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ABSTRACT 
 

ENHANCING THERMAL STABILITY OF PEROVSKITE SOLAR CELLS WITH A 
POLYMER THROUGH GRAIN BOUNDARY PASSIVATION 

 
Tanzila Tasnim Ava 

Old Dominion University, 2021 
Director: Dr. Gon Namkoong 

Organic-inorganic halide perovskite solar cells have emerged as a promising photovoltaic 

technology due to their superb power conversion efficiency (PCE) and very low material costs. 

While perovskite solar cells are expected to eventually compete with existing silicon-based solar 

cells on the market, their long-term stability has become a major bottleneck. In particular, 

perovskite films are found to be very sensitive to external factors such as air, UV light, light 

soaking, thermal stress and others. Among these stressors, light, oxygen and moisture-induced 

degradation can be slowed by integrating barrier or interface layers within the device architecture. 

However, the most representative perovskite absorber material, CH3NH3PbI3 (MAPbI3), appears 

to be thermally unstable even in an inert environment. This poses a substantial challenge for solar 

cell applications because device temperatures can be over 45 °C higher than ambient temperatures 

when operating under direct sunlight. In this thesis, the thermal stability of perovskite solar cells 

was primarily investigated. 

 Initially, we systematically studied the effects of heating and cooling processes on the 

principal photovoltaic performance of perovskite solar cells by combining temperature-dependent 

J-V, steady-state PL, UV-VIS and time-resolved lifetime decay measurements. In particular, we 

have observed the dynamic evolution of degraded crystallinity, increased charge trapping, deep 

trap depth and PbI2 phase. During the heating process, the thermal degradation of the perovskite 

film was observed at 70 ° C or higher. An increase in the disordered phase of the perovskite film 



   

 

involved a drastic increase in charge trapping and the development of a deeper trap depth. 

Interestingly, we observed that the degradation of the perovskite film persisted even after the 

temperature was dropped, which led to irreversible J-V characteristics of the perovskite solar cell. 

 Later, we introduced a polymer layer of PMMA which improved  thermal stability for more 

than 1000hrs at 85°C. Without PMMA, host-casted MAPbI3 films suffered rapid thermal 

degradation, forming a number of pin-holes at GBs and then extending into GIs. Rapid thermal 

degradation of perovskite GBs without PMMA may be due to the rich moisture chemical structure 

of hydrated (CH3NH3)4PbI6•H2O. At the elevated temperature, hydrated (CH3NH3)4PbI6•H2O 

grain boundaries might suffer from moisture-assisted decomposition, forming a number of pin-

holes at GBs.  Conversely, we observed high thermal stability of perovskite films by introducing 

PMMA to induce marked thermal stability at GBs. It is believed that the excellent hygroscopicity 

of PMMA played an active role in absorbing moisture from hydrated (CH3NH3)4PbI6•H2O GBs 

and driving them out through the GB channel. We believe that continuous functionalization of 

perovskite GBs or crosslinking perovskite GBs with PMMA molecules might drastically render 

perovskite GBs chemically robust, resilient, and heat-resistant. Moreover, we mixed inorganic 

cesium (Cs) cation into the perovskite, which improved thermal stability at a higher temperature 

of 120°C. 

 Finally, we have fabricated perovskite solar cells in an antisolvent method in which the 

perovskite film does not contain deeper grain boundary like hot-casted perovskite thin film. Also, 

we introduced a polymer (polyimide) on the top of the perovskite solar cell which has a large 

contact angle and glass transition temperature. Consequently, perovskite solar cells with polyimide 

showed thermal stability without any efficiency decrement more than 30days. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation of this work 

It is inevitable to replace non-renewable energy sources with renewable energy sources, as 

the proverb says, “Future is green energy and renewable energy”. In everyday life, from the 

electricity that runs homes to the cars on road, mankind is largely dependent on the use of fossil 

fuels such as coal, oil, natural gas, etc. Fossil fuels are carbon-rich deposits extracted and burned 

for producing energy. When fossil fuels are burned as energy sources, they produce a large amount 

of greenhouse gases (GHG) such as carbon dioxide (CO2) which gets trapped in the environment 

causing global warming. According to the U.S. Energy Information Administration (EIA), in the 

year 2018, CO2 emissions from fossil fuels used in the energy sector were equal to about 75% of 

total U.S. GHG emissions caused by humans. Human activities also cause the emission of other 

greenhouse gases such as methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), etc. 

A part of these gases originates from the decomposition of fossil fuels as well. The combined 

emissions of these other greenhouse gases accounted for about 19% of total U.S. anthropogenic 

GHG emissions in 2018 [1].  

The constituents of fossil fuels are carbon and hydrogen.  When fossil fuels are burned, 

oxygen combining with carbon forms CO2 and with hydrogen forms water (H2O). These chemical 

reactions release heat which is used for energy. The amount of CO2 formation is dependent on the 

amount of carbon in the fuel; hence, the amount of CO2 emission depends on the fuel source. In 

2019, about 46% of U.S. energy-related CO2 emissions came from burning petroleum fuels, 33% 

came from burning natural gas, and 21% came from burning coal (Fig. 1). 
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Fig. 1.  U.S. energy consumption and energy related carbon dioxide emission by source reported 

in 2019. Note: nonfossil is nuclear and renewable energy [2]. 

 

Excessive CO2 emission leads to the need for an alternative to fossil fuels. In particular, 

fossil fuels used in the energy sector can be replaced with renewable energy sources to create a 

green and clean environment on the earth. Renewable energy also referred to as “clean energy” 

comes from natural resources which replenishes naturally. The renewable energy sector is 

flourishing, keeping its promise to maintain a clean energy future. The major types of renewable 

energy sources include biomass, hydropower, geothermal, wind, and solar. The use of renewable 

energy sources is increasing day by day. The consumption of biofuels, geothermal, solar, and wind 

energy in the United States in 2019 was nearly three times greater than in 2000 [3]. In 2019, the 

energy provided by renewable sources was about 11.5 quadrillion (1 quadrillion is the number 1 

followed by 15 zeros) Btu (Btu: British thermal units). This amount is approximately equal to 

11.4% of total U.S. energy consumption (Fig. 2). About 56% of total U.S. renewable energy 

consumption in 2019 was from the electric power sector, and 17% of electricity generation was 
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from renewable energy sources (Fig. 3). Renewable energy can play an important role in reducing 

the emission of CO2 and pollution. It is projected that the use of renewable energy sources will 

continue to increase and be significantly prominent through 2050. 

 

 

 

 

 

Fig. 2.  Primary energy consumption by energy in the U.S. in 2019. Note: Sum of components 

may not equal 100% because of independent rounding [4]. 

 

From ancient times, solar energy has been used by mankind to harvest food, stay warm, 

and dry food. In today’s world, we use sunlight to heat buildings, warm water, or power devices. 

Solar or photovoltaic (PV) technology is the process by which sunlight absorbed by a PV material 

is converted into electricity. Solar energy is one promising renewable energy source with few 

environmental affects as long as solar panels are installed responsibly. A solar cell is a device that 

converts light energy into electrical energy through photovoltaic effects. The photovoltaic effect 
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was first discovered by the French physicist Becquerel in 1839 [5]. The first successful solar cell 

with a semiconductor/metal interface was prepared by Fritts in 1883; however, the efficiency was 

only ~1%. In 1954, Pearson et al. from US Bell Labs developed the first crystalline silicon solar 

cell with a photo-conversion efficiency of 4.5% which started a new era in the field of solar power 

[6]. 

 

 

 

 

 

Fig. 3.  Best research cell efficiency of emerging PV technologies certified by NREL. The 

champion efficiency of perovskite solar cell was recorded to be 25.5% achieved by Ulsan 

National Institute of Science and Technology (UNIST) [8]. 

 
Almost 90% of the current commercial PVs is taken by silicon PV since it provides module 

efficiency of ~27%, long sustainability of about 25 years and low cost of 0.3$/W [7,8]. An 

emerging PV technology has developed rapidly in recent years which is known as perovskite solar 
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cells. In comparison with silicon solar cells, the perovskite solar cell is promising with an 

efficiency of 25.5% and manufacturing cost almost half of silicon PV [7,8]. The latest efficiency 

chart of perovskite PV technology recorded by National Renewable Energy Laboratory (NREL) 

is shown in Fig. 3. However, the stability of perovskite is still a major issue hindering the 

commercialization of perovskite solar cells. 

 
In this work, the stability of perovskite solar cells was extensively studied to address the 

thermal instability of perovskite solar cells and a few possible solutions to achieve thermally stable 

perovskite solar cells which will be discussed in the following chapters. 

 

1.2 Overview 

Chapter 1 presents the motivation of this dissertation describing U.S. energy consumption 

source and the future of renewable energy. In addition, an introduction of solar energy as 

renewable energy sources and the future of perovskite solar cells is depicted.  

Chapter 2 provides a detailed illustration of perovskite material and a perovskite solar cell. 

It also provides the basic working principle of solar cells and current-voltage characteristic which 

is the basis of photovoltaic performance. Finally, it illustrates the advantages and limitations of 

perovskite solar cells describing the necessity of stable perovskite solar cells to make them 

commercially available. 

Chapter 3 provides detailed fabrication and characterization techniques of a perovskite 

solar cell. Two types of perovskite thin film (hot casting and conventional) fabrication techniques 

will be described. Detailed morphological and structural characterization techniques including 

XRD, UV-vis, NMR, SEM, EDS IR nonoscopy, etc. will be given. 
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Chapter 4 investigates the performance of a perovskite solar cell during a heating and 

cooling temperature cycle between room temperature and 82 °C. Temperature dependent steady-

state photoluminescence (PL) and time-resolved PL are used to find out the origin of irreversible 

degradation of perovskite solar cells. Perovskite films undergo an irreversible degradation above 

70 °C which is also evident in the XRD and UV-vis measurement [9]. 

Chapter 5 introduces a new polymer of PMMA to improve the thermal stability of 

perovskite thin film. PMMA is applied on the top of perovskite film which makes perovskite thin 

film stable for more than 1000 hrs at 85 °C. GB is crosslinked with PMMA to stabilize the 

perovskite film which is proven using NMR, IR nanoscopy and several other characterization 

techniques [10]. 

Chapter 6 provides the thermal stability of perovskite film using mixed cation. In particular, 

a small amount of inorganic cation cesium (Cs) is helpful to achieve improved thermal stability of 

Cs based perovskite film with PMMA at an elevated temperature of 120 °C. 

Chapter 7 presents the fabrication technique of perovskite thin film using an antisolvent 

approach. The antisolvent method removed larger grain boundaries from the perovskite film 

typically observed in a hot casting technique. The removal of deeper grain boundaries will 

particularly be beneficial to the performance and stability of perovskite solar cells since deeper 

and large grain boundaries are considered to be defective and prone to degradation under thermal 

stress. We introduce another polymer polyimide on top of perovskite solar cells which stabilizes 

the perovskite solar cell for more than a month of heating at 85 °C. 

Chapter 8 depicts the summary and future prospects of this research. It is shown that both 

polyimide and PMMA could address the issue of thermal and air stability of perovskite solar cell. 
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CHAPTER 2 

BACKGROUND OF THE STUDY 

 

2.1 Introduction to perovskite solar devices 

The rapid growth of organic-inorganic hybrid perovskite solar cells (PSCs) has made this type 

of solar cell one of the promising candidates on the market to compete with existing solar cells. 

The highest efficiency for PSCs has been recorded to be more than 25% to date [8] due to 

advancements in solvent engineering [11], interface engineering [12] and composition engineering 

[13]. The outstanding performance of PSCs is attributed to the excellent optoelectronic properties 

of perovskite materials such as high absorption coefficient, weak exciton binding energy, and long 

diffusion length [14,15,16,17,18]. 

Perovskite was first discovered in the 19th century by the Prussian Gustav Rose in 1839 and 

named perovskite after the renowned mineralogist Count Lev A. Perovskiy. A series of oxides 

with similar structures were later discovered and classified as perovskite compounds [19]. 

Miyasaka and co-workers first introduced organic-inorganic hybrid perovskite solar cells in 

DSSCs having an efficiency of only 3.81% [14]. The poor stability and efficiency of liquid 

electrolyte based DSSCs were attributed to iodine-based redox processes. The efficiency increased 

to 10% when the liquid electrolyte was replaced with a solid-state hole transport layer of spiro-

OMeTAD and led to improved stability as well [20,21]. Since then, two common device 

architectures have been developed for perovskite solar devices. The first structure is similar to the 

classical solid-state DSSCs [22], where metal-halide based PSCs were made of a mesoporous 

scaffold of TiO2 nanoparticles and a thin TiO2 blocking layer between the FTO substrate and the 

absorber layer. The second structure is the planer heterojunction structure consisting of a solid 
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perovskite layer with electron and hole selective contacts, which was introduced by Snaith, et al. 

[21]The planar heterojunction structure can be fabricated at a low temperature (<150 °C), while 

the mesoporous TiO2 scaffold structure requires high temperature (<400 °C), making the former 

structure superior to the later structure [23]. The projected theoretical maximum efficiency of solar 

cells made of this type of device structures is more than 30% which has already surpassed the 

practical efficiency of ~25% for silicon solar cells [24]. 

 

2.2 Properties of Perovskite 

Perovskite materials possess phenomenal opto-electronic properties which make them 

unique and result in outstanding performance. Properties of perovskite material vary based on their 

chemical compositions. The bandgap of perovskite can be tuned depending on the type of halide 

present in the material. For example, Iodide based perovskites have the smallest bandgap (1.7-

1.8eV) while Bromide based perovskites have the largest bandgap (2.2-2.3eV) [25]. In addition, 

the crystalline phase of these materials is highly dependent on temperature and chemical structure. 

Here, some of the unique properties of perovskite materials will be described which are considered 

to play significant role in the performance of perovskite solar devices. 

 

2.2.1 Crystal structure 

A typical unit cell structure of a basic perovskite compound is shown in Fig. 4. The generic 

structure of perovskite materials used in PSCs comprises of ABX3 where A is a univalent cation, 

that is, methylammonium (MA) CH3NH3+, formamidinium (FA) CH2(NH2)2+, ethyl-ammonium 

CH3CH2NH3+, Cs+, or Rb+, while B stands for divalent cations (e.g., Pb2+, Sn2+, Ge2+) and X for 

halogen anion (e.g., F-, Cl-, Br-, I-). Among the structures, methyl-ammonium-lead-iodide 
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(MAPbI3) is the most widely used perovskite light absorber. Recent research is also focusing on 

lead-free perovskites due to concerns about the toxicity of lead in the large-scale manufacture of 

the device in the future.  

 

 

 

 

 

Fig. 4.  The unit cell of cubic perovskite (ABX3), where the red spheres at lattice corners are A 

cations, the green sphere at the center is a B cation, and the blue spheres at the lattice faces are X 

anions [26]. 

 

The halide perovskites obtain a desired crystal symmetry by maintaining an allowable 

tolerance factor. A tolerance factor developed by Goldschmidt [27] determines the radii sizes 

associated with cubic symmetry, described by 

t =
RA + RX

√2(RA + RX)
                                (1) 

 

A

B

X
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where RA, RB, RX are the ionic radii of A, B, X, respectively. The tolerance factor provides a rough 

estimate of the stability and distortion of crystal structures of a compound. In addition, it gives an 

idea of whether the phase is cubic (t = 1) or deviates into the tetragonal or orthorhombic phase 

[28]. In general, an established tolerance factor value for halide perovskites lies in the range of 

0.85 < t < 1.11 [28]. Non-perovskite structures are formed when the tolerance factor is higher or 

lower.  

 

 

 

 

 

Fig. 5.  Comparison of (a) orthorhombic, (b) tetragonal, and (c) cubic perovskite phases obtained 

from structural optimization for the case of MAPbI3. Top row: ac‐plane, bottom row: ab‐plane 

[29]. 
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In an inorganic-organic hybrid perovskite, it is difficult to calculate the absolute tolerance factor 

as the organic cation has a non-spherical geometry [28]. However, it is possible to qualitatively 

analyze the transition of structure in these materials. For example, formamidinium lead iodide, 

HC(NH2)2PbI3 (FAPbI3), has a larger A cation than methylammonium lead iodide, CH3NH3PbI3 

(MAPbI3), and a larger cation would generally represent a higher tolerance factor [28]. Two phases 

can be obtained in solution processed FAPbI3 materials. One is the photoactive α-phase (black 

phase) and the other is a non-photoactive phase (yellow phase or δ-phase) [28]. Perovskite 

materials vary in phases with the change of temperature. Perovskite materials show a stable 

orthorhombic (γ) phase at a temperature lower than 100 K. When the temperature is increased to 

160 K, the tetragonal phase (β) starts to appear [30]. With further increase in temperature to about 

330 K, the tetragonal phase(β) is replaced by a stable cubic phase (α) [31]. Fig. 5 shows all three 

perovskites with three different phases. The thermal stability of perovskite materials is particularly 

influenced by the tetragonal-cubic phase transition at higher temperature. 

 

2.2.2 Optical Properties 

Perovskite materials have a high absorption capacity reflected by a high optical absorption 

coefficient (~105/cm). The absorption layer of PSCs can be very thin even below 500nm, and the 

layer can absorb enough sunlight to achieve high efficiency of 15% or more. The optical absorption 

mechanism for first-generation, second-generation, and perovskite-based solar cell absorbers were 

schematically compared by Yin et al. [25] as shown in Fig. 6. Si being an indirect semiconductor, 

the transition probability between band edges is two orders lower, which makes the absorber 

thickness two orders thicker in first generation solar cells [25]. Both the second-generation 

absorber (GaAs) and the halide perovskite absorber (e.g., MAPbI3) have direct bandgaps; however, 
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their electronic structures are different. The atomic p orbital in the MAPbI3 conduction band (CB) 

lower part is less dispersive than the s orbital in the lower part of GaAs CB. Therefore, the DOS 

in the lower CB of MAPbI3 is higher than that of GaAs making it superior in terms of optical 

absorption capacity. 

