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Abstract 

 

Dynamic Measurement Modeling (DMM) is a recently developed measurement 

framework for gauging developing constructs (e.g., learning capacity) that conventional 

single-timepoint tests cannot assess. Like most measurement models, overall model fit 

indices of DMM do not indicate the measurement appropriateness for each included 

student. For this reason, other measurement modeling paradigms (e.g., Item-Response 

Theory; IRT) utilize person-fit or model appropriateness statistics to indicate whether a 

measurement model appropriately describes the data from each individual student. 

However, within the extant DMM framework, no statistical index has yet been developed 

for this purpose. Thus, the current project advanced a person-specific DMM Trajectory 

Deviance Index (TDI) that captures the aberrance of an individual’s growth from the 

model-implied trajectory. Two simulation studies were conducted to examine and 

compare the distributional properties and effectiveness of four TDI candidates with 

different formulations. Consequently, the best functioning one was determined as the final 

formulation of the TDI. The data generation model was based on the parameter estimates 

from the Technology-enhanced, Research-based, Instruction, Assessment, and 

professional Development (TRIAD) cluster-randomized experiment data, which contains 

seven waves of mathematics test scores for students from pre-school through Grade 5. 

Besides the simulation work, an empirical study was also conducted to demonstrate the 
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uses of the developed TDI within those real-world data. The results indicated that 

bilingual status was significantly related to the deviance of growth in early mathematics, 

whereas the other examined factors (i.e., intervention, age, gender, special education 

status, Socioeconomic status) were not. Incorporating TDI into DMM analysis 

strengthened the validity of score use and interpretation, and offered a quantitative means 

of determining which students in the dataset were not adequately served by the dynamic 

measurement model. 
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Chapter One: Introduction 

Work in the field of dynamic testing has suggested interesting paradigms and ideas as 

well as promising findings. The question is whether this potential can be realized in a 

branch of psychological testing characterized by consistently converging results and 

techniques that provide information over and above the data collected by conventional 

tests. We believe that dynamic testing will ultimately meet these challenges and will prove 

to be a valuable resource to the psychological profession and to the world.  

---Robert J. Sternberg & Elena L. Grigorenko, Dynamic Testing (2002) 

 

Educational researchers care about students’ potential to grow and learn as well as 

how much they currently know (Dweck, 2015; Vygotsky, 1931/1997). In the current 

educational system, single-timepoint tests (also termed static tests, Dumas, McNeish & 

Greene, 2020; Sternberg & Grigorenko, 2002) are often capable of measuring students’ 

current ability but not their future learning capacity. Dynamic assessment (DA), or a 

measurement diagram featuring multiple testing occasions with integrated instructions 

(Feuerstein, 1979; Tzuriel, 2001), is an essential methodology to capture students’ 

learning capacity or learning potential. Since Feuerstein first formalized the DA 

theoretical framework after World War II, DA associated methods have been applied in 
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empirical studies where evidence was found to support that theorizing (e.g., Feuerstein et 

al., 1987; Swanson, 1995; Sternberg et al., 2002). However, as indicated by Sternberg 

and Grigorenko (2002) in the opening quotation, although DA research demonstrated 

promising findings to researchers, it had not fully developed as a widely used 

methodological framework. Major challenges occur when applying DA theories to 

educational research and practices. For example, following Feuerstein’s 

conceptualization, clinician training and instructional interventions are required, which 

could make the operational costs of DA too high for conducting large-scale studies. 

Additionally, there was a lack of a robust statistical framework to achieve the important 

goals of DA (e.g., quantifying capacity in a reliable way; Dumas et al., 2020). These 

issues were not well-addressed until Dumas and McNeish (2017) further developed the 

DA theories and concepts. They termed their formal statistical modeling framework, 

Dynamic Measurement Modeling (DMM), to measure learning capacity by producing 

learner-specific asymptotes to a growth trajectory.  

Significance of DMM to Educational Research, Evaluation and Measurement 

Practices 

DMM integrated the DA theories and goals into modern psychometric and 

statistical approaches (Dumas et al., 2020), which lay the methodological foundation for 

educational psychologists to estimate students’ learning potential and conduct 

investigations of related topics. Since Dumas and McNeish published their initial DMM 

work in 2017 (Dumas & McNeish, 2017; McNeish & Dumas, 2017), empirical evidence 

associated with the effectiveness of DMM in research and measurement practices has 
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continued to accumulate. Up to now, DMM has been applied to the research of various 

educational and cognitive constructs such as mathematics abilities (Dumas & McNeish, 

2017; Dumas et al., 2020; Dumas, McNeish, Sarama & Clements, 2019; McNeish & 

Dumas, 2020), medicine related knowledge (Dumas, McNeish, Schreiber-Gregory & 

Durning, 2019), and reading and verbal ability (Dumas & McNeish, 2018; McNeish et 

al., 2019). More importantly, this theoretical-psychometric paradigm reveals new paths to 

deal with chronic educational problems around the world. Two examples are illustrated 

here.   

Sustained Achievement Gaps 

The achievement gap has been one of the most discussed and studied topics in 

U.S. education (Ladson-Billings, 2006) and is also extensively researched around the 

world (e.g., U.K., von Stumm, 2017; France, Crouzevialle & Darnon, 2019; Japan and 

Korea, Holloway et al., 2016). The term generally refers to the disparities in various 

measures of educational performance among subgroups of students, and these measures 

are usually single-timepoint standardized tests. However, the static measurement 

practices can only assess how much students have learned in a specific domain at the 

time of assessment rather than how much students may be capable of learning in the 

future (Dumas & McNeish, 2017; Sternberg et al., 2002). Given that students from many 

disadvantaged achievement groups (e.g., lower socioeconomic-status groups, African 

American and Hispanic groups in the U.S.) are historically marginalized, they are less 

likely to receive necessary instruction and other learning opportunities to help them catch 

up. The single-timepoint achievement scores are commonly used to predict their future 
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performance or as a reference to distribute educational resources. Consequently, certain 

types of achievement gaps (e.g., racial gaps in the U.S.) are persistent, and the advance of 

social justice in the U.S is also hindered. As early as a century ago, DuBois (1920) 

already criticized conventional testing practices saying they would create students’ 

futures, but the issue has never been substantially resolved.   

In contrast, DMM, featuring dynamic assessment practices, can provide 

researchers with much richer growth information for each student, including estimates of 

learning capacity, learning rate, and forms of growth trajectory. The capacity (learning 

potential) estimates, in particular, may serve as important evidence for evaluating 

students’ learning along with their current achievement levels. Notably, the capacity 

scores from DMM have been empirically demonstrated to be much less impacted by 

students’ demographics (e.g., socioeconomic status, race/ethnicity, and gender, Dumas & 

McNeish, 2017) and high-quality instructional experience (Building Blocks intervention, 

Dumas, McNeish, Sarama & Clements, 2019) than conventional achievement scores. 

Therefore, students with disadvantaged backgrounds and learning experiences may still 

show high learning capacity in the DMM context. In this way, DMM capacity scores 

could be a unique source for making equitable educational decisions as well as improving 

the consequential validity (fairness) of educational measurement. 

High-stakes Testing Struggles: Academic Involution and Examination Hell 

Compared to the world-wide achievement gap issue, academic involution is more 

specific to Asian countries at the current period of time. American anthropologist 

Alexander Goldenweiser first coined the term “involution” as a culture or ecology that 
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does not expand its economy but only develops its internal complexity and inefficiency 

(Hui, 2009). Geertz (1963) later borrowed this term to describe agricultural involution in 

Indonesia, and recently educational researchers have started to be concerned about the 

intensifying involution in academic settings (Kapur & Perry, 2014). Students from many 

Asian countries (e.g., China, India, Japan, and South Korea) spend a large amount of time 

doing repetitive practices in their daily learning. Such inefficient learning may not 

expand students’ knowledge but only may result in potential increases in high-stakes test 

scores, which is a manifestation of educational involution. Meanwhile, these students 

usually need to suffer a variety of mental and psychical challenges to perform better in 

the high-stakes tests (c.f., examination hell in Japan and South Korea, Haberman, 1988; 

Lee, 2003). It is also common to see item content beyond the curriculum and teaching 

syllabus included in those tests to differentiate students with various levels of abilities 

further: a strategy used to create variance among students that may unfortunately reduce 

the validity of the measures.  

From the perspective of measurement and educational evaluation, one important 

reason for the problem is the single-timepoint test score (e.g., college examination tests) 

as the sole criteria for distributing educational resources or making other critical life 

decisions. The large student population in East Asian countries does not allow for the 

individual application evaluation for college admissions used by the western education 

systems. In this case, DMM estimates could be used for a large population and serve as a 

second criteria for evaluating students’ ability. Within the DMM conceptualization, all 

the repetitive practices simply reflected the process or effort of getting closer to the 



6 

 

asymptotic capacity for each student (see Figure 1 below). Because DMM is a reliable 

tool for measuring learning capacity as a latent variable (Dumas et al., 2020; Dumas & 

McNeish, 2017; McNeish & Dumas, 2018), students from those countries may therefore 

not need to spend as much time on inefficient learning in order to make their capacity 

quantifyable. 

Developing a Trajectory Deviance Index for Dynamic Measurement Modeling 

The establishment of DMM appears to be a positive answer to the anticipation of 

dynamic testing in the opening quotation (Sternberg & Grigorenko, 2002), and further 

steps may concentrate on how to make DMM a better and more valuable resource to the 

psychological profession and to the world. In addition to a wide range of application 

studies using DMM, methodological advances are simultaneously achieved (e.g., the 

development of a DMM conditional reliability index, McNeish & Dumas, 2018; 

incorporating seasonal learning loss within DMM, McNeish & Dumas, 2020). Refining 

and improving this newly invented methodological framework is a continuing task. 

Problem Statement 

The unique capacity scores from DMM have been estimated through nonlinear 

mixed-effects techniques. Several types of growth trajectory models (e.g., Michaelis-

Menten, exponential, logistic) have also been applied to describe the data, and the best-

fitting functional forms have typically been identified by comparing model fit indices 

(McNeish & Dumas, 2017). Like most measurement models, model fit indices for DMM 

only indicate the overall measurement appropriateness, which means a chosen function 

represents the overall growth curve (e.g., Michaelis-Menten trajectory for TRIAD data) 
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rather than the growth of every student. Consequently, parameter estimates from DMM 

could be inaccurate for misfitting cases, which is a validity threat to DMM.  

 

Figure 1. An Overall Growth Trajectory and Specific Trajectories for Potential Misfitting 

Students 

Figure 1 provides an example of an overall growth pattern and student-specific 

trajectories for two exemplar aberrant cases. The overall curve featured a pattern that 

students’ ability grew faster in early timepoints and leveled off with time elapsed. Such 

an inverted-J shape curve and its related function have been often applied to describe 

growth data in DMM (Dumas & McNeish, 2017; Dumas, McNeish, Sarama & Clements, 

2019; McNeish et al., 2019; McNeish & Dumas, 2017), and the asymptote against the 

curve was conceptualized as the learning capacity of the ability growth. However, 

students A and B appeared to grow in very different trajectories than the typical trajectory  
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that most students followed. It should be noted that the curves for two exemplar students 

were not only the product of the author’s imagination but have been identifiable in real 

educational data. For instance, Student A grew slower in the initial stage but caught up in 

a faster rate in the later timepoints, which can be observed in learners with special 

education needs or English language learners. Student B’s ability grew almost linearly, 

which has been observed in the medical professions education data (Dumas, McNeish, 

Schreiber-Gregory & Durning, 2019). When the overall model fit indices of the inverted-

J function are acceptable, every student (including student A and B) then receives an 

estimate of asymptotic capacity. Nevertheless, the asymptotes for both cases are suspect 

because neither growth curve has leveled off toward the capacity within the available 

timepoints. In this case, interpretations of their capacity are not appropriate, and 

researchers should try to avoid any misinterpretations about how much students such as 

these can learn in the future. 

Within the present DMM framework, despite that the random effect term in 

DMM could capture differences between the student-specific growth parameter and the 

population-averaged parameter estimate, it does not indicate the appropriateness of DMM 

as a measurement model to gauge learning capacity for each student. No statistical index 

has been developed to evaluate the model appropriateness for each student as well as the 

aberrance of student growth from a typical growth trajectory. There is a need for a 

person-specific fit statistic to help researchers identify students with aberrant growth and 

thus avoid misinterpretation of the student-specific DMM parameters. Further, achieving 

high reliability of learner-specific capacity estimates could be challenging due to existing 
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limitations in a dataset (e.g., only a few available data points, too much missing data, or 

very small intervals between timepoints), and removing deviant cases may increase the 

reliability of the DMM scores as well as enhance other validity evidence.  

Research Goals of the Current Project 

The current project consists of two parts. Given the theoretical commonalities 

between DMM and IRT models (e.g., both can be conceptualized as scoring models), this 

research reviewed and adapted existing formulation of IRT person-fit or model 

appropriateness statistics into the DMM framework. The study first formulated four 

versions of such a statistic within the DMM framework (i.e., Trajectory Deviance Index, 

TDI). To determine the final version of the TDI among four candidates, their 

distributional characteristics (e.g., mean, standard deviation, and form of distribution), 

empirical critical values, and effectiveness (e.g., power, Type-I error rate) were examined 

and compared via simulation investigations. 

