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Abstract 
To reduce the transport of potentially invasive species on ships’ submerged 
surfaces, rapid—and accurate—estimates of biofouling are needed so shipowners 
and regulators can effectively assess and manage biofouling. This pilot study 
developed a model approach for that task. First, photographic images were collected 
in situ with a submersible, inexpensive pocket camera. These images were used to 
develop image processing algorithms and train machine learning models to classify 
images containing natural assemblages of fouling organisms. All of the algorithms 
and models were implemented in a widely available software package (MATLAB©). 
Initially, an unsupervised clustering model was used, and three types of fouling 
were delineated. Using a supervised classification approach, however, seven types 
of fouling could be identified. In this manner, fouling was successfully quantified 
over time on experimental panels immersed in seawater. This work provides a 
model for the easy, quick, and cost-effective classification of biofouling. 

Key words: fouling, hull cleaning, invasive species, nonindigenous species, optics, 
remote sensing, shipping 

   
Introduction 

In considering ships as vectors of aquatic nuisance species (ANS), the 
ballast water and sediments can be considered a sub-vector, while 
biofouling of the wetted surface areas is another sub-vector. By far, ballast 
water (and sediments) have historically captured most of the scientific and 
political attention. More than a decade was devoted to the development 
and application of the International Convention for the Control and 
Management of Ballast Water and Sediments (BWM Convention) by the 
International Maritime Organization (IMO). The BWM Convention was 
adopted in 2004 (IMO 2004). Given the complicated nature of the subject 
matter (which marries biology and technology), by the time the BWM 
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Convention entered into force in 2017 (IMO 2018), it was accompanied by 
14 sets of guidelines to provide direction on topics such as sampling 
organisms in ballast water (e.g., IMO 2008). Biofouling of ships’ wetted 
surface areas, however, is increasingly viewed as a key factor, and it may 
represent a bigger driver of invasive species introductions and translocations 
than ballast water (Hewitt and Campbell 2010). 

Measures to manage biofouling on submerged structures—specifically 
ship hulls and wetted surfaces—require regular cleaning, the application of 
fouling-control coating systems, or both (e.g., Visscher 1923; Hewitt et al. 
2009; Callow and Callow 2011). Despite these efforts, biofouling persists. 
The consequences of such biofouling include not only the transport of 
potentially invasive species (e.g., Carlton 1987; Hay 1990; Godwin 2003; 
Coutts and Taylor 2004; Davidson et al. 2016), but also higher fuel 
consumption (e.g., Schultz 2007; Schultz et al. 2011) and the concomitant 
evolution of greenhouse gasses (Townsin 2003). 

New guidelines and policies are in place or under development to reduce 
biofouling loads and the risk of transporting potentially invasive species. 
At an international level, for example, the 2011 Guidelines for the Control 
and Management of Ships’ Biofouling to Minimize the Transfer of Invasive 
Aquatic Organisms (IMO Biofouling Guidelines, IMO 2011) have been 
promulgated, and they are in use in a growing number of jurisdictions, 
including Denmark (Bohn et al. 2016), New Zealand (Ministry of Primary 
Industries, MPI 2014), and California, USA (CCR 2017). Further, in 2020, 
the IMO began to review the global implementation of the Biofouling 
Guidelines (IMO 2018). 

Although the IMO Biofouling Guidelines provide direction on choosing 
appropriate anti-fouling systems, and they stipulate the use of a Biofouling 
Management Plan and a Biofouling Record Book, the Guidelines do not 
define standard, maximum, acceptable levels of fouling. In contrast, the 
Craft Risk Management Standard (CRMS) for New Zealand (NZ), which 
became effective in May 2018, requires vessels to arrive in NZ with a “clean 
hull” (MPI 2014). This term is defined by thresholds limiting the percent 
cover of specific living organisms (e.g., ≤ 1% cover of either tubeworms, 
bryozoans, or barnacles) (MPI 2014). At present, the NZ requirements may 
be met by following the IMO Biofouling Guidelines or other best practices, 
so a ship’s biofouling coverage does not need to be quantified, as long as 
the Guidelines are followed. 

