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Abstract
1. Automated, ship- board flow cytometers provide high- resolution maps of phyto-

plankton composition over large swaths of the world's oceans. They therefore 
pave the way for understanding how environmental conditions shape community 
structure. Identification of community changes along a cruise transect commonly 
segments the data into distinct regions. However, existing segmentation methods 
are generally not applicable to flow cytometry data, as these data are recorded as 
‘point cloud’ data, with hundreds or thousands of particles measured during each 
time interval. Moreover, nonparametric segmentation methods that do not rely on 
prior knowledge of the number of species are desirable to map community shifts.

2. We present CytoSegmenter, a kernel- based change- point estimation method for 
segmenting point cloud data. Our method allows us to represent and summarize a 
point cloud of data points by a single element in a Hilbert space. The change- point 
locations can be found using a fast dynamic programming algorithm.

3. Through an analysis of 12 cruises, we demonstrate that CytoSegmenter allows 
us to locate abrupt changes in phytoplankton community structure. We show 
that the changes in community structure generally coincide with changes in the 
temperature and salinity of the ocean. We also illustrate how the main param-
eter of CytoSegmenter can be easily calibrated using limited auxiliary annotated 
data.

4. CytoSegmenter is generally applicable for segmenting series of point cloud data 
from any domain. Moreover, it readily scales to thousands of point clouds, each 
containing thousands of points. In the context of flow cytometry data collected 
during research cruises, it does not require prior clustering of particles to define 
taxa labels, eliminating a potential source of error. This represents an important 
advance in automating the analysis of large datasets now emerging in biological 
oceanography and other fields. It also allows for the approach to be applied during 
research cruises.
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1  | INTRODUC TION

Determining the number and locations of abrupt changes in distribu-
tion of a sequence of observations has played an important role in an-
alyzing ecological data. The study of change points in marine ecology 
and oceanography dates back several decades. Legendre et al. (1985) 
performed change- point detection on time series of zooplankton 
counts near the Mediterranean Sea and in a reservoir in Quebec in 
the late 1960s and 1970s, respectively. Since then, change points in 
time have been studied at a wide range of spatial and temporal scales. 
Spatially, this includes large- scale changes in environmental and/or 
biological variables measured in the North Pacific and North Atlantic 
(Friedland et al., 2016; Hare & Mantua, 2000; Mantua et al., 1997) 
and smaller scale changes in the abundance of species in seas, lakes 
and estuaries (Alvarez- Fernandez et al., 2012; Gal & Anderson, 2010; 
Thomson et al., 2010; Weijerman et al., 2005). The time scale be-
tween change points depends on the causes of the changes. For 
example, studies have examined interdecadal changes in the North 
Pacific related to changes in the climate (Mantua et al., 1997), month- 
long changes caused by eutrophication (Pace et al., 2017) and daily 
changes due to vertical migration (Bianchi & Mislan, 2016).

While all of the aforementioned literature focuses on change 
points in time, it is equally possible to detect change points in space. 
For example, Nieuwhof et al. (2018) detected changes in water stor-
age capacity as the distance from shellfish reefs increased, and Li 
et al. (2019) identified the boundary of the Antarctic Intermediate 
Waterway. In this work, we draw on ideas from the nonparametric 
statistics and machine learning literature and develop a retrospec-
tive change- point estimation method for series of point cloud data 
that can be applied to segment flow cytometry data. Point cloud data 
here are a series of observations, where each observation (occurring 
at a given time point) consists of a large collection of measurements 
as opposed to a single measurement.

Over the past three decades, flow cytometry has become instru-
mental in determining the distribution of phytoplankton communities 
(Sosik et al., 2010). Flow cytometry measures light scattering and fluo-
rescence emissions of individual cells at rates of up to thousands of 
cells per second. Light scattering is proportional to cell size, and fluo-
rescence is unique to the emission spectra of pigments; together, 
these parameters can be used to identify populations of phytoplank-
ton with similar optical properties. Automated flow cytometers such 
as CytoBuoy (Dubelaar et al., 1999), FlowCytobot (Olson et al., 2003) 
and SeaFlow (Swalwell et al., 2011) have provided unprecedented 
views of the dynamics of phytoplankton over multiple scales that vary 
from basin level to mesoscale to microscales. It is now recognized that 
phytoplankton populations are organized in sub- mesoscale patches 
(10– 100 km) separated by physical fronts induced by horizontal stir-
ring and separating water masses of different origin (d'Ovidio 

et al., 2010). Consequently, a change in the phytoplankton assemblage 
is expected to occur when different water masses mix together 
(Ribalet et al., 2010). The recent release of SeaFlow data collected un-
derway during cruises1 conducted in the North Pacific Ocean offers 
unique opportunities to study how phytoplankton communities vary 
over multiple spatial and temporal scales (Ribalet et al., 2019).