 

 

 

 

 

Fig. 6.  The schematic optical absorption of (a) first-generation, (b) second-generation, and (c) 

halide perovskite solar cell absorber. GaAs has been chosen as a prototypical second-generation 

solar cell absorber [25]. 
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2.3 Perovskite solar device architecture 

The initial perovskite solar cells were designed based on the structure of dye sensitized 

solar cells (DSSC). The first reported DSSC based PSCs showed 3.8% device efficiency which 

lasted only for a few minutes [14]. To avoid this degradation, a solid-state hole transport layer of 

polymer spiro-MeOTAD was used and reported to have ~ 10% efficiency and to improve device 

stability [20,21]. Presently, two device architectures are commonly found for PSCs, which include 

mesoporous scaffold [20,21,32] and planar heterojunction structures [12,33]. In the mesoporous 

scaffold structure, the PCE depends on the pore size, porosity and morphology of the metal oxide 

nanoparticles, which predominantly determine morphological change and carrier lifetime of the 

perovskite layer. However, the fabrication of the inorganic metal oxide mesoporous scaffold is 

complicated and requires a high processing temperature of more than 450 °C [32], making the 

fabrication procedure expensive. The layer by layer fabrication of planar heterojunction PSCs is 

either conducted through high vacuum deposition [33] or a solution-based method [12,34]. 

However, due to the dewetting process and sensitivity to the atmosphere, the production of uniform 

films is somewhat challenging by implementing cost-effective solution processes. A schematic of 

both the planar and mesoscopic structures can be found in Fig. 7. The device architecture of a 

typical PSC comprises of a perovskite absorber layer sandwiched between two selective contacts, 

an electron transport layer (ETL) such as TiO2, and a hole transport layer (HTL) such as spiro-

OMeTAD. Metal contacts are formed on either side of the transport layers. A transparent 

conducting oxide such as indium-doped tin oxide (ITO) or fluorine-doped tin oxide is formed as 

window contact, and a back contact is formed using Au, Ag, Al, etc. 

Perovskite devices with a planar heterojunction architecture can be fabricated with either 

a n–i–p or p–i–n structure due to the ambipolar semiconducting characteristic of the perovskite 
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[35]. Unfortunately, the n–i–p type planar cells sandwiched between TiO2 as electron transport 

layer (ETL) and (2,2’,7,7’-tetrakis(N,N-di-pmethoxyphenylamine)9,9’-spirobifluorene) (spiro-

OMeTAD)  as hole transport layer (HTL) exhibit a serious hysteresis, induced time dependent 

behaviors, poor stability in moisture and temperature, and reduced photocurrent-voltage (J-V) 

characteristics in the PSCs [36,37]. In contrast, inverted planar heterojunction perovskite solar 

cells with a p–i–n structure attracted considerable attention due to having less serious hysteresis 

than the n–i–p type planar structures [38]. In the inverted planar PSCs, poly(3,4-

ethylenedioxythiophene) polystyrene sulphonate (PEDOT:PSS) is one of the most widely used 

HTLs; however, its acidic and hygroscopic nature significantly reduces device stability, which 

leads to the replacement of organic HTLs with an inorganic one. In this thesis, we have fabricated 

perovskite solar cells using an inverted p-i-n structure. 

 

 

 

 

 

Fig. 7.  Various device architectures for organometal trihalide perovskite solar cells. (a) 

Mesoporous sensitized, (b) bi-layer, (c) n-i-p planar and (d) p-i-n planar. ETL, HTL, and TCO 

(b) bi-layer (c) n-i-p planar (d) p-i-n planar(a) sensitized
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stand for electron transport layer, hole transport layer, and transparent conducting oxide, 

respectively [39]. 

 

2.4 Working principle of perovskite solar devices 

 

 

 

 

 

Fig. 8.  Band diagram and main processes in PSCs: 1. Absorption of photon followed by exciton 

formation; 2. Exciton diffusion; 3. Charge separation; 4. Charge extraction [40]. 

 
As mentioned in the device architecture section before, a typical perovskite solar cell 

consists of an active layer, charge transport layers and metal electrodes. The basic working 

principle of PSCs has three major functioning steps, as shown in Fig. 8. Upon illumination, light 

is incident on the transparent electrode and absorbed by the photons. The absorption of photons 
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leads to the formation of photo-generated charge carriers (excitons) (Step 1). Subsequently, the 

dissociation of excitons occurs at the interface between the absorber and the charge transporting 

layers. The separated electron and hole diffuse to the electron-transporting layer (ETL) and hole-

transporting layer (HTL), respectively (Step 2). Finally, the electrons migrate to the anode, and the 

holes migrate to the cathode where the charge is extracted by the electrodes to an external circuit 

to generate current (Step 3) [41]. 

 

2.5 Current-voltage characteristics 

2.5.1 Equivalent circuit model 

Fig. 9 shows an equivalent circuit of a solar cell. Basically, a simple PV device can be 

modelled by the Shockley ideal photodiode equation as in Eq. 2.  

I = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼0 �𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑒𝑒𝑒𝑒
𝑘𝑘𝐵𝐵𝑇𝑇

� − 1�                              (2) 

 
Here Iph is the photocurrent provided by the photoactive absorbing layer, and I0 is the diode 

reverse saturation current. As the applied voltage (V) increases, the diode current (which opposes 

the photocurrent) exponentially increases.[9]  

I = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼0 �𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑒𝑒(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)
𝑛𝑛𝑛𝑛𝐵𝐵𝑇𝑇

� − 1� − 𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠
𝑅𝑅𝑠𝑠ℎ

               (3) 

 

The real circuit, in practice contains a shunt and series resistances, Rsh and Rs and a non-

ideal diode model is considered, which can be expressed as Eq. 3. Here, kB is the Boltzmann 

constant, T is the temperature in kelvin, n is the ideality factor and n=1 for an ideal diode. In an 

ideal diode all recombination occur outside the depletion region of the absorber layer, while in a 
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non-ideal diode, recombination occurs in the absorber layer and the ideality factor n can be more 

than 2. 

 

 

Fig. 9.  Equivalent circuit model of a solar cell. 
 

2.5.2 Current-Voltage measurements 

The device performance of a solar cell is generally determined by the current–voltage (I-

V) sweeps. The current of a solar cell with a known active area is measured with different applied 

voltage biases. Fig. 10 illustrates a typical I-V curve for a solar cell, where the direction of current 

is considered to be positive. The I-V curve illustrates the key performance parameters of the solar 

cells, which includes the short circuit current (ISC), open circuit voltage (VOC), and the maximum 

power point (MPP). ISC is the photocurrent density provided by the solar cell when there is no 

applied voltage. ISC is dependent on the amount of absorbed light as well as the quality of the 

perovskite absorber layer. VOC is the voltage provided by the solar cell when no current is applied. 

The open circuit voltage VOC is dependent on the band structure of the absorber layer. In addition 

to VOC and ISC, the power density, P, can be calculated at each point on the P-V curve where, 

𝑃𝑃 = 𝐼𝐼𝑒𝑒                                    (4). 
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Fig. 10.  Solar cell 𝐼𝐼-𝑒𝑒 and power operation curve with the characteristic of 𝑒𝑒OC and 𝐼𝐼sc. 
 
 

The ratio of maximum power density to the incident power density determines the power 

conversion efficiency (PCE). The maximum power density is achieved at the MPP which 

corresponds to the maximum power voltage (VM) and maximum power current (IM). The fill factor 

can be calculated using MPP and defined as  

𝐹𝐹𝐹𝐹 = 𝐼𝐼𝑀𝑀𝑉𝑉𝑀𝑀
𝐼𝐼𝑆𝑆𝑆𝑆𝑉𝑉𝑂𝑂𝑆𝑆

                       (5).                                     

The Fill Factor (FF) is a percentage calculated from the ratio of area A to area B, shown in 

Fig. 10. B is the area corresponding to the product of ISC and VOC, whereas A is the area 

corresponding to the maximum power. FF provides a metric for the non-ideality of the solar cell 

and determines the “squareness” of the I-V characteristics. A good solar cell has a high FF, and 
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this is a performance metric that needs to be maximized. PCE of a solar cell depends on the FF, 

ISC, and VOC and can be calculated as 

𝑃𝑃𝑃𝑃𝑃𝑃, 𝜂𝜂 (%) =
𝑃𝑃𝑂𝑂𝑂𝑂𝑇𝑇
𝑃𝑃𝑖𝑖𝑛𝑛

× 100 =
𝐼𝐼𝑆𝑆𝑆𝑆𝑒𝑒𝑂𝑂𝑆𝑆𝐹𝐹𝐹𝐹

𝑃𝑃𝑖𝑖𝑛𝑛
× 100                (6). 

 

2.6 Limitations of perovskite solar devices 

The promising performance of perovskite solar cells has been attributed to extraordinary 

material properties including high absorption coefficient, long charge carrier diffusion length, low 

exciton binding energy, and tunable bandgap [15,16,42,43,44,45]. Despite achieving a 

comparable lab-scale device efficiency to commercially available solar cells, PSCs have critical 

issues regarding stability. Standard PV modules available on the market typically have a warranty 

to retain their initial efficiency for 20–25 years. However, perovskite solar cells are prone to 

degradation when exposed to air, UV light, thermal stress (heat), light soaking, electric fields, and 

many other factors [46,47,48]. Extensive research has recently been focused on the study of 

degradation mechanisms to improve stability of the perovskite solar device. Improved stability 

could be achieved by device encapsulation, adding UV filters, and suppressing trap states for 

degradation caused by air, UV light, and electric fields, respectively. A deeper understanding and 

improvement to these limitations is crucial to upscaling the performance of PSCs.  
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2.6.1 Stability of perovskite materials 

Structural stability 

As described in section 2.2.1, the general structure of perovskite compounds consists of 

ABX3, where A and B are cations and X is an anion. Usually, the A cations are larger than the B 

cations. In all cases, the halide perovskites must maintain an allowable tolerance factor to obtain 

the desired crystal symmetry since crystal structure and phase transition largely affect material 

properties. The A cation does not directly contribute toward electronic properties [49,50,51]; 

however, the size of A cations can cause distortion of the B-X bonds, unfavorably affecting the 

symmetry. Cubic symmetry provides optimum electronic properties due to a high degree of ionic 

bonding. Mismatch of crystal components outside of the ideal tolerance range results in octahedral 

tilting that can affect electronic properties. The structural stability of the perovskites is critical 

when used in photovoltaic devices, which is expected to remain stable for more than 25 years [52]. 

The structural stability is defined by the ability for a crystalline phase to be stable over a wide 

range of external factors such as heat, pressure, moisture, etc.  

In recent years, methylammonium lead trihalide (MAPbX3) has received increasing 

attention as an absorber material for perovskite solar cells. However, it was found that the stability 

of MAPbX3 strongly varies depending on temperature, changing phase or crystal orientation. The 

structural data of methylammonium lead trihalides (MAPbX3; X=I, Cl, Br) [53,54] is summarized 

in Table 1. As depicted in Table 1, both MAPbBr3 and MAPbCl3 crystallize in the cubic phase at 

room temperature while MAPbI3 should be heated to >323 K at which point the phase transition 

from a tetragonal to a cubic phase takes place. Interestingly, many studies on MAPbI3 materials 

report that the tetragonal phase of MAPbI3 still exists even after heating to 373 K [21,20,55,56,57]. 

This suggests that the tetragonal phase is surprisingly stable in the thin films but also points out an 
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ambiguity about the exact phase transition temperature and the nature of the phase transition 

between the tetragonal and cubic phases. 

 

TABLE 1 
 

STRUCTURAL DATA FOR METHYLAMMONIUM LEAD TRIHALIDES [52] 
 
Halides 

(X) 
Temperature 

(K) 
Crystal 

structure 
Space group Lattice parameter (Å) 

a b c 
Cl >178.8 Cubic Pm3m 5.675   
 172.9–178.8 Tetragonal P4/mmm 5.656  5.630 
 <172.9 Orthorhombic P2221 5.673 5.628 11.182 

Br >236.9 Cubic Pm3m 5.901   
 155.1–236.9 Tetragonal I4/mcm 8.322  11.832 
 149.5–155.1 Tetragonal P4/mmm 5.894  5.861 
 <144.5 Orthorhombic Pna21 7.979 8.580 11.849 
I >327.4 Cubic Pm3m 6.329   
 162.2–327.4 Tetragonal I4/mcm 8.855  12.659 
 <162.2 Orthorhombic Pna21 8.861 8.581 12.620 

 

Air stability 

The impact of environmental factors such as moisture, water, humidity, and UV light are 

undeniable in the performance and stability of organic-inorganic halide perovskites. The 

degradation from CH3NH3PbI3 to PbI2 is most likely accompanied by a release of gases via simple 

sublimation or assisted chemical reaction. It is proposed that the first mass loss step during the 

degradation of CH3NH3PbI3 and CH3NH3I under an inert atmosphere proceeds as [39]: 

CH3NH3PbI3 (s)
H2O�⎯� CH3NH3I (aq. ) + PbI2(s) (7) 

CH3NH3I (aq. ) → CH3NH2(aq. ) + HI (aq) (8) 

4HI (aq. ) + O2(g) → 2I2 (g) +  2H2O (l) (9) 

2HI (aq. ) → 2H2 (g) + I2 (s) (10) 
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 As shown in Eq. (7) - (10), in the presence of moisture, MAI dissolves leaving inorganic 

lead halide, and subsequently MAI continue the hydrolysis and release HI. The decomposition is 

irreversible with the existence of moisture. Dao et al. showed the stability of the perovskite layer 

before and after air exposure. The study revealed that the original MAPbI3 film has a pinhole free 

large grain of 5µm. However, after exposure in the air for 18h, there are voids inside the grain 

which are mainly volatile gases of H2 and I2. Large grains are converted into small grains when 

exposed to air for 18 hours. Studies have shown that humidity also plays an important role in the 

performance of perovskite solar cells. Kelly et al. showed that the increase in relative humidity 

(RH) from 50% to 80% in the N2 environment dramatically reduced the absorption affecting the 

photo conversion efficiency. They suggested that use of a proper hole transport layer could reduce 

the degradation. Encapsulation of a perovskite based solar device is necessary to protect it from 

moisture induced degradation. The organic charge transport layers are proven to be susceptible to 

air exposure; therefore, researchers replaced these organic transport layers with inorganic materials 

such as CuSCN, CuI and NiOX as the hole transport layers and ZnO2 and TiO2 as the n-type 

transport layers [58]. You et al. showed improved stability in the presence of moisture and air by 

implementing p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, 

respectively. The device could retain almost 90% of the original efficiency after 60 days of 

exposure in air under room temperature [58]. 

Thermal stability 

Typically, device temperatures can increase up to 45 °C higher than ambient temperatures 

when solar cells operate under direct sunlight.  According to International Standards (IEC 61646 

climatic chamber tests), long-term stability at 85 °C is required in order to compete with the 

silicon-based technology [59]. Therefore, the study of thermal stability of perovskite solar devices 
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have attracted attention of researchers all over the world. Different degradation pathways have 

been proposed, and the topic is still under debate, but it is clear that MAPbI3 (CH3NH3PbI3) 

perovskite loses its excellent light harvesting properties over time because it evolves into PbI2 after 

a nominal loss of CH3NH3I. 

Several studies have been reported corresponding to the thermal stability of the perovskite 

absorber layer in the PSCs. Conings, et al. investigated the thermal stability of perovskite solar 

cells, with a structure of ITO/TiO2/MAPbI3 [59]. The hole transfer layer (HTL) and top electrode 

were omitted to isolate the perovskite layer degradation from degradation at other interfaces. The 

samples were heated at 85 °C for 24 h, under four environmental conditions: pristine film 

(reference), O2 environment, N2 environment and ambient conditions. The study revealed the 

formation of PbI2 under ambient conditions.  

In their work, Han, et al. [60] tested the stability of perovskite solar devices in an 

environmental chamber, where the temperature was controlled in the range of -20 °C to 100 °C. 

The actual cell temperature inside the chamber was found to be approximately 30 °C higher than 

the environmental temperature. Hence, the temperatures were denoted as “environmental 

temperature (actual cell temperature)”, e.g., 55 °C (85 °C) [60]. The degradation mechanism of 

CH3NH3PbI3 solar cells were analyzed for 500h at 55 °C (85 °C) using cross- sectional focused 

ion beam–scanning electron microscopy (FIB-SEM). The cross-sectional FIB-SEM images shown 

in Fig. 11 revealed the degradation mechanism of an encapsulated device. The direct exposure to 

one sun illumination clearly damaged the entire device with the most degradation observed in the 

silver layer. A number of degradation features were observed in the degraded cells, which include 

degradation of the silver layer, formation of voids in spiro-OMeTAD and the perovskite layer, and 

detachment of the perovskite layer from the TiO2 layer. In addition, new particles with high atomic 
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number were observed in the perovskite layer. It is anticipated that the degradation was initiated 

by the reaction of HI gas and Ag in an encapsulated device structure. Therefore, the authors 

suggested replacing the silver contact and using highly heat-resistant encapsulating materials. 

 

 

 

 

 

Fig. 11.  (A) Cross-sectional FIB-SEM images of a new cell and (B-D) different areas of the aged 

cell at constant temperature (55 °C (85 °C)) and humidity (50%) for 500 h. Degradation features 

are denoted as follows: voids in the Spiro-OMeTAD layer (□); voids in the perovskite layer (∆); 
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degraded silver layer (○) and formation of particles with higher atomic numbers, likely PbI2 (◊). 

Reprinted with permission from [60]. 

 
Several techniques have been utilized to achieve thermally stable perovskite solar cells. 

One approach includes the use of polymers such as poly(methyl methacrylate) (PMMA), 

polycarbonate (PC), polystyrene to protect perovskite films from oxygen and moisture [62]. Along 

with protection from air, polymers act as insulating tunneling contact and passivates defects in 

perovskite film by increasing efficiency by more than 18% [61]. Habisreutinger, et al. [62] 

proposed a device architecture composed of single-walled carbon nanotubes for selective charge 

extraction and an encapsulating polymer matrix such as PMMA or PC to protect the device from 

moisture ingress. The devices remained stable in ambient humidity conditions at elevated 

temperatures of 80 °C, while control devices degraded rapidly. Another approach to improve 

thermal stability is substituting the methylammonium (MA) cation of the perovskite material. 