The second part of the project studied the influence of the Building Blocks 

intervention as well as student characteristics (e.g., special education status, bilingual 

status, SES, gender, and age) on the deviance of growth in early mathematics by applying 

the developed TDI to the TRIAD data. Each TRIAD student received an estimate of TDI, 

and misfitting students were identified based on the empirical critical values at the fifth 

percentile in the previous simulation. The study further examined and discussed whether 

incorporating the TDI improved the DMM conditional reliability and other aspects of 

validity.  
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Contribution to the Field 

Dynamic Measurement Modeling (DMM) enables educational researchers to 

gauge learning capacity, which could be critical to improving current measurement 

practices. The developed index provides researchers with an effective way to check the 

individual appropriateness of DMM models. It helps researchers to identify the students 

who do not fit the DMM and therefore avoid misinterpretation of the estimated 

parameters for these students. Removing the students with a deviant trajectory from 

DMM can also improve the reliability of the estimates for other students and further 

enhance the validity of DMM, although it is an optional step for using DMM. The TDI is 

expected to be a useful statistical tool for substantial research in the future. For example, 

researchers can explore influential factors (e.g., demographics, intervention conditions) 

that contribute to the TDI across different constructs, domains, and measurement 

contexts. In other words, what makes students deviate from a typical growth trajectory: a 

critical issue related to the general mission of social-justice and testing fairness of DMM 

research and the larger educational research field.  
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Chapter Two: Literature Review 

This chapter synthesizes the literature from three areas. It starts with a review of 

related issues of achievement gaps and how previous measurement practices contributed 

to the persistence of different achievement gaps. The second section introduces the DMM 

methodology and elaborates on how DMM may help reduce the gaps based on the 

available literature. Finally, after reviewing the previous person-fit or model 

appropriateness statistics research from other measurement frameworks (e.g., IRT), four 

DMM trajectory deviance indices are conceptualized and formulated.  

Achievement Gaps and Conventional Measurement Practices 

Both policy and research efforts have been made to close the U.S. achievement 

gaps for decades, but the gaps remain apparent (Reardon, 2011; Scammacca et al., 2020). 

Since the beginning of the 21st century, initiatives such as the No Child Left Behind, the 

Race to the Top, and the Every Student Succeeds Act were enacted with the stated 

purpose to support low achievers and narrow down achievement gaps. Unfortunately, 

according to an investigation of the National Assessment of Educational Progress 

(NAEP, Education Commission of the States, 2018), the average gap between African 

American and Hispanic students and their White counterparts was substantive, and the 

gap was even larger among low performers. The NAEP results also indicated that the 
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gender gap had not substantially narrowed since the first assessment back in 1994. 

Researchers who have investigated the underlying causes or “input” of achievement gaps 

have offered a variety of explanations and names for the phenomenon of achievement 

gaps. For example, given the disparities in educational opportunities, Flores (2007) 

reframed the issue of achievement gaps into the Opportunity Gaps. Chambers (2009) 

used the term, Receivement Gap, to emphasize the input instead of the output of the gaps. 

Different Types of Achievement Gaps 

In the context of education, the achievement gap issue is often specified into 

several categories from the results of comparing different subgroups of students. We 

primarily discuss three types of achievement gaps, including a racial gap, socioeconomic 

status (SES) gap, and gender gap. These gaps are not independent of each other, and their 

interaction effects were also commonly investigated in research practices (e.g., 

Harackiewicz et al., 2016; Quinn & Cooc, 2015). 

Race/Ethnicity Gap. The racial gap often refers to the disparities in which 

African American and Hispanic students had lower performance than their White 

counterparts on standardized tests within the United States (Milner, 2013). This type of 

achievement gap was not only observed at the entry to school but also found to shift 

(either widening or narrowing) across school years (Fryer & Levitt, 2006; Henry et al., 

2020). The academic achievement of Asian American students has been observed to be 

close or slightly higher than that of White students (Education Commission of the States, 

2018; Kao & Thompson, 2003), so they are not perceived as a historically disadvantaged 

minority in the same way as Black and Hispanic students in the research of racial 



13 

 

achievement gaps in the U.S. (e.g., Potter & Morris, 2017).  Researchers have been 

exploring reasons that attributed to the issue, and theories or sources were formed. Three 

contributing factors are briefly reviewed here: stereotype threat; opportunity gaps; and 

family experiences.  

Stereotype Threat. Stereotype threat refers to a phenomenon that an individual’s 

social identity (e.g., race, gender) is devalued in a given setting (Steele, Spencer & 

Aronson, 2002). It has been recognized as a contributing factor to the persistent 

racial/ethnic achievement gap (Osborne, 2001; Steele, 1997). Specifically, African 

American and Hispanic students usually contend with the stereotypes that students from 

their ethnic group are less likely to succeed in academic settings than their counterparts 

(Aronson, 2002; Steele & Aronson, 1995). Such threats have longitudinal impacts on 

these students (Steele et al., 2002). Students may feel chronically stressed, anxious, and 

distracted (Schmader et al., 2008), and all these psychological feelings and responses 

negatively influence the academic performances of the students who were stereotyped 

(Cohen & Garcia, 2008).  

Opportunity Gap. Disparities in educational opportunities have been perceived as 

the underlying causes of the racial gap (Flores, 2007; Kuhfeld, Gershoff & Paschall, 

2018). This perspective emphasized that learning opportunities (or inputs) were not 

equally distributed among students from different racial/ethnic groups. For example, 

African-American and Hispanic students were less likely to access qualified and 

experienced teachers but more likely to receive low expectations for academic 

achievement (Flores, 2007; Wilkins et al., 2006). The importance of teacher qualification 
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and expectations of students’ learning gains (or outputs) have been supported and 

explained by a variety of theories (e.g., Pygmalion effect in classrooms, Rosenthal, & 

Jacobson, 1968) and research (e.g., Phillips, 2010; Telese, 2012). The inequitable 

distribution of inputs were found to have resulted in the observed gaps in the outputs 

across racial groups. 

Family Experiences. Another reason for the racial gap was racial disparities in 

various aspects of family experiences such as parenting style (e.g., notion of concerted 

cultivation, Lareau, 2003/2011), parental involvement (e.g., Cheadle & Amato, 2011), 

parental expectations (e.g., Davis-Kean, 2005; Davis-Kean & Sexton, 2009), family 

investment in education (e.g., Cheadle, 2008), and so forth. Potter and his colleagues 

(Potter & Roksa, 2013; Potter & Morris, 2017) found that family experience tended to be 

stable over time, and therefore the impact of family experiences was cumulative rather 

than a one-time occurrence. As a result, the consistent differences in family experiences 

may exacerbate the achievement gap among racial groups (DiPrete & Eirich, 2006; Potter 

& Morris, 2017). A body of research has shown that Black or Hispanic families were in a 

disadvantaged position compared to their White or Asian counterparts (e.g., Cheadle & 

Amato, 2011; Pattillo-McCoy, 1999), although the findings of racial disparities in family 

experiences are mixed in general.  

Moreover, the issue of racial disparities in family experiences has interacted with 

SES (e.g., Henry et al., 2020; Kuhfeld et al., 2018), so both race/ethnicity and SES issues 

may be involved in explaining how family experiences are attributed to achievement 

gaps. For example, Lareau (2003) termed concerted cultivation as a social-class related 
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parenting style, which subsumes parental school involvement, students’ enrollment in 

extracurricular activities, and the amount of educationally beneficial materials in the 

home. Specifically, parents from higher SES classes are more likely to engage in 

concerted cultivation while lower-class parents often engaged in the “accomplishment of 

natural growth”, and such differences in parenting style can reproduce social class 

intergenerationally. In the U.S., racial groups have been historically closely related to 

social class, and recent data shows that more students from Black and Hispanic groups 

were living in poverty than White and Asian counterparts (U.S. Census Bureau, 2018). 

Given that SES accounts for a substantial amount of variance in educational achievement 

(Duncan & Magnuson, 2005; Magnuson & Duncan, 2006; von Stumm, 2017), the 

disparities in parenting style have contributed to the sustainment of both racial and SES 

achievement gaps. Even with SES controlled, racial background was still strongly related 

to the levels of concerted cultivation that parents engaged in (Cheadle, 2008; Cheadle & 

Amato, 2011), which indicates that race/ethnic gaps in advantaged parenting style were 

not merely manifestations of SES.  

SES Gap. The SES gap refers to the disparities in academic achievement among 

students with different SES backgrounds, that is, students from higher SES families 

perform better on achievement tests, and it even appears to have larger influences on 

academic achievement than racial and ethnic backgrounds (Hadden et al., 2020). SES is 

either measured through a combination of indicators such as highest levels of parents’ 

education, occupation, family income, poverty status, household books, and so forth 

(Dumas & McNeish, 2017) or represented by a single indicator (e.g., occupation, 
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free/reduced-price lunch) in research settings (Duncan & Magnuson, 2005).  As pointed 

out by Duncan and Magnuson (2005), SES was an umbrella term because it not only 

refers to an individual or a family’s relative position in a social hierarchy but also their 

privileges to access a variety of socioeconomic resources.  

In a recent investigation, Chmielewski (2019) studied the SES gap using the 

longitudinal data of 30 large-scale assessments with 5.8 million students across 100 

countries. It was concluded that the SES achievement gap increased globally over the 

past 50 years (1964-2015), and empirical evidence was found to support a declining trend 

of the gap in the United States. Given that the SES gap has been shown to increase in 

previous studies (e.g., Reardon, 2011), the new evidence can be perceived as a good 

signal or a credit for the efforts that educators have made to close achievement gaps and 

address educational equity. Nevertheless, the declining trend does not indicate that the 

disparities in achievement between students from low- and high-SES groups have been 

eliminated already. The magnitude of the current SES gap is undoubtedly still 

concerning.  

Gender Gap. Unlike the racial- and SES- gaps, the gender gap shows a mixed 

pattern across domains. While female students have outperformed male students in the 

domain of literacy (Organization for Economic Cooperation and Development, OECD, 

2015; Rvachew et al., 2020), they are relatively under-represented in the fields of science, 

technology, engineering, and mathematics (STEM, Hill, Corbett & Rose, 2010; Halpern, 

2014; Jungert et al., 2019; Robinson-Cimpian et al., 2014). Explanations for this 

longstanding issue have been complex and shifted over time. 
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Cognitive psychologists detected that girls performed significantly better than 

boys on measures of executive function (e.g., inhibitory control, Altemeier et al., 2008; 

Carlson & Moses, 2001). Given that executive function (EF) fundamentally supports the 

development of literacy skills (Best et al., 2011; Ribner et al., 2017), the observed EF 

differences were claimed to be the reason for the gender gap in literacy. However, this 

explanation may not be tenable when taking the research about EF and early math 

learning into account (Rvachew et al., 2020). The positive correlations between EF and 

early mathematics skills have been well-established (Clements et al., 2016; Dong et al., 

2020). As mentioned, another aspect of the gender gap is that male students outperformed 

female students in mathematics and other math-intensive domains. Therefore, using EF 

as a major explanation of the gender gap in literacy achievement was inconsistent 

between domains.  

In the late 20th century, researchers were still claiming that males had higher 

talent or aptitude in mathematics and science (e.g., Benbow ,1988; Nowell & Hedges, 

1998). However, a variety of new evidence has demonstrated that this kind of claim 

cannot be supported. For example, the genetic or biological foundation of the core 

systems for mathematical and scientific thinking are equally available to males and 

females (Spelke, 2003; Spelke, 2005). Also, there was no substantial gender difference in 

learning capacity among the genders observed via DMM (Dumas & McNeish, 2017). 

 Instead, discrepancies in learning opportunities, teacher perceptions, and other 

contextual factors (e.g., stereotyping) were more valued in explaining the gender gap. 

The gender-roles women historically played have been influences on their expectations 
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for success, career choice, and learning opportunities in the fields of math and science 

(Eccles, 1986). Moreover, teachers’ biased perceptions such as “boys are less competent 

in language arts than girls” or “boys have better mathematics skills than girls” may have 

increased the gender gap (Robinson-Cimpian et al., 2014). Those gender stereotypes from 

teachers could be transmitted to students (e.g., gender ability stereotype endorsement, 

Plante et al., 2019). Once learning became gender-related in the minds of some parents 

and educators, the gender gap was then naturally sustained. 

Closing achievement gaps is an ongoing and challenging task for researchers and 

the entire education community. Besides the aforementioned types of gaps, disparities in 

academic achievement also occur between mainstream students and other minorities 

(e.g., English language learners, students with disabilities). Although they were not 

delineated in detail here, the study does not aim to discount the importance of these issues 

in the context of education. 

How do Educational Testing Practices Influence Achievement Gaps? 

The achievement gaps are usually scrutinized via different formats of 

achievement data (e.g., test scores, course grade, and graduation rate) collected from 

single-timepoint tests. The validity of measurement tools for collecting achievement data 

has been a fundamental issue in the research of educational testing (AERA, APA, & 

NCME, 2014), and lack of validity can lead to a variety of negative consequences. 

Additionally, test-related educational policy (e.g., No Child Left Behind, NCLB) also 

played a role in the persistence of the gaps. Both validity- and policy-related testing 
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issues that may have contributed to the appearance or changes of achievement gaps are 

briefly reviewed here. 

Measurement Invariance of Educational Assessment. Measurement invariance 

(MI) generally indicates that the underlying constructs are measured in the same way 

across groups or measurement occasions (Meade et al., 2008; Meade & Lautenschlager, 

2004), which has been perceived as an important assumption required to validly compare 

participants’ scores across groups (Dong & Dumas, 2020). An educational assessment 

that fails to demonstrate MI could generate biased scores for students from a subgroup. 

For example, a “Bus Pass” problem was presented to a group of African American 

middle school students in a districtwide math test (Tate, 1994): 

“It costs $ 1.50 each way to ride the bus between home and work. A weekly pass 

is 16.00. Which is the better deal, paying the daily fare or buying the weekly?”  

