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Simultaneous Monte Carlo analysis of parton densities
and fragmentation functions

E. Moffat,1,* W. Melnitchouk ,2,† T. C. Rogers,1,2,‡ and N. Sato2,§

Jefferson Lab Angular Momentum (JAM) Collaboration

1Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
2Jefferson Lab, Newport News, Virginia 23606, USA

(Received 20 January 2021; accepted 3 May 2021; published 19 July 2021)

We perform a comprehensive new Monte Carlo analysis of high-energy lepton-lepton, lepton-hadron
and hadron-hadron scattering data to simultaneously determine parton distribution functions (PDFs) in the
proton and parton to hadron fragmentation functions (FFs). The analysis includes all available semi-
inclusive deep-inelastic scattering and single-inclusive eþe− annihilation data for pions, kaons and
unidentified charged hadrons, which allows the flavor dependence of the fragmentation functions to be
constrained. Employing a new multistep fitting strategy and more flexible parametrizations for both PDFs
and FFs, we assess the impact of different datasets on sea quark densities and confirm the previously
observed suppression of the strange quark distribution. The new fit, which we refer to as “JAM20-SIDIS,”
will allow for improved studies of universality of parton correlation functions, including transverse
momentum dependent (TMD) distributions, across a wide variety of process, and the matching of collinear
to TMD factorization descriptions.

DOI: 10.1103/PhysRevD.104.016015

I. INTRODUCTION

The standard parton correlation functions of QCD, such
as collinear parton distribution functions (PDFs) and
fragmentation functions (FFs), are being utilized in an
increasingly diverse range of phenomenological applica-
tions. Beyond their traditional role in predicting new high
energy phenomena, they also enter frequently into the study
of more complex and extended objects like transverse
momentum dependent (TMD) PDFs and FFs and gener-
alized parton distributions (GPDs), where they are needed
to understand the transition between different factorization
regions. Both TMDs and GPDs are central to the study of
the nonperturbative parton structure of hadrons, and under-
standing how they encapsulate their longitudinal and
transverse features will be critical to current experimental
programs at Jefferson Lab and elsewhere, as well as to the

future Electron-Ion Collider. These considerations provide
one of the main motivations for the study of collinear PDFs
and FFs in this paper.
The great value of PDFs and FFs extracted from global

QCD data analysis lies with their predictive power, or
“universality.” However, the translation from experimental
data to quark and gluon operator structures is a challenging
inverse problem. It is not possible to exactly constrain
parton correlations from data alone since this connection
involves nontrivial convolution integrals in a factorization
formalism (whose accuracy itself is difficult to quantify in
any given instance) and because of the limited quantity of
available data. The complexity of the inverse problem is
also magnified by the number of flavor degrees of freedom
involved.
Nevertheless, assessing and maximizing the universality

of collinear PDFs and FFs is crucial given the increasingly
broad scenarios where they are used. A major focus in the
current effort by the Jefferson Lab Angular Momentum
(JAM) Collaboration is therefore to both test and broaden
the predictive power of parton correlation functions. This
is achieved through a Bayesian inference procedure in
which PDFs and FFs are extracted simultaneously, and the
uncertainty quantification associated with particular para-
metrizations of parton correlation functions is given in
terms of a Bayesian posterior distribution. To test univer-
sality, the system of equations relating observables to
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parton correlation functions must of course exceed the
total number of correlation functions involved—a mini-
mum requirement is that the parton correlation functions
be overconstrained by the data in the fit. Of course,
realizing this in practical analyses requires that all parton
correlation functions be truly fitted simultaneously.
This is a major numerical and technological challenge,
and traditionally PDFs and FFs have thus been extracted
in separate procedures. However, simultaneous fits
can be achieved with the Bayesian Monte Carlo approach
and have been implemented recently in the JAM17 [1]
analysis of helicity PDFs, and in the JAM19 [2] analysis
of unpolarized PDFs and FFs. The same basic method-
ology was also applied in the three-dimensional
JAM3D20 [3] study, in the first combined analysis of
TMD observables that satisfies the overconstraining
criterion.
In this paper, we extend the previous work by perform-

ing the first simultaneous and overconstrained fit of
unpolarized PDFs and FFs that utilizes both charged
hadron production in semi-inclusive deep-inelastic scat-
tering (SIDIS) and single-inclusive eþe− annihilation
(SIA). This is partly motivated by a number of recent
observations associated with the study of TMD PDFs. For
example, significant tension has recently been found
between fits performed with standard sets of PDFs and
FFs and fixed order perturbative QCD calculations in
processes including SIDIS [4,5], Drell-Yan (DY) [6], and
SIA into wide-angle hadron pairs [7]. A number of
suggested solutions and explanations have been proposed
to account for this, including a possible need for power
suppressed corrections [8] at the moderate scales of most
SIDIS experiments. However, more tests of the limits of
applicability of standard collinear factorization are needed
before it is possible to draw firm conclusions. Given that
the majority of data used to constrain collinear correlation
functions (both PDFs and FFs) are either highly inclusive
or exist are at very high scales, or both, it is perhaps not
surprising that tension arises when these are evolved
downward and used to make predictions at lower scales
and for highly differential observables. Indeed, there have
been few tests that Q2-scaling, a hallmark of the collinear
perturbative regime, actually holds to a reasonable
approximation in SIDIS measurements at moderate Q2.
Our hope is that the new combined fit, which we refer to as
“JAM20-SIDIS,” will help to shed light on this and similar
issues in the future.
In Sec. II we begin the discussion by summarizing the

methodology used in our simultaneous Monte Carlo
analysis, including the parametrizations used for the
distributions and the multistep Bayesian inference algo-
rithm. Details of the datasets included in the fit are
summarized in Sec. III, while in Sec. IV we discuss the
criteria for universality and how these are met in this
analysis. A detailed discussion of the numerical results is

given in Sec. V, where we present the fitted PDFs and FFs,
as well as detailed comparisons of data to theory. Finally,
in Sec. VI we summarize our conclusions and discuss the
implications of our analysis. Some formulas for SIDIS
cross sections and structure functions are collected in the
Appendix.

II. THEORETICAL FRAMEWORK

In this section we give an overview of the theoretical
framework on which our analysis is based, including the
observables to be fitted, the parametrizations used for the
PDFs and FFs, details of the perturbative QCD setup, and
Bayesian inference strategy employed.

