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An Abstract of the Thesis by 
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The main objective of this study is to synthesize nanostructured cobalt oxide decorated on 

polypyrrole using a facile method for energy applications. For this, polypyrrole was first 

synthesized using a chemical polymerization method. In the second step, a varying amount of 

cobalt oxide was decorated on polypyrrole using a hydrothermal process. The synthesized materials 

were structurally and electrochemically characterized. It was observed that the electrochemical 

properties of the composites depend on their composition. The optimized composition showed a 

maximum specific capacitance of 1533 F/g at 1 mV/s with a significant electrochemical stability. 

The composite retained ~87% of its initial charge storage capacity even after 5,000 cycles of 

charging-discharging studies. Moreover, these composites showed outstanding performance as an 

electrocatalyst for oxygen and hydrogen evolution reactions. It required an overpotential of 316 

mV and 132 mV to achieve a current density of 10 mA/cm2 for oxygen and hydrogen evolution 

reactions, respectively. Furthermore, cobalt sulfide was synthesized using the pervious composite 

(not carbonized) to compare the water splitting activities for both cobalt oxide and cobalt sulfide. 

Clear improvement was obtained for cobalt sulfide based on oxygen evolution reaction and 

hydrogen evolution reaction.  Our results suggest that composites of cobalt oxide and polypyrrole 

can be used as bi-functional materials for energy applications such as for supercapacitors and 

electrocatalysts for water splitting.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1. Importance of renewable and green energy: 

Population growth has created the demand for eco-friendly multi-functional energy 

generation and storage systems. The interest for fuel assets and issues concerning global warming 

has made energy stockpiling and generation from sustainable resources of greater importance. 

Finding a source of energy is no longer the only goal. The traditional source of energy is usually 

based on oil or carbon, which negatively affects the environment. Global warming and pollution 

are notable indicators of environmental damages. Nowadays, scientists are interested in finding 

green, renewable energy sources that are more secure, accessible and inexpensive. According to 

Ibrahim et al.1, in the next 10 to 20 years all energy systems should be based on renewable 

resources. Solar energy and wind energy are the most important examples of renewable energies.2 

The limitation of using these types of energies during sunshine or windy weather is considereda 

drawback.3 However, energy storage applications which can store these renewable energies could 

be a great solution because it allows using them at any time and under any conditions. Furthermore, 

the applications of green energy generation is the other solution to reducing traditional resources 

usage.  

1.2. Energy storage applications: 

With the increase of green energy exploitation and their dependence on weather conditions, 

it is necessary to find more efficient applications to store that energy. As known, there are different 

energy storage devices such as fuel cells, batteries and electrochemical supercapacitors. 
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Supercapacitors have become very popular in recent years as an outstanding device among the 

energy storage applications because of their characteristic features and simplistic model. 

1.2.1. Supercapacitor: 

A supercapacitor has similarities with capacitors and batteries, without any chemical 

reaction. The electric field is a responsible factor for operating the supercapacitor.1 Supercapacitors 

are able to generate energy density higher than conventional capacitors and power density greater 

than fuel cells and batteries as seen in Figure 1.1.4 Moreover, supercapacitors have several 

advantages which make them more attractive, such as long cycle life, fast charging-discharging, 

high power density and high specific capacitance.5–10 In terms of the charge-storage mechanism, 

supercapacitors are classified into two types: electrochemical double layer capacitors (EDLCs) and 

pseudocapacitors. The supercapacitors which use both types of energy storage mechanisms are 

referred to as hybrid capacitors. The charge storage capacity in EDLCs depends on the diffusion 

and accumulation of the electrostatic charge at the interface of electrode/electrolyte. Carbon-based 

materials are used in this type of supercapacitor.11,12 On the other hand, pseudocapacitors depend 

on Faradic reactions which are reversible and provide energy storage capacity quickly and much 

greater than EDLC.11 Metal oxides, hydroxides and conducting polymers are usually used in 

pseudocapacitors because of their pseudocapacitive properties.13,14 
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1.3. Green energy generation: 

The disadvantages and limitations of the traditional energy generating methods led to 

finding more efficient green methods which are inexpensive and environmentally friendly. Energy 

generation through water splitting is a new approach to efficiently utilize green energy. Recently, 

water splitting became an attractive way to generate hydrogen as a fuel and oxygen as a breathable 

gas.15 There is abundant research which proves  how it is considered a successful method.16–25 

Advanced materials for water splitting electrolysis are centralized in a renewable energy system, 

including oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)26. Figure 1.2 

shows the schematic of water splitting to generate green energy. Thermodynamically, water 

splitting should occur at 1.23 V (vs. RHE). There is a need for high-quality materials for 

electrolysis, to ensure minimum energy loss because of the required overpotentials by the half-cell 

reactions, with OER at the anode and HER at the cathode. Noble-metal based materials such as 

iridium/ruthenium oxides for OER and Pt for HER are the most efficient electrocatalysts for water 

splitting 27. However, they are rare and costly, which limits their potential applications. Recently, 

metal oxides, hydroxides, sulfides and phosphides have shown higher electrocatalytic activities for 

Figure 1.1. Ragone plot for energy density versus power density. 