The growing regulatory interest and the increasingly stringent 
requirements for biofouling management are stimulating efforts to develop 
reliable methods to rapidly quantify biofouling on active ship hulls for 
optional use now, as well as to meet future regulatory mandates (e.g., First 
et al. 2014; Zabin et al. 2018; Scianni and Georgiades 2019). At present, 
quantifying biofouling is typically a painstaking, manual task (e.g., Butler 
et al. 2010). Further, the types of fouling are often coarsely categorized, 
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with little taxonomic information (e.g., U.S. Navy 2006). Consequently, it 
is clear that an accurate, reliable, rapid method to quantify biofouling will 
be useful now and may be required in the future. 

To that end, this pilot study developed an automated method for quickly 
quantifying and classifying biofouling accumulation on wetted surfaces 
using digital images collected with a submersible pocket camera. The 
development of new methods to rapidly and inexpensively assess biofouling 
loads and identify potentially undesirable species will become increasingly 
important. Such methods are needed not only for helping both industry 
and government to achieve future performance goals but also to meet 
regulatory objectives regarding biofouling. 

Materials and methods 

Photographic images collected in situ were used to develop and train 
algorithms to classify images containing natural assemblages of marine 
fouling organisms. To increase the accessibility of this approach, the 
analysis was performed using the commercial software package 
MATLAB© (Mathworks, Natick, MA). Notably, this work was informed by 
the great amount of research in the field of remote sensing, particularly as 
it is applied to measure aquatic biological parameters, including submerged 
benthic habitats (e.g., Louchard et al. 2003), seagrasses (e.g., Dierssen et al. 
2009; Hill et al. 2014), and coral reefs (e.g., Hochberg et al. 2003; Mumby et 
al. 2004). 

Photographic images of biofouling panels 

Color, digital images of fouled experimental panels were collected at the 
U.S. Naval Research Laboratory Key West, FL, USA (NRLKW, 24.6°N; 
81.8°W). All images were collected in situ using a waterproof, hand-held 
digital camera (Panasonic Lumix DMC-TS5; Panasonic North America, 
Newark, NJ), which captured three color channels (red, green, blue [RGB]) 
at a resolution of 4608 × 3456 pixels. The camera was mounted to a jig to 
standardize the size of the target panel within the camera’s field of view 
and provide a consistent distance between the camera and the target panel 
(Figure 1). A clean reference coupon was included with each image to 
correct for differences in exposure, contrast, and illumination across 
images. Illumination was provided by a diffuser placed over the camera’s 
flash to reduce specular hotspots. In this manner, the lighting—as well as 
the shutter speed and exposure—were consistent as images were collected. 
Using this setup, the images were sufficiently uniform in terms of contrast 
and brightness such that no standardization or other image modification 
was necessary prior to the classification analyses. 

The experimental panels (10.2 × 10.2 × 0.5 cm) were cut from cold-rolled 
steel. To protect surfaces from corrosion, panels were coated with a coating 
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Figure 1. Illustration of the image capturing environment. The camera (shown in blue) was 
mounted on a cylindrical pipe (2.5 cm diameter), which was positioned 22 cm from the 
biofouling panel surface (shown in yellow). Both camera and panel mount were submerged in a 
trough (dimensions: 243 × 33 × 60 cm) with flowing seawater. Water depth was 56 cm. 

typically applied to ship hulls, Mare Island Epoxy (applied following 
military specification MIL-DTL-24441). By design, this coating had no 
fouling-release properties and contained no fouling-inhibiting chemicals. 

A digital library required for training the algorithm was constructed 
from images of five, heavily fouled panels that had been submerged off the 
seawall or in a seawater trough with slowly flowing ambient seawater at 
NRLKW for approximately 25 months. Additionally, six newly immersed, 
initially clean panels were submerged in the seawater trough for four 
months (November 2016–March 2017) and photographed weekly. The 
flow-through seawater troughs were situated in a semi-enclosed room and 
exposed to indirect sunlight through open bay doors and skylights. The 
fouling on these initially clean (test) panels was assessed using the 
algorithm that was developed using images of the heavily fouled panels. 