Mixed cation-based perovskites have been extensively studied by researchers. Enhanced 

crystallinity and structural stability with improved power conversion efficiency were obtained by 

replacing MA with formamidinium (FA) [26,63,64], cesium (Cs) cations, [65,66,67,68] or a 

mixture of the two [69,70,71,72,73,74]. Several groups have reported on Cs/FA mixtures, with 

enhanced stability in light, moisture, and heat compared to the pure one (FAPbI3). Saliba, et al. 

have fabricated solar cells using quadruple-cation perovskites (MA/FA/Cs/Rb), also revealing 

improved reproducibility and stability [75]. Saliba, et al. tested aged devices for 500 hours at 85°C 

under continuous illumination with full intensity and maximum power point (MPP) tracking in a 

nitrogen atmosphere. The current-voltage characteristics of the best performance solar cells and 

the EQE electroluminescence (EL) are shown in Fig. 12 (a)-(c). This compounded stress test 
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exceeds industrial standards [76]. They showed that the device retained 95% of its initial 

performance when heated at 85 °C for 500 hours, as shown in Fig. 12(d). 

 

 

 

 

 

Fig. 12.  (A) Current density–voltage (J-V) curve of the best performed RbCsMAFA solar cell. 

The inset shows the scan rate–independent maximum power point (MPP) tracking for 60s. (B) J-

V curve of the highest-VOC device. The inset shows the VOC over 120s (C) EQE 

electroluminescence (EL) as a function of voltage. The left inset shows the corresponding EL 

spectrum over wavelength. The right inset shows a solar cell. (D) Thermal stability test of a 

perovskite solar cell. Reprinted with permission from [28]. 
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2.6.2 Stability of other layers 

The stability of other components such as electron transport layer (ETL), hole transport 

layer (HTL), and metal electrode also play an important role in the performance and stability of 

PSCs. 

Electron transport layer (ETL) 

The most commonly used ETL in perovskite solar devices is titanium dioxide (TiO2). 

However, non-stoichiometric defects, such as oxygen vacancies and titanium interstitials can form 

in this layer [77] and cause deep sub-band gap trap states. Perovskite devices with TiO2 ETL 

showed rapid degradation under illumination. Recently, Ahn, et al. showed that compact TiO2-

based perovskite solar cells completely decomposed only after 6 hours [78]. As evidenced by the 

SEM images, degradation is initiated at the perovskite/TiO2 interface in the TiO2-based device. 

The authors postulated that the trapped charges at the interface were responsible for the irreversible 

degradation of perovskites along grain boundaries [78]. To enhance stability, compact TiO2 ETL 

can be replaced with C60, which showed much more stable performance when deployed in the 

device structure. Wojciechowski, et al. used C60 as an interface modification layer for TiO2 and as 

a stand-alone electron-accepting layer [79,80]. 

Hole transport layer (HTL) 
 The most commonly used hole transport layer in the inverted perovskite device structure 

is poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). However, the prime 

disadvantage of the PEDOT:PSS based hole transport layer (HTL) is that it leads to the chemical 

instability of perovskite solar devices due to its acidity and highly hygroscopic nature [81,82,83]. 

In addition, Vitoratos, et al. [84] investigated the thermal stability of PEDOT:PSS as the most 

popular hole transport material in an organic semiconductor. The study revealed that the electric 
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conductivity of perovskites decreased with aging owing to the shrinkage of PEDOT conductive 

grains. Moreover, the XPS and UPS measurements suggested a broken conformational 

PEDOT:PSS structure, which results in the thermal instability of this material [84]. A recent study 

[85] showed improved efficiency and stability of perovskite solar cells with traditional PEDOT: 

PSS HTLs. They fabricated PEDOT:PSS monolayers by spin coating, and then ultrapure water 

was used to wash away most of the PEDOT:PSS, constructing an ultra-thin layer of PEDOT:PSS. 

The water rinsed device sustained more than 50% of its stability, which is attributed to the less 

hygroscopic nature of the thin PEDOT:PSS layer [85]. Another approach is to use an oxide-based 

hole transporting material such as NiO, which was found to exhibit better air [58,86,87] and 

thermal stability [37]. 

Metal electrodes 

The most commonly used electrode for high efficiency perovskite solar devices is gold 

(Au) or silver (Ag) [38,88,89]. Gold is very expensive and can be typically replaced by Ag paste 

as an electrode in perovskite solar cells [90]. However, it has been reported that both Ag and Au 

show degradation when exposed to thermal stress [91,92]. Domanski, et al. reported the migration 

of gold through HTL into the perovskite materials at 70 °C [92]. Li, et al. showed that in an inverted 

perovskite solar cell (PSC), ions migrated from MAPbI3 thin film diffused through the PCBM ETL 

and accumulated at the Ag surface in N2 at 85 °C [93]. They showed that the loss of MAI occurred 

at grain boundaries (GBs) and upon thermal heating, AgI, MA+, and I− ions migrate to reconstruct 

the GBs, creating more defects in both the bulk grains and the MAPbI3/PCBM interface. Multiple 

reports have investigated an alternative to Au and Ag based electrodes by employing carbon as a 

back-contact material [48,94]. Li, et al. [48] fabricated a hole-conductor-free PSC based on a triple 

layer architecture with printed carbon electrode. The device structure displayed excellent stability. 
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An encapsulated device showed stable performance during outdoor operation for seven 

consecutive days in Jeddah, Saudi Arabia. Moreover, the encapsulated device remained thermally 

stable when heated at 80–85 °C for 90 days, in the dark. The use of carbon as a back-contact can 

be beneficial to make stable PSCs at an elevated temperature of 100 °C, which represented one-

step forward to the commercialization of PSCs [95]. 

 

2.6.3 I-V Hysteresis 

The hysteretic current-voltage, I−V behavior between forward (lower voltage → higher 

voltage) and reverse scan (higher voltage → lower voltage) during current-voltage characterization 

presents a challenge for determining the accurate power conversion efficiency of the PSCs. 

Generally, the reverse scan displays higher PCE than the forward scan, which means the reverse 

scan and the forward scans display a mismatch in the efficiency of the PSCs [96,97,98]. The I-V 

hysteretic behavior of PSCs depends on many parameters such as scan rate, voltage range, scan 

direction, and configurations of PSCs [36,99,100,101,102,103,104]. The scan rate is one of the 

crucial parameters in hysteresis analysis since with increasing scan rate the hysteresis increases, 

and the hysteresis can be removed using a slower scan rate [36,99,100,101]. The PV performance 

as well as the hysteresis is also affected by scan range with different initial bias voltages[103,105]. 

McGhee et al. reported that the light soaking has a great impact on the photovoltaic performance 

by increasing FF and short-circuit current density upon light soaking with large positive bias 

voltage, while light soaking with large negative bias voltage showed negative impact on the PV 

performance. The anomalous I−V hysteresis behavior has been observed in a variety of PSCs 

irrespective of their device architecture including p-i-n & n-i-p structure where Spiro-OMeTAD 
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and TiO2 layers are used as an p- and n- type contacts in p-i-n cells; while PCBM and PEDOT:PSS 

layers are used as an n- and p-type contacts in n-i-p cells [106,107,108,109]. 

The origin of I-V hysteresis has been reported to be due to ferroelectric polarization of the 

perovskite layer [103,110], charge accumulation at the interfaces due to trapping and de-trapping 

[111,112,113,114], and ion migration of related defects under applied bias [115,116]. The slow 

decay process of the capacitive charging or discharging during I-V characterization is attributed to 

cause non steady-state photocurrent and hysteresis [100]. The non-steady state photocurrent, due 

to capacitive charging or discharging, results in electrode polarizations at perovskite and electrode 

interfaces, which influences the hysteresis. However, the PV performance after light soaking with 

different bias voltages cannot only be explained with the capacitive effect. The modified steady-

state current due to band bending, instead of capacitive effect could be the reason behind the 

change in the PV performance. The origin of band bending is due to trapped charges, ion 

migrations, or ferroelectric polarization. The extraction efficiency of electron and hole contributes 

to the observed hysteresis behavior. The extraction efficiency is influenced by the charge trapping 

and detrapping process at the interface, and grain boundaries and enhancing charge extraction is 

vital for controlling hysteresis. The partially trapped states at the interfaces create a depletion 

region at the HTL/Perovskite and ETL/Perovskite interfaces. This leads to change in the band 

structure and reduces charge extraction under forward bias condition. Under large forward bias, 

trap states can be filled, which reduces the depletion region and the band bending. The trapping 

and detrapping process of charges thus affects the hysteresis behavior in PSCs. Accumulation of 

ions occur at interfaces near the electrodes due to ion migration, and an electric field is generated. 

This ion migration is considered another cause of band bending, which influences the separation 

and extraction of photogenerated charges. Ferroelectric polarization is another possible cause to 
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modulate the electric field distribution, resulting in different PV performance under reverse and 

forward scan.  

 

2.6.4 Toxicity 

The toxicity of perovskite originates from the widely used lead as metal cation in the 

perovskite compound. Therefore, environmental and health hazards would be a major concern in 

large-scale manufacturing of these emerging solar cells. Studies have shown that contamination 

from perovskite can be considered insignificant compared to other sources of lead waste [117]. 

However, many researchers have been investigating the possibility and outcome of lead-free PSCs. 

The first candidate to replace lead (Pb) was tin (Sn) since both are carbon periodic materials and 

are thus expected to have similar crystal structure. However, as shown by Noel et al. [118], Sn2+ 

can easily oxidize to Sn4+ leading to poor device performance of tin based PSCs. Other reports 

showed that the hybrid Sn-Pb metal cations in perovskite could reduce the toxicity of lead to some 

extent as well as have advanced PCE [119]. A remarkable PCE of 15.2% with a light absorber of 

MASn0.25Pb0.75I3 was reported by Zhu et al. [120]. 

 In addition to Sn, Bismuth (Bi) was studied as a replacement for lead. It provided a stable 

(MA)3Bi3I9 (MABI) perovskite material. However, the first reported MABI-based PSC only 

reached a low efficiency of 0.12% with a relatively low VOC of 0.68 V and an extremely low JSC 

of 0.52 mA/cm2 [121].  At present, the Bi-based PSC is still not promising even compared with 

Sn. Several other types of lead-free perovskites such as CsGeI3 [122], MAGeX3 (X: Cl, Br, I) 

[123], MASrI3 [124], MACaI3 [125] had also been reported; however, most of the PSC showed 

low efficiency of less than 1%. Moreover, these materials are not suitable for visible light 
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absorption due to large bandgap [119]. Hence, an established lead-free perovskite solar cell has a 

long way to go for development and needs extensive study. 

 

2.7 Summary 

 In this chapter, the structure and properties of perovskite materials are summarized. In 

addition, the operational principle of perovskite solar devices as well as the evolution device 

architecture are described. Moreover, the major drawbacks of perovskite solar cells such as air and 

thermal stability are discussed with possible solutions that have been adopted by researchers. In 

this thesis, our focus is to overcome the thermal instability of perovskite solar cells and establish 

stable perovskite solar cells. The following chapter illustrates the experimental methods used 

throughout this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

33 

CHAPTER 3 

EXPERIMENTAL METHODS 

 

3.1 Perovskite precursor preparation 

The perovskite (CH3NH3PbI3-xClx) precursor was prepared by mixing lead iodide (PbI2, 

Sigma-Aldrich, 99%) and methylamine hydrochloride (MACl, Sigma-Aldrich) at a ratio of 1:1 

before adding N, N-dimethylformamide (DMF, Sigma-Aldrich, anhydrous, 99.8%) to get 11wt% 

concentration. The solution was stirred overnight in a glove box at 70 °C. 

The perovskite (CH3NH3PbI3) precursor solution was prepared by dissolving an equimolar 

ratio of methylammonium iodide (MAI, Greatcell Solar) and lead iodide (PbI2, Sigma-Aldrich, 

99%) dissolved in 11 wt% N,N-dimethylformamide (DMF, Sigma-Aldrich, anhydrous, 99.8%) 

concentration. To fabricate Cs-doped perovskite (CsxMA1-xPbI3), the precursor solution was 

prepared with the three concentrations of cesium iodide (CsI) (x=5%, 9%, and 20%) and stirred 

overnight at 70 °C. 

 

3.2 Perovskite solar cell fabrication 

Perovskite solar devices were fabricated using the p-i-n structure of FTO/ NiOx (or 

PEDOT:PSS)/ MAPbI3 (or MAPbI3-xClx / CsMAPbI3)/ C60 (or PCBM)/ C60:C/ Ag. The 

perovskite absorber layer was fabricated using two different approaches: hot-casting and 

antisolvent method. The fabrication methods of two different approaches of the perovskite layer, 

different hole and electron transport layers are explained in detail in the following sections of this 

chapter. 
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3.2.1 Transparent electrode FTO preparation 

Patterned FTO (SnO2/F, ~8 Ω/sq-1, Aldrich) substrates were cleaned using mucosal, de-

ionized water, methanol, acetone, and iso-propanol (IPA) sequentially. Each solution was heated 

at 100 °C and then put into an ultrasonic bath for 10 minutes to clean the substrate. The substrate 

was then dried with nitrogen and heated at 120 °C for 20 minutes to completely evaporate all 

residues.  

 

3.2.2 Hole transport layer (HTL) deposition 

A NiO precursor was prepared by mixing 50 mg of NiO (Sigma-Aldrich) with 3 mL of 

HCl (Alfa Aesar, 36%) and stirring overnight at 75°C inside a fumehood. After mixing, the 

solution was filtered by a 0.45 µm filter. The NiO thin film was prepared using a hot-casting 

technique. For that, FTO substrates were kept at different hot-casting temperatures ranging from 

room temperature to 120 °C. The prepared NiO precursor solution was then immediately deposited 

on the hot substrate by spin coating at 2000 rpm for 60 s in order to maintain the substrate 

temperature. NiO thin film was then heated to 350 °C for 15 minutes. 

In the case of PPEDOT:PSS, PEDOT:PSS was diluted by using 2-propanol in a ratio of 

1:3 and was spin coated on FTO/glass substrates at a speed of 3000 rpm. PEDOT:PSS was heated 

on a hot plate for 15 minutes at 150 °C. 

 

3.2.3 Active layer of perovskite deposition 

The perovskite film was fabricated using 2 different techniques. First, the hot-casting 

technique was applied to fabricate perovskite thin film on pre-cleaned FTO substrates. In this 
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process, the precursor solution and substrate temperature were kept at 70 °C and 180 °C, 

respectively. The perovskite precursor solution was then immediately spin-coated on the hot FTO 

substrates at 4000 rpm for 10 s. 

For the antisolvent approach, the perovskite precursor solution was prepared by dissolving 

an equimolar ratio of PbI2 : MAI :DMSO (1:1:1) in DMF. The solution was stirred overnight inside 

a glove box at 70 °C. The solution was cooled down to room temperature before spin coating in a 

fumehood. 0.1 ml of the perovskite solution was dropped on the FTO/NiO substrate and spin-

coated using dynamic spin speed. The first spin speed is 1000rpm for 10s, and the second one is 

5000rpm for 30s. At 10s of the second spinning cycle, 0.5 ml antisolvent (diethyl ether) was 

dropped on the rotating sample. The films were then annealed at 100 °C for 10 minutes in air on a 

hot-plate. 

 

3.2.4 Electron transport layer (ETL) deposition 

The electron transport layer consists of PCBM (Nano-c) dissolved in di-chlorobenzene 

(Sigma-Aldrich) and was spin coated onto the perovskite film in a nitrogen filled glove box at 

1250 rpm. Then C60 and carbon were depoisted in electrom beam evaporation. PCBM, C60, and 

carbon layers were measured to be about tens of nanometers. 

 
 

3.2.5 Cathode electrode deposition 

 Finally, silver was deposited in electron beam evaporation at a deposition rate 4 angstrom/s. 

The thickness of the Ag metal was about 180 nm. 
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3.3 Polymer preparation 

 For the deposition of PMMA, PMMA (Sigma-Aldrich, Mw ~120 000) was dissolved in 

chlorobenzene (Sigma-Aldrich, 99.5%) (10mg/mL) and spin-coated on top of the perovskite film 

with a spin speed of 4000 rpm for 10 s. 

 Polyimide was dissolved in chloroform (20mg/ml) and spin coated on top of perovskite 

solar cells with a spin speed of 3000 rpm for 10s under a nitrogen environment inside a glove 

box. 

  

3.3 Electrical characterization 

3.3.1 Current-voltage characteristics (J-V) 

The photocurrent density (J) vs voltage (V) curves were determined using a Keithley 

2400 source meter under AM 1.5G illumination at 100mW/cm2 provided by a solar 

simulator (Newport 69907). One sun illumination was adjusted using NREL-calibrated, 

KG-2 filtered Si diode. A 450 W Xenon lamp was used as the light source, and the lamp 

remained on for 30min before starting the photocurrent measurement to stabilize the light 

intensity. J–V curves were obtained by scanning from -0.05V to 1V. Temperature-

dependent J-V measurements were carried out following the identical procedure and 

keeping all conditions the same as temperature-dependent PL and TRPL measurements. N2 

atmosphere was provided to protect the sample from moisture during temperature-

dependent J-V measurements.  
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3.5 Optical characterization 

3.5.1 Steady state and time resolved photoluminescence (PL) measurement 

 Perovskite samples were prepared on glass substrates to attain optical characterization of 

steady-state and time-resolved PL. The cleaning steps of glass substrates and the deposition 

procedure of the perovskite layer were the same as mentioned for the perovskite solar cells. To 

prevent degradation by air exposure, samples were coated using a polymer, polymethyl-

methacrylate (PMMA, Sigma-Aldrich, Mw∼120,000) in chlorobenzene (Sigma-Aldrich, 99.5%) 

(10 mg/ml) at 2000 rpm for 30s. Steady-state and time-resolved PL spectra were recorded using 

spectrophotometer (Flurolog, Horiba Jobon Yvon) and time-correlated single photon counting 

(TCSPC) system connected with a solid-state laser. For PL measurement, an excitation wavelength 

of 450nm with 20MHz repletion rate was used, and the emission spectra were measured from 600 

nm to 850 nm. For time-resolved PL (TRPL), a high-speed photomultiplier tube detector (FL-

1073, Horriba scientific Inc) was employed for photon counting with repetition rate of 4MHz and 

450nm excitation wavelength. Both PL and TRPL measurements were performed at a very low 

excitation density of 0.2 µW/cm2 to avoid possible degradation by laser. For temperature-

dependent PL and TRPL measurements, a THM S600E Linkam temperature control stage with 0.1 

°C accuracy was used. To passivate the defects in the perovskite film, 20 min light soaking was 

applied at room temperature before undertaking the measurement. The temperature-dependent 

measurement was conducted over thermal cycles of 28-82-28 °C. In the heating and cooling 

processes, the temperature was increased and decreased respectively at a step size of 1 °C, and a 

waiting time of 2min was maintained at each temperature in order to hold the sample at an assigned 

temperature. During the temperature-dependent measurement, cool water was circulated using a 

Linkam ECP water circulation pump to control the temperature precisely. 
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3.5.2 UV-vis measurements 

 The UV-VIS spectra were measured by using a Perkin Elmer Lambda 45 

spectrophotometer. To measure UV-VIS, an active layer of perovskite was prepared on top of a 

glass substrate.  