 

4 
 

OER and HER. Furthermore, they are abundant, and are inexpensive while still providing superior 

electrical conductivity. 

 

1.4. Polypyrrole and cobalt oxide: 

In terms of multi-functional materials, conducting polymers and metal oxides are suitable 

materials to be used for energy storage/generation applications. Conducting polymers (CPs) such 

as polyaniline and polypyrrole have been successfully used as active materials for supercapacitor 

applications. Among CPs, polypyrrole is the most promising polymer for electrochemical storage 

application due to its high energy storage capacity, electrochemical stability, environmental 

friendliness, low cost, easy preparation, high electrical conductivity and fast charge-discharge 

kinetics.28–30 On the other hand, transition metal oxides are considered as the best materials for 

pseudocapacitors. Among transition metal oxides, cobalt oxide is very promising due to its high 

theoretical specific capacitance and good electrochemical conductivity.31,32 Even though metal 

oxides have high capacitance, they are not very electrochemically stable due to the Faradic reaction 

involved in the charge storage mechanism. A possible solution is to use composites of conducting 

polymers and metal oxides to achieve high performance materials for energy applications.9,33–35 

1.5. Objective of this research: 

V 

Figure 1.2. Schematic of water splitting to generate green energy. 
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The main objective of this research is to obtain high efficiency and bi-functional material 

which could be used for energy storage as well as energy generation application. Nanocomposites 

of polypyrrole and cobalt oxide were prepared using chemical polymerization and hydrothermal 

method. The effect of composition on the charge storage and water splitting was studied in detail.   
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CHAPTER II 

 

 

EXPERIMENTAL DETAILS 

 

 

2.1. Materials: 

Pyrrole (Py) was purchased from Sigma-Aldrich, USA and used without further 

purification. Other reagents such as hexadecyl trimethyl ammonium bromide (CTAB), 

hydrochloric acid (HCl), ammonium persulphate ((NH4)2S2O8), urea were also purchased from 

Sigma-Aldrich, USA. Cobalt nitrate (Co(NO3)2) was purchased from Strem Chemicals, USA. 

Sodium Sulfide (Na2S. 9H2O) was purchased from Acros Organic, USA. The other chemicals for 

the prepration of electrodes such as polyvinylidene fluoride (PDVF), 1-Methyl-2 pyrrolidone, 

acetylate black and Ni foam were purchased from MTI corporation, USA. 

2.2. Synthesis of polypyrrole (Ppy): 

Polypyrrole was synthesized using the chemical polymerization method. In typical 

synthesis, 4.548 g of CTAB and 63 mL of HCl (12 mol/l) were added to 312 ml of DI water and 

stirred for 0.5 h. Then 3 ml pyrrole was added to the mixture with vigorous stirring. The solution 

was stirred for an additional 2 h. Then 60 ml of (NH4)2S2O8 (0.83 M) solution was added dropwise 

to the above solution to polymerize the pyrrole. The reaction was continued at room temperature 

for an additional 1 h. Finally, the black precipitate was filtered and washed with DI water. The 

washed, powdered sample was dried under vacuum at 60 oC for 12 h.  

2.3. Synthesis of nanocomposites of polypyrrole and cobalt oxide:  

The nanocomposites of polypyrrole and cobalt oxide were synthesized using a facile 

hydrothermal method. In typical synthesis, first some amount of polypyrrole was dispersed in 30 
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ml of DI water using a bathsonicator for 30 min. After that, 1088 mg of cobalt nitrate was added to 

the dispersed solution of polypyrrole and sonicated for an additional 30 min. 450 mg of urea was 

added to the above solution under sonication and sonicated for an additional 30 min. Finally, the 

entire solution was transferred into a 45 mL Teflon-lined stainless steel autoclave and heated to 

180 oC for 10 h. After cooling to room temperature, the obtained powder was filtered, washed with 

DI water and dried in a vacuum oven for one day at 60 oC. Finally, the powder was carbonized at 

400 oC for 2 h at a ramp rate of 5 oC/min under nitrogen atmosphere. Cobalt oxide was also 

synthesized using the same procedure without having polyprrole. All the samples were synthesized 

using the same procedure but with different amounts of polypyrrole as given in Table-1.  

Table 1. Details of the chemicals used for the synthesis. 

Sample code Ppy DI water Co(NO3)2 Urea 

S1 400 mg 30 mL - - 

S2 1200 mg 30 mL 1088 mg 450 mg 

S3 600 mg 30 mL 1088 mg 450 mg 

S4 300 mg 30 mL 1088 mg 450 mg 

S5 200 mg 30 mL 1088 mg 450 mg 

S6 - 30 mL 1088 mg 450 mg 

2.4. Synthesis of cobalt sulfide (sample code-Sulfurized S5): 

Nanocomposites of polypyrrole and cobalt oxide were sulfurized to prepare a 

nanocomposite of polypyrrole and cobalt sulfide. For this, 200 mg of uncarbonized S5 sample was 

dispersed in 30 ml of DI water and then 320 mg of (Na2S. 9H2O) was added and dissolved. The 

entire solution was then transferred into a 45 ml Teflon-lined stainless steel autoclave and heated 
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to 140 oC for 24 h. After cooling to room temperature, the powder was filtered, washed with DI 

water and dried in a vacuum oven for 24 h at 60 oC. 

