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SYNTHESIS OF GADOLINIUM-DOXORUBICIN PRODRUG CARRYING 

FUNCTIONAL NANOCERIA FOR THE TARGETED DRUG DELIVERY AND 

CANCER TREATMENT 

 

 

An Abstract of the Thesis by 

   Arth Patel 

 

 

The main focus of this research was the development of a polymer-coated nanoceria 

(PNC) platform to be used as a drug delivery system. Water-dispersible PNC is synthesized 

using a water-based alkaline precipitation method. Cerium nitrate hexahydrate and poly 

(acrylic acid) are used for the preparation of PNC. The synthesized PNC was characterized 

using ZETA, and UV- Vis characterization techniques. Polyacrylic acid (PAA)-coated 

cerium oxide nanoparticles fabricated for the targeted combination therapy of TNBC 

(MDA-MB-231) and MCF-7. Using EDC/NHS chemistry, the surface carboxylic acid 

groups of nanoceria was designed and synthesized with ICAM-1 antibody to target ICAM-

1 overexpressing TNBC. Next, doxorubicin with gadolinium as a Doxo-Gd prodrug was 

used as a therapeutic agent. The dialysis technique was used for the purification purpose 

of nanoparticles to remove unreacted particles. Doxo-Gd provided activable MR imaging 

and treatment of cancer. The cytotoxicity of the formulated PNC was evaluated using cell-

based MTT assays. The cell viability and cell internalization assays were performed using 

TNBC & MCF-7 cells. The detailed synthetic protocols, characterization data, and 

experimental results are presented in this work. 
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Chapter I 

 

 

Introduction: 

 

 

Cancer is classified as one of the world’s top ten deadliest diseases and it is 

expected that 606,880 Americans will suffer from cancer growth in 2020.1 Cancer is a 

major public health problem worldwide and is the second leading cause of death in the 

United States. Prostate, lung, and colon cancer represent 42% of all cases in men. Among 

women, the three most common cancers are breast, lung, and colon cancer. Breast cancer 

accounts for 30% of all new cancer cases in women.1 Therefore, cancer needs to be treated 

with better methods rather than conventional methods and this has been made 

improvements in the biomedical technology. 

The field of biomedical technology is the fastest-growing area in cancer research. 2 

The advancement of technology and techniques, has made a vast difference in the 

pharmaceutical industry.2 There are many different types of cancer, including: breast, 

prostate, lung and thyroid cancer. Treating these diseases requires a method of safely 

delivering therapeutic drugs directly to cancer cells. Before nanotechnology, there were 

some of the conventional methods like surgery, radiation therapy, and chemotherapy. 

These methods are still being used in current therapy. However each of these therapies 

have side effects such a damage to healthy cells, injury to the immune system, and 

numerous other undesired consequences. It is very important to eliminate the tumor or 
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cancer cells without spread to other sites of the body.3 In the last ten years, nanotechnology 

has provided positive results for treating cancer with lower side effects compared to 

conventional therapies.6 When it comes to nanoscience, it is comprised of some unique 

properties and characteristics, such as low toxicity and early detection of tumor. 

Nanotechnology and nanoparticles in drug delivery may be the most advanced utilization 

of nanotechnology in drug delivery in progress. In nanotechnology, particles are designed 

with the goal that they are attracted to unhealthy cells, which allows direct treatment of 

those cells. 

 

Role of polymers in drug delivery: 

 

                 Polymers play an important role in the technology of drug delivery by serving 

as the framework for the delivery system, encapsulating nontherapeutic molecules like 

antibodies and dyes, and having a functional surface for targeting cancer cells.2 In the last 

two decades the use of polymers in biomedical science has gained solid ground in several 

applications, such as diagnostic techniques, therapeutic delivery, and controlled drug 

delivery.4 Biodegradable polymers find widespread use in drug delivery as they can be 

degraded to non-toxic monomers inside the body.3 However, polymers have limitations; 

for example, natural polymers are plentiful, yet they are difficult to produce synthetically 

and purify.2 There are two different types of synthetic polymers; linear polymers and 

dendritic polymers. A linear polymer is a chain of molecules where all of the bonds of the 

polymer backbone exist in a single straight line. An example of a linear polymer is Teflon, 

made from tetrafluoroethylene. It is a single strand of units made from two carbon atoms 

with two fluorine substituents per carbon atom. The linear polymer cannot store a large 

amount of drugs because of the lack of pockets in the structure. Branched polymer have 
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lots of small pockets that can store a variety of drugs and dyes and can deliver safely to the 

tumor.3 Dendritic polymers are very stable because of their size and functional surface.3 

These polymer have potential for many applications due to the significant level of control 

over their physical characteristics, presence of interior cavities, and the likelihood of 

multivalent interactions as shown in Figure 1.3  

 

 

Figure 1: Polypropylene imine generation 3 (G3) dendrimers (in line with the definition 

by Meijer and co-workers, a PPI dendrimer with 16 end groups is called a third-

generation dendrimer.3 
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Role of various nanoparticles in drug delivery: 

 

There are three types of nanoparticles that are used in drug delivery, such as metallic 

nanoparticles, lipid nanoparticles and polymeric nanoparticles. They all have different 

methods of synthesis and characteristics. In metallic nanoparticles, there is Iron oxide 

nanoparticles (IONPs), and Gold Nano nanoparticles (AuNp). 