 

3.5.3 IR nanoscopy measurement 

 Nano IR absorption spectrum, morphology, and absorption mapping image of the 

perovskite film were obtained using infrared nanoscopy (IR nanoscopy) (Anasys Instruments, CA, 

USA) under an ambient condition. The IR nanoscopy system is combined with a high-resolution 

AFM operating in contact mode to simultaneously measure morphology and absorption spectra 

with a spectral range of 900 to 2000 cm-1. 

 

3.6 Structural and morphological characterization 

3.6.1 X-ray diffraction measurement 

X-ray diffraction was measured on a solar cell device using a Rigaku MiniFlex II 

X-ray diffractometer. The solar cell device was heated in the N2 atmosphere at different 

temperatures using the THM S600E Linkam system.  An acquisition rate of 5 °/min with a 

step size of 0.02 ° was used. 

 



   

 

39 

3.6.2 Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) 

measurement 

 The surface morphology and EDS mapping of the perovskite film was characterized by 

scanning electron microscopy (SEM; JEOL, JSM-6060LV). Images were taken at different 

magnifications and at an accelerating voltage of 15kV. Samples for SEM/EDS were prepared by 

Au coating with a Hummer V sputter coater for preventing electron charging. 

 

3.6.3 Nuclear magnetic resonance measurement 

The high-resolution proton NMR spectra were taken on a JEOL 400 MHz 

spectrophotometer. For NMR measurement, deuterated DMSO was used as a solvent. The 

CH3NH3PbI3 solution is prepared by mixing 0.009g CH3NH3I and 0.027g PbI2 in 0.3mL deuterated 

DMSO and stirred at 60 °C for 12 hours. The PMMA solution is prepared by dissolving 0.003mg 

PMMA in 0.3mL deuterated DMSO. CH3NH3PbI3 solution mixed with PMMA is prepared by 

adding 0.009g CH3NH3I, 0.027g PbI2, and 0.003mg PMMA in 0.3mL deuterated DMSO. 

 

3.7 Summary 

The preparation of the perovskite precursor solution and the fabrication method of the 

perovskite film and perovskite solar cells with different charge transport layers were described in 

this chapter. In addition, characterization techniques such as PL, TRPL, J-V, SEM, EDS, XRD, 

UV-vis, and NMR used in this thesis are depicted in this chapter. 
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CHAPTER 4 

DEGRADATION MECHANISM of PEROVSKITE FILM AND SOLAR CELL DURING 

HEATING AND COOLING TEMPARATURE CYCLE 

 

4.1 Introduction 

The organo-inorganic halide perovskite has evolved rapidly into the most important 

new candidate for next-generation photovoltaics in an unprecedentedly short period of time 

[32,126,127,128]. During the past few years, refined fabrication processes of perovskite 

solar cells, improved understanding of solar cell physics, and innovative device engineering 

have led to significant progress and much improved cells that operate at greater than 20% 

efficiencies [8]. Despite all these advances, the instability of organometal halide perovskite 

solar cells [127,59,129,130,131] has been a major obstacle to commercial viability. Either 

CH3NH3PbI3 (MAPbI3) or CH3NH3PbI3-xClx (MAPbI3-xClx) have been widely studied for 

photovoltaic applications, which displays a distorted three-dimensional network [132]. 

From a chemical point of view, the perovskite material is composed of complicated 

chemical structures in the ABX3 coordination, in which the A cation is composed of 

CH3NH3+ (or MA+), the B metal cation is divalent metal ion of Pb2+ while the X anions are 

halides including Cl-  and I-. As predicted by theoretical frameworks, the optoelectronic 

properties of perovskites will be in part governed by CH3NH3+ organic moiety, the Pb-X 

(X=Cl and I) bonds and their chemical configurations [133]. Therefore, the chemical 

distortion or rupture induced by decomposition or degradation of perovskite films will 

inevitably alter the optoelectronic properties of solar cells. Indeed, recent studies 
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demonstrated that the presence of moisture accelerated the chemical decomposition from 

the dark brown MAPbI3-xClx to yellow PbI2 when the perovskite layer was not properly 

encapsulated.  In addition, Zhou et al. [127] demonstrated an 80% decline of photovoltaic 

performance of unencapsulated perovskite solar cells when stored in ambient conditions 

for 24 hrs at room temperature, which highlights the importance of an advanced 

encapsulation technique.  Given these problems, considerable efforts have been devoted to 

employing the encapsulation layers as a means of protecting the underlying perovskite film. 

Nevertheless, studies revealed that perovskite films are inherently unstable and highly 

sensitive to the temperature even in an inert environment [129]. In particular, Conings et 

al. systematically investigated thermal instability of MAPbI3 from a morphological, 

electronic and chemical point of view. Their investigation concluded that perovskite film 

is not intrinsically stable but gradually disintegrates from MAPbI3 to PbI2 with loss of 

CH3NH3I when heated to 85 °C even in inert atmosphere. Deretzis et al. [130] also made 

similar observation of thermal instability of CH3NH3PbI3 which transformed to PbI2 at 150 

°C under vacuum.  Most strikingly, in-situ high-resolution transmission electron 

microscopy (TEM) and electron energy loss spectroscopy showed the thermal degradation 

of perovskite films even at ∼50− 60 °C [131]. 

Although there is some understanding of the thermal instability of perovskite solar 

cells, little is known about the impact of thermal instability on the reversible or irreversible 

behaviour of perovskite solar cells. At present, studies on the thermal instability of 

perovskite solar cells have been conducted at specific temperatures for a specific period of 

time [127,129,130,131]. However, it should be noted that device temperatures can increase 

up to 45 °C higher than ambient temperature under direct sunlight which also varies 
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depending on the time of day and the time of year [60]. As a result, the device operating 

temperature fluctuates from low to high or vice versa, depending on ambient temperatures. 

In this work, we conducted a quantitative and systematic investigation of pathways for 

thermal degradation and their impacts on device operation during a heating and cooling 

temperature cycle between room temperature and 82 °C. Most surprisingly, it is revealed 

that the irreversible degradation of perovskite solar cells was triggered at 70 °C in a nitrogen 

environment. Another intriguing observation is that the degradation momentum of the 

perovskite solar cell did not stop but continued even when the device temperature cooled 

down from 82 °C, close to a solar cell’s field operating temperature to room temperature. 

Our new finding infers that the instability of perovskite solar cells at such a low temperature 

under illumination may limit their real field commercial applications.  

 

4.2 Temperature-dependent photovoltaic performance of perovskite solar cells during 

heating and cooling processes 

Perovskite solar cells were fabricated having the device structure of 

FTO/PEDOT:PSS/MAPbI3-xClx /PCBM/carbon/Ag, as shown in Fig. 13 (a). In this study, 

photoactive MAPbI3-xClx perovskite film was prepared using a hot casting technique in which a 

hot (70 °C) perovskite solution was spin-coated onto FTO/PEDOT: PSS substrates maintained at 

180 ° C. A precursor solution of MAPbI3-xClx was prepared by dissolving an equimolar ratio of 

PbI2 and CH3NH3Cl (MACl) in N, N-dimethylformamide in a concentration of 11wt%. Unlike 

conventional spin-casting methods, this hot-casting technique produces uniform, pinhole-free 

perovskite morphologies, as shown in Fig. 13 (b). As an electron transport layer (ETL), combined 

PCBM/carbon was utilized. In previous studies, we have found that the deposition of carbon on 
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top of PCBM resulted in improved series and shunt resistances of perovskite solar cells. In 

particular, a 10 nm thick carbon film led to high conductivity (σ=4.24±0.68 Scm-1) that is much 

better than reported conductivity of C60 (2.4×10-3 Scm-1) and PCBM (3.2 ×10-4 Scm-1). Fig. 13 

(c) shows current (J)-voltage (V) characterization of MAPbI3-xClx solar cells with PCBM/carbon 

ETL. Short-circuit current (JSC), open circuit voltage (VOC) and fill factor (FF) were 23.69 mA/cm2, 

0.96 V and 0.71, resulting in a power conversion efficiency (PCE) of 16.2%. [9] 

 

 

 

 

Fig. 13.  (a) Inverted p-i-n perovskite solar cell structure and (b) SEM image of perovskite film 

fabricated by a hot-cast technique. (c) Current-voltage J-V characteristic of perovskite solar cell at 

room temperature exhibited a PCE of 16.2% at room temperature. However, after soldering 
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electrodes to the electrical connectors of the THM S600E system, photovoltaic parameters of 

perovskite solar cell changed slightly, and the initial efficiency dropped to ~13%. Also, the 

evolution of photovoltaic parameters of (d) short circuit current density (JSC), (e) fill factor (FF) 

and (f) open circuit voltage (VOC) of perovskite solar cell during the heating and cooling processes 

is illustrated. [9] 

 
For temperature-dependent J-V measurements, MAPbI3-xClx perovskite solar cell 

was placed in a nitrogen-filled Linkam THM S600E system while adjusting the temperature 

at 1 °C intervals for 2 min at each point before collecting data. In addition, cool water was 

circulated using a Linkam water circulation pump to control the temperature precisely. The 

device temperature was increased from room temperature to 82 °C and then cooled to room 

temperature. Fig. 13 (d)-(f) summarizes the temperature dependencies of the principal 

photovoltaic parameters (JSC, VOC and FF) of the perovskite solar cell during the heating 

and cooling processes. We observed the irreversible performance of JSC and VOC during the 

heating and cooling processes. Upon increasing temperature, JSC in Fig. 13 (d) gradually 

decreased at a rate of approximately -0.18 mA/°C. In a cooling process, the decrease in JSC 

was also observed in which JSC initially increased but declined steadily. Remarkably, the 

VOC showed very strong temperature-dependent decline, as shown in Fig. 13 (f). As the 

temperature rises from room temperature to 70 °C, the VOC sharply decreased at a much 

faster rate of -9.5mV/°C. During the cooling process, the VOC steadily dropped from 82 °C 

to 70 °C and then slowly recovered as the temperature decreased to room temperature. [9] 
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4.3 Temperature dependent steady-state PL 

It was recently demonstrated that increased charge trapping was considered one of 

the plausible causes responsible for the irreversible degradation of perovskite film. In this 

regard, we conducted temperature dependent, steady-state and time-resolved PL 

measurements on perovskite films to probe the evolution of carrier dynamics that determine 

photovoltaic performance during the heating and cooling processes. For temperature-

dependent PL measurements, the MAPbI3-xClx film was coated with PMMA to prevent 

degradation due to air exposure and placed in a nitrogen-filled Linkam THM S600E system. 

Fig. 14 shows temperature-dependent PL as a function of temperature and wavelength in a 

two-dimensional (2D) contour. Remarkably, from PL contour plots of heating and cooling 

processes in Fig. 14 (a) and (b), we noticed very low PL intensity in the cooling process. In 

addition, the integrated PL intensity in Fig. 14 (c) clearly shows irreversible PL behaviour 

during heating and cooling processes. Interestingly, at elevated temperatures, the integrated 

PL showed three distinct PL transition peaks at 40 °C, 54 °C and 70 °C on a logarithmic 

scale, as shown in Fig. 14. Obviously, the PL peak at 54 °C marked a tetragonal-cubic phase 

transition, while an unusual rise in PL from RT to 40 °C was also observed. Recently, it 

was assumed that the PMMA layer accumulates the pressure and temperature which cause 

phase transitions that occur at temperatures well below the theoretical predicted phase 

transition temperatures. However, tetragonal-cubic phase transition was clearly observed 

at 54 °C. Therefore, the peak at 40 °C is not related to tetragonal-cubic phase transition. 

However, it is assumed that unusual rise in PL might be related to light soaking effect. To 

verify this, we undertook two consecutive PL measurements by varying temperatures 

between RT and 50°C – below a tetragonal-cubic phase transition temperature, as shown 
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Fig. 14.  Two-dimensional contour plots of PL during the (a) heating and (b) cooling temperature 

cycle. (c) Temperature-dependent PL intensity was re-plotted as a function of temperature clearly 

showing three transitional PL peaks during the heating process. (d) Consecutive PL measurements 

between room temperature and 52 °C were plotted during the heating and cooling processes. After 

the 1st thermal cycle was completed, the perovskite films were left in the dark for 30 min at room 

temperature and then the 2nd thermal cycle was conducted. (e) PL spectra were deconvoluted using 

the bi-Gaussian function for ordered (red) and disordered (blue) phases. (f) An evolution of 

deconvoluted PL intensities in a heating process is shown. [9] 

 
in Fig. 14 (d). For the first heating and cooling process, a large discrepancy in PL was 

observed in which the PL intensity gradually increased to 40 °C and then decreased. 

However, for a second heating and cooling process, the PL intensity increased sharply and 
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continued to drop as the temperature increased. In addition, PL exhibited more reversible 

behavior during the second process. This might be a consequence of the light soaking effect 

at elevated temperatures. Indeed, Peng et al., reported that combined pre-light and heat 

exposure greatly enhanced the defect passivation of perovskite films. [9]  

Another intriguing observation is a sharp decrease in PL intensity around 70 °C, a 

vital indicator of degradation of the perovskite film in Fig. 14 (c). As is well established, 

the collected PL spectra can be interpreted in terms of structural changes. In particular, 

structural degradation typically resulted in spectral broadening of PL, involving newly 

created defect states. Recently, our group reported a close correlation between chemical 

disorders and PL spectra of perovskite films using spatially and chemically resolved two-

dimensional (2D) energy dispersive X-ray spectrometry (EDS) and PL mapping studies of 

the perovskite film. Our studies revealed that the PL spectrum observed in MAPbI3-xClx 

perovskite thin film is asymmetric, which can be deconvoluted with a bi-Gaussian function, 

representing the ordered and disordered phases of the perovskite film. Critically, our 

chemical analysis of controlled morphologies revealed that non-stoichiometric chemical 

disorder led to a broad shoulder peak at the short wavelength while the stoichiometric 

perovskite grains showed a very uniform but longer wavelength. Fig. 14 (e) shows the 

deconvoluted PL spectra at room temperature, one with a broad full-width at half maximum 

(FWHM=74.9 nm) but shorter wavelength (754.9 nm) and the other with a narrow FWHM 

(46.7 nm) but longer wavelength (762.2 nm). Using a deconvoluted PL approach, we 

quantitatively analysed the evolution of the ordered and disordered phase of perovskite film 

in a heating process. Fig. 14 (f) shows the deconvoluted PL spectra using the bi-Gaussian 

function with increasing temperature. Remarkably, the analysis of the evolution of PL 
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intensities of ordered and disordered perovskite phases revealed that the disordered phase 

began to dominate above 70 °C. This suggests that the structural degradation of perovskite 

film might occur at 70 °C, the temperature at which VOC began to decrease, as shown in 

Fig. 14 (f). [9] 

 

4.4 Temperature dependent time-resolved PL 

 Since the structural degradation of perovskites will accompany the increased 

trapping rates of charge carriers, it is expected that charge trapping will accordingly vary 

during the heating and cooling processes.  For this purpose, we measured temperature-

dependent lifetime decays and calculated the trapping and detrapping rates of 

photogenerated charge carriers. The trapping rate is proportional to the photogenerated 

carrier density and the number of empty trap states while the detrapping rate is proportional 

to the number of occupied trap states and empty conduction band states as expressed by the 

following equations [9]: 

dn(t)
dt

= -ktrn + kdentr                                            (11) 

dntr(t)
dt

= ktrn-kdentr                                               (12) 

 

where n is the density of free electrons and ntr the density of electrons in the traps, ktr the 

trapping rate and kde the detrapping rate. Fig. 15 (a) shows best-fitting of lifetime decay 

using the trapping and detrapping models. Also, temperature-dependent lifetimes and 

calculated trapping and detrapping rates were shown in Fig. 15 (b) and (c). When the 

temperature rises from room temperature to 40 °C, the lifetime value increased while the 

charge trapping rate dropped sharply, but the detrapping rate increased. Again, reduced 
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charge trapping but increased detrapping rate confirm the defect passivation of perovskite 

film due to both light and heat exposure. As the temperature rises above 70 °C, lifetime 

values decreased gradually while a rapid decrease in lifetime values above 70 °C was 

observed. From temperature-dependent lifetime transitions, we quantitatively analysed the 

trap depth using an Arrhenius plot  

)/exp(1
)(

1

0

kTE
t

a−+
=

τ
τ

τ                                           (13) 

 

that yielded a trap depth of 145 meV at a temperature of 40-70 °C, which is in good 

agreement with reported values. Above 70 °C, a deeper trap depth of 1.1 eV was observed, 

which might be related to thermal degradation of the perovskite. Therefore, it is reasonable 

to assume that a sharp increase in the trapping rate in Fig. 15 (c) could be related to the 

formation of deep trap states in the perovskite film. Indeed, thermal degradation of the 

perovskite film at higher temperatures produced deep defects in the perovskite film with a 

deep activation energy of ~1.5eV. In addition, we observed very interesting behaviour 

when the perovskite temperature decreased, i.e. the lifetime value and charge trapping 

continued to increase. This indicates that the degradation of the perovskite film triggered 

around 70~82 °C did not stop but continued even after lowering the temperature. [9]  
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Fig. 15.  (a) Best-fitting of lifetime decay using trapping and detrapping model and the evolution 

of (b) lifetime and (c) trapping and detrapping rates during temperature cycling. Quantitative 

analysis of Arrhenius plots resulted in the trap depth of 145 meV between 40 and 70 °C and 1.1eV 

above 70 °C, respectively. [9] 

 

4.5 Temperature dependent UV-VIS measurement 

 Since light harvesting is closely related to the photocurrent of the perovskite solar 

cell, we conducted temperature-dependent UV-VIS measurement of the MAPbI3-xClx 

perovskite film. Note that the PbI2 is known to have a band edge absorption around 510 nm 

while the MAPbI3-xClx exhibits a band edge absorption at much longer wavelengths of 700-

800 nm. Fig. 16 shows UV-VIS measurement of perovskite film during the heating and 

cooling processes. At room temperature, MAPbI3-xClx perovskite film exhibited band edge 

absorption in the range of 700 nm to 800 nm. Upon heating from 28°C to 82°C in Fig. 16 

(a), we observe a gradual blue-shift of absorption band edge from 760 nm (or 1.63 eV) at 

room temperature to 736 nm (or 1.69 eV) at 82 °C, which is related to the downshift of the 
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valence band maximum and conduction band minimum. Interestingly, we did not observe 

a sharp change in the light absorption over the tetragonal–cubic phase transition around 54 

°C, inferring the continuous tilting of the PbI6 octahedra and the continuous change of Pb-

I bond length with rising temperature. However, in the shorter wavelength range of less 

than 550 nm in Fig. 16 (a) we observed a gradual decrease in light absorption. We also 

observed that cooling down from 82 °C to 28 °C the absorption spectrum at shorter 

wavelengths of less than 550 nm continued to decrease, as shown in Fig. 16 (b) and (c). 