One of the key factors to answer this question correctly was having the notion 

about how many days people work per week. The test developer and students from 

typical middle-class families are more likely to reach the same notion: people work 5 

days per week. However, for those growing up in lower SES families, their life 

experience (e.g., parents’ working schedule) could inform them that people work 6 or 

even 7 days a week. Therefore, middle-class students are more likely to give the “correct” 

answer that was provided by the test developer, which means this math problem did not 

function in the same way for students with different SES backgrounds. Utilizing such 

measures or items can mislead teachers’ evaluation of students’ math competencies and 

reduce the accuracy of detecting achievement gaps in research practices.  
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In addition to the content-based bias, the format of tests was also demonstrated to 

be one reason for the failure of establishing MI. Research shows that item-format was 

associated with the performance of students from different gender groups in both math 

and reading tasks (Reardon et al., 2018; Schwabe et al., 2015). For example, male 

students favored multiple-choice items, while girls performed better on constructed-

response items. Reardon et al. (2018) pointed out that the test format accounted for about 

25% of the variance in gender achievement gaps. 

Test Accommodations. MI is not always able to be established over different 

populations, so test accommodations have been frequently used as an alternative way to 

improve test fairness and validity (e.g., Abedi et al., 2004; Li & Suen, 2012). English 

language learners (ELLs) constitute a large student population in the United States, but 

many developed standardized tests that ELLs took later were originally developed for 

native English speakers (Abedi & Gándara, 2007). If a measure aims to gauge students’ 

mathematics achievement, ELLs with insufficient English proficiencies are likely to 

misunderstand math problems written in English. In this case, the underlying construct 

measured by the test was English proficiency rather than mathematical competency, and 

measurement invariance and other validity aspects of this measure cannot be guaranteed. 

Consequently, the achievement gap between ELLs and mainstream students can be over-

estimated. This issue cannot be easily solved by translation (Hambleton, 2005; Solano-

Flores, 2011), and therefore there is a vein of research focusing on different test 

accommodations for ELLs. A meta-analysis of the effects of test accommodations for 

ELLs revealed that test accommodations were generally effective to improve ELLs’ 
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performance, especially for those with a low level of English proficiency (Li & Suen, 

2012). Given that effective accommodations are capable of improving the accuracy of 

evaluating students’ performance as well as recognizing achievement gaps, they can be 

perceived as a remedy to threats to measurement validity. 

Teaching to the Test. In the NCLB1 era, policies, curriculums, and instruction 

shifted with a focus on standardized testing, and “teaching to the test” became a daily 

practice in many schools and classrooms across the nation (Davis & Martin, 2008; 

Menken, 2006). Because of the pressure that teachers received about improving students' 

scores on high-stakes assessments, they were driven to provide test-centered content and 

instruction to students (e.g., item-teaching, Popham, 2001; test-taking skills, Jennings & 

Bearak, 2014). As a consequence, students gained more in test scores than learning in the 

domain. With the longstanding goal of narrowing achievement gaps, such policies pushed 

the disadvantaged groups (e.g., low SES, African American, and ELLs) to a worse 

position because they were more likely to receive the “teaching to the test” instruction. 

For example, Davis and Martin (2008) shared the fact that district and school 

administrators in Baltimore implemented supplemental math programs which primarily 

aimed to prepare African American students for the state-wide tests. Menken (2006) also 

found that some high schools in New York had replaced native language instruction with 

test preparation strategies for ELLs. Despite that the NCLB act was switched to the Every 

Student Succeeds act in 2015, the sequelae have not yet vanished. 

 
1 No Child Left Behind Act, Public Law 107-110 (2001) 
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In summary, testing practices should have played a more positive role in 

promoting test fairness and closing achievement gaps. Reformation in the current system 

of educational measurement with effective approaches, criteria, and guidelines is needed. 

The Standards for Educational and Psychological Testing (also called Standards, AERA, 

APA, & NCME, 1999, 2014) aims to provide a basis for evaluating the quality and 

appropriateness of testing practices, including test development, test use, interpretation 

and so forth. In the latest 2014 version of Standards, testing fairness is now listed as a 

fundamental issue as to validity and reliability in the measurement research (Plake & 

Wise, 2014). To align with this scope, generating less biased estimates should be kept as 

a primary goal of future measurement work. 

Employing a Dynamic Measurement Modeling Framework in Educational Testing 

Practices 

In educational measurement practices, conventional single-timepoint tests are 

usually applied to gauge developed constructs (e.g., cognitive abilities, Sternberg et al., 

2002), but these test scores only indicate the construct levels prior to or at the time of test 

administration. Educators and researchers always believe in students’ potential to learn 

and grow (Dweck, 2015; Vygotsky, 1931/1997; Vygotsky, 1978), but critical educational 

decisions (e.g., school funding, college admission) are usually made according to their 

developed abilities (i.e., how much they have learned). As documented by a fair amount 

of studies regarding achievement gaps (e.g., Flores, 2007; Kirsch et al.,2007; Reardon, 

2011; Quinn, 2015), students from certain demographic groups or growing up in 

disadvantaged circumstances showed less developed abilities measured by single-
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timepoint tests. The achievement gap is sustained because students with low performance 

in these tests received fewer learning resources and opportunities. Therefore, in order to 

improve measurement practices as well as make equitable decisions, educational 

researchers have shown explicit interest in seeking effective indicators or constructs other 

than the developed abilities. 

One remarkable construct is Learning Capacity, which refers to the maximum 

amount of ability that an individual can be expected to attain in a specific domain (e.g., 

elementary and middle-school mathematics, Dumas & McNeish, 2017; McNeish & 

Dumas, 2017; McNeish et al., 2019). In contrast to those developed constructs, learning 

capacity is a developing construct that reflects how much students can learn in the future 

from the time of assessment administration (Sternberg et al., 2002). Dumas and McNeish 

(2017) developed a formal statistical modeling framework, Dynamic Measurement 

Modeling, to measure learning capacity by producing learner-specific asymptotes. 

Meanwhile, they also empirically demonstrated that those capacity scores from DMM 

were much less impacted by students’ socioeconomic status, race/ethnicity, and gender 

than conventional achievement scores, which indicates that employing DMM in the 

educational system could be a critical step to improve the consequential validity of 

current educational measurement (Dumas & McNeish, 2017, 2018). In this section, 

previous work regarding the DMM as well as the historical perspectives of dynamic 

measurement are reviewed. 
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Development of Dynamic Measurement Modeling 

How are we to assess learning capacity and other developing constructs? This 

question has concerned psychologists for a long time. At the beginning of the 20th 

century, Alfred Binet advocated measuring students’ capacity for performance (e.g., a 

process assessment paradigm), but his major contribution to psychological measurement 

was still about the single-timepoint testing work for gauging developed constructs (also 

termed static tests, Dumas, McNeish & Greene, 2020; Sternberg & Grigorenko, 2002). 

For example, Binet’s most well-known contribution, the Binet–Simon intelligence test, 

was created to measure a developed or current intelligence level for examinees. However, 

the developing feature of the intelligence construct has also been widely recognized (e.g., 

the theory of fluid and crystallized intelligence, Cattell, 1963; Piaget's theory of cognitive 

development, Hooper, Fitzgerald & Papalia, 1971), and formal instruction, experience, 

and educational context are all important to the development of intelligence (Horn, 1967). 

Early psychologists had already reached the conclusion that conventional static tests (e.g., 

the Binet–Simon intelligence test) could only measure the developed abilities rather than 

the associated developing constructs (i.e., capacities of cognitive abilities, Rey, 1934; 

Vygotsky 1934/1962). 

Researchers may argue that examinees’ current performance in static tests is often 

a strong predictor of their future performance, and therefore it is not necessary to measure 

the developing constructs via advanced approaches. However, such a claim has been 

criticized. As early as 1920, DuBois (1920/2013) highlighted the importance of 

incorporating information regarding learning or growing processes into large-scale 
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testing practices because the static tests would always benefit students who entered with 

higher performance (“rich get richer”). DuBois’ argument was strongly supported by later 

studies, as shown in the literature of achievement gaps previously. 

The Dynamic Assessment Conceptual Model. Given that traditional static or 

single-timepoint tests cannot meaningfully capture learning capacity and other 

developing constructs (Rey, 1934; Vygotsky 1934/1962), researchers have explored 

alternative testing practices and methodologies to achieve the goal. However, it was not 

well addressed until Israeli cognitive psychologist Feuerstein (1979) established the 

Dynamic Assessment (DA) framework. DA is capable of studying student learning 

capacity through multiple testing occasions with standardized instructions integrated 

(Feuerstein, 1979; Tzuriel, 2001). Notably, the term dynamic was then commonly used 

for the later measurement work featuring non-static testing practices (e.g., dynamic 

measurement modeling, Dumas & McNeish, 2017; dynamic testing, Sternberg & 

Grigorenko, 2002) Dumas et al. (2020) advocated for use of this term to refer to 

measurement practices aimed at developing constructs through multiple-timepoint testing 

and meanwhile considering the instructional and environmental contextual factors that 

support the developmental process.  

The idea of DA originally derived from Feuerstein’s work on sorting child 

survivors of Nazi concentration camps into appropriate grade levels immediately after 

World War II (Feuerstein, Feuerstein, Falik & Rand, 2002; Feuerstein Krasilowsky & 

Rand, 1974). They found that single-timepoint static measures underestimated the 

learning potential of those child survivors. Importantly, it was believed that their 
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experience in concentration camps might have delayed their current abilities but not 

necessarily their learning capacity. Feuerstein then raised the idea of testing cognitive 

abilities through multiple-timepoint tests with learning opportunities and high-quality 

instruction integrated. This paradigm strongly aligns with the contemporary vision of 

filling the opportunity gaps for the low achieving students from disadvantaged groups 

(e.g.,  Flores, 2007).  

 

Figure 2. Theoretical Depiction of the Process of Dynamic Assessment 

 

After mapping out the growth trajectories of students across timepoints, 

Feuerstein (1979) observed that student ability grew nonlinearly and flattened out as time 

passes. The theoretical diagram of DA is displayed in Figure 2. As can be seen, the 

nonlinear line indicates the growing ability for each examinee over time, and the space 

below the curve and the horizontal line can be conceptualized as the developed ability. 

Meanwhile, the horizontal line at the top is the potential or capacity, which is a 
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developing construct. Notably, the capacity in the DA framework is conceptually relevant 

to but fundamentally different from aptitude (Lohman, 1999; Thompson & Zamboanga, 

2004. As stated by Dumas and McNeish (2017), aptitude is usually considered as existing 

in students without implementing specific instructions, while capacity is closely related to 

a student’s environment and educational experience, and only shows after a series of 

repeated testing with integrated instructions.  

Despite that fact that the initial conceptual model was established, there were 

several issues that hindered the application of DA in large-scale research or practical 

work in the fields of education and psychology. First, the operational costs of DA 

methods are typically higher than static tests. Specifically, estimating capacity through 

DA requires multiple testing occasions, and collecting longitudinal data for each 

participant is more expensive and less feasible than data collection for conventional static 

tests. Moreover, the integrated instructional interventions among timepoints may cost 

additional resources for clinical training and professional development. Second, 

Feuerstein’s DA theory was generally perceived as a fundamental conceptual framework, 

although he had applied it in his research work (Feuerstein et al., 1981; Feuerstein et al., 

1987). Later researchers encountered both statistical and psychometric challenges in 

quantifying the DA components (e.g., capacity in Figure 2, Embertson, 1987; Sijtsma, 

1993). As indicated by the quote at the beginning of this study (Sternberg & Grigorenko, 

2002), educational researchers by that time were still looking for a formal methodology 

framework to realize those important concepts from DA.  
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Dynamic Measurement Modeling. To fill this research gap, Dumas and 

McNeish (2017) created DMM to measure learning capacity from developed ability 

scores at multiple testing occasions. DMM utilizes a nonlinear mixed-effects modeling 

framework that formalizes DA concepts into a statistical model and generates learner-

specific upper asymptotes for quantifying capacity. Within the DMM framework, it does 

not necessarily require the standardized but resource-intensive instructions between test 

occasions as in DA. Instead, the DMM paradigm capitalizes on existing practices such as 

classroom instructions, research interventions, and other educational programs that may 

influence student growth (Dumas & McNeish, 2018; Dumas et al., 2020). DMM is thus 

capable of producing learner-specific capacity asymptotes within large-scale educational 

data, including previously collected secondary data for other research purposes. 

Contributions of DMM to Research and Testing Practices. As previously 

mentioned, one major contribution of DMM is to improve the consequential validity of 

assessments through producing estimates of learning capacity and other growth 

parameters (e.g., learning rate). Specifically, Dumas and McNeish (2017, 2018) applied 

DMM techniques with the Early Childhood Longitudinal Study-Kindergarten (ECLS-K) 

data of the 1998-1999 cohort, for both mathematics and reading assessments. The 

estimated capacity scores from DMM were much less influenced by a combination of 

demographic factors (e.g., socioeconomic status, race/ethnicity, and gender) that were 

usually associated with achievement scores from conventional static tests. Notably, 

dynamic testing has shown to be superior in capturing developing constructs than static 

testing, but they are not incompatible. The quality of each single-timepoint test may 
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impact the success of using dynamic testing to measure students’ learning capacity. 

These two sorts of testing practices (static and dynamic) are “on a continuum” in effect 

(Sternberg & Grigorenko, 2002). It is rare to see dynamic assessment researchers discard 

the importance of static testing, instead, they conceptualized capacity from DMM as a 

higher-order or meta-construct for the ability scores measured at each static testing 

occasion (e.g., McNeish & Dumas, 2018) .  

