Investigation of Post-Consumer Regrind Content in Polyethylene and Polypropylene for Consumer Packaging Applications

By: Dylan Hiersche , Maggie Moody, Jacob Robertson, Tanner Tribble, Douglas Wells, and Jeanne H. Norton
Pittsburg State University Research Colloquium
April 14, 2021

Why Recycle?

- Growing environmental concerns surrounding plastics
- > Ocean life is starting to become affected
 - For example, South Pacific Garbage patch
- > Prevent build up of plastic waste in landfills
 - Landfills becoming completely full in the next several years

Why the Plastic Industry uses Plastic Regrind!

- > Resin prices are variable
- Excess material and rejected parts can be reclaimed to control cost
- Using post-consumer regrind will reduce demand on natural resources and optimize the material usage
- > Items of concern to industry:
 - Amount of plastic regrind that can be used in a part with virgin material with loss of performance
 - O How regrind was originally processed
 - O Regrind granule size
 - O Any potential contamination

Project Goals

- Purpose of this project
 - To determine the differences between virgin resins and resins that contains post-consumer recycled content (PCR)
 - ➤ Injection molding samples
 - > Characterizing sample properties
 - > Mechanical properties
 - > Thermal properties
 - > Rheological properties
- ➤ Identify a potential plastic with significant PCR content that can replace a conventional virgin plastic in consumer packaging

Plastic Resin Materials:

- Control Resins
 - O Ineos H05A-00
 Polypropylene
 Homopolymer

Marlex 9012 High -DensityPolyethylene

- Experimental Resins
 - Plastic Bank SDS clear
 Polypropylene
 (Social Plastic)
 - KWR621 Post Consumer
 Recycled FDA Polypropylene
 Resin
 - KW Post Consumer Recycled Polyethylene Resins:
 - KWR 102 BM High -Density Polyethylene
 - KWR 101 150 NaturalHigh DensityPolyethylene

Injection Molding

 Control (1-3) and experimental resins (A-E) were obtained and injection molded

1) Chevron Phillips Marlex 9012, 2) Ineos H05A-00 PP 2019, and 3) Ineos H05A-00 PP 2020.

A) Social Plastic PP 2019, B) Social Plastic PP 2020, C) KW-621 PCR FDA PP, D) KWR 102 BM PE, and E) KWR 101 150 Nat PE

Tensile Testing

- Tensile testing
 determines multiple
 parameters related to
 material strength and
 flexibility
 - o Modul us
 - o Break Stress
 - o Break Elongation

Tensile Testing Results

<u>Material</u>	Modulus Break Stress (MPa)		Break Elongation (%)	
Ineos H05A-PP Homopolymer (2019)	362.69 (±7.18)	15.68 (±1.90)	122.91 (±31.05)	
Ineos H05A-PP Homopolymer (2020)	341.99 (±4.15)	14.27 (±4.81)	216.45 (±79.29)	
KWR 621 PCR FDA Grade PP	76.85 (±1.76)	10.63 (±1.94)	85.34 (±10.32)	
Social Plastic PP (2019)	351.57 (±7.91)	23.76 (±5.27)	70.22 (±18.93)	
Social Plastic PP (2020)	322.70 (±11.30)	16.26 (±2.31)	377.40 (±155.64)	
Chevron 9012 HDPE (Marlex)	133.13 (±6.58)	11.13 (±1.20)	1480.93 (±407.81)	
KWR-101-150 NAT	220.87 (±5.78)	12.01 (±2.21)	426.48 (±58.53)	
KWR 102 BM	152.56 (±4.50)	10.48 (±1.01)	852.40 (±335.70)	

Izod Impact Testing

- is a measure
 of material
 toughness
- > Izod testing
 uses the
 apparatus
 shown here

Izod Impact Results

<u>Material</u>	<u>Notched</u> <u>Resistance</u> (Ft-Lb)	Average Breaks	<u>Un-Notched</u> <u>Resistance</u> (Ft-Lb)	Average Breaks
Ineos H05A-PP Homopolymer (2019)	1.17 (±0.26)	Break	26.99 (±2.01)	Partial
Ineos H05A-PP Homopolymer (2020)	0.75 (±0.07)	Break	29.26 (±3.73)	Partial
KWR 621 PCR FDA Grade PP	1.05 (±0.07)	Break	17.91 (±3.83)	Break
Social Plastic PP (2019)	0.60 (±0.08)	Break	22.10 (±3.10)	Break
Social Plastic PP (2020)	0.56 (±0.08)	Break	20.71 (±2.95)	Break
Chevron 9012 HDPE (Marlex)	1.30 (±0.11)	Break	17.39 (±1.69)	Non-Break
KWR 101-150 NAT	4.41 (±0.48)	Break	21.19 (±2.62)	Non-Break
KWR 102 BM	1.78 (±0.08)	Break	18.99 (±1.59)	Non-Break

Summary and Next Steps

- All experimental and control resins were successfully i nj ect i on mol ded
- > Tensile Results
 - O KWR 621 PCR FDA Grade PP was weaker and less flexible than the controls
 - O Social plastic PP (2019 and 2020) had similar strength to the controls but flexibility varied year to year
 - KWR 102 BM was similar to the control in terms of strength and flexibility
 - KWR-101-150 NAT is stronger than the control, but is also more brittle
- > Izod Impact Results
 - o Social plastic had lower impact than the controls
 - OKWR 621 PCR FDA Grade PP and KWR 102 BM were similar to the controls
 - o KWR-101-150 NAT had greater impact strength than the controls

Next Steps:

- Compare thermal properties of experimental resins with control resins
 - Thermogravimetric analysis
 - Differential scanning calorimetry
- Compare melt rheology of experimental resins with control resins
 - Melt flow analysis

We would like to say a huge thank you to the Kansas Polymer Research Center, Paul Herring, Dan Spielbusch, Jeanne Norton, and our industrial partner!

