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ABSTRACT  

EXAMINING MELT POND DYNAMICS AND LIGHT AVAILABILITY IN 

THE ARCTIC OCEAN VIA HIGH RESOLUTION SATELLITE IMAGERY 
 

Austin Wesley Abbott  

Old Dominion University, 2021  

Director: Dr. Victoria J. Hill  

  

As the Arctic experiences consequences of climate change, a shift from thicker, multi-

year ice to thinner, first-year ice has been observed.  First-year ice is prone to extensive pools of 

meltwater (“melt ponds”) forming on its surface, which enhance light transmission to the 

ocean.  Changes in the timing and distribution of melt pond formation and associated increases in 

under-ice light availability are the primary drivers for seasonal progression of water column 

primary production and warming.  Observations of melt pond development and distribution 

require meter scale resolution and have traditionally been limited to airborne images. However, 

recent advances in high spatial resolution satellites now allow for observations of individual melt 

ponds from space.   

Images of pack ice in the Chukchi Sea during 2018 obtained from WorldView 

satellite systems showed minimal melt pond coverage in June, with a rapid increase in late June, 

leading to saturated and flooded ice floes by mid-July.  Cumulative hours above freezing (air 

temperature) was a stronger predictor for pond development than daily average values of 

temperature and irradiance and was well represented by a logistic growth curve.  

Size distributions (normalized to total pond area) of melt pond area was dominated by 

small (≤10 m2) ponds at the onset of ponding, shifting towards medium sized ponds (mode of 

100 to 1,000 m2) as surface melt progressed.  Late in the summer when ice flows were saturated 



   
 

   
 

with ponds, the distribution was skewed towards a handful of very large ponds nearing 1,000,000 

m2, connected by channels which created a myriad of complex shapes.   

A primary production model driven by under-ice light intensity estimated from our 

classified images revealed that initial small increases in melt pond fraction have a large impact 

on potential under-ice chlorophyll growth and carbon uptake, eventually trending towards a 

saturating upper limit as ponds continued to spread.  Results shown here offer novel insights into 

melt pond growth and distribution, along with estimates of how ponding impacts primary 

production.  These conclusions showcase physical, observable consequences of an Arctic Ocean 

dominated by thin, first-year ice, and can be employed to advise future efforts in Arctic 

modeling. 
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NOMENCLATURE 

 

AT  Air Temperature, oC 

DMP  Dark Melt Pond 

Ed(0
-)  Downwelling Irradiance just below the Ice/Water or Air/Water Interface, mol m-2 

d-1 

EVWHS Enhanced View Web Hosting Services 

fpi  Pond Fraction of Ice 

fps  Pond Fraction of Scene 

FYI   First-Year Ice 

LMP  Light Melt Pond 

MIZ  Marginal Ice Zone 

MLC  Maximum Likelihood Classification 

MYI  Multi-Year Ice 

NSIDC  National Snow and Ice Data Center 

PAR  Photosynthetically Available Radiation 

RGB  Red-Green-Blue 

ROI  Region of Interest 

SK  Sidekick 

SST  Sea Surface Temperature, oC 

WARM  Warming and Irradiance Measurements 

WB  WARM Buoy 

WV  WorldView (satellites) 



viii 
 

   
 

TABLE OF CONTENTS 

Page 

LIST OF TABLES .......................................................................................................................... x 

 

LIST OF FIGURES ....................................................................................................................... xi 

 

INTRODUCTION .......................................................................................................................... 1 

CHANGES IN THE ARCTIC ENVIRONMENT .............................................................. 1 

MELT PONDS.................................................................................................................... 2 

CONSEQUENCES OF MELT PONDS ............................................................................. 3 

MEASURING MELT POND ABUNDANCE ................................................................... 4 

MOTIVATION FOR THIS STUDY .................................................................................. 6 

 

METHODS ..................................................................................................................................... 8 

WORLDVIEW SATELLITES & IMAGE COLLECTION ............................................... 8 

SUPERVISED IMAGE CLASSIFICATION ................................................................... 11 

VALIDATION OF CLASSIFICATION ACCURACY ................................................... 15 

SPATIAL CHARACTERISTICS OF INDIVIDUAL MELT PONDS ............................ 15 

DEVELOPMENT OF LIGHT AVAILABILITY DATA PRODUCT ............................. 17 

LIGHT DRIVEN PRIMARY PRODUCTION UNDER THE ICE ................................. 19 

IN-SITU DATA ................................................................................................................ 21 

 

RESULTS ..................................................................................................................................... 24 

CLASSIFICATION ACCURACY ................................................................................... 24 

CLASS DISTRIBUTION DATA ..................................................................................... 30 

ENVIRONMENTAL DRIVERS OF MELT POND GROWTH ..................................... 37 

INDIVIDUAL MELT POND SIZE.................................................................................. 40 

MODELED LIGHT AVAILABILITY............................................................................. 42 

 

DISCUSSION ............................................................................................................................... 46 

CLASSIFICATION ACCURACY ................................................................................... 46 

MELT POND DYNAMICS ............................................................................................. 48 

INDIVIDUAL POND SIZE ............................................................................................. 51 

LIGHT AVAILABILITY ................................................................................................. 53 



ix 
 

   
 

LIMITATIONS ................................................................................................................. 55 

FUTURE IMPLICATIONS .............................................................................................. 56 

 

CONCLUSIONS........................................................................................................................... 58 

 

REFERENCES ............................................................................................................................. 59 

 

VITA ............................................................................................................................................. 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

   
 

LIST OF TABLES 

Table                                                                                                                                           Page 

1.  Catalog of Available Satellite Images. ................................................................................................... 10 

2.  Transmittance Values Obtained from Previous Studies. ......................................................... 18 

3.  Conditions for Model Runs. ..................................................................................................... 20 

4.  Pond Fraction Relationships .................................................................................................... 38 

5.  Logistic Curve Variables ......................................................................................................... 39 

6.  Median Pond Sizes and Densities. ........................................................................................... 41 

7.  Binned Pond Counts from Select Sub-Tiles. ........................................................................... 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

   
 

LIST OF FIGURES 

Figure                                                                                                                                         Page 

1.  Study Site ................................................................................................................................... 9 

2.  Workflow Schematic ............................................................................................................... 11 

3.  Training Spectra ....................................................................................................................... 13 

4.  Melt Pond Size Threshold ........................................................................................................ 17 

5.  WARM Buoy and Sidekick Design ......................................................................................... 22 

6.  Daily Average In-Situ Data. .................................................................................................... 23 

7.  Classification Example ............................................................................................................ 24 

8.  Summary of U-Scores .............................................................................................................. 26 

9.  Summary of P-Scores .............................................................................................................. 27 

10.  Common Misclassifications ................................................................................................... 29 

11. Melt Pond Classification Accuracy ........................................................................................ 30 

12. Time Series of Class Abundance ............................................................................................ 31 

13. Onset of Ponding (Phase 1)..................................................................................................... 33 

14. Ponding Increases (Phase 2) ................................................................................................... 34 

15. Pond Saturation of Ice Flows (Phase 3) .................................................................................. 35 

16. Disintegration of Ice Pack ....................................................................................................... 36 

17. In-Situ Data ............................................................................................................................. 37 

18. Melt Pond Growth Models...................................................................................................... 40 

19. Melt Pond Size Histograms .................................................................................................... 41 

20. Modeled Irradiance ................................................................................................................. 43 

21. Primary Production Model Results ......................................................................................... 44 



xii 
 

   
 

22. Comparison of WV and NSIDC ............................................................................................. 45

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

   
 

INTRODUCTION 

 

Changes in the Arctic Environment 

The Arctic Ocean is a region with a rapidly changing climate, resulting in sea ice 

decrease over decadal timescales.  Thicker, multi-year ice (MYI) has been replaced by thinner, 

seasonal first year ice (FYI) at an alarming rate, with decreases in MYI ranging from 15.1% to 

17.2% per decade (Comiso, 2011).  The Arctic is experiencing earlier ice melt and break-up in 

the spring, and delayed re-freeze in the fall when compared to historical data (Johnson & Eicken, 

2016; Richter-Menge & Druckenmiller, 2020). 

The transition to FYI results in lower surface albedo, reduced snow cover, enhanced 

melting, and greater input of solar radiation both into the ice and reaching the upper water 

column (Perovich & Polashenski, 2012).  Submarine light availability in ice covered waters is 

largely attenuated by the high scattering nature of the overlying ice pack, which contains air 

bubbles and brine channels with different refractive indices than the surrounding ice (Mobley et 

al., 1998).  Additionally, the age of the sea ice has a large impact on its transmissivity.  FYI can 

boost light transmission to the water column nearly three-fold in comparison to MYI, from 4% to 

11% (Nicolaus et al., 2012), creating a more conducive environment for light driven processes.  

In 2011 the Arctic was comprised of 44% MYI and 56% FYI.  Replacement of all remaining 

MYI with FYI is predicted to increase mean transmitted energy flux by 18% (Arndt & Nicolaus 

2014).     

Phytoplankton blooms have been observed underneath thin and ponded ice as early as 

June, suggesting that these conditions provide ample light to support photosynthesis before the 

ice completely melts in late July to early August (Arrigo et al., 2014; Assmy et al., 2017; Hill et 
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al., 2018).  A shift from historic open water phytoplankton blooms in July and August to earlier 

under ice blooms in May and June has the potential to cause a phenological mismatch, where 

phytoplankton blooms occur before zooplankton have reached the feeding stage, leading to 

starvation and low recruitment rates (Ji et al., 2013).  Alternatively, increased grazing may limit 

export production to the benthos, resulting in the decline of bivalves and other benthic organisms 

that serve as key food sources for larger organisms (Grebmeier, 2012). 