A. Observables and factorization

In this analysis we work in standard collinear factori-
zation [9–11], in which QCD cross sections are separated
into perturbatively calculable partonic hard factors con-
voluted with nonperturbative PDFs and/or FFs. We
perform calculations of all observables consistently to
order αs in the QCD coupling. Details of the basic
theoretical setups for the inclusive DIS, inclusive Drell-
Yan lepton-pair production and SIA reactions are pro-
vided in the literature [10,12] and will not be repeated
here. However, since SIDIS is a comparatively novel
addition to global QCD analyses, we review it in more
detail in the Appendix.
The processes considered in the present analysis can be

summarized as follows:

lþN→lþX; inclusiveDIS;

lþN→lþh�þX; semi-inclusiveDIS;

N1þN2→lþþl−þX; Drell-Yan lepton-pair production;

lþþl−→h�þX; single-inclusive annihilation;

where h� represent charged pions, kaons, or unidentified
hadrons, and the nucleon N (or N1;2) in the initial state can
be either a proton or a neutron (in practice, deuteron).
Within the framework of collinear factorization, the
cross sections for each of these processes can be written
schematically as convolutions of hard functions and the
nonperturbative parton distribution and fragmentation
functions,

dσDIS
dQ2dxBj

¼
X
i

HDIS
i ⊗ fi ð1Þ

dσSIDIS
dQ2dxBjdzh

¼
X
ij

HSIDIS
ij ⊗ fi ⊗ Dh

j ð2Þ

dσDY
dQ2dxF

¼
X
ij

HDY
ij ⊗ fi ⊗ fj ð3Þ

MOFFAT, MELNITCHOUK, ROGERS, and SATO PHYS. REV. D 104, 016015 (2021)

016015-2



dσSIA
dQ2dzh

¼
X
j

HSIA
j ⊗ Dh

j ð4Þ

where the symbols⊗ represent the convolution integrals in
longitudinal momentum fractions of the hard scattering
functions Hij and the PDFs fi and FFs Dh

j for parton
flavors i, j (see the Appendix). In each process, Q
represents the hard scale given by the photon virtuality,
Q ≫ hadron masses, which allows the observables to be
factorized into the short-distance perturbative and long-
distance nonperturbative parts.
For the inclusive DIS and SIDIS processes,

xBj ¼
Q2

2p · q
ð5Þ

is the usual Bjorken scaling variable, while for the DY
process the analogous scaling variables are defined as

x1 ¼
Q2

2p1 · q
; x2 ¼

Q2

2p2 · q
; ð6Þ

where p1 and p2 denote the incoming hadron momenta,
with the Feynman scaling variable given by

xF ¼ x1 − x2: ð7Þ

In the DY center of mass frame, and in the limit of
negligible hadron masses (≪ Q), the virtual photon rap-
idity can be written in terms of x1 and x2 as

y ¼ 1

2
ln
x1
x2

: ð8Þ

For the processes involving fragmentation to a hadron h in
the final state, we have

zh ¼
ph · p
q · p

½SIDIS� ð9Þ

for SIDIS in Eq. (2), while

zh ¼
2ph · q
Q2

½SIA� ð10Þ

for SIA in Eq. (4).

B. Perturbative QCD and numerical setups

For our numerical analysis we make use of
Mellin space techniques to enable fast evaluations of
observables needed for the Bayesian analysis. In particu-
lar, we solve the DGLAP evolution equations analytically
in Mellin space [13], which allows one to effectively
render high-dimensional momentum space convolutions
from process-specific factorization theorems, along with

the integrals in the DGLAP equations, in the form of
lower-dimensional inverse Mellin transforms. For exam-
ple, for the inclusive DIS observables one can write
schematically,

dσDIS
dQ2dxBj

¼
X
i

1

2πi

Z
dNx−NBj eHDIS

i ðN; μÞ

×US
ijðN; μ; μ0Þf̃jðN; μ0Þ; ð11Þ

where N here is the conjugate variable to xBj, f̃jðN; μ0Þ is
the Mellin moment of the PDF fjðx; μ0Þ, defined by

f̃jðN; μ0Þ ¼
Z

1

0

dxxN−1fjðx; μ0Þ; ð12Þ

and eHDIS
i ðN; μÞ is the corresponding moment of the

partonic DIS cross section. The analytic solution for
the DGLAP evolution is entirely encoded in the evolution
matrix US

i;j that evolves the moments f̃jðN; μ0Þ of the
PDFs from a given input scale μ0 to the relevant DIS hard
scale μ ¼ Q. A similar expression can be written for the
SIA cross section,

dσSIA
dQ2dzh

¼
X
ij

1

2πi

Z
dMz−Mh eHSIA

i ðM; μÞ

× UT
ijðM; μ; μ0ÞeDh

j ðM; μ0Þ; ð13Þ

where M is the Mellin conjugate variable for zh,eDh
j ðM; μ0Þ is the moment of the FF, and eHSIA

i is the
moment of the partonic SIA cross section. The super-
scripts S and T in the evolution matrix distinguish between
the spacelike and timelike evolution for the PDFs and FFs,
respectively, which are encoded in the corresponding
DGLAP splitting kernels.
The same procedure can be extended for the case of

SIDIS, which gives

dσSIDIS
dQ2dxBjdzh

¼
X
ijkl

1

ð2πiÞ2
Z

dNx−NBj

×
Z

dMz−Mh eHSIDIS
ik ðN;M; μÞ

×US
ijðN; μ; μ0Þf̃jðμ0ÞUT

klðM; μ; μ0Þ
× D̃h

j ðM; μ0Þ: ð14Þ

For the case of the Drell-Yan process, a special treatment is
required since the Mellin moments for the partonic cross
sections are not known. For this we employ the strategy
developed by Stratmann and Vogelsang [14], where by the
Mellin moments are numerically precalculated and used as
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lookup tables during the analysis. The resulting expression
can be written schematically as

dσDY
dQ2dxF

¼
X
ijkl

1

ð2πiÞ2
Z

dN
Z

dM eHDY
ik ðN;M; μÞ

×US
ijðN; μ; μ0Þf̃jðμ0ÞUS

klðM; μ; μ0Þf̃lðμ0Þ;
ð15Þ

where the relevant inverse Mellin factors x−N1 and x−M2
arising from the scaling variables x1 and x2 for the incident
nucleons N1 and N2, respectively, in Eq. (3) are integrated
numerically with the hard scattering cross section and
contained inside H̃DY

ik ðN;M; μÞ.
The analytic solutions for the evolution matrices are

computed at next-to-leading logarithmic accuracy using
splitting kernels up to Oðα2sÞ and the truncated solution for
the single evolution operators (see Ref. [13] for details). We
employ the zero-mass variable flavor scheme for solving
the DGLAP evolution equations, setting the input scale for
the PDFs and FFs at μ0 ¼ mc. The numerical values for the
mass thresholds are taken from the PDG values in the MS
scheme [15]: mc ¼ 1.28 GeV and mb ¼ 4.18 GeV. The
strong coupling is evolved numerically using the QCD beta
function up to Oðα2sÞ, using the boundary condition
αsðMZÞ ¼ 0.118 at the Z boson mass, MZ ¼ 91.18 GeV.
Finally, all the process specific hard coefficients are
computed at fixed next-to-leading order in pQCD, which
are available in the literature [14,16–18].

