for anisotropic sim-

plex mesh adaptation,” Journal of Computational Physics, vol. 231, no. 22, pp. 7626–

7649, Sep. 2012, DOI: 10.1016/j.jcp.2012.06.040

[260] M. A. Yerry and M. S. Shephard, “Automatic three-dimensional mesh generation

by the modified-octree technique,” International Journal for Numerical Methods in

Engineering, vol. 20, no. 11, pp. 1965–1990, 1984, DOI: 10.1002/nme.1620201103

[261] Y. Yokokawa, M. Murayama, M. Kanazaki, K. Murota, T. Ito, and K. Yamamoto,

“Investigation and Improvement of High-Lift Aerodynamic Performances in Lowspeed

Wind Tunnel Testing,” in 46th AIAA Aerospace Sciences Meeting and Exhibit, ser.

Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics,

Jan. 2008, DOI: 10.2514/6.2008-350

[262] Y. Yokokawa, M. Murayama, H. Uchida, K. Tanaka, T. Ito, K. Yamamoto, and K. Ya-

mamoto, “Aerodynamic Influence of a Half-Span Model Installation for High-Lift Con-

figuration Experiment,” in 48th AIAA Aerospace Sciences Meeting Including the New

Horizons Forum and Aerospace Exposition, ser. Aerospace Sciences Meetings. Amer-

ican Institute of Aeronautics and Astronautics, Jan. 2010, DOI: 10.2514/6.2010-684

[263] G. Zagaris, S. Pirzadeh, and N. Chrisochoides, “A Framework for Parallel Un-

structured Grid Generation for Practical Aerodynamic Simulations,” in 47th AIAA

Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposi-

tion. American Institute of Aeronautics and Astronautics, 2009, DOI: 10.2514/6.2009-

980

[264] R. Zangeneh and C. F. Ollivier-Gooch, “Thread-parallel mesh improvement using

face and edge swapping and vertex insertion,” Computational Geometry, vol. 70-71,

pp. 31–48, Feb. 2018, DOI: 10.1016/j.comgeo.2018.01.006

[265] Z. Zhong, X. Guo, W. Wang, B. Lévy, F. Sun, Y. Liu, and W. Mao, “Particle-

based anisotropic surface meshing.” ACM Transactions on Graphics, no. 4, 2013,

DOI: 10.1145/2461912.2461946

https://doi.org/10.1145/1370082.1370085
https://doi.org/10.1016/j.jcp.2012.06.040
https://doi.org/10.1002/nme.1620201103
https://doi.org/10.2514/6.2008-350
https://doi.org/10.2514/6.2010-684
https://doi.org/10.2514/6.2009-980
https://doi.org/10.2514/6.2009-980
https://doi.org/10.1016/j.comgeo.2018.01.006
https://doi.org/10.1145/2461912.2461946

183

[266] Z. Zhong, W. Wang, B. Lévy, J. Hua, and X. Guo, “Computing a high-dimensional eu-

clidean embedding from an arbitrary smooth riemannian metric,” ACM Transactions

on Graphics, vol. 37, no. 4, pp. 62:1–62:16, 2018, DOI: 10.1145/3197517.3201369

[267] B. Y. Zhou, N. R. Gauger, C. Tsolakis, J. K. Pardue, A. Chernikov, F. Drakopoulos,

N. Chrisochoides, and B. Diskin, “Hybrid RANS/LES Simulation of Vortex Break-

down Over a Delta Wing,” in AIAA Aviation 2019 Forum. American Institute of

Aeronautics and Astronautics, Jun. 2019, DOI: 10.2514/6.2019-3524

[268] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: its Basis and

Fundamentals. Elsevier, 2013. ISBN 978-1-85617-633-0 DOI: 10.1016/C2009-0-24909-

9

https://doi.org/10.1145/3197517.3201369
https://doi.org/10.2514/6.2019-3524
https://doi.org/10.1016/C2009-0-24909-9
https://doi.org/10.1016/C2009-0-24909-9

184

APPENDIX A

MESH ADAPTATION FOR OTHER DISCIPLINES

A.1 FEMTOGRAPHY DATA

In this work, meshes are utilized as an enabling technology that allows the creation of

look-up tables that enhance Monte-Carlo simulations used in Nuclear Femtography. The

problem at hand can be described as follows: Given a two- or three-dimensional probability

matrix of some non-spatial variables, we attempt to create an unstructured mesh that

tessellates its data while capturing all of its features.

A.1.1 TYPES OF TESSELLATIONS

The plethora of applications that utilize meshes have different requirements and restric-

tions, thus creating a wide variety of meshing methods [247]. Early approaches used struc-

tured tessellations that arise naturally from the matrix formulation of many problems [247].

Most problems have rarely uniform characteristics throughout the computational space and

the ability to concentrate more points, and thus reduce the discretization error at regions

of interest becomes a necessity. Figure 78 presents some of the most common methods of

discretization.

(a) Input dataset. (b) Multiblock. (c) Quad-tree. (d) Unstructured mesh.

Fig. 78: Different types of tessellations applied on a dataset.

185

Elliptic and hyperbolic methods [44] provide a solution to this problem by tweaking the

point density at regions of interest. Still, they are bound to the initial point distribution and

they are limited by the complexity of the domain. Multi-block methods (see Figure 78b) [15]

provide another way to capture features of the problem by overlaying uniform tessellations of

different density. Octree methods [260] utilize quad-trees (2D) and oct-trees (3D) structures

(see Figure 78c) that can capture the features of the input using a lower count of elements

while at the same time providing a data structure that favor queries. Yet another method is

the use of unstructured simplices (see Figure 78d) that not only further reduce the number

of points and elements, but are able to scale into higher dimensions at low cost. Figure 78a

depicts an example point dataset. The point density corresponds to the features we need

to capture. Figures 78b-78d present different methods to create a mesh that captures the

features of the input. Table 37 presents the required number of vertices for each approach.

Uniform Mutliblock Quad-tree Unstructured

vertices 62,000 59,000 14,500 7,500

TABLE 37: Number of vertices for each of the representations of Figure 78.

Clearly, unstructured meshes are the most efficient approach in terms of number of ver-

tices to capture point-sets that exhibit non-uniform density. Moreover, Table 38 summarizes

the number of lower dimensional elements contained in each element at different dimensions.

Notice that the number of vertices scales linearly for simplices while for box-based elements

the growth rate is exponential. This characteristic is crucial for the approach of this work

since it enables the generalization of the method to areas of interest to the Nuclear Femtog-

raphy such as Deeply Virtual Compton Scattering calculations and Deep Virtual phi-meson

Production calculations which utilize 5 and up to 7 dimensions respectively.

186

2-cube 3-cube 4-cube 5-cube 2-simplex 3-simplex 4-simplex 5-simplex

0-face (vertex) 4 8 16 32 3 4 5 6

1-face (edge) 4 12 32 80 3 6 10 15

2-face 1 6 24 80 1 4 10 20

3-face 1 8 40 1 5 15

4-face 1 10 1 16

5-face 1 1

TABLE 38: Number of lower dimensional faces of n-dimensional cube and simplex elements.

A.1.2 METHOD

In this section we describe a pipeline designed at the CRTC lab for generating adaptive

meshes for Monte-Carlo simulations. The pipeline is depicted in Figure 79.

Probability
Matrix (.nrrd) Segmentation Adaptive

Mesh Generation
Data

Interpolation
Monte Carlo

Simlation

Fig. 79: Pipeline of our approach.