 

Melt Ponds 

As snow and ice begin to melt in the late spring and early summer, surface ponding of the 

meltwater (hereafter referred to as “melt ponds”) begins to occur in areas of low local 

topography (Polashenski et al., 2012).  Melt ponds can become widespread at lower latitudes 

(70o – 80o N) but have been observed as far as 88o N (Huang et al., 2016).  There is some 

variability in the development and propagation of melt ponds.  MYI seems to undergo less 

ponding than FYI (Nicolaus et al., 2012), which typically becomes saturated with a complex 

network of interconnected ponds by late summer (Fetterer & Untersteiner, 1998; Tschudi et al., 

2001; Webster et al., 2015).  Ponds on MYI tend to be of a lighter color (Buckley et al., 2020), 

which is most likely attributable to the underlying ice type (Tschudi et al., 2001).  The degree to 

which ponding occurs is partially a function of the roughness and thickness of local sea ice 

(Nasonova et al., 2018).  There is general agreement that ponding is a dynamic process 

controlled by multiple drivers and should be expected to vary geographically and interannually 

(Eicken et al., 2002; Perovich et al., 2002b; Perovich & Polashenski, 2012; Tschudi et al., 2008). 

Pond development has conventionally been addressed in four separate stages (Eicken et 

al., 2002).  Initially, air temperatures above 0o C drive snow and ice melt, which causes 
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widespread lateral ponding (Stage I).  As the summer progresses, increased ice permeability 

allows melt pond drainage through the ice, thus lowering pond fraction (Stage II).  Stage III is 

marked by reduced freeboard (difference in height between sea surface and ice surface) and 

extensive ponding on the ice, with ponds that melt all the way through to the underlying water 

column.  Stage IV marks freeze-up and is accompanied by a steep decrease in pond fraction.  

Similar stages were later re-defined by Perovich & Polashenski (2012). 

 

Consequences of Melt Ponds 

Melt pond formation and decreased snow cover both lower the albedo of the ice pack, 

resulting in warming and thermal expansion of seawater (Perovich et al., 2008).  Longer periods 

of reduced ice cover can drive up temperature in the upper water column, thus increasing 

stratification (Perovich & Maykut, 1990), which can limit nutrient availability.  Greater UV 

penetration also leads to increased photochemical oxidation of dissolved organic matter.  This 

can result in a release of CO2 to the atmosphere (Sulzberger & Arey, 2016) and increase the 

abundance of biologically available products (Kieber et al, 1989).   

Arguably the greatest consequence of melt pond formation is the increased amount of 

light reaching the upper water column (Frey et al., 2011; Light et al., 2008; Light et al., 2015; 

Perovich et al., 1998a).  Ice type, pond fraction, and melt onset are the main drivers affecting 

light availability beneath the ice (Arndt & Nicolaus, 2014).  When the Arctic seasonal ice pack 

begins to melt and retreat, extreme heterogeneity is seen in light penetration to the ocean due to 

variations in surface snow melt, and the distribution of ponded ice and open water leads (Frey et 

al., 2011).  It is therefore very challenging to estimate the time-integrated light dose that 

phytoplankton may experience as they drift under the ice.  Estimates of productivity can easily 
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become complex, as the continuous movement of both water and ice allows the upper water 

column to experience large and rapid temporal variations in the quantity and quality of light.  

These estimates are further complicated by the difficulty of obtaining large scale in situ 

measurements of pond presence and size.  New methods with the capability of covering large 

areas at meter scale spatial resolution will be required to advance the monitoring of melt pond 

development. 

 

Measuring Melt Pond Abundance 

Aerial imagery has long been the preferred method for observing and quantifying melt 

pond coverage.  The difference in spectral reflectance characteristics between bright ice, dark 

water, and intermediate melt ponds allows for the separation of melt ponds from surrounding ice 

pixels.  High resolution cameras mounted on aircraft can provide 2-D images of the ice surface 

for feature classification but are limited to collecting data along transects spanning the swath 

width of the camera at flight altitude (Buckley et al., 2020; Derksen et al., 1997; Eicken et al., 

2002; Huang et al., 2016; Perovich & Tucker, 1997; Perovich et al., 2002b; Tschudi et al., 2001; 

Yackel et al., 2000 and others).  Additionally, continuous aerial surveys require a large 

investment of resources and labor to obtain seasonal time series of melt pond development. 

Observations of individual melt ponds requires imagery with spatial resolution on the 

scale of meters or better.  This disqualifies many spaceborne remote sensing systems, such as 

VIIRS (Visible Infrared Imaging Radiometer Suite) with a spatial resolution of 750 m, and 

passive microwave measurements used to quantify ice concentration by the NSIDC (National 

Snow and Ice Data Center) (25-kilometer footprint).  Accurate estimations of pond fraction have 

been carried out with MODIS (MODerate resolution Imaging Spectroradiometer) via area-
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averaged reflectance values validated by UAV imagery (Tschudi et al., 2008).  However, with a 

spatial resolution of 250 m, MODIS still lacks the ability to quantify the size, shape, depth and 

spatial extent of individual ponds. 

A handful of previous studies have successfully classified melt ponds using satellite 

imagery with higher spatial resolution.  Fetterer & Untersteiner (1998) and Webster et al. (2015) 

both used National Technical Means (NTM) satellite imagery (single panchromatic band, 1 m 

resolution) to obtain melt pond aerial coverage.  Nasonova et al. (2018) utilized the GeoEye-1 

satellite (2 m multiband resolution, 0.5 m panchromatic resolution) operated by MAXAR© to 

calculate pond fraction.  Of these, Fetterer & Untersteiner (1998) and Nasonova et al. (2018) 

successfully employed maximum likelihood classifications- supervised classification techniques 

that use manually selected training areas to map melt pond distribution.  Webster et al. (2015) 

designed a custom classification based on object histograms.   

Though computer-based image classifications can be powerful tools for quantification of 

melt ponds, they are subject to error.  Buckley et al. (2020) observed five common features that 

cause misclassifications- ridge shadows, sun glint from waves, ice draft (submerged ice edge), 

open water near melt ponds, and very light melt ponds.  Perovich et al. (2002b) also noted that 

bottomless melt ponds can be classified as open water due to their dark color.  Derksen et al. 

(1997) recorded difficulty in distinguishing between shallow melt ponds and wet snow.  While 

often observed, all these errors were concluded to have minimal effects on classification results.  

Snow ridges and waves amidst large open water patches occurred so infrequently that even 100% 

misclassification would have minor impacts on overall interpretation of the images (Buckley et 

al., 2020).  
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Motivation for this Study 

Changes in the Arctic seasonal landscape have driven numerous melt pond studies over 

the past 25 years.  The melting dynamics of a system primarily dominated by drifting FYI are 

poorly constrained and should not be assumed to follow the same patterns observed on MYI or 

landfast ice (connected to the terrestrial environment) (Webster et al., 2015).  Large scale 

observations of an entire region that span a complete seasonal melt cycle also remain sparse.  

Fetterer & Untersteiner (1998) postulated that study sites should be greater than 30 km2 to truly 

minimize landscape variability.  This conclusion demands remote sensing imagery taken at high 

altitude, capable of observing systems that are tens or hundreds of square kilometers in size.  The 

inherent ease of quantifying melt pond abundance from space also offers a more cost and time 

effective alternative to the investigator, as opposed to months of repeated flights over the ice. 

The Chukchi Sea is a highly studied region given its shallow shelf, high nutrient load, 

and high primary production (Arrigo et al., 2017).  Additionally, the Chukchi Sea is undergoing 

drastic changes in ice cover and experiencing anomalously high sea surface temperatures (SST) 

(Richter-Menge & Druckenmiller, 2020).  Increased light availability earlier in the year has the 

possibility to prematurely kickstart phytoplankton blooms, potentially altering the 

biogeochemistry of the region.  The large-scale study of melt ponds is an evolving research field, 

and thus the construction of additional melt pond time-series can provide much needed insight 

into the melt cycle of data poor regions.  Therefore, the following goals were identified for 

further investigation. 
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1) Determine the ability of high-resolution multiband satellite imagery to identify and classify 

melt ponds. 

 

2) Use satellite imagery to quantify seasonal melt pond abundance, spatial characteristics, and 

determine the main environmental drivers of melt pond development. 

 

3) Predict light availability under various degrees of ponded ice to aid in improving Arctic 

primary production modeling efforts.  

 

4) Quantify the advantages of using commercial high-resolution images relative to coarser, 

publicly available data sets to explore how spatial resolution impacts endmember data. 
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METHODS 

 

WorldView Satellites & Image Collection 

WorldView 2 and WorldView 3 (WV-2 & WV-3) are high spatial resolution satellites 

owned and operated by Digital Globe (MAXAR©), which can provide pan-sharpened RGB 

(Red-Green-Blue) or 8-band (non-atmospherically corrected) imagery with sub-meter scale 

spatial resolution (0.46 & 0.31 meters, respectively).  These systems are capable of discerning 

individual melt ponds and observing their associated spectral reflectance characteristics, thus 

allowing for estimates of pond size and distribution patterns. 

Satellite images of sea ice in the Chukchi Sea from spring and summer 2018 were 

collected by WV-2 & WV-3.  These satellites were specifically tasked to collect images in the 

proximity of two autonomous buoys (referred to as WARM Buoy 7 & 8) that were deployed in 

the northern Chukchi Sea in March of 2018 as part of an NSF funded project (Hill et al., 2019) 

(Figure 1).  Tasking was handled by NASA and the Polar Geospatial Center at the University of 

Minnesota, who had access to the buoy locations, and was supported by NSF Grant No. 

1603548.  Due to varying speed of the drifting ice pack, the collections were not always co-

incident with the exact buoy locations (Table 1).  