C. Parametrization of nonperturbative functions

For the nonperturbative parton distribution and fragmen-
tation functions we use standard parametrizations that have
been utilized in the literature. Namely, for the dependence
on the parton momentum fraction x of the PDF fðxÞ we use
the template function,

fðx;μ0Þ→Tðx;aÞ¼M
xαð1−xÞβð1þγ

ffiffiffi
x

p þδxÞR
1
0 dxx

αþ1ð1−xÞβð1þγ
ffiffiffi
x

p þδxÞ ;

ð16Þ

where a ¼ fM; α; β; γ; δg is a vector containing the shape
parameters (α, β, γ, and δ) and a normalization coefficient
(M) to be fitted. The integral in the denominator ensures
that the value of the normalization coefficientM is equal to
the second moment (x-weighted integral) of the function
Tðx; aÞ. For fitting the PDFs, we assume isospin symmetry
to relate the PDFs in the neutron, fi=nðxÞ, to those in the
proton, fi=pðxÞ≡ fiðxÞ, switching the u ↔ d and p ↔ n
labels for the light quark flavors, and taking the PDFs for
other flavors equal for the proton and neutron.
In practice, we parametrize the valence u and d quark

distributions, uv ≡ fu − fū and dv ≡ fd − fd̄, directly

using the template function [Eq. (16)]. The gluon distribu-
tion, g≡ fg, is also directly parametrized per Eq. (16). For
the sea quark and antiquark distributions, we use five
functions parametrized as in Eq. (16). These are a flavor
symmetric sea function (S) that dominates at very low x and
flavor specific functions [q0ðq̄0Þ] for the s, ū, d̄, and s̄ that
take into account the possible nonperturbative origin of the
sea. The distributions for s, ū, d̄, and s̄ are constructed from
these according to: qðq̄Þ≡ fqðq̄Þ ¼ Sþ q0ðq̄0Þ. Note that s
and s̄ are parametrized separately because their contributions
to the Kþ and K− SIDIS cross sections differ. We do not fit
the charm and bottom PDFs, and their contributions are
generated purely from the DGLAP evolution. In total there
are eight parametrized PDF functions being fitted. For the
valence quark PDFs uv and dv and the nonperturbative sea
components ū0 and d̄0, we use the four shape parameters as
in Eq. (16); for all other distributions we set the γ and δ
parameters to zero. This gives 24 free shape parameters and
8 free normalization parameters. The number of free
parameters is further reduced by valence number sum rules,
which constrain the normalization parametersM for the uv,
dv, and s − s̄ distributions, whose lowest moments are
required to be 2, 1, and zero, respectively. The normalization
for the gluon PDF is determined using the momentum sum
rule. With these constraints, there is a total of 28 free
parameters for the PDFs.
For the z dependence of FFs, the functional form follows

a similar template,

Dðz;μ0Þ→ Tðz;aÞ ¼M
zαð1− zÞβð1þ γ

ffiffiffi
z

p þ δzÞR
1
0 dzz

αþ1ð1− zÞβð1þ γ
ffiffiffi
z

p þ δzÞ ;

ð17Þ

where again the integral in the denominator ensures that
the coefficient M corresponds to the second moment
(z-weighted integral) of the function. In addition to the
fragmentation to pions and kaons studied in earlier JAM
analyses of SIA and SIDIS data [2,19], here we consider
also the inclusive production of unidentified charged
hadrons, h�. Accounting for unidentified hadrons can be
implemented in two ways. First, the hadron FFs can be fit
independently from those for pions and kaons, as preferred
by the NNPDF Collaboration [20]. Alternatively, one can
take advantage of existing knowledge of specified hadron
FFs and add a fitted residual correction to their sum. Such
an approach was adopted by de Florian et al. (DSS) [21],
for example, in which a residual correction was fitted to the
sum of previously obtained pion, kaon, and proton frag-
mentation functions.
In our analysis we follow the latter approach, but include

only the pion and kaon FFs, so that the residual term Dresþ
i

parametrizes the difference between the total hadron FF
Dhþ

i and the Dπþ
i and DKþ

i functions,
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Dhþ
i ¼ Dπþ

i þDKþ
i þDresþ

i : ð18Þ

To reduce the total number of residual FFs being fit, we
assume SU(3) flavor symmetry for light quarks and
antiquarks,

Dresþ
q ¼ Dresþ

u ¼ Dresþ
d ¼ Dresþ

s ; ð19aÞ

Dresþ
q̄ ¼ Dresþ

ū ¼ Dresþ
d̄

¼ Dresþ
s̄ ; ð19bÞ

where Dresþ
q and Dresþ

q̄ are parametrized per the template
[Eq. (17)]. To allow for differentiation between the residual
FFs for light quarks and antiquarks, we leave M and β
for Dresþ

q̄ as free parameters but fix α, γ, and δ to be the

same as for Dresþ
q . This achieves a similar constraint

on the parameters as the condition used by DSS [21],
2Dresþ

q̄ ¼ ð1 − zÞβ0Dresþ
qþq̄.

For the pion FFs, Dπþ
i , we reduce the number of fitted

functions by grouping the light quarks into “favored”
(valence) and “unfavored” (nonvalence) flavors,

Dπþ
fav ¼ Dπþ

u ¼ Dπþ
d̄
; ð20aÞ

Dπþ
unf ¼ Dπþ

d ¼ Dπþ
s ¼ Dπþ

ū ¼ Dπþ
s̄ ; ð20bÞ

where Dπþ
fav and Dπþ

unf are parametrized as in Eq. (17). For
the parameters of the kaon FFs, DKþ

i , we equate the
“unfavored” flavors,

DKþ
unf ¼ Dπþ

d ¼ Dπþ
s ¼ Dπþ

ū ¼ Dπþ
d̄
; ð21Þ

but leave the favored FFs DKþ
u and DKþ

s̄ independent. Here
DKþ

unf , D
Kþ
u , and DKþ

s̄ are parametrized per Eq. (17). For the
heavier flavors, we assume the charm and bottom quark and
antiquark FFs to be equivalent,Dhþ

c ¼ Dhþ
c̄ andDhþ

b ¼ Dhþ
b̄

for h ¼ π; K; res, with Dhþ
c and Dhþ

b parametrized per
Eq. (17). Finally, the gluon FFs Dhþ

g for h ¼ π; K; res
are also parametrized according to Eq. (17). We use charge
conjugation symmetry to relate FFs for opposite charges by

Dhþ
q ¼ Dh−

q̄ ; ð22Þ

where h ¼ π; K; res. This results in five fitted functions for
pions and residual hadrons, and six for kaons.
At this point, there are 17 shape parameters and 5

normalization parameters for residual hadrons, 20 shape
parameters, and 5 normalization parameters for pions, and
24 shape parameters and 6 normalization parameters for
kaons. The number of shape parameters is reduced further
because throughout the fitting procedure, the parameters γ
and δ for the gluon, charm, and bottom FFs are fixed at
zero. In the end there are 16 free parameters to be fitted for
residual charged hadron FFs, 19 free FF pion parameters,

and 24 free parameters for the kaon FFs. Together with the
28 PDF parameters, we have a total of 87 free parameters
for the fitted functions. In addition, there are also 42 free
parameters associated with normalization of various data
sets, making for a total of 129 free parameters to be fitted in
the analysis.