Remarkably, the absorption band edge of PbI2 in Fig. 16 (c) became sharper during the 

cooling process. In addition, the comparison of UV-VIS absorption before and after the 

heating and cooling processes in Fig. 16 (d) shows the decreased light absorption. This 

suggests that light harvesting capability of CH3NH3PbI3-xClx perovskite films deteriorated 

continuously during the cooling process.  
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Fig. 16.  Temperature dependent UV-VIS absorption of MAPbI3-xClx during (a) heating and (b) 

cooling processes. (c) Absorption spectra from 450 nm to 550 nm was re-plotted to clearly show 

the development of the PbI2 phase. (d) Comparison of UV-VIS before and after thermal process 

indicates the decreased light absorption after competing thermal process. [9]  
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4.6 SEM and X-ray diffraction measurements 

 Degradation in solar cells can primarily occur in three places: i) in the bulk of the active 

layer; ii) at the interface of the perovskite and the electrodes; and iii) at the electrode itself. To 

probe any degradation of the morphological degradation of perovskite films, perovskite/metal 

interfaces and the metal electrode of perovskite solar cells, scanning electron microscopy (SEM) 

measurement was conducted. In this case, two solar cells were fabricated under the same 

conditions and heat-treated for 0 and 3hrs. Fig. 17 (a) and (b) show cross-sectional SEM images 

for perovskite solar cells heated for 0 and 3 hrs at 82 °C. However, we have not found any 

noticeable degradation of the perovskite film, perovskite/metal interfaces, or Ag electrode from 

cross-section SEM images. However, we cannot rule out subtle degradation of perovskite film that 

SEM cannot detect but that leads to structural deformation. Therefore, we also performed X-ray 

diffraction measurements on perovskite solar cells at different annealing temperatures. Fig. 17 (c) 

shows the X-ray diffraction of perovskite solar cells heat-treated in the nitrogen filled Linkam 

sample stage. Before heating perovskite solar cells, we observed the presence of Ag from a metal 

electrode, PbI2, CH3NH3PbI3, and CH3NH3PbCl3 phases, which is typical for the hot-casting 

technique of perovskite thin film.  When the perovskite solar cell was heated at 55 °C, the X-ray 

peak of PbI2 did not show a noticeable change. In contrast, we found that the X-ray peak intensity 

of PbI2 slightly increased when the perovskite solar cell was heated at 70 ° C. This confirms that 

the thermal degradation of the perovskite layer indeed occurred at above 70 °C. In addition, a sharp 

increase in PbI2 phase was observed at 82°C, inferring further degradation of the perovskite layer. 

Such structural degradation of MAPbI3-xClx film might explain the observed optical degradations 

- a rapid increase in the disordered phase, charge trapping rate and trap depth of the MAPbI3-xClx 

film and degraded perovskite solar cell performance above 70 °C. In addition, when the film 
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temperature cooled down from 82 °C to room temperature, we observed on-going thermal 

degradation of MAPbI3-xClx thin film as demonstrated from PL and UV-VIS measurements. 

Remarkably, we also observed a similar degradation of the photovoltaic performance of the 

perovskite solar cell when the device temperature cooled down from 82°C to room temperature. 

Therefore, we can conclude that the irreversible device performance could originate from the 

intrinsic thermal degradation of MAPbI3-xClx thin film. We noticed that there was a slightly 

different irreversible behaviour between VOC and JSC during the cooling process. It is found that 

the VOC gradually recovered whereas the photocurrent decreased continuously during the cooling 

process. Such difference might point to the fact that the VOC is very sensitive to surface and 

interfacial defects and is determined by the difference in quasi-fermi levels (or chemical potentials) 

of electrons and holes. In contrast, the photocurrent is more related to the surface defects, bulk 

defects, charge carrier mobility, and diffusion processes. We think that structural deformation 

occurred above 70 °C was not completely restored to the original perovskite structures and creates 

considerable defects in the bulk during the cooling process. As a consequence, there are a number 

of defects in the bulk facilitate non-radiative recombination of photo-generated charge carriers 

while diffusing towards respective electrodes, resulting in continued degradation of the 

photocurrent. [9] 
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Fig. 17. SEM images of (a) 0 hr and (b) 3 hrs heating at 82 °C and (c) X-ray diffraction 

measurement at different temperatures, particularly showing the development of PbI2 above 70 

°C. [9]  
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4.7 Summary 

 In summary, we have demonstrated the irreversible degradation of perovskite solar 

cells during heating and cooling processes. In particular, perovskite film showed 

irreversible degradation at 70°C or higher which can be explained by dynamic evolution of 

degraded crystallinity, increased charge trapping, deep trap depth and formation of PbI2. 

One interesting aspect is that the degradation did not stop when the temperature was below 

70°C. This irreversible degradation study will help to commercialize perovskite solar cells 

and increase thermal stability. In the following chapter, we will focus on investigating the 

stability of perovskite film at a higher temperature. 
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CHAPTER 5 

ROLE OF PMMA TO MAKE MAPBI3 GRAIN BOUNDARY HEAT RESISTANCE 

 

5.1 Introduction 

 Hybrid organic-inorganic perovskites have attracted much attention in recent years due to 

their outstanding optoelectronic properties [16,42] and opened new ways for optoelectronic 

applications such as photovoltaics [20,134] photodetectors [135], light emitting diodes (LEDs) 

[136], and lasers [137,138]. In the photovoltaic research, perovskite materials have achieved photo 

conversion efficiencies exceeding 25% [8]. Despite recent progress, designing long-lasting 

materials and device structures is still challenging. In general, the degradation of perovskite films 

undergoes a series of chemical reaction paths when exposed to moisture, oxygen, light, and heat 

[59,66,139,140,141,142]. So far, the light, oxygen and moisture-induced degradation can be 

slowed by integrating the barrier or interface layer or using advanced encapsulation [60,143], 

compositional engineering [26,69,144], and UV-filter techniques [145] within the device 

architecture [146]. However, the most representative perovskite material of CH3NH3PbI3 

(MAPbI3) absorber appears to be thermally unstable even in an inert environment [59,131,130]. 

This poses a great challenge for solar cell applications because device temperatures can increase 

up to 45 °C higher than ambient temperatures when operating under direct sunlight [59]. To 

achieve better stability, all inorganics, triple or quadruple cations coupled with mixed halide 

anions, polymer composites, and others have been attempted [59,73]. Among them, the use of 

triple or quadruple cations looks like the rational approach to enhance the stability of perovskites 

due to thermally stable cations, a stable Goldschmidt tolerance factor (t) approaching to unity and 
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stronger bond strengths [147]. Recently, new insights into perovskite stability have been revealed 

by advances in MAPbI3 solar cells [148].  The high stability of MAPbI3 solar cells has been 

achieved by using additives (80 % of initial PCE after 500 hrs of thermal aging at 85 °C and 20 % 

relative humidity)  [148]. Note that this stability is comparable to the one achieved by quadruple 

cations (CH3NH3 (or MA), HC(NH2)2 (or FA), Cs, Rb) based solar cells (95 % of initial PCE after 

500 hrs of thermal aging at 85 °C in a nitrogen environment) [75]. This result is somewhat 

surprising because MAPbI3 perovskites were often considered to be thermodynamically unstable 

compared to triple or quadruple cation based perovskites [59,75]. Presently, it was speculated that 

the high crystallinity of MAPbI3 with larger grains was responsible for enhanced thermal stability 

[148]. Also, Wang, et al. demonstrated enhanced thermal stability of MAPbI3 perovskite films by 

altering nanoscale defect states and disordered chemistries of grain boundaries (GBs) [149]. His 

experiments in part confirm that moisture-induced degradation initiated at the GBs and propagated 

along the in-plane direction when exposed to external forces. Recently, Park, et al. observed the 

enhanced thermal stability of perovskite via GB passivation [150]. These findings highlight the 

importance of stabilizing the GBs to improve the stability of perovskite solar cells. [10]  

Recently, polymers such as poly (methyl methacrylate) (PMMA), polystyrene, 

polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE) or Teflon, 

polydimethylsiloxane (PDMS), and polycarbonate (PC) have been used as barriers to protect 

perovskite films from oxygen and moisture ingression [151,152]. Among them, PMMA showed 

excellent physical properties such as high transparency, hardness, chemical resistance, and glass 

transition temperature [153]. Despite all these excellent physical properties, the poor conductivity 

of PMMA polymer could be an issue when applied in a perovskite solar cell. However, many 

studies have shown that the conductivity of PMMA can be improved by incorporating graphene 
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in the polymer [154]. So far, PMMA has been primarily used in perovskite devices to protect 

against moisture, facilitate charge transport, reduce trap sites and charge recombination losses, and 

improve efficiency [152,61]. Several studies proved that PMMA encapsulated perovskite solar 

cells can retain 95% of initial PCE after exposure to air (25°C, 35% RH) for 1000 hrs [152]. 

Recently, Mckenna, et al. reported thermal degradation of PMMA treated perovskite films with a 

heating time of 29 hrs [155]. They observed the progressive evolution of PL quenching regions 

with prolonged thermal aging. In contrast, Habisreutinger, et al. reported further improved thermal 

stability of MAPbI3 film using carbon nanotube/PMMA composites up to 96 hrs at 80 °C in air 

[62].  In addition, Han et al., explored combined poly(methyl methacrylate) (PMMA)/reduced 

graphene oxide (rGO) composite (PRC) passivation layer for the enhanced chemical and thermal 

stability of PSCs [156]. However, at this stage, it is not clearly known what caused thermal stability 

of MAPbI3/PMMA films. Currently, it is well known that organic MA cations of MAPbI3 are 

weakly bound via hydrogen bonds to the ionic cages of Pb and I [157]. Therefore, unbound or 

loosely bound organic MA cations at the GBs or defective domains are likely to escape from the 

crystal lattice and ultimately lead to the thermal decomposition to PbI2. For this reason, it is 

hypothesized that improved thermal stability might be associated with an introduction of 

scaffolding material such as PMMA polymer to render GBs less defective and tightly scaffold 

perovskite components. [10] 

To further understand the critical role of PMMA in MAPbI3, MAPbI3/PMMA films were 

fabricated and structural and chemical degradations were characterized during the thermal aging 

test. In this work, we performed the thermal stability study at 85 °C for up to 1000 hours of 

perovskite layers with a thin PMMA layer. To perform this investigation, we used an energy 

dispersive X-ray spectroscope (EDS), X-ray diffraction measurement, infrared nanoscopy, and 
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proton nuclear magnetic resonance (NMR) measurements to probe the chemical and structural 

degradation across the GBs at the nanoscale. [10] 

 

5.2 Perovskite film with PMMA  

 The hot-casting technique [17] was used to produce MAPbI3 films in an air 

environment by facilitating thermal energy to form large grain perovskites during the spin-

casting process. Specifically, the FTO/glass substrate was pre-heated at a temperature 

(180°C) higher than the boiling temperature (153°C) of the DMF solvent while the 

perovskite precursor solution was kept at 70 °C, as shown in Fig. 18 (a). After the FTO/glass 

substrate was transferred to the spin-coater, the perovskite precursor solution was then 

immediately spin-coated on the hot FTO/glass substrate for 10 seconds at 4000 rpm. Also, 

poly(methyl methacrylate) (PMMA) dissolved in chlorobenzene (Sigma-Aldrich, 99.5%) 

(10mg/ml) was spin-coated onto the MAPbI3 film with a spin speed of 4000 rpm for 10 s 

in a glove box. Surface morphology of hot-casted MAPbI3 film is shown in Fig. 18 (b). 

Perovskite films exhibited leaf-like morphologies that are a typical feature of a hot-casting 

technique.  Since it is critical to ensure that the PMMA was evenly distributed over the 

MAPbI3 film, the nanoscale morphology of perovskite and chemical vibration modes of 

PMMA were probed using IR nanoscopy measurement, as shown in Fig. 18 (c)-(f). The 

schematic of an IR nanoscopy system is illustrated in Fig. 18 (c). As shown, the IR 

nanoscopy combines atomic force microscope (AFM) and photo thermal induced 

resonance spectroscopy (PTIR) to probe and correlate aspects of film morphology and IR 

absorption mapping image of the local region at a specific frequency [158,159,160,161]. 

A tuneable IR laser is illuminated onto the ZnSe prism with total internal reflection, then 
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the sample absorbs light at a specific frequency and volume expansion occurs sequentially 

in the nanoscopic area of the sample. After that, the AFM cantilever in contact with the 

sample surface begins to vibrate. These vibrations of the cantilever are detected by a four-

quadrant AFM detector and transformed into an absorption spectrum using a Fourier 

transform. As IR nanoscopy uses AFM mode, a high spatial resolution of ~20 nm can be 

achieved, which makes it possible to probe the uniform coating of PMMA within MAPbI3 

perovskite film at the nanoscale level. In order to investigate the PMMA distribution at the 

nanoscale levels, particularly at perovskite grain boundaries (GBs), we performed the IR 

absorption mapping of stretching vibrational mode of PMMA across perovskite grains. Fig. 18 (d) 

indicates the AFM morphology of perovskite films containing grain boundary (GB) and grain 

interior (GI). Two representative points at GI (P1) and GB (P2) were probed and analyzed with IR 

absorption spectra of the C=O stretching vibrational mode (1736 cm-1) of PMMA and C-H bending 

mode (1472 cm-1) of MAPbI3 [162,163]. As shown in Fig. 18 (e), both the C=O stretching 

vibrational mode of representative peak of PMMA and C-H bending vibrational mode of 

representative peak of MAPbI3 were observed at both GBs and GIs. In addition, from the 

absorption mapping image of C=O vibrational mode, we can clearly see that PMMA was well 

distributed over the entire grain area of the MAPbI3 film, as shown in Fig. 18 (f). [10] 
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Fig. 18.  (a) Hot-casting technique of perovskite and (b) SEM image of hot-casted MAPbI3 film. 

(c) Schematic of IR nanoscopy system is shown with (d) AFM morphology of MAPbI3 

film, (e) IR spectra and (f) IR absorption mapping. Two specific locations of P1 and P2 

were chosen for C=O stretching (1736 cm-1) of PMMA and C-H bending (1472 cm-1) of 

MAPbI3. [10] 

 

5.3 Morphological stability of perovskite thin film with PMMA at 85 °C 

 To understand the thermal stability of MAPbI3, the MAPbI3 films were placed on a hotplate 

in a nitrogen-filled glove box in which the hotplate temperature was kept at 85 °C for up to 1000 

hrs.  Surface morphologies of perovskite films with and without PMMA were examined over 

heating time, as shown in Fig. 19. Fig. 19 (a)-(c) show the surface morphology and cross-sectional 

images of fresh MAPbI3 films without PMMA before the thermal treatment.  When perovskite 
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films were thermally treated in a nitrogen-filled glove box, we observed thermal degradation of 

MAPbI3 without PMMA. Fig. A1. (a)-(e) show planar SEM images exhibiting the degradation of 

MAPbI3 without PMMA in the form of pinholes with increased thermal treatment time. Notably, 

thermal degradation of MAPbI3 without PMMA initiated at the GBs. After 72 hrs of heating, a 

number of pinholes formed around GBs while GIs exhibited far stronger stability. As the heating 

time further increased, the pinholes formed at GBs extended toward the GIs. The entire surface of 

MAPbI3 extensively degraded with many pinholes after 528 hrs of heating, as shown in Fig. 19 

(d). Cross-sectional SEM image of MAPbI3 in Fig. 19 (e) and (f) clearly show the decomposition 

of perovskite films after 528 hrs of heating, showing many hilly shapes of perovskite films. Some 

areas revealed the FTO substrates due to near-complete decomposition of ~450 nm thick MAPbI3 

films. Conversely, MAPbI3/PMMA films showed negligible morphological change even after 

1000 hrs of heating at 85 °C, as shown in Fig. 19 (g). The cross-sectional SEM image in Fig. 19 

(h) and (i) show the robust characteristic of MAPbI3/PMMA, showing a uniform perovskite film 

and a sharp interface with FTO substrate even after 1000 hrs of heating. This is in a stark contrast 

with MAPbI3 without PMMA in which pinholes were predominantly formed at GBs and 

propagated towards the GIs. [10] 
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Fig. 19.  SEM images of (a-c) fresh MAPbI3 without PMMA before heat treatment, (d-f) MAPbI3 

without PMMA after 528 hrs of heating at 85 °C and (g-i) MAPbI3/PMMA after 1000 hours of 

heating at 85 °C. [10] 

 
 

5.4 Structural stability of perovskite thin film with PMMA at 85 °C 

 Our XRD measurement also confirmed the degradation of MAPbI3 without PMMA as 

thermal treatment time increased, as shown in Figure 3. The fresh perovskite film contains two 
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prime perovskite peaks located at 14.3° and 28.4° that are indexed to the (110) and (220) planes. 