The input to the procedure is a probability matrix created with PARtonic Tomography

Of Nucleon Software (PATRONS) [26]. For the purposes of our approach, the two- and three-

dimensional probability matrices of PATRONS are treated as a 2D (3D resp.) image. The

Nearly Raw Raster Data .nrrd format44 was selected due to its simplicity. The segmentation

filter is then applied on the image. Segmentation is the process of generating a labeled image

(often called mask) that assigns to all pixels of the input a label based on a discrete number

of values. These values are then used to identify regions of interest within the image. It is

a requirement for the mesh generation method we use for 3D images PODM [95]. Since in

44http://teem.sourceforge.net/nrrd/format.html (Accessed 2021-07-02)

http://teem.sourceforge.net/nrrd/format.html

187

this case we are interested for the entire image the segmentation results in a trivial mask

that has the same value everywhere. The adaptive mesh generation process will then create

a mesh based on the segmented image. The spacing will be guided by the values of the

probability matrix. Details on the adaptation process are described below. Once the mesh

is generated, the original values of the probability matrix are interpolated onto the new

mesh. Finally, the mesh with its interpolated values which we call “weights” can be used

for the Monte-Carlo procedure.

A.1.3 ADAPTATION APPROACH

Central requirement for the meshes generated by this effort is the adaptation of the mesh

to the features of the input. More specifically, in order to allow speedup for the subsequent

step of Monte-Carlo simulations, the size of the elements of the generated mesh needs to

be based on the rate of change of the values of the probability matrix. For our application

this requirement translates into adding rules for splitting elements. The current method

operates based on two user-defined criteria. First, a relative limit between the difference of

the weights for a sample of points within the element. This is designed to give some control

over the discretization error with respect to the input data. The second is a limit on the

size of the smallest element which is used to control the size of the mesh and to guarantee

termination in cases where the weight limit cannot be achieved. This sizing function has been

implemented both in two and three dimensions. In 2D we use Triangle [231] while for 3D

inputs we take advantage of PODM [95]. Figure 80 depicts two examples of the adaptation

approach applied on synthetic 2D data representing a binomial Gaussian distribution and

3D data produced by PATRONS45. For the 2D case, the 1,000,000 values of the image are

decimated to 3, 805 vertices and 7, 509 triangles. The 3D input has 1,000,000 values while

the generated mesh 42, 217 vertices and 257, 041 tetrahedra. Figure 81 presents a different

view of the 2D problem. The 3D histogram that corresponds to the values of a binomial

Gaussian distribution (left) is reconstructed by linearly extruding the mesh triangles to

prisms based on the interpolated weights.

The adaptation approach allows to decimate probability matrices given as 2D/3D array

while capturing the features of the distribution efficiently. More importantly, the resulting

mesh can aid towards speeding up significantly event generation for Physics calculations.

Quoting from [107]: “Generating grids using PARTONS took 4 days (1M computations, per

45We would like to thank Gagik Gavalian and Pawel Sznajder for proving the input probability
distributions.

188

Fig. 80: Two- and three-dimensional demonstration of the approach.

Fig. 81: Decimation of a 2d histogram that corresponds to a binomial Gaussian distribution.

grid point), [However] Event generation (10M events) takes 2̃0 minutes”.

A.1.4 ADAPTIVE PIPELINE

The ability to generate adaptive meshes based on the probability distributions of PAR-

TONS, enables also to build an adaptive pipeline similar to the one presented in Figure 47

in page 98. In particular, since the PARTONS evaluations are computationally expensive,

one could start the procedure with only a few events and a coarse mesh. The generated

mesh can then be utilized to speedup the process. Instead of generating events (Monte

Carlo trials) within the whole subdomain, one can guide PARTONS to generate events only

189

within few elements of interest based on some user-defined criterion. If this criterion is

derived from an error-based estimator one can build an error-based adaptive pipeline, see

for example Figure 82.

G
i

: Evaluate PARTONS functional at V
i

E
i
> Threshold

E(G
i
,F

i
)

p
, p ∊{1,2,+∞}ǁ ǁ

PARTONS
Tesselator
(PODM)

N
0

F
0
: Interpolate N

0
at V

0

“Initial Mesh”

G
i
,F

i

“Mesh Adaptation”

Tesselator
(PODM)

E
i

V
0
, F

0

V
i+1

,F
i+1 E

i

“Solver” “Error Estimator”

V
0

F
i+1

: Interpolate N
i
at V

i

V
i+1

Fig. 82: An error-based adaptive pipeline based for Nuclear Femptography data. Ni: image
values, Vi: mesh , Fi: interpolated values on mesh Vi, Gi: “ground-truth” values.

The initial mesh can be constructed based on a (coarse) probability matrix of PARTONS

similar to the approach presented so far. PARTONS can then be used as a solver estimating

its functional on the vertices of the mesh. Based on a norm defined on the ground-truth and

the interpolated values one could extract an error-indicator that drives the interpolation

procedure that will generate a new mesh for the next iteration of the pipeline. Notice that

this pipeline can also be implemented based on metric-based adaptation approaches. If E

is the interpolation error, one could construct a multi-scale metric and adapt the mesh in a

similar manner with our approach in Section 4.2.

190

A.2 ADAPTIVE MESH GENERATION FOR MEDICAL DATA

In this section, we attempt to apply mesh adaptation techniques in the context of Medical

Imaging. In particular, we focus on generating adapted meshes for non-rigid registration

(NRR) of pre- and intra-operative images. NRR is used in image-guided neurosurgery and

aids towards “matching” sections of pre-operative medical data (e.g., Magnetic resonance

imaging (MRI), ultrasound, etc.) to intra-operative. This step is crucial to neurosurgical

operations since it allows for the identification of tissues in the intra-operative image that

need to be removed (e.g., tumor volumes). The registration is called non-rigid because the

underlying model treats the brain as a non-rigid object susceptible to deformation and shift

during the surgical operation. We evaluate our approach within the Adaptive Physics-Based

Non-Rigid Registration (A-PBNRR) method [83]. Figure 83 depicts a high-level view of the

A-PBNRR pipeline. For a complete description see [83].

Feature
Selection

Block
Matching

Satisfies
Criteria ?

•pre-op Image
•pre-op segmentation
•intra-op image

Input

registered
pre-op image

pre-op Image
Warping

Mesh
Generation

Mesh
Adaptation

Solver

Fig. 83: High-level A-PBNRR pipeline. Solids boxes correspond to the original approach.
The Mesh Adaptation module represents our attempt in the context of the A-PBNRR
pipeline.

The method accepts as input the pre- and intra-operate images along with a segmentation

of the pre-operative image. The pre-operative segmentation is a labeled copy of the pre-

operative image where each pixel is labeled based on the tissues of interest. In the first

step, the method identifies features of the pre-operative image based on computer vision

techniques that identify regions of high intensity variance. The Block Matching step will then

search for pairs of blocks in the pre- and intra-operative image that maximize a similarity

191

measure. Mesh generation creates a mesh based on the segmented image. The outputs of

the three steps are then combined in the solver stage that evaluates displacements at each

vertex of the mesh based on information of the other two steps. The displacements are then

applied to the pre-operative data by warping the image. Based on user-defined criteria,

the method may apply more iterations by using as input a warped pre-operative image and

segmentation.

In the current evolution of A-PBNRR, the mesh generation steps use the Parallel Op-

timistic Delaunay Meshing (PODM) method [95] that can generate a mesh that faithfully

captures (with geometric guarantees) the surface of the input image and the interface be-

tween different tissues. However, it does not consider any information about the registration

points (landmarks) recovered by the Block Matching step. In [86] the authors incorporate

the distribution of landmarks over the mesh into the mesh generation step using custom

sizing functions for two different mesh generation methods (Delaunay refinement and Ad-

vancing Front). The goal of these modifications is to equi-distribute the landmarks among

the mesh elements which is expected to improve the registration error. The evaluation

presented in [86] was based on synthetic deformation fields and showed that indeed these

modifications reduce the registration error. Our approach focuses on applying the same

sizing function in order to validate the effectiveness of the method. Moreover, preliminary

results on applying mesh adaptation methods that originate from the Computational Fluid

Dynamics field are presented. For completeness, a summary of the method employed in [86]

is presented along with the modifications that can turn it into an anisotropic metric-based

method.

