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Abstract
As a new revolution of Ubiquitous Computing and Internet of Things, multimodal wearable intelligence technique is rapidly
becoming a new research topic in both academic and industrial fields. Owning to the rapid spread of wearable and mobile
devices, this technique is evolving healthcare from traditional hub-based systems to more personalised healthcare systems. This
trend is well-aligned with recent “Healthcare 4.0”which is a continuous process of transforming the entire healthcare value chain
to be preventive, precise, predictive and personalised, with significant benefits to elder care. But empowering the utility of
multimodal wearable intelligence technique for elderly care like people with dementia is significantly challenging considering
many issues, such as shortage of cost-effective wearable sensors, heterogeneity of wearable devices connected, high demand for
interoperability, etc. Focusing on these challenges, this paper gives a systematic review of advanced multimodal wearable
intelligence technologies for dementia care in Healthcare 4.0. One framework is proposed for reviewing the current research
of wearable intelligence, and key enabling technologies, major applications, and successful case studies in dementia care, and
finally points out future research trends and challenges in Healthcare 4.0.

Keywords Wearable intelligence . Healthcare . Dementia . Internet of things

1 Introduction

With the revolution era in the Fourth Industrial
Revolution “Industry 4.0”, Internet of Things (IoT) en-
abled technologies have been widely used in transforming
many traditional practices or scenarios to more connected
automatic and intelligent forms. Remarkably, due to the
rapid proliferation of wearable devices and smartphones,
utilising IoT and wearable intelligence into pervasive
healthcare fields becomes a popular research topic, where

conventional hub-based healthcare systems is upgrading
to more self-empowered and personlised healthcare sys-
tems (PHS). This trend is well aligned with recent con-
cept of “Healthcare 4.0” spill-out from Industry 4.0 that is
a continuous process of re-shaping the entire healthcare
value chain to be more precise, preventive, predictive and
personlised, with significant benefits to elderly home care
and dementia care. Especially considering that dementia
is the leading contributor to disability amongst older peo-
ple and causes significant morbidity as well as personal
and family burden (Wimo et al., 2006), development of
effective strategies to older citizens with dementia has
become an international priority, particularly in developed
countries due to dramatic demographic changes in the last
decades.

Typically, the motivation of utilizing modern ICT in
upgrading conventional healthcare systems offers promising
approaches for efficiently and precisely delivering medical
healthcare services to dementia patients , named as E-health
(Burkhard, 2010), such as electronic record systems, telemed-
icine systems, personalised devices for diagnosis, etc. (James
et al., 2001; Qi etal., 2020;; Sun & Fang, 2010). However, due
to the continuous increase in life expectancy, there are rapidly
growing population who are over 80 years old in developed
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countries. This fact raises some important issues on economic
viability of traditional dementia care systems. There is an ur-
gent need to develop more coordinated ICT solutions to pro-
vide high-quality and patient-centered health services for pa-
tients with dementia.

Targeting at this need, wearable intelligence solutions have
been developed for people with dementia, to prevent disease
onset and progression, and maintain patient independence in
daily life. Successful application of these wearable intelligence
technologies to dementia care could contribute to faster and
safer preventive care, further reduce the overall costs and en-
hance sustainability (Sebestyen et al., 2014). It will potentially
provide highly customized services for older people in future.

However, considering difficulties on developing cheap and
precise medical wearable sensors, the application of wearable
technology to dementia care still remains many challenges
(Costigan et al., 2002; Pappas et al., 2001; Veltink et al.,
1996), including heterogeneity of wearable devices connected
(Li et al., 2010; Mozer, 1998; Thatte et al., 2012) and high
demand for interoperability (Barthel et al., 2013; Ovengalt
et al., 2016; Qiet al., 2019; Yang et al., 2018). Its successful
applications to dementia care require an interoperable IoT
system enabling full self-empowerment of data and knowl-
edge standards and sound foundations for clinical decision-
making (Qi et al., 2020). The above-mentioned challenges and
requirements provide a plenty of opportunities to study, de-
sign and develop new concepts, algorithms, models and ap-
plications of wearable intelligence technologies in dementia
care.

In an effect to understand advance of wearable intelligence
technologies in dementia care, we conducted a survey on
reviewing multimodal wearable intelligence technologies for
dementia care in Healthcare 4.0. We undertook an extensive
literature review from 2010 to 2020 by reviewing relevant
papers from three main academic databases (ACM digital li-
brary, IEEE Xplore and Science-Direct). Key search terms
included: ‘wearable computing’ (WC), ‘wearable intelli-
gence’ (WI) and ‘dementia’ (D), ‘Healthcare’ (H). Also, the
research projects related to IoT, e-health, smart healthcare,
etc., were examined by searching from the portal of EU,
TSB and EPSRC funded projects. Our review focused on
identifying the breadth and diversity of existing research in
multimodal wearable intelligence for dementia care, including
technologies, applications and case studies.

The rest of the paper is organized as follows. Section II
presents the background and current research of wearable
intelligence in dementia care. Section III reviews key en-
abling technologies related to multimodal wearable intel-
ligence for dementia care. Section IV describes several
main applications and case studies related to multimodal
wearable intelligence for dementia care. Section V dis-
cusses research challenges and future trends. The conclu-
sion is given in Section VI.

2 Current Research of Wearable Intelligence
for Dementia Care

As the leading contributor to disability amongst older people,
dementia causes significant morbidity as well as personal and
family burden, older people with dementia usually suffer from
progressive cognitive decline and deterioration in their capac-
ity for living independently. For instance, dementia patients
have general confusion and on-going disorientation in time
and place, and become apathetic or display a lack of initiative
in significant events like family birthdays or anniversaries.
These initial symptoms of memory loss and confusion can
be transient and may be accompanied by periods of normal
and lucid behavior. In the long term, these memory losses
associated behavioral and emotional changes in the dementia
elderly exhibit strong effects on their living independence and
mental health, further leading to huge emotional and financial
burden on their families and communities. Enabling effective
dementia care services to older people with dementia requires
a large amount of high-quality long-term care from profes-
sional home care to institutional nursing care facilities. Yet,
existing worldwide healthcare systems have been subject to a
long history of increasing expenditure on maintaining these
high level services. One key strategy is to empower citizens
and patients to self-manage their own health and disease, by
utilising innovative ICT techniques, including new diagnos-
tics, sensors and devices, co-operative ICTs, mobile or porta-
ble new tools, etc. Therefore, innovative ICT technologies and
tools like wearable intelligence for supporting dementia care
are particularly important (Prince et al., 2013).

As mentioned in last section, Fig. 1 demonstrates the num-
ber of Journal and Conference articles related to wearable
intelligence and dementia from 2010 to 2021 in three key
research databases through searching keywords “Wearable
Computing & Healthcare”, “Wearable Intelligence &
Healthcare”, “Wearable Computing & Dementia” and
“Wearable Intelligence & Dementia”. Notably, in the IEEE
explore and ACM library, we searched these keywords in all
metadata; but in Science-direct site, these keywords were only
searched in title, abstract and author keywords.