Image analysis 

Two approaches were used to attempt to classify and quantify biofouling 
loads on the test panels. First, an unsupervised clustering approach was 
conducted on the heavily fouled panels to determine the number and 
taxonomic fidelity of the classes that could be identified without prior 
knowledge. Next, given the relatively coarse resolution of the unsupervised 
clustering analyses, a supervised classification was performed using a 
digital library of seven fouling organisms created manually from five of the 
heavily fouled panels. The library of identified organisms was used in a 
supervised classification to analyze the biofouling accumulation over time 
on the six newly immersed panels. All routines for image processing, 
classification, and analysis were performed using MATLAB. 

iiNYAIIYIIHII 

https://doi.org/10.3391/mbi.2021.12.3.06
https://www.invasivesnet.org


 Rapid quantification of biofouling 

 First et al. (2021), Management of Biological Invasions 12(3): 599–617, https://doi.org/10.3391/mbi.2021.12.3.06 603 

 
Figure 2. Visual evaluation of Panel M02 (right) and Panel (M05), which were used (along with other heavily fouled panels) to 
verify the seven classes using supervised classification. These classes accounted for the complete range of coloration across the 
panels. Note that five of the seven classes are found on these panels: 1) clean, unfouled surface, 2) turf algae, 3) encrusting 
tunicates, 4) Cnidarian polyps, and 5) other fouling (taxonomy unknown). 

Unsupervised clustering 

Photographic images from five of the heavily fouled panels were cropped 
to remove all non-panel pixels and reshaped into an (m × n × 3) matrix, 
where m, n represent the pixel dimensions and 3 denotes the three channels 
in the color image. The k-means clustering method (Bishop 2006), as 
implemented in MATLAB, was applied to all of the color points in the 
images, generating from 2 to 8 classes of optically distinct pixels in different 
iterations. The classes were then mapped onto each original pixel, generating 
a pseudo-color image defining the distribution of classes across the panels. 
Finally, the classified images were visually compared to the original RGB 
image and matched to the appropriate organism. 

There are many clustering algorithms that can be used for this purpose, 
such as k-means clustering, Connectivity-based clustering, Expectation–
Maximization (EM) clustering using Gaussian mixture models (GMM) 
(Bishop 2006), and more recent subspace clustering algorithms designed 
for high-dimensional data (Kriegel et al. 2012). Among these clustering 
algorithms, the k-means algorithm is the simplest, most efficient, yet 
effective approach. Thus, it was chosen for this study, with the goal to 
develop a fast algorithm for rapid biofouling type classification. Note that 
determining an optimal value for “k” in the k-means algorithm for a given 
data set is still an open problem (Bishop 2006). Our solution for this 
challenge was to run the algorithm with values from 2 to 8 for “k” then use 
visual inspection to explain the clustering results. Values larger than 8 
produced meaningless results, so additional iterations were not needed. 

 Supervised classification 

An image library of seven biofouling types was constructed from 
photographs of the five heavily fouled panels (see Figure 2 for an example). 
Individual organisms or fouling types (in the case of biofilms and filamentous 
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Table 1. Classes of organisms used in supervised classifications. 

Class of organism 
(number and color) Description 

1 – White  Clean, unfouled surface 

2 – Cyan  Microalgal biofilm (thin [< 1 mm] biofilms dominated by 
Chlorococcus sp. and Nostoc sp.) 

3 – Green Turf algae (of various taxa of encrusting and filamentous red and 
green algae) 

4 – Red  Encrusting tunicates 
5 – Magenta  Encrusting bryozoans 
6 – Blue  Cnidarian polyps 

7 – Yellow  
Other fouling composed of unidentified or mixed taxa, including 
spirorbid polychaetes, solitary tunicates (Clavelina picata), and small 
bryozoans 

algae) were identified and located on the images visually. Representative 
patches of the identified organisms were selected to create a library 
defining the optical characteristics of each fouling type. A two-component 
classifier was trained using the library patches as ground truth to recognize 
each of the seven biofouling types (Table 1). A small window was used to 
scan the image, and each window was classified to one of the types by the 
trained classifier. 

The sparse coding classifier was trained using a supervised classification 
experiment. Sparse coding classification is a recently developed method 
that has been successfully applied to many applications, including 
detecting scars in seagrass beds (Oguslu et al. 2014, 2018). It was chosen for 
biofouling classification because a sparse coding classifier is simple to 
implement and is effective for image classification. It first transformed 
image patches to new representations that were more robust in the 
classification because raw pixel values may change with object orientation 
and other parameters (e.g., Oguslu et al. 2014). 