The equi-distribution of the registration points can be formulated as assigning approx-

imately the same number of registration points at each mesh vertex cell complex, where

a mesh vertex cell complex is defined as the set of all the elements attached to a vertex.

See, for example, Figure 84. On the left, the vertex cells of p1, p2, p3 have 3, 7 and 5 land-

marks, respectively. While on the right, by collapsing edge p2p1 one can equi-distribute the

landmarks. Both the vertex cells of p1 and p2 have now 7 landmarks.

The crux of the method is to set the local spacing at each vertex equal to the distance

to the k-th closest registration point. Assuming an ideal spacing, the mesh vertex cell

complex of each vertex will contain k registration points. An illustration for k = 5 is given

in Figure 85 left. Notice that another way to interpret the sizing constrain at each vertex is

using a sphere centered at each mesh vertex with a radius equal to the distance to the k-th

registration point. This method creates adaptive meshes but, it does not capture the local

192

p1

p2

p3

a

b

c

d

e

f

p1

p3

a

b

c

d

e

f

mesh point
landmark
vertex-cell of p1

vertex-cell of p2
vertex-cell of p3

Fig. 84: Optimizing landmark distribution.

density of the landmarks efficiently due to the fact that only the k-th point is used and the

relative locations of the rest k−1 landmarks are ignored. Building upon this observation one

can replace the spheres at each vertex, with the smallest bounding ellipsoid that contains

the k closest registration points and is centered at the given vertex. Describing the local

spacing as an ellipsoid gives the ability to capture the local distribution of the landmarks

better due to the increased degrees of freedom of an ellipsoid in comparison to a sphere (see

for example Figure 85 right).

Creating the minimum volume ellipsoid that encloses a given point-set is a well-studied

problem in the optimization literature [248]. The constructed ellipsoid has a natural map-

ping to a 3x3 positive definite matrix [80] that can be used as a metric that guides the

anisotropic mesh adaptation procedure. In order to give to the mesh adaptation procedure

more flexibility, an additional “inflation” parameter a is introduced that is common for all

the points and allows to enlarge all ellipsoids by a constant factor. The goal of this param-

eter is to allow the mesh generation procedure to perform operations that may not conform

to the strict size but improve the overall result (see for example Figure 85 right).

Generating an adapted mesh begins by initially creating a uniform isotropic mesh

PODM . The generated mesh along with the landmarks identified by the Block-Matching

step are used to build a metric field. The metric field is constructed by iterating, in parallel,

the mesh vertices and evaluating the k-closest registration points using a k-nn search from

the Visualization Toolkit (VTK) library [225]. The minimum volume bounding ellipsoid

is constructed using the Khachiyan algorithm [139] which we implemented in the Eigen

193

mesh point
landmark
ideal edge-length

a=1.2

a=1.5

a=1.0

Fig. 85: Visualization of the metric construction for mesh adaptation. Left: Isotropic
metric that set the spacing equal to the distance of the 5th closest registration point. Right:
Anisotropic metric based on the five registration points for different values of the inflation
parameter a.

library [116] based on publicly available implementations of the algorithm46. Directly using

the landmarks (Figure 86 (b)) will not yield an ellipse centered at a mesh point. Including

the mesh point into the input of the minimum ellipsoid algorithm does not fix the issue

either (see Figure 86 (c)). Instead, we generate reflections of the k-closest landmarks by

the mesh point and include them in the input of the minimum ellipsoid algorithm. Due to

symmetry, the mesh point will always be in the center of the constructed ellipsoid. Finally,

the mesh is adapted using MMG3D [70,183].

The results of augmenting mesh adaptation to the A-PBNRR method for two of the cases

described in [84] are presented in Table 39. The accuracy of the registration is evaluated

using two quantitative metrics. The first described in [104] and expressed in the first column,

uses the Hausdorff distance [65] between point-sets extracted from the transformed pre-

operative image and the intra-operative image. The second method uses six anatomical

landmarks selected by a neurosurgeon and located into both the pre- and intra-operative

image. Statistics (min, max and mean) related to the distance between the transformed

pre-operative points as evaluated by A-PBNRR and the neurosurgeon’s suggested points

are expressed in the corresponding columns.

46Nima Moshtagh (2021). Minimum Volume Enclosing Ellipsoid (https://www.mathworks.com/
matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid) MATLAB Central File
Exchange, (Accessed 2021-06-28).

https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid

194

a) b) c)

d)

Fig. 86: Different approaches to constructing a metric utilizing the minimum ellipsoid
method.

Method HD Min error Max error Mean error # vertices # elements

(mm) (mm) (mm) (mm)

case 9

Baseline 2.24 1.07 5.90 3.51 3,264 13,210

Isotropic 1.95 1.22 7.53 3.71 4,177 19,893

Anisotropic (a = 1.0) 2.22 0.55 7.85 3.99 4,520 22,383

Anisotropic (a = 1.2) 2.00 1.01 7.10 3.70 3,629 17,593

Anisotropic (a = 1.5) 2.64 0.93 6.15 3.25 2,838 13,291

case 18

Baseline 4.06 2.06 5.37 3.65 2,833 11,040

Isotropic 3.42 2.29 5.76 3.92 4,008 19,466

Anisotropic (a = 1.0) 3.71 2.12 5.50 3.96 4,460 22,342

Anisotropic (a = 1.2) 4.05 2.06 5.05 3.61 3,766 18,077

Anisotropic (a = 1.5) 4.05 1.92 5.17 3.65 2,983 13,812

TABLE 39: Results applying mesh adaptation to the A-PBNRR pipeline.

The number of registration points per mesh cell vertex is set to k = 500. This value was

selected since it produces meshes with a vertex count close to the baseline meshes. The first

row of each dataset corresponds to the base case of using A-PBNRR with no adaptation.

The isotropic rows indicate the application of the method described in [86]. In practice, we

195

build an isotropic metric composed out of spheres with radii corresponding to the distance of

the k-th closest landmark at each mesh vertex. Isotropic adaptation reduces the Hausdorff

distance by almost 13% for case 9 and almost 16% for case 18. However, it comes with

the price of generating a mesh twice as big for both cases. The rest of the rows correspond

to applying anisotropic mesh adaptation. Anisotropic mesh adaptation produces a higher

Hausdorff distance error. However, it decreases the landmark-based error when compared

to the isotropic method and in some cases, performs better than the baseline. Moreover, by

using an inflation parameter of 1.5 we were able to produce meshes with a size comparable

to the baseline.

Although these results are preliminary, they indicate that the problem of generating

an “ideal” mesh for image registration purposes includes competing evaluation criteria like

the minimum mesh size, Hausdorff distance, and the landmark-based error above. The

Hausdorff distance could be improved by tweaking the -hausd parameter of the MMG3D

code that controls the distance between the surface of the input and the output meshes.

Moreover, one could attempt to intersect the generated metric field with one constructed

based on the features of the input mesh which has fidelity and quality guarantees on the

surface since it was produced by PODM . Such a mesh could be created using the implied

metric of the surface mesh or a feature-based metric similar to the approach we used fpr

curved domains in Section 3.3. Introducing mesh adaptation to A-PBNRR has the potential

to improve its effectiveness, but further investigation is needed to optimize its parameters.

196

APPENDIX B

PARALLEL MESH GENERATION CHALLENGES

B.1 POWER CONSUMPTION ASPECTS OF MESH GENERATION

The Top50047 is an online list maintained by the supercomputing community that first

published in 1993 [178] and reports the top 500 supercomputers over the world based on

their speed in terms of floating-point operations per second (Flops) for the LINPACK bench-

mark [81]. Since its conception, another important characteristic of the performance of a

supercomputer has emerged and that is its energy consumption. In [230] the authors pre-

sented data on the high amount of power required to operate and regulate the temperature of

supercomputers in the Top500 list and advocated for the creation of the Green50048 list that

compares supercomputers based on their energy efficiency in terms of Flops/Watt. Since

then, the energy efficiency of the top supercomputers in the list has improved by three or-

ders of magnitude from 0.147 GFlops/Watt for Blue-Gene\L in 2007 to 26.195 GFlops/Watt

for NVIDIA DGX SuperPOD in 202049. Still, the there are very few efforts optimizing a

parallel mesh generation application for energy consumption [213].