 

Lipid based nanoparticles: 

 

Many therapeutically effective particles are non-soluble in aqueous systems, chemically 

and biologically delicate or present severe side effects. Lipid-based nanoparticle (LBNP) 

systems describe colloidal carriers for bioactive organic molecules.14, 15 LBNPs such as 

liposomes, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have 

been considered for drug delivery and cancer treatment. These nanoparticles can transport 

hydrophobic and hydrophilic molecules, with very low to no toxicity. Liposomes are the 

most studied delivery systems due to the biocompatibility and biodegradability.15The main 

components of these nanoparticles are phospholipids, which form lipid bilayers as a result 

of their amphipathic characteristics. The presence of water within the liposomes increases 

the stability and solubility of anticancer drugs once loaded. In the preparation of liposomes, 

cholesterol is also an important component. Liposomes are modified with various moieties 

(e.g., antibodies, peptides, aptamers, and small molecules) that impart specificity and 

enhance targeting efficiency. For example, RGD (arginine-glycine-aspartic Acid) can be 

conjugated to a drug delivery vehicle either directly to the surface or via polymeric tethers 

(e.g., polyethylene glycol). (Figure 2)  
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Figure 2: The conformational structure of the elastin-like peptide (ELP) can be used to 

tune arginine-glycine-aspartic acid (RGD) binding to target breast cancer cells.15 (A) It is 

a chemical structures of RGD (targeting head group), ELP (pH-sensitive elastin linker), 

C16 (hydrophobic anchor tail), and DOPC (lipid).15 (B) It’s a mechanism of pH-induced 

structural conformation of RGD-ELP-modified liposomes. 

 

 

Iron oxide nanoparticles: 

 

                       Magnetic nanoparticles (MNPs) are ferromagnetic materials, with small particle 

size, large specific surface area, and superparamagnetism.4 In recent years, magnetic 

nanoparticles (MNPs) have exhibited progress in the field of oncology.5 The properties of 

MNPs are exploited when they are utilized as drug delivery vehicles, where drugs may be 

delivered to specific location in vivo by application of an external magnetic field.5 

Magnetic nanoparticles incorporate properties that make them successful for various 

biomedical applications, including cell division and recognition, to cell separation and 

detection, contrast agents in magnetic resonance imaging (MRI), treatment for 

hyperthermia and drug delivery.5 Specifically, iron oxide nanoparticles are stable due to 

their physical and chemical properties like biocompatibility and bio-distribution, strong 
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magnetic properties, molecular surface groups, and more importantly high stability make 

it suitable for biomedical applications.5 Moreover, this detection system can also be 

extended for detecting biomolecules through new oxidase or peroxidase platforms. The 

resulting stable iron oxide nanoparticles ionic liquid can be directly used to prepare the 

millimeter-sized magnetic ionic liquid marble, which when combined with the intrinsic 

nature of ionic liquids and magnetic properties can be easily transported with an applied 

magnetic field.6 

 

     

Figure 3: Synthesis of stable iron oxide nanoparticle for biomedical application.6 
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Gold nanoparticles: 

 

Colloidal gold has been valued for its high potential in medicine for long period of 

time.7 Gold nanoparticles (AuNp) have advanced properties such as: extensive volume to 

surface ratio, the possibility for changing surface charge, hydrophilicity, and high surface 

functionality through surface chemistry. Surface-modified anticancer AuNp causes no to 

minimal side effects while at the same time providing enhanced drug loading capacity and 

enhanced blood circulation times. 7,8 An intriguing strategy ensuring the intracellular 

delivery of active compounds includes their conjugation to the surface of gold 

nanoparticles through thiol groups. This facilitates the release inside the cell due to the 

glutathione (GSH) activity and is shown in Figure 4.7 This compound is responsible for 

removing free radicals and maintaining cellular redox homeostasis due to the capacity to 

reduce disulfide bonds. Inside the cell, glutathione “removes” molecules conjugated on the 

surface of AuNP, thus contributing to their efficient release.7 The chemical properties of 

AuNPs surface are among the many advantages of AuNPs over other organic and inorganic 

counterparts. The functionalization of AuNPs surface is easy and highly controllable; thus, 

the surface chemistry and hydrodynamic diameter of AuNPs, as well as their 

pharmacokinetics and biodistribution can be appropriately changed through a surface 

modification.9,10,12 In addition, the safety profile of AuNPs can be finely tuned by adjusting 

the size and arrangement of the gold nanocarrier. Studies on AuNPs demonstrated that 

these nanomaterials do not aggregate in the liver and have no long-term side effects in the 

animal models.12,13 
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             Figure 4: Schematic representation of gold nanoparticles. 
 

 

 Nanoceria (cerium oxide nanoparticle) for drug delivery: 
 

Cerium oxide and polymer-coated nanoceria both has similar properties for drug 

delivery. Over the last decade, nanoceria has gained much more attention due to its 

distinctive chemical as well as structural characteristics.37 Cerium is a rare-earth element 

from the lanthanide series exists in two oxidation states Ce3+ and Ce4+. Nanoceria shows 

phenomenal antibacterial action against both gram-positive and gram-negative bacteria by 

means of the increase to reactive oxygen species (ROS).37 Using nanoceria is a smart option 

for the elimination of cancer because it can kill cancer cells without damaging healthy 

tissues. It is theorized that the mechanism of action of nanoceria is that cancerous cells are 

known to be acidic, and by increase this acidic cell oxidative stress as well as apoptosis, it 

leads to the destruction of cancer cells.37 Due to catalytic-activity of nanoceria, it works 

better in an acidic environment, such as inside a cancer cell. On the other hand, surrounding 

tissues of cancer remain unharmed because nanoceria works selectively on the cancerous 
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cells by targeting only the tumor.39 Due to low pH and high GSH in the endosome, the 

encapsulated drugs are released into the cytoplasm and then enter either into the nucleus 

where it binds directly with DNA causing its denaturation, or in mitochondria which 

increases the production of reactive oxidant species (ROS) that further attack the nucleus 

and causes the denaturation of DNA, ultimately leading to cell death as shown in Figure 

5.38 In this nanoceria as it is very important to control the size, shape and ratio  upon which 

the physical, chemical, and biological attributes depend on it.37,38 There are numerous 

methods for the synthesis of nanoceria. These synthetic strategies are fundamental, as the 

physical and chemical properties depend upon them.37 

 

Figure 5: Schematic diagram of drug delivery activity of nanoceria in the cancer cell. 