Image data were accessed through Enhanced View Web Hosting Services (EVWHS) 

(https://evwhs.digitalglobe.com/).  A shape file encompassing much of the Chukchi Sea was 

uploaded to the EVWHS search bar to locate and select relevant scenes.  All images in this study 

were obtained as radiometrically calibrated GeoTIFF files.  Amazon Web Services’ (AWS) S3 

console was used to facilitate file transfer.  All images, documentation, and supporting files were 

pushed directly from the EVWHS imagery cart to the S3 console, and then downloaded in a 

zipped folder from AWS. 

https://evwhs.digitalglobe.com/
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Figure 1: Study Site.  Map showing the paths of WARM Buoy 7 (WB7) and WARM Buoy 8 

(WB8) throughout the time-period of usable WV imagery (June 1st – July 20th), with WV image 

locations represented as numbers that correspond to Table 1. 

 

 

Images from March through August 2018 were available for download from EVWHS.  

After visual inspection, full analysis was limited to the period when melt ponds were present - 

June 1st to July 20th, from which there were 14 scenes collected on 10 individual days (Table 1).  

Images (scenes) were broken into multiple tiles by EVWHS when downloaded due to the large 

file sizes associated with high resolution data (Figure 2).  Image tiles on the edge of a scene were 

surrounded by black pixels with zero values for all 3 bands.  This is a result of forcing an angled 
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parallelogram scene to fill a rectangular space.  These pixels were masked by adding a “Data 

Ignore Value” of zero into the metadata. 

 

 

Table 1: Catalog of Available Satellite Images.  Available WV imagery used for this project.  

Corresponding buoy refers to the in-situ WARM buoy that was closest to a WV scene.  Distance 

was calculated between the average position of the buoy on a given calendar day, and the center 

of the associated WV scene.  Note that most WV images are tens of kilometers across. 

Image Number Image Date Corresponding 

Buoy (7 or 8) 

Distance to Closest 

Buoy (km) 

Scene Area 

(km2) 

Sensor 

1 6/1/2018 7 37 582 WV-2 

2 6/4/2018 7 55 1,253 WV-2 

3 6/4/2018 7 10 1,059 WV-2 

4 6/5/2018 8 11 1,010 WV-2 

5 6/5/2018 7 47 492 WV-3 

6 6/18/2018 8 3 299* WV-2 

7 6/22/2018 7 82 1,023 WV-3 

8 6/22/2018 8 13 707 WV-3 

9 6/26/2018 8 19 828 WV-2 

10 6/27/2018 7 9 700 WV-2 

11 6/28/2018 7 79 1,179 WV-2 

12 7/13/2018 7 71 154 WV-3 

13 7/13/2018 7 101 492 WV-3 

14 7/20/2018 7 185 48* WV-2 

*Partial scene used due to cloudiness in image. 
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Figure 2: Workflow Schematic.  A. Each scene is comprised of multiple tiles.  B. ROI’s 

(regions of interest) are defined from within one tile from each scene.  C. These ROIs were then 

used to train the computer to classify the entire scene using a Maximum Likelihood Classifier 

(MLC). 

 

 

Supervised Image Classification 

Visual inspection of the images showed four distinct classes: ice, open water, light melt 

pond (LMP), and dark melt pond (DMP).  Spectral differences in LMP and DMP were most 

likely driven by underlying ice type (Buckley et al., 2020; Tschudi et al., 2001; Webster et al., 

2015).  Such separation of the melt pond class into light and dark ponds is a common practice 

(Buckley et al., 2020; Yackel et al., 2000).  The differences in class spectra suggest that 

classification can be successfully carried out with pan-sharpened RGB imagery, as there is little 

to no overlap between any two classes across all three bands (Figure 3).  WV also offers an 

uncorrected 8-band product, which was not included in this study.  Attempts were made to 
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perform an atmospheric correction on the 8-band imagery via the dark pixel subtraction method 

(Chavez, 1996) but proved to be unsuccessful.  Large, bright flows of ice consistently 

contaminated the signal from adjacent “dark water” pixels. 

A minimum of three training patches (Regions of Interest or “ROIs”) per class per scene 

were defined with the ENVI software package (version 5.5), and then used to train the classifier 

with a supervised classification model.  Redefining ROIs for each scene was necessary as no 

atmospheric correction was applied to the images, resulting in varying class band values between 

images.  Including an adequate number of pixels in the training blocks is important for obtaining 

good classification results (Chen and Stow, 2002).  The median number of training pixels per 

class per scene in this study was 6,621.  However, in cases where all the ROIs in a class are 

spectrally homogenous, good classifications can be achieved with far smaller training areas.  

Though some variability in training patch sizes did exist between classes here (a patch of ice or 

open water is usually larger than a melt pond), there were consistently enough training pixels to 

constrain each of the classes such that their range of values across the spectrum were distinct 

from one another (Figure 3).  

The Maximum Likelihood Classification module (MLC) was applied to all images.  The 

maximum likelihood method is widely employed for classifying multispectral imagery and uses 

the means and variances from training data to calculate the probability that each pixel belongs to 

a given class (Perumal and Bhaskaran, 2010).  Previous studies have successfully employed 

MLCs for pond identification (Fetterer & Untersteiner, 1998; Nasonova et al., 2018).  One tile 

from each scene was used to collect ROIs (Figure 2A & 2B).  These training patches were then 

used to classify all tiles within the scene (Figure 2C).  As no atmospheric correction was applied 
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to the images, only tiles within the same scene were spectrally consistent.  Thus, a new set of 

ROIs had to be defined for each individual scene. 

 

 

 

Figure 3: Training Spectra.  Example of typical training data used by the MLC.  Mean data 

values (8-bit digital numbers) from each channel collected from training patches (ROIs) defined 

for an image on June 27th, 2018.  Error bars represent one standard deviation.  Wavelengths 

represent central wavelengths for each band (RGB). 
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Classification results from each tile were combined to retrieve total areal coverage of 

each class in the scene.  Proportional coverage for each class was calculated by correcting for 

total number of pixels in the scene (sum of all classes, not including NaN pixels).   

 

Class Fraction = 
# 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

𝐿𝑀𝑃+𝐷𝑀𝑃+𝐼𝑐𝑒+𝑊𝑎𝑡𝑒𝑟
    Equation 1. 

 

Pond fraction for an entire scene (fps) was calculated by taking the sum of pixels classified as 

LMP and DMP and normalizing that value to the total number of pixels in the scene (not 

including NaN pixels): 

 

Pond Fraction (fps) = 
𝐿𝑀𝑃 + 𝐷𝑀𝑃

𝐿𝑀𝑃+𝐷𝑀𝑃+𝐼𝑐𝑒+𝑊𝑎𝑡𝑒𝑟
                                    Equation 2. 

 

Pond fraction as a proportion of the ice (fpi), rather than the entire scene, was calculated by 

removing water pixels and normalizing LMP and DMP to just the ice related classes:  

 

               Pond Fraction (fpi) = 
𝐿𝑀𝑃 + 𝐷𝑀𝑃

𝐿𝑀𝑃 + 𝐷𝑀𝑃 + 𝐼𝑐𝑒
                                     Equation 3. 

 

Representing pond fraction in two ways allows for melt pond data shown here to be quickly 

compared to any other study, regardless of how pond fraction was calculated.  Additionally, fps is 

required to estimate energy flux to the ocean, whereas fpi is more useful for considering pond 

growth on ice. 

Some days had multiple scenes.  If the scenes were adjacent, they were analyzed as one 

large scene.  This was often the product of Maxar separating an elongated scene into two smaller 
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scenes for file size purposes.  This accounts for some apparent variability in scene size (Table 1), 

which does not carry over into class area once it is normalized to total scene area.  If multiple 

scenes from the same day were available but not adjacent, they were analyzed separately.  All 

scenes, whether adjacent or not, were trained on their own set of ROIs. 

 

Validation of Classification Accuracy 

Machine classified pixels were compared at random with manual interpretation of their 

corresponding unclassified pixels, as there was no in-situ ground truth data for the images.  

Google’s random number generator was first used to select a classified tile from each image.  

Using the geoprocessing tool “Create Accuracy Assessment Points” within ArcGIS Pro, a 

random sample of 100 pixels (25 for each class) was generated for each tile.  These points were 

generated from the classified image but overlaid onto the unclassified image.  All 100 points 

were then manually classified based on visual interpretation of the unclassified image.  Results 

of this analysis were presented in confusion matrices (tables allowing visualization of 

classification performance) of the machine vs. manual classifications.  

 

Spatial Characteristics of Individual Melt Ponds 

Three classified images were selected for spatial analysis of individual melt ponds- June 

18th, June 28th, and July 20th.  Fragstats software (McGarigal et al., 2012) was employed to 

obtain a distribution of patch sizes for each date.  A patch refers to a grouping of adjacent pixels 

of one class that are encompassed by pixels of other classes.   

A random number generator selected a single tile from each date to be used for spatial 

analysis, as processing the entire scene would have exceeded the computational and temporal 
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resources available.  WV imagery was re-projected to ESPG 32632 to satisfy Fragstats file input 

requirements.  All image tiles exceeded the Fragstats maximum size limit for inputs (Fragstats is 

limited to using 2GB of memory), so qGIS software was used to split the selected tile from each 

scene into 10,000 by 10,000 pixel sub-tiles.  Of the generated sub-tiles, the sub-tile that visually 

appeared to have the greatest number of FYI melt ponds was selected.  The primary aim of 

conducting spatial analysis was to examine individual melt pond surface areas on FYI, so sub-

tiles with large patches of open water or MYI flows were discarded.   