In this section, we discuss our attempt to optimize the energy aspects of mesh generation

of PODM [95] and present some preliminary results. At the time of contacting this analysis

the available profilers were not ready yet for fine-grained power measurements of highly

complex applications such as mesh generation codes. So, as a first step we attempted to

optimize the performance of the code and as a consequence its power consumption. For this

study we used the Abstraction-Level Energy Accounting (ALEA) [185] energy profiler50.

ALEA allows to measure energy consumption at a fine-grain level that goes lower than the

sampling rate by combining physical power measurements with a probabilistic model that

distributes energy among code blocks. Based on instruction-level information of the profiler,

we identified the most energy-consuming functions of the code which corresponded to the

rollback treatment code of the Load balancing sections of Figure 63a and the most expensive

floating-point operations which were the circumcenter evaluation and the predicate-based

orientation tests. Then, we applied the following optimizations to the code:

47https://www.top500.org/lists/top500/ (Accessed in 2021-06-27).
48https://www.top500.org/lists/green500/ (Accessed in 2021-06-27).
49https://www.top500.org/lists/green500/2020/11 (Accessed in 2021-06-27).
50We would like to thank Lev Mukhanov for sharing the ALEA code and assisting towards performing

the analysis of this section.

https://www.top500.org/lists/top500/
https://www.top500.org/lists/green500/
https://www.top500.org/lists/green500/2020/11

197

• Enforcing “-ffast-math” and “-O3” to the above functions by using gcc ’s attributes

(gcc version version 4.9 was used) __attribute__((optimize ("fast-math")) and

__attribute__((optimize(3)))

• Enabling Advanced Vector extensions (AVX) during compilation (-mavx for gcc)

• Using of static inline instead of inline on the most expensive floating point func-

tions.

To study the effect of these optimizations we employed Dynamic Voltage and Frequency

Scaling (DVFS) by modifying the frequency of the CPU’s cores before running each exper-

iment. To alter the frequency we utilized cpufreq51. Figure 87 presents our results on two

different nodes: A two-socket Intel®Xeon E5-2697 v2 @ 2.70GHz with 24 cores in total, and

a 4-socket Intel®Xeon E5-4610 v2 @ 2.30GHz with 32 cores in total. The original and the

optimized code were executed 5 times and the median values are reported in the figures.

The results indicate that the mesh generation code behaves differently when running

on these machines and the optimization affects it in different ways. On the older machine,

(2nd generation Xeon) in Figure 87a, scaling the frequency affects the running time by a

small amount. The optimizations yielded an 4% improvement on the energy when using

all the cores. The performance on the newer 4th generation Xeon in Figure 87b increases

linearly with the frequency. Moreover, by comparing the energy consumption between the

two models, one can see that the newer generation processor uses less than half the energy

although it runs for a longer time. On the other hand, it is affected less by the optimizations.

The energy gain is only 0.3% on average.

In conclusion, these preliminary data indicate that currently, the power gains for a

complex mesh generation application are limited and require low-level optimizations. Also,

any optimizations may diminish once the application is executed on newer hardware.

An alternative approach to the one presented could be to lower power-aware optimiza-

tions into the tasking framework. Models [150] and methods [179] for optimizing tasking

schedulers for power consumption already exist and they could be combined with our tasking

approach presented in Chapter 5.

51https://www.kernel.org/doc/Documentation/cpu-freq/index.txt (Accessed 2021-06-27).

https://www.kernel.org/doc/Documentation/cpu-freq/index.txt

198

(a) Time and energy data for 2nd Generation Intel®processor.

(b) Time and energy data for 4th Generation Intel®processor.

Fig. 87: Data of power-aware analysis.

199

B.2 PARALLEL CONSTRAINED MESH REFINEMENT IN THREE

DIMENSIONS

One of the layers of the Telescopic Approach (see Figure 1 on page 7) is the Parallel

Constrained layer. This section summarizes our effort and findings towards creating a

three-dimensional parallel Constrained Delaunay mesh refinement method.

To the best of our knowledge, the first two-dimensional Parallel Constrained Delaunay al-

gorithm was presented in [55]. Although the scalability was limited, it introduced the idea of

Parallel Constrained Delaunay Meshing: Each subdomain will be treated as an independent

mesh which will be refined in parallel. Conformity along the shared edges is accomplished

by sending split messages to the neighbor subdomain. Later in [52], the authors presented a

new implementation, called Parallel Constrained Delaunay Mesh (PCDM), with many im-

provements that enable the method to scale up to 100 processors efficiently. PCDM uses the

Medial Axis Domain Decomposition software (MADD) presented in [152] to over-decompose

the input geometry into several subdomains. MADD, in contrast to generic graph-based de-

composition methods, produces separators that do not introduce low quality features in the

subdomains. Subdomains are then mapped to the processors using METIS [138] and dis-

tributed using MPI similar to the previous method. The high quality of separators allowed

to apply a custom mesh generation implementation employing the Constrained Delaunay

Algorithm in each subdomain. Shared boundary conformity is achieved by sending split

messages which encode the fractions that the split should create with respect to the initial

segment avoid thus any round-off errors.

In this section, based on ideas and methods presented in the two-dimensional implemen-

tation, we present preliminary results related to a token-based communication scheme for

parallel mesh generation. Using this scheme, we implement and evaluate a three-dimensional

parallel constrained Delaunay mesh generator that introduces minor overheads but depends

on a good initial domain decomposition. Table 40 presents the classification of the method

based on the criteria of Section 2.1.

Coupling Sync. Gran. Method P. Model Decomp. Prog.

Partially Asynchronous Coarse Constrained Delaunay MPI D. Domain No

TABLE 40: Classification of the method of this section.

200

Figure 88 depicts the steps of the method when updating a constrained face between

two subdomains. Initially, the interface between the two subdomains is conforming and

points can be inserted independently as long as they do not encroach upon any shared face

(see Figure 88a). Encroachment for a point p with respect to a face is defined using the

circumscribed sphere of the triangular face. If p is inside this sphere, it is rejected and its

projection on the face q is inserted instead (see Figure 88b). The cavity of q is then evaluated

(highlighted green elements in Figure 88c) and the elements are removed (see Figure 88d).

The cavity will then be triangulated and the point will be sent to the neighboring subdomain

(see Figure 88e). Finally, the subdomain on the receiving side will repeat the steps resulting

in a conforming interface (see Figure 88f).

B.2.1 IMPLEMENTATION

In this section, we present an implementation of the proposed algorithm using TetGen

[235] as the underlying mesher. Our method decomposes the initial mesh and then refines

it in parallel. Every subdomain is treated as a separate mesh and conformity across the

shared boundaries of the subdomains is achieved by exchanging information for every point

introduced on the shared boundary. The procedure is composed of three steps: Mesh

Decomposition, Subdomain Distribution, and Parallel Refinement.

B.2.1.1 Mesh Decomposition

The lack of a proper domain decomposition method for three-dimensional geometries re-

stricted the options to a general-purpose mesh decomposition scheme like the PxQxR

method [58] and the Graph-based METIS library [138]. The input can be either a surface

mesh or a coarse tetrahedral or hexahedral volume mesh that conforms to the boundary

of the object of interest. In the case of a surface mesh, TetGen is used sequentially in a

prepossessing step and produces a coarse Constrained Delaunay volume mesh. Using either

of the decomposition methods, a map between all the elements and n subdomains is con-

structed sequentially, where n > P and P is the available number of processors. Once the

map is evaluated, the boundary of each subdomain is extracted along with the adjacency

information between them.