Sparse coding is a two-step classifier. In brief, sparse coding reconstructed 
an image patch using a set of basis functions (to allow interpolation), and 
the resulting reconstructed coefficients were used as a new representation 
for the image patch. Because only a few of the reconstructed coefficients 
are usually non-zero during the reconstruction optimization, the 
reconstructed representation is termed “sparse”. The basis functions were 
either learned from image data through an optimization procedure or just 
directly were sampled from training image patches. Experimental results 
showed that randomly sampled basis functions could achieve the same 
level performance as learned ones, making the sparse coding step especially 
easy to be implemented (Oguslu et al. 2012, 2014, 2015). 

After the sparse coding step, each image patch was converted to a sparse 
vector (its reconstruction coefficients) that was classified by the support-
vector machine (SVM) model (Fan et al. 2008). The SVM model was 
trained by providing it with a set of sparse vectors together with their 
known type labels. The learning process was guided by an optimization 
routine that minimized sums-of-square-errors under the constraints that 
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the resulting model should perform well on new, unseen data. Afterwards, 
this robust classification model was used to assign the new representations 
to one of the seven biofouling types. 

At each location during the scan, an image patch of the window size was 
extracted, the patch was then converted to a sparse vector, and the classifier 
was used to bin the patch into one of the seven biofouling types. The effect 
of patch size (window size) was investigated by trial-and-error, and patches 
of 9 × 9 pixels were determined in our investigation. Smaller patch sizes 
did not capture enough inter-taxon variation to reliably classify organisms, 
and larger sizes did not noticeably improve the classification. From each 
fouling type, 2000 randomly selected patches were used to train the 
classifier. The accuracy of the resulting classification maps was validated by 
visually comparing them to the original photographic images. 

Determination of the accuracy of classification approaches 

To assess the accuracies of the classification approaches, randomly 
chosen points on images were categorized by visual inspection, and the 
results were compared to the output of the classification schemes. For 
each image, 2 unique sets of points were randomly generated, and two 
analysts classified the fouling organism (or clean panel) on their unique 
sets of points. In this manner, a total of 200 randomly generated points 
was viewed for each image representative of the unsupervised or 
supervised classification approaches. For the unsupervised classification, 
2 images were assessed, for a total of 400 data points. For the supervised 
classification, 1 image was assessed, for a total of 200 data points. 
Afterwards, the visual rankings were compared to the automated 
classification in an error matrix format. Accuracy was calculated as the 
relative agreement between the visual and automated classification. 

Results 

Unsupervised clustering 

Three classes of fouling were delineated according to the fouling burden: 
(1) “clean” pixels that represented unfouled surfaces, (2) “lightly fouled” 
pixels that contained a mixture of the clean pixels and some fouling, and 
(3) “heavily fouled” pixels in which no residual signature from the clean 
panel was evident (examples of this classification are shown in Figures 3 
and 4). The optimum cluster size was determined to be 3; additional 
clusters (up to 8) did not produce consistent delineation of additional 
classes (data not shown). Once each pixel was classified, the percent of 
each panel covered by each of the classes was determined. 

In all panels, the bulk of the surface was lightly fouled or heavily fouled. 
In Figure 3, using three clusters to analyze fouling, 26% of the panel was 
clean, 34% was lightly fouled, and 40% was heavily fouled. In Figure 4, 22% 

iiNYAIIYIIHII 

https://doi.org/10.3391/mbi.2021.12.3.06
https://www.invasivesnet.org


 Rapid quantification of biofouling 

 First et al. (2021), Management of Biological Invasions 12(3): 599–617, https://doi.org/10.3391/mbi.2021.12.3.06 606 

 
Figure 3. Panel M01 shown in a photographic image (A) and with unsupervised classification using two (B) or three classes (C). 
The clean reference panel occupies the bottom 25% of each image. Yellow dots on the left-most panel (A) indicate the set of 100 
random points that was used to compare the manual classifications to the automated, unsupervised classifications. While the points 
are shown only in panel A for clarity, the same set of points was used for all three images. 