Drug CNP coated with specific targeting agents is uptaken by the cell through 

endocytosis.38 
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Recently, nanoceria has broadly been used in the biomedical field as an effective, 

targeted drug and gene delivery vehicle. This drug-delivery application of nanoceria in 

cancer cells has a synergistic anticancer impact because of its absolute cytotoxicity towards 

cancer cell growth.37,38 Nanoceria is an innovative way to deal with cancer however there 

are some drawbacks that need to be addressed which they are stable in a low range of pH 

which hampers its effectiveness. For this, scientists have been researching to find a feasible 

approach for its use.  
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  Chapter II 

 

 

Result and Discussion 

                                   

  

 Then nanomedicine in this research was designed to provide a platform for 

focused therapy and MR imaging of triple-negative breast cancer (TNBC). Approximately 

10-20% of breast cancers are triple-negative breast cancer.2 Triple-negative breast cancer 

is caused by cells that lack specific receptors in their membranes, such as ICAM1. 

 Focus of this research is to deliver a doxorubicin/gadolinium complex straight 

to cancer cells with the help of functional nanoceria. This will give MR imaging of ICAM1 

overexpressing breast cancer to easily identify those cancer cells while at the same time 

delivering doxorubicin for combination effect. 

 

 

Schematic representation of action of nanomedicine inside the cell: 

 

 In cancer cells, there is a series of events taking place that can be monitored 

using magnetic resonance (MR) technique (Figure 6). First, the ICAM1 antibody binds 

with triple negative breast cancer and is taken in through endocytosis. Once the 

nanomedicine is inside the TNBC, polymer coated nanoceria becomes distended due to the 

acidic conditions inside the cell. This releases the prodrug DOXO-SS-Gd from the PNC. 

Afterward the T1 contrast agent Gd becomes active in the cell due to glutathione (GSH) 

induced cleavage of the disulfide linker in the prodrug which gives a bright contrast in MR 
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imaging and the process can be observed. At the same time, doxorubicin becomes activated 

and has a cytotoxic effect on the TNBC cells. Due to the ability to selectively deliver 

doxorubicin to TNBC, our nanomedicine has the ability to reduce the side effects of 

doxorubicin and directly strike tumor cells while monitoring the whole process. 

 
 

Figure 6: Proposed mechanism of nanomedicine formulated from nanoceria using the Gd-

Doxorubicin complex as a prodrug and ICAM1 antibody as a targeting ligand.  

 

 

Synthesis of DOXO-SS-Gd-DTPA: 

  
The synthesis of DOXO-SS-Gd was carried out by using a procedure that has been 

reported earlier by using DSP as a crosslinker with the same conjugation method.44 The 

prodrug has two major components 1) doxorubicin or Doxo, and 2) gadolinium chelated 

with diethylenetriamine pentaacetic acid or Gd-DTPA (Gd complex) as shown in Scheme 

1. Doxorubicin is a type of chemotherapy drug called an anthracycline and it has the ability 
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to slow or stop the growth of cancer cells by blocking an enzyme called topoisomerase 2. 

This happens when doxorubicin intercalates with DNA which disrupts the topoisomerase 

2 mediated DNA repair mechanism.45 Gd-DTPA is used as a T1 contrast agent for MR 

imaging.46 The, DOXO-Gd prodrug was synthesized and then further encapsulated in 

functional nanoceria. Once the prodrug is encapsulated into PNC, the T1 MR signals of Gd 

are quenched due to the presence of strong T2 MR Signals from PNC.  

 

 
 

Scheme 1: Synthesis of activable DOXO-SS-Gd-DTPA prodrug. 
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Characterizations of DOXO-Gd: 

 

The DOXO-SS-Gd prodrug was characterized by examining fluorescence emission 

and relaxation spectra due to Doxo and Gd, respectively. As per Figure 7 the maximum 

absorbance for the prodrug is noted was abs = 497nm (Figure 7A) and the fluorescence 

was recorded at max= 595 nm. (Figure 7B). 

 

 
 

Figure 7: Absorbance and fluorescence of DOXO-Gd (DTPA) activable prodrug. 

 

 

Synthesis of (PAA)- poly(acrylic acid)-coated cerium oxide nanoparticle: 

 

 The polyacrylic acid (PAA)-coated functional nanoceria (PNC) were 

synthesized using solvent precipitation technique and surface functionalization was carried 

out by EDC/NHS carbodiimide chemistry (Scheme 2, 1). To synthesize nanoceria, a 

water-based alkali precipitation method was used. Cerium nitrate hexahydrate Ce (NO3)3 

and polyacrylic acid (PAA) were mixed in a 30% ammonium hydroxide solution. PAA 

works as a stabilizing agent by coating the surface of the formed cerium oxide 

nanoparticles, stopping the nanoparticles from agglomerating the solution of cerium nitrate 

hexahydrate and PAA were added to an acidic solution, kept at room temperature, and 

allowed to react overnight. After 24 h, the reaction mixture was centrifuged 3 times. Next, 
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the PNC solution was purified using dialysis (MWCO = 6-8 kDa). Dialysis removes the 

unreacted components that qualifies as an impurity. Functional nanoceria carries two 

components after encapsulation; 1) doxorubicin an anticancer agent and 2) gadolinium 

complex (Gd-DTPA). 