These methods eliminate user bias up until the final step, for which manually selecting 

the sub-tile that accurately represented only FYI flows with no large patches of open water was 

essential for ensuring a large sample size and producing comparable data (i.e., pond density).  In 

most cases there was an obvious sub-tile that best met this criterion, but if multiple sub-tiles 

appeared suitable, a random number generator was once again used to select the sub-tile for 

subsequent analysis.  Outputs from Fragstats were presented in hectares, which was converted to 

square meters by multiplying each patch size by 10,000.    

Patches smaller than 2 m2 were removed.  This threshold was adopted from Perovich et 

al. (2002b), who calculated median pond size from aerial imagery with similar spatial resolution. 

This threshold was also an accurate representation of the smallest ponds in the WV images that 

could be positively identified.  Dropping the smallest patches is necessary for analysis, as there 

are numerous misclassified small patches spread throughout the image.  These patches are 

minute enough (often 1 pixel) that they don’t impact the overall interpretation of the image 

classification, but abundant enough that they skew median melt pond size towards 0 and yield 

unrealistically high pond densities if no threshold is in place.  The impact of where the threshold 

is set is shown in Figure 4.  Median surface area values increase linearly, with values roughly 2 – 
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2.5 times the size of the chosen threshold.  Pond density estimates decrease by an order of 

magnitude with even a 2 m2 threshold in place.   

 

 

    

Figure 4: Melt Pond Size Threshold.  Median pond surface area (A) and pond density (B) 

shown as functions of the threshold set for minimum acceptable pond size.   

 

 

Development of Light Availability Data Product 

A light budget for the surface of the water column across an entire scene was estimated 

using the relative areal coverage of each class in an image (Equation 4).  Ed(0
-) (mol m-2 d-1) was 

the daily average downwelling irradiance over an entire classified scene, as seen just below the 

ice-water or air-water interface.  C is the spatial coverage of a class, expressed as a proportion of 

the total scene area.  The transmittance (), or proportion of surface irradiance transmitted below 

the water surface through a given surface condition for each class, is provided in Table 2.  

Transmittance varies with wavelength, and drops to 0 in the infrared, thus the large range of 

values.  Transmittances representing “middle of the road” values for visible light were selected 
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and are shown in the far-right column.  Note that ice and pond transmission increase with time to 

account for the melting of snow, and eventual thinning of the ice, as well as the deepening of 

ponds.  Incident surface irradiance (in-air) from 400-700 nm (EPAR) was obtained from 

instrument packages deployed on the surface of the ice measuring PAR (Photosynthetically 

Available Radiation) and air temperature (AT) (described below in In-Situ Data section).   

 

   Ed(0
-) = EPAR[(Cice  ice) + (Cwater  water) + (Clmp  lmp) + (Cdmp  dmp)]  Equation 4. 

 

 

Table 2: Transmittance Values Obtained from Previous Studies.   

Class Transmittance () Source Chosen Value 

Ice 0 – 0.034 

0 – 0.3 

0 – 0.17 

0 – 0.073 

Frey et al, 2011 

Light et al, 2015 

Light 2008  

Perovich 1998a&b 

0.01 (June 1st – June 5th) 

0.05 (June 18th – June 28th) 

0.1 (July 13th – July 20th) 

Melt Pond 0 – 0.46 

0 – 0.73 

0 – 0.4 

0.47 – 0.59 

Frey et al, 2011 

Light et al, 2015 

Light 2008 

Arrigo et al, 2014 

0.2 (LMP) 

0.4 (DMP) (June 1st - 5th) 

0.5 (DMP) (June 18th - 28th) 

0.6 (DMP) (July 13th - 20th) 

Water 0.98 Kirk, 1994 0.98 

 

 

To evaluate the advantages of using high resolution imagery for estimating light 

availability, results were compared with those derived from the standard National Snow and Ice 

Data Center (NSIDC) Sea Ice Concentration product.  These data were available as part of the 



19 
 

   
 

NSIDC Sea Ice Index dataset (Version 3) and have a spatial resolution of 25km (Fetterer et al., 

2017).  Data were downloaded as GeoTiffs, and analyzed in ArcGIS Pro.  Ice concentration for 

pixels within the extent of the WV images were recorded from the NSIDC image.  If a WV 

image overlapped across multiple NSIDC pixels, an average value of those pixels was taken.  

Any part of the NSIDC pixels not classified as ice was considered open water.  Light availability 

was calculated using Equation 5, in line with existing light penetration indices (Pinkerton & 

Hayward, 2021).  Melt ponds are not included as a class, as they are not retrievable in the 

NSIDC imagery.  

 

Ed(0
-)  = EPAR[(Cice  ice) + (Cwater  water)]    Equation 5. 

 

Light Driven Primary Production Under the Ice 

A model described in Hill et al. (2018) was used to further explore relationships between 

light availability and potential primary production.  Equation 6 is adapted from Hill et al. (2018) 

and shows the calculation of net biomass specific production (𝑃𝑛𝑒𝑡
𝐵 ).  Terms inside the curly 

brackets calculate gross biomass-specific photosynthesis, which after the subtraction of 

respiration (RB) yields 𝑃𝑛𝑒𝑡
𝐵 . 

 

𝑃𝑛𝑒𝑡
𝐵 = {𝑃𝐸

𝐵 [1 − 𝑒𝑥𝑝 (
−∅𝑚∗ 𝐴∅

∗ (𝜆)∗[𝐶ℎ𝑙 𝑎]∗𝐸𝑑0−(𝜆,𝑡)

𝑃𝐸
𝐵 )]} - RB             Equation 6. 

 

The model was run for a 24-hour period in 1-hour timesteps using a downwelling 

irradiance spectrum from June 1st [Ed(λ,t,z0+)], propagated to a single depth bin located just 

beneath the ice-water interface [Ed0
- (λ,t)].  Model runs were repeated several times, with each 
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run transmitting a different fraction of downwelling surface irradiance to the ice-water interface 

to represent various levels of light transmission through the ice pack.  The model results allow 

for the generation of a simple photosynthesis vs. irradiance curve that can then be related to melt 

pond coverage.  A water temperature of –1o C, replete nutrients, and no grazing were assumed.  

Additional constants are defined in Table 3. 

 

 

Table 3: Conditions for Model Runs. 

Symbol Definition Value Dimensions Source  

Ed(λ,t,z0+) Incident downwelling 

irradiance spectrum at 

the ice surface 

Function 

of (λ) µmol m-2 s-1 

Modeled using 

Hydrolight ©  

Ed0 (λ,t) downwelling 

irradiance spectrum at 

the ice water interface 

Function 

of (λ) 

 

µmol m-2 s-1 

Calculated using a 

varying ice 

transmission coefficient 

[Chl a] Chlorophyll a 

concentration 

1 mg m-3 Set to initial value in 

model 

𝑃𝐸
𝐵 

Biomass-specific rate 

of light-saturated 

photosynthesis 

0.11 
mmol C mg Chl-1 

hr-1 

Platt et al., 1982 

Φm 

Quantum yield of 

photosynthesis 

(Carbon) for absorbed 

photons 

0.104 

 

mol C fixed mol 

photons absorbed-1 

Hill et al., 2018 

Aϕ*(λ) Spectral absorptance 
Function 

of λ 
Dimensionless 

Hill, 2004 

𝑃𝑛𝑒𝑡
𝐵  

 

Net biomass-specific 

photosynthesis 

Calculated 

in model 
mg C mg Chl-1 hr-1 

Equation 6 

RB 

 

Biomass-specific 

respiration 

5% of  

𝑃𝐸
𝐵 

mg C mg Chl-1 hr-1 
Forest et al., 2011 
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In-Situ Data 

WARM (Warming and Irradiance Measurements) Buoys (WB) and their associated 

sidekicks (SK) provide in-situ data co-located with WV imagery (Figure 5).  These data are 

available at the NSF Arctic Archive (Hill, 2019), and full technical details can be found in Hill et 

al (2018).  Data from WB7 & 8, and sidekicks 3 & 4 (SK3 & SK4, co-deployed respectively) 

were collected at hourly time intervals, beginning March 30th, 2018, and designated in GMT.  

Measured variables used in this study included sea surface temperature (SST, o C) from WB7 

and WB8, air temperature (o C) from SK3 and SK4, and surface irradiance (PAR, µmol m-2 s-1) 

incident on the ice from all platforms.  Figure 5 shows deployment orientation of the sensors.  

Air temperature (AT) and incident irradiance from 400-700 nm (PAR) from both buoy 

locations was required for analysis of environmental variables driving melt pond formation.  The 

AT data from SK 3 & 4 at 0.5 m above the ice surface represented true air temperature, while 

SST on the buoy, due to orientation, represented an ice-air interface temperature, with observed 

values generally lower than that of the SK AT.  Unfortunately, SK3 fell over on June 9th due to 

surface ice melt, and no longer produced usable data.  The average offset between AT and SST 

(ice-air interface temperature) between May 1st and June 8th was 3.94 degrees.  This correction 

was applied to the WB7 SST measurement to provide a proxy for AT after the failure of 

SK3 (Figure 6A).   
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Figure 5: WARM Buoy and Sidekick Design.  Orange box represents the SK instrument, and 

the white circle (left) represents the surface float of the WB.  Downwelling PAR sensors and 

thermistors are labeled.  The buoy rests in a sideways orientation on the ice, before being pulled 

down by the tether and into an upright position as the ice melts.  A. Photograph of WB and SK 

taken after deployment on March 30th 2018.  B. Photograph taken by SK of heavily ponded 

surface on July 3rd 2018. 

 

 

Similarly, PAR was measured on the top of the sidekicks and was used until SK3 tipped 

over.  The radiometers on the buoys initially face 90 degrees from the ice surface, as the buoys 
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lay sideways on the ice until they melt out, at which point they float in an upright position and 

begin measuring true downwelling irradiance.  PAR measured by the SK is generally higher than 

that measured by the buoy while in its initial deployment orientation.  A correction 

factor of + 4.6 mol m-2 d-1 was used to correct the WB7 PAR to that expected from SK3 (Figure 

6B).  No corrections were needed for SK4, as it remained in the vertical orientation on the ice for 

the duration of its coincident WV imagery. 