 
Figure 4. Panel M02 shown in a photographic image (A) and with unsupervised classification using two (B) or three classes (C). 
The clean reference panel occupies the bottom 25% of each image. Yellow dots on the left-most panel (A) indicate the set of 100 
random points that was used to compare the manual classifications to the automated, unsupervised classifications. While the points 
are shown only in panel A for clarity, the same set of points was used for all three images. 

of the panel was clean, 45% was lightly fouled, and 33% was heavily fouled. 
Thus, this procedure allowed the percentage of each panel covered by each 
of the 3 classes to be easily determined. It was unable, however, to 
distinguish among the various fouling taxa (e.g., barnacles vs. algae). For 
example, in Figure 4, the black tunicate on the right side of the photographic 
image was indistinguishable from the mass of bryozoans in the center left-
hand side of the image: in Figure 4B (and in some areas of 4C), both are 
designated by green color. A more robust classification scheme was 
needed. 

iiNYAIIYIIHII 

https://doi.org/10.3391/mbi.2021.12.3.06
https://www.invasivesnet.org


 Rapid quantification of biofouling 

 First et al. (2021), Management of Biological Invasions 12(3): 599–617, https://doi.org/10.3391/mbi.2021.12.3.06 607 

Supervised classification 

Visual inspection of the heavily fouled panels generated seven classes 
ranging from a clean, unfouled surface to multicellular organisms (Table 1). 
A minimum of five distinct patches for each biofouling type were used to 
create each class in the library. The accuracy of the resulting classification maps 
was verified by visual comparison against the original photographic images 
(Figure 2) and by using randomly chosen points as above (Figures 3–5). 
It was unnecessary to standardize the images against a clean reference 
panel prior to classification (data not shown). Eliminating this unnecessary 
step will further streamline and simplify the approach developed here. 

The biofouling communities on the newly immersed panels were analyzed 
to create a time-series of biofouling, and, in general, the six panels followed 
similar trajectories with respect to biofouling accumulation during the 
incubation period (see examples in Figures 6 and 7, which were typical of 
the newly immersed panels). Due to the relatively short immersion time, 
the season (winter, typically a period of low biofouling accumulation 
[NRLKW, unpublished data]), and the oligotrophic location (NRLKW, 
unpublished data), the fouling load was much lower than that in the panels 
used in the unsupervised clustering (Figures 4 and 5). Throughout the 
four-month incubation, most of the panels’ surfaces were free of visible 
fouling or were covered with microalgal biofilm (Table 2). In this case, the 
fouling accumulation on the time series panels represented only a subset of 
the classes in the library. The most abundant fouling taxon throughout this 
examination consisted of microalgal biofilms that covered > 90% of the 
panel surfaces in November and December 2016. 

When data from all six panels were analyzed, initially, the biofilm 
consisted almost exclusively of microalgal biofilm that disappeared around 
30 December 2016 (Figure 8A, B). The panels remained nearly free of fouling 
through January 2017, and then they began to accumulate new biofilm 
layers and macrofouling organisms, primarily solitary tunicates, spirorbid 
polychaetes, and filamentous macroalgae (Figure 8C). A few solitary tunicates, 
spirorbid polychaetes, and nascent macroalgal filaments—all grouped into 
the “other fouling” class—became more common in February 2017. Biofilm 
cover dropped to about 10% in January and February 2017 and increased 
again in March 2017 (Figure 8B). 

Accuracy of classification approaches 

Accuracy was judged by comparing visual classifications of random points 
to the automated identification of these same points (Figures 3–5; the 
results are summarized in the confusion matrices shown in Tables 3–5). 
Unsupervised classification with two classes had the highest accuracy: 89% 
agreement between the analysts and the algorithm rankings (n = 397 points 
for 2 images, each with 2 sets of points; note that 3 points fell upon the panel 
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Figure 5. Cropped portions of panel M02 shown in a photographic image (A–D) and with its 
corresponding supervised classification (E–H). In each image pair, 25 random points were 
selected to compare the manual classifications to the automated, supervised classifications. For 
clarity, the points are not shown in these images. 

D Clean, unfouled surface 

■ Algae (biofilms and turf algae) 

■ Encrusting tunicates 

■ Encrusting bryozoans 

■ Cnidarian polyps 

Other fouling 
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Figure 6. Time series of Panel M32 from 10 NOV 2016 to 16 DEC 2016. For a given date, the top row shows the photographic 
image, and the bottom row shows the corresponding supervised classification. The full color key is shown in Table 1; the most 
abundant features in the supervised classification (bottom panels) are: microalgal biofilm (cyan areas), turf algae (green areas) and 
clean, unfouled surface (white areas). 