To conjugate the ICAM1 antibody on surface of PNC-DOXO-COOH (3) 

EDC/NHS chemistry was used. Doxo were encapsulated first in PNC-COOH (1) using a 

vortexer at the speed of 1450 rpm followed by drop wise addition of Doxo-Gd prodrug. 

After encapsulation of DOXO the solution were kept on mixture at room temperature for 

10 h. ICAM1 antibody was dissolve in 1xPBS and quickly added dropwise after addition 

of EDC & NHS in PNC-DOXO-COOH (3) to get surface conjugation of ICAM1 antibody. 

(Scheme 2, 4). After 12 h, prepared solution was dialyzed to remove unreacted and bigger 

particle in solution. Further absorbance and fluorescence along with zeta & size was 

recorded for characterization purpose. 

 DOXO-SS-Gd prodrug was encapsulated into PNC-COOH (1) by using a 

solvent diffusion method. A dilute solution of DOXO-SS-Gd in DMSO was prepared and 

gradually added to PNC-COOH to obtain PNC-DOXO-SS-Gd (Scheme 2, 5). The 

hydrophobicity of the prodrug drives it into the nanoparticles which has amphiphilic core. 

After synthesis, the acquired solution of PNC-DOXO-SS-Gd-COOH (5) was purified 

using magnetic column and dialysis. The final concentration of PNC-DOXO-SS-Gd-

COOH found to be 2 mM (5).  

 ICAM1 is known as a specific receptor overexpressed on TNBC cells. Therefore, 

ICAM1 antibody was functionalized on the surface of PNC by using carbodiimide 

chemistry to specifically target TNBC cancer cells. As shown in Scheme 2, 3, by using 
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ENC/NHS chemistry PNC was conjugated with ICAM1 antibody on the surface and 

doxorubicin was encapsulated whiten the core. For using MR purpose Gd was encapsulated 

with doxorubicin and encapsulated within nanoceria with ICAM1 antibody on the surface 

(Scheme 2, 6).   

 

 

 

 

Scheme 2: Synthesis of functionalized Nanoceria-ICAM1 with the help of EDC/NHS 

chemistry and further synthesis of PNC-DOXO-SS-Gd-ICAM1 using solvent diffusion 

method. 
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Characterization study of PNC-COOH-ICAM1: 

 

 Furthermore, the purified PNC-COOH-ICAM1 (1) was characterized by 

examining the size and surface charge using dynamic light scattering and zeta-potential 

determination, As seen in Figure 8A, the size of PNC-COOH-ICAM1 was noted to be 46  

± 3 nm and the corresponding zeta potential as per Figure 8B was found to be -45 ± 2 mV. 

Negative zeta potential indicates the presence of carboxylic acid functionality on the 

surface of the nanoparticles. After characterization, the nanoparticle solution was stored at 

4 °C for further use. 

 
 

Figure 8: (A) The size of PNC-COOH-ICAM1 measured as 49 ± 3 nm and (B) zeta 

potential were measured as -47 mV.  

 

  

Characterization study of PNC-DOXO-ICAM1: 

 

 Afterward, the synthesized PNC-DOXO-ICAM1 was characterized as shown 

in Figure 9. The PNC-DOXO-ICAM1 (4) was characterized and, the size and zeta which 

were noted as slightly increased comparing to PNC-COOH-ICAM1. Size were reported 48 

± 2 nm and zeta of -34 ± 2 mV on the surface indicating a decrease in negative charge on 

the surface due to successful conjugation of ICAM1 and doxorubicin. Size distribution 

found to be 48 ± 5 nm. (Figure 9A)  The surface zeta potential measured was -34 ± 1 

mV. (Figure 9B). Absorbance maximum was discovered to be abs = 493 nm (Figure 
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9C) and the fluorescence maximum was found to be max = 590 nm. (Figure 9D) All the 

characterization results show the successful synthesis of PNC-DOXO-SS-ICAM1 (4). 

  
 

 

Figure 9: Characterization studies of PNC-DOXO-ICAM1 (4).   

 

 

Characterization study of PNC-DOXO-SS-Gd-ICAM1: 

 

 ICAM1 antibody was conjugated to PNC-DOXO-SS-Gd-COOH (5) to obtain 

the nanoparticle of PNC-DOXO-SS-Gd-ICAM1 (Scheme 2, 6). This process was 

conducted by using the method outlined earlier (EDC/NHS chemistry). ICAM1 antibody 

is used in this targeted delivery because it is overexpressed in cancer cell MDA-MB-231. 

This nanomedicine includes the features of, chemotherapeutic and MR imaging properties 
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due to the presence of DOXO-Gd. Hence this nanomedicine can be tested on cells for 

combination treatment after final solution characterized. 

The solution of PNC-DOXO-SS-Gd-ICAM1 (6) was characterized to determine the 

successful conjugation of ICAM1 and the presence of the DOXO-SS-Gd prodrug. First, 

the size and zeta potential were measured using a method called the dynamic light 

scattering (DLS). The hydrodynamic diameter of PNC-DOXO-SS-Gd-ICAM1 (6) was 

noted to be 64 ± 2 nm (Figure 10 A) and the zeta potential was -18 ± 1 mV (Figure 10 B). 