201

p

(a)

p
q

(b)

q

(c)

q

(d)

q

(e) (f)

Fig. 88: Steps of the PCDM method in three dimensions.

B.2.1.2 Subdomain Distribution

Creating more subdomains than processes gives the method a better chance to equi-

distribute the load. The proposed method uses information acquired from the previous step

and distributes the subdomains across the processes in a configuration that reduces the

communication among them. Similarly to [52] we utilize the dual graph of the subdomains.

In particular, we create a graph G with its nodes representing the subdomains and its

edges the interfaces between them. The weight of a vertex corresponds to the volume

202

of the subdomain. The weight of an edge corresponds to the size of the interface. We

define the size to be the sum of the areas of all constrained triangles and the lengths of

all the constrained edges on the interface. METIS is then used to partition G into n parts

by minimizing the cost of cutting graph-edges and equi-distributing the graph vertices

among the partitions taking into account their weights. The resulting mapping between

the subdomains and the processes is then used to distribute the subdomains from the root

process.

B.2.1.3 Parallel Refinement

In the parallel refinement stage, each subdomain is unpacked, and an instance of TetGen

is initialized, having as input the boundary of the subdomain. If the boundary is not

composed solely out of triangles, it is triangulated, and then using the Boundary Recovery

algorithm of TetGen, an initial volume mesh satisfying the constrained Delaunay property

is created. We have chosen this approach instead of using the built-in capabilities for

reconstructing the mesh out of the tetrahedra of the subdomain because we have found

that the reconstruction function is prone to round-off errors and very often cannot detect

constrained edges. This limitation created the need for the Reproducibility criterion, which

we describe in Section 1. We have presented a more detailed example of this issue in [62].

Since the initial coarse mesh of the subdomain was derived out of a constrained Delaunay

mesh, it is a constrained Delaunay mesh itself. Our expectation is that TetGen can recover

its boundary without adding additional points on the surface. No extra points on the

boundary, imply that the shared interfaces remain untouched and, thus no communication

is needed at this stage. TetGen has met our expectation in the cases we studied, however

more research and experimentation is required in order to have a guarantee that this will

always be the case for TetGen.

The algorithm proceeds by refining the subdomains in parallel in each subdomain while

sending any modifications performed on shared boundaries following a predefined commu-

nication scheme. More details about the scheme are presented in the next section.

The version of TetGen we utilized (1.5.0) performs the mesh refinement in three stages

as follows: Let a be the user-defined upper volume bound for the tetrahedra in the mesh.

In the first stage, TetGen splits all the encroached segments as well as all the edges that

have a length larger than 3
√
a. In the second stage, all the faces that are encroached or have

an area larger than
3
√
a2 are split. Finally, all the tetrahedra are split until the requested

quality and volume constrains are met for all the elements except those near small input

203

angles.

Following the same approach within our method would create a problem since all the

shared boundaries are split up-front, thus accumulating all the communication in the first

two stages. Moreover, this approach causes almost every point insertion to trigger a mes-

sage which creates network congestion. Since the Constrained Delaunay Mesh refinement

rules [234] do not require splitting the edges or the faces according to some quality metric,

we restructured the refinement operation by removing the first two stages. This modification

increased the running time of TetGen up to 5% in some cases, but it spread the communica-

tion across the entire run of the algorithm, thus distributing the load on the network more

equally throughout the execution of the algorithm. It should be noted, that removing these

steps did not affect the robustness of the algorithm, and the difference in quality measured

both by dihedral angles, and the radius-to-shortest-edge ratio was negligible.

The final modification performed on the TetGen code was to replace the predicates with

the ones provided by the Predicate Construction Kit (PCK) [169]. The reason for this switch

was that in order to guarantee conformity in the presence of co-circular point we need a

robust predicate for the 3D in-circle test with support of symbolic perturbation.

B.2.2 CHALLENGES OF CREATING A RELIABLE COMMUNICATION

SCHEME

Since the subdomains are refined in parallel, there is a need of synchronizing the changes

on the shared boundary while keeping the overhead low and maintaining the constrained

Delaunay property within each subdomain. The communication scheme needs to be flexible

enough to cover the needs of Constrained Delaunay refinement in three dimensions. As

it is shown in [234], the constrained Delaunay refinement of domains with small angles

requires more advanced rules than the traditional ones [232]. In particular, the split of a

single tetrahedron may require the insertion of multiple points to restore the constrained

Delaunay property of the domain. For the communication scheme, this means that some

point insertions should be bundled together, and the receiver should perform the same steps

and in the same order.

A further requirement of the communication scheme is to avoid the rounding errors that

will unavoidably appear between different subdomains since, in general, the order of the

floating-point operations performed on the interface between two subdomains is not the

same. Also, in contrast to the two-dimensional case, in our case, we may have to establish

communication between more than two subdomains since a segment may belong to the

204

shared interface of more than two subdomains.

The proposed communication scheme could resolve the first issue by packing together

all the points required to split an edge/face and restore the constrained Delaunay property.

Although this approach should work in theory, in practice, we discovered that quite often,

the receiving subdomain would declare a cavity as invalid and reject the incoming point.

This case seems to appear when the shared segment is an edge of a sliver as in Figure 89.

Since the decomposition method we use has no control over the quality of the interfaces in

terms of angles, we created synthetic data for our experiments. In particular, we used as an

initial mesh the structured grid52 composed of cubes shown in Figure 90. Any decomposition

for this input would result in right angles which do not create the aforementioned problems.

p1

p2

p3

p4

p5

q

Fig. 89: A configuration where a remote point was rejected by TetGen. A sliver p1p2p3p4

shares the face p1p3p4 with the tetrahedron p1p3p4p5. In this case q was rejected by TetGen
because its cavity was classified as invalid.

Floating-point issues are handled by including the points of the to-be-split edge/face in

the message. Conformity along the three-dimensional interfaces cannot be achieved just by

utilizing the asynchronous point insertions described in the two-dimensional implementation

of this approach [52] since a point can now be inserted anywhere on the interface and

not just at the midpoint of a shared edge. Also, interfaces can be shared by more than

two subdomains, while in two dimensions the subdomains around a shared interface are

52The grid is constructed out of a 3D image by converting each voxel (3D pixel) to a cube. We would like
to thank Fotis Drakopoulos for providing the software that performs the conversion.

205

Fig. 90: Double torus, the initial mesh of our experiments 67,000 hexahedra, 80,600 points.

always two. In our approach, conformity enforced by serializing the modifications on the

interface utilizing distributed locks in the form of tokens. The next section presents two

communication models created to handle the updates on the interfaces.

B.2.3 COMMUNICATION MODELS

This section presents two communication models that can be used with the meshing

approach presented so far. Their main difference is in the way interfaces are defined. The

first approach generates interfaces that cannot intersect, and thus a unique token for each

interface is enough to handle the communication. For example, in Figure 91 the first model

would define five interfaces; four on the outer section of the torus and one in the center.

One the other hand, the second model introduces two types of interfaces: face interfaces

that are defined between a pair of two subdomains and segment interface that are defined

at the intersection of face interfaces. Based on the second model, Figure 91 contains 15 face

interfaces and 6 segment interfaces.

Both methods utilize asynchronous messages and thus termination cannot be trivially

detected. Even if all subdomains have been refined, messages may still be in transit. To

resolve this issue, we use a circular token transmission scheme described in [78] and used

in [52].

206

Fig. 91: Double torus with interfaces highlighted.

B.2.3.1 First approach: Unique token per interface

The union of segments and faces shared between two subdomains, S1,S2 is called Interface

and will be denoted by I(S1,S2) or just I whenever the subdomains can be inferred form

the context. Interfaces should not intersect. To achieve this requirement, we utilize a

region-grow approach. In particular, starting from interface triangles, we create interfaces

by appending neighboring interface triangles and edges. If two interfaces meet, we merge

them into one. The algorithm operates under the following rules:

1. Each interface I is equipped with a (unique) token t(I) and a global interface Id (iid).

2. For each group of subdomains that share an interface a cyclic order (ring) R(I) is

defined resulting in a unique id for each subdomain relative to the group that belongs.