 
Figure 7. Time series of Panel M32 from 10 FEB 2017 to 24 MAR 2017. For a given date, the top row shows the photographic 
image, and the bottom row shows the corresponding supervised classification. The full color key is shown in Table 1; the most 
abundant features in the supervised classification (bottom panels) are: clean, unfouled surface (white areas), microalgal biofilm 
(cyan areas), and other fouling composed of unidentified or mixed taxa (yellow areas). 

10 NOV 2016 18 NOV 2016 02 DEC 2016 09 DEC 2016 26 DEC 2016 

10 FEB 2017 24 FEB 2017 03 MAR 2017 17 MAR 2017 24 MAR 2017 
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Table 2. Percent fouling of each supervised class on panel M32. 

Date Clean (%) Microalgal biofilm 
(%) 

Turf algae 
(%) 

Encrusting 
tunicates (%) 

Encrusting 
bryozoans (%) 

Cnidarian 
polyp (%) Other (%) 

10 NOV 2016 5.36 94.56 0.00 0.00 0.00 0.00 0.07 
18 NOV 2016 5.48 94.36 0.01 0.01 0.00 0.00 0.14 
02 DEC 2016 4.74 94.87 0.02 0.01 0.02 0.02 0.31 
09 DEC 2016 3.79 95.55 0.04 0.02 0.02 0.04 0.53 
16 DEC 2016 5.90 93.94 0.01 0.01 0.00 0.01 0.14 
23 DEC 2016 3.77 95.58 0.04 0.04 0.02 0.04 0.52 
30 DEC 2016 8.37 89.95 0.17 0.06 0.03 0.11 1.30 
06 JAN 2017 93.04 6.91 0.00 0.00 0.00 0.00 0.04 
13 JAN 2017 93.28 6.66 0.01 0.00 0.00 0.00 0.05 
20 JAN 2017 93.30 6.70 0.00 0.00 0.00 0.00 0.00 
27 JAN 2017 90.45 9.52 0.00 0.00 0.00 0.00 0.03 
07 FEB 2017 92.53 7.44 0.00 0.00 0.00 0.00 0.03 
10 FEB 2017 96.68 3.32 0.00 0.00 0.00 0.00 0.00 
24 FEB 2017 95.11 4.84 0.01 0.00 0.00 0.00 0.03 
03 MAR 2017 90.58 9.39 0.00 0.00 0.00 0.00 0.02 
17 MAR 2017 24.02 70.34 0.31 0.04 0.06 0.12 5.12 
24 MAR 2017 12.27 72.23 0.41 0.04 0.19 0.07 14.79 

fasteners and were excluded) (Table 3). However, the class sizes were 
uneven (n = 86 and 311 for Classes 1 and 2, respectively). Because of this 
disparity, a high rates of false negatives (47%) for Class 1 did not drive 
down the overall accuracy of the classification. For unsupervised classification 
with three classes, accuracy was lower (68%) (Table 4). This was mostly 
due to disagreements between moderate and heavy fouling; both methods 
were generally in agreement regarding unfouled locations (94%; n = 31 of 
397 points). For supervised classification, overall agreement was 58% 
(Table 5). However, amid this lower overall agreement, certain categories 
showed high agreement. For example, both visual and automated were in 
agreement (75%) on classifying tunicates ( n = 49 of 65 points). 

The effort needed to classify the images differed between the manual and 
automated applications. The automated classifications—either using the 
unsupervised or supervised approach—occurred instantaneously once the 
algorithms had been trained. Scoring the organisms (or clean portions of 
the panels) in the photographs manually took approximately 30 minutes 
per 100 points. Further, classifying organisms by eye required a notable 
understanding of biology and robust knowledge of the local, benthic 
community. 