D. Bayesian inference

Our methodology for extracting nonperturbative PDFs
and FFs is based on the general premise of Bayesian
inference. Namely, we use Bayes’ theorem to define a
multivariate probability distribution P for the shape param-
eters characterizing the PDFs and FFs (the posterior) at a
given input scale μ0,

PðajdataÞ ∼ Lða; dataÞπðaÞ; ð23Þ

where L is a standard Gaussian likelihood function,

Lða; dataÞ ¼ exp

�
−
1

2
χ2ða; dataÞ

�
; ð24Þ

with the χ2 function defined by

χ2ðaÞ ¼
X
i;e

�
di;e −

P
kr

k
eβ

k
i;e − Ti;eðaÞ=Ne

αi;e

�
2

þ
X
k

ðrkeÞ2 þ
�
1 − Ne

δNe

�
2

: ð25Þ

Here, di;e is the value of the ith data point for the
experimental dataset e, with Ti;e the theoretical prediction
for the data point; αi;e is the uncorrelated systematic and
statistical uncertainty for each data point added in quad-
rature; βki;e is the kth source of point-to-point correlated
systematic uncertainties for the ith bin of dataset e, with rke
the related weight; and Ne and δNe are the normalization
and normalization uncertainty for each data set, respec-
tively. In Eq. (23), πðaÞ is the prior distribution for the set
of parameters a, which is used as input for a given fit to
the data.
In principle, given the Bayesian posterior distribution,

one can estimate confidence regions for a generic observ-
able O (such as a PDF or a function of PDFs or FFs) by
integrating over an d-dimensional parameter space,

E½O� ¼
Z

ddaPðajdataÞOðaÞ; ð26aÞ

V½O� ¼
Z

ddaPðajdataÞðOðaÞ − E½O�Þ2; ð26bÞ

where E and Vare the expectation value and variance of the
observableO, respectively. Due to the significant numerical
expense of evaluating the likelihood function, the explicit
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usage of Eqs. (26) is often not practical. Instead, a more
efficient option is to build Monte Carlo parameter samples
fak; k ¼ 1;…; ng, which contain all parameters, including
the Ne from Eq. (25), that are faithfully distributed
according to the posterior distribution. These can in turn
be used to evaluate the integrals in Eqs. (26) as Monte Carlo
sums,

E½O� ¼ 1

n

Xn
k¼1

OðakÞ; ð27aÞ

V½O� ¼ 1

n

Xn
k¼1

ðOðakÞ − E½O�Þ2: ð27bÞ

Our Monte Carlo sampling strategy is based on data
resampling methodology, whereby multiple maximum
likelihood optimizations are carried out. Each optimization
consists of taking a random point in parameter space and
fitting the parameters to data that have been distorted away
from the central values by Gaussian shifts within the quoted
uncertainties. To build the Monte Carlo samples, we use the
multistep strategy developed in Ref. [2], where the PDF and
FF parameters are preoptimized to minimize evaluating the
likelihood in parameter regions that are strongly disfavored.
To that end we start by first considering PDF and FF
parameters separately using flat priors, with the resulting
samples from each type of hadron structure combined at a
later stage to build new prior samples for the final runs. The
workflow is illustrated in Fig. 1, where each step is
represented as vertical arrows that accumulate additional
experimental data from the previous step, with the posterior
samples at each step becoming the priors for the subsequent
step. This strategy allows the samples to become more

optimized and avoids unnecessary likelihood evaluations in
regions of parameters space by disfavoring those regions in
earlier stages of the multistep chain.

III. DATA SETS

The data sets used in the present analysis include the
primary electromagnetic processes that traditionally have
been used in global QCD analyses, namely, inclusive DIS,
Drell-Yan lepton-pair production (which constrain PDFs),
SIA (which constrains FFs), and SIDIS (which constrains
both PDFs and FFs). The inclusive DIS data are measure-
ments of the F2ðxBj; Q2Þ structure function performed by
the BCDMS [22,23] and New Muon Collaborations
[24,25] at CERN, and from experiments at SLAC [26],
as well as from reduced electron and positron cross
sections from the H1 and ZEUS Collaborations [27] at
DESY. These include both proton [22,24,26] and deuteron
[23,25,26] targets, and with both neutral and charged
current probes [27]. For the kinematics we implement
cuts of W2 > 10 GeV2 and Q2 > m2

c, where W2 ¼ M2þ
Q2ð1 − xBjÞ=xBj, in order to select DIS data that can be
fitted within leading power factorization.
For Drell-Yan lepton-pair production data we use differ-

ential cross section measurements d2σDY=dQdxF by the
E866/NuSea Collaboration [28–30] at Fermilab, which
include proton scattering from proton and deuteron targets.
We include data in the range Q2 > 36 GeV2. Excluding
lower Q2 data is recommended by Ref. [31], which
demonstrated that inclusion of the lower Q2 data results
in deteriorated prediction quality with no reduction in
uncertainty when compared with fits to DIS data alone.
All SIA measurements are of the normalized differential

cross sections ðdσSIA=dzhÞ=σtot for the reaction
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FIG. 1. Schematic illustration of the multistep workflow employed in our simultaneous Monte Carlo analysis. Each box represents a
collection of Monte Carlo samples associated with a specific nonperturbative hadronic structure (PDFs, FFs). The vertical arrows
indicate the inclusion of additional datasets from which new optimized Monte Carlo samples (posteriors) are generated as input (priors)
for the next step.
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eþe− → ðπ�; K�; h�ÞX. The data are from experiments
performed by the TASSO [32–34] and ARGUS [35]
Collaborations at DESY, by the TPC [36–39], HRS [40],
SLD [41] and BABAR [42] Collaborations at SLAC,
by the OPAL [43,44], ALEPH [45] and DELPHI [46]
Collaborations at CERN, and by the TOPAZ [47] and
Belle [48,49] Collaborations at KEK. As shown in Fig. 2,
the SIA data cover the large-Q2 region where a leading
power description in terms of FFs should be accurate.
Approximately half of the SIA data points have Q ≈MZ,
while the Belle and BABAR B factories have lower
Q ≈ 10.5 GeV. To ensure applicability of the leading
power formalism, the SIA data in our fits are restricted
to the range 0.2 < zh < 0.9.
Identification of heavy quark flavors for some of the SIA

datasets is achieved through measurement of the total
energy and momentum in secondary vertices. The flavor
tagged cross sections for a specific flavor q ¼ c or b are
particularly sensitive to the Dh

q, Dh
q̄ and Dh

g fragmentation
functions into the observed hadron h. In general, however,
care needs to be taken with the precise method for
separating primary quark flavors, and there are ongoing
discussions regarding the optimal approach to this. For
more in-depth discussion see, for example, Ref. [19].
Finally, the critical addition in this work compared with

the previous JAM19 analysis [2] is the inclusion of
unidentified charged hadron data, along with charged pions
and kaons, in the SIDIS off deuterium targets from the
COMPASS Collaboration [50,51] at CERN. Since the
SIDIS data dσh

�
SIDIS=dQ

2dxBjdzh are differential in xBj
and zh, they combine information on both PDFs and
FFs, which appear in the description of SIA, Drell-Yan,
and DIS data. Furthermore, as illustrated in Fig. 2, the
SIDIS data have significant overlap in xBj and zh with
the xBj and xF range of inclusive DIS and Drell-Yan data,
respectively, and the zh range of SIA data, so that the
combined analysis constitutes a genuine test of their
universality. For the COMPASS SIDIS data we use the
same kinematic cuts onW2 andQ2 as for inclusive DIS and

restrict the fragmentation variable to 0.2 < zh < 0.8 in
order to exclude data from the target fragmentation region
and avoid large-z threshold corrections.