The increase in size compare to PNC-DOXO-ICAM1 indicated the presence of ICAM1 

and DOXO-Gd in PNC (Figure 10A&10B). Additionally, the change in the zeta potential 

from -47 ± 3 mV (PNC-COOH) (1) to -18 ± 1 mV confirms the surface functionalization 

of ICAM1. Furthermore, to test the presence of DOXO-SS-Gd, absorbance and 

fluorescence intensity of PNC-DOXO-SS-Gd-ICAM1 (6) were measured. The maximum 

absorbance was observed at abs = 489 nm (Figure 5C) and the maximum fluorescence 

intensity was max = 592 nm (Figure 5D) indicating the presence of doxo. Furthermore, the 

relaxation time of the nanomedicine was also tested. The T1 = 85 ms was because the 

signals from Gd were quenched in the presence of PNC. Correspondingly the T2 tested 

was noted to be T2 = 279 ms, indicating the presence of polymeric nanoparticles. Taken 

together, the characterization data indicates the successful synthesis of the PNC-DOXO-

SS-Gd-ICAM1 (6) solution.  
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Figure 10: The characteristics of PNC-DOXO-SS-Gd-ICAM1 (6) were measured by 

different types of techniques. DLS studies indicated (A) the diameter changed to 64 ± 2 

nm and (B) the zeta potential was –18 ± 3 mV. Fluorescence studies indicate the (C) 

absorbance to be abs = 489 nm and (D) fluorescence maxima was max = 592 nm. 

Furthermore, the MR studies suggested the T1 signals T1= 85 ms and the (F) T2 relaxation 

was T2 = 279 ms. Characterization studies ensure the synthesis of PNC-DOXO-SS-Gd-

ICAM1 (6) was successful. 

 

 

Cytotoxicity assay using TNBC and MCF-7 cells for 24 h and 48 h: 

 

MTT assay is a standard method to evaluate the cytotoxicity of different therapeutic 

compounds. The yellow-colored MTT solution transforms into purple color formazan 

crystals, by mitochondrial reductase, which can only happen in viable cells. In dead cells, 

the concentration of this enzyme is very low so the reduction of MTT to insoluble formazan 

does not take place. Thus the absorbance of the formazan is relative to the live cells. In this 

method, two different nanoformulations were examined for the chemotherapeutic effect. 
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The solutions tested were 1) PNC-DOXO-SS-ICAM1 (4) which is responsible for 

chemotherapeutic effect while 2) PNC-DOXO-SS-Gd-ICAM1 (6), is for the MR imaging 

with chemotherapeutic effect. Cell viability of TNBC & MCF-7 was measured for 24 h 

and 48 h post-treatment with these two different nanoformulations. (Figure 11&12).  

 As seen in Figure 11, at 24 h and 48 h, by changing the concentration of  PNC-

DOXO-ICAM1(4) and PNC-DOXO-SS-Gd-ICAM1 (6) both showed 55% - 60% viability, 

In contrast, the viability of the control cells (MCF-7) was almost 100% at both 24 h and 48 

h with the same concentration for both cell line.  

 

 

Figure 11: Cell viability assay of TNBC when treated with PNC-DOXO-ICAM1 (4) for 

24 h and 48 h. Maximum cell death was found to be at 48 h in PNC-DOXO-ICAM1(4) 

treatment. Cell viability assay for MCF-7 shown treatment with different concentrations of 

PNC-DOXO-ICAM1 (4) for 24 h and 48 h. The viability remains nearly constant due to 

the lack of ICAM1 overexpression in the MCF-7 cell line. 

 

Furthermore, at 48 h the viability of PNC-DOXO-ICAM1 (6) and PNC-DOXO-

SS-Gd-ICAM1 (4) was determined to be very low for TNBC. Doxo is known to damage 

DNA strands via acting on Topoisomerase 2 at around 36 h. Due to this reason, there is a 
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drastic decrease in cell viability from 24 h to 48 h upon treatment with PNC-DOXO-

ICAM1 (4) and PNC-DOXO-SS-Gd-ICAM1 (6). This result shows the potential of PNC-

DOXO-SS-Gd-ICAM1, as a chemotherapeutic MR agent. 

 

 

Figure 12: Cell viability assay of TNBC when treated PNC-DOXO-Gd-ICAM1 (6) for 24 

h and 48 h. Maximum cell death found at 48 h: Cell viability assay for MCF-7 shown 

treatment with different concentrations of PNC-DOXO-SS-GD-ICAM1 (6) for 24 h and 

48 h shows negligible cell death due to the lack of overexpressed ICAM1 receptor on MCF-

7 cells. 
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Fluorescence Microscopic Studies: Imaging and Treatment of TNBC and MCF-7 for 

24 h and 48h: 

 

To qualitatively visualize the MTT assay of MDA-MB-231, internalization studies 

were performed. Three different nanoformulations of, PNC-ICAM1 (2), PNC-DOXO-

ICAM1 (4) and PNC-DOXO-SS-Gd-ICAM1 (6) were tested for 24 h and 48 h to observe 

the changes in cell morphology. Doxorubicin is a known fluorophore and will fluoresce 

inside the cancer cells. Additionally, the cell nucleus was stained with DAPI to visualize 

the morphology of the cells. The PNC-ICAM1 (2) formulation does not contain 

doxorubicin for control purpose and so, Dil encapsulated in order to see the cells in this 

nanoformulation. At 24 h, it was studied upon treatment with PNC-ICAM1 (2) fewer cells 

experienced morphological changes showing the effect of PNC-ICAM1 (2) on the viability 

of cells (Figure 13 A-D). Furthermore, when cells were tested with PNC-Doxo-ICAM1 