 

 

 

Figure 6: Daily Average In-Situ Data.  Shaded regions denote the time-period from which WV 

imagery was analyzed.  A. Daily temperature from WB7 and SK3, and WB7 temperature after 

application of correction factor (+3.94 o C).  B. Daily PAR at WB7 and SK3, and WB7 PAR 

after application of correction factor (+4.6 mol m-2 d-1).  
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RESULTS 

 

Classification Accuracy 

Figure 7 is a visual representation of a typical classification.  Large patches of open water 

were identified and separated from ice flows.  Melt ponds were clearly defined, while still 

preserving the snow and ice ridges in between.  There are also noticeable differences in both 

visual appearance and predominating pond type between FYI and MYI.  Note that MYI (denoted 

by black box) is comprised primarily of LMP, while FYI is dominated by DMP. 

 

 

 

Figure 7: Classification Example.  Comparison of an unclassified (left) and classified (right) 

WV-2 image from June 28th, 2018.  4 classes are shown here: open water (blue), ice (white), 

light melt pond (LMP) (yellow), and dark melt pond (DMP) (red).  An MYI ice flow is 

highlighted by the black box.  This figure depicts a fraction of a larger tile and is not indicative 

of the class distribution for the entire scene. 
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Figure 8 displays classification U-scores (“User Score”, or reliability score) for each 

class, as well as the fraction of the image that class accounts for as a function of time.  The U-

score shows the fraction of randomly selected points for a given class that the user confirmed as 

being correctly classified.  For example, a DMP U-score of 0.8 results from the user confirming 

80% of the pixels that the algorithm classified as DMP during manual pixel-by-pixel verification.  

U-scores say nothing about what the true classification of the other 20% (false positives) of 

pixels were.  Low U-scores indicate over-estimation of that class by the MLC.  Water and ice 

(8A & 8B) were classified accurately for the entire time series, with scores almost always > 0.9.  

Melt pond classification accuracy improved as the summer progressed and ponds increased and 

became more defined, with the greatest degree of misclassification in the earliest scenes when 

pond fraction was very low, resulting in minimal over-estimation (8C & 8D).   
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Figure 8: Summary of U-Scores.  U-Scores reflect the accuracy of machine classified pixels in 

reference to user classified pixels.  The lower the U-Score, the more over-estimation of that class 

occurred in the classification. Fraction refers to the total areal coverage of each class normalized 

to the total area of the image (Equation 1). 

 

 

Classification P-scores (“Producer Score”) quantify false negatives for a class (where 

manually classified pixels were classified as something else by the MLC).  Low P-scores thus 

indicate underestimation of that class by the automated classifier.  For example, a P-score of 1 

for LMP demonstrates perfect agreement between the manual classification and MLC.   
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Figure 9: Summary of P-Scores.  The P-score quantifies false negatives for a given class (the 

algorithms performance in reference to the user performed manual verification).  A low P-score 

implies underestimation of that class by the MLC. Fraction refers to the total areal coverage of 

each class normalized to the total area of the image (Equation 1).  

 

 

Water P-scores consistently above 0.75 indicate that other classes were not often 

misclassified as water, though some underestimation of the water class does exist (Figure 9A), 

such as when ice draft (submerged edge of an ice flow) was misclassified as DMP (Figure 10A).  

Ice was more variable at the beginning of the time series during its highest concentration (Figure 

9B), when it contained various features that were likely to be mis-identified, including blue-

colored snow ridges (Figure 10B), the shading associated with snow ridges, (Figure 10C) and 
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recently refrozen leads classified as DMP (Figure 10D).  These misclassifications lead to a P-

score of ~ 0.5 in early June when un-ponded ice dominated the images, causing the areal extent 

of ice cover to be underestimated (Figure 9B).   The P-score for ice increased as ice ridges and 

re-frozen leads disappeared at the end of June and into July.   

LMP and DMP have P-scores > 0.5 throughout the summer (Figure 9C & 9D).  Some 

very dark melt ponds were misclassified as open water (Figure 10E), but the overall 

classification accuracy of individual DMPs was high.  Over 97% of pixels in visually examined 

melt ponds were correctly identified, demonstrating that though other features may be getting 

misclassified as ponds, melt ponds themselves are not being missed by the classification (Figure 

11).  More detailed descriptions of u-scores and p-scores can be found in Olofsson et al. (2013).   
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Figure 10: Common Misclassifications.  A. Very dark ponds (red) partially misclassified as 

water (blue).  B. Snow ridge pixels misclassified as LMP (yellow).  C. Snow ridge shadow 

misclassified as DMP (red pixels).  D. Very thin ice misclassified as DMP (red).  E. Ice draft 

(edge) misclassified as DMP. 
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Figure 11: Melt Pond Classification Accuracy.  3 images of melt ponds from June 5th, June 

28th, and July 13th (top to bottom, respectively) (left).  User-defined polygons in green to serve as 

test areas (center).  Classified images (right).  Values in the top right corners indicate the 

percentage of test area pixels correctly classified as DMP.  Red pixels signify those classified as 

DMP, yellow pixels were classified as LMP, and white pixels were classified as ice.   

 

 

Class Distribution Data 

Analysis of satellite imagery began on June 1st, 2018, when >98% of the imagery was 

comprised of un-ponded sea ice (which will be referred to as “ice” for the remainder of the text).  
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The 2-dimensional coverage of ice decreased as the summer progressed, being replaced by an 

increasing proportion of DMP, which approached a fraction of 0.4 by late July (Figure 12).  

Open water and LMP made up small fractions of the overall scenes.  The June 26th image was 

marked by the highest concentration of open water for the entire time series (0.18).  Subsequent 

imagery on June 27th showed an increase in ice and decrease in water, followed by a resumption 

of the long-term trend of decreasing ice.  

 

 

 

Figure 12: Time Series of Class Abundance.  Only one data point is shown per day, reflecting 

the average class fraction for that day from all scenes, even if they were not adjacent.  Data 

collection ended on July 20th, as subsequent imagery contained large fractions of open water 

accompanied by unclassifiable ice rubble.  See text for further descriptions of phases.   
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Three distinct phases of DMP evolution on sea ice were observed both qualitatively and 

quantitatively- those being onset (Phase 1), increase (Phase 2), and saturation (Phase 3).  All 

phases are depicted graphically in Figure 12, and visually in Figures 13, 14 & 15.  Phases are 

only defined for periods in which imagery was available.  The onset phase (June 1st – 5th), 

represented the first observations of melt ponds, and was characterized by few ponds clustered in 

small groupings, with >90% of the images being composed of ice, some of which was still snow 

covered (Figure 13).  Both open and recently re-frozen leads can be observed.  The light/dark 

pattern observable in the June 1st image showed a network of bare ice patches that were 

separated by snow dunes (Figure 13A).  Though pond fraction was low in this phase, melt ponds 

appeared in small clusters as seen in a snapshot from June 4th (Figure 13B). 
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Figure 13: Onset of Ponding (Phase 1).  A. Selections of scenes from June 1st, 4th and 5th.  B. 

Sections of the image from June 4th at successive levels of magnification highlighting typical 

appearance of melt ponds for this phase. 

 

 

The increase phase (June 18th – 28th) marks a shift in which the ice quickly became 

covered in ponds, and the DMP fraction increased from 0.04 on June 18th to 0.17 on June 28th 

(Figure 12).  Images from late June showed a clear darkening in the ice caused by pond presence, 

though the ice remained mostly intact, and ponds were still visually brighter than the surrounding 

patches of open water (Figure 14A).  By June 22nd, pond coverage visually increased as ponds 
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began to cover large portions of the ice.  Ponds were distinct, still had a bluish color, and were 

generally surrounded by ice (Figure 14B).    

 

 

 

Figure 14: Ponding Increases (Phase 2).  A. Selections of scenes from June 18th, 22nd and 

28th.  B. Sections of the image from June 22nd at successive levels of magnification highlighting 

typical appearance of melt ponds for this phase. 
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The saturation phase (July 13th – 20th) showed ice flows that were nearly flooded with 

many interconnected ponds (Figure 15A).  By July 13th ponds had darkened significantly, 

suggesting they may have deepened.  By July 20th, ponds became nearly as dark as the open 

water (Figure 15B).  DMP fraction reached its maximum recorded value, approaching 0.4 

(Figure 12).  By the end of the saturation phase, ice appeared to be disintegrating, as the heavy 

concentration of ponding had compromised the structural integrity of the ice pack.   

 

 

 

Figure 15: Pond Saturation of Ice Flows (Phase 3).  A. Selections of scenes from July 13th 

and 20th.  B. Sections of the image from July 20th at successive levels of magnification 

highlighting typical appearance of melt ponds for this phase. 
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Finally, images from July 21st show scenes that were mostly open water, with the remaining ice 

rapidly disintegrating (Figure 16).  Images after July 20th were not available as Pan-Sharpened 

RGB’s and were thus unclassifiable.   

 

 

 

Figure 16: Disintegration of Ice Pack.  2 Stock images (not pan-sharpened) from July 21st, 

2018.  Upper left extent: 72.90N, 163.09W.  Lower right extent: 72.61N, 162.05W. 
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Environmental Drivers of Melt Pond Growth 

Data from in situ instrumentation on WB7/SK3, and WB8/SK4 were similar despite their 

spatial separation (Figure 1).  Daily air temperature was below -7o C at the start of May, 

increased to above 0o C briefly in mid-May, but quickly fell back below freezing (Figure 17A).  

By the start of June, air temperature was consistently above freezing, with an average daily air 

temperature of approximately 5o C, with daily variation of ±1.5o C throughout June and July.  