The application of the DMM method is beyond a tool for producing estimates of 

learning capacity, and this newly innovated methodological framework has been used to 

investigate a wide range of substantive problems across domains. In the study of early 

mathematical learning (Dumas, McNeish, Sarama & Clements, 2019), DMM showed the 

capability of taking both intra- and inter-individual differences in student growth 

trajectory into account. It was found that the Building Blocks (BB) intervention 

significantly improved students’ learning rate, especially for minority students (e.g., 

Black or Latinx). Moreover, there was no statistical difference in the asymptotic capacity 

estimates across intervention conditions, which implies that students’ learning capacity 

was not impacted by received learning opportunities and resources (e.g., high-quality 

intervention in this case). Therefore the capacity estimates may serve as a unique piece of 

evidence for evaluating student performance. McNeish et al. (2019) also demonstrated 

that DMM capacity scores (43% variance explained) outperformed conventional ability 

scores (16% variance explained) estimated by traditional IRT models in the prediction of 

adult verbal scores, which further verifies the effectiveness of using DMM-based 

capacity estimates to forecast students’ future performance.  
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DMM has also contributed to investigations of summer learning loss, a critical but 

still under-researched topic in the U.S. Given that there were limited statistical methods 

for estimating learning loss, McNeish and Dumas (2020) recently incorporated and 

quantified summer learning loss through their DMM model. This work is anticipated to 

help researchers meaningfully capture and interpret summer learning loss. Additionally, 

the DMM paradigm was successfully applied to the field of medical professions 

education and training (Dumas, McNeish, Schreiber-Gregory & Durning, 2019). 

Specifying and Fitting a DMM 

To specify and fit a DMM, the empirical example used in this project was the 

Technology-enhanced, Research-based, Instruction, Assessment, and professional 

Development (TRIAD, Sarama & Clements, 2013; Sarama et al., 2008) cluster-

randomized experiment data, which contained seven waves of mathematics test scores: 

pre and post of PreK, Kindergarten, 1st grade, 3rd grade, 4th grade and 5th grade. So, while 

the procedure reviewed here can be generalized to any suitable dataset, this study paid 

special attention to issues related to fitting DMM to the TRIAD data.  

Shape of Growth. A functional form or shape of growth needs to be selected to 

fit a DMM to any dataset. It should be noticed that the nonlinear function of DMM can be 

specified and parameterized in a variety of ways in order to address specific research 

questions (Dumas & McNeish, 2017), which may result in different shapes of growth 

trajectories. However, the shapes should come with interpretable upper asymptotes, and 

thus nonlinear growth models with “S-shaped” trajectories (e.g., logistic) or “inverted J-

shaped” (e.g., exponential, Michaelis-Menten) are often considered for DMMs (McNeish 
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& Dumas, 2017). The Michaelis-Menten curve (Michaelis &Menten, 1913), a well-

known model of enzyme kinetics in biochemistry, posited an inverted J-shape growth 

trajectory, in which student ability grows in a nonlinear way and eventually reaches an 

upper asymptote (learning capacity) over time. This growth model theoretically matched 

with the DA based conceptualization of ability growth and also empirically fitted to the 

TRIAD data (Dumas, McNeish, Sarama & Clements, 2019). In the initial DMM work 

conducted by Dumas and McNeish (Dumas & McNeish, 2017; McNeish & Dumas, 

2017), it was also shown to be the best-fitting functional form to ECLS-K mathematical 

data among several competing models such as logistic, Gompertz, Richards, and von 

Bertalanffy.  

Parameterization. In the Michaelis-Menten function, for the ith student in the 

TRIAD data set (i = 1, . . ., N) at the tth timepoint (t = 1, . . ., T) can be written as: 
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As can been seen in Equation (1), three parameters of the Michaelis-Menten model are: 

the initial value (β0i), which captures initial ability when time is 0 (e.g., a pre-test of a 

longitudinal dataset); the learning rate parameter (βRi), which captures the point in time 

when ability is halfway between the initial value and the upper asymptote; the learning 
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capacity parameter or upper asymptote (βAi), which captures the maximum ability growth 

as time approaches infinity. dti is a residual term that represents the difference between 

model-predicted and observed values at each time point for each student. From Equation 

(2), each of the DMM parameter β consists of a population-averaged fixed effect term (α) 

and a student-specific random effect term (ζi) that allows each student to have their 

unique growth curve. Figure 3 depicts DMM parameters and presents the relations among 

them.  

 

Figure 3. A Hypothetical Learner-Specific DMM Curve 

Reliability for DMM Capacity Estimates. McNeish and Dumas (2018) has 

advanced procedures in computing reliability for DMM capacity estimates. DMM is 

substantively different from either classical test theory (CTT) or IRT frameworks, but it 

still shares theoretical aspects in common with typical measurement models. For 

example, DMM can be conceptualized as a scoring model, in which capacities are  
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estimated from those longitudinal ability scores (McNeish & Dumas, 2018). While a 

measurement model employs observed indicators to measure a latent construct, DMM 

utilizes vertically scaled scores (Mathti) to estimate learning capacity. Analogically, the 

ability scores in DMM were treated as observed variables without measurement error 

(McNeish & Dumas, 2018). After evaluating a series of methods for generating a CTT or 

IRT reliability index, McNeish and Dumas adapted a conditional reliability function 

outlined in Nicewander (2018) to DMM by replacing the appropriate information 

function: 
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In Equation (3), 
^

( )AiVar  is the variability for the ith student’s capacity estimates in the 

TRIAD dataset, and ( )AiVar  is the variance of all capacity random effects. As can be 

seen, the function relies on the asymptote parameter quantities, meaning that the 

utilization of the DMM conditional reliability index is not restricted to a specific growth 

trajectory (e.g., the Michaelis-Menten curve for the TRIAD example), but can be used for 

any functional form with an upper asymptote. 

Developing a Trajectory Deviance Index for DMM 

DMM has shown its capability of capturing developing constructs and 

demonstrated better consequential validity than static testing (Dumas & McNeish, 2017; 

Dumas & McNeish, 2018), but the refinement of this newly invented methodological 

framework is a continuing task. The accuracy of estimates is essential to all measurement 
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models, especially for those used in educational decision-making (Albers et al., 2016; 

Karabatsos, 2003; Meijer & Sijtsma, 2001). Although the extant DMM method can 

produce reliable and valid estimates of learning capacity across domains (e.g., Dumas, 

McNeish, Sarama & Clements, 2019; McNeish, Dumas & Grimm, 2019), there is room 

to further improve the reliability and accuracy of estimates, such as incorporating a 

person-specific fit statistic to identify students whose growth trajectories do not align 

with a model-implied growth function.  

This section maps an analogical relation between IRT and DMM in order to show 

that existing person-fit indices from the IRT framework may be able to be meaningfully 

adapted into DMM in order to understand which student deviate from the overall 

trajrctory of learning. Here, I seek candidate indices that may be adapted into the DMM 

framework. CTT procedures for determining person fit also exist, but they are not 

delineated in detail for three specific reasons. First, IRT (also termed latent methods here) 

has been generally considered to be superior to CTT. DMM is also a latent variable 

method (Dumas & McNeish, 2017), and therefore the functional components in DMM 

are comparable to those in the IRT framework. Second, person-fit in CTT depends on the 

sample of examinees, or requires normative comparisons, which largely limits its 

application in different measurement settings. Third, person-fit methods building on IRT 

have been better-established than CTT methods (see Karabatsos, 2003; Meijer & Sijtsma, 

2001). Given the richness of person-fit research within the IRT framework, it has been 

common for methodologists to extend those indices for use in other contexts or 

frameworks. For example, ɭz (Drasgow, Levine & Williams, 1985), a well-known 
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likelihood-based IRT model appropriateness index, were adapted for cognitive diagnostic 

models (Cui & Li, 2015; Santos et al., 2020). 

Conceptualizations of Person-Fit between IRT and DMM 

A basic item-response (or item-score) pattern in IRT is that, given a student (i) 

answering a set of test items, there are higher probabilities for the student to correctly 

answer easier items and lower probabilities for the student to correctly answer more 

difficult items. Person-fit or model appropriateness indices in IRT were designed to 

evaluate the misfit of a student’s testing performance to item-response patterns and to 

quantify the reasonableness of a student’s answers to items within a test (Karabatsos, 

2003). As specified in Equation (1), although the DMM method reflects important 

features of a growth model, it can also be conceptualized as a scoring model (i.e., a 

longitudinal psychometric model, McNeish & Dumas, 2018). Then, statistics for DMM 

that analogically resemble person-fit can be built on this essential theoretical 

conceptualization.  

Several key components of the two types of models are comparable and share 

similarities. Both are described as measurement models to capture latent constructs. 

Although IRT models often use test items as indicators to assess examinees’ abilities, 

DMM utilizes examinees’ ability scores across timepoints to capture their learning 

capacity in the corresponding ability domain. Compared to an IRT-based index, an 

analogical DMM person-fit statistic must therefore evaluate the model appropriateness 

for each examinee, but it should focus on detecting the aberrance of student growth from 

a model-implied growth pattern (e.g., Michaelis-Menten trajectory) rather than an item-
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response pattern. The term “person-fit” is frequently used by Rasch researchers (e.g., 

Wright & Stone, 1979; Wright & Masters, 1982; Linacre, 2020), whereas other IRT 

researchers studying 2 or 3-parameter logistic (PL) models usually prefer to term such a 

statistic as “appropriateness index” (e.g., Drasgow, Levine & Williams, 1985). This study 

uses two terms interchangeably. In contrast, given the conceptualization of person-fit 

within the DMM framework above, a DMM person-fit statistic is termed as a Trajectory 

Deviance Index (TDI). 

TDI for DMM: Implications from IRT Framework  

Since the widespread use of IRT models in the late 1970s, many person-fit 

statistics have been developed to detect misfit of item-score patterns. Meijer and Sijtsma 

(2001) reviewed available person-fit methodologies in a systematic way and summarized 

23 different person-fit methods into four general categories: Rasch, 2 or 3-parameter 

logistic (PL) models, computerized adaptive testing (CAT), and group-

based/nonparametric. Later studies identified some additional person-fit statistics and 

conducted a slightly different categorization (e.g., parametric vs. non-parametric, 

Karabatsos, 2003; Rupp, 2013), but the difference in categorization of the statistics barely 

impacts the meaning or utilization of those methods. Given that multiple researchers have 

done delicate work on reviewing the available person-fit indices (see Appendices in 

Karabatsos, 2003 or Meijer & Sijtsma, 2001), the present study does not delineate the 

formulas, notations, and technical details of every method here. Instead, representative 

examples are described in the following paragraphs to help illustrate specific problems.   



37 

 

As indicated in the person-fit literature, the fundamental methodology research 

were mostly accomplished in the 20th century (e.g., ɭ0, Levine & Rubin, 1979; ɭz, 

Drasgow, Levine & Williams, 1985; U, Wright & Stone, 1979; W, Wright & Masters, 

1982; ZC, McLeod & Lewis, 1999). In recent years, new person-fit statistics were mostly 

about adaption, transformation, or adjustment of the previous methods to address specific 

research needs. For example, Marianti et al. (2014) adapted the IRT-based ɭz (Drasgow, 

Levine & Williams, 1985) into ɭz
t for response-time models, and Sinharay (2018) later 

developed a new person-fit index by replacing the τ component in ɭz
t by its maximum 

likelihood estimation (
^

 ). The study also referred to the rich products of previous person-

fit research, especially those fundamental methodology work between the 1970s 

and1980s. Because of this, the identification of a person-fit index that can be statistically 

adapted to the DMM framework rather than building it from the ground up was the 

primary strategy for the current work.  

There are various person-fit and model appropriateness indices from IRT models, 

but the functioning and usefulness of most indices have not been consistent across 

different testing conditions. Meijer and Sijtsma (2001) pointed out that test length, trait 

levels, and misfitting item-score patterns were all influential factors to detection rates of 

person-fit indices. They also highlighted that the Rasch model framework had developed 

robust person-fit indices (e.g., U, Wright & Stone, 1979; M, Molenaar & Hoijtink, 1990), 

but the Rasch model itself was more restrictive than other IRT models, therefore 

increasing the starkness of students’ misfit. From another perspective, Karabatsos (2003) 

categorized person-fit statistics into parametric and non-parametric classes. Parametric 
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person-fit refers to the indices that were estimated through model parameters, which are 

more well-known and easier to understand. In contrast, non-parametric ones were 

calculated through other testing information. For example, the non-parametric index C 

incorporates a covariance ratio to measure the degree of aberrance of an examinee’s item-

response pattern from a perfect pattern (see Equation [4], Xn = examinee n’s response 

vector; p = item vectors for proportion correct, Xn
* = examinee n’s response vector with 

correct answers only for the easiest items, Sato, 1975).  

                  
,

*

,

( )
1-

( )

n

n

Cov X p
C

Cov X p
=                                (4) 

It has been found that non-parametric person-fit statistics generally perform better than 

parametric ones (e.g., U, W, ɭ0, ɭz) in identifying aberrant item-response pattern examinees 

(Karabatsos, 2003). However, this finding does not imply that researchers should always 

choose non-parametric approaches over the parametric ones because there are important 

tradeoffs. Emons et al. (2002) pointed out that the empirical distribution of non-

parametric IRT models did not align with the theoretical distribution, and Karabatsos 

(2003) also warned of the potential tradeoff between power and feasibility of 

implementation.  