The results in Fig. 1 first show that the wearable computing
and wearable intelligence technologies have been widely used
in ‘Healthcare’ where there are totally 6589 publications in
these three research datasets. But wearable computing and
wearable intelligence technologies have not been used in de-
mentia care in a large-scale, with only 333 publications in
these three research datasets. Also, from the engineering per-
spective, the research work related to two key words ‘wear-
able computing’ and ‘wearable intelligence’ are popular in
IEEE and ACM publications. It implies that utilising wearable
intelligence for dementia care is still in the early stage in com-
paring to general healthcare applications and waiting for fur-
ther study. There are many challenges and needs to explore
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new concepts, algorithms, models and applications in wear-
able intelligence technology in dementia care in dementia
research.

New wearable intelligence technologies are drastically
changing the nature of traditional assistive applications or
tools for dementia care. Existing digital memory assistive so-
lutions for dementia care are still reliant on external prospec-
tive memory aids or game-based memory rehabilitation ther-
apies. Many research work that are built upon the vision that
wearable intelligence have a great potential to enhance de-
mentia care services to older people. Modern wearable intel-
ligence technologies, such as unobtrusive life-logging data
sensing, multi-modal data aggregation, intelligent reasoning
and user-centered interaction have a great prospective in
supplementing highly effective and personalised dementia
care services to dementia people by overcoming the limita-
tions of traditional memory assistive techniques, such as lim-
ited effects in prospective memory aids, tedious content of
memory training programmes, unintuitive user interface de-
sign for older people. In order to better access wearable intel-
ligence for dementia care in this survey, a framework is built
in Fig. 2 for illustrating the key technical implementation of a
multi-model wearable intelligence system for dementia care.

The concept of this framework is traced from ‘personlised
virtual coaching’, originally targeting at revolutionising the
worldwide healthcare systems and community towards the
challenges of ageing society. Many EU projects have started
the movement in this direction to design and develop various
‘Virtual Coach’ systems for empowering elderly people to self-

management of their chronic diseases and promoting them a
healthy lifestyle. The most relevant projects include A2E2
(Merilahti et al., 2010), which is a support action for producing
a behavioural andmotivational enrichment platform for helping
elderly people to find the right balance between activity and rest
in daily life, P-Wheel (Siewiorek & Smailagic, 2008), and
Mem-Exerciser (Lee & Dey, 2007), of all which have shown
a high level of interest in helping people whose cognitive abil-
ities are impaired by natural ageing, disease or trauma. But to
our knowledge, the research work involved in these projects do
not focus on the collection of, access to, analysis of and
utilisation of a multi-dimensional personal experience related
data or information from the dementia care perspective to sup-
port individualized dementia care.

In Healthcare 4.0, towards the more concrete and rein-
forced concept of “Personalised dementia care”, wearable in-
telligence technologies will enable providing personalised, in-
telligent and integrative dementia care services including
memory training, guidance for daily difficulties and recom-
mendation for healthy lifestyle. More precisely, we have come
up with a number of observations in this field, including:

& Existing ICT technologies in dementia care mostly focus
on the prospective memory tasks but fail to cover both
retrospective memory and prospective memory support.
Future research in wearable intelligence technologies will
be trending towards providing both retrospective memory
and prospective memory support to older people with
dementia.

Fig. 1 Number of Journal and
Conference articles related to
wearable intelligence and
dementia from 2004 to 2021
(Wearable Computing, wearable
intelligence, Dementia and
Healthcare)
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& Lacking automated and intelligent tools for providing
personalised dementia support services makes existing de-
mentia supportive applications have limited impacts in
user’s daily life. Wearable intelligence technologies will
potentially offer a wide range of services including train-
ing, rehabilitation, guidance and recommendation to peo-
ple with dementia.

& User-centered interaction technology will be a pillar in the
dementia supportive systems. Factors such as stigma as-
sociated with using the device, general attitudes toward a
device, such as perceived usefulness and perceived ease of
use, as well as the reliability of the device, can all be
barriers to acceptance and use by users.

3 Key Enabling Technologies for Wearable
Intelligence in Dementia Care

As shown in Fig. 2, from information processing perspective,
key techniques for implementing wearable intelligence in

dementia care could be built on a classic tri-phase model of
personal information, encompassing the central phases of reg-
istration, storage and retrieval, which are respectively imple-
mented by ICT techniques on unobtrusive wearable context
monitoring, multi-dimensional data repositories and model
repositories, knowledge discovery and adaptive recommender
for intelligent reasoning.

3.1 Unobtrusive Wearable Context Monitoring

Wearable context monitoring usually focuses on developing a
personalised, highly unobtrusive mobile and wearable system.
To date, the specific needs of dementia care patient groups
have not been sufficiently identified in the literature.

Typical wearable context monitoring system design started
from many mobile and wearable accessory designs, including
smart eyeglasses (Kong et al., 2016), smart bracelets (Angelini
et al., 2013), and some clip-on or necklace loggers (Baek
et al., 2013) and smartphones (N. Armstrong et al., 2010). In
the work (Kong et al., 2016), smart glasses with image-based
appliance selection using user contextual information has

Fig. 2 Key technical implementation of wearable intelligence system in dementia care
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been utilised for controlling home appliances for elderly peo-
ple. In the work (Angelini et al., 2013), a smart bracelet is
designed that aiming at enhancing the life of elderly people,
including monitoring the health status and alerting them about
abnormal conditions, reminding medications and facilitating
the everyday life in many outdoor and indoor activities. Also,
many new smart garments developments are also developed
recently by researchers; e.g. smart watches (Fleury et al.,
2010), smart garments from the EU SimpleSkin project
(Ahmad et al., 2016; Amft, 2016; Cheng et al., 2016; Hassib
et al., 2016; Martindaley et al., 2016).

The above cost-effective wearable devices have provided
essential guidelines and benefits to the end-users. But the
well-designed wearable intelligence systems for dementia
people should evolve the solution across development cycles
to maximize effectiveness and user compliance. Their goal is
to evolve a minimal set of personal devices for the virtual
memory coach, e.g. a smartphone and a pair of smart eye-
glasses, or a smart garment to provide the user with an unob-
trusive system that fits personal needs. Some researchers be-
gin to focus on developing monitoring and interaction tech-
nologies that can capture user context, i.e. a user's situation,
with all relevant aspects, including activity and behaviour ,
emotion (Sano & Picard, 2013), location (Seon-Woo Lee &
Mase, 2002), and social interaction (Paradiso et al., 2010), as
well as provide interaction continuously and unobtrusively.