Daily PAR at the start of May was approximately 37 mol m-2 d-1 with some daily variation of ± 5 

mol m-2 d-1 throughout May (Figure 17B). At the start of June, daily PAR reached a high of ~ 67 

mol m-2 d-1.  Day to day variation was high throughout June and July (~ 11 mol m-2 d-1) with an 

overall decreasing trend in daily irradiance (Figure 17B). 

 

 

 

Figure 17: In-Situ Data.  Corrected WB7/SK3 (see methods section) and original SK4 data.  A. 

Daily average air temperature with dashed line representing 0o C.  B. Daily PAR.  Shaded 

section denotes the time period from which WV imagery was used. 
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Pond fraction was regressed against these in situ environmental variables to search for 

strong predictors.  Mean daily values of air temperature and incident PAR were found to be poor 

predictors of melt pond development (Table 4), though PAR did have a significant relationship 

with pond fraction (p < 0.01). Cumulative hours above freezing (as measured above the surface) 

was found to be a strong predictor of pond fraction (r2 = 0.90, p < 0.01).  Hours above freezing 

(0o C) were counted beginning on May 28th (the first day in an instance of more than 3 days in a 

row that had daily average air temperature values above 0o C).  No significant ponding or periods 

of prolonged temperatures above freezing were observed beforehand.   

 

 

Table 4: Pond Fraction Relationships.  Coefficients of determination and p-values between 

pond fraction (fps) and variables measured by the WARM buoys. 

Variable Units Relationship Type r2 P-value 

Mean Daily Surface PAR µmol m-2 s-1 Linear (negative) 0.38 < 0.01 

Mean Daily Air Temperature oC Linear (negative) 0.09 0.27 

Cumulative Hours Above Freezing (AT) Dimensionless Linear (positive) 0.90 < 0.01 

Cumulative Hours Above Freezing (AT) Dimensionless Logistic 0.96 < 0.01 

 

 

A simple linear model where pond fraction grows at a rate of 3 x 10-4 hr-1 above freezing 

provides robust predictability of pond development for fps and fpi (r
2 = 0.90 & 0.88 respectively, 

y-intercept forced through zero).  A logistic growth model (Equation 7) was also strongly 

predictive (r2 = 0.96 & 0.93 for fps and fpi respectively) with less variability around all 3 phases, 

whereas the linear models overestimated pond fractions before 800 hr, and underestimated 
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values after 800 hr (Figure 18).  Table 5 provides descriptions and values for the variables in 

Equation 7. 

 

                                           Pond Fraction = 
𝑎

1+𝑒−𝑘(𝐻𝑟𝑠 − 𝑏)
                                    Equation 7. 

 

 

Table 5: Logistic Curve Variables.  Chosen values for Equation 7 variables.  The upper limits 

of the curves (a) were defined by the highest values recorded in the respective data sets.  The 

midpoints (b) and initial slopes (k) were allowed to vary to achieve the best fit, while still 

preserving the overall logistic growth shape. 

Variable 

Name 

Mathematical Description Qualitative Description Values 

a Upper Limit of Curve Maximum Value Observed 

(dimensionless) 

fps: 0.44 

fpi: 0.51 

b Midpoint of Curve Point where Pond Formation Rate 

Begins to Decline (hr above freezing) 

fps: 725 

fpi: 725 

k Logistic Growth Rate 

(Slope) 

Solved for Using Known x and y (hr 

above freezing-1) 

fps: 6.4 * 10-3 

fpi: 6.7 * 10-3 
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Figure 18: Melt Pond Growth Models.  Linear and logistic growth models for melt pond (DMP 

+ LMP) fraction as a function of cumulative hours above freezing.  A. Pond fraction of the entire 

scene (fps).  B. Pond fraction of only ice-covered area (fpi).  

 

 

Individual Melt Pond Size 

Images from three dates were selected for spatial analysis of pond size-frequency 

distribution.  The dates were chosen from the beginning and end of the increase phase (June 18th 

& 28th, Figure 14), and the end of the saturation phase (July 20th, Figure 15) to provide a good 

snapshot of how pond shape and size changed through time.  An onset phase image was not 

included, as there were very few ponds present. Melt pond size distributions were non-normally 

distributed across all images, with ponds smaller than 10 m2 comprising more than 60% of the 

pond count, and ponds smaller than 1,000 m2 making up >99% of the pond count across all three 

dates (Figure 19A).  Median pond size was consistently small, although it did increase from 3 to 

6 m2 between June 18th and July 20th (Table 6).  Pond density decreased as pond fraction 

increased and ponds became larger with nearly 3,000 fewer ponds km-2 on July 20th than on June 

18th (Table 6).   
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Figure 19: Melt Pond Size Histograms.  A. Surface area size distributions normalized to total 

number of ponds for 3 separate dates.  B. Pond size distribution for the same dates normalized to 

total pond surface area.   

 

 

Table 6: Median Pond Sizes and Densities.  

Date Median Pond Size (m2) Pond Density (ponds km-2) 

June 18th 3 8,472 

June 28th 4 6,190 

July 20th 6 5,845 

 

 

Despite their abundance, ponds smaller than 10 m2 accounted for less than 25% of total 

pond area throughout the study period (Figure 19B).  Total pond area on June 18th was primarily 
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dominated by small ponds, with >85% being made up of ponds <1,000 m2.  The frequency 

distribution of pond area was gaussian-like (though still non-normal) on June 28th, as a wide 

range of medium sized ponds (10 – 100,000 m2) were responsible for >90% of total pond area.  

Large ponds (>10,000 m2) accounted for >80% of total pond area on July 20th, with only 8 ponds 

accounting for ~65% of the area.  One large pond of over 1,000,000 m2, accounted for 30% of 

the area (Table 7).  These large, irregularly shaped ponds are produced by the fusion and 

interconnection of individual ponds throughout the melting process (Figure 15B). 

 

 

Table 7: Binned Pond Counts from Select Sub-Tiles.  

Pond Size (m2) June 18th (# of ponds) June 28th (# of ponds) July 20th (# of ponds) 

100 - 101 90,920 25,905 17,857 

101 - 102 16,683 9,935 9,231 

102 - 103 1,631 1,691 1,746 

103 - 104 75 118 159 

104 - 105 2 9 23 

105 - 106 0 1 7 

106 - 107 0 0 1 

 

 

Modeled Light Availability 

Both magnitude and proportion of surface irradiance (PAR) transmitted to Ed(0
-) were 

correlated with pond fraction (r2 = 0.90 & 0.91, Figure 20A, 20B).  The relationship between 

Ed(0
-) and melt pond fraction (Figure 20A) was used to estimate how phytoplankton growth 
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under the ice would be impacted by melt pond fraction (Figure 21) using the model adapted from 

Hill et al. (2018).  The resulting relationship followed a saturation-type response with respect to 

daily PAR common to photosynthesis-dependent processes.   

 

 

 

Figure 20: Modeled Irradiance.  Photon flux (from buoy surface irradiance) (A) and proportion 

of surface irradiance (B) calculated just below the water surface [Ed(0
-)] and averaged across the 

scene.  Data were regressed against pond fraction, and 95% confidence intervals are shown. 

 

 

At the onset of melt pond development, small increases in pond fraction (and therefore 

PAR) had a large impact on carbon uptake and chlorophyll growth (Figure 21).  Chlorophyll a 

(Chl a) growth rose from <1% d-1 to >34% d-1 as pond fraction increased from 0 to 0.05.  

Correspondingly, carbon uptake increased from <0.1 mmol C m-2 d-1, to nearly 0.86              

mmol C m-2 d-1.  As pond fraction continued to increase, % Chl a growth reached a saturating 
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upper limit of ~60%, with carbon uptake saturating at ~1.3 mmol C m-2 d-1 for pond fractions 

above 0.15 and daily PAR above 5 mol photons m-2 d-1. 

 

 

 

Figure 21: Primary Production Model Results.  Production parameters as a function of PAR.  

Pond fraction is imposed on the upper x-axis by using its linear relationship with PAR (Figure 

20). 

 

 

Differences between light transmissions calculated from the WV imagery and the coarser 

resolution, but publicly available NSIDC Sea Ice Concentration data product showed a high 

degree of variability (Figure 22).  PAR [Ed(0
-)] was calculated for local noon to show the 

maximum theoretical irradiance received by the upper water column.  At the start of the melt 
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season when pond fraction was low, Ed(0
-) calculated by NSIDC was lower than values 

calculated from WV images.  Once the widespread onset of melt ponds occurred, there was a 

higher degree of divergence between WV and NSIDC estimations.  Differences ranged from       

-110 µmol m-2 s-1 on June 22nd, to +243 µmol m-2 s-1 on June 26th.  In July, NSIDC slightly 

overestimated irradiance by 50 to 80 µmol m-2 s-1. 

 

 

 

Figure 22: Comparison of WV and NSIDC.  Difference in modeled under ice solar noon Ed(0
-) 

values between NSIDC Sea Ice Concentration and WV images.  Difference was calculated by 

subtracting WV estimates of irradiance from NSIDC estimates, so that a positive difference 

(above blue line) indicates overestimation by NSIDC, and a negative difference (below blue line) 

indicates underestimation.  Pond fraction is also plotted in red and represented on the right y-

axis. 
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DISCUSSION 

Classification Accuracy 

The Maximum Likelihood Classifier was able to separate and identify all four classes 

using RGB imagery, allowing for retrieval of reliable class distribution data.  Water and ice 

classes show the highest degree of accuracy (U-Score) relative to manual classification due to 

their distinct dark and bright signals, respectively.  A low P-Score for ice pixels on scenes from 

the pond onset phase suggests that certain ice features were misclassified as ponds, since water 

had a very high U-Score and was not a source of error for the ice pixels. 