Performing change- point analysis on underway flow cytometry 
data would allow us to segment a cruise into statistically distinct re-
gions based on measures such as the scatter and fluorescence of 
individual particles. However, the underway flow cytometry data 
produced by instruments such as SeaFlow present novel challenges 
not addressed by existing segmentation methods. Seaflow continu-
ally takes measurements of individual phytoplankton, and a batch of 
thousands of measurements is recorded for each 3- min time period 
(roughly at a 1 km spatial resolution). Hence, the data corresponding 
to one 3- min time period can be viewed as a point cloud of phyto-
plankton measurements. Moreover, as the dataset collected during 
any given research cruise might contain more than 50 million phyto-
plankton measurements, the method must scale.

Methods that have been used in ecology and oceanography for 
detecting change points generally fall into one of the three categories. 
First, there are methods that repeatedly perform hypothesis tests at 
every location in the time series and set a testing threshold to yield 
an appropriate number of change points (Clarke, 1993; Matteson & 
James, 2014; Page, 1954). Second, there are methods that estimate 
the locations of a large number of potential change points and then 
prune them using a penalty term or hypothesis testing (Gordon & 
Birks, 1972). Finally, there are methods that fit a single model to the 
time series that allows for an unknown number of changes at unknown 
times (Fearnhead, 2006; Goldfeld & Quandt, 1973; Hamilton, 1990). 
However, nearly all of these approaches assume that the data are ei-
ther real- valued or vectorial, that is, that each observation is a vector 
of fixed dimension. Applying such methods by reducing each point 
cloud to its mean as done by Hyrkas et al. (2015) results in the loss of 
important information regarding the distribution of the data in each 
point cloud. Of the cited methods, only the dissimilarity- based ap-
proaches of Clarke (1993) and Gordon and Birks (1972) could poten-
tially be applied to data consisting of sequences of point clouds. Even 
if these methods were used, an appropriate dissimilarity measure 
would still need to be chosen and a principled method for determining 
the number of changes would need to be proposed.

In this work, we develop a nonparametric statistical method for 
identifying abrupt changes in large- scale series of point clouds of mea-
surements. The method is nonparametric in that it does not require the 
modeller to specify a parametric family of probability distributions. It 
therefore has the advantage that, given enough samples, it can detect 

 1We henceforth refer to such data as ‘underway data’.

K E Y W O R D S

change- point detection, community structure, flow cytometry, nonparametric statistics, 
phytoplankton community, point cloud data
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any change in probability distribution. Moreover, it is capable of scal-
ing to sequences of thousands of point clouds, each with thousands 
of points. We demonstrate the approach by segmenting SeaFlow data 
along cruise tracks. We also assess how closely estimates of biological 
change points coincide with physical shifts to better understand the role 
of the physical ocean environment in controlling phytoplankton commu-
nity structure and to estimate the number of biological change points.

2  | MATERIAL S AND METHODS

2.1 | SeaFlow data

To date, the SeaFlow flow cytometer has been used in more than 
60 cruises in the North Pacific Ocean. In this work, we focus on 12 
of those cruises. These cruises are all of the cruises that are neither 
coastal cruises nor cruises around the Hawaiian islands and for which 
data are available. The diverse range of locations of the cruises is 
depicted in Figure 1 and some characteristics of the cruises may be 
found in Table 1. Both physical and biological data were collected 
from the ship's flow- through seawater system (intake between 4 and 
7 m depth, depending on the ship and sea state). Note that change 
points in some cruises (e.g. KOK1606) can occur more than twice as 
often as in others (e.g. KM1713).

The data we use consist of two components. First, there is phys-
ical data, which contain measurements of sea surface temperature 
and salinity collected at 3- min intervals throughout the cruises from 
the ship's underway thermosalinograph system. Second, there is bi-
ological data, which contain measurements of light scatter and flu-
orescence emissions of individual particles. The biological data are 
organized into point clouds resolved to 216 discrete values recorded 
every 3 min. The light intensity measured by a photomultiplier tube 
(PMT) is converted via a pre- amplifier to a voltage that is then input 
into a logarithmic amplifier to allow for the visualization of at least 

four decades of dynamic range on a single graph. It also makes log- 
normal distributions, common to biological systems, appear more 
symmetric. The upper bound in light scatter and fluorescence in-
tensity values, which indicates saturation of the photo- multiplier, 
depends on the degree of signal amplification that is controlled by 
the PMT voltage set by the operator. It therefore can vary slightly 
from cruise to cruise. Each post- processed point cloud contains mea-
surements of between 100 and 10,000 particles ranging from 0.5 
to 5 microns in diameter. The volume of data in any given file de-
pends on the total abundance of phytoplankton within the sampled 
region. Each particle is characterized by two measures of fluores-
cence emission (chlorophyll and phycoerythrin), its light scatter and 
its label (identified based on a combination of manual gating and a 
semi- supervised clustering method) (Ribalet et al., 2019). Note that 
we use the particle labels only for verification of our approach.