In addition, the presence of the (211) plane at a scattering angle of 23.5° demonstrates the 

tetragonal phase of perovskite. The presence of FTO can be seen at 26.8°, 33°, and 37°.  Initially, 

there is no presence of PbI2 in the diffraction pattern of fresh perovskite film. However, after 72 

hours of heating at 85 °C, an additional new peak at 12.9°, which is attributed to PbI2, is clearly 

observed, as shown in Fig. 20 (a). The perovskite peaks at scattering angles of 14.3° and 28.4° 

have lessened with increased heating time, as shown in Fig. 20 (a) and (c). Conversely, the peak 

intensity for PbI2 gradually increased with increased heating time (see Fig. 20 (a) and (d)), 

demonstrating that MAPbI3 mostly degraded to PbI2. Moreover, a peak of I2 at 38.7° after 72 hours 

of heating was observed and became more prominent with increased heating time. This confirms 

that MAPbI3 film without PMMA degraded into PbI2 and I2. On the contrary, no significant 

difference was found in the diffraction pattern of MAPbI3/PMMA film upon heating for 1000 

hours at 85 °C, as shown in Fig. 20 (b). Fig. 20 (c) and (d) show the variation of XRD intensity of 

MAPbI3, PbI2, and I2 with and without PMMA, clearly demonstrating the excellent thermal 

stability of MAPbI3/PMMA. A similar trend was observed for MAPbI3 diffraction peak intensity 

along the (110) direction, as shown in Fig. 20 (c). Remarkably, the crystal size remained almost 

constant after 144 hrs. However, the crystallite size for the MAPbI3 sample without PMMA 

gradually decreased with the heating time, which is due to the thermal degradation. [10] 
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Fig. 20.  Time evolution of XRD spectra of (a) MAPbI3 without PMMA and (b) MAPbI3 with 

PMMA at 85 °C. The integrated peak intensity of (c) MAPbI3 along (110), (d) PbI2 along (001), 

and I2 along (201) direction for MAPbI3 sample with and without PMMA was shown. [10] 

 

5.5 Absorption study of perovskite thin film with PMMA at 85 °C 

 The UV-vis absorption spectrum also supports the heat resistant behavior of MAPbI3 when 

PMMA was applied (Fig. 21). The absorbance spectra clearly revealed the degradation of MAPbI3 

without PMMA over time. However, the absorption spectra of MAPbI3/PMMA film displayed 
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nearly identical pattern before and after heating at 85 °C. Moreover, the absorption band edge 

shifted dramatically for MAPbI3 without PMMA, which can be observed from the optical bandgap 

Eg. Davis and Mott’s work [164] showed that the optical absorption strength depended on the 

difference between photon energy and the bandgap as, (𝛼𝛼ℎ𝜈𝜈)1 𝑛𝑛� = 𝐴𝐴(ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔), where h is 

Planck’s constant, ν is the photon’s energy, α is the absorption coefficient, Eg is the bandgap, and 

A is a proportionality constant. The value of the exponent denotes the nature of the electronic 

transition, considered as n=1/2 for direct allowed transition of the perovskite film. The optical 

bandgap determined from the extrapolation of the linear part of a Tauc plot [165] is shown in Fig. 

21 (c) and (d). The value of the optical bandgap for the MAPbI3 sample was 1.56eV, which is 

consistent with the previous reports [166,167]. Interestingly, the bandgap shifted from 1.56eV to 

1.52eV after heating for 528 hours in the case of the MAPbI3 sample without PMMA, while a 

nominal change of optical bandgap (~1meV) was observed for MAPbI3 with PMMA. The nominal 

change in optical bandgap of  MAPbI3/PMMA film indicates high thermal stability was achieved 

by applying PMMA layer. [10] 
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Fig. 21.  Absorption spectra as a function of wavelength for MAPbI3 sample (a) without PMMA 

and (b) with PMMA. Tauc plots of optical coefficient (αhν)2 vs. photon energy (hν) for (c) MAPbI3 

without PMMA and (d) MAPbI3 with PMMA are displayed. [10] 

 

5.6 Elemental analysis of perovskite thin film with PMMA at 85 °C 

 To further investigate heat-induced chemical decomposition behavior of perovskite films, 

energy dispersive spectroscopy (EDS) mapping was investigated. In this study, three different 

MAPbI3 films including the bare MAPbI3, MAPbI3 heat-treated for 528 hrs and MAPbI3/PMMA 

heat-treated for 1000 hrs were analyzed. Fig. 22 (a)-(i) show 2D EDS mapping of MAPbI3 films 
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highlighting local chemical distributions of oxygen (O) and lead (Pb) across the perovskite grain. 

Overall, a deficiency of perovskite elements was observed at GBs for all three samples. However, 

high oxygen concentrations of bare MAPbI3 and heated MAPbI3 without PMMA were observed, 

as shown in Fig. 22 (d)-(e). Remarkably, the uniform oxygen distribution of MAPbI3/PMMA in 

Figure 4(f) was observed after heating for 1000 hrs at 85°C. To quantitatively examine chemical 

distributions of perovskite elements across the films, several locations at GBs and GIs were 

pinpointed and analyzed. Fig. 22 (j) shows the average atomic percent of oxygen at GBs and GIs. 

For bare MAPbI3 film, the oxygen atomic percent was 17.7±2% and 57.1±7% at GIs and GBs 

where oxygen content at GBs was about more than three times higher than at GIs. This indicates 

that moisture was heavily incorporated into GBs during the film process. Even after heating of 

bare MAPbI3 for 528 hrs in a nitrogen-filled glove box, no change in the oxygen atomic percent at 

GIs and GBs was observed. This indicates that heating MAPbI3 samples in a nitrogen environment 

did not reduce oxygen of perovskite films. Instead, we observed a significant reduction of oxygen 

content in MAPbI3/PMMA in which the oxygen atomic percent remarkably decreased to 10.4 ± 

1.1 % at GIs and 22.5±6.5 % at GBs, respectively. Such reduction of oxygen contents of 

MAPbI3/PMMA film might explain the uniform distribution of oxygen in 2D EDS mapping in 

Fig. 22 (f).  We also investigated the I/Pb elemental ratio of MAPbI3 at GIs and GBs, as shown in 

Fig. 22 (k). For bare MAPbI3, it is found that GBs were found to be defective and composed of 

non-stoichiometric perovskite chemistry. Specifically, the large I/Pb ratio of 6.0 ±0.9 was found 

at GBs for bare MAPbI3 films without PMMA. After 528 hrs without PMMA, the I/Pb ratio 

decreased to 4.7±0.9. A further decrease in the I/Pb ratio to 4.4 ±0.6 was observed at GBs for 

MAPbI3/PMMA after 1000 hrs of heating. Conversely, GIs of MAPbI3/PMMA yielded a ratio of 

I/Pb close to ~3.3±0.2, which is close to a stoichiometric value of I/Pb=3. After 528 hours of  
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Fig. 22.  SEM images of (a) fresh perovskite, (b) heated perovskite film without PMMA at 85 °C 

for 528 hours, and (c) heated perovskite film with PMMA at 85 °C for 1000 hours and 
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corresponding chemical distributions of (d-f) oxygen and (g-i) lead (Pb) that were measured by 

EDS mapping. (Scale bar: 5 µm). (j) Average oxygen atomic percent and (k) I/Pb ratios at the GBs 

and GIs across the films by pinpointing several locations at GBs and GIs were also shown. [10] 

 

heating of MAPbI3 without PMMA, a slight modification of chemical distribution was observed 

at GIs where the I/Pb ratio of MAPbI3 without PMMA decreased to 2.8±0.1. This indicates that 

GIs of MAPbI3 without PMMA underwent thermal decomposition towards PbI2 while 

MAPbI3/PMMA film after 1000 hrs of heating maintained the I/Pb ratio of 3.2±0.1 at GIs, 

indicating no chemical degradation. [10] 

 

5.7 IR nanoscopic study of perovskite thin film with PMMA at 85 °C 

 To further investigate heat-induced chemical decomposition properties of perovskite films, 

an IR nanoscopy measurement was performed, as shown in Fig. 23. Note that for the IR mapping 

study, a relatively short heating time of 2 hrs for MAPbI3 films was used to rapidly probe the 

evolution of GIs and GBs with and without PMMA. Here, a conventional oven was used for heat 

treatment of the MAPbI3 film formed on the ZnSe prism. By using a conventional oven, it was 

possible to apply heat from below, above and both sides. Thus, we were able to obtain the chemical 

property of MAPbI3 film in a faster time. Fig. 23 (a) and (c) show typical topography images of 

hot-casted MAPbI3 film with and without PMMA, respectively. Fig. 23 (b) shows the IR mapping 

image of C-H bending vibrational mode of MAPbI3 film without PMMA after heating at 85 °C for 

2 hrs. It clearly shows the distinct intensity of C-H vibrational mode between GIs and GBs where 

GBs (blue color) exhibited significantly lower IR intensity than at GI (red color) that indicates 

thermal degradation. Unlike MAPbI3 film without PMMA, MAPbI3/PMMA film showed the 
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uniform intensity of the C-H bending mode in GB (red color) across the perovskite grains, as 

shown in Fig. 23 (d). These results are consistent with spatially resolved EDS measurements, 

showing high chemical stability of MAPbI3/PMMA film. [10] 

 

 

 

 

 

Fig. 23.  AFM image of MAPbI3 film without (a), with (c) PMMA after heating at 85 °C for 2 hrs 

in conventional oven, IR absorption image of MAPbI3 film without (b), with (d) PMMA after 

heating at 85 °C for 2 hrs in conventional oven. [10] 
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5.8 NMR study of perovskite thin film with PMMA at 85 °C 

 The proton nuclear magnetic resonance (NMR) experiment was carried out to probe an 

interaction between perovskite and PMMA by comparing the three NMR spectra of deuterated 

DMSO solutions of MAPbI3, PMMA and MAPbI3/PMMA. As shown in Fig. 24 (a), we observed 

the PMMA peak at 3.53 p.p.m that corresponds to the methoxy protons (−OCH3) of PMMA [168] 

while the peak at 3.30 p.p.m is of residual solvent. For MAPbI3, a sharp singlet occurring at 7.46 

p.p.m for the proton resonance signals of the −NH3+ group in the MAPbI3 was observed. When the 

PMMA was added to MAPbI3, the proton resonance signals of the −NH3+ group slightly shifted 

downfield from 7.46 p.p.m to a 7.48 p.p.m with line broadening. Conversely, the chemical upfield 

shift of the methoxy proton peak of PMMA at 3.53 p.p.m to 3.47 p.p.m with slight line broadening 

was observed.  This trend points to the interaction of PMMA and MAPbI3 [156], which can be 

interpreted as the hydrogen bonds [169] between the methoxy protons (−OCH3) of PMMA and 

−NH3+ of MAPbI3, as shown in Fig. 24 (b). Such bonding configuration between MAPbI3 and 

PMMA will lead to the hydrophilic functional group (−OCH3) closely bonding with MAPbI3, 

which will turn hydrophobic functional group (−CH3 methyl group) of PMMA outward, as shown 

in Fig. 24 (b). [10] 
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Fig. 24.  (a) NMR spectra of MAPbI3, PMMA and mixture of MAPbI3+PMMA respectively and 

(b) plausible bonding configuration between MAPbI3 and PMMA. [10] 

 

5.9 Plausible mechanism of stability of perovskite thin film with PMMA at 85 °C 

 According to SEM, EDS, and IR nanoscopy measurements, it is believed that GBs and GIs 

of MAPbI3 with and without PMMA go through different thermal degradation processes. 

According to EDS analysis, hot-casted MAPbI3 film without PMMA mainly contains GBs 

composed of (CH3NH3)4PbI6•H2O while GIs are primarily composed of CH3NH3PbI3. This 

conjecture is based on the I/Pb ratio in which GBs exhibited the I/Pb ratio=6 with the high oxygen 

atomic percent of 57% while GIs showed the I/Pb ratio=3.3 with the low oxygen atomic percent 

of 17.7%. Recently, Yang et al., identified a hydrated intermediate phase of (CH3NH3)4PbI6•H2O 

[116] during the air degradation process of perovskites using in-situ XRD technique. Since a hot-

casting technique for MAPbI3 films was fabricated in an air environment while maintaining a high 

temperature of FTO/glass around 180°C, there is a high chance for moisture to rapidly diffuse into 
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the GBs and form a hydrated intermediate phase of (CH3NH3)4PbI6•H2O at the GBs. Fig. 25 (a) 

shows our degradation model of MAPbI3 without PMMA highlighting hydrated 

(CH3NH3)4PbI6•H2O at GBs and MAPbI3 at GIs. Note that hydrated (CH3NH3)4PbI6•H2O has the 

0D structure composed of isolated PbI64- octahedra, CH3NH3+ cations and H2O molecules. Upon 

heating, bare MAPbI3 films without PMMA will undergo different thermal degradation at GBs 

and GIs. This is due to the different amount of oxygen content (originated from absorption of 

moisture) at GBs and GIs where oxygen atomic percent at GBs was three times higher than that at 

GIs. Thus, it is expected that the high concentration of H2O will facilitate the decomposition 

process of perovskite at GBs to PbI2 and I2. Critically, (CH3NH3)4PbI6•H2O at GBs will eventually 

decompose into CH3NH3I, PbI2 and I2 in the presence of H2O at the GBs. Indeed, our XRD 

measurements showed the gradual increase in XRD intensities of PbI2 and I2 peaks with increased 

heating time.  Conversely, it is believed that the thermal degradation at GIs from CH3NH3PbI3 to 

PbI2 might occur through a surface-initiated layer-by-layer degradation path by breaking the weak 

Pb-I-Pb bond along the (001) direction, as Fan, et al. revealed thermal degradation process [170].  

Thereby, we believe that GIs undergo layer-by-layer thermal degradation converting from MAPbI3 

to PbI2, which is a slower thermal degradation process than at GBs. Conversely, when PMMA is 

applied to perovskite, we observed the significant reduction of oxygen content of MAPbI3/PMMA 

at both GBs and GIs after heating. Oxygen contents at GBs and GIs were 21% and 10%, which 

are three and two times lower than that of fresh and 528 hr heated MAPbI3 without PMMA. Such 

reduction of oxygen can be ascribed to the excellent hygroscopicity of the PMMA molecules that 

surrounded perovskites. Note that the hygroscopic PEG polymer scaffold architecture was 

effectively used in MAPbI3 perovskite films to absorb and drain water efficiently [171]. In this 

case, the omnipresent PEG molecules within MAPbI3 films were anchored on the surface of  
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Fig. 25.  Thermal degradation models illustrating perovskite GBs (a) without PMMA and (b) with 

PMMA. Hydrated (CH3NH3)4PbI6•H2O will be dominant at GBs due to the high absorption of 

moisture during hot-casting. However, PMMA will have a key role in efficiently absorbing 

moistures and driving them out through GB channels. [10] 

 
MAPbI3 grains by hydrogen bonding and played a critical role in fully recovering the perovskite 

solar cells in a matter of minutes even after vapor exposure. We believe that PMMA played a 

similar role in absorbing moistures from perovskite films and subsequently driving out moisture 

from perovskites. Since there is abundant moisture at GBs, PMMA will efficiently absorb moisture 
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and drive it out through GB channels, which will reduce oxygen contents, as shown in Fig. 25 (b). 

In this case, the conceivable chemical reaction might be the conversion of hydrated 

(CH3NH3)4PbI6•H2O to monohydrated CH3NH3PbI3•H2O and H2O, as suggested by Song et al. 

[172]. However, the observed change of Pb/I ratio from 6 to 4.4 at GBs indicates incompletion 

conversion from (CH3NH3)4PbI6•H2O to CH3NH3PbI3•H2O. [10] 

 
 

5.10 Summary 

In summary, we have successfully introduced a polymer on perovskite thin film to achieve 

more than 1000 hours stable perovskite film under thermal stress at 85 °C.  We investigated the 

underlying mechanism of how PMMA makes perovskite GBs to be thermally resistant. Perovskite 

films without PMMA decompose into PbI2 and I2, forming many pinholes at GBs and extending 

towards the grain interior.  This is due to the presence of hydrated (CH3NH3)4PbI6•H2O at GBs of 

perovskites. Conversely, PMMA makes perovskite GBs thermally resistant by absorbing moisture 

from hydrated (CH3NH3)4PbI6•H2O GBs and driving them out through the GB channel. In 

addition, a high stability characteristic of PMMA (Tg=105°C) surrounding perovskite GBs can be 

considered an additional cause of protecting the perovskite from decomposition at elevated 

temperatures. We believe that continuous functionalization of perovskite GBs or crosslinking 

perovskite GBs with PMMA molecules might drastically render perovskite GBs chemically 

robust, resilient, and heat-resistant. 
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CHAPTER 6 

ENHANCEMENT OF THERMAL STABILTY OF MIXED CATION PEROVSKITE 

THIN FILM WITH A POLYMER LAYER OF PMMA 

 

6.1 Introduction 

 Rapid advances in the photoconversion efficiency (PCE) of organic-inorganic perovskite 

solar cells (PSCs) have surged to a global record of 22.1% [8] from 3.8% in 2009 [14]. However, 

many researchers have found that the instability of perovskite materials presents a challenging 

problem to be resolved in the near future. The high sensitivity of perovskite materials to 

environmental factors greatly impacts device stability. In particular, perovskite materials are found 

to be sensitive to moisture, oxygen, UV light, electric field, heat, and many other factors 

[9,46,173]. For instance, the presence of moisture induces hydration of perovskite in which 

CH3NH3PbI3 (MAPbI3) perovskites hydrate into CH3NH3PbI3•H2O or (CH3NH3)4PbI6•H2O. 

[62,171,174]. In addition, oxygen facilitates electron transfer reactions with electron transport 

layers (e.g., TiO2) which results in band bending and formation of trap states [108,175,176]. UV 

illumination in air causes oxygen to diffuse into the active perovskite absorber layer and buffer 

layers [150]. An electric field induces ion migration, which leads to electro-migration, compressive 

stress, and hysteretic effects [141]. In addition to light, moisture, and oxygen, perovskite materials 

undergo thermal degradation. High temperature induces CH3NH3PbI3 perovskite to decompose 

into HI, CH3NH2, and PbI2 [96]. In particular, thermally decomposed perovskite chemical 

components easily diffuse towards interfacial layers and electrodes which results in poor charge 

extraction and higher contact resistance [141].  
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The generic structure of perovskite materials used in PSCs comprises of ABX3 where A is 

a univalent cation, that is, methylammonium (MA) CH3NH3+, formamidinium (FA) CH2(NH2)2+, 

Cs+, or Rb+, while B stands for Pb2+ or Sn2+ and X for halides (Cl-, Br-, I-). At the beginning of 

PSC research, MAPbI3 has been extensively used as the light absorber; however, FAbI3 attracted 

many due to its smaller bandgap and high heat resistance [96] although both MAPbI3 and FAPbI3 

degrades quickly in ambient air even in encapsulated devices [177,178]. The need for absolute 

replacement of organic cations leads to the idea of using inorganic cesium lead halide, which 

showed excellent thermal stability [67]; however, CsPbBr3 does not have a favorable bandgap for 

PV applications, and CsPbI3 crystallizes in a photoinactive phase at room temperature and exhibits 

a photoactive stable perovskite phase only at temperatures above 300 °C [179]  Unfortunately, due 

to the thermal or structural instability of pure perovskite compounds, there have been efforts to 

develop mixed cations and/or halide ions to overcome these limitations to achieve perovskite 

compounds with improved thermal stability and efficiency.  