  The MLC performed less well in separating LMP from some ice features during the 

onset phase.  While overall spectra of ice ridges appeared similar to smoother ice, numerous 

small groupings of blue pixels were present on ridged ice resembling LMPs.  This phenomenon 

was also noticed via ground observations (personal observations of blue tint on ridged sea ice 

near Barrow, AK).  This issue has been found in other attempts to classify ice surfaces as noted 

by Derksen et al. (1997).  However, LMP constitutes such a small portion of the overall scenes 

during the onset phase (averages <1%) that this misclassification does not greatly impact melt 

pond coverage estimates.  Additionally, it is possible the LMPs were mixed in with ice ridges, as 

these two features often seem to be co-located (personal observations near Barrow, AK).  

Classification accuracy for DMP was also low during onset, due to the presence of 

shadows cast by snow ridges that were indistinguishable from the DMP spectra.  However, snow 

ridges melted enough by mid-June that this problem disappeared in subsequent images.  DMP 

fraction was also small enough in the onset phase that low accuracy scores did not affect overall 

analysis of DMP trends.  Isolated patches of very thin ice, which appear to be recently refrozen 

leads, are often classified as DMP.  Some misclassifications of ice draft (submerged edges of ice 
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flows in open water/leads) as DMP also occurred throughout the time series.  Ridge shadow and 

ice draft errors were also reported by Buckley et al. (2020), who concluded that they had small 

effects on classification accuracy and did not merit any further correction.  Additionally, 

classifying very thin ice and ice draft as melt pond may be advantageous when calculating light 

transmission or primary production, as these features will propagate more light to the water 

column than surrounding patches of thicker ice (Tschudi et al., 2001).  There were also some 

misclassifications between DMP and water in the saturation phase, when melt ponds became so 

dark that their spectral signal began to overlap with that of open water, in agreement with 

observations from Perovich et al. (2002b).  These ponds may have melted all the way through the 

underlying ice to become open water patches, though this cannot be determined absolutely from 

satellite imagery alone.   

Low U-Scores and high P-Scores for LMP & DMP pixels during the onset phase indicate 

some over-estimation, though visual inspection showed that melt ponds were not being missed 

by the MLC.  Thus, the classification results appear to represent the maximum possible melt 

pond fraction.  Increased MLC performance in the pond increase and saturation phases is most 

likely a combination of more true ponds being present for random selection, and the 

disappearance of snow ridges.  These data demonstrate higher confidence during the more 

dynamic part of the melting cycle.   

Though U and P Scores may appear low at times, it is important to remember that they 

are presenting measurements of over-estimation and under-estimation of a given class by the 

MLC.  As there is no set threshold for deeming U and P Scores as acceptable or unacceptable, 

these data are somewhat subjective in nature.  However, their ability to quantify commonly 

observed misclassifications and analyze temporal trends in classification accuracy is invaluable. 
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Throughout all images, there were many small patches of erroneously classified pixels.  

As there is no non-biased way to exclude these pixels from accuracy validation, they consistently 

undermine classification accuracy assessments, and often contribute to lowered scores.  

However, it is important to note the consistent classification accuracy within individual melt 

ponds across all phases.  The common errors discussed here might possibly be resolved by using 

additional spectral bands with atmospherically corrected signals, so that more data are available 

to the classifier for teasing apart subtle differences. 

 

Melt Pond Dynamics 

Class fraction data reveals a general trend of decreasing ice, which was replaced almost 

exclusively with an increasing fraction of DMP.  Due to the large size (spatial area) of the 

images, the presence of leads and other open water features did not raise the contribution of the 

open water class, except for the June 26th data point, which contained the highest recorded water 

fraction (0.18).  The sharp decrease in ice and increase in open water on June 26th was possibly a 

result of image proximity to the Marginal Ice Zone (MIZ) that marks the transition from open 

ocean to pack ice, as recorded in the NSIDC Sea Ice Index (Fetterer et al., 2017).  Subsequent 

images were taken further north, away from the MIZ, accounting for the lower open water 

contribution.  It is also possible that a wind event impacted the positioning of ice flows, blowing 

them further apart on the 26th.  This is pure speculation however, as the WARM buoys do not 

record any wind data. 

DMP accounted for the majority of total melt pond area.  The difference in color between 

LMP and DMP is most likely attributed to the underlying ice age and therefore thickness 

(Tschudi et al., 2001).  Consistently low LMP concentrations are explained by the presence of 

predominantly first-year ice in our images, with few multi-year ice flows identified. 
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The 3 phases (pond onset, increase, and saturation) presented in this study were specific 

to this dataset, which contained imagery from 3 segregated temporal periods, each separated by 

approximately 2 weeks.  Though useful for discussing results from these data, these phases are 

not meant to be broadly applied to other data, or to define specific time periods without careful 

consideration as to their applicability, as pond development may vary from year to year with 

geographical location and ice type.  Additionally, these phases are not meant to contradict 

previously established melt pond stages, to include a freeze-up stage not applicable to this study 

(Eicken et al., 2002; Perovich & Polashenski, 2012). 

Another key difference in the data presented here is the lack of an obvious drainage stage, 

which is often included in other definitions of pond development (Eicken et al., 2002; Fetterer & 

Untersteiner, 1998; Perovich et al., 2002b; Perovich & Polashenski, 2012).  Gaps in imagery 

leave many days unaccounted for, during which ponds could have drained and re-filled, resulting 

in no apparent decrease in pond coverage.  Alternatively, if individual ice floes drained at 

different times, the sheer size of a WV scene may have overwhelmed the drainage signal from a 

handful of ice flows if the majority were not draining.  Finally, it is possible that drainage did not 

occur at all.  Fetterer & Untersteiner (1998) noted that smoother first-year ice pond fraction 

continued to increase, while rougher multi-year ice values decreased from drainage.  

Additionally, Polashenski et al. (2017) have suggested that melt pond drainage on first-year ice 

may be inhibited by the freezing of melt water in drainage pathways. 

The advantage of having images coincident with in-situ measurements lies in the ability 

to search for correlations with environmental parameters. Modifying the independent variable to 

reflect these parameters allows for the exploration of the relationships that drive pond formation.  

By basing melt pond relationships on an environmental proxy for date, modeling of melt pond 
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growth can be applied to past or future datasets, provided they contain the necessary 

measurements.  This independence from calendar date is essential when predicting how temporal 

trends of melt pond development are changing over decadal timescales, and to what extent this 

process may be altered due to climate change. 

As previously mentioned, cumulative hours of above freezing (air temperature) presented 

the strongest relationship with pond fraction among in-situ data parameters.  Despite increasing 

pond fraction, daily average PAR began to decrease in July, likely due to cloudiness.  It is well 

documented that the Arctic experiences asymmetrical variation in solar insolation around the 

solstice, with a positive bias towards spring, as irradiance is usually reduced by cloud cover as 

ice continues to melt (Bernhard et al., 2007).   

Unsurprisingly, ponding seems to be driven by prolonged exposure to temperatures above 

the freezing point of fresh water.  Daily average air temperature did not produce a significant 

relationship with pond fraction, agreeing with previous results (Derksen et al., 1997; Fetterer & 

Untersteiner, 1998), and stressing the importance of looking at cumulative environmental 

conditions as predictors, rather than just those conditions present on the day of a measurement. 

Although pond growth data have displayed highly linear relationships in the past (Derksen et al., 

1997), the logistic growth function used here appears to provide a better representation of the 

mechanics of melt pond development.   

Qualitatively, the logistic curve matches observations of few ponds in the onset phase, 

followed by steep growth during the increase phase, and ending with a plateau during the 

saturation phase before complete ice disintegration.  This progression mirrors the ice-albedo 

feedback mechanism in which ice albedo remains high in the spring, before a sharp decrease 

associated with rapid pond formation (Perovich et al., 2002a).  When ponds initially form in 
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groupings on a patch of ice, they effectively lower the local albedo, allowing for increased heat 

flux into the system, therefore enhancing continued melting.   

Quantitatively, the logistic curve showed better predictability for data from all three 

phases, whereas the linear model overestimated pond fraction before 800 hours above freezing, 

and underestimated pond fraction past 800 hours above freezing.  The discrepancy between the 

two data points around 1,000 hours above freezing is most likely also due to proximity to the 

MIZ.  The higher pond fraction value corresponds to an image peripherally located to the MIZ, 

approximately 200km south of the lower pond fraction value recorded on the same day. 

 

Individual Pond Size 

Individual ponds seem to be predominantly small (<100 m2), supporting previous studies 

(Huang et al. 2016; Luthje et al. 2006; Perovich & Tucker, 1997; Perovich et al. 2002b; Tschudi 

et al., 2001; Yackel et al., 2000).  Median pond surface areas of 3 to 6 m2 across all three dates 

are in general agreement with some previously reported values (Huang et al., 2016; Perovich et 

al., 2002), but lower than others (Perovich & Tucker, 1997; Tschudi et al., 2001), which may 

possibly be attributed to geographic variability.  Huang et al. (2016) noted a similar small 

median pond size for a site at 72N, with pond sizes increasing as the transect moved northward.  

Predominating ice type may play a role in controlling pond size, as MYI generally seemed to 

contain fewer, but larger ponds than FYI.  This observation agrees with Nasonova et al. (2018), 

who observed flooded patches of MYI that had pond fraction values as high as 0.77, despite MYI 

having lower pond fraction than FYI overall.  An attempt to interpret mean pond size was not 

made, as pond sizes were non-normally distributed.     
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Pond density values found here were higher than those previously reported (Perovich & 

Tucker, 1997, Perovich et al., 2002b).  Again, this is likely due to predominating ice type, as FYI 

generally ponds to a greater degree than MYI (Buckley et al., 2020; Fetterer & Untersteiner, 

1998; Nasonova et al., 2018; Polashenski et al., 2012).  Caution should also be exercised when 

choosing a minimum acceptable pond size, as this threshold is shown to have a large impact on 

the resulting data. 