The data are cleaned as follows. For the physical data, we first 
remove the observation times that are not in chronological order. 
Next, we discard observations for which the temperature and salin-
ity are unavailable or are not between the 1st and the 99th percen-
tiles across all cruises (i.e. between 5℃ and 30℃ for temperature 
and 29 PSU and 38 PSU for salinity). For the biological data, we 
exclude files for which the physical data are not available. We also 
delete the entries corresponding to added calibration beads rather 
than phytoplankton. Prior to performing the analysis, we take the 
log (base 10) of the biological data and standardize the physical and 
biological data separately for each cruise.

One downside to this dataset is that there are no ground- truth 
change points in either the biological data or the physical data that 
could be used to evaluate our method. To ameliorate this problem, we 
manually annotated change points in the physical data using the fol-
lowing reasoning. Shifts in phytoplankton community structure often 
occur where different water masses, with distinct temperature and 
salinity properties, meet (d'Ovidio et al., 2010). As such, large changes 
in water temperature and salinity measured from a travelling vessel 

FIGURE 1 Locations of the cruises 
analyzed in this paper, overlaid on sea 
surface temperature data from April 26, 
2016.2 In this work, we primarily focus on 
KOK1606, the cruise in black in the 
middle of the map, which took place from 
April 20 to May 4, 2016

 2NOAA OI SST V2 data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, 
from their website at https://psl.noaa.gov/.

50°N '\_) , 

30°N 

10°s 

SO"S ~-~-~--~-~--~----~---------~-~ SO"S 
100°E 120°E 140°E 160°E 1so0 160°w 140°w 120°w 100°w so0 w 60°w 40°w 20°w 

30 

25 

20 G 
0 

~ 

~ 
15 ~ 

:;; 
c.. 
E 
0) 

10 E-< 

0 

https://psl.noaa.gov/


1690  |    Methods in Ecology and Evoluon JONES Et al.

are diagnostic of travelling from one water mass to another. In this 
study, we examined the underway temperature and salinity data mea-
sured at around 5- m depth and identified such water mass shifts as 
occurring where the temperature varied by >2℃ and/or the salinity 
varied by >0.4 PSU over a distance of 20 km or less. For each cruise, 
these transitions between water masses were manually annotated as 
the halfway point along lines that connect two clusters of points in a 
temperature– salinity diagram. This is illustrated in Appendix S1.

2.2 | Change- point analysis on point clouds

The goal of change- point estimation here is to locate changes in 
distribution of an ordered sequence of point clouds x1, …, xT from 
a given cruise. For each time index t, the point cloud xt = {xt,1, …, 
xt,nt} consists of nt points (particle measurements) xt,i ∈ ℝd. Changes 
in distribution often occur in the mean of the point clouds (e.g. the 

average forward scatter and chlorophyll of particles we measure 
might suddenly increase and the distribution of phycoerythrin might 
remain the same) but can also occur in higher- order moments of the 
data such as the variance (e.g. the variance of the forward scatter, 
chlorophyll and phycoerythrin of particles we measure might all sud-
denly increase, even though their means might remain the same). 
Therefore, assume the points within each point cloud xt are samples 
from an unknown probability distribution ℙt. We seek to estimate 
the times at which the distributions ℙt change, that is, the times t 
where ℙt ≠ ℙt+1, to divide the sequence of point clouds into seg-
ments that are homogeneous in probability distribution.

Henceforth, we will denote the (unknown) number of change 
points by m and the change- point times by t1 < t2 < … < tm. We 
furthermore define t0 := 1 and tm+1 := T + 1. We will now present 
CytoSegmenter, our approach to change- point analysis on sequences 
of point clouds. A high- level overview is provided in Figure 2. For a 
more detailed version, see Figure S2.

Cruise Location
Length 
(km)

# point 
clouds # particles

# 
changes

KM1502 Portland– Hawaii 3,987 3,711 6.4 million 43

KM1712 Hawaii– Alaska 5,910 10,468 12.5 million 48

KM1713 Alaska– Hawaii 4,458 8,959 13.7 million 27

KN210- 04 South Atlantic 14,101 18,423 57.0 million 92

KOK1606 Subtropical front 4,005 6,685 2.3 million 59

MGL1704 Subtropical front 4,939 6,794 5.8 million 32

TN248 Gulf of Alaska 1,802 943 0.1 million 28

TN271 Seattle– Hawaii 4,527 3,566 1.0 million 41

TN292 Seattle– Hawaii 3,864 3,086 2.8 million 29

Tokyo_1 North Pacific 11,383 4,872 0.9 million 66

Tokyo_2 North Pacific 11,481 5,145 1.5 million 40

Tokyo_3 North Pacific 11,663 5,772 3.2 million 118

TA B L E  1   Details of the cruises used. 
The column ‘# changes’ provides the 
number of change points in the annotated 
physical data