While some aspects of user context, such as outdoor loca-
tion, is conveniently available from smartphones, details of
complex behaviour patterns, such as diet, hygiene, house-
work, are all still challenging to identify due to the variability
of the involved behaviour patterns. Nevertheless, effective
dementia care should depend on memory training and
reminding on everyday routines. Complex behaviour patterns
further include arousal and social interaction, which are rele-
vant components of everyday life and can contribute to some
training based memorable events. Also, particular intersec-
tions of behaviour and other context information may be help-
ful to derive interesting, i.e. memorizing moments from the
user's experience. For example, a walk on the street and meet-
ing a good friend there, and have a longer conversation may
be such a memorizing moment that could be exploited.

3.2 Multi-Dimensional Data Repository and Model
Repository

Multi-dimensional data repositories and model repositories in
wearable intelligence systems show in Fig. 2 concentrate on
research and development of robust methods and tools to
manage the storage, retrieving, protection and utilisation of
multidimensional life-logging data captured from wearable
devices.

We reviewed the prior work in the literature, including data
storage model, RDF data repository, data processing models,

and security framework. The methods and models investigat-
ed in this section build robust and fast data repositories hold-
ing multidimensional life-logging data or information of indi-
vidual users. These information include their activities, behav-
ior, life style, geography environment, etc. The typical data
repositories approaches mainly include ontologies based ap-
proaches (LOINC, 2018; MedDRA, 2018; SNOMEDCT,
2018) and semantic based approaches (Belleau et al., 2008;
HCLSKB, 2018; NIH, 2018; PubMed, 2018; WHO. World
Health Organization, 2018; Vandervalk et al., 2008; Zaveri
et al., 2013). Ontology data repositories usually reply on con-
trolled vocabularies of scientific terminology to assist in large-
scale data annotation, including the basic terms and relations
in a domain of interest, and rules how to combine these terms
and relations (Tables 1 and 2).

In the past years, there have been some healthcare domain
ontologies (LOINC, 2018; MedDRA, 2018; SNOMEDCT,
2018), which were established for describing anatomical parts
and their relationships in biomedicine or specific terms used in
Electronic Health Records or rehabilitation domain.
SNOMED CT (SNOMEDCT, 2018) is a well-established
and widely-used ontology by many researchers for represen-
tation of clinical concepts, terms and relationships in
healthcare. Logical Observation Identifiers Names and
Codes (LOINC, 2018) aims at offering a universal code sys-
tem for laboratory test and clinical observations. MedDRA
(Medical Dictionary for Regulatory Activities) (MedDRA,
2018) provides a comprehensive, standardised and specific
terminology to help share regulatory information for medical
products.

Semantic data repository is built on the web source linked
data approach and help the health style related data searching
and processing from rich resource in the internet for further
intelligent recommendations. The model repository were used
to store a variety of data analysis or processing method like
image analysis, pattern recognition, for extracting the most
useful memory cues of constructing individual experience.
For instance, over 50 different semantic based datasets have
been built by theWHO’s Global Health Observatory for mon-
itoring statistical data and analysis of environment health,
health systems, HIV/AIDS, etc. Also, many health institutions
or organisations such as PubMed (PubMed, 2018), or US
National Library of Medicine (NIH, 2018) provide selective
connections to enormous health database repositories. The
only issue is that they usually contain data in proprietary for-
mats like PDF or spreadsheets, with some difficulties on fur-
ther data processing.

But some recent attempts have been made on utilising
Semantic Web to decrease complexity of data processing
and sort out some classical integration problems. Vandervalk
et.al (Vandervalk et al., 2008) developed a decentralized web
service framework called CardioSHARE, providing a
SPARQL endpoint that enables querying transparently
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resources in “deep web” from distributed and independent
sources. Zaveri et.al (Zaveri et al., 2013) have created one
dataset containing about 3 million triples by converting
WHOs GHO datasets to RDF using RDF Data Cube
Vocabulary. The dataset is published as Linked Data using
the OntoWiki platform, with an SPARQL endpoint for que-
rying the data. Additionally, an open-source project called
Bio2RDF (Belleau et al., 2008) is established by leveraging
Semantic Web technologies to provide the large networks of
Linked Data from a diverse set of heterogeneously formatted
sources obtained from multiple data providers. The entire
Bio2RDF system provides a SQPRQL endpoint that can be

used to query around 11 billion triples from 35 different
datasets from clinical trials, PubMed and other large data set
providers from the biomedical domain.

Another research issue in a multi-dimensional data reposi-
tory is on developing a unified approach towards trust, secu-
rity and privacy co-analysis, design, implementation and ver-
ification for ensuring these personal data processed and han-
dled in compliance with user needs and rights in autonomous
services without human intervention. Some researchers have
attentions on solving the research challenges in data confiden-
tiality and authentication (Wenjing Lou et al., 2004), access
control (Goyal et al., 2006), privacy and trust (Dwyer et al.,

Table 2 Multi-dimensional data repository and model repository

Category Techniques Description

Ontology-bas ed. data
repositories

LOINCS (LOINC, 2018) Universal code system containing 17 k classes, 111 properties, 5
projects,

CTCAE (Dwyer et al., 2007) Coding for adverse events that occur in cancer therapy

MedDRA (MedDRA, 2018) Highly specific and standardized terminology containing

RADLEX (CTCAE, 2010)] Unified language for standardized indexing and retrieval of radiological
information resources

ICD10 (WHO.World Health Organization, 2018) Classification system for diseases

SNOMEDCT (SNOMEDCT, 2018) Representation of clinical concepts, terms and relationships in
healthcare

Semantic-bas ed. data
repositories

Bio2RDF (Belleau et al., 2008) Multiple sources datasets

HCLS Knowledge Base(HCLSKB, 2018) Multiple sources, like from PubMed, clinical trials, etc.

CardioSHARE (Vandervalk et al., 2008) Clinical datasets on heart diseases and other data in biomedical domain

LinkedCT (Zaveri et al., 2013) ClincialTrials.gov datasets

Trust security and privacy data confidentiality and authentication (Wenjing
Lou et al., 2004)

SPREAD scheme for reliable data delivery in mobile ad hoc network

Access control (Goyal et al., 2006) Attribute-based encryption for fine-grained access control in cloud

Privacy and trust (Dwyer et al., 2007) Perception of trust and privacy concern in social networking.

Table 1 Unobtrusive wearable and context monitoring

Single wearable device Smart Eyeglasses (Kong et al., 2016) Context-aware image processing
techniques

Smart bracelets (Angelini et al., 2013) The design of a smart bracelet that aims at improving
elderly life by lowering the threshold to access
everyday technologies.

Necklace loggers (Baek et al., 2013) Accelerometer and gyroscope sensors to classify the
behaviour and posture for elderly people

Smartphones (Armstrong et al., 2010) Applications of an activity of daily living reminder,
a picture dialing telephone and short messaging
service and a geo-fencing and one-hour reminder.