(4) (Figure 13 E-H), fewer cells gave the indications of being damaged at 24 h due to the 

mechanism of doxorubicin action at 36 h, When cells were treated with PNC-DOXO-SS-

Gd-ICAM1 (6), it shows drastic diminishing in the cell growth (Figure 13 I-L), and MCF-

7 cells remained confluent and continued growing after the treatment because of the lack 

of overexpression of ICAM1 (Figure 13 M-P).  
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Figure 13. Cell-based fluorescence studies for 24 h: (13A-13D) is a portrayal of cells after 

treatment with PNC-ICAM1(2), (13E-13H) depicts the treatment of MDA-MD-231 

(TNBC) with PNC-DOXO-ICAM1(4) (13I-13L) are the microscopic images of MDA-

MB-231 (TNBC) upon treatment with PNC-DOXO-SS-Gd-ICAM1(6)  using blue filter 

(for DAPI) and a red filter (for Doxo). Figure (13M-13P) shows control cells studies of 

MCF-7. 
 
 

Fluorescence-based assays were observed at 48 h utilizing the nanoformulations 

explained above. It was observed that at 48 h, cells show less viability in presence of PNC-

ICAM1 (2) (Figure 14 A-D). When cells were treated with PNC-DOXO-ICAM-1 (4) 

(Figure 14 E-H), due to doxorubicin’s action, the cell growth was reduced and most of the 

cells encountered cell death. For comparison, MDA-MB-231 (TNBC) was subjected to 

PNC-DOXO-SS-Gd-ICAM1 (6) (Figure 14 I-L), a sharp decrease in the cell growth was 
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also observed indicating the potent effect of PNC-DOXO-SS-Gd-ICAM1 (6). When MCF-

7 were treated with PNC-DOXO-Gd-ICAM1 (6) for 48h it remains highly confluent and 

the lack of overexpressed due to ICAM1. (Figure 14 M-P). 

 

 

Figure 14: Cellular studies for MDA-MB-231 (TNBC) at 48 h: Images (14A-14D) 

represent the treatment with PNC-ICAM1 (2), (14E-14H) shows cells treated with PNC-

DOXO-ICAM-1 (4) and images (14I-14L) are the images of cells upon treatment with 

PNC-DOXO-SS-Gd-ICAM1 (6), images (14M-14P) shows control cells studies of MCF-

7. Each outcome strengthens that our nanosystem is exceptionally proficient in killing 

cancer cells and has a strong chemotherapeutic effect. 
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Intracellular Reactive Oxygen Species (ROS) Detection Assay: 
 

In this assay MDA-MB-231(TNBC) cells were producing cytosolic reactive 

oxygen species (ROS) (Figure 15) after being treated with PNC-DOXO-

ICAM1 (4) nanoparticles. To determine the level of ROS generation, we used 

dihydroethidium (DHE, 32 μM) dye was used to see ROS in the cytoplasm. Results show 

once doxorubicin was released into the cytoplasm, generous ROS were produced in the 

cytoplasm. This is because of doxorubicin binds to cytosolic DNA, generating ROS 

appearing in (Figure 15). There is insignificant ROS created in cells treated with PNC-

ICAM1 (2) nanoparticles, demonstrating comparable outcomes to the MTT assay 

performed. The assays indicated ROS species are generated in TNBC cells when incubated 

with PNC-DOXO-SS-Gd-ICAM1 (6) nanoparticles, ultimately causing cell death. 

 

 

Figure 15: Determination of ROS generation. (15A−15D) Fluorescence microscopic 

images indicating a relative increment in fluorescence from TNBC cells because of the 

generation of the increased amount of ROS after incubating with PNC, PNC-DOXO-

ICAM1 (4), PNC-DOXO-Gd-ICAM1 (6), and H2O2, respectively. Images (15i−15iv) are 

relating to bright-field images. 
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Comet assay: 

 

Comet assay was carried out to compare the level of DNA damage done to the 

MDA-MB-231(TNBC) cell line when treated with PNC-DOXO-SS-Gd-ICAM1 (6) and 

PNC-DOXO-ICAM (4) (Figure 16). Results indicated both nanoparticles gave no DNA 

damage in MCF7, as there is no tail indicated as well. However, PNC-DOXO-SS-Gd-

ICAM1 (6) showed a significant level of DNA damage in TNBC which is comparable to 

both nanoparticles, Results showed our PNC-DOXO-SS-Gd-ICAM1 (6) nanoparticles 

were effective and gave positive outcomes causing DNA damage to the TNBC cell line.  

 

         
 

Figure 16: Figure 16A & 16B shows treatment of two different nanoformulation as shown 

in figure, it show DNA damage in TNBC and figure 16C & 16D shows no effects of 

nanoformulation on MCF 7 which show no DNA damage in it.   
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Chapter III 

 

 

Experimental section 

 

 

1. Materials: 

 

N, N′-dimethyl sulfoxide (DMSO), 2-morpholinoethanesulfonic acid (MES), 1-ethyl-

3-(3-(dimethylamino)- propylcarbodiimide hydrochloride (EDC), polyacrylic acid (PAA), 

chloropropylamine, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) were purchased from Sigma-Aldrich and used as soon as received. Near infrared 

DiI dye and 4,6-diamidino-2-phenylindole (DAPI) dye were purchased from Invitrogen. 