F I G U R E  2   Outline of the proposed 
approach

Manual 
annotations of 
physical data 

Physical data for each cruise 
(standardized) 

Apply change
point estimation 

(with the 
linear kernel) 

Tune the penalty 
parameter a from 
Lebarbier (2005) 
for each cruise 

via a leave-one
out approach 

Estimated num
ber of physical 
chauge points 
in each cruise 

Biological data for each cruise 
(log base 10 transformed 
and then standardized) 

Apply the 
Nystrom method 

with the RBF 
kernel using the 
rule-of-thumb 

bandwidth 

Apply kernel 
chauge-point 

estimation with 
the RBF kernel 

using the rule-of
thumb bandwidth 

Estimated 
locations of 
biological 

chauge points 
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2.2.1 | Change- point estimation

A natural way of segmenting a sequence of point clouds into a fixed 
number of parts is to define a notion of similarity between point 
clouds, and to divide the sequence into contiguous sets of similar 
point clouds. We will define such a similarity measure using the notion 
of a positive semi- definite (PSD) kernel. Here a PSD kernel is a func-
tion k:� ×� → ℝ for some non- empty set � such that there exists a 
Hilbert space ℋ (i.e. a complete metric space with an inner product) 
and a map �:𝒳 → ℋ such that for all x, x� ∈ 𝒳, k(x, x�) = ⟨�(x),�(x�)⟩

ℋ
 

(Shawe- Taylor & Cristianini, 2004). The notation ⟨⋅, ⋅⟩
ℋ

 denotes an 
inner product in ℋ. There are numerous benefits to the kernel view-
point. For example, this approach can be applied to generic sets �,  
so long as a PSD kernel can be defined on � ×�. Moreover, for ker-
nels like the one we will use, we do not need to make any assump-
tions about the distribution of the data. Numerous examples of PSD 
kernels can be found in Shawe- Taylor and Cristianini’s (2004) book. In 
this work, we will use the radial basis function (RBF) kernel kp:� ×� 
→ ℝ defined by kp(xt , xt�) = exp

(
−d(xt , xt�)

2∕
(
2�2

y

))
, where d:� ×� 

→ ℝ is a distance measure between two point clouds, � is the space 
of point clouds and 𝜎y > 0 is the bandwidth of the kernel. When the 
distance between two point clouds is small, the point clouds are more 
similar, and when the distance is large, the point clouds are less similar.

The key then lies in defining the distance between a pair of point 
clouds. One way to look at a point cloud is to see it as an empirical 
probability density. One could then define the distance between 
two point clouds as the distance between nonparametric den-
sity estimates of the point clouds (Anderson et al., 1994). Gretton 
et al. (2012) extend this idea, defining a distance called the maximum 
mean discrepancy (MMD) between two sets of points. The MMD 
uses another kernel, kx :ℝd × ℝ

d
→ ℝ, defined this time on a pair of 

points rather than a pair of point clouds. In particular, the squared 
MMD distance between two point clouds xt and xt′ is defined as

The first and third terms measure the similarity of points within 
the two point clouds while the second term assesses the similarity of 
points across the two point clouds. When the second term is smaller 
in magnitude relative to the other two terms, that is, the points across 
point clouds are relatively dissimilar, the distance is larger. In prac-
tice, we will take kx to be another RBF kernel, defined as kx(xt,i , xt�,i�)=
exp(− ||xt,i−xt�,i�||2∕(2�2x )), where 𝜎x > 0 is the bandwidth of the kernel. 
This kernel satisfies the assumptions required for the theory of kernel 
embeddings of distributions to hold (Gretton et al., 2012). The quantity 
(1) can be related to the notion of a mean element; see Appendix S2.1.

Having defined a notion of similarity, we now consider estimat-
ing the locations of a fixed number, m, of change points. To do so, 
we solve the following kernel change- point problem to locate the 
change points t1, …, tm:

This can be viewed as minimizing a least- squares criterion 
(Harchaoui & Cappé, 2007). Intuitively, the terms within the brack-
ets assess how similar point clouds within a proposed segment are: 
the first sums how similar each point cloud is to itself and the second 
subtracts how similar each point cloud is, on average, to the other 
point clouds in the segment 

{
xtj , …, xtj+1−1

}
.