Smart watch (Fleury et al., 2010) Machine learning technique to classify activity of
daily living

Smart garments (Ahmad et al., 2016;
Amft, 2016; Cheng et al., 2016;
Hassib et al., 2016; Martindaley et al., 2016)

System design based on unobtrusive sensors.

Multiple wearable devices Smartphone + smart eyeglasses
(Qi et al., 2017a, 2017b)

Cooking, brushing teeth, cleaning, eating, dressing,
having a party

eWatch + multi-sensor (Maurer et al., 2006) Real-time activity classifications using machine learning
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2007) among users and their data, and the enforcement of
security and privacy policies. In particular, the end-to-end
approach to security is usually proposed as an extending se-
curity mechanism from the device to the platform to the ap-
plication, in a seamless and fully integrated manner. Also, the
processing and analysis of large volume of multidimensional
personal information can pose difficult privacy, security and
trust issues. The suitable solutions here should be independent
of the exploited platform and able to guarantee: confidential-
ity, access control, and privacy for users and things, trustwor-
thiness among devices and users, compliance with defined
security and privacy policies.

3.3 Knowledge Discovery and Adaptive
Recommender for Intelligent Reasoning

Knowledge discovery for intelligent reasoning in Fig. 2 focus
on study, develop and integrate data analysis and intelligent
reasoning technologies, for supporting the extraction of accu-
rate information and providing intelligent personalised recom-
mendations to the users. Actually, a vast amount of ap-
proaches (Bharucha et al., 2009; Bizer et al., 2009; Boger
et al., 2005, 2006; Braziunas & Boutilier, 2010; Chen et al.,
2005; Limaye et al., 2010; Liu, 2010; Mulwad et al., 2010;
Schmachtenberg et al., 2014) have been proposed which com-
bine methods from data mining and knowledge discovery
with Semantic Web data, including Semantic Web
Technologies, Link Open Data (LOD), machine learning
technologies.

LOD (Bizer et al., 2009; Schmachtenberg et al., 2014) is an
open, interlinked collection of datasets in machine-
interpretable form, covering multiple domains from life sci-
ences to government data. In LOD, it is possible to harness
knowledge vault at various steps of the knowledge discovery
process. A large number of approaches have been presented
for extracting the schema of the tables, and mapping it to
existing ontologies and LOD. Mulwad et al. (Mulwad et al.,
2010) have made great effects for interpreting tabular data
using LOD from independent domain. Several methods have
been proposed by them that use background knowledge from
the Linked Open Data cloud to infer the semantics of column
headers, table cell values and relations between columns and
represent the inferred meaning as graph of RDF triples.
Additionally, Liu et al. (Liu, 2010) presented a new
learning-based semantic search algorithm to recommend rele-
vant and connected Semantic Web terms and ontologies for
the given data. Limaye et al. (Limaye et al., 2010) suggested a
YAGO based probabilistic graphical model for simultaneous-
ly choosing entities for cells, types for columns and relations
for column pairs.

With respect to intelligent reasoning, some work
(Bharucha et al., 2009; Boger et al., 2005, 2006) have made
use of hybrid, contextualized and adaptive recommender

algorithms to assist people with dementia in their daily rou-
tines by providing suggestions and context specific informa-
tion. These recommendations can be intra- or intersubjective,
i.e. they can be derived from past actions of one user or can be
adapted from successful strategies of others. To generate and
decide on the ideal recommendation for each user at a given
situation, different aspects have to be considered. Intra- and
intersubjective recommendations rely on various data sources,
including internal analysis of personal life pattern and rich
resources from internet. Adaptive recommendation algorithms
will select appropriate sources to adopt to different user role.

The intelligent recommendations (Braziunas & Boutilier,
2010; Chen et al., 2005) can be adapted to different user
groups like patients, family members, caregivers etc. For each
recommendation, their respective context is considered to de-
termine the necessary adaption. Additionally, feedback and
reinforcement learning relies on feedback from all user groups
to improve and adapt to requirement changes. Feedback cy-
cles can be installed on different abstraction levels, from the
lower end of information extractions up to the recommenda-
tion process are calculated. At the beginning of the processing
chain, the data fusion can learn which data sources are best
suited for any given user group. Similarly, the information
extraction and event detection can employ feedback about
events and patterns are well received by the users into the
machine learning algorithms.

3.4 Multimodal Adaptive User Interface and
Personalization

Multimodal adaptive user interface and personalization in Fig.
2 focus on studying existing user interaction techniques,
which can be specifically applied into wearable and mobile
devices towards older people with dementia, for easy acquisi-
tion of intelligent recommendation or guidance, and accessi-
ble interaction with memory training applications.

As shown in Table 3, some researchers focus on designing
and developing a tangible interaction technique (Hock et al.,
2018; Sakai et al., 2012; Schelle et al., 2015; Seymour et al.,
2017) for mobile devices with touchscreen, like iPad or
Microsoft Surface, etc., which supports the facilitation of in-
tervention or games based memory training applications like
reminiscence activity with visual, audio or other tangible ar-
tefacts e.g. photographs, videos. Also, some memory cues
based interactive games (Sisarica et al., 2013; Westphal
et al., 2017) like puzzle touch or mapping learning are devel-
oped to improve the effectiveness of psychosocial interven-
tions that foster the well-being and quality of life of people
with dementia.

Regarding the interactive interface of mobile device, some
work were carried out in the fields of developing and integrat-
ing multimodal adaptive user interface (Hoey et al., 2012; Yu
& Ballard, 2004) exploiting user preferences, stress, emotions
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and previous behaviour, and study different modes in receiv-
ing and communicate information like guidance or recom-
mendation. The design of user interface is based on identified
user requirements from pilot cases, and should support collab-
oration among elderly and caregivers, and provide personali-
zation tools that allow elderly to customize the user interface
and behaviour of their applications. Another important issue
in user interaction is to investigate and develop innovative
user-interaction methods (Locher & Tröster, 2007; Schwartz,
2008) driving the utilisation of smart textile in wearable con-
text monitoring. Considering the main needs of warning and
reminder functions in wearable intelligence system, vibration
feedbacks will be used as a key interaction channel to be used
in smart clothing, that were embedded in several places of
clothes, and would vibrate to indicate the wearer if there are
some accidents or reminding things.

4 Wearable Intelligence Applications
and Case Studies in Dementia Care

This section reviews some successful m-health platforms and
case studies related to dementia care, and also gives a discus-
sion on how these m-health platforms impacting on wearable
intelligence applications in dementia care for dementia
patients.

4.1 SMART4: Mobile Health Platform

SMART4 (SMART4MD project, 2018) is a EU funded pro-
ject aiming at developing an innovative mobile healthcare
platform that is specifically targeted to patients with mild de-
mentia with an improved quality of life. The tool enables
patients to adhere to their treatment and share data with their
carers and doctors; and also allows carers to monitor patients
more easily and share their own well-being with doctors. The
utilization of this tool demonstrates a great success in slowing

the dement patients’ cognitive and functional decline, avoid
carers getting exhausted and reduced costs of emergency care.