Cerium nitrate hexahydrate, N-hydroxy succinimide (NHS), ammonium hydroxide, 

ethanol, isopropanol, and MES sodium salt were purchased from ACROS organics and 

used without further purification. Doxorubicin was purchased from Alexis Biochemicals 

and stored at 4 C for cell based assays. MCF-7 and MDA-MB-231 were bought from 

ATCC and stored in liquid nitrogen. DSP crosslinker (Dithiobis [succinimidyl propionate]) 

was obtained from proteoChem and kept at 4o C. ICAM1 (CD54) were purchased from 

Biolegend and stored at recommended temperature. Dialysis membranes were received 

from spectrum laboratories. Dihydroethidium (DHE) was obtained from Cayman 

Chemical, whereas H2O2 and para-formaldehyde were received from Electron Microscopy 

Sciences. Fetal bovine serum (FBS) and 5× annexin V binding buffer were purchased from 
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BD Biosciences, 70% ethanol, DMEM media and TE buffer were bought from Fisher 

Scientific.  

 

2. Synthesis of polymer-coated nanoceria(PNC): 

 

Cerium nitrate hexahydrate (0.901 g) was dissolved in deionized (DI) water (2.5 mL). 

This solution were added to 30% ammonium hydroxide solution (30 mL). It was stirred 

(700 rpm) at room temperature, followed by addition of poly (acrylic acid) (0.905 g) in DI 

water (10 mL). The color change from brown to dark brown. After 5 min of stirring it 

turned into deep yellow color after 24 h which indicate stable nanoceria. This reaction was 

centrifuged three time (20 min each at 3000 rpm) to remove bigger size PNC. The product 

was purified by dialysis technique using a dialysis bag of molecular weight cutoff (MWCO 

6−8K) against DI water.  

 

3. Synthesis of Doxo-SS-Gd prodrug: 

 

DOXO-NH2 (0.0018 mM) was suspended in DMSO (100 L) followed by dissolving 

of Gd-DTPA (1.73 mg) in DMSO (100 L) (DOXO-NH2: Gd-DTPA are in 1:1 ratio). 

Dithiobis (succinimidyl propionate) (DSP) crosslinker (0.744 mg) was dissolved in of 

DMSO (35 L). The prepared solutions were mixed and allowed to react for 1 h at room 

temperature in presence of Et3N (10 L). The product obtained was purified to obtain 

DOXO-SS-Gd prodrug (25 M). This prodrug was characterized using TECAN 

fluorescence plate reader Bruker benchtop magnetic relaxometer (MRI). 
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4. Encapsulation of Doxorubicin in polymer-coated nanoceria (PNC) using solvent 

diffusion method:  

 

DOXO-SS-Gd (25 M)  prodrug was dissolved in DMSO (250 L). This solution were 

added in polymer-coated nanoceria solution (4 mL) drop by drop with the vortex speed on 

1450 rpm. After this the product were kept on the table mixture for 3 h followed by dialysis 

in DI water for 2 h to purify the product. The final product were characterized via 

fluorescence plate reader and DLS and later stored in 4 oC. 

 

5. Conjugation of ICAM-1 using EDC/NHS chemistry: 

 

EDC (9 mg) (15 × 10-3 mol) was dissolved in MES buffer (150 L) (100 mM). In 

addition NHS (6 mg) (15 × 10-3 mol) was dissolved in same MES buffer (150 L)  (100 

mM). ICAM1 (5 L) solution were made in PBS (250 L) (pH= 7.4). EDC solution were 

added in two parts in PNC-DOXO-SS-Gd (4 ml) followed by addition of NHS. Prepared 

solution was mixed gently and 3 min of time were given for reaction to react and after 

addition of ICAM1 drop wise to create PNC-DOXO-SS-Gd-ICAM1. Further this solution 

were purified by dialysis technique (MWCO 6−8K) to remove unreacted reagents. PNC-

DOXO-SS-ICAM1 (1 mM) was obtained after purification and nanoceria was 

characterized by Fourier transform infra-red (FT-IR) spectroscopy, overall size and surface 

charge were measured using dynamic light-scattering (DLS) technique, T1 and T2 

relaxation time were measured in magnetic relaxation imaging (MRI). 

 

6. MR imaging studies: 

 

To carry out MR imaging studies a stock solution of PNC-DOXO-SS-Gd-ICAM1 was 

prepared ([DOXO-SS-Gd] = 25 μM and [PNC] = 2 mM). From this solution five different 
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dilutions were prepared. The concentrations of Gd were (0.75, 1.5, 2.25, 3.0 and 3.75 μM) 

prepared for T1 based MR imaging. Similarly, PNC dilutions were prepared with 

concentrations (5, 10, 15, 20 and 25 mM) for T2 based magnetic resonance imaging. 

 

7. Culture of MDA-MB-231 and MCF 7: 

 

DMEM (Dulbecco's Modified Eagle Medium) media were used by following volume, 

85% DMEM-media, 10% fetal bovine serum, and 5% Penicillin/Streptomycin antibiotic to 

cultivate cells in culture flasks. MDA-MB-231 and MCF 7 cells were trypsinized and 

seeded in 15 mL tube for centrifuge to get cell pallet. After that cell suspension were made 

and kept in culture flask in (37 C, 5 % CO2) for 24 h.  Within 24 to 36 h fully grown cells 

were split into two different flask. From those flask cells were cultivated as it is for further 

assays.  