The optimization can be performed efficiently using a dynamic pro-
gramming algorithm similar to the one described by Kay (1993, Ch. 12). 
A straightforward implementation of the dynamic programming algo-
rithm for a fixed m would make O(T2) evaluations of the objective (2), 
which itself can be evaluated with a time complexity (maxt nt)2. To scale 
the approach to long series of data, we propose to use an approximation 
scheme, the Nyström method (Williams & Seeger, 2000), to approxi-
mate the kernel evaluations in (1). This leads to a complexity in time that 
is linear in the number of points per point cloud rather than quadratic, 
allowing us to analyze series of tens or hundreds of millions of data 
points. For details on this approximation scheme, see Appendix S2.2.

2.2.2 | Parameter calibration and domain knowledge

We leverage auxiliary data with change- point annotations to set the 
number of change points in each sequence of point clouds. We as-
sume here that we have (a) a parallel vectorial time series in which 
the number of change points is unknown but expected to be the 
same as in the time series of interest (in this paper, the physical data 
from the same cruise) and (b) a set of S similar vectorial time series 
for which the numbers of change points are known (in this paper, 
physical data from other cruises). The idea is that it can be easier to 
obtain change- point labels for time series of vectorial data than for 
time series of point cloud data.

We first use the S vectorial time series in (b) to calibrate 
the penalty parameter α from the penalty pen(�,m)=�(m+1)

(2log(T∕(m+1))+5)∕T in the penalized change- point problem of 
Lebarbier (2005). We set the value of α so that, across all S se-
quences, the difference between the annotated number of change 
points and the estimated number of change points in these vecto-
rial sequences is minimized. Using this estimated α, we then run 
the method of Lebarbier (2005) on the corresponding parallel se-
ries of vectorial data in (a). This provides us with an estimate of 
the number of change points m in the corresponding sequence of 
point clouds, which we use when minimizing the objective in (2). 
For more details, see Appendix S2.3.

To assess the quality of the resulting estimated change points, we 
can compute the distance from each biological change point to the 
nearest annotated physical change point. It is reasonable to expect 
that to first order, shifts in phytoplankton community structure (bi-
ological change points) should occur where different water masses 
meet (physical change points). In reality, due to physical mixing 

(1)d(xt , xt�)
2 =

1

n2
t

nt∑
i,j=1

kx(xt,i , xt,j)−
2

ntnt�

nt∑
i=1

nt �∑
j=1

kx(xt,i , xt�,j)

+
1

n2
t�

nt �∑
i,j=1

kx(xt�,i , xt�,j).

(2)min
t1,...,tm

1

T

m�
j=0

⎡
⎢⎢⎣

tj+1 −1�
t= tj

kp(xt , xt) −
1

tj+1 − tj

tj+1 −1�
t,s= tj

kp(xt , xs)

⎤
⎥⎥⎦
.
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processes and lags in biological responses to changes in the physical 
environment, biological change points may not coincide exactly with 
physical change points. That said, if the majority of biological change 
points occur within a short distance of the nearest physical change 
point, this acts as a useful check on the validity of our method. For 
a given cruise, if t1, …, tm and t�

1
, …, t�

m�
 are the estimated and anno-

tated change points, respectively, then in terms of distance travelled 
(by abuse of notation), we could compute for each estimated change 
point tj the value min

�=1,…,m�
|||tj − t�

�

|||. However, change points can be 
encountered at different rates during different cruises. Therefore, 
we normalize the aforementioned distances by the average distance 
between change points in each cruise. That is, for each estimated 
change point tj, we compute min

�=1,…,m�
|||tj − t�

�

||| ∕(T∕(m� + 1)), where 
T is the total distance travelled in the corresponding cruise.

The other parameters that need to be calibrated are the param-
eters of the two kernels we use. For each RBF kernel, we set the 
bandwidth to the median pairwise distance between inputs, a com-
mon rule of thumb. We perform the Nyström approximation with 
the projection of the kernel onto a subspace of size 128 (chosen as a 
reasonable balance between the accuracy of the kernel approxima-
tion and the runtime). We select the quadrature points by quantizing 
the data into a codebook of size 128 using 100 iterations of k- means. 
To target phytoplankton community shifts associated with larger- 
scale oceanographic features, such as mesoscale eddies (~100 km) 
and gyre boundaries, and to avoid generating a large number of 
change points associated with high- frequency variability, we set the 
minimum distance between change points to be five samples, which 
represents 15 min or roughly 5 km for a ship moving at 10 knots.

2.2.3 | Code

The code for this paper, written in Python, builds upon Scikit- learn 
and Faiss (Johnson et al., 2019; Pedregosa et al., 2011). Code for the 
Nyström method and the kernel change- point estimation algorithm 
may be found online at https://github.com/cjone s6/chapy dette 

while the code to reproduce the results in this paper is located at 
http://github.com/cjone s6/cytos egmenter. All of the analyses, in-
cluding the feature generation and change- point estimation, take 
approximately 22 min in total to run on a machine with an Intel i9- 
7960X processor, an Nvidia Titan Xp GPU, and 128GB of memory.