IV. ASSESSING UNIVERSALITY

Before proceeding to the results of our numerical
analysis, we briefly discuss the criteria for universality
of the PDFs and FFs and how these are implemented in our
analysis. Extracting parton correlation functions, and using
the extractions to test models of parton structure, is a
nontrivial inverse problem, the detailed examination of
which is beyond the scope of the present paper. However, a
claim that the success of a fit is a measure of the predictive
power of the PDFs and FFs requires a number of basic
minimal conditions to be met:

1. The system of unknown correlation functions must
be overconstrained, by which we mean that the
constraints on unknown correlations imposed by
data (or other theoretical constraints such as sum
rules) must be greater than the total number of
functions involved.

2. Each unknown correlation function must appear at
least twice within the set of factorization formulas
relating the correlation functions to physical ob-
servables.

3. There must be reasonable kinematical overlap be-
tween the observables so that correlation functions
can be compared within similar ranges of parton
momentum fractions.

Using isospin invariance to relate the PDFs in the proton
to those in the neutron, we have seven independent PDFs:
fu, fd, fs, fū, fd̄, fs̄ and fg, with PDFs for heavy flavors
generated perturbatively. For the FFs, there are five
functions for πþ production: Dπþ

u , Dπþ
ū , Dπþ

c , Dπþ
b and

Dπþ
g , assuming that for equal u and d quark masses we can

equate Dπþ
d̄

¼ Dπþ
u . Charge symmetry allows all the FFs

for π− production to be related to those for πþ production.
For Kþ production, there are six independent FFs: DKþ

u ,

FIG. 2. Kinematic coverage of data used in this analysis, withQ2 versus the Bjorken scaling variable xBj for inclusive DIS [22–27] and
SIDIS data [50,51] (left panel), fragmentation variable z for SIDIS and SIA data [32–43,45–49] (central panel), and momentum fractions
x1; x2; xF for Drell-Yan data [28–30] (right panel).
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DKþ
s̄ , DKþ

ū , DKþ
c , DKþ

b and DKþ
g , where we differentiate

between the u and s̄ functions. Again, using charge
symmetry the FFs for K− can be obtained from these
six Kþ FFs. Finally, for the unidentified charged hadrons
h� or residual FFs, we identify five independent functions:
Dresþ

u , Dresþ
ū , Dresþ

c , Dresþ
b and Dresþ

g . This makes then a total
of 23 functions to be determined.
The quark and gluon PDFs are constrained by their

appearance in several sum rules; in particular, the number
sum rules, Z

1

0

dxðfqðxÞ − fq̄ðxÞÞ ¼ nq; ð28Þ

where nu ¼ 2, nd ¼ 1 and ns ¼ 0, and the momentum
sum rule,

X
i¼q;q̄;g

Z
1

0

dxxfiðxÞ ¼ 1: ð29Þ

Note that in Sec. II C these constraints were specifically
used to fix the values of the normalization parameters
for several fitted functions. However, for the purpose of
assessing universality, they are simply counted as addi-
tional independent equations which include and thus
constrain the PDFs.
The data sets discussed in Sec. III also constrain the light

quark and gluon PDFs since they appear in expressions for
multiple independent observables. Counting these and also
the four sum rules (28) and (29),

fiðxÞ →
i≠c;b

8>>><
>>>:

6 DIS

2 Drell-Yan

6 SIDIS

4 sum rules

; ð30Þ

there is a total of 18 relations between the light quark PDFs.
The heavy quarks appear in an even greater number of
observables. The light quark fragmentation functions
appear in at least one SIA observable and, because of
charge conjugation invariance, in two SIDIS observables,

Dπþ
i ðzÞ →

i≠c;b;g
�
1 SIA

2 SIDIS
; ð31Þ

and similarly for the kaon and charged hadron fragmenta-
tion functions.
For a robust stress-test of universality, there should be

reasonable overlap of the ranges in parton momentum
fraction for both the PDFs and the FFs. An indication for
how well this is achieved in the current fit can be be gleaned
from the kinematical coverage plots shown in Fig. 2. To
lowest order in αs, the kinematical variables xBj, x1, x2 and
zh approximate the parton momentum fractions x and z,

respectively, while QCD evolution relates all values of Q2.
Figure 2 confirms that PDFs and FFs are both constrained
by multiple processes in overlapping regions of momentum
fractions.
In summary, our analysis does indeed fulfill the basic

criterion for qualifying as a test of universality and
retaining predictive power for the PDFs and FFs more
generally. Note, however, that the momentum sum rule for
FFs has not been imposed in the analysis. Instead, this will
be used as a consistency check for the final fit in Sec. V.

V. NUMERICAL ANALYSIS

In this section we present the results of our simultaneous
Monte Carlo analysis of PDFs and FFs. We begin with a
survey of the fitted cross sections for the various global
datasets used in this study, focusing especially on the
quality of agreement with the SIDIS and SIA data on π�

and K�, as well as unidentified h� production. We then
present our final fitted PDFs and FFs, and discuss the vital
role played by the SIDIS and SIA datasets in particular in
constraining the strange quark distribution in the proton.

A. Data and theory agreement

To assess the agreement of the fitted results with the
various datasets, in Fig. 3 we show the reduced χ2 for each
individual experiment, which is defined by

χ2red ¼
1

N

X
i;e

1

α2i;e

�
di;e − E

�X
k

rkeβki;e þ Ti;e=Ne

��
2

:

ð32Þ

Here, the expectation value E½…�, as defined in Eq. (27a),
represents the mean theory, including optimized multipli-
cative and additive corrections to match the data, with N
the total number of data points. In Fig. 3 we show the mean
and standard deviation of the Monte Carlo residuals for
each experiment e, where the residual per data point is
defined as

residualðe; iÞ ¼ 1

αi;e

�
di;e − E

�X
k

rkeβki;e þ Ti;e=Ne

��
:

ð33Þ

For the inclusive DIS, Drell-Yan and SIDIS datasets we
find excellent overall agreement between data and theory,
with χ2red values close to 1. The χ

2
red for the SIA datasets are

slightly higher, but nonetheless the overall fit is very good,
giving a total reduced χ2red ¼ 1.26 for almost 5000 data
points. The values of χ2red for each type of dataset and for
each specific hadron in the final state are summarized in
Table I, along with the number of data points for each
dataset.
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FIG. 3. Reduced χ2red values for each DIS (red), DY (green), SIDIS (orange) and SIA (blue) experiment considered in this analysis (left
column), along with the corresponding mean and standard deviation of the residuals for each experiment, E (right column).
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The residuals profile for the DIS, Drell-Yan and SIDIS
datasets is well centered around zero, with variances ∼1,
indicating an average Gaussian behavior of their associated
likelihood function. The variance for the SIDIS h− data
from COMPASS, however, is found to be up to ≈50%
below unity, suggesting a deviation from a Gaussian
likelihood. This may be due to the fact that these data
are dominated by systematic uncertainties, which is also
reflected by the relatively small reduced χ2red values,
especially for the COMPASS h− data relative to the rest
of DIS and SIDIS datasets.
A more detailed comparison with the COMPASS SIDIS

is made in Figs. 4–6, where we show the zh dependence of
the π�, K� and h� multiplicities, respectively, which are
defined as ratios of SIDIS to inclusive DIS cross sections at
the same xBj and Q2,