The key features of the SMART4 platform include: 1) a
powerful customization engine to enhance accessibility when
patients faced by cognitive decline. 2). Quality of life and
health tracking for people with dementia and all other condi-
tions being managed. 3) Activity, medicine and appointment
reminders to assistant dementia patients’ independent living
and better health management 4) Cost-effective visualization
tools to help check health progress and medicine compliance.

From end-user perspective, SMART4 platform offers
build-in planner to help dementia patient organize their day
and send reminders to take medications, attend appointments
and perform day-to-day tasks that keep them independent for
longer. Healthcare personals can easily track the progress of
their dementia patients’ health through SMAT4MD’s secure
data sharing features.

4.2 MARIO: Service Robot

MARIO (MARIO Project, 2018) project aims at developing a
companion robot that builds resilience and reduces loneliness
and isolation in older people with dementia. They designed
and developed a service robot, which offers effective and ef-
ficient intervention by mitigating simple changes in self-
perception and mediating brain stimulation towards dementia
patients. Technically, they adopt state-of-the art flexible, mod-
ular, low cost robotic platforms for providing real and afford-
able solutions for people with dementia. A novel semantic
method (Casey et al., 2016) is developed for generating and
integrating knowledge graphs extracted from multiple natural
language sources. This method enables human-robot spoken
dialogue interaction in MARIO. The service robot has been
verified and tested by a large group of dementia patients. The
experimental outcome demonstrates that the robot is able to
prompt and remind them with various daily activities like
eating, drinking and when to go shopping, and social events,
family birthdays and anniversaries.

Table 3 User interface and personalization

Category Subcategories Description

Tangible interaction Tactile Dialogues (Schelle et al., 2015) Personalization of Vibrotactile Behavior to Trigger Interpersonal
Communication

AMI (Seymour et al., 2017) An Adaptable Music Interface to Support the Varying Needs of
People with Dementia

Voice agent (Sakai et al., 2012) Listener agent for elderly people with dementia

Games based interaction Serious game (Sisarica et al., 2013) A form of creativity support tool

Tablet game (Westphal et al., 2017) Engage dementia people to use digital media

Multimodal adaptive user interface Multimodal learning interface
(Yu & Ballard, 2004)

Grounding spoken language in sensory perceptions

Smart textile Textiles cloth (Locher & Tröster, 2007) Healthcare monitoring in clothing
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4.3 CAREGIVERPRO-MMD: Gamification Health
Platform

CAREGIVERSPRO-MM(CAREGIVERSPRO-MMD
Project, 2018) project aims at facilitating people with demen-
tia or chronic diseases to reduce frequency of visiting care
institute using self-management tools/systems and thus im-
prove their daily activities and quality of life. The key feature
of project mainly includes: 1) providing new services for peo-
ple living with dementia and their caregivers; 2) user-centric
design for patients with mild to moderate dementia; 3) show
the clinical and social benefits for patients and caregivers, as
well as financial benefits for the healthcare system. A social
platform is established based on Gamification Engine
Architecture to monitor users’ behaviour and provide non-
pharmacological interventions. The proposed framework has
five layers: socialization, education/training, treatment adher-
ence, monitoring and non-pharmacological interventions,
which will increase the interest of end-users in using the
game-based platform.

4.4 DEM@CARE: Remote Health Management
Solution

DEM@CARE (DEM@CARE, 2018) project has developed a
closed-loop management solution for people with early or
mild-stage dementia through multi-parametric remote moni-
toring and individually tailored analysis of physiological, be-
havioural and lifestyle measurements. The loop covers people
with dementia, their informal caregivers, and dementia clini-
cians. The project is categorized into three specific situations.
Dem@Lab assesses the cognitive state of participants.
Dem@Nursing improves care by monitoring behavioural pat-
terns and symptoms in nursing homes. Dem@Home has dem-
onstrated a positive impact on people with dementia living
independently at home. For activity recognition, with ambient
sensors, wearable cameras and fixed cameras, a hybrid frame-
work is proposed between knowledge-driven and
probabilistic-driven methods for event representation and rec-
ognition with an approach that capable to handle noise and
ambiguity.

4.5 PRODEMOS

PRODEMOS (PRODEMOS, 2018) is an project aiming at
designing and developing an evidence-based dementia pre-
vention strategy using mobile health accessible to those at
increased risk of dementia without taking preventive medi-
cine. This project will finally implement a flexible, adaptable
m-health platform in a culturally appropriate form in the
worldwide. The most important feature of this platform is its
evidence based, which means that they will collect a purpo-
sive sample of potential participants in both settings in semi-

structured interviews to explore cultural, socio-economic and
educational barriers and facilitators of dementia prevention.
The main topics in this project include some general concept
of self-management of risk factors to prevent dementia, and
views on the acceptability and usability of m-Health platform
prototype for sustained lifestyle behaviour change.

4.6 AI-Mind

AI-Mind (AI-Mind, 2021) project is aiming to build a
European platform to shorten dementia risk prediction.
Normally, the evolution from MCI to dementia is five years
with clinical follow-up. AI-Mind will shorten this journey to
one week by integrating AI-based tools into clinical practices,
using data from the connector, advanced cognitive tests, ge-
netic biomarkers to important textual variables. The project is
a significant breakthrough in dementia assessment, which will
improve the healthcare system and boost the innovation. The
consortium plans to deliver a medical device of class 2b that
can reach TRL7 by the end of the project.

4.7 Brain Health Toolbox

Brain Health Toolbox (Brain Health Toolbox, 2019) is a pro-
ject funded by the European Union that is to create a strategy
to develop accurate dementia prediction and effective preven-
tion. The project makes use of disease models and predictive
tools to conduct prevention, preventive treatment trials, and
connect non-pharmacological and pharmacological methods.
Disease models and prediction tools are multi-dimensional
with a wide range of risk factors and biomarker types.
Machine learning is explored to analyse the most important
factors to an individual's overall risk level. The Brain Health
Toolbox will cover all patients in the preclinical stage of dis-
ease, and it will provide tools for personalised decision-
making to prevent dementia.

4.8 Demo

DEMO (DEMO, 2016) is also an EU funded project that aims
to find new biomarkers in brain scans to diagnose dementia
related neurodegenerative diseases through Magnetic
Resonance Imaging (MRI). The project to improve this pro-
cess by identifying and developing quantitative imaging bio-
markers that are easy to see on MRI scans, and thus using
them to simulate the possible progression of the disease. By
using historical and longitudinal data from patients with de-
mentia, the project makes use of machine learning approaches
to discover changes in brain structure and function, providing
predictive capabilities for the appearance and progression of
the disease. The outcomes not only can patients be diagnosed
at earlier time as well as to provide a more accurate and
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objective prognosis, but the intervention for dementia can also
be evaluated.