3. Interface I can be modified by Si only if Si holds t(I).

4. If t(I) is required but missing from Si it can be requested from the owner of the token.

5. The token has two states: empty or it holds a pair of (point, the to-be-split

segment/face) and the id of the subdomain that initiated the transmission.

6. When a non-empty token t(I) is received, if the target segment/face belongs to the

receiver it is split with the provided point. If the next subdomain Sj on R(I) is not

207

the one that initiated the token transmission then t(I) is sent to Sj.

Additionally, each subdomain is equipped with four maps indexed by the global interface

Id:

1. tokenIsHere[iid] indicates whether the token for interface iid is present.

2. tokenOwner[iid] holds the current owner (or the next owner in case there is an

on-going transmission53) of the token of the interface idd.

3. requestSent[iid] indicates whether a token request has been sent since the last

synchronization. This map prevents the algorithm from sending an excessive number

of messages.

4. requestReceived[iid] indicates whether any request has been received since the last

synchronization for interface iid.

Initially the tokens are distributed arbitrarily among the neighbors of the interfaces. The

locations of the tokens are broadcasted among the subdomains.

Main refinement procedure: Each subdomain Si is being refined by processing elements

from a queue Q. When the steiner point p of an element belongs to an interface a check for

token ownership is performed.

• If the token is present, a token transmission is initiated: p is inserted in the mesh

and copied into the token together with the segment/face that was split and the id of

the subdomain. The subdomain then sends the token to the next subdomain in R(I)

updates the value of the owner of the t(I) to the previous subdomain in R(I) and

sets requestSent for t(I) to false.

• If the token is not present, then the element that caused the creation of p is pushed

into a pending queue PQ, a token request is sent to the owner of the token as indicated

by tokenOwner and requestSent is set to true. The reason of the last step is to avoid

sending unnecessary many requests.

53The next owner is the last in R(I) with respect to the Subdomain that initiated the token transit.

208

Incoming Messages: During the course of the above steps a message may be received.

This can be a token, a token request or an empty token.

• If it is a token request, and Si holds currently the token. It sends the token to the

sender of the request. If Si does not hold the token it sets requestReceived to

(true,source). The value of requestReceived will be used as hint: when Si no

longer uses the token it will send it to Ssource.

• If the token contains a point p, then the to-be-split segment/face g is checked: If g

belongs to the boundary of the subdomain, p is inserted and the token is sent as-is to

the next on R(I). On the other hand, if g does not belong to the subdomain boundary,

the token is just forwarded to the next subdomain on R(I).

• In the case that the token is empty, it means that it is a response to a token request

so the corresponding pending queue is checked for elements that still need refinement.

If this check results in a point of the interface, it is being treated similarly with the

main procedure above: insertion, token initialization, and token transmission.

Figure 92 depicts the method using three separate “threads”. In practice the code is

sequential but the use of threads simplifies the diagram.

Evaluation: To evaluate the first communication model we conducted a series of exper-

iments on the turing High Performance Computing cluster at Old Dominion University54.

In particular, we employed two nodes equipped with 2xIntel®Xeon E5-2698 v3 2.30GHz

and 125Gb of memory each, for a total of 64 cores and 250Gb of memory.

We performed a weak scalability [117] study by increasing the number of elements lin-

early with respect to the number of processes while keeping an average load of 10 million

elements per process. To avoid creating interfaces between multiple subdomains, we use a

P decomposition and sorted the elements along the x-axis. Figure 93 presents the speedup

and efficiency of the approach. For this dataset the number of subdomains matches the

number of processes. The results indicate that this approach cannot maintain efficiency for

more than a few cores.

Table 41 provides more insight into the data. The total cost of the communication for

our method is quite low, less than 4% of the total running time. The time spent waiting

for termination is due to the load imbalance between the processes. The imbalance does

54https://wiki.hpc.odu.edu/en/Cluster/Turing (Accessed 2021-07-01).

https://wiki.hpc.odu.edu/en/Cluster/Turing

209

 local variables:
 myID
 tokenOwner
 tokenIsHere
 requestSent
 requestReceived { source, bool}

def next(i):
 return (i+1)mod number_of_subdomains_sharing_interface
def prev(i):
 return (i-1) mod number_of_subdomains_sharing_interface
struct token{
 initID /* id of subdomain that initialized the token transmission*/
 point
};

CheckQ

test(steiner(element) ∈ I)

test(tokenIsHere)

e
le

m
e
n

t

Emit(Sender_thread,"token_request")

checkReceiveBuffer()

Insert(token.point)Emit(Sender_thread,"forward_token")

Insert(steiner(element))

token.initID = myID
token.point = steiner(element)
tokenOwner = prev(myID)

Emit(Sender_thread,"forward_token")

Insert(steiner(element))

true

Start:

false

true
false push(element,PQ)

test(requestReceived)

CheckPQ
test(tokeIsHere)

false

true

test(requestSent)
requestSent = true
requestReceived = {-1,false}

waitOnSignal()

SendTo(next(myId),token)

token_request

forward_token

SendTo(source,token)
respond_token_request, source

fa
lse

true

SendTokenRequestTo(tokenOwner)

Sender_thread

Refinement_thread

BlockingReceive(source,msg) Emit(Sender_thread,
"respond_token_request",
source)

test(token == empty_token)token

token_request
test(tokenIsHere)

Receiver_thread

token = empy_token
tokenOwner = source
tokenIsHere = false

true

false

requestReceived = (true,source)

CopyToReceiveBuffer(token.point)

true

test(token.point in Subdomain)

true

Emit(Sender_thread,"forward_token")
false

tokeIsHere = true
requestSent = false

empty
false

Emit(Sender_thread,
"respond_token_request",
requestReceived.source)

true

not-empty

Fig. 92: Flowchart of the method. The algorithm can be visualized as three threads sharing
data using the token structure, the variable tokenOwner, the boolean flags tokenIsHere,
requestSent, requestReceived and the ReceiveBuffer. Q is the queue of bad elements
while PQ contains (possibly deleted) elements that could not be processed due to the
absence of the token.

210

Fig. 93: Scalability results running on the double torus and generating 10 million elements
per process.

Processes 8 16 32 40 48 56 64

Communication Overhead 2.44% 2.62% 2.94% 3.20% 3.06% 2.76% 1.61%

Handle Message 1.78% 2.72% 3.37% 3.87% 3.70% 3.24% 1.84%

Waiting to terminate 2.37% 7.55% 14.47% 12.94% 24.10% 36.23% 63.82%

In comparison to no comm +9.89% +21.61% +34.15% +41.51% +50.82% +98.74% +250.38%

TABLE 41: Overhead introduced by our method as percentage of the total running time.

not come from differences in the volume of the subdomains. The number of elements in

each subdomain differs by less than 1%. The source of imbalance is that, as the number

of processors grows, the ratio between volume and surface of a subdomain becomes smaller

introducing thus more communication and deteriorating the performance. A solution would

be to use a different decomposition such as PQ or PQR. Such a decomposition however cre-

ates interfaces between more than two subdomains and which requires more communication.

For reference, using PQ across the X and Y axis instead of P decomposition increased the

ruining time by more than 6 times due to the increased time spend for the tokens shared

by more than two subdomains. The last row of Table 41 compares our method with a

version of the code that uses no communication among the subdomains. Of course, the

interfaces are not conforming anymore but, on the other hand, the lack of communication

reveals the total overhead of the method. Notice that even at a low number of processes

211

Processes 8 16 24 32 40 48 56 64

Point Messages 28.5% 26.6% 25.5% 24.7% 24.0% 23.5% 23.3% 23.3%

Token Requests 38.5% 40.8% 42.2% 43.2% 44.0% 44.6% 45.2% 46.2%

Empty Tokens 33.0% 32.6% 32.3% 32.1% 32.0% 31.9% 31.5% 30.5%

TABLE 42: Percentage of different types of messages.