dMh

dzh
¼ dσhSIDIS=dQ

2dxBjdzh
dσDIS=dQ2dxBj

: ð34Þ

The agreement between theory and the experimental zh
spectrum is quite remarkable, given that it spans some 2
orders of magnitude, which suggests that at these kinematics
a leading power perturbative QCD factorization at next-to-
leading order provides sufficient accuracy to describe the
data. Interestingly, the differences between the multiplicities
for positively and negatively chargedhadron species increase
with xBj, especially for kaons, and in the valence region these
can differ by an order of magnitude for low values of Q2.
Such differences can enhance our ability to extract flavor
dependent effects in nonperturbative PDFs and parton to
kaon FFs from the data. The new dataset included for the first
time in the present JAM analysis, namely the unidentified
charged hadron data shown in Fig. 6, are also well described
by our nonperturbative ansatz for the corresponding FFs. In
contrast to the excellent agreementwith the zh dependence of
the data in Figs. 4–6, we note that analysis of the same data
differential in the hadron transverse momentum using
existing PDFs and FFs within TMD factorization results
in poor agreement between predictions and data [4,5],
indicating that further work is needed to understand the
SIDIS transverse momentum spectra.
For the SIA data sets, there is a somewhat wider

spread in the data versus theory comparisons, as seen in
Figs. 7–9 for the π�, K� and unidentified charged hadron
h� final states, respectively. Generally, the π� data have the
best agreement among the SIA datasets, with a reduced
χ2red ¼ 1.09, followed by the hadron data with χ2red ¼ 1.15,
and lastly the kaon data, which have an overall reduced

FIG. 4. Comparison of the multiplicities dMh=dzh for h ¼ πþ (dashed lines) and π− (dotted lines) production with the COMPASS data
[50,51] in various bins of xBj and y (offset by a factor 2i).

TABLE I. Reduced χ2red values for each type of dataset (DIS,
Drell-Yan, SIDIS, SIA) considered in this analysis, together with
the number of data points Ndat for each dataset.

Reaction χ2red Ndat

DIS 1.29 2680
DY 1.52 250
SIDIS π� 1.39 498

K� 1.38 494
h� 0.85 498

SIA π� 1.09 231
K� 1.37 213
h� 1.15 120

Total 1.26 4984
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χ2red ¼ 1.37. For about 3=4 of the ≈40 SIA datasets, we find

very good agreement with the global fit, with χ2red ≈ 1 or

below. For the remaining datasets that have larger χ2red
values, to better understand the reasons for some of the
tensions between data and theorywe discuss in the following

some individual cases ranked by the reduced χ2red values.
Starting with the datasets that have the largest χ2red values,

namely, χ2red ≳ 3, we identify the OPAL (π� and c → K�),
TPC (K�), SLD (π� and c → K�), DELPHI (K�), and
TASSO (π� and h� at 35 GeV) datasets. For the inclusive

OPAL (π�) data, we observe in Fig. 7 that for zh < 0.5 the
data are indeed in tension with the corresponding inclusive
ALEPH and SLD results, and the overall trend of the data/
theory ratio suggests a possible normalization issue with
this dataset. This can also be said for the DELPHI (K�)
which appears to have some tension with the corresponding
inclusive OPAL and ALEPH results. Similarly, from Fig. 8
we find that the TPC (K�) spectrum lies below the theory,
suggesting again a normalization problem with these data.
The situation for the TASSO (π�) data is less clear, as only
the Q ¼ 14 GeV dataset seems to give a bad fit, while data

FIG. 5. As in Fig. 4, but for K� COMPASS SIDIS data [50,51].

FIG. 6. As in Fig. 4, but for unidentified hadron h� COMPASS SIDIS data [50,51].
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at other energies can be described fairly well. This again
hints at a problem with the overall normalization for this
dataset. The same behavior appears also in the TASSO (h�)
data in Fig. 9, where both the Q ¼ 35 and 45 GeV datasets

are above the theoretical cross sections. The case of
SLD and OPAL (c → K�) data in Fig. 8 shows a clear
overestimation of the zh spectra. While one can argue that
this problem could be a reflection of the need for a more

FIG. 7. Data to theory ratios for SIA π� production cross sections versus zh, with the bands indicating the uncertainty on the
fitted result.

FIG. 8. As in Fig. 7, but for SIA K� production.
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sophisticated heavy quark treatment in our theory, the
description of b-tagged data from SLD, DELPHI and
OPAL is relatively good, so that an explanation in terms
of a normalization uncertainty in the SLD and OPAL
(c → K�) data may be more relevant.
For SIA datasets that have smaller, but still large, χ2red

values, 2≲ χ2red ≲ 3, we identify the b-tagged TPC
(b → π�), OPAL (b→π�), and TASSO (h� at 44 GeV).
For the case of the TPC (b → π�) data, we see from Fig. 7
that for the largest zh bin the theory overestimates the data.
On the other hand, good agreement is found for the SLD
(b → π�) data at the same kinematics. It is possible that at
the smallerQ values of TPC relative to SLD, the range in zh
where leading power factorization is applicable is narrower,
in particular for the b-tagged data. The zh dependence of
the OPAL (b → π�) data appear to be clearly different from
the theory, even within the large uncertainties. We note here
that the OPAL data are presented as truncated moments as a
function of the lower limit of the integration, zmin

h , and the
inclusion of the very high zh bins may be problematic for
the validity of factorization theorems at zh → 1. Lastly,
as with TASSO (h� at 35 GeV), the somewhat large χ2red
values for the 44 GeV data is likely attributable to a
problem with overall normalization.
For datasets that have χ2red ≲ 2, we consider the agree-

ment to be generally acceptable. Indeed, the vast majority
of datasets in this category have χ2red ≈ 1 or below. These
include all of the recent high-statistics B-factory data from
BABAR (π�, K�) and Belle (π�, K�), most of the TASSO
(π�, K�), TPC (π�, c → π�) and SLD (h�, b → π�,
b → h�) datasets, all of the ALEPH (π�, K�, h�) and
most of the DELPHI (π�, K�, b → K�, h�, b → h�) data,
along with the older ARGUS (K�), TOPAZ (π�, K�) and
OPAL (K�, h�, c → h�, b → h�) data. Slightly higher, but

still reasonable, χ2red values are obtained for the ARGUS
(π�), TPC (h�), DELPHI (b → π�), and SLD (K�,
c → π�, c → h�) datasets.
Finally, we note that most of the large χ2red values found

in this analysis were absent in the previous JAM
Monte Carlo analysis of fragmentation functions [19].
The main reason is the restriction of the SIA datasets
here to the range 0.2 < zh < 0.8, chosen to coincide with
the range over which the SIDIS data in this work are able
to be described within collinear factorization. For the
LEP data in particular there are many data points at
zh < 0.2 which can be well fitted within the current
framework, and which would reduce the overall χ2red. A
careful point by point comparison of the individual χ2red
values for the various datasets indeed confirms that
similar discrepancies also occurred in Ref. [19].
However, for consistency in our joint analysis of PDFs
and FFs, we restrict the kinematic range to the region
where both SIA and SIDIS can be simultaneously
described. The same choice for the zh range was made
in the recent JAM19 analysis, which required SIDIS data
to be restricted to zh ≳ 0.2 to ensure separation of the
target and current fragmentation regions.