The listed projects imply that a large number of e-health
related research works have been carried out in aiming at
different techniques and end-users of dementia care, from im-
proved quality of life, assistant robot to self-management.
Apart from above projects, some other dementia related pro-
jects (MinD, 2018; RAMCIP, 2018) are also represented. As
shown in Table 4, we match these projects with our targeted
wearable intelligence techniques in dementia care for demen-
tia patient.

5 Research Challenges and Future Trends

Although empowering the utility of multimodal wearable in-
telligence enabled technologies for dementia care has huge
potential benefits, it is still widely agreed that the wearable
intelligence technologies are in their infancy and face many
challenges. Future efforts are still required to address these
challenges and examine of availability of existing wearable
intelligence technologies to ensure a good fit in the dementia
care.

5.1 Expectation of Wearable Intelligence System for
Dementia Care

Personalised The information collected from various wearable
devices is expected to be a life-long experience record of the
individual older people with dementia that offers useful input
to generate effectively personlised memory training
programmes and useful recommendations to maximize their
independence in daily life.

Unobtrusiveness The dementia care system typically has a set
of unobtrusive wearable accessories and devices for long-term
and continuous monitoring life-logging personal information
of old people with dementia. These wearable accessories and
devices are expected to be comfortable and miniaturized to
elderly users, enabling accurately recognizing individual
user’s information like activities, behavior.

Intelligent The knowledge discovery and intelligent reasoning
components of the dementia care system will offer the power
of intelligently personlised advice and guidance through ap-
plying the predictive models and data analysis algorithms to
life-long experience related information. The use of these

Table 4 Project and applications related to wearable intelligence for dementia care

ementia Projects Patient Groups/
End Users

Wearable
context
monitoring

Data/Model
repositories

Knowledge discovery &
intelligent reasoning

User
interaction

Services for
Dementia care

SMART4 (SMART4MD
project, 2018)

All stage/
Patients, Carer
and Doctors

Mobile phone Semantic
repositories

Daily planner with
personal reminders

Simple
mobile
visual
chart

Yes, reminders

Mario (MARIO Project,
2018)

Older people /
Patients, Carer
and Doctors

No Semantic
repositories

Personable, useful
suggestions

Mobile and
voice
interaction

Yes, personal
suggestions

CAREGIVERSPRO
-MMD (Casey et al., 2016)

Mild to Moderate
/ Patients,
Carer and
Doctors

Mobile phone
with social
interaction

Semantic
repositories

Provide
non-pharmacological
interventions

Gamification
apps

Yes, memory
training

DEM@CARE
(CAREGIVERSPRO-M-
MD Project, 2018)

All stage/
Patients, Carer
and Doctors

Wrist device,
audio and
visual sensing
data

Ontology/Semantic
repositories

Personalised behavior
interpretation, and
personalized
feedback

Simple
mobile
visualisa-
tion

Yes, reminders,
guidance,
feedback

PRODEMOS
(DEM@CARE, 2018)

All stage/
Patients, Carer
and Doctors

Only mobile
phone

Semantic
repositories

Dementia risk
identification and
verification

Simple
mobile
application

Possible,
self--
management

AI-Mind (AI-Mind, 2021) MCI patients,
Carer and
Doctors

No Unknown Dementia risk quick
prediction

A platform Yes, early
warning

Brain Health Toolbox (Brain
Health Toolbox, 2019)

Older people /
Patients, Carer
and Doctors

EEG sensors Machine learning Dementia early
prediction and
prevention

A toolbox Yes, early
warning

DEMO (DEMO, 2016) All stage/
Patients, Carer
and Doctors

MRI scans Machine learning Dementia diagnosis A software Yes, diagnosis
outcomes
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personlisedmachine-generated advice will improve older peo-
ple with dementia’s ability to remain active and independent
in daily life. These are expected to improve their quality of life
by offering healthier lifestyle, reliable activity management,
active social participation and better overall wellness.

Integrative The wearable intelligence system for dementia
care will be an integrated interoperable mobile wearable solu-
tion, which include the design and development of hardware,
algorithm, software, interface and applications. The integra-
tive approach will not only provide independent living solu-
tions and tutoring care for people with dementia, but also
enable their caregivers or relatives to easily access and mon-
itor multiple aspects that are influential to these elderly peo-
ple’s overall wellbeing.

Intuitive The multi-modal adaptive user-centered interface of
the dementia care system will offer the intuitive and tangible
interactions to older people with dementia, for effectively
accessing their memory training applications and easily ac-
quiring and understanding the personal recommendations
with memory cues.

Affordable Wearable intelligence system should feature the
adaptation of a range of latest wearable intelligence technolo-
gy with the aim of improving the effectiveness of the systems
and enhancing elder people‘s independence and engagement.
Its success will significantly reduce the burden of caregivers
and the financial pressure of elderly people and their families.
This will provide a new dimension in healthcare and will
enhance the sustainability of healthcare systems for dealing
with challenges such as the increasingly ageing population in
Europe.For many elderly people with dementia, they still pro-
vide meaningful contributions to their communities – finan-
cial, provision of social support and care, volunteering and
what may be described as ‘social glue’. However, loneliness
and social isolation, common in later life, are risk factors and
may lead to their physical functional decline and emotion
changes. Wearable intelligence system will enable these indi-
viduals to live independently and to remain physically and
mentally active as they age.

Meanwhile, as a result of this ageing of the population,
healthcare and associated social welfare costs are growing
exponentially and they will soon become unsustainable unless
we change the way in which people are supported. In many
cases, there is a need to shift dementia care from caregiver-
oriented passive care to self-management lead active ageing.

5.2 Technical Challenges

Cost Effective and Non-obtrusive Wearable Sensing In the last
decade, advanced wearable sensing technologies have been
increasingly invented and proven its popularity among general

users, their majority usages are limited in many fitness and
wellbeing applications, but not specific disease monitoring
and care. One key issue is that due to low-cost, these wearable
products are mostly designed as consumer electronics that
only enable capturing raw sensing data with simple process-
ing. Owning to diversity of individual life pattern (normal
person, elderly people and people with dementia) and envi-
ronmental noises, personal data from these wearable products
exhibits remarkable uncertainty in the natural environment
such as battery, capacity issues and placed positions. The re-
sults are widely divergent when the mobile phone is put in the
pants pocket from handbags. It is necessary to design cost-
effective and non-obtrusive wearable sensing devices for older
people.

Notably, advance wearable sensing devices are limited in
terms of their size, fast response, continuous monitoring ca-
pability, wireless data transmission, and non-obstructive user
experience. There is usually a tradeoff between high quality
and low-cost of developing useful and reliable wearable sens-
ing technologies. The idea candidate of future sensing tech-
nologies for wearable intelligence enabled dementia care
should be a tiny sensor into personal daily use items, including
but not limited to clothing, watches, glasses, shoes, belts, and
so on. Also, many non-obstructive sensing devices used in
chronic diseases monitoring are key to success of future de-
mentia care and will potentially bring a lot of convenience to
patients with dementia.