In all, none of the model appropriateness statistics can be considered as the best 

index or generalized to all testing situations, which explains the existence of so many 

indices in the IRT literature. Thus, it is not necessary to justify why the current study 

develops a certain type of statistic or index over other available possibilities. Researchers 

may choose to develop multiple fit indices and use them simultaneously because each 
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statistic provides different information. For example, Sijtsma and Meijer (2001) 

formulated a non-parametric index, the person response function (PAF). It provides 

researchers with diagnostic information regarding the types of misfitting in addition to 

overall model appropriateness information from parametric statistics. Similarly, the 

DMM framework also allows for multiple TDIs, although one particular formulation was 

retained after carefully examination in the current study.  

Formulating Residual-based DMM Trajectory Deviance Indices 

As discussed, DMM has been empirically demonstrated to be an appropriate 

measurement model for capturing learning capacity. Calculating TDI in DMM can 

further help validate the capacity estimates of each individual through evaluating the 

extent to which a students’ growth curve deviates from a model-implied trajectory (e.g., 

Michaelis-Menten curve for TRIAD data, Dumas, McNeish, Sarama & Clements, 2019). 

The current study initiated the TDI research in DMM with a residual-based method for 

two main reasons. 

First, in addition to three growth parameters (β0i, βRi, and βAi) in Equation (1), the 

Michaelis-Menten function also specifies a residual term (dti), which assesses the 

difference between Michaelis-Menten model predicted values and the observed values. 

Individual-specific residuals for each item were successfully used as a component for 

formulating a parametric fit index in IRT (e.g., U, Wright & Stone, 1979; W, Wright & 

Masters, 1982), and therefore (dti) may be used for the analogous purpose in DMM.  

Second, although the empirical example (TRIAD data) used in this study was 

shown to fit the Michaelis-Menten model best (Dumas, McNeish, Sarama & Clements, 
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2019), DMM was designed for a diversity of growth shapes in different research settings 

(Dumas & McNeish, 2017). To reduce restrictions in the usage of the DMM TDI method, 

the index to be developed should not target a specific growth pattern for DMM. For 

example, McNeish and his colleagues (McNeish et al., 2019; McNeish & Dumas, 2020) 

have tested DMM against different growth curves such as the Michaelis-Menten, 

exponential, Weibull, logistic, and so forth. The exponential function was written as (see 

Equations of other curves in McNeish et al., 2019): 

( )  0 0 expti i Ci i Ri ti tiy Time d   = + − − +              (5) 

As can be seen, these curves all have the within-person residual component for person i at 

time t as the Michaelis-Menten function in Equation (1). The definition of the residual 

parameter (dti) is the same across all models that have been so far used for DMM 

research, regardless of their specific functional form. From this perspective, a residual-

based index is an ideal choice because the residual-based TDI is not restricted to a certain 

trajectory, and can therefore be used for a variety of DMM functions.  

This dissertation therefore focused on residual-based person-fit indices in the 

literature. Among those fundamental person-fit methods developed in the late 1970s and 

80s, Wright and his colleagues (Wright & Stone, 1979; Wright & Masters, 1982) created 

a residual-based fit statistic, Mean Square, which accumulates squared standardized 

residuals (Zki
2) over the answered items (k = 1, . . ., K) for the ith student (i = 1, . . ., N). 

The Mean Square function of person-fit can be written as: 

                           𝑈𝑖 = ∑ 𝑍𝑘𝑖
2 /𝐾𝐾

𝑘=1                                        (6) 
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They also invented person-fit (W) by weighting the mean square by its variance to reduce 

the sensitivity to unexpected responses. However, DMM research appeared to prefer such 

sensitivity of an unweighted index, because a major purpose of developing TDI is to 

identify students with extreme or surprising scores in their growth curves. It should be 

also noticed that Both U and W were considered to be relatively sound among existing 

IRT person-fit or model appropriateness indices (Meijer & Sijtsma, 2001). 

Unweighted DMM Trajectory Deviance Indices. In the DMM context, the 

residual (dti) and its variances are both uniquely estimated at each time point, and the 

scaled ability scores from DMM are analogical to the observed items in IRT models. 

Thus, these person- and time-specific residuals are suitable components to establish a 

TDI by adapting the Mean Square function, that is the squared rescaled residual (𝐷𝑡𝑖
2) for 

the ith student (i = 1, . . ., N) at the tth timepoint (t = 1, . . ., T) are aggregated, and the 

unweighted DMM trajectory deviance index (TDIU_Sqr) can be computed as: 

                       𝑇𝐷𝐼𝑈_𝑆𝑞𝑟 = ∑ 𝐷𝑡𝑖
2/𝑇𝑇

𝑡=1                                      (7) 

where  

                      𝐷𝑡𝑖 =
|𝑑𝑡𝑖|

√𝑉𝑎𝑟(|𝑑𝑡𝑖|)
                                              (8) 

𝑉𝑎𝑟(𝑑𝑡𝑖) represents the variance of the residual at the tth timepoint. Notably, even the 

formula (8) for calculating 𝐷𝑡𝑖 follows the similar way to calculate standardized residuals 

in the U formulation (Wright & Stone, 1979) , 𝐷𝑡𝑖 is only perceived as re-scaled residuals 

rather than true standardized values in nonlinear mixed models. This is because the true 
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standardization of DMM residuals using SAS NLMIXED requires the incorporation of 

possible covariance among residuals or covariance among data points (SAS, 2015). 

As mentioned, many IRT-based person fit indices have been adapted to other 

measurement models. However, direct transformations do not always guarantee that those 

adapted statistics can perform as well as the original ones in the IRT framework. It 

remains a question whether the unweighted DMM trajectory deviance index has stronger 

power with aggregated 𝐷𝑡𝑖 or 𝐷𝑡𝑖
2 overtime. In calculating a person-fit statistic (i.e., 

response conformity index) for the Cognitive Diagnostic Assessment Model, Cui and Li 

(2015) found that using absolute values was consistently associated with higher detection 

rates than using squared values across multiple simulation conditions. Therefore, an 

unweighted DMM trajectory deviance index (TDIU_Abs) averaging absolute residual 

values of  𝐷𝑡𝑖 across timepoints was also tested: 

                   𝑇𝐷𝐼𝑈_Abs = ∑ 𝐷𝑡𝑖/𝑇𝑇
𝑡=1                                      (9) 

Weighted DMM Trajectory Deviance Indices. Both unweighted trajectory 

deviance indices indicate the averaged trajectory deviance for each person across 

timepoints, because each time-specific TDI component (𝐷𝑡𝑖 or 𝐷𝑡𝑖
2) equally contributes 

to the TDIU. However, the importance of residuals at different timepoints may vary for 

the purposes of detecting deviant cases. A critical assumption of DMM models is that a 

learner-specific trajectory tends to level off as time goes forward (Dumas & McNeish, 

2017; Dumas et al., 2020; McNeish & Dumas, 2017), which means asymptote estimates 

would not be meaningful without meeting this assumption. Based on the assumption, it is 

reasonable to up-weight the scores at later timepoints and down-weight the early scores 
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in the formula of the weighted trajectory deviance index, and a weighted TDI can be 

computed as:  

                 𝑇𝐷𝐼𝑊_𝑆𝑞𝑟 = ∑ 𝐷𝑡𝑖
2 /𝑇𝑇

𝑡=1                                      (10) 

where  

            𝐷𝑡𝑖 = |
𝑑𝑡𝑖

𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑒 𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑐𝑜𝑟𝑒𝑡𝑖
| ∗ 100           (11) 

In comparison to TDIU, each TDI component (𝐷𝑡𝑖) in TDIW_Sqr was computed as the ratio 

of residual to observed score, which was conceptualized as the percentages of deviance 

from the observed score for the ith student (i = 1, . . ., N) at the tth timepoint (t = 1, . . ., 

T). The resulting decimal was multiplied by 100 for scale. 

Moreover, the observed scores were asymptote-centered for two reasons. First, 

TDI components on the original scale can be inflated when an original observed score as 

the denominator is close to 0 (see Figure 4a), and the occurrence of inflation is hard to 

predict due to the variability in person-specific growth trajectories. Second, the 

asymptote-centered observed scores gradually decrease as time goes (see Figure 4b), 

which results in larger deviance components at later timepoints. In other words, later 

deviance components are up-weighted. Other centering approaches that weight deviance 

components differently have also been considered. For example, centering observed 

scores around the intercept for each person can up-weight early behavior and down-

weight late behavior (see Figure 4c). However, such a weighting strategy cannot address 

the purpose of a weighted TDI, that is, increasing TDI sensitivity to detect cases whose 

growth trajectories did not level off.  
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(a) Original Scale 

  

(b) Asymptote Centering 
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(c) Intercept Centering 

 

Figure 4. Weighted TDI Components on Different Scales 

Like formulating the unweighted trajectory deviance indices, the study also 

examined the TDIW_Abs in which the absolute values of deviance components rather than 

squared values are aggregated: 

                 𝑇𝐷𝐼𝑊_𝐴𝑏𝑠 = ∑ 𝐷𝑡𝑖/𝑇𝑇
𝑡=1                                      (12) 

The weighting strategy showing in formula [11] was also applied to TDIW_Abs. As a 

result, a total of four indices have been formulated, but only the one showing appropriate 

distributional properties and efficacy in detection will be retained at the end of the study.   

All these TDIs are designed to tolerate missing values in a similar way as many 

IRT statistics: when there is a missing score(s) at the tth timepoint, this score just does 

not contribute to the mean square function. This feature could be particularly useful to 
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DMM because missing data is a common issue in the analysis of longitudinal data. 

However, a high ratio of missing to valid scores could still significantly decrease the 

accuracy of estimating person fit and other basic parameters.  

This chapter demonstrates that conventional static measurement practices have 

contributed to the sustained achievement gaps from multiple aspects, and they are not 

appropriate to assess student learning potential. In contrast, studies have shown that 

DMM can generate asymptotical capacity estimates and improve the consequential 

validity of educational measurement, but it is still a continuing task to refine this newly 

invented measurement framework. Four TDIs aiming to detect aberrant cases to DMM 

models has been formulated, and the next chapter focuses on the methodological details 

in examining and comparing the performances of different TDIs.  
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Chapter Three: Method 

Data Source 

The empirical example used in this project was the TRIAD cluster-randomized 

experiment data (Sarama & Clements, 2013; Sarama et al., 2008), which contained seven 

waves of mathematics test scores: pre and post of PreK, Kindergarten, 1st grade, 3rd 

grade, 4th grade, and 5th grade. All test scores were generated through IRT models, and 

thus all scores align on a single continuous vertical scale. The TRIAD data were used for 

addressing research goals in both stages of the project.  

Participants 

The TRIAD sample originally consisted of 1,375 students from 42 schools and 

106 classrooms in two cities (Clements, Sarama, Spitler, Lange, & Wolfe, 2011; 

Clements et al., 2013). Schools were randomly assigned to one of the three conditions: 

Building Blocks (BB) intervention only at the PreK year, BB intervention with follow-

through in the kindergarten and first-grade years (BB with FT or BBFT), and business-as-

usual (BAU; control). At the post-test in the PreK year, there was about 5% (n = 70) 

attrition of participants, but the attrition was not related to their entering performance.  

The final analytic sample was 1,305 students aged from 44 to 64 months (M = 

52.06, SD = 4.09) at the pre-test in PreK. Of these participants, 51% (n = 664) were 
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female, 24.5% (n = 319) reported themselves as bilingual, 10% (n =130) had documented 

special needs, and 66.7% (n = 871) received Free/Reduced lunch. Regarding race and 

ethnicity, over half of children (53.3%, n = 695) were African American, 21.6% (n = 

282) were Hispanic, 18.9% (n = 247) were White, 3.7% (n =48) were Asian American, 

1.8% (n =24) were Native American, and .6% (n = 8) reported their ethnicity as Other. 

The participant attrition rate was 13.74% (n = 179) at the end of the first-grade year, and 

it was shown that the attrition was unrelated to the demographics (Clements et al., 2020). 

In the analytic sample, 605 (46.36%) students have complete assessment data across all 

seven timepoints. The follow-up data after the 1st grade year were collected for evaluating 

the persistence of the BB effects, and there was no additional intervention implemented.  

Assessment 

Core mathematical knowledge of students was assessed with the Research-based 

Early Math Assessment (REMA, Clements et al., 2008). The measure was designed for 

students from ages 3- to 8-years-old with standardized administration, videotaping, 

scoring, and coding procedures. The REMA measurement tool reflects developmental 

progressions of early mathematics and covers a wide range of topics: verbal counting, 

object counting, subitizing, number comparison, number sequencing, connection of 

numerals to quantities, number composition, decomposition, adding and subtracting, 

place value, shape recognition, shape composition and decomposition, congruence, 

construction of shapes, spatial imagery, geometric measurement, patterning, and 

reasoning (Clements et al., 2013). The data were collected using the Full version of 
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REMA with 225 items, and validity evidence was demonstrated in multiple aspects (see 

content, construct, and concurrent validity in Clements et al., 2008).  

All REMA items are ordered by item difficulty, and each participant stops the test 

after giving incorrect answers to four consecutive items. All assessors received formal 

training on administration, videotaping, scoring, and coding procedures, and each was 

required to be certificated (98-100% error-free delivery) before assessing any 

participants. In addition to item correctness, the REMA also tests the strategy use of 

students. Assessors observed, videotaped, recorded, and noted students’ strategies to 

solve math problems. Based on the taped videos as well as field notes from assessors, a 

trained coder coded each strategy item. Continuous feedback was delivered from an 

expert coder to trained coders for calibration purposes (one tape per coder per week). In 

the scoring stage, all strategy codes were recoded based on the sophistication levels, and 

both strategy levels and item correctness were included in the scoring model. Latent 

mathematics scores were generated through IRT models, and the reliability of total scores 

was high: .93 to .94 in an earlier study (Clements et al., 2008) and .92 for the TRIAD 

data (Clements et al., 2011). 