3  | RESULTS

In applying CytoSegmenter, the kernel change- point method de-
scribed in Section 2.2, to SeaFlow data, we aim to answer the fol-
lowing questions:

1. Does the method successfully estimate changes in the distri-
bution of phytoplankton communities?

2. Do the estimated change points in the biological data coincide 
with change points in the physical environment?

3. Can we leverage additional data on the physical environment 
from other cruises to estimate the number of change points?

For the first two questions, we focus on a single cruise, KOK1606. 
As the number of change points in a cruise can be subjective, we ini-
tially fix the number of change points to 10. For the third question, 
we expand the analysis to all cruises and estimate the number of 
change points in each cruise.

3.1 | Changes in distribution

We first aim to assess whether CytoSegmenter successfully esti-
mates changes in the distribution of phytoplankton along the course 
of a cruise. To do so, we run the change- point estimation method 
on the biological measurements taken on the KOK1606 cruise when 
fixing the number of change points to 10. The locations of the result-
ing estimated change points are non- uniformly distributed across 
the cruise track (Figure 3).

F I G U R E  3   Estimated change points 
in the biological data from the KOK1606 
cruise overlaid on the phytoplankton 
distribution observed during the cruise 
when the number of change points is 
fixed at 10. For reference, with 11 change 
points the next change point would be 
at 2078 km. The arrows at the top of the 
figure indicate the change- point locations 
examined in Figure 4
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We assess the quality of the estimated change points in three 
ways. First, Figure 3 overlays the estimated change points on a plot 
of the phytoplankton distribution observed at each 3- min time pe-
riod throughout the course of the cruise. It illustrates that the algo-
rithm locates large, abrupt changes in the phytoplankton community 
structure. For example, the algorithm detected the large increase 
from 5% Synechococcus to 18% Synechococcus at approximately 
1,091 km along the cruise track.

Next, for the change points at 449 and 1,091 km, we plot in 
Figure 4 the distribution of the chlorophyll and the light scatter mea-
surements 5 km before and after the estimated change points. Recall 
that the cell labels were not available to our method; only the cell 
measurements were. There is a sudden increase between both 444 
and 454 km and between 1,086 and 1,096 km in the fraction of cells 
that have light scatter between 101.5 and 102.5 and chlorophyll fluo-
rescence between 101 and 102. From the labels, we can see that this 
corresponds to an increase in the fraction of Synechococcus. We have 
included in Figure S3 the analogous plots with phycoethryin and 
light scatter. The changes in distribution are also visible in the phy-
coethryin versus light scatter space. For comparison, we also add in 
Appendix S3.1 the corresponding chlorophyll and light scatter plots 
for two times at which we did not detect change points. The differ-
ences in the univariate densities are much more pronounced around 
the estimated change points than around these times at which we 

did not estimate a change point. These changes can also be seen 
by examining how the average similarity between points in a point 
cloud differs before and after change points; see Figures S5– S7.

Finally, a distinctive feature of the KOK1606 cruise is that the 
northward and southward cruise trajectories were nearly identical, 
occurring over a period of 3 weeks (see Figure 5, which displays the 
track of the research vessel with the estimated change points over-
laid). This provided us with a method to check the efficacy and con-
sistency of our method, as we expect that change points detected on 
the northbound transect should be similarly detected on the south-
bound leg. This is generally the case, as four pairs of change points 
are within 61 km of each other. Given that the ocean is a dynamic 
environment subject to constant movement driven by ocean cur-
rents, it is likely that the detected change points could shift in space. 
Surface mean current speeds in the region of the Pacific sampled 
by the KOK1606 cruise are ~0.1 m/s (Lumpkin & Johnson, 2013), 
which could drive a displacement of ~60 km over the course of a 
week. Spatial shifts in the ocean temperature during the cruise (cf. 
Figure 6) support this hypothesis. The close spacing between our 
outbound and return change points confirms that our method is able 
to detect change points sampled more than once.

In Appendix S3.2, we include the results of a sensitivity analy-
sis of the parameters of our method. We find that the results are 
rather insensitive to the parameter values we set: for projections of 

F I G U R E  4   Distribution of the chlorophyll measurements and the light scatter measurements of phytoplankton five kilometers before 
and after estimated change points at 449 km and 1,091 km along the cruise track (KOK1606 in Table 1)
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dimension 8 through 128, the estimated change points vary by at 
most 1 km. Moreover, the RBF kernel with the rule- of- thumb band-
width and the linear kernel yield change- point estimates that dis-
agree by at most 2 km. When varying the bandwidth within a wide 
range, from 0.058 to 0.63, eight of the ten change points differ by 

at most 5 km. Finally, the minimum distance between change points 
had no impact.