The recent progress in mixed cation-based perovskite exhibited that the highest efficiency 

perovskites were achieved with Pb-based and MA/FA mixed perovskites [63,180]. It has been 

demonstrated from this success that a small amount of MA in MA/FA mixture effectively induces 

the photoactive phase of FA perovskite, resulting in improved thermal stability and efficiency. 

However, even with very high efficiency solar cells, it is still difficult to obtain FA perovskite 

without the yellow phase even in the presence of MA [64]. The presence of yellow phases even in 

small quantities could influence crystal growth and charge collection, which in turn could affect 

device performance. The inorganic Cs cation has recently attracted attention to be included in 

mixed cation perovskites with a considerably smaller ionic radius than that of MA and FA cations 

[181]. Choi, et al. showed excellent improvement in PCE by using Cs/MA perovskites, which is 
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attributed to the improved light absorption, morphology, and increased energy difference between 

the active layer components [182]. In another study, Park and co-workers reported on Cs/FA 

mixtures with enhanced stability of heat, moisture, and light when compared to the pure FAPbI3. 

[71] According to Yi, et al. this improved stability is attributed to lattice shrinkage and entropic 

stabilization [73]. Moreover, Saliba et al. showed improved stability and reproducibility by 

fabricating Cs/MA/FA solar cells with a stabilized PCE of 21.1% [69].  

In addition, encapsulation of perovskites is an effective way to prevent degradation and 

different materials such as Al2O3, [183,184] poly(methyl methacrylate) (PMMA) and 

polycarbonate (PC) [174,185] have recently been investigated to achieve stability in perovskites. 

In particular, the use of polymer composites prepared from PMMA or PC mixed with poly(3-

hexylthiophene-2,5-diyl) (P3HT) and carbon nanotubes lead to a thermal stability for up to 96 hrs 

under thermal treatment at 80 °C in air [174]. According to the work of McKenna et al. [155], a 

study of thermal stability using a number of polymers showed that PMMA performed as the best 

encapsulant among all polymers, extending the lifetime of the CH3NH3PbI3-xClx film from 24 h to 

>400 h under continuous thermal treatment at 60 °C. Polymers such as polystyrene, PMMA, 

SWNT with PMMA, are known to act as insulating tunneling contacts and to passivate defects 

with an efficiency increase of over 18% in the perovskite solar cells [61]. It is well known that the 

grain boundaries (GBs) in perovskites are defective, which contains enriched oxygen 

concentration and iodine vacancies [186]. PMMA passivates the defects along grain boundaries 

(GBs), resulting in improved thermal stability of perovskite film by reducing defect states. 

To date, the investigation of thermal stability of Cs/MA perovskites with PMMA 

incorporation is somewhat limited. It is evident that Cs/MA mixed perovskites exhibited better 

thermal durability when exposed at a higher temperature according to the work of Gu et al. [187]. 
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They showed that for an un-encapsulated Cs/MA device, the PCE maintained about 75% of its 

original value under 80 min of heating at 140 °C in a dry atmosphere (RH ≤ 30%). Herein, we 

presented a study on MAPbI3 perovskite without Cs+ and with 5 and 9% Cs+ incorporation into 

the cation to yield Cs0.05MA0.85PbI3 and Cs0.09MA0.81PbI3 perovskites when exposed to thermal 

stress of 85 °C and 120 °C. Moreover, the addition of PMMA on top of perovskite film to achieve 

thermally stable perovskite at 85 °C was explained thoroughly since PMMA has been proven to 

assist in improved stability and device performance by passivating defects. Although the 

operational temperature window of solar cells lies in the range of -40 to 85 °C, the original 

temperature could rise more than 100 °C any time depending on the location and environmental 

aspects. Therefore, a comparative study of perovskites with and without Cs under thermal stress 

at elevated temperature is presented in this report.  

 

6.2 Effect of mixed cation (Cs) in thermal stability of perovskite thin film at 85 °C 

 Fig. 26 shows the thermal degradation of CsxMA1-xPbI3 perovskite films (x=0, 5, 9%) with 

different heat treatment times at 85 °C in a nitrogen-filled glove box. Among the three samples, 

MAPbI3 perovskite film with no Cs before heat treatment exhibited the strongest XRD peaks at 

14.08° and 28.44° corresponding to the (110) and (220) perovskite planes, as shown in Fig. 26 (a). 

However, the XRD intensities of (110) and (220) planes of CsxMA1-xPbI3 perovskite films 

decreased with increased Cs concentrations. Another observation is that the XRD peak at 20.2° 

along the (112) direction slightly increased with the increased Cs concentration due to the preferred 

crystal orientation of Cs along the thermodynamically stable direction of the (112) plane [188]. 

When CsxMA1-xPbI3 perovskite films underwent thermal treatment and were heat-treated, 

CsxMA1-xPbI3 perovskite films appeared to be degraded. Fig. 26 (b) and (c) show the XRD peaks 
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of CsxMA1-xPbI3 perovskites thermally treated at 85 °C for 72 hrs and 336 hrs. Obviously, two 

new XRD peaks appeared at 12.7° and 38.7°, corresponding to the (001) plane of PbI2 and the 

(201) plane of I2, respectively. In particular, as CsxMA1-xPbI3 perovskite films were heated for 

more than 72 hrs, the PbI2 peak increased at an alarming rate, inferring a substantial degradation 

of the perovskite films. After 336 hrs of heating, the XRD peaks of PbI2 and I2 predominated 

whereas the XRD peaks of CsxMA1-xPbI3 perovskites almost disappeared. However, it can be seen 

that the degree of thermal degradation of three CsxMA1-xPbI3 perovskite films is slightly different 

with different Cs concentration. In order to quantitatively analyze the degree of thermal 

degradation of CsxMA1-xPbI3 films with different Cs concentrations, we calculate the degradation 

rate by following the procedure reported elsewhere [37], as shown in Fig. 26 (d). In this case, the 

decomposition rate of CsxMA1-xPbI3 was calculated by analyzing the XRD peak intensity ratio 

between the (001) PbI2 peak and the (110) CsxMA1-xPbI3 peak. As shown in Fig. 26 (d), all three 

CsxMA1-xPbI3 perovskite films exhibited similar degradation rates up to 72 hrs. However, after 

more than 100 hrs of thermal treatments, the large deviation of the degradation rate was observed 

for the three CsxMA1-xPbI3 perovskite films. Notably, CsxMA1-xPbI3 perovskite film with x=5% 

Cs showed the best thermal stability. It should be noted that the CsxMA1-xPbI3 perovskite film with 

x=9% Cs exhibited lower thermal stability than the MAPbI3 perovskite film. This might be due to 

an introduction of high concentration of Cs, resulting in the distorted crystallinity of CsxMA1-xPbI3 

perovskite films. As shown in Fig. 26 (a), CsxMA1-xPbI3 with 9% Cs among the three samples 

showed the lowest XRD intensity of the (110) plane. 
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Fig. 26.  XRD spectrum of CsxMA1-xPbI3 perovskite, where x = 0, 5, and 9% after (a) 0hr (b) 72hrs, 

and (c) 336 hrs of thermal treatment at 85 °C in a nitrogen filled glove box. (d) Degradation rate 

of perovskite films calculated by using the integrated XRD intensities of PbI2 divided by (110) 

plane of MAPbI3.   

 
 
 To investigate the morphological degradation of CsxMA1-xPbI3 during heat treatment, 

scanning electron microscopy (SEM) images were taken. Note that CsxMA1-xPbI3 films were 

fabricated using a hot-casting technique in which pre-heated glass slides more than 180 °C were 

quickly transferred to a spin-coater and promptly processed to fabricate large perovskite grains. 

Typically, a hot-cast method results in tens of micrometer morphologies of perovskite films. We 

did not observe any large discrepancies of surface morphologies of CsxMA1-xPbI3 perovskite films,  
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Fig. 27.  SEM images of CsxMA1-xPbI3 perovskite without PMMA, where (a-c) x = 0%, (d-f) x = 

5% and, (g-i) x = 9% after (a, d, g) 0hrs (b, e, h) 72hrs, and (c, f, i) 336 hrs of heating at 85 °C. 

Scale bar is 1 µm. 

 

as shown in Fig. 27 (a), (d), and (g). This might be due to the small Cs concentration up to 9% 

which might induce noticeable variation of morphologies of perovskite films. Thermal degradation 

and formation of pin-holes initially occur around the grain boundaries (GBs) of perovskite films. 

In our previous studies [186], it has been shown that GBs contain non-stoichiometric perovskite 

chemistries with enriched oxygen, a number of defects and disordered chemical bonds. Thus, it is 

commonly observed that degradation starts from the GBs and propagates into the grain interiors 

(GIs). Therefore, SEM images were highlighted on the surface areas including the GBs to critically 

observe the development of thermally induced pin-holes. Fig. 27 shows surface morphologies of 

CsxMA1-xPbI3 films before and after heat treatment. Interestingly, all three samples start to develop 
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small pinholes on the surface after 72 hrs of heating (Fig. 27 (b), (e), and (h)) in which the 

distribution of small pinholes on the surface was similar. This is consistent with XRD 

measurement, showing similar decomposition rates in Fig. 26 (d). However, as the heat treatment 

time increased to 336 hrs, the pinholes became larger, and the number of pinholes increased, as 

shown in Fig. 27 (c), (f), and (i). From SEM images, it can be seen that CsxMA1-xPbI3 perovskite 

film with x= 5% Cs exhibited very thermal stability while CsxMA1-xPbI3 perovskite film with x= 

9% Cs exhibited the poorest thermal stability.  

 

6.3 Effect of polymer in thermal stability of mixed cation perovskite thin film at 85 °C 

 It should be noted that the pinholes are typically caused by the evaporation of MAI or 

CH3NH2 from the defective domains, leaving the film recrystallized as PbI2 and I2. Therefore, it is 

assumed that scaffolding of the defective domains can prevent thermal decomposition of 

perovskite films. Recently, to further thermally stabilize perovskite films, poly(methyl 

methacrylate) (PMMA) has been used in perovskite devices to protect against heat [155]. 

Mckenna, et al.  [155] reported thermal degradation of PMMA treated perovskite films with a 

heating time of 29 hrs. They observed the progressive evolution of photoluminescence (PL) 

quenching regions with prolonged thermal aging. In contrast, Habisreutinger, et al. reported further 

improved thermal stability of MAPbI3 film using carbon nanotube/PMMA composites up to 96 

hrs at 80 °C in air [157].  However, the thermal stability of perovskite films with PMMA is still 

unsatisfactory and needs to be further enhanced. To explore the effect of PMMA on thermal 

stability of CsxMA1-xPbI3 perovskite films, PMMA thin layer was spin-casted on top of the 

CsxMA1-xPbI3 films at an rpm of 4000 at room temperature. Fig. 28 shows the XRD of CsxMA1-

xPbI3 perovskite thin films with PMMA for up to 1000 hours of heating at 85 °C. Remarkably, we 
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did not observe any sign of degradation in CsxMA1-xPbI3 with PMMA after 336 hrs of heating 

while there is a negligible peak of PbI2 under thermal treatment for 1000 hrs of healing. In addition, 

no XRD peak of I2 at 38.7° was observed from XRD measurement. This is in stark contrast to 

CsxMA1-xPbI3 perovskite films without PMMA that rapidly degraded and decomposed to PbI2 and 

I2 after 72 hrs of healing.  

 

 

 

 

 

Fig. 28.  XRD spectrum of CsxMA1-xPbI3 perovskite with PMMA, where x = 0, 5, and 9% after 

(a) 0hrs (b) 336hrs, and (c) 1000hrs of heating at 85 °C. 

 
 Fig. 29 (a), (d), and (g) shows evolution of SEM images of CsxMA1-xPbI3 with PMMA 

with different heating times. Again, all three CsxMA1-xPbI3 perovskite films before heating 

exhibited similar morphologies. Remarkably, we did not see any degradation or noticeable 

pinholes of CsxMA1-xPbI3 perovskite films with PMMA after 336 hrs of heating, as shown in Fig. 

29 (b), (e), and (h). Without PMMA, the entire surface of all three perovskite films was covered 

by a number of pinholes caused by thermal decomposition. However, even after 1000 hrs of 
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heating, extensive pinholes around GB were not observed for all three samples, as shown in Fig. 

29 (c), (f), and (i) . This clearly indicates that PMMA suppressed the thermal decomposition of 

perovskite films and prevented the formation of pin-holes. Note that the glass transition 

temperature (Tg) of PMMA is around 105 °C [155]. Therefore, it is assumed that the PMMA 

polymer on top of perovskite films inhibited the loss of perovskite chemistries and prevented the 

thermal decomposition of perovskite films.  

 

 

 

 

 

 

Fig. 29.  SEM images of CsxMA1-xPbI3 perovskite with PMMA, where (a-c) x = 0%, (d-f) x = 5% 

and, (g-i) x = 9% after (a, d, g) 0hrs (b, e, h) 336hrs, and (c, f, i) 1000hrs of heating at 85 °C. Scale 

bar is 1 µm. 
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6.4 Thermal stability of mixed cation perovskite thin film with polymer at 120 °C 

 To probe the thermal stability of perovskite films at a temperature higher than Tg= 105°C, 

the heating temperature of perovskite films was raised to 120 °C. Fig. 30 (a) shows the XRD 

spectra of CsxMA1-xPbI3 perovskite films with PMMA heated at 120 °C for up to 72 hrs. With the 

thermal treatment, the XRD (110) and (220) planes for CsxMA1-xPbI3 film sharply decreased 

whereas the degradation characteristic peak of PbI2 at 12.7° became prominent for all samples. In 

particular, CsxMA1-xPbI3 with 5% Cs exhibited better thermal stability compared to CsxMA1-xPbI3   

with 0 and 9% Cs. Moreover, the XRD intensity of I2 peak at 38.7° is lowest for CsxMA1-xPbI3   

5% Cs based perovskite thin film. 

 

  

 

 

 

Fig. 30.  (a) XRD spectrum of CsxMA1-xPbI3 perovskite with PMMA, where x = 0, 5, and 9% after 

72hrs of heating at 120 °C (d) Degradation rate of same sample set calculated by using the intensity 
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of PbI2 divided by MAPbI3 (110).  SEM images of CsxMA1-xPbI3 perovskite with PMMA, where 

(c) x = 0%, (d) x = 5% and, (e) x = 9% after 72hrs of heating at 120 °C. (Scale bar is 1 µm.) 

 

We also calculated the degradation rate by analyzing integrated XRD intensity ratios of the 

PbI2/CsxMA1-xPbI3 (110) plane. Fig. 30 (b) shows the resultant degradation rate, which confirmed 

that CsxMA1-xPbI3 with 5% Cs exhibited better thermal stability. The degradation rate of 5% Cs 

based perovskite film with PMMA is 350% and 130% lower than that of 0 and 9% Cs, respectively. 

Therefore, this result indicates that PMMA is not effective to prevent thermal degradation at a 

temperature higher than Tg=105°C.  In addition, the SEM images of Fig. 30 (c), (d), and (e) 

confirm that perovskite is decomposed into PbI2 forming many pinholes, which correlates to the 

XRD spectrum observed in Fig. 30 (a). 

 
 

6.5 Summary 

In conclusion, we investigated a thermal stability study of CsxMA1-xPbI3 perovskite films 

with and without PMMA at 85 °C and 120 °C. The XRD analysis of CsxMA1-xPbI3 perovskite 

films reveals that without PMMA CsxMA1-xPbI3 perovskite films rapidly underwent thermal 

degradation processes forming PbI2 and I2 at 85 °C. At the same time, we observed such thermal 

degradation was accompanied by formation of a number of pin-holes on the surface of CsxMA1-

xPbI3 films. Therefore, it can be inferred that the decomposition of perovskite films led to the loss 

of MAI, resulting in recrystallized byproducts of PbI2 and I2. Thus, an addition of Cs cation could 

not suppress thermal degradation upon heating at 85 °C. However, we observed the slightly better 

thermal stability with 5% Cs concentration. With the addition of PMMA on top of perovskites, we 

observed excellent thermal stability of CsxMA1-xPbI3 films based on XRD and SEM 
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measurements, crystallinity and morphologies of CsxMA1-xPbI3 with PMMA maintained high 

quality up to 1000 hrs of thermal treatment at 85 °C. This can be interpreted to mean that a PMMA 

polymer might serve as a scaffold to effectively prevent thermal decomposition and evaporation 

of perovskite chemistries.  However, when CsxMA1-xPbI3 films with PMMA were thermally 

treated at a higher temperature of 120 °C, we observed the prompt thermal degradation of CsxMA1-

xPbI3 films. This is because the thermal treatment temperature of 120 °C is higher than the glass 

transition temperature (105 °C) of PMMA. At 120 °C, PMMA did not prevent the thermal 

decomposition and evaporation of perovskite films. However, it is apparent from the crystal and 

morphological analysis that incorporation of a small amount of Cs increases the thermal stability 

of CsxMA1-xPbI3 perovskites at elevated temperatures for a prolonged period. We found that the 

perovskite film with 5% of Cs concentration showed moderately better thermal stability upon 

heating at 120 °C for 72 hours. These results indicate that incorporation of Cs cation into MA and 

the addition of PMMA on top of perovskite assists in obtaining thermally stable perovskite films 

at higher temperature. 
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CHAPTER 7 

ESTABLISHING THERMALLY STABLE PEROVSKITE SOLAR CELLS 

 

7.1 Introduction 

In a typical perovskite solar cell, perovskite thin film is sandwiched between the electron 

and the hole transport layers. Perovskite thin films are very susceptible in oxygen and moisture 

though different cations and mixed halides have been employed in perovskite structures. As 

mentioned in previous chapters, hot casted perovskite thin films contain defective grain 

boundaries. Under thermal heating the defective GBs form many pinholes which create a direct 

shunt path between the electron and the hole transport layer. It has also been reported that the GBs 

are characterized by an enriched oxygen concentration, and iodide vacancies, which results in deep 

defect recombination centers at GBs unfavorable to PSCs performance. Therefore, to establish a 

thermally stable perovskite solar cells, the conventional fabrication method of perovskite solar 

cells was implemented. This method eliminates the leaf like grain structure of perovskite that is 

typically found in a hot-casing technique and provides a smooth perovskite film with compact 

grains.  