 

8. Cell based fluorescence studies: 

 

The breast cancer cell and MCF-7 cells were seeded into different Petridishes. Once 

cells become 75% confluent, they were treated with corresponding PNC-ICAM1, PNC-

DOXO-ICAM1 (1.0 × 10-3 mol), and PNC-DOXO-SS-Gd-ICAM1 (1.0 × 10-3 mol) for 24 

h and 48 h in a humidified incubator (37 °C, 5% CO2). The cells were washed twice with  

1xPBS (pH 7.2) and later fixed with 4% formaldehyde solution for 15 min at room 

temperature. The cells were then washed once with 1xPBS (pH 7.2) and than cells were 

treated with 6-diamidino-2-phenylindole (DAPI, 5 mg/mL) dye for staining the nuclei. 

Cells were washed with 1xPBS (pH 7.2) again and optical images were taken using 

fluorescence microscope (Olympus IX73). 
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9. ROS( Reactive oxidant species): 

 

Cells were seeded into different Petridishes at a density of 10,000 cells per well and 

treated with of various nanoceria preparations (PNC-ICAM1, PNC-DOXO-ICAM1, PNC-

DOXO-SS-Gd-ICAM1, H2O2) (100 μL) (1.0 × 10-3 mol). After 6 h of incubation at 37 °C, 

cells were washed twice with 1xPBS (pH 7.2). Then, DHE fluorescent probe (15 μL) was 

added to each well and incubated for 30 min at room temperature. Cells were washed again 

twice with 1xPBS (pH 7.2). Subsequently, cells were fixed with 4% paraformaldehyde (1 

mL). After fixation, cells were washed with 1xPBS (pH 7.2), stored with of PBS (2 mL) in 

each well, and the optical images were taken using fluorescence microscope. 

 
10. MTT Assay: 

 

To perform MTT assay MDA-MB-231and MCF7 cells were co-cultured in 96 well 

plate. For accurate cell numbers of the cells in plate cell pallets were suspended in media 

(4 mL) and from that only 1 mL solution were used and added additional DMEM media (9 

mL) for exactly 2500 cells in each well. After culturing cells subsequently nanoformulation 

(PNC-ICAM1, PNC-DOXO-ICAM1, PNC-DOXO-SS-ICAM1) (30 L) (1.0 × 10-3 mol) 

were added and kept in incubator for 24 and 48 h with different set of concentration. After 

treatment period media suspension from the wells were removed and wash each wells with 

1xPBS. Subsequently, MTT (30 L) (5 mM )solution was added and plates were placed in 

the incubator (37 C, 5 % CO2) for 4-6 h. Purple colored formazan crystals were produced 

and solubilized with isopropyl alcohol. Result were measured at wavelength between 520 

to 570 nm using the TECAN microplate reader. Similar procedure was carried out and 

MTT method were followed for control cells MCF-7. 



 
 

33 
 

 

 

11. Comet assay:  

 

For performing comet assay, TNBC cells were harvested on 12 well plate (8,000 

cells/well). Cells were treated with all nanoformulation (PNC-ICAM1, PNC-DOXO-

ICAM1, PNC-DOXO-SS-ICAM1) (1.0 × 10-3 mol), (5, 60 µL, [Fe] = 2.5 x 10-3 mol) and 

incubated for 24 h. After that cells were centrifuged at 1200 rpm for 6 min to collect 

damage cells. Cell pellet was resuspended in 1xPBS (pH 7.2) and blended in with pre-

warmed low-dissolve agarose at 1:10 proportion. This agarose blend (100 μL) was placed 

on the comet slide. The slide was then at first kept in the dark at 4 °C for 1 h, in the lysis 

solution. Alkaline electrophoresis (Trevigen) was made on the following day according to 

manufacturer suggested protocol. Quickly, slides were kept in alkaline unwinding solution 

(pH>13) and electrophoresis was completed for 30 min at 21 V. The slides were then 

washed twice with DI H2O and 70% ethanol, separately. Next, slides were stained with 

SYBR Gold for 15 min in dark and afterward dried at 37 °C for 20 minutes. Images were 

taken utilizing the FITC filter on the Olympus IX73 fluorescence magnifying instrument. 
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Chapter IV 

 

 

Conclusion and Future Directions: 

 

  

  Functional nanoceria were successfully synthesized as a drug-delivery vehicle 

with a Doxo-Gd for the treatment of TNBC. ICAM1 decorated nanoceria were formulated 

for the targeted delivery of combination of drugs, Doxo and Gd. Different cell-based tests 

showed the capability of nanoformulation for killing the triple negative breast cancer 

(TNBC) cells while having no effect on normal cells. The nanoformulations demonstrated 

excellent drug load capacity as shown by the encapsulation studies, stability, reduced 

toxicity, and higher therapeutic efficacy. Furthermore, as shown in ROS, MTT and Cell 

based fluorescence assays shows an excellent effect of Doxo-Gd encapsulated 

nanoformulation which proves that it is successfully going inside the TNBC cell due to 

ICAM1 overexpression and killing TNBC cell while having no effect on MCF7 which has 

no expression of ICAM1. The tests utilizing MR imaging demonstrated the 

nanoformulation can be used to analyze cancer growth and further screen the MR based 

cancer treatment.  

 Furthermore comet assay showed the effects of two different nanoformulation 

which proves that Doxo-Gd encapsulated nanoceria has more DNA damage in TNBC cell 

indicating more distort tail in the result. Nanoparticles can successfully be used as a model 

for the focused double treatment (chemotherapy and MR imaging) and analysis of TNBC 
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cells. In addition, this model can be customized for focusing on different cancer cell lines. 

After a firm foundation of in vitro settings, this model can be tried in-vivo to more readily 

comprehend its working inside a living system. In addition, this model can possibly be 

analyzed for different kind of tumors for the dual-targeted treatment and diagnosis 

purposes. 
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