We include in Appendix S3.3, a study of the variance of the es-
timated change point locations. For this, we divided the cruise into 
10 disjoint subsamples, obtained by specifying a starting index be-
tween 1 and 10 and then taking every 10th point cloud thereafter. 
Across all subsamples, there are only 11 different intervals of width 
at most 37 km in which the change points lie. This suggests that the 
algorithm is quite confident in the locations of 9 of the 10 originally 
estimated change points.

3.2 | Correspondence between biological and 
physical change points

To better understand the controls on phytoplankton distributions, 
we need to gain a better understanding of the balance between 
physical and biological controls in driving shifts in species' distribu-
tions, which are reflected as shifts in overall phytoplankton com-
munity structure. By comparing the location of physical change 
points (based on surface temperature and salinity) and biological 
change points (based on SeaFlow data), we can begin to understand 
how important changes in the physical environment control phyto-
plankton community structure. The left side of Figure 6 plots the 

F I G U R E  5   Estimated change points in the biological data from 
the KOK1606 cruise overlaid on the track of the ship. Beginning in 
Hawaii, the ship travelled north (silver solid line) and then turned 
around and went south (blue dashed line). The change points 
detected on the trip north are marked with black crosses while 
the change points detected on the trip south are marked with red 
pluses

F I G U R E  6   Change points in the biological and physical data from the KOK1606 cruise overlaid on the temperature and salinity data 
recorded during the cruise. The two plots on the left display the estimated biological and estimated physical change points when fixing the 
number of change points to 10. The two plots on the right display the estimated biological change points when the number of change points 
is 65 (the number our method estimated), along with the 59 manually annotated physical change points
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estimated change points overlaid on the temperature and salinity 
measurements throughout the cruise when the number of change 
points in both the physical and biological data is fixed to 10. The 
estimated physical and biological change points are within 20 km of 
each other 60% of the time. However, even when they do not quite 
coincide, the estimated biological change points are associated with 
large changes in temperature and salinity. These results suggest that 
shifts in phytoplankton community structure are largely associated 
with corresponding shifts in physical ocean properties. The results 
support previous work that showed that water masses play an im-
portant role in structuring phytoplankton communities (e.g. d'Ovidio 
et al., 2010).

3.3 | Estimation of the number of change points

Now, we examine the results from estimating the number of change 
points. For each of the 12 cruises from Table 1, we estimate the 
parameter α based on the other 11 cruises, thereby obtaining one 
value of α per cruise. When considering the grid of α's 0, 0.01, 0.02, 
…, 1 in the penalty of Lebarbier (2005), the value chosen is always 
either 0.12 or 0.13. The corresponding number of estimated physi-
cal change points for each cruise is presented in the left panel of 
Figure 7. In this case, the correlation between the number of esti-
mated change points and the number of annotated change points 
is 0.62. Moreover, the number of estimated change points for 9 
of the 12 cruises is within a factor of two of the number of anno-
tated change points. This suggests that when annotated physical 
data for a given cruise are unavailable, the number of change points 
might be reasonably estimated from annotations of other cruises. 
In Appendix S3.4, we compare this approach to that of Harchaoui 

and Lévy- Leduc (2007) and demonstrate the superiority of this 
approach.

Using the estimated number of change points in the physical data 
from each cruise, we estimate the locations of change points in the 
biological data from each cruise. The right panel of Figure 7 plots a 
histogram of the normalized distances from each estimated biolog-
ical change point to the nearest annotated physical change point. 
Approximately 52% of the estimated change points are within a nor-
malized distance of 0.25 to the nearest annotated physical change 
point. In contrast, if we uniformly segmented each cruise (i.e. put the 
change points at equally spaced intervals), this value would only be 
43%. In fact, 21% of the estimated change points are within a nor-
malized distance of 0.05 and 33% are within a normalized distance 
of 0.1, compared to 9% and 18% based on a uniform segmentation. 
The right side of Figure 6 displays the estimated biological and anno-
tated physical change points for the KOK1606 cruise. The number 
of estimated change points is 65, whereas the number of annotated 
change points is 59. In contrast to the 10 change- point case, most of 
the locations where there are large changes in temperature and/or 
salinity are now labelled as change points.

4  | DISCUSSION

In this work, we presented a kernel- based change- point detection 
method for point cloud data. We applied the method to data col-
lected by a shipboard flow cytometer during research cruises to 
determine where changes in phytoplankton structure occur. The 
distribution of individual phytoplankton species is a reflection of 
that species' environmental niche (Hutchinson, 1957), defined as 
the range of environmental parameters within which a species can 