Perovskite solar cells require protection from environmental factors such as heat, moisture, 

air, etc. As discussed in previous chapters, researchers have been extensively investigating several 

methods to achieve thermal stability of perovskite solar cells. A solution to this is encapsulation 

with polymers to protect perovskites from moisture. Polymers such as poly (methyl methacrylate) 

(PMMA), polystyrene, polyimide have been used to protect perovskite films from oxygen and 

moisture. Along with protection from air, polymers like polystyrene, PMMA, SWNT with PMMA 
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act as an insulating tunneling contact and passivates defects in perovskite film by increasing 

efficiency. Herein, we have studied the effect of polyimide as an encapsulation layer on top of 

perovskite solar cells to establish thermally stable perovskite solar cells.  

 

7.2 Optimization of perovskite film 

The nature of grain boundaries has been investigated in many reports [186] and it is proven 

that the degradation of perovskite materials in moisture, light, and heat primarily originates from 

the GBs through the release of volatile gases. Theoretically, GBs are characterized by shallow 

intrinsic levels and are considered to be benign [189]; however, in a theoretical calculation 

Agiorgousis et al. found that the deep charge-state transition levels within the bandgap were indeed 

possible by forming Pb dimers and I trimmers through very strong covalent bonds [190]. 

Experimental studies also revealed controversial results on the nature of GBs in perovskite 

materials. In another work from my research group, it was suggested that GBs of hot-casted 

perovskite films contain deep defect centers that might serve as recombinant centers and be 

detrimental to the perovskite solar cells [186]. Hence, these defective GBs are prone to degradation 

when exposed to environmental factors making perovskite solar cells unstable. Many GB 

passivation approaches such as advanced fabrication, fullerene or polymer incorporation, using 

Lewis acids and/or bases have been proven to enhance the photovoltaic performance and stability 

of PSCs due to the reduction of defects [191].  
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Fig. 31.  Schematic of perovskite film formation using an antisolvent approach. 

 

Perovskite films prepared in a hot-casting technique show leaf-like structure with deep and 

defective grain boundaries. Herein, we adopt an antisolvent approach which is one of the most 

popular methods in perovskite fabrication technique. The method was first proposed by Spiccia et 

al. [28] and Seok et al. [36]. The process involves dropping an antisolvent at a critical stage during 

the spin coating process enabling the formation of uniform films with large grains. Fig. 31 

illustrates the method of the film fabrication. A precursor solution with PbI2 : MAI : DMSO (1:1:1) 

in DMF was used. The precursor solution was dropped in a substrate and spun coated at a dynamic 

spin speed. Diethyl ether was dropped as an antisolvent after a critical time. The best film obtained 

after antisolvent washing was a transparent film suggesting the formation of adduct. The film 

became highly reflective after annealing for 10min in air.  
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Fig. 32.  SEM image of perovskite with (a) lower and (b) higher magnifications fabricated by a 

hot casting technique. SEM image of perovskite with (c) lower and (d) higher magnification 

fabricated by antisolvent approach exhibiting finer and densely packed grains. 

 
 Fig. 32 shows the scanning electron microscope image of perovskite film comparing two 

perovskite fabrication methods: hot-casting and the antisolvent approach. Fig. 32 (a) shows a SEM 

image of MAPbI3-xClx and exhibits large grains with leaf-like structure of several tens of 

micrometers typical of a hot-casting technique. However, a high-resolution SEM image revealed 

grainy morphologies, as shown in Fig. 32 (b). In contrast, the SEM image of perovskite film 

fabricated using an antisolvent approach shows smooth and compact grains in nanoscale; however, 

no leaf like structures in microscale are observed. 
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7.3 Perovskite solar device with polymer encapsulation 

Perovskite solar cells were fabricated having the device structure of 

FTO/NiO/MAPbI3/C60/C60:C/Ag, as shown in Fig. 33 (a). Photoactive MAPbI3 perovskite films 

were fabricated using the antisolvent approach on FTO/NiO substrate. C60, carbon, and Ag were 

deposited using the E-beam evaporation technique. To study the thermal stability of perovskite 

solar devices, an encapsulation layer of polyimide was deposited on top of silver. Fig. 33 (b) shows 

the current (J)–voltage (V) characteristics of MAPbI3 solar cell. The short-circuit current (JSC), 

open circuit voltage (VOC) and fill factor (FF) were 21.95 mAcm-2, 0.97 V and 0.65, resulting in a 

power conversion efficiency (PCE) of ~14% at room temperature. 

 

 

 

 
 
Fig. 33.  (a) Inverted p–i–n perovskite solar cell structure and (b) Current–voltage J–V 

characteristics of perovskite solar cells exhibited a PCE of 14% at room temperature. 
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7.4 Thermal Stability Study 

A thermal stability study was conducted on perovskite solar devices with and without 

polyimide encapsulation. The fabricated perovskite solar cells with and without polyimide 

encapsulation were heated inside a glove box at a temperature of 85 °C, and the photovoltaic 

parameters and the film characteristics such as XRD, UV-Vis, and SEM images were analyzed to 

realize the underlying mechanism of stability of perovskite solar cells with polyimide 

encapsulation. 

 

7.4.1 J-V characteristics 

Preliminary thermal stability investigation was conducted on MAPbI3 perovskite solar cells 

with and without polyimide. To demonstrate consistent photovoltaic performance with time, the 

average device parameters were calculated from the current density-voltage characteristics 

measured under 100 mW/cm2 illumination using an AM 1.5G filter in an atmospheric 

environment. The average values (with standard deviation) of normalized PCE, fill factor (FF), 

short-circuit current density JSC, and open circuit voltage VOC for MAPbI3 perovskite solar cells 

with and without polyimide with the evolution of heating time are shown in Fig. 34. The 

photovoltaic parameters of solar cells without polyimide encapsulation initially tend to increase 

with heating time; however, a rapid decrease in performance is observed after 4 days of heating. 

The initial increase in performance could be because of the passivation of defects due to light 

soaking. In contrast, the solar cells with polyimide encapsulation could retain its initial efficiency 

for more than one month when heated at 85 °C in a nitrogen filled glove box. Hence, polyimide 

encapsulation layer prevents the solar cells from degradation under thermal heating. We 

hypothesize that when the perovskite solar cells with polyimide are heated in a nitrogen 
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environment, polyimide diffuses through the perovskite film passivating the defects. In addition, 

the water repellant characteristics of polyimide make it suitable in preventing degradation due to 

thermal heating. 

 

 

 

 

 

Fig. 34.  The evolution of the normalized photovoltaic parameters of photo conversion efficiency 

(PCE), fill factor (FF), short circuit current density (JSC), and open circuit voltage (VOC) of 

perovskite solar cells with and without polyimide encapsulation. 
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Fig. 35.  (a) The time evolution of XRD spectra of MAPbI3 with polyimide at 85 °C. (b) The 

integrated peak intensity of MAPbI3 along (110) direction for MAPbI3 sample with polyimide. 

 

7.4.2 XRD characteristics 

To investigate the thermal stability of the Perovskite films with polyimide layer, X-ray 

diffraction measurements were performed for up to 24 days heated at 85 °C, as shown in Fig. 35 

(a). The fresh Perovskite film contains two prime Perovskite peaks located at 14° and 28.4° 

originated from the same families of the crystallographic plane along the (110) and (220) 

directions. The intensity along the (110) direction is superior to the (220). The presence of FTO 

can be seen at 26.8°, 33°, 37°. Interestingly, the perovskite related peak at scattering angles 14.3°, 

28.8°, and 32.1° increased with increased heating time. This confirms the improvement of 

crystallinity in MAPbI3 film with polyimide after heating which is most likely due to the 

passivation of defects in perovskite film with the diffusion of polyimide into perovskite. Fig. 35 

(b) shows the integrated intensities of the perovskite peak along the (110) direction. The integrated 
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area of the (110) perovskite peak is used as a representative parameter for the volume fraction of 

the perovskite as a function of time. The sample with polyimide retains the XRD peak intensity of 

the perovskite peak along the (110) direction for a prolonged heating time. 

 

7.4.3 UV-vis characteristics 

We also measured UV-vis absorption for the fresh samples and the samples after heat 

treatment. Fig. 36 (a) and (b) compares the absorbance of perovskite samples with and without 

polyimide heated at 85 °C. The absorbance spectra clearly reveal the degradation of MAPbI3 

without polyimide over time. However, the absorption spectra of MAPbI3/ polyimide film 

displayed a nearly identical pattern before and after heating at 85 °C. Moreover, the absorption 

bandedge shifts dramatically for the sample without polyimide, which can be observed from the 

optical bandgap Eg. Davis and Mott’s work [164,192] on amorphous silicon shows that the optical 

absorption strength depends on the difference between photon energy and the bandgap as follows: 

(𝛼𝛼ℎ𝜈𝜈)1 𝑛𝑛� = 𝐴𝐴�ℎ𝜈𝜈 − 𝐸𝐸𝑔𝑔�                      (14) 

where, h is Planck’s constant, ν is the photon’s energy, α is the absorption coefficient, Eg is the 

bandgap, and A is a proportionality constant. The value of the exponent denotes the nature of the 

electronic transition, considered as n=1/2 for direct allowed transition in the case of perovskite. 

Fig. 36 (c) and (d) show the optical bandgap determined from the extrapolation of the linear part 

of a Tauc plot [193]. The value of optical bandgap for MAPbI3 sample is 1.59 eV in consistent 

with the previous report. [167] Interestingly, the bandgap shifts from 1.59eV to 1.58eV after 

heating for 4 days in the case of the MAPbI3 sample without polyimide, while a nominal change 

of optical bandgap is observed for MAPbI3 with the polyimide sample. The minimal change in 
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optical bandgap is consistent with the crystal structure analysis and suggests that the polyimide 

layer works as a protective layer and increases thermal stability. 

 

 

 

 

 

Fig. 36.  Absorption spectra as a function of wavelength for MAPbI3 sample (a) with polyimide 

and (b) without polyimide. Tauc plots of optical coefficient (αhν)2 vs. photon energy (hν) for (c) 

MAPbI3 with polyimide and (d) MAPbI3 without polyimide. 
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Fig. 37.  SEM images of MAPbI3 without polyimide (a) no heating at 0 day (b) after 10 days at 85 

°C, and SEM images of MAPbI3 with polyimide (c) no heating at 0 day (d) after 10 days at 85 °C. 

(Scale bar: 1 µm) 

 

7.4.4 Morphological characteristics 

SEM imaging of a perovskite sample with and without polyimide was performed before 

and after heating at 85 °C with the evolution of time. Before thermal treatment, both films were 

flat with no pinholes. The SEM image in Fig. 37 (a) and (b) proves the degradation of MAPbI3 in 

the form of pinholes and decomposed particles (bright white particles) after 10 days of heating. 

Interestingly, the MAPbI3 film with polyimide showed smoother grains after heating for 10 days 
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at 85 °C. As shown in Fig. 37 (c) and (d), MAPbI3 film with polyimide showed improved 

crystallinity in the morphological analysis. This result agrees with the XRD results that polyimide 

increases the crystallinity of MAPbI3 film when heated at 85 °C in a nitrogen environment. 

Therefore, incorporation of polyimide on MAPbI3 solar cells could retain its initial stability for 

more than one month of heat exposure. 

 

7.6 Summary 

To summarize, a thermally stable perovskite solar cell was demonstrated using an 

encapsulation layer of polyimide. The polyimide coated solar cell was able to maintain its initial 

photo conversion efficiency for more than one month under continuous thermal heating. The 

incorporation of the polyimide layer passivates the defect and improves the crystallinity of the 

perovskite film, which is evident by the XRD, UV-vis and SEM measurements. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Achieved Results 

 While organometal halide perovskite solar cells show great potential to meet future 

energy needs, thermal instability raises serious questions about commercialization viability. 

At present, the stability of perovskite solar cells has been studied in various environmental 

conditions including humidity and temperature. Nonetheless, an understanding of the 

performance of a CH3NH3PbI3-xClx perovskite solar cell is limited. This study reports the 

irreversible performance of CH3NH3PbI3-xClx perovskite solar cell during the heating and 

cooling processes under AM 1.5 and reveals what triggers irreversible performance of the 

solar cell. In particular, the primary cause of irreversible performance of CH3NH3PbI3-xClx 

is quantitatively analysed by monitoring in real time the development of deteriorated 

crystallinity, charge trapping/detrapping, trap depth, and PbI2 phase, namely a critical 

signal of perovskite degradation while varying the temperature of perovskite film and the 

solar cell. Most surprisingly, it is revealed that the degradation of both perovskite films and 

solar cells was triggered at ~70 °C. Remarkably, even after the device temperature cooled 

down to room temperature, degraded performance of solar cells persisted with increasing 

charge trapping and further development of the PbI2 phase, which led to irreversible J-V 

characteristics of the perovskite solar cell.  

 Perovskite film decomposes into PbI2 with thermal heating at 85 °C; therefore, we 

primarily concentrated on fabricating a thermally stable perovskite thin film. Thermal instability 

of perovskite films is one of the important issues limiting the outdoor application of perovskite 
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solar cells because perovskite films are intrinsically thermally unstable under normal operating 

temperature. We explore the new role of poly (methyl methacrylate) (PMMA) that alters 

CH3NH3PbI3 (MAPbI3) grain boundaries (GBs) so that they are more heat-resistant. It is found that 

hot-casted MAPbI3 films contain GBs composed of hydrated (CH3NH3)4PbI4•H2O, while grain 

interiors (GIs) are mainly composed of CH3NH3PbI3. Upon heating bare MAPbI3 film at 85 °C up 

to 1000 hrs in a nitrogen environment, thermal degradation of MAPbI3 started at GBs and extended 

into GIs. Such a degradation pathway can be explained by hydrated (CH3NH3)4PbI4•H2O 

structures where moisture at GBs acts as a catalyst for thermal degradation at GBs. Conversely, 

when PMMA was applied to MAPbI3, a new level of thermal stability of MAPbI3/PMMA was 

achieved where PMMA altered the perovskite GB to be thermally resistant. Remarkably, the high 

thermal stability of perovskite GBs is attributed to the newly discovered role of PMMA in 

absorbing moisture from hydrated (CH3NH3)4PbI4•H2O GBs and driving them out through GB 

channels and the high stability characteristics (Tg=105 °C) of PMMA scaffolding perovskite GBs. 

 Perovskite thin film is stable at 85 °C for up to 1000 hrs with the application of PPMA. 

Subsequently, we incorporated mixed cation into perovskite thin film to realize the role of mixed 

cation in the thermal stability of perovskite film. In this context, we investigated the thermal 

stability of CsxMA1-xPbI3 (Cs=0, 5, and 9%) with and without PMMA at thermal treatment 

temperatures of 85 °C and 120 °C in a nitrogen filled glove box. Without PMMA coating, it is 

found that all CsxMA1-xPbI3 films rapidly degraded by producing byproducts of PbI2 and I2 and 

forming a number of pin-holes even though CsxMA1-xPbI3 with 5% Cs exhibited slightly better 

thermal stability. In particular, it is found that degradation started within 72 hrs of thermal 

treatment and exhibited extensive thermal degradation after 300 hrs at 85 °C. However, when a 

PMMA polymer was introduced on top of the CsxMA1-xPbI3 perovskite films, we achieved 
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remarkable thermal stability up to 1000 hrs of thermal heating at 85 °C with no significant sign of 

thermal decomposition to PbI2 and I2 and of pin-holes on the surfaces. However, it is found that 

when CsxMA1-xPbI3 films with PMMA were heated at a temperature of 120 °C higher than the 

glass transition temperature (105 °C) of PMMA, the rapid thermal degradation of CsxMA1-xPbI3 

was observed, producing PbI2 and I2 and forming many pin-holes on the surface. This indicates 

that PMMA serves as an excellent scaffold to prevent the thermal degradation of CsxMA1-xPbI3 

films at a temperature lower than the glass transition temperature (Tg) of PMMA but not at higher 

than Tg of PMMA. Our findings suggest that CsxMA1-xPbI3 perovskite with PMMA is one of the 

possible solutions for better thermal stability in perovskites at higher temperature. 

 Until now, we have fabricated a perovskite solar cell using the hot casting technique. 

Though hot casting technique-based perovskite solar cells showed high efficiency, deeper grain 

boundaries were observed. Grain boundaries are considered to be where degradation starts in the 

perovskite thin film under thermal stress. Thermal degradation starts from the grain boundary and 

extends towards the grain interior. Hence, we have fabricated perovskite thin film in a conventional 

antisolvent method which does not contain any large grain boundary as observed in a hot casting 

technique. Also, we incorporated a new polymer polyimide in the solar cell as polyimide has higher 

glass transition temperature than PMMA. In addition, polyimide can repel moisture from the 

surface of perovskite solar cells and removes defects in perovskite thin film which helps improve 

thermal stability. The perovskite solar cell with polyimide showed thermal stability for more than 

one month when heated at 85 °C while solar cells without polyimide degraded within 72hrs. 
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8.2 Future works 

We have incorporated polyimide on top of a perovskite solar cell which works as a water 

repellant and passivates defects. In addition, it is believed that the excellent hygroscopicity of 

PMMA played an active role in absorbing moisture from hydrated (CH3NH3)4PbI6•H2O GBs, 

driving them out through the GB channel. This might make the GBs less susceptible to moisture. 

Moreover, mixed cation based perovskite has higher stability than single cation perovskite at a 

higher temperature as inorganic cations are less prone to degrade in heat. In this thesis, we 

fabricated solar cells with the configuration of FTO/NiO/Perovskite/C60/C60:C/Ag/Polyimide. 

Further improvement can be achieved by adding PMMA, polyimide and mixed cation which could 

improve stability. Perovskite solar cells are not only unstable under thermal heating but also tend 

to degrade in air. The water contact angle of polyimide can be increased up to 162° [194]. 

Consequently, a mixed cation perovskite solar cell with PMMA and polyimide could have air and 

thermal stability which would be a potential candidate in order to commercialize perovskite solar 

cells. 
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