B. Parton distributions and fragmentation functions

The proton PDFs from our simultaneous fit are displayed
in Fig. 10 at a scale μ2 ¼ 10 GeV2, where we focus on the
kinematic region of parton momentum fractions x≳ 0.01
that is constrained by the SIDIS data. For comparison,
we contrast our results with other next-to-leading order
PDF parametrizations, namely, from the CJ15 [52] and
NNPDF3.1 [53] global analyses. Compared with the other
fits, our valence u and d quark distributions have slightly
larger magnitude in the intermediate-x region, x ∼ 0.1,

FIG. 9. As in Fig. 7, but for SIA unidentified charged hadron h� production.
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with a compensating stronger suppression at small x
needed to ensure that the valence number sum rules are
respected. The ratio d=u is quite compatible with the
results from the other groups, on the other hand, but has a
significantly larger uncertainty at large x compared with
the CJ15 result, reflecting the Monte Carlo nature of our
analysis.
The intermediate-x enhancement in the valence PDFs in

our fit is correlated with the slightly smaller d̄þ ū light
antiquark sea compared with the CJ15 and NNPDF3.1
parametrizations. This in turn is correlated with the
behavior of the strange quark sea, as seen in the ratio,

Rs ¼
sþ s̄

d̄þ ū
ð35Þ

of the strange to nonstrange sea quark PDFs. In Fig. 10 this
ratio is generally larger in our analysis than for the other
parametrizations, with a somewhat bigger uncertainty.
This is understood from the fact that in the CJ15 fit Rs
is fixed to be 0.4 at the input scale, with deviations from the
constant value arising only from DGLAP evolution. For the
NNPDF3.1 fit the uncertainties are smaller because of their
inclusion of the neutrino DIS data, which we do not include
in our analysis because of unknown nuclear corrections in
neutrino scattering [54–56]. Our light antiquark asymmetry
d̄ − ū is also compatible with the other groups, but again
with a larger uncertainty, which may be related to the
absence of collider W and lepton asymmetry data in our
fit. Finally, for the gluon distribution, the magnitude and
uncertainties are very similar across all the analyses, even
though our fit does not include jet production data from
hadron colliders. This reflects the fact that the HERA DIS
data, which are included here, provide strong constraints on
the shape of the gluon PDF via scaling violations.
For the parton to hadron FFs, we show in Fig. 11 the z

dependence of the FFs at a scale μ2 ¼ 100 GeV2 for the

positively charged πþ, Kþ and unidentified hadrons hþ,
as well as for the residual hadrons δhþ, defined as the
difference between hþ and the sum of πþ and Kþ (so that
the total is given by hþ ¼ πþ þ Kþ þ δhþ). For most of
the flavors we find that the quark → πþ fragmentation
dominates, as expected from the pion being the lightest
hadron in the QCD spectrum. Exceptions to this are for
s̄ → Kþ and c → Kþ at intermediate z values and for b
quark fragmentation into residual hadrons δhþ.
For gluon fragmentation, pion production dominates for z

up to ∼0.5–0.6, above which kaon fragmentation becomes
as sizeable as the pion. This is consistent with the findings of
previous FF analyses [19,57], which observed that the
production of heavier particles such as kaons requires larger
momentum fractions from the fragmenting gluon compared
to the production of lighter particles.
The production of hadrons heavier than kaons, as indi-

cated in Fig. 11 by the residual hadrons δhþ, can be sizable
and comparable to that of kaons, especially for the d and s
quarks and at large values of z. The relatively large d → δhþ
FF can be understood in terms of the fragmentation into
protons. Note that we have imposed flavor symmetry for
the residual hadron fragmentation, so that Dδhþ

d ¼ Dδhþ
s .

In principle, the presence of hyperons such as Σþ should
brake this relation, but we leave analysis of such effects for
future work. As the case for the g → Kþ, the fragmentation
of gluons into heavier particles peaks at large z, where larger
momentum fractions from the fragmenting gluons are
needed for the production of heavier particles.
For production of hadrons initiated by heavy quarks, we

find similar fragmentation of charm quarks into pions and
kaons, but a rather different pattern for the fragmentation of
bottom quarks. Some of this difference can be explained by
the flavor-changing properties of u-type quarks decaying
into d-type quarks. While the charm quark can decay into
strange quarks and hence enhance Kþ production, the same
does not occur for bottom quarks, which suppresses kaon

FIG. 10. Proton PDFs from the present JAM20-SIDIS analysis (red bands) versus x at a scale μ ¼ 10 GeV2, compared with the
CJ15 [52] (blue bands) and NNPDF3.1 [53] (green bands) parametrizations. The bands shown represent the mean �1σ.
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production relative to pion production due to the mass
difference. Interestingly, the production of other species of
charged hadrons is much larger for b quarks than for c
quarks, which may be understood from the greater phase
space available for b quarks to decay into heavier hadrons
to which charm quarks cannot transition.
In Fig. 12 we present truncated moments,

hzihi ¼
Z

1

zmin

dzzDh
i ðzÞ; ð36Þ

for each flavor i and final state hadron h, where we take
the lower limits on the z integration zmin ¼ 0.2 to restrict
the moment to the region of SIDIS kinematics. The
truncated moment indicate how energetic is the produc-
tion different a hadron species h relative to the parent
parton i. In general, we find that the production of hadron
species heavier than pions and kaons is typically produced
with lower energies, which is consistent with the physical
picture whereby more energy is required to produce
heavier hadrons than lighter hadrons.
As expected, the favored fragmentation of d̄ quarks is

predominantly into highly energetic pions, while for the
antistrange s̄ the production rate of energetic kaons is
slightly higher than that of pions. The unfavored fragmen-
tation of d, s and ū quarks follows a similar pattern, with
the lightest (pion) state produced at the highest energies

followed by kaons and other heavier charged hadrons.
An exception to this behavior is for charm and bottom
quark fragmentation: for c quarks kaons are produced with
energies comparable to those of pions, while for b quarks
kaon production is suppressed with heavier mass hadrons
produced at similar energies as pions.
Interestingly, the production of hadrons from gluons

follows the same pattern as for u-quark fragmentation.
While the latter can be explained in terms of mass
differences between the produced hadron species, the fact
that u quarks and gluons give a similar average energy
profile across hadron species is intriguing. On perturbative
grounds one can argue that gluon fragmentation is
enhanced because of the CA ¼ 3 factor in the gluon
splitting function, Pgg, relative to quark splitting functions,
Pqq and Pgq, which are proportional to CF ¼ 4=3. The
absence of direct constraints on the gluon FF beyond
scaling violations, however, anything drawing more than
speculative conclusions at present.
We conclude the discussion of our numerical results by

focusing on the correlation between the strange to non-
strange PDF ratio Rs and the strange to kaon fragmentation
function DKþ

s̄ . In Fig. 13 we show Rs and the s̄ → Kþ FF,
with individual Monte Carlo samples color coded by the
scaled χ2red intensity (with darker replicas indicating higher
likelihoods) computed for the specific cases of SIA (K�)
and SIDIS (Kþ,K−) datasets. The SIA datasets have a clear

FIG. 11. Parton to hadron FFs versus z at μ2 ¼ 100 GeV2 from the JAM20-SIDIS analysis for various parton flavors fragmenting
to πþ (red bands), Kþ (blue bands), unidentified hadrons hþ (green bands), and residual hadrons δhþ (yellow bands), defined as the
difference between hþ and the sum of πþ and Kþ. The bands shown are mean �1σ.
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preference for a smaller Rs and enhanced DKþ
s̄ , as was

found in the previous JAM19 analysis [2]. Interestingly, the
SIDIS (Kþ, K−) data, which have smaller χ2red, have a slight

tendency to favor solutions with a larger Rs and smaller
DKþ

s̄ , however, this preference is much weaker than the
preference of the SIA data for smaller Rs values.