F I G U R E  7   Estimated and annotated number of change points on the physical data (left) and histogram of the distances from each 
estimated biological change point to the nearest annotated physical change point for the same cruise, normalized by the average distance 
between annotated change points within the cruise (right). The diagonal red line in the plot on the left denotes the locations where the 
points would ideally lie. The red dashed line in the plot on the right indicates the histogram one would obtain from uniformly segmenting the 
cruises
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subsist. Niches can be controlled by physicochemical factors such 
as temperature and nutrient availability, as well as biotic processes 
such as competition and predation. Previous studies have shown 
that changes in phytoplankton assemblages are often associated 
with physical fronts that separate water with different tempera-
ture and salinity properties (d'Ovidio et al., 2010) and consequently, 
an abrupt change in the phytoplankton assemblage is expected to 
occur across physical fronts (Ribalet et al., 2010). Here we found 
that changes in the distribution of phytoplankton generally co- occur 
with changes in temperature and salinity, suggesting that physical 
processes are driving the observed community shifts. A lack of a 
lag between physical and biological change points suggests that the 
physical changes were not associated with changes in nutrient avail-
ability or biotic process or that the formation of the physical fronts 
was recent and the phytoplankton did not have the time to adjust 
to the changes in environmental conditions. There were instances 
where biological change points did not coincide with physical change 
points. This could indicate the presence of a persistent physical front 
between water masses at a given location, or that water masses have 
been in contact and mixing for some time, which would allow for 
a larger spatial lag between physical and biological change points 
due to the temporal component of the phytoplankton response to 
that change. These results suggest that the method is able to locate 
meaningful changes in the distribution of phytoplankton, paving the 
way for estimating the number of change points in the biological 
data based on the number of change points in the physical data.

A previously proposed approach to the detection of changes in 
flow cytometry data is that of Hyrkas et al. (2015). This approach di-
rectly averages the points within each point cloud to obtain a single 
vector, which results in a significant loss of information. In contrast, 
the approach we propose here accounts for all the moments of a 
point cloud distribution, hence capturing richer statistical informa-
tion. In Appendix S3.5, we discuss a case where CytoSegmenter lo-
cated a noteworthy change point that the change- in- mean method 
failed to detect. While we focused on identifying changes in distri-
bution in a sequence of multi- dimensional point clouds, there may be 
also times in which one would want to locate both changes in distri-
bution and changes in abundance (i.e. the total number of points per 
point cloud). This can be done by substituting the kernel on point 
clouds, kx, with a weighted average of kx and a kernel kc : ℕ × ℕ → ℝ 
on abundances, for example, kc

(
nt , nt�

)
: = min

(
nt , nt�

)
∕max

(
nt , nt�

)
.

Three classically difficult facets of change- point analysis are de-
termining the number of change points, assessing the uncertainty of 
the estimated change points, and handling gradual changes. Our ap-
proach estimates the number of change points based on annotations 
of the physical data in other cruises. One could alternatively use an-
notations of the physical data from the cruise of interest, if available, 
or apply methods that would work directly on the biological data. 
The latter approach can be impeded by an over- reliance on the data 
from the cruise of interest and a lack of generalizability to a wide 
range of datasets. To assess the uncertainty of the change- point es-
timates, we subsampled the cruise. Then we applied the algorithm 
independently on each subsample, keeping the time ordering within 

each subsample consistent with the one in the original sample. How 
to construct confidence intervals around the change points and per-
form hypothesis testing after the estimation remain active research 
topics. Finally, our method is designed to detect abrupt changes, 
and therefore when there is a gradual change it tends to put a single 
change point in the middle of the change. Simultaneously detecting 
both abrupt changes and the start and end of gradual changes is left 
for future work.

Point cloud data also arise in other areas such as computer graph-
ics and computer vision (see, e.g. Suard et al., 2005). Here we have 
applied this method to identify shifts in phytoplankton community 
structure from a large dataset of underway flow cytometry measure-
ments. We envision that this statistical framework will be widely ap-
plicable to datasets structured in a similar way. A range of broadly 
similar continuously sampling flow cytometers are currently com-
mercially available (CytoSense, Imaging FlowCytobot and FlowCam) 
and collect cytometric data (e.g. scatter and fluorescence) as well as 
images of plankton cells from environmental samples. The images col-
lected by these instruments are used to identify plankton species and 
to train machine learning models for automated classification (Sosik 
& Olson, 2007), but full taxonomic analysis of images can be time- 
consuming and is generally performed post- cruise. However, these 
images can also be quickly analysed to decompose them into a collec-
tion of metrics that describe the shape and size of the cells in addition 
to their fluorescence and scatter. Applying change- point detection 
methods such as those described in this paper to metrics easily de-
rived from images can be used to quickly identify shifts in phyto-
plankton communities during cruises, allowing researchers to target 
specific features for adaptive sampling while cruises are in progress.

The approach we introduced in this paper is both fast and scal-
able, taking around 20 min to identify change points based on over 
100 million particle measurements from across 12 cruises. Going 
forward, we intend to apply the method to near- real- time data gen-
erated during research cruises to identify potential regions for more 
intensive sampling.
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