Despite dominating the total number of ponds, the smallest ponds (<10 m2) accounted for 

a lower fraction of total pond area.  Additionally, a clear shift in the distribution of pond sizes 

normalized to total pond area occurred across the three dates.  The transition from small ponds 

on June 18th, to medium ponds on June 28th, and finally to large ponds on July 20th demonstrates 

that total pond area increased, despite the appearance of numerous small ponds that decreased 

median pond size. 

The mechanism driving the temporal evolution of pond size was almost certainly the 

interconnection of ponds formed by the merger of adjacent ponds and the formation of complex 

channels.  Ponds began to grow larger during the increase phase and appeared to dramatically 

increase during the saturation phase.  When ponds melt together and interconnect, they are 

treated as one continuous patch, explaining low pond density and the presence of increasingly 

large ponds on July 20th, supporting results presented in Yackel et al. (2000).  Pond 

interconnection has been widely observed in several other studies.  Fetterer & Untersteiner 

(1998) observed ponds interconnecting on young, smooth ice.  Perovich & Tucker (1997) note 

that larger ponds are comprised of smaller ponds connected by tributaries, which was confirmed 

by a modeling study (Luthje et al., 2006).  Tschudi et al. (2001) suggest that interconnection of 

ponds that have melted through the ice may facilitate the decay of an ice pack.  This hypothesis 
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is supported by our analysis, which shows a heavily interconnected surface on July 20th 

preceding images of decayed ice on July 21st. 

These observations raise the question- what defines an individual melt pond?  

Quantitatively speaking, and in respect to this study, many small and medium sized ponds 

connected to each other by even a few pixels are defined as one large pond.  However, it is 

important to understand that a large pond does not necessarily correspond to a bright, uniform 

under ice light environment.  Small patches of ice still remained amidst large, interconnected 

ponds, and prevented complete surface flooding.  These “ice islands” may have been the 

remnants of pre-existing snow dunes (sastrugi) formed earlier in the year as described in Petrich 

et al (2012) and cause the under-ice light field to become very heterogeneous. 

 

Light Availability 

Melt ponds presented a strong relationship with predicted under-ice light values.  Their 

distribution across large floes contributes to an under-ice light field that may be adequate for 

driving primary production in the water column.  Leads and other patches of open water have the 

potential to allow for high levels of localized production, but on average account for less than 

5% of a scene.  Thinning ice also increases light availability, which is accounted for in Table 2, 

but reaches a cap at 10% transmission.   

The relationship between melt pond fraction and potential primary production produces a 

saturation-like response reminiscent of a P vs I curve (Kirk, 1994; Platt et al., 1982).  As ponding 

begins, even a small increase in melt pond fraction, and thus light availability, has a large impact 

on potential phytoplankton growth.  After this point, increases in irradiance and pond fraction 

result in slower increases in growth, eventually reaching a saturating upper limit.  These data 
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suggest that even low levels of ponding could provide enough light to support under-ice 

production.  Therefore, detection of ponds early in their development can make a large difference 

in the ability to predict under ice blooms.  Thus, pond fraction may become an important new 

predictor variable to drive primary production that reflects the condition of local sea ice.  These 

relationships are widely applicable to Arctic primary production models and have the potential to 

increase our ability to predict the onset of under-ice phytoplankton blooms based on observations 

of melt pond distribution.  

It is also important to understand the limitations of using a simple model to describe a 

complex light environment.  These light availability estimates describe a light field that accounts 

for the class distribution of an entire scene.  Therefore, the phytoplankton assemblage would be 

expected to spend proportional amounts of time under each class (Water, LMP, DMP, Ice) 

throughout the day.  In theory this provides robust estimates of average irradiance values 

available for photosynthesis.  However, phytoplankton may experience disproportionate amounts 

of time in various light environments, depending on the horizontal advection of the ice and 

water.  Additionally, light intensity varies throughout the day, so that a phytoplankton under a 

given melt pond in the morning may experience a different light environment than under that 

same pond in the afternoon.  

The ability to account for melt ponds when modeling light in the water column made a 

measurable difference when compared to a single-value sea ice concentration.  This is especially 

true during the pond increase phase.  Though high-resolution imagery may not be necessary for 

predicting primary production in the onset phase when ponds are few, or in the saturation phase 

when sea ice is covered with dark ponds, the sub-meter spatial resolution shows a clear increase 

in light availability through the end of June as ponds increase, whereas the light availability 
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derived from NSIDC Ice Concentration is highly variable.  This is due to NSIDC’s inability to 

detect individual melt ponds, instead looking at the average reflectance of a 25 x 25 km pixel.  

The pond increase phase (late June) is arguably the most important time to model primary 

production, as blooms have been observed in this period (Ardyna et al., 2020; Hill et al., 2018).  

Underestimation of light by NSIDC during pond onset is due to its inability to detect small open 

water leads and sparse pond features, whereas its overestimation during the saturation phase is a 

result of heavy ponding darkening the 25km pixels, therefore resulting in a low sea ice 

concentration from the NSIDC algorithm.  

 

Limitations 

The task-based nature of WV satellites imposes certain restrictions on revisit time, 

resulting in irregular temporal resolution.  This is clearly manifested in the data presented here, 

as two large gaps exist from June 6th to June 17th, and June 29th to July 12th.  In addition to 

continuing to exploit high spatial resolution satellite imagery to observe melt ponds, the 

advantages of higher temporal resolution must also be considered for future studies.  As private 

companies continue to put high resolution imaging platforms into orbit, frequent revisits over a 

given region are becoming increasingly possible.  Over 150 task-based satellites from Planet 

Labs Inc. have either 0.5 m or 3.7 m spatial resolution, and contain 4 spectral bands (red, green, 

blue, near-infrared).  These systems could be used for similar analysis and offer regular revisits 

(at least weekly). 

The geographic location, spatial scales, and predominant ice type are all important factors 

that contribute to melt pond dynamics and development, potentially resulting in considerable 

variability between studies.  Therefore, careful consideration should be exercised when 
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comparing these results to studies conducted outside the Chukchi Sea, at smaller spatial scales, 

or on primarily MYI or land fast ice.  A logistic style growth of pond fraction supports 

observations presented here but may be inappropriate when applied to other datasets.  Further 

investigation into pan-Arctic pond development on FYI should be conducted before wide 

implementation of a logistic growth curve is adopted. 

As with any emerging field, data are always in short supply.  Time series of melt pond 

fraction spanning the entire melting season are sparse, especially on FYI.  The transition from 

MYI to FYI in tandem with emerging systems capable of observing individual ponds from space 

demand increased attention and resources be allocated to monitoring inter-annual variability in 

the seasonal development of melt ponds on FYI. 

 

Future Implications 

With the progression of satellites that rival the spatial resolution of airborne cameras, it is 

more important than ever to take advantage of these platforms for observing changes in earth’s 

most vulnerable ecosystems.  Spaceborne imaging systems capable of discerning individual melt 

ponds are now accessible at a fraction of the cost and labor to the investigator when compared 

with the effort of establishing an ice camp or making continuous flights over sea ice.  The launch 

of NASA’s ICESat-2 platform in 2018 presents promising opportunities to detect and analyze 

melt pond presence and depth via onboard LiDAR instrumentation, but will continue to require 

high resolution imagery for validation (Tilling et al., 2020). 

Previous melt pond studies have often been constrained to sub-regional scales.  The 

altitude and swath of WV satellite imagery allowed for images spanning hundreds of square 

kilometers to survey an area encompassing much of the Chukchi Sea.  Fetterer & Untersteiner 
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(1998) suggest that pond coverage variability is minimized when image size exceeds 30 km2, 

further necessitating the use of remote sensing instrumentation capable of covering larger areas.  

It is important to stress the scope of this work as a large-scale regional study, of which more 

variability should be expected as opposed to repeated observations of the same small group of 

ice flows. 

As the Arctic continues to experience a transition from MYI to FYI, it will be imperative 

to specifically include parameters to approximate energy balance and photosynthesis under an 

FYI environment.  The models of pond growth, light availability, and primary production 

presented here represent novel estimates for a system predominantly composed of FYI.  Though 

results in this study will help advance our understanding of melt ponds, the necessity for 

additional high-resolution images cannot be understated.  Moving forward, the ability to create 

time series of melt pond development on a yearly basis would provide untold insights into the 

inter-annual variability of the Arctic melt cycle, as well as any long-term decadal scale changes 

in melt pond development and distribution. 
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CONCLUSIONS 

 

As the Arctic continues to experience unprecedented changes, it is imperative to examine 

melt pond behavior on FYI, and how they impact the underlying water column.  Melt ponds were 

successfully classified from high resolution RGB Worldview images mainly comprised of FYI.  

Images from the Chukchi Sea were largely un-ponded in early June, and experienced pond 

growth throughout late June and July, reaching melt pond fractions exceeding 0.4.  Cumulative 

hours above freezing (air temperature) was the strongest environmental predictor when modeling 

melt pond growth with a logistic growth curve (r2 = 0.96).  When normalized to total pond area, 

pond size increased as the melt season continued, a process driven by the interconnection of 

ponds.   

Initial increases in ponding resulted in a steep rise in potential primary production, which 

begins saturating when pond fraction continued to increase past 0.2.  Estimating under-ice light 

with WorldView images shows a clear increase in Ed(0
-) as ponding increases in late June, a 

trend which NSIDC passive microwave measurements are unable to detect.  These conclusions 

showcase new insights into FYI melt pond dynamics, distribution patterns, and their resulting 

effects on under-ice light availability and primary production. 
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