(< 16) where the efficiency of the method is high, the overhead is not negligible. Still, the

method performs well due to the overlap between communication and computation that

the asynchronous approach offers. Table 42 offers a breakdown of the types of messages

used during the execution. Only 23 − 28% of the messages contain points and the rest

is the bookkeeping that the communication model performs, thus indicating the need to

improve it. The negative effect of a single token among many multiple subdomains of our

first approach pushed our efforts towards redefining the notion of interface and resulted in

the second approach described in the next section.

B.2.3.2 Second approach: Compound Tokens

Based on the observation that the main source of inefficiency of our initial approach is

the interfaces that are shared among more than two subdomains, we revised our model

introducing compound tokens. This model is an extension of the previous but we repeat

the common rules and definitions for completeness.

Interface is a set of (connected) faces and segments. There are two type of interfaces:

• Segment Interfaces Contain only segments shared by more than two subdomains.

• Face Interfaces Contain segments and faces that are shared by exactly two subdo-

mains.

The rules of this model are the following:

(D1) Only interfaces of different types can intersect.

(D2) For each group of subdomains sharing I, a cyclic order (ring) is defined R(I).

(D3) For each segment interface I, the set of ids of the intersecting face interfaces is denoted

by D(I).

212

(D4) Each interface I is equipped with a (unique) token t(I) and a global interface Id (iid).

(D5) For each segment interface Is, we define the compound token to be the union between

the segment token and the tokens of all intersecting faces i.e.,

compound token(Is) =
⋃

j∈D(Is)

t(Ij) ∪ t(Is)

To distinguish compound from non compound tokens we refer to the latter as proper

tokens.

(D6) A proper token has four states:

(a) empty and unlocked

(b) empty and locked

(c) in transit together with a point (token.point) and the id of the subdomain that

initiated the transmission (token.initID)

(d) in transit and empty

(D7) Each subdomain S is equipped with five arrays:

(a) tokenIsHere[iid] indicates whether the proper token for interface with global id

iid is present.

(b) tokenOwner[iid] holds the current owner (or the future owner if there is an on-

going transmission) of the proper token of the interface with global id iid.

(c) tokenIsLocked[iid] indicates whether a proper token is locked and therefore can-

not be sent as a response to a request or used for splitting a segment/face.

(d) requestForToken[iid] = priority queue{source} collects the token requests re-

ceived while the token was missing. Token requests that arise from compound

token assemblies, have higher priority than the rest. Ties on priorities are resolved

based on process ids.

(e) requestSent[iid] a boolean array, indicates whether a request has been sent for

the interface with id iid. The purpose of this array is to avoid excessive number

of messages.

In the following rules the compound token is excluded unless it is explicitly stated:

213

(R1) A face interface I with id iid can be modified only if t(I) is present and not locked

i.e.,

tokenIsHere[iid] ∧ ¬ tokenIsLocked[iid]

(R2) To construct the compound token of I, a subdomain must first acquire and lock the

segment token t(I), and then acquire and lock one at a time and in ascending order

the tokens in D(I).

(R3) A segment interface I can be modified only if the compound token(I) is present.

(R4) If a proper token of an interface with id iid is missing and has not been requested yet

(i.e. requestSent[iid] = false) it will be requested from the owner as indicated by the

tokenOwner[iid] value. As soon as a request is made, requestSent[iid] is set to true.

(R5) After inserting a point p on a shared interface I, the token t(I) is sent together with

p to the next subdomain on R(I) if the next is not token.initId.

(R6) When a compound token compound token(I) completes a circle around R(I) each

of its components in D(I) are sent to the subdomain with the lowest id among the

neighbors of I. At this point compound token(I) is destroyed.

(R7) If a token of an interface with id iid is empty and unlocked it will be sent to the first

subdomain in requestForToken[iid]. If the entry is empty, the token will remain idle.

The requests for assembling the segment interface could cause a deadlock whenever

two segment interfaces share more than one face interface. To avoid it, we always request

the tokens in a predefined order and one at a time (R2). See for example Figure 94. If

subdomains D and F begin acquiring tokens to assemble I8 and I9 respectively at the same

time, they will be competing for I4 and I5. If D acquires {I8, I1, I2, I3, I4} and waits for I5

and E acquires {I9, I10, I7, I6, I5} and waits for I4 a deadlock will occur. Livelock can also

occur if both D and E release and re-acquire the tokens. On the other hand, if we collect

them one by one and in ascending order the first one who receives I4 will continue and

the second will wait until the missing token is available. Notice also that by (D7) pending

requests tokens have higher priority.

Finally, Figures 95-100 present a pseudocode of the proposed approach. Although, it

satisfies all our requirements and it is expected to perform better than the initial approach,

implementing this method may be unnecessary complex. Moreover, looking through the

algorithm we see a mix of mesh-, communication- and correctness-related steps. A direct

214

I2

I1

I3

I4

I5

I6

I7

I9I8
I10

A
B C

FED

G

Fig. 94: A configuration of subdomains and interfaces that could lead to a deadlock.

implementation of this approach would be against the notions of separation of concerns

we mentioned in Chapter 5, and it would limit significantly the code-reuse aspects of the

project.

This approach could be implemented and greatly simplified if the communication scheme

is approached having the capabilities of the PREMA runtime system [244] in mind. Sub-

domains are the obvious candidate for mobile objects [56] and together with the Implicit

Load Balancing (ILB) layer [19] of PREMA they aid towards writing reusable code for

packing/unpacking and load balancing the workload related to refining the subdomains.

We have already demonstrated this capability in [244].

Tokens can be yet another mobile object. Since PREMA keeps track of the location of

mobile objects, token requests and request forwarding can be taken care of by the runtime

system, thus offloading a great complexity out of this method. Dependencies between a

compound token and its constituent tokens can be achieved through Mobile object depen-

dencies which we demonstrated in [106]. Such an approach is expected not only to speed

up the implementation but will also offer better performance since PREMA offers dynamic

load balancing, which is absent in this approach.

215

Function RefineSubdomain(S)

/* This is the usual Delaunay Refinement loop with the exception that

a segment or a face may not be split due to a missing token. In

this case the tetrahedron that caused the need for a segment/face

split is pushed back into the refinement queue and the face or

segment to the appropriate pending queue in order to be processed

as soon as the missing token arrives */

fi pendingQ ← ∅ /* Queue of faces/segments on face interfaces that need

to be split */

si pendingQ ← ∅ /* Queue of segments on segment interfaces that need to

be split */

counter ← 0
// Let Q be the list of tetrahedra that need refinement

while Q 6= ∅
do

t ← Q.pop front()
p ← steiner (t)
if (p encroaches upon a segment e) then

split ← splitSegment(e)
if (split != true) then

Q.push back(t)
endif

elif (p encroaches upon a face f) then
split ← splitFace(e)
if (split != true) then

Q.push back(t)
endif

else
insert(p)

endif
counter++
// control how often we check for new messages

if (counter > pollFrequency) then
if (checkForMessage(msg)) then

handleMessage(msg)
endif
counter ← 0

endif

end while

1

Fig. 95: Refinement procedure.