FIG. 13. Monte Carlo samples for the Rs ratio (left) and zDKþ
s̄ FF (right) at μ2 ¼ 10 GeV2, color coded according to the scaled χ2red for

the SIA (K�) (top row) and SIDIS (Kþ, K−) (bottom row) datasets.

FIG. 12. Normalized yield of truncated moments hzihi of the i → h FFs zDh
i , for the favored πþ (red) and favored Kþ (blue),

unfavored πþ (light red) and unfavored Kþ (light blue), the total hadron hþ (green) and residual hadron δhþ (yellow) FFs, at a scale
of μ2 ¼ 100 GeV2.
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We also note that in the current analysis we have
extended the flexibility of the PDF and FF parametriza-
tions, which allowed us to obtain a more uniform
Monte Carlo distribution of Rs compared JAM19, where
a more restricted parametrization gave rise to multiple
solutions. Our new analysis confirms that the most prob-
able solutions found in JAM19 did not result from para-
metrization bias, and corroborates the need for a suppressed
strange quark PDF in the proton in order to simultaneously
describe both the SIA and SIDIS datasets within leading
power QCD factorization.

VI. CONCLUSION

In this paper we have presented the results of a
simultaneous Monte Carlo analysis of PDFs and FFs
constrained by a diverse array of data from inclusive and
semi-inclusive DIS, Drell-Yan lepton-pair production, and
SIA in eþe− collisions. The analysis extends the previous
JAM19 [2] simultaneous fit by including in addition
unidentified charged hadrons in the final states of SIDIS
and SIA, and increasing the flexibility of the PDF and FF
parametrizations.
The analysis—referred to as “JAM20-SIDIS”—represents

the most comprehensive determination of parton to hadron
(π�, K�, h�) FFs fitted concurrently with spin-averaged
parton distributions, broadening the test of universality of
parton correlation functions to more observables. The more
thorough exploration of the parameter space and reduced χ2red
values for each of the ≈70 datasets fitted in this study
confirmed the previous finding [2] that the combination of
SIA and SIDIS datasets have a strong preference for a
smaller strange to nonstrange PDF ratio, Rs, correlated with
an enhanced DKþ

s̄ FF. As further tests of this scenario, we
plan in future to extend the experimental datasets to include
weak-boson and jet production in hadronic collisions, from
both Tevatron and LHC data, as well as to relax theW2 cuts
for inclusive DIS to incorporate more fixed-target DIS data
at high xBj values [58].
An important application of the current results will be in

benchmark calculations of transverse momentum depen-
dent cross sections and in particular for the small transverse
momentum region where the transition from collinear
factorization to TMD factorization is expected to set in.
One motivation for the present project was to assess the
possible role of limitations in collinear PDF and FF fits in
explaining discrepancies between theory and data in the
range of intermediate and large transverse momentum
across a number of transversely differential processes
[4–7]. For this, a truly simultaneous analysis of parton
distribution and fragmentation functions across the stan-
dard set of electromagnetic processes, integrated over all
transverse momentum, is necessary. The general success of
the collinear fits for transverse momentum integrated cross
sections that we have examined here, and their evident

predictive power, suggests that factors unique to the
transverse momentum differential treatment are responsible
for the tension with data. We plan to address this also in
future work.
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APPENDIX: SEMI-INCLUSIVE DIS

In this Appendix we summarize the basic cross section
and structure function formulas relevant for our analysis
of the semi-inclusive leptoproduction of a hadron h (with
four-momentum ph) in the deep-inelastic scattering of a
lepton l (momentum l) from a nucleon N (momentum p)
via the exchange of a virtual photon (momentum q),

lþ N → l0 þ hþ X; ðA1Þ

where the final state hadron is integrated over all transverse
momentum. The formal setup follows standard methods
described in Refs. [59–62], for example, and we closely
follow the specific techniques in Ref. [63] utilizing the
double Mellin moment method from Ref. [14].
The spin-averaged cross section is parametrized in terms

of the semi-inclusive structure functions Fh
1 and Fh

L,

dσ
dxBjdydzh

¼ 4πα2

Q2

�
1þ ð1 − yÞ2

y
Fh
1ðxBj; zh; Q2Þ

þ ð1 − yÞ
xBjy

Fh
LðxBj; zh; Q2Þ

�
; ðA2Þ

which are functions of the Bjorken scaling xBj, the hadron
fragmentation scaling variable zh, and the four-momentum
transfer squared Q2, defined in the standard way as

xBj ¼
Q2

2p · q
; zh ¼

ph · p
q · p

; Q2 ¼ −q2; ðA3Þ

with y ¼ q · p=l · p the inelasticity. Our conventions for the
semi-inclusive structure function definitions are directly
related to the conventions for the inclusive DIS structure
functions, with FT ¼ 2xF1 and FL ¼ F2 − 2xF1 the trans-
verse and longitudinal structure functions, respectively.
(Note that other conventions use instead F1 → 2F1 and
FL → FL=x [64].)
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In the current fragmentation region, the factorization
formulas for the semi-inclusive structure functions,
expanded to order αs in the hard part, are given by

2Fh
1ðxBj;zh;Q2Þ

¼
X
q;q̄

e2q

�
fqðxBj;Q2ÞDh

qðzh;Q2ÞþαsðQ2Þ
2π

½fq⊗C1
qq⊗Dh

q

þfq⊗C1
gq⊗Dh

gþfg⊗C1
qg⊗Dh

q�ðxBj;zh;Q2Þ
�
; ðA4Þ

1

x
Fh
LðxBj;zh;Q2Þ

¼
X
q;q̄

e2q
αsðQ2Þ
2π

½fq⊗CL
qq⊗Dh

qþfq⊗CL
gq⊗Dh

g

þfg⊗CL
qg⊗Dh

q�ðxBj;zh;Q2Þ; ðA5Þ

where fi and Dh
j label the PDF of flavor i in the

proton and parton j → hadron h FF, respectively. The
functions C1

ij (CL
ij) are the lowest-order hard scattering

coefficient functions for the F1 (FL) structure functions,
and the symbol ⊗ denotes the convolution integral
over longitudinal momentum fractions, ½A ⊗ B�ðxÞ≡R
1
x ðdz=zÞAðzÞBðx=zÞ. Explicit expressions for C1

ij (CL
ij)

are given, for example, in the appendixes of Ref. [63].
In all of the expressions above, kinematical corrections

from a nonzero target and final state hadron mass are
neglected. To focus attention on the current fragmentation
region, in our analysis we impose the kinematic cuts zh > 0.2
andW2>10GeV2, and for the hard scalewe chooseQ2>m2

c.
Therefore, the kinematical corrections may not be entirely
negligible [65] at the energies of some of the experiments,
although for nowwe set aside a fuller account of their effect to
a future dedicated analysis of mass corrections in SIDIS.
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