Discussion 

This work demonstrated that images of biofouling accumulation on 
submersed panels collected with a simple pocket camera can be used to (1) 
identify and quantify several classes of marine biofouling types and (2) 
assess surfaces ranging from clean to heavily fouled. The method was also 
sensitive enough to detect temporal changes on individual panels deployed 
over time. As this was a proof-of-concept study, the conditions were ideal, i.e., 
images were collected in a carefully controlled environment with consistent 
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Figure 8. Relative abundance of (A) clean surfaces, (B) microalgal biofilm and (C) all other 
fouling organisms on the experimental panels; given the low levels of fouling, the remaining 
five categories of organisms from Table 1 were combined as “all other organisms”. The legend 
for the panels is shown in panel C. Note the differences in scale among the y-axes. 
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Table 3. Confusion matrix demonstrating the accuracy of the actual visual (Actual) determinations 
vs. predictions from unsupervised classification (Predicted) with 2 classes. Classes 1 (clean) and 
2 (fouled) are shown as column and row headers in yellow-shaded cells. Category values are 
shaded from white (no data) to blue (most data). Orange-shaded cells are the column and row 
sums (here, n = 397, shown in bold font). For emphasis, instances of agreement are shown in 
bold font and along the diagonal. The sensitivity and specificity of each class is also shown. 

  Predicted   
  1 2  


 A

ct
ua

l 1 46 40 86 

2 4 307 311 

  50 347 397 
 

Class Sensitivity Specificity 
1 0.92 0.88 
2 0.87 0.91 

 

Table 4. Confusion matrix demonstrating the accuracy of the visual (Actual) determinations vs. 
predictions from unsupervised classification (Predicted) with 3 classes, representing clean (1), 
moderate fouling (2), and heavy fouling (3). The table’s features are as described in Table 3. 

  Predicted   

  1 2 3  


 A

ct
ua

l 1 29 31 4 64 

2  79 84 163 

3 2 7 160 169 

  31 117 248 396 
 

Class Sensitivity Specificity 
1 0.94 0.87 
2 0.49 0.83 
3 0.95 0.55 

 

Table 5. Confusion matrix demonstrating the accuracy of the visual determinations (Actual) vs. 
predictions from supervised classification (Predicted) with 7 classes (See Table 1). Note: for 
this analysis, both algal films and turf algae were grouped into one class (Class 3&4). The 
table’s features are as described in Table 3. 

  Predicted   

  1 2 3&4 5 6 7  


 A

ct
ua

l 

1 1  1    2 

2  49     49 

3&4  7 39  3 6 55 

5  8 3 2 5 7 25 

6   1  2  3 

7 1 1 36  6 22 66 

  2 65 80 2 16 35 200 
 

Class Sensitivity Specificity 
1 0.50 0.99 
2 0.75 1.00 

3&4 0.50 0.83 
5 1.00 0.83 
6 0.13 0.99 
7 0.63 0.67 

 

lighting, and the surfaces were flat. A next step is to determine the 
suitability of this approach in water with a high concentration of 
suspended solids or organisms and with irregular surfaces, e.g., in tubes 
mimicking bow thrusters. Images used here were collected under ideal 

iiNYAIIYIIHII 

https://doi.org/10.3391/mbi.2021.12.3.06
https://www.invasivesnet.org


 Rapid quantification of biofouling 

 First et al. (2021), Management of Biological Invasions 12(3): 599–617, https://doi.org/10.3391/mbi.2021.12.3.06 613 

conditions, including standard camera position and angle. In-water 
imaging will require approaches to determine the scale and perspective of 
the images (Gormley et al. 2018)  

Although it required the construction of a reference library, the supervised 
classification procedure represented a demonstrable improvement over the 
unsupervised clustering approach with respect to the types of organisms 
delineated. Seven classes were identified and assigned to taxonomic groups 
in the supervised classification approach, as opposed to the three levels of 
fouling accumulation (with no taxonomic information) achieved with the 
unsupervised approach. Advances in the supervised approach, for example, 
using a wider variety of fouling organisms, will likely allow more detailed 
clustering (identification) of fouling organisms. We note that the set of 
fouling organisms identified in these panels is not comprehensive, and it may 
not represent typical marine fouling communities, and some ubiquitous 
fouling organism (e.g., barnacles) were not present on these panels. 