Intervention 

One important characteristic on which dynamic testing differs from static testing 

is the integrated instruction for supporting student growth between measurement 

occasions (Dumas et al., 2020). The TRIAD project implemented the Building Blocks 

curriculum, which was structured on learning trajectories and featured with the use of a 

comprehensive Curriculum Research Framework (Clements et al., 2013). Research 
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showed that the short-term BB significantly improved students’ mathematics competency 

(Clements et al., 2013; Dumas, McNeish, Sarama & Clements, 2019), and the detected 

effect sizes (g = .72) were above medium level. Moreover, the BB treatment effect 

diminished over time (Bailey et al., 2016), and such a pattern has been frequently 

observed for early childhood interventions (Jenkins et al., 2018; Kang et al., 2019). As a 

result, students who received the intervention or not may demonstrate very different 

growth paths.  

Data Analysis 

This project consists of two studies (simulation and real-data application), and the 

specific analysis procedures for each part are delineated below.  

Simulation Study 

The simulation analysis was performed in two steps for different purposes. The 

first step involved resampling with replacement to identify distributional characteristics 

and find empirical critical values (e.g., α = .05) of TDI statistics, and the second step 

investigated and compared the effectiveness of the formulated TDIs following a 3 × 3 

simulation design. 

Distributional Properties and Empirical Critical Values. In the first step, 

bootstrapping, a resampling approach with replacement2, was utilized to obtain the 

distributional characteristics of the formulated trajectory deviance statistics (TDIU_Abs, 

TDI U_Sqr, TDIW_Abs, and TDIW_Sqr). Bootstrapping is a special type of Monte Carlo 

 
2 Replacement allows the same case to be sampled multiple times, which can induce inter-replication 

variability. 
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simulation based on given data without specifying any underlying data generating 

process. To avoid “garbage in and garbage out” and ensure the representativeness of the 

simulated data to a real data context, the well-researched TRIAD data (Bailey et al., 

2016; Clements et al., 2013; Clements et al., 2020; Dumas, McNeish, Sarama & 

Clements, 2019;  Sarama et al., 2008) produced population estimates for the data 

generation model. The TRIAD data has shown fit to the Michaelis-Menten model in an 

earlier study (Dumas, McNeish, Sarama & Clements, 2019), so the current study directly 

applied the Michaelis-Menten function to model seven waves of REMA scores. The 

model used a homogeneous diagonal residual error structure and an unstructured random 

effect covariance structure to achieve parameter estimates. In order to reflect the timing 

of TRIAD data collection, the time scores (t) in the slope factor as set to 0, 0.5, 1, 2, 4, 5 

and 6 for pre and post of PreK, Kindergarten, 1st grade, 3rd grade, 4th grade and 5th grade 

measures, respectively. 

For each TDI statistic, the simulation was conducted within two sample size 

conditions: 605 and 300. The 605 was the actual number of children with complete 

assessment data across seven timepoints. The 300 sample size condition was included to 

investigate the properties of TDIs when the sample size was smaller and the model was 

more difficult to estimate, which follows the methodological design of developing DMM 

reliability methods (McNeish & Dumas, 2018). Each simulation condition in this step 

was replicated 100 times. The simulation analyses were conducted in SAS 9.4 using 

PROC NLMIXED (SAS, 2015), and models were estimated with Gaussian quadrature 

with five quadrature points and double dogleg optimization (max iteration = 5000). To 
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save computational times, this study used virtual machines to simultaneously run multiple 

SAS programs (smaller number of replications within each) via three computers, and the 

results generated from each device were merged later. The total time to finish the 

simulation was about five days.  

Evaluating the Effectiveness of TDIs. Empirical critical values found in the 

previous simulation were then used for detecting deviant (i.e., misfitting) growth 

trajectories in the second part of the simulation analysis. The effectiveness of four TDIs 

were evaluated according to three statistical indices: detection rate, type I error rate, and 

Rand index (Rand, 1971). Specifically, the detection rate was calculated as the averaged 

proportion of aberrant growth trajectories correctly identified as aberrant across all 

simulation replications, and type I error rate was calculated as the averaged proportion of 

fitting growth trajectories identified as aberrant across all replications. Rand index 

originally was designed to assess similarities between data clusters (Rand, 1971), and it 

has been extended to use as a measure of the proportion of correct decisions via the 

following algorithm: 

𝑅𝐴𝑁𝐷 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

The second simulation randomly generated growth curves via different functions 

instead of using the resampling approach described in the previous section. However, the 

data generation model was still based on parameter estimates of TRIAD data to ensure 

that values are representative of real-world data. For each formulated TDI, nine 

conditions were simulated following a 3 × 3 design. The first factor featured three types 

of aberrant growth trajectories to the Michaelis-Menten trajectory (inverted J-shape): 
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linear growth, logistic growth (S-shape), and accelerative or exponential growth (J-

shape). Each type of aberrant growth curve is commonly observed in educational settings, 

and a TDI needs to be capable of identifying such deviant patterns in further research. 

However, the power in detecting different aberrant growth may vary due to the inherent 

differences among those curves. For example, the exponential growth curves (J-shape) 

should be the easiest ones to detect because they are the most different from Michaelis-

Menten trajectories (inverted J-shape).  

The study also aimed to understand the robustness of the formulated TDIs with 

different percentages of deviant cases in the data for modeling, and therefore three 

percentages of cases showing aberrant growth patterns (5%, 10%, or 15%) in the 

generated datasets were simulated. The percentage of deviant cases is a key factor that 

can affect the detection ability of many person-fit statistics. Karabatsos (2003) compared 

36 person-fit statistics and found that detection rates generally decreased as the 

percentage of aberrant respondents increased. The current project did not simulate higher 

percentage conditions (e.g., 20%, 30%) because applying modeling strategies such as 

multi-group modeling techniques is more appropriate to accommodate very high portions 

of aberrant cases.  

Fifty replications were conducted for each condition, which generated 450 

datasets in total at this step. Each dataset has 605 simulated cases, which is the number of 

TRIAD cases with completed data. Four TDIs were calculated within all simulated 

datasets and averaged values of three efficacy indices (i.e., Detection rate, Type I error, 

Rand) were computed over all of the replications.  
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Real-Data Application  

TDI measures the magnitude of deviance from student-specific to the overall 

growth curve (e.g., inverted-J curve). Based on the results of simulation analyses, the 

most effective and robust TDI was retained. To demonstrate how this index can be 

incorporated into DMM framework, the second part of the study applied it to explore the 

contributing factors to the deviance of growth in early mathematics. The hierarchical 

linear modeling (HLM) approach was utilized to investigate the effects of both 

classroom-level and student-level predictors (Raudenbush & Bryk, 2002). 

Classroom-level Predictors. The TRIAD intervention group received the BB 

curriculum. It has been found that students from the intervention group performed 

significantly better than those from the control groups in the immediate post-test 

(Clements et al., 2013; Clements et al., 2020). Meanwhile, the intervention group was 

shown to have significantly higher learning rates from a long-term perspective (Dumas, 

McNeish, Sarama & Clements, 2019). Both findings indicate that the BB intervention 

may change student growth from a natural trajectory, but it remains a question whether 

the intervention would significantly impact the magnitude of trajectory deviance (i.e., the 

accuracy of estimates). 

Student-level Predictors. In addition to the intervention effect, this study also 

examined and controlled several student demographic variables, including special 

education status, bilingual status, SES, gender, and age. Those variables have been often 

associated with mathematical growth and learning (e.g., Clements et al., 2020; Duncan & 

Magnuson, 2012; Kenney-Benson et al., 2006; Siegler & Booth, 2004). In the current 
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analysis, SES was indicated by whether a student was eligible to receive Free/reduced or 

full-paid lunch, and age was grand mean centered for interpretation purposes. 

TDI was treated as a continuous outcome in the HLM analysis above, but TDI or 

other developed model appropriateness statistics have been often used dichotomously in 

research practices (e.g., evaluate whether participants fitted the model, Dong et al., 2020; 

Meijer & Sijtsma, 2001). Similarly, TDI may be applied to evaluate whether each growth 

trajectory is substantially deviant from the model implied curve according to the 

recommended critical values. For this purpose, the established TDI was applied to 

identify aberrant growth curves in the TRIAD data. Meanwhile, I also compared the 

conditional reliability of DMM with and without the deviant cases. 
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Chapter Four: Results 

This chapter presents two simulation analyses and the application of TDI into the 

TRIAD early mathematics data. In correspondence to the analytic procedures described 

above, results were organized into three sections focusing on the distributional properties 

of the formulated TDIs, the effectiveness of the TDIs, and an empirical application of the 

TDI, respectively.  

Distributional Properties and Empirical Critical Values of TDIs 

A simulation study using bootstrapping techniques was first conducted to examine 

the distributional properties (i.e., mean, standard deviation, skewness, kurtosis3) of four 

TDI candidates. Empirical critical values later used for detecting aberrant trajectories in 

the following analyses were found at the significance level of .05. The overall 

convergence rates of bootstrapped datasets were high: 99 of 100 models in the 605 

sample size condition and 98 of 100 models in the 300 sample size condition successfully 

converged.  

Descriptive Statistics 

Table 1 presents the mean and standard deviation for the distributional properties 

and critical values of each TDI across two sample size conditions. In the 605 sample size 

 
3 All kurtosis values reported in this study were excess kurtosis. 
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Table 1.  

Distributional Properties and Empirical Critical Values of TDIs 

 

  Mean SD Skewness Kurtosis Critical Value 

  M SD M SD M SD M SD M SD 

Sample size = 605 

TDIU_Abs 1.26 .01 .42 .01 .57 .10 .30 .26 2.08 .04 

TDIU_Sqr 2.60 .04 1.80 .07 2.00 .43 7.77 4.25 6.09 .23 

TDIW_Abs 16.68 5.27 57.05 90.40 12.18 5.23 197.56 153.85 30.28 9.12 

TDIW_Sqr 79637.23 328038.66 1643896.57 7700290.23 17.14 5.05 330.65 178.17 3209.18 5370.47 

Sample size = 300 

TDIU_Abs 1.27 .03 .42 .02 .54 .14 .21 .34 2.08 .05 

TDIU_Sqr 2.61 .07 1.78 .11 1.78 .57 5.74 4.92 6.09 .29 

TDIW_Abs 18.19 13.61 61.93 137.37 8.97 3.78 106.58 80.25 31.61 8.65 

TDIW_Sqr 158562.48 1057663.24 1793169.64 10648541.64 12.63 3.43 177.50 87.86 3610.03 3451.92 

Notes. Each cell summarized the results of 100 replications. 
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condition, the averaged skewness of TDIU_Abs across 100 replications was .57 (SD = .10), 

and the averaged kurtosis was .30 (SD = .26). Both values were within the range of -1 to 

1, which means TDIU_Abs followed a normal distribution. The averaged skewness of .54 

(SD = .14) and kurtosis of  .21 (SD = .34) in the 300 sample size condition indicated the 

same conclusion. In contrast, the distribution of TDIU_Sqr was positively skewed (605 

sample size: M = 2.00, SD = .43; 300 sample size: M = 1.78, SD = .57) and leptokurtic 

(605 sample size: M = 7.77, SD = 4.25; 300 sample size: M = 5.74, SD = 4.92) under both 

conditions.  

As can be seen in Table 1, the two weighted TDI statistics were severely skewed 

and leptokurtic. The very large mean kurtosis across conditions (ranging from 106.58 to 

330.65) implies frequent occurrences of outliers in TDIW_Abs and TDI W_Sqr. Furthermore, 

the corresponding standard deviations were also very large (ranging from 80.25 to 

178.17), which indicates the distributions of the weighted TDIs varied much across the 

replications within each sample size condition. 

Pooling the Critical Values across Sample Sizes 

To find the critical value for each TDI at the significance level of .05, the 

averaged fifth percentile values were calculated across 100 replications in each condition. 

The critical values of both unweighted TDIs (TDIU_Abs critical value = 2.08; TDIU_Sqr 

critical value = 6.09) were identical across the two sample size conditions. The averaged 

critical values of TDIW_Abs (M = 30. 28, SD = 9.12) and TDIW_Sqr (M = 3209.18, SD = 

5370.47) were smaller in the 605 condition than the 300 condition (TDIW_Abs critical 

value:  M = 31.61, SD = 8.65; TDIW_Sqr critical value: M = 3610.03, SD = 3451.92), but 



 

59 

 

the differences were not statistically significant. Therefore, the results were pooled across 

the 200 replications to determine the final critical values for the later examination. 

Considering the convenience of future application of TDI, I only kept one decimal in 

those pooled means in order to facilitate later comparison to the cut-off values: TDIU_Abs 

critical value = 2.1; TDIU_Sqr critical value = 6.1; TDIW_Abs critical value = 31.0; TDIW_Sqr 

critical value = 3397.0. These cut-off values were on their own scales to reflect their 

unique meanings based on their formulations. For example, a TDIW_Abs of 31.0 indicates 

31% averaged deviance from the growth trajectory across timepoints. Nevertheless, the 

outcomes (i.e., power, Type-I error rates, Rand values) in the evaluation of four TDIs will 

be on the same scale and directly comparable.  

Evaluating Effectiveness of Formulated TDIs 

A second simulation with a 3 (types of aberrant trajectories) × 3 (portions of 

aberrant trajectories) design was performed to evaluate the effectiveness of that four 

candidate TDIs. The sample size was not included as a factor here because of its 

negligible influences on the TDIs shown in the previous simulation. Each generated 

dataset contained a total of 605 cases: 30 aberrant and 575 fitting trajectories for the 5 % 

aberrant condition; 60 aberrant and 545 fitting trajectories for the 10 % aberrant 

condition; 90 aberrant and 515 fitting trajectories for the 15 % aberrant condition. 