Secured and Trustful Mobile Health System Future system
design of wearable intelligence technologies in Healthcare
4.0 is shifting from open, small, and single loop to closed,
large and multiple loops. It means that the entire wearable
intelligence system should bewell-connected, mobile, secured
and highly trustful. Especially towards people with dementia,
their health information (e.g., phenomena, health condition,
emergency) is relatively higher sensitive than normal users,
any inappropriate disclosure may violate user privacy and
even result in property loss. Thus, how to design appropriate
security and privacy protections in multimodal wearable intel-
ligence system for dementia care is a challenging issue.
Meanwhile, the costs of security protections vary with end-
users’ diverse needs and may impact their user experiences on
wearable health applications. Complicated encryption tech-
nique might be a useful solution of offering users more secu-
rity guarantees but with higher computational overheads and
latency than lightweight ones. To satisfy dementia’ patentors
specific requirements on security and privacy protection, qual-
ity of protection has become a emerging security concept in
multimodal wearable intelligence systems.

Effective Data Validation Targeting at completed free-living
environments, multimodal wearable intelligence systems for
dementia care will collect massive personal health data from
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diverse wearable device. These heterogeneous and raw data
exhibits remarkable uncertainty due to multiple environment
noises and impacts. It is important to validate these data with
an improved reliability before utilising them in decision mak-
ing. How to effective validate these health data requires inten-
sive experimental verification with statistical analysis and
probably advanced intelligent algorithms.

Intelligent Data Analytic Towards multimodal data analysis, a
large number of traditionally machine learning models have
been proposed in dementia diagnosis and care. One typical
challenge in data analytic is how to get large-scale well-la-
belled multimodal data, as machine learning approaches re-
quire sufficiently large number of samples for model training,
in which supervised learning methods need to be set appro-
priate categories ahead of time, and each sample needs to be
labelled. Secondly, running machine learning models in large-
scale datasets require huge computational resources in remote
servers. How to choose or design lower complexity of models
or algorithms for supporting multimodal data analytic is an
important question. Lastly, only a few current attentions have
been devoted to training model with raw data from free-living
environment. It is worthy investigating new algorithms or
models applied in real life with many uncertainties.

6 Future Research Trends

Lifelogging Mode One important feature of multimodal wear-
able intelligence environment for future dementia care in
Healthcare 4.0 is that the collection of long-term life-logging
personal health data becomes possible, named as lifelogging
mode. Considering limited memory and power resource in
most affordable wearable devices, lifelogging data will not
be milliseconds-based raw sensory signal, but like more
fragmented window set in minutes/hours. The lifelogging
mode leads to transformation of time-series sensing data pro-
cessing to longitudinal data analysis. Thus, how to effectively
design and transfer available machine learning models into
life-logging health related data, how to explore new feasible
algorithms for training these life-logging data set, what kind of
features in these life-logging data potentially leads to the best
accuracy, etc. are all valuable research topics in this area.

Free-Living Environment Another key feature of multimodal
wearable intelligence for dementia care in Healthcare 4.0 is to
target at providing support or services to dementia patient in
completely free-living environment. This follows a global
trend of population ageing where the transformation of tradi-
tional hospital-based healthcare services to patient
empowered home based healthcare services. Thus, one possi-
ble future research direction is to explore how to achieve high
accuracy and stability of health data acquisition with

multimodal wearable intelligence technologies in free-living
environments. Also, it will be interesting to study how to
overcome the barriers of short-battery or poor capacity and
time-consuming of running machine learning algorithms.

High Volume and Multimodality of Data The heterogeneous
devices connected in future wearable intelligence system will
be driving major expansion in big data of dementia patients’
health information. They contain not only a sheer volume of
long-term personal lifestyle associated data, but also complex
and rich context of other health information. So future re-
search work on how to explore these high volume and
multimodality of health related data under wearable intelli-
gence platforms for bringing intelligence for more solid clin-
ical decision-making and policy formulation will be
significance.

Security and Privacy Towards providing dementia care in
Healthcare 4.0, future multimodal wearable intelligence sys-
tems should be based on a heterogeneous and distributed net-
work to store and manage dementia patient health data.
Typically, security and privacy in any wearable intelligence
related networking architecture will be naturally inherited to
distributed mobile-cloud systems or applications. Compared
to existing wearable devices or service providers with data
protection schemes on their standalone server like Fitbit, etc.
protecting privacy and security in future multimodal wearable
intelligence systems will be potentially more difficult as the
number of potential attack vectors on wearable intelligence
entities is much larger. Future research work on how to protect
security and privacy needs to be carried out in this field.

7 Future Multimodal Wearable Intelligence
System for Dementia Care in Health 4.0

7.1 Multiple Supportive Functionalities

The future wearable intelligence system for dementia care
could be designed as a personalised coach that can provide
multiple supportive functionalities to older people with de-
mentia in daily life, rather than a single-function aid for certain
circumstance. Traditionally, memory supportive strategies
have been widely developed as single-function aids like mem-
ory rehabilitation or memory reminder to dementia people for
a long time but are still very poorly explored in how to max-
imize its functionalities for a better quality of life of dementia
people, both in the degree of impact and the scale of implica-
tion. Principally, the cognitive and memory training in demen-
tia people is a complex field of work, which will concern
different brain systems and pathways (Gates et al., 2011);
for instance, prospective memory is tending to encoding and
storing new information like a learning process as opposed to
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retrospective memory of retrieving and recalling of already
stored information in the brain. Cueing strategies are consid-
ered as effective priming technique for facilitation of informa-
tion retrieval; whereas other strategies like chunking, loci, and
mnemonics play the role of enhancing encoding and storing.
Thus, very limited attempts have been successfully made to-
wards both retrospective memory and prospective memory
supporting so far. Wearable Intelligence System will be the
first trial for designing and developing a wearable intelligent
system to cover both retrospective memory and prospective
memory supporting to people with dementia, including a wide
range of functionalities of like memory training, guidance in
daily difficulties, recommendation for health lifestyle, for
helping them undertake daily tasks and preserving their phys-
ical and emotion well-beings. These innovative services will
be provided in a timely, automatic, intelligent, and flexible
manner to old people with dementia; and are expected to
add extremely useful values to enhance their living indepen-
dence and quality of life.

7.2 Personalisation

Another new potential feature of wearable intelligence system
is personalization, which are reflected by offering specific
memory training programs, customized guidance and recom-
mendations regarding personal life style to older people with
dementia. Traditional memory training or supportive tools are
relatively disappointing and easily frustrating to users due to
dull and tedious content or ignorant and rigid task reminder,
like the Method of Loci and Lumosity. The design of these
tools is not customized to end users in terms of their interest,
emotion, lifestyles or circumstances. Wearable Intelligence
System will build its memory services upon a large collection
of multi-dimensional experience based lifelogging personal
data or information. It can provide more interesting and
personalised programs and recommendations to dementia pa-
tients. This feature will significantly empower and motivate
the targeted users to use wearable intelligence system in their
daily life, which will bring a great convenience and help to
them.