Our goal was to perform a pilot study using digital images from an 
inexpensive, underwater camera and machine learning algorithms for 
rapid, automatic biofouling type identification. Based on our previous 
research experience and results from the literature, we chose the k-means 
algorithm for unsupervised clustering and the sparse coding method for 
supervised classification. We did not attempt to customize our algorithms 
for biofouling identification. Indeed, in doing so, there might be a superior 
unsupervised clustering method or a supervised classification algorithm 
that can provide better biofouling identification, following on the “No Free 
Lunch Theorem” (Wolpert and Macready 1997). Indeed, as the field of 
image analysis changes rapidly, especially with advances in artificial 
intelligence, other object-recognition approaches can and should be applied 
(He et al. 2016). Regardless, our experimental results showed that automatic 
biofouling type identification is feasible, and in future work, we plan to 
increase the algorithms’ performances using customized methods. 

In some cases, the unsupervised clustering method may be sufficient 
despite its inability to identify types of organisms. For example, measuring 
the composition and prevalence of fouling organisms to determine when a 
ship’s hull will need to be cleaned may not require the community to be 
delineated more finely than determining if the biofouling is, for example, 
lightly vs. heavily fouled. If the goal is to track or identify potentially 
invasive species, then the unsupervised classification can potentially be 
sufficient by yielding a bulk measurement of the biomass of organisms 
transported to new locations, whereas supervised classification methods 
are likely to provide more fruitful results if organisms of concern must be 
monitored. Our analysis comparing visual to automated classification 
found high agreement in several cases, especially when identifying 
unfouled regions. With additional classes added, agreement between 
analysis and the automated classification declined. Nevertheless, some 
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organisms (e.g., tunicates) were identified accurately by the automated 
approach. Thus, specific organism types with well-defined characteristics 
may be identified with high accuracy and distinguished among other 
fouling groups. Combining the digital, white-light imaging with imaging 
fluorometry to map distributions of chlorophyll and other photopigments 
(e.g., Eggert et al. 2006) may improve classification accuracy. 

Importantly, this work was done using an inexpensive, waterproof 
camera and standard classification routines available in many software 
packages. Thus, the technology required to implement this approach is 
highly developed. Combined, these elements represent a noteworthy step 
forward in efforts to quickly and easily classify biofouling without the 
intervention of human specialists. For example, the required images could 
be captured by a diver or a remotely operated vehicle (ROV). Both are 
routinely used for hull surveys, and using the automated software routine, 
the fouling on a ship’s hull could be quickly assessed. Finally, the 
supervised approach also permits the incorporation of new classes into the 
analysis scheme as they become identified, potentially increasing the 
number of classes, and, therefore, the taxonomic specificity of the analysis. 

A hand-held camera could also be used to collect data from hard-to-
reach “niche” areas, such as propellers, sea chests, and lateral thruster 
tunnels. These areas represent only a small portion of the total wetted 
surface of ships, on the order of 10% (Moser et al. 2016, 2017). Despite 
their disproportionally small area, given hydrodynamic conditions and 
operational profiles, niche areas can harbor elevated densities of organisms 
relative to more exposed regions along the hull (e.g., Coutts and Dodgshun 
2007; Davidson et al. 2009; Sylvester and MacIsaac 2010). Thus, niche areas 
can have outsized influence on the transfer of ANS. Therefore, it is 
important to develop methods that both reliably and accurately assess 
fouling in these areas (as well as the hull). 

As the IMO BWM Convention (IMO 2004) has entered into force in 
2017, the scientific and policy discussions are turning from ballast water to 
biofouling as a vector of ANS. Among all nations, however, only NZ has 
issued a biofouling standard, and it may be met by using best practices. 
Regardless, the IMO guidelines for biofouling on ships (IMO 2011) and 
recreational craft (IMO 2012) are in effect. More importantly, the efficacy 
of the 2011 guidelines is being reviewed (IMO 2018). This decision by the 
IMO elevates the issue of biofouling. Further, across administrations and 
regions, similar gaps and challenges exist – there is no standardized 
procedure for testing the efficacy of cleaning technologies, nor does a 
procedure exist for assessing ships’ compliance with any potential 
biofouling standards (Drake et al. 2017). Thus, there is a pressing need for 
a means to rapidly, reliably assess biofouling. 

Although commercial shipping represents a global and highly visible 
economic sector, it is typically a low-margin industry that experiences 
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frequent boom-and-bust cycles, limiting the resources that can be applied 
to the problem of biofouling detection. Likewise, many regulators operate 
with limited resources. Thus, an economic means to quantify fouling 
would be useful. This work demonstrates the potential to do so using an 
inexpensive underwater camera and widely available software. 
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