216

Function splitSegment(e)

/* Split an interface segment only if the subdomain holds the token and the token

is not locked. Otherwise, a request is sent and the segment is pushed either

into the fi pendingQ or si pendingQ if it lies on a face or segment interface

respectively. */

input: segment e
return true if e was split

false otherwise

if (e is on face interface) then
iid ← getInterfaceId(e)
// rule (R1)

if (tokenIsHere[iid] and not tokenIsLocked[iid]) then
q ← steiner(e)
insert(q)
sendToken(iid,e,q) // rule (R5)

return true

else
// rule (R4)

if (requestSent[iid] == false) then
sendTokenRequest(tokenOwner[iid],iid)
requestSent[iid] ← true

endif
fi pendingQ.push back(e)
return false

endif

elif (e is on segment interface) then
iid ← getInterfaceId(e)
// rule (R1)

if (tokenIsHere[iid] and not tokenIsLocked[iid]) then
/* Holding the token is not enough see rule (R3) assemble the compound token

as rule (R4) suggests */

tokenIsLocked[iid] ← true
all acquired ← acquireAdjacent(iid)
if (all acquired == true) then

/* if it happens that all the required tokens are present we can split the

segment */

q ← steiner(e)
insert(q)
sendToken(iid,e,q) // rule (R5)

return true
endif

else
// rule (R4)

if (requestSent[iid] == false) then
sendTokenRequest(tokenOwner[iid],iid)
requestSent[iid] ← true

endif

endif
si pendingQ.push back(e)
return false

else
q ← steiner(e)
insert(q)
return true

endif

1

Fig. 96: Splitting a segment.

217

Function splitFace(f)

/* Split an interface face only if the subdomain holds the token and

the token is not locked. Otherwise, a request is sent and the face

is pushed into the fi pendingQ. */

input: face f
return true if f was split

false otherwise

q ← steiner(f)
if (q is encroached by a segment e) then

return splitSegment(e)
elif (f is on a face interface) then

iid ← getInterfaceId(f)
// rule (R1)

if (tokenIsHere[iid] and not tokenIsLocked[iid]) then
q ← steiner(f)
insert(q)
sendToken(iid,f,q) // rule (R5)

return true

else
// rule (R4)

if (requestSent[iid] == false) then
sendTokenRequest(tokenOwner[iid],iid)
requestSent[iid] ← true

endif
fi pendingQ.push back(f)
return false

endif

else
q ← steiner(f)
insert(q)
return true

endif

1
Fig. 97: Splitting a face.

218

Function handleMessage(msg)

switch msg.tag do
case TOKEN REQUEST do

// a subdomain requested a token

iid ← msg.interfaceId
if (tokenIsHere[iid] and not tokenIsLocked[iid]) then

sendEmptyToken(msg.source,iid)
else

// rule D7(e)

requestForToken[iid].push(msg.source)
endif
break

end case
case EMPTY TOKEN do

/* this is a response to a request that we sent. Use the token to process

faces that were previously pushed due to missing token. In case of a

segment interface token we cannot use it yet */

iid ← msg.interfaceId
tokenIsHere[iid] ← true
if (iid is segment interface OR a compound token which requires iid is under assembly
) then

tokenIsHere[iid] ← true
tokenIsLocked[iid] ← true
all acquired ← acquireAdjacent(iid)
if (all acquired) then

split the segment(s) belonging to the interface that initiated the assembly
compose a message msg containing the new point(s), the tokens and the tag

POINT ON SEGMENT INTERFACE
send msg to the next on the ring of the segment token

endif

else //iid is a face interface

processQ(fi pendingQ)
/* we can now forward the token to the subdomains that requested it

while it was missing (rule (R7)) */

if (requestForToken[iid] != ∅) then
send token to requestForToken[iid].top()
requestForToken[iid].pop();

endif

endif
break

end case
case POINT ON FACE INTERFACE do

/* a subdomain sent a point for insertion */

iid ← msg.interfaceId
tokenIsHere[iid] ← true
insertRemotePoint(msg.data)
/* we can now forward the token to the subdomains that requested it while

it was missing (rule (R7)) */

if (requestForToken[iid] != ∅) then
send token to requestForToken[iid].top()
requestForToken[iid].pop();

endif
break

end case
case POINT ON SEGMENT INTERFACE do

/* similar with previous case but now the token has to be advanced to the

next subdomain on the ring */

siid ← msg.interfaceId
tokenIsHere[siid] ← true
if (msg.initId == myId) then

/* the segment token completed a circle, so we can release the

associated face interface tokens */

destroy the compound token and sent its components to the lowest id subdomain of
each interface

else
insertRemotePoint(msg.data)
send the token to the next on the ring

endif
break

end case

end switch

1

Fig. 98: Handling an incoming message.

219

Function processQ(pendingQ)

/* iterate pendingQ (which can be either si pendingQ or fi pendingQ)

and split all the segments & faces that can be split */

input: Queue pendingQ

foreach g in pendingQ do
if (g does not exist in the mesh) then

pendingQ.remove(g)
else

giid ← getInterfaceId(g)
// rule (R1)

if (tokenIsHere[giid] and not tokenIsLocked[giid]) then
if (g is a segment) then

splitSegment(g)
else

splitFace(g)
endif
pendingQ.remove(g)

endif

endif

end foreach

1

Fig. 99: Processing pending points.

Function acquireAdjacent(siid)

/* this function implements rule (R2): assembles a compound token of

all the face interface tokens adjacent to the segment interface

siid. Each time it is called it requests the next face interface

token adjacent to siid */

input: Segment Interface Id : siid
return true if all required tokens are here

false otherwise

sent ← false
foreach iid in sorted(intersecting face interfaces of siid) do

if (tokenIsHere[iid] == false) then
send an TOKEN REQUEST for iid to tokenOwner[iid]
sent ← true
break

else
/* in case the token was already here we need to lock it to

prevent both using and sending it */

tokenIsLocked[iid] = true
endif

end foreach
if (sent == false) then

/* no messages sent, all required tokens are present */

unlock all required tokens
return true

endif
return false

1

Fig. 100: Assembling a compound token.

220

VITA

Christos Tsolakis

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

e-mail: ctsolakis@cs.odu.edu

Christos Tsolakis received his Bachelor’s degree in Mathematics from the Aristotle

University of Thessaloniki, Greece in 2014. In Spring 2015, Christos joined the Computer

Science Department of Old Dominion University to pursue a Ph.D. degree. He is currently

working with Dr. Nikos Chrisochoides in the Center of Real-Time Computing as a research

assistant. His research focuses on developing parallel mesh adaptation methods for a

variety of applications including CFD (Computational Fluid Dynamics), Medical Imaging,

and Nuclear Femtography data. Most of his research work involved collaborating with

several research groups including NASA, NIA (National Institute of Aerospace), and the

Jefferson Lab. He has (co)-authored 14 publications. His presentation at the 2019 Modeling

Simulation and Visualization Student Capstone Conference won the best presentation

award in the General Engineering track and was afterward invited to the 2019 MODSIM

conference. He received the Modeling and Simulation Research Fellowship from the Virginia

Modeling, Analysis & Simulation Center (VMASC) of ODU to support his research for 3

years (2016-2019) (maximum allowance). In 2017 he was selected to be part of the Argonne

Training Program on Extreme-Scale Computing (70 participants world-wide). In 2018 he

received an Outstanding Graduate Researcher award by the Computer Science Department

as well as an NSF Travel award for the 27th International Meshing Roundtable and User

Forum. During 2020-2021, his research was funded by the Dominion Scholar Fellowship.

Typeset using LATEX.

ctsolakis@cs.odu.edu

	A Unified Framework for Parallel Anisotropic Mesh Adaptation
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Aim of this work
	Outline

	Background
	Parallel Mesh Generation Previous Work Review
	Metric Spaces in the context of Mesh Adaptation

	Parallel metric-based adaptation
	Isotropic Mesh Generation
	Metric-based Adaptation within the CDT3D library
	Handling Geometry through metric spaces
	Speculative implementation in the context of the Telescopic Approach

	Evaluation
	Mesh Adaptation at Constant complexity
	Mesh Adaptation within an adaptive pipeline

	A tasking framework for Parallel Mesh Operations
	Related Work
	Method
	Case Studies

	Conclusion
	Future Work
	REFERENCES
	Mesh Adaptation for other disciplines
	Femtography data
	Adaptive Mesh Generation for Medical Data

	Parallel Mesh Generation Challenges
	Power Consumption Aspects of Mesh generation
	Parallel Constrained Mesh Refinement in three dimensions

	VITA