7.3 Training and Rehabilitation

Finally, wearable intelligence system could be an innovative
way for memory training and cognitive rehabilitation for de-
mentia people, which will rely on the extraction and utilization
of salient memory cues through aggregating multi-
dimensional personal lifelogging data for triggering their re-
membering. As indicated before, the memory deterioration of
dementia people is a very complex filed of work, and hardly
solved by single type of training or intervention strategy.
Especially, assessing the effects of these strategies needs large
volume of training data, testing and validation. Wearable

Intelligence System will stand as an opportunity to clinicians
and researchers to explore new approaches of memory train-
ing and cognitive rehabilitation, and of assess generalization
by testing cognitive, behavioral, quality of life, functional,
mood, and psychological wellbeing outcomes.

7.4 Technology Innovation

Technology innovation is one of the keys to the success of the
wearable intelligence system for dementia care. The design
and implementation of wearable intelligence system requires
active involvement of the end-users, the collaboration and
exploration between different technique partners. The key
technology innovation will potentially cover four aspects.A
wearable intelligence system could feature an innovative tex-
tile based unobtrusive wearable context monitoring technique
for automatic collection of multi-dimensional personal life-
logging data and information. Historically, the innovation of
unobtrusive sensing technologies and wearable devices is
closely coupled with the advancements in electronics (Zheng
et al., 2014). For instance, the core technologies of electrocar-
diogram (ECG) devices have evolved from water buckets and
bulky vacuum tubes, bench-top, and portable devices with
discrete transistors, to the recent clothing and small gadgets
based wearable devices with integrated circuits (Zheng et al.,
2014). There is a clear trend that the wearable devices are
getting smaller, lighter, less obtrusive and more comfortable
to wear. Thus, wearable intelligence system will develop an
innovative textile wearable device which is capable of moni-
toring a variety of personal physiological parameters and en-
vironment factors, including place and location, people
interacted, daily activities, behaviour, objects, temperature,
etc.

Wearable intelligence system could also generate some ef-
fective lifelogging context-based knowledge discovery and
adaptive recommender approaches, for supporting the extrac-
tion of useful memory cue and provides intelligent
personalised, context-dependent recommendations to older
people with dementia. In light of life-logging data mining, a
large number of knowledge discovery approaches and intelli-
gent recommendation methods have been used in the social
media based user-generated content, like Park et.al proposes a
news recommendation system that exploits a graph-based
model to analyse the relationship held among user comments
(Park et al., 2012); Shepitsen et.al identify correlations among
groups of tags by means of a hierarchical clustering algorithm
for enhance the quality of tag-based recommended system
(Shepitsen et al., 2008). But these techniques are hardly
utilised into processing multidimensional life-logging data,
due to the diversity and uncertainty of data. Hence, wearable
intelligence system could develop a semantic interpretation
based knowledge discovery approach to effectively aggregate
these multi-dimensional lifelogging data as a meaningful
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context. This approach will perform semantic analysis and
enrichment of lifelogged data, construct a concept space by
indexing life-logged data, and select concepts with high-level
semantic features as useful memory cues. Though this ap-
proach, Wearable Intelligence System will have huge advan-
tages on the quality, accuracy, and comprehensiveness of
extracting and selecting memory cues from multi-
dimensional personal life-logging data over existing knowl-
edge discovery approaches, especially for multimedia data.

With respect to intelligent reasoning, wearable Intelligence
system could utilise some hybrid, contextualized and adaptive
recommender algorithms to assist people with dementia in
their daily routines by providing suggestions and context spe-
cific information. The recommendation algorithm will rely on
two types of data resources: personal life-logging data and
web-based information. The former one will provide the
knowledge of user’s daily life-style or environments to rec-
ommendation algorithms; the latter one will ensure sufficient
source of information for searching by recommendation algo-
rithms. In fact, making use of the rich information source will
allow recommendation algorithms to response the high quality
of feedbacks and suggestions. Also, research also suggests
many people and patients are actively involved in Internet
discussions to discuss their health status (Natalie Armstrong
& Powell, 2009; Lorig et al., 2002), hence the internet re-
source is an effective means of searching suitable suggestions
on health style to old people with dementia.

Thus, the recommender algorithms in wearable intelligence
System will reason the daily request from the old people with
dementia by offering the most useful, personalised, clear feed-
backs, in terms of their different circumstances. Wearable
Intelligence System also features some tangible, personalised
and adaptive user-centered interaction approaches to older peo-
ple with dementia, for effectively accessing IMC memory train-
ing applications and easily acquiring and understanding the per-
sonal recommendations with memory cues. Towards ageing
population, especially dementia people, cognitive changes and
perceptual abilities decline can strongly influence their attitudes
on accepting new technologies (Fisk et al., 2009).

To reduce these problems, touch screen interfaces are more
frequently being used to assist the technology experience of
older adults as they require direct input, require large button
targets and eliminate the need for multi-components (Jin et al.,
2007). These features mean that items are larger on the screen,
making them (a) easier to see and (b) easier to select accurate-
ly. Furthermore, the use of virtual buttons on the screenmeans
that older users do not require as much strength to select a
target, and they also do not have to divide their attention
between the keypad and the screen. Thus, wearable intelli-
gence system should design and develop a tangible interaction
interface for mobile devices with touchscreen, like iPad or
Microsoft Surface, which can support the facilitation of mem-
ory training programs or applications with visual, audio or

other tangible artefacts e.g. photographs, videos. Meanwhile,
Wearable Intelligence System could also develop multimodal
adaptive user interface for mobile devices with capability of
exploiting user preferences, stress, emotions and behavior.
These innovative user-center interaction approach will strong-
ly empower old people with dementia to use mobile devices or
touch screen, and to improve the effectiveness of psychosocial
interventions that foster the well-being and quality of life of
people with dementia.

8 Conclusions

Focusing on improving quality of dementia care in healthcare
4.0, we give a systematic review on advanced multimodal
wearable intelligence techniques for dementia care.
Wearable intelligence enabled technology in dementia care
will enable faster and safer preventive care, lower overall cost,
improved patient-centered practice and enhanced sustainabil-
ity. In this survey, we proposed one framework for reviewing
the current research of multimodal wearable intelligence tech-
niques, and key enabling technologies, major applications,
and successful case studies in dementia care, and finally points
out future research trends and challenges. We address some
fundamental problems related to human factors, intelligence
design and implementation, and security, social, and ethical
issues. It will be helpful to researchers with different back-
grounds in further exploring wearable intelligence for demen-
tia care in Healthcare 4.0.
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