To ensure representativeness of real data in the generated datasets, parameters in 

the functions (i.e., linear, J-shaped, S-shaped, inverted-J shaped) were all based on the 

TRIAD early mathematics data. For example, describing the growth between scores at 

the initial and last timepoints of TRIAD cases using linear models resulted in an averaged 
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slope of .79 (SD = .17). Then, a random slope (Si) from a normal distribution (M = .79, 

SD =.17) was assigned to a linear function (Mathti = Si × t + β0i) to generate linear growth 

data for the simulation datasets. β0i was also a random initial value from the TRIAD-

based normal distribution. Similarly, modeling the growth between the initial and last 

scores of TRIAD cases using a J-shaped function (Mathti = β0i + Xi
t -1) resulted in an 

averaged base number (X) of 1.34 (SD =.04). Two random parameters derived from 

corresponding distributions were then assigned to each case to generate the J-shaped 

growth data. To produce the S-shaped growth data, four random parameters were 

required in terms of its function: 𝑀𝑎𝑡ℎ𝑡𝑖 = 𝛽𝐿𝑖 +
𝛽𝐴𝑖−𝛽𝐿𝑖

[1+𝑒−𝛽𝑀𝑆𝑖(𝑡−𝛽𝑅𝑖)]
. In addition to the 

common capacity (βA) and learning rate (βR) parameters in most DMM models, the S-

shaped function also comes with two unique logistic growth parameters (βL, lower 

asymptote; βMS, the slope at midpoint). The distributions of these four parameters were all 

based on the estimates from TRIAD cases. Besides three types of aberrant trajectories, 

growth data in the shape of the model implied curve (inverted J) was produced via the 

Michaelis-Menten model with random growth parameters.  

General Patterns of the TDIs Functioning across Simulation Conditions   

A total of 450 datasets (3 × 3 × 50) following the simulation design were 

generated and imported into the Michaelis-Menten model. The convergence rate was still 

high: only 17 (3.8%) of 450 DMM models did not converge. The frequencies of non-

convergence had a weak relation to the types of aberrant trajectories (point biserial r 

= .09) but a moderate relation (point biserial r = .38) to the percentages of deviant cases 

within the dataset. The time- and person-specific residuals from each model were used in  
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Table 2.  

Comparisons of TDIs across Simulation Conditions 

 

  Linear growth   Exponential Growth (J-shape)   Logistic Growth (S-shape) 

  
Detection 

rate 

Type I 

error 
Rand   

Detection 

rate 

Type I 

error 
Rand 

  

Detection 

rate 

Type I 

error 
Rand 

  M SD M SD M SD   M SD M SD M SD   M SD M SD M SD 

5 % aberrant growth trajectories 

TDIU_Abs .82 .22 .04 .03 .95 .03   .96 .07 .02 .01 .98 .01   .40 .31 .02 .03 .95 .03 

TDIU_Sqr .77 .23 .03 .02 .96 .02   .92 .09 .02 .01 .98 .01   .40 .32 .02 .02 .95 .02 

TDIW_Abs .18 .15 .00 .00 .96 .01   .87 .16 .00 .00 .99 .01   .03 .04 .01 .01 .95 .01 

TDIW_Sqr .14 .12 .00 .00 .96 .01   .85 .16 .00 .00 .99 .01   .02 .03 .01 .01 .95 .01 

10 % aberrant growth trajectories 

TDIU_Abs .77 .10 .04 .02 .94 .01   .85 .11 .02 .01 .97 .01   .31 .26 .02 .02 .92 .03 

TDIU_Sqr .65 .11 .03 .01 .94 .01   .75 .11 .02 .01 .96 .01   .30 .24 .01 .01 .92 .03 

TDIW_Abs .05 .05 .00 .00 .91 .00   .77 .12 .00 .00 .98 .01   .02 .03 .01 .01 .90 .00 

TDIW_Sqr .04 .04 .00 .00 .90 .00   .75 .13 .00 .00 .97 .01   .01 .03 .00 .01 .90 .00 

15 % aberrant growth trajectories 

TDIU_Abs .63 .15 .02 .01 .93 .03   .66 .13 .01 .01 .94 .02   .15 .16 .01 .01 .86 .03 

TDIU_Sqr .47 .14 .02 .01 .91 .02   .53 .12 .01 .01 .92 .02   .15 .14 .01 .01 .86 .03 

TDIW_Abs .05 .06 .00 .00 .86 .01   .69 .11 .00 .00 .95 .02   .04 .05 .01 .02 .85 .01 

TDIW_Sqr .04 .05 .00 .00 .86 .01   .68 .13 .00 .00 .95 .02   .03 .04 .01 .02 .85 .01 

Notes. Each cell summarized the results of 50 replications, and both extreme and non-extreme values were included. 
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the calculation of four TDIs, and calculated critical values in the first simulation were 

then used to evaluate the effectiveness of each TDI. Table 2 presents means and standard 

deviations of detection power, Type I error, and Rand index for each TDI across 

simulation conditions. 

Detection Power. The detection power of the TDIs was calculated as the 

percentages of correctly identifying aberrant trajectories. In general, TDIs showed the 

highest power in detecting J-shape curves (M ranging from .53 to .96), moderate power in 

detecting linear growth (M ranging from.04 to .82), and lowest power in detecting S-

shape curve (M ranging from.02 to .40). This pattern was consistent for all four TDIs, 

which implies that the difficulties of detecting aberrant trajectories varied on the forms of 

growth trajectories. Another common pattern from Table 2 was that the detection power 

decreased as the percentages of aberrant growth increased in the simulation data. This 

finding was consistent with a previous investigation about the detection power of 36 

person-fit statistics (Karabatsos, 2003). 

Type I Error. The detection power only reveals one aspect of the efficacy of four 

TDIs, which is not sufficient to completely describe the functioning of the statistics. This 

is because an index with a very liberal cutoff may lead to high detection power but 

meanwhile inflate Type-I error (i.e., false positives). Therefore, the Type I error rates of 

four TDI candidates were also calculated and displayed in Table 2. The Type I error rates 

of all TDIs were consistently small across all replications within different simulation 

conditions: M ranged from 0 to 4%, and SD ranged from 0 to .03, which implies that all 

four TDIs were not oversensitive in their detection. Notably, though smaller type I error 
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rates are preferred in general, the suggested range of this value is α ± 1/2α (i.e., 025 

to .075, Bradley, 1978; Hancock, Lawrence & Nevitt, 2000). 

Rand Index. Despite that detection power and Type I error are useful criteria to 

understand a fit statistic, it can still be hard to make decisions regarding which TDI 

outperformed others because a less powerful index may demonstrate lower Type I error 

rates, and vice versa. Thus, the Rand index was used as a composite criteria in this 

evaluation to determine which TDI index had the optimal properties. The calculated Rand 

values ranged from .85 to .98, which means most decisions made based by TDIs and their 

critical values were correct for all four candidate indices. Similar to the power, it was also 

observed that Rand values decreased as the percentages of cases displaying aberrant 

growth increased in the tested datasets.  

Finding the Best Functioning TDI among the Four Candidates 

Differences in the effectiveness of the four TDIs were further examined to find 

the best functioning TDI. According to the results above, all four indices showed small 

Type I error rates and satisfying Rand values across nine simulation conditions, which 

suggests that the detection power should be the critical determining criteria in this case. 

In Table 2, the power of both weighted TDIs was weak (M ranged from .01 to .14) in all 

conditions except the condition with 15% exponential growth curves. Therefore, it 

appeared that TDIW_Abs and TDIW_Sqr were not effective in detecting aberrant trajectories 

in most cases. 

As for the two unweighted TDIs, TDIU_Abs showed equal or higher power than 

TDIU_Sqr across all the conditions, so TDIU_Abs appeared to be better than TDIU_Sqr. The 
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averaged power of TDIU_Abs in identifying aberrant cases with linear growth, exponential 

growth, and logistic growth was .74 (SD = .18), .82 (SD = .16), and .29 (SD = .31), 

respectively. Although the TDIU_Abs was formulated as the averaged deviance across 

timepoints, it performed particularly well in detecting types of growth with no leveling-

off process (i.e., a critical assumption of DMM).  

 

Figure 5. Different Forms of Hypothetical Growth Trajectories 

Notably, the power to detect logistic growth curves was relatively low, but this 

would not invalidate TDIU_Abs in effect. As displayed in Figure 5, a fitting curve (solid 

curve in bold) is much more similar to a logistic growth curve (dashed in bold)  than the 

other growth trajectories. More importantly, the S-shaped logistic growth also leveled off 

as time passes, which meets the essential assumption of using DMM to generate 

asymptotic capacity estimates (Dumas & McNeish, 2017; Dumas et al., 2020; McNeish 

& Dumas, 2017). In recent work, McNeish et al. (2019) also empirically showed that the 

Michaelis-Menten model and the logistic model both fitted the same data and showed 

very close mean square errors. Taken together, using the Michaelis-Menten model to 
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describe part of the logistic growth data can be supported both theoretically and 

empirically, and the relatively low power of TDIU_Abs in detecting the logistic curves was 

therefore acceptable within the DMM framework.  

In addition to the highest power, TDIU_Abs was the only index with a stable normal 

distribution among the investigated TDIs, which makes it an ideal continuous measure 

for the magnitude of deviance from student-specific to the model-implied growth curve. 

For all these reasons, TDIU_Abs was determined to be the final TDI formulation. Notably, 

the empirical critical value (i.e., 2.1) of TDIU_Abs should not be perceived as a universal 

rule of thumb or hard cut-off in future applications. Follow-up studies may consider 

establishing a generalizable cut-off and its associated confidence interval based on 

additional simulation work. 

Empirical Example: Applying the TDI into the TRIAD data 

In the empirical example, the developed TDI was then applied to explore the 

influences of the BB intervention and student demographics (i.e., special education 

status, bilingual status, SES, gender, and age) on the deviance from a typical growth 

trajectory in early mathematics. Meanwhile, we also examined whether the validity of 

DMM score use and interpretation can be improved after incorporating the TDI.  

Contributing Factors to the Deviance of Growth in Early Mathematics 

The TRIAD data was modeled in the Michaelis-Menten function, and each 

student received a TDI value calculated by the formula [9]. Figure 6 displays the 

histogram of TDI Values in the TRIAD Data, and it shows a clear normal distribution (M 

= 1.26, SD = .42, skewness = .59, and kurtosis = .33). The following HLM analysis then 
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treated TDI as a continuous outcome variable. A null HLM model with no predictors was 

tested first. An ICC of .02 (SE = .03) indicated that the clustering effect on TDI was weak 

(less than .05, Raudenbush & Bryk, 2002), so it was not necessary to conduct a multi-

level model in the prediction of TDI. However, this empirical example still followed the 

original analysis plan of running HLM analysis, in order to explicitly model classroom 

and student-level predictors. 

 

Figure 6. Histogram of TDI Values in the TRIAD Data 

Table 3 summarized the HLM model predicting TDI values with both classroom- 

and student-level predictors. After controlling the student-level predictors, the 

intervention status was not associated with the trajectory deviance (B = -.08, SE = .04, z = 

-1.96, p = .05), which means there was no bias in the accuracy of asymptote estimates 

between intervention groups. This finding could further support the asymptote-related 

conclusions in a previous DMM study (Dumas et al., 2019) using the same data.  
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Table 3.  

Multi-level Linear Regression Predicting TDI 

 

Predictors Coefficient SE z p 

Classroom-level Predictor 

Intervention -.08 .04 -1.96 .05 

     

Student-level Predictors 

Age .00 .00 .18 .86 

Special Ed .12 .06 1.90 .06 

Gender -.03 .04 -.79 .43 

Bilingual .09 .04 2.13 .03* 

SES .05 .05 1.06 .29 

                   Notes. * p < .05. 

Regarding the student-level predictors, bilingual students had significantly higher 

TDI values (B = .09, SE = .04, z = 2.13, p = .03), which means they deviated more from 

model-implied growth curves than non-bilingual students. In the next section, multiple 

sources of evidence were checked to verify whether these deviances would substantively 

invalidate the use of DMM capacity estimates. 

Post-hoc Validity Check using Bilingual Status as an Example  

Validity is a property of the proposed interpretation and use of scores (Kane, 

2013). Asymptote scores within the DMM framework have been interpreted as the 

quantity of learning capacity in a certain domain. The average growth trajectories of 

bilingual and non-bilingual students were first plotted to examine the form of their shapes 

and whether their asymptotes can be meaningfully interpreted. From Figure 7, both 

curves were in a general J-shape and leveled-off in the later timepoints, which supports 

the validity of interpreting DMM asymptotes as learning capacities for both groups of 

students. 
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Figure 7. Growth Trajectories of Bilingual and Non-bilingual Students 

Then, a total of 27 (4%) students were flagged based on the empirical critical 

value (i.e., TDI over 2.1 indicates an aberrant trajectory). It was found that the bilingual 

characteristic was not associated with being identified as aberrant (χ2 = .71, p =.40). This 

finding implies that bilingual students did not as a group significantly disproportionately 

misfit to the model-implied trajectory, though they did have higher TDIs than their 

counterparts on average. Finally, the relation between asymptotic capacity and TDI was 

checked via a scatterplot (see Figure 8) and Pearson correlation (r =.04, p =.31). Both 

results indicated no relation between the two DMM quantities.  
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Figure 8. Scatterplot of TDI and Asymptote 

In sum, the identified influences of bilingual status on TDI neither invalidated the 

use of asymptote estimates nor skewed related findings. With these kinds of validity 

check procedures, researchers would be more confident about the findings derived from 

DMM analysis. In this empirical example, TRIAD bilingual students were found to enter 

with significantly lower performance (t = -2.71, p = .007), catch up at the end of pre-k (t 

=.02, p =.984), gradually expand their learning in later years, and meanwhile show 

significantly higher learning capacities than their counterparts in mathematics learning (t 

= 3.27, p = .001). This dissertation did not delineate these findings because it was beyond 

the scope of the current study.  

In this chapter, the distributional properties and effectiveness of four formulated 

TDIs were examined and compared. TDIU_Abs has a normal distribution and shown the 

best functions in detecting various aberrant growth trajectories. Thus, the TDIU_Abs was 
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determined to be the formal trajectory deviance index for DMM. Moreover, I illustrated 

some uses of TDI by applying the index to the TRIAD data. The next chapter discusses 

major findings in detail and elaborates on several important methodological issues related 

to TDI. 
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Chapter Five: Discussion 

DMM is a recently developed theoretical-psychometric paradigm for educational 

and psychological research (Dumas et al., 2020). Asymptote estimates from DMM have 

been used and interpreted as students’ capacity or learning potential in different domains. 

Evidence supporting the validity of DMM capacity scores has also been demonstrated in 

both empirical and methodological studies (e.g., Dumas & McNeish, 2017; Dumas, 

McNeish, Clements, & Sarama, 2019; McNeish et al., 2019). Like any formerly 

established measurement framework, DMM is also undergoing the developmental 

process, which may involve refinement of methodology, extensions of theories, and 

further validation in the use and interpretation of produced scores. The present study 

developed a person-specific DMM trajectory deviance index (TDI) to identify students 

with aberrant growth trajectories and strengthen the validity of DMM capacity scores. 

The Properties and Advantages of the Developed TDI (TDIU_Abs) 

This research first formulated four different ways to calculate the TDI based on 

the literature and characteristics of DMM, and TDIU_Abs was determined to be the final 

index. One might find it surprising that TDIU_Abs performed better than other candidates 

in almost all aspects of evidence from the current investigation, even in the detection of 

exponential growth (J-shaped). Theoretically, both weighted TDIs should be more 
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sensitive to detect the growth trajectories that did not level off, but the critical values 

found at the significance level of .05 could be too conservative. As shown in the second 

simulation (see Table 2), the two weighted indices presented Type I error rates close to 0 

and relatively low detection power. In contrast, the TDIU_Abs presented consistently 

higher power than the other three TDIs, and meanwhile, it held better Type I error rates 

(i.e., closer to the ideal range: 025 to .075, Bradley, 1978; Hancock, Lawrence & Nevitt, 

2000) and high Rand values across conditions.  

Another favorable feature of the TDIU_Abs was the form and consistency of the 

distribution of this index. TDI measures the magnitude of deviance from student-specific 

to the model-implied growth curve, which is a quantity that can be used for a wide range 

of statistical analyses. Given that normality is one of the most fundamental assumptions 

in statistical analysis (Tabachnick & Fidell, 2014), the normality of TDIU_Abs was thus to 

be a useful feature for future applications. Moreover, the small standard deviations across 

replications and the almost identical distributional properties between sample size 

conditions (see Table 1) both supported the consistency of its distribution.  

The TDIU_Abs also shared a common advantage with other DMM methodological 

advances (e.g., conditional reliability, McNeish & Dumas, 2018). Despite that the 

conducted simulation was conducted with specific fitting and aberrant growth trajectories 

and functions, the residual-based TDI, can be applied to different DMM functions, as 

long as the residual (dti) has the same definition. 
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Robustness of DMM Capacity Estimates: Evidence from TDI 

In previous work (Dumas & McNeish, 2017; Dumas & McNeish, 2018), DMM 

capacity scores have demonstrated better consequential validity of measurement than 

single-timepoint scores. A major piece of evidence was that DMM capacity estimates 

were less affected by demographic background variables. However, if there was a 

mediation effect of TDI on this relation, this important finding can be doubted. 

Specifically, literature shows that different demographics were often associated with 

mathematical growth and learning (e.g., Clements et al., 2020; Duncan & Magnuson, 

2012; Kenney-Benson et al., 2006; Siegler & Booth, 2004), which means students with 

historical marginalized backgrounds may not follow a typical growth trajectory such as 

the inverted J-shape. When their capacity scores were generated by the overall model, 

they might have larger TDI and meanwhile obtain less accurate estimates. It remained a 

concern whether the weaker association between capacities and demographic background 

variables was due to the larger trajectory deviances.  

In the second stage of this project, most studied factors (i.e., intervention, gender, 

age, SES, and special education status) showed non-significant relations to TDI. 

Although the growth of bilingual students deviated more from their model-implied 

curves, they did not show substantial deviance in terms of the empirical critical value. 

There was also no relation between TDI and capacity scores. Therefore, the initially 

concerned mediation effect of TDI does not exist, and the previous finding regarding 

DMM consequential validity was not an artifact. 
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Moving Past ‘One Size Fits All’: Improving DMM Validity by Incorporating TDI 

Researchers have been advocating for attention to minority students in 

educational research (e.g., mathematical learning difficulties for ELL and students with 

disabilities, Clements & Sarama, 2020; transformative research and evaluation paradigm, 

Mertens, 2008). This action can usually be echoed in the general research design or goals 

but neglected at specific steps of implementing research, such as the data analysis. 

Appropriate global fit indices of a candidate DMM model often indicated that the 

model described the data well in general, and these model fit statistics can be easily 

interpreted as the signal of “good to go.” Unfortunately, such interpretation is not always 

true, especially in contemporary educational research settings. For example, it has been 

observed that students’ abilities commonly grow faster in the beginning and eventually 

level off towards students’ learning capacity (Dumas & McNeish, 2017; Feuerstein, 

1979). However, researchers or educational professionals may easily doubt this 

conclusion by giving examples of students whose growth trajectories do not level off (see 

Figure 1). A validity threat to DMM then appears because all students received capacity 

estimates, even if their growth curves were in shapes with no asymptotes (e.g., linear or 

J-shaped). In other words, the capacity scores these students received are not accurate or 

meaningful. With the scope of educational equity and social justice, researchers and 

psychometricians should pursue valid scores for every student rather than only the 

majority. The current project also made efforts to address this critical goal. 

The developed TDI now provides DMM researchers an effective way to 

recognize student-specific misfitting as well as the violation of the model assumption 
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(e.g., the Michaelis-Menten model assumes learner-specific trajectories tend to level off 

as time goes forward). For example, Figures 9a and 9b display the growth trajectories of 

low and high TDI students in the TRIAD data. To ensure the clarity of the figures, each 

only included the top four or bottom four students along with the averaged growth curve 

of the total sample. As can be seen in Figure 9a, all four cases with high TDI showed 

substantial deviance from the model implied growth curve (i.e., inverted J-shaped). 

Specifically, the growth of cases 1 and 4 started to accelerate in the later timepoints, 

while cases 3 and 4 experienced learning loss in the later timepoints. The asymptotes for 

all four cases appeared to be not meaningful, and they also did not show a higher rate of 

increase in the beginning as described by the Michaelis-Menten function, especially for 

case 3. In contrast, the four example students with low TDI in Figure 9b presented 

relatively clear inverted J-shape growth. Both high and low TDI examples further 

supported the efficacy of the developed TDI. With the TDI approach, researchers are then 

able to know which students in the data may have received inappropriate learning 

capacity scores, and follow-up actions could be taken to correct this. Successfully 

detecting the deviant trajectories has already been an essential enhancement of the DMM 

validity. Fortunately, additional benefits of incorporating TDI were also found. For 

example, if researchers choose to remove those deviant cases, they may achieve higher 

reliability for the rest of the students. After removing 27 (4%) TRIAD students with 

deviant growth curves, the conditional reliability of DMM increased from .84 to .86. The 

change in reliability was not obvious because the base reliability was high in this case. 

Other improvements in psychometric properties may also occur.  
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(a) Cases with High TDI 

 

 
 

(b) Cases with Low TDI 

 

 

Figure 9. Examples of Low and High TDI Students in the TRIAD Data 
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It should be noted that removing cases may lead to the occurrence of new deviant 

cases, but when to stop removing cases needs to be carefully determined with both 

statistical and practical considerations (e.g., the decision tree in the Rasch misfit analysis, 

Linacre, 2010). Cases deletion in DMM should not be a responsive action to the overall 

research project but specific to a certain stage of statistical analysis, which means those 

removed participants from a DMM model can still be studied using other statistical 

approaches or research paradigms. Moreover, case deletion is not a required or only 

choice to deal with the aberrant cases detected by the TDI. Alternative approaches like 

multi-group modeling can also be applied when certain conditions were met (e.g., the 

sample size is sufficient in each group). As illustrated in the current study, TDI can be 

treated either as a continuous variable or recoded into a dichotomous variable. 

Researchers usually have choices to determine the follow-up steps that can strengthen the 

validity of scores or improve their confidence in using DMM approaches. 

Educational Implications 

In the U.S., students with certain demographic backgrounds are historically 

marginalized, and they have been received less necessary instruction and other learning 

opportunities than their counterparts. Consequently, those students often do not perform 

well in conventional single-timepoint assessments. Because the conventional scores are 

commonly used to predict their future performance or as a reference to distribute 

educational resources, various types of achievement gaps (e.g., racial gaps in the U.S.) 

are then persistent, and the advance of social justice in the U.S is also hindered. 

Improving the consequential validity of educational measurement is therefore critical. It 
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has been shown that the capacity scores from DMM were much less impacted by 

students’ demographics than single-timepoint assessment scores (Dumas & McNeish, 

2017), which means the newly invented DMM may be a theoretical-psychometric 

paradigm with better consequentially validity. Students having disadvantaged 

backgrounds do not show lower learning capacity even though their developed cognitive 

abilities are still behind. Thus, DMM capacity scores could be a unique and 

standardizable source for making equitable educational decisions.  

In the original DMM framework, all students are assumed to fit the growth model 

selected based on the overall fit indices, which is a practice of ‘One Size Fits All’, and 

the consequential validity cannot be guaranteed for each student. The current study 

developed the TDI aiming to make DMM research more valid and trustworthy. This 

index measures the magnitude of deviance from student-specific to the model-implied 

growth curve. It thus can be used for checking whether the underlying assumption is met 

for each student. By incorporating the TDI analysis, the consequential validity of 

educational measurement can also be improved. 

Future Directions 

The validity of the DMM scores was a central topic across the study. DMM is a 

relatively new psychometric modeling framework and sufficiently different from CTT 

and IRT (Dumas & McNeish, 2017; McNeish & Dumas, 2018), but there is no DMM-

specific validity framework so far. Either the classic trinity perspective (content, 

criterion-related, and construct, Cronbach & Meehl, 1955) or the popular duality theory 

(internal and external, Lissitz & Samuelsen, 2007) of validity can only be partially 
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applied to examine essential topics for DMM. DMM has been gradually receiving more 

attention since it was invented. DMM researchers and educational psychologists may 

need a solid DMM validity framework that can be used to evaluate their future work 

systematically. 

Additionally, DMM and the TDI are based on longitudinal data, which is an 

important feature that differentiates from other measurement frameworks. Incomplete or 

missing data is always a common and fundamental issue for longitudinal analyses. 

Though a large amount of research about this topic has been done in the areas of 

education, medical and general social science (Ibrahim & Molenberghs, 2009), it is still 

under-researched within DMM. Future studies may also focus on how missingness 

impacts DMM scores, DMM reliabilities, or the developed TDI in various conditions.  

Follow-up studies may also consider establishing a generalizable cut-off and its 

associated confidence interval. Future studies could try incorporating a standardizer into 

the current formula and/or conduct simulation analyses focusing on the cutoff value and 

its CI. However, the author also noticed that the existence of universal cutoff values 

might not be empirically supported in some cases. For example, Chen et al. (2008) 

demonstrated that the .05 cutoff for RMSEA, any other value as universal cutoff, or 

jointly with the CI, were not supported by the simulation results. Thus, the author is not 

over-optimistic about finding a universal cutoff for TDI at this point, and it is more likely 

to identify a range of TDI values as the rule of thumb that we can suggest to researchers 

who will ultimately make the decisions to cut students from the model. Notably, the 

cutoff or rule of thumb value is only used for making dichotomous evaluation (i.e., fit or 
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not fit), and the current study has also shown its use as a continuous quantity in the real-

data application. In other words, TDI does not necessarily need a cutoff value in the 

research practice it is intended for. 

In summary, this dissertation developed a person-specific TDI to measure the 

magnitude of deviance from student-specific growth curves to the model-implied growth 

curve, as well as indicate the measurement appropriateness of DMM for each individual. 

The study simulated and compared the distributional properties and efficacy of four TDI 

candidates with different formulations. As a result, the TDIU_Abs was the only candidate 

statistic that demonstrated a consistently normal distribution across replications. It was 

also the most effective formulation in detecting aberrant growth trajectories base on three 

evaluation criteria: detection power, Type-I error, and Rand index. Therefore, the 

TDIU_Abs was chosen to be the final formulation. This study also showed some uses of the 

developed TDI via an empirical example. The results indicated that the bilingual status of 

TRIAD students was significantly related to the deviance of growth in early mathematics, 

but the other examined factors were not. Considerable evidence supported that 

incorporating TDI into DMM analysis strengthened the validity of score use and 

interpretation. The current study is an integral part of the developing DMM methodology, 

because it offers future researchers a quantitative approach to identify the individuals 

who are not adequately served by the DMM. 
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