2.5. Structure characterizations: 

The synthesized samples were characterized by using various techniques such as X-ray 

diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy 

(SEM). The Brunauer-Emmett-Teller (BET) adsorption method was used to determine the surface 

area of the samples. More details of these techniques are following. 

2.5.1. X-Ray Diffraction: 

X-ray diffraction technique was used to observe the crystallinity and phase purity of the 

synthesized samples using a Shimadzu X-ray diffractometer set on the 2θ-θ scan with CuKα 

λ=1.5406 Å radiation. The X-ray was operated at 40 kV of voltage and a current of 30 mA. 0.2 mm 

of the slits was used for the sides of source and detector. The X-ray beams were shined directly 

onto the sample and the diffracted beams were collected and measured while the sample was rotated 

through the angle range of 2θ = 10°−80°. The X-ray detector was positioned so that the angle 

between the atomic planes and the detector was 2θ to satisfy the geometry as shown in Figure 2.1.  
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Figure 2.1. Schematic diagram of X-Ray diffraction. 

2.5.2. Scanning Electron Microscopy: 

The morphology and structure of the synthesized samples were studied using a field-

emission scanning electron microscopy. The reason for using this microscope is its ability to read 

the observations characteristic in nanometers (nm) and micrometers (μm( range. The particle’ size 

and shape for each sample was determined and recorded with help from Dr.Sanjay Mishra at the 

University of Memphis.  

2.5.3. X-ray photoelectron spectroscopy:  

Elemental composition of the synthesized materials was determined using X-ray 

photoelectron spectroscopy. A Thermo Scientific Kα XPS system was used to record XPS spectra. 

The x-ray power of 75 W at 12 kV was used for the experiment with a spot size of 400 mm2. The 

XPS data acquisition was performed using the “Advantage v5.932” software provided with the 

instrument. 
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2.5.4. Brunauer–Emmett–Teller Surface Area measurement: 

The surface area of the synthesized samples was measured using the BET surface area 

measurement method. Nitrogen adsorption/desorption isotherms were analyzed after degassing the 

samples for 24 h at 60 °C using a Micrometrics, USA, ASAP 2020 volumetric adsorption analyzer 

at 77 K. The BET absorption method was used to determine specific surface area. The photograph 

of the BET instrument used for this study is given in Figure 2.2. 

Figure 2.2. Photograph of the BET instrument. 

2.6. Electrochemical measurements: 

The electrochemical tests were performed using a standard three-electrode cell system 

containing a counter electrode, a reference electrode, and a working electrode. Platinum wire and 

saturated calomel electrodes were used as a counter and reference electrode, respectively. Nickel 

foams were coated by samples to be used as working electrods. Electrochemical testing for 

supercapacitors was done in 3M KOH electrolyte, while water electrolysis was performed in 1M 

KOH electrolyte. The schematic diagram of the three-electrode system is shown in Figure 2.3. 
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The working electrode was prepared by mixing 80 wt.% of the synthesized sample, 10 

wt.% of acetylene black, and 10 wt.% of polyvinylidene difluoride in the presence of N-methyl 

pyrrolidinone. After mixing the components, the slurry was pasted onto nickel foam and dried at 

60 °C under vacuum for 10 h. The loading mass was accurately measured by weighing the nickel 

foam before and after electrode preparation using an analytical balance (model MS105DU, Mettler 

Toledo, max. 120 g, 0.01 mg of resolution). Before coating the slurry onto nickel foam, the foam 

was cleaned using 3M HCl acid, followed by washing with water and acetone. The cleaned nickel 

foam was dried in the vacuum oven for 1 h at 60 oC.  The digital photographs of the prepared 

electrodes are shown in Figure 2.4. A symmetric supercapacitor device was fabricated by 

sandwiching an ion transporting layer (Celgard, 25μm thick, 39% porosity) between two S4 

electrodes as shown in Figure 2.5. The electrochemical measurements of the device were performed 

at various temperatures in 3M KOH electrolyte.   

 

Figure 2.3. Schematic of three electrode system. 
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Figure 2.4. Picture of working electrodes in a vacuum oven. 

 

 

All the electrochemical testing was performed on a Versastat 4-500 electrochemical 

workstation (Princeton Applied Research, USA). VersaStudio software provided by Princeton 

Applied Research was used to analyze the electrochemical data. The electrochemical performance 

of synthesized samples was studied using cyclic voltammetry (CV), galvanostatic charge-discharge 

(GCD) measurements, and electrochemical impedance spectroscopy (EIS) methods.  

Figure 2.5. Schematic diagram of supercapacitor device with the real picture. 
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2.3.1. Cyclic Voltammetry:  

The supercapacitor performance of the synthesized samples was evaluated by a cyclic 

voltammetry test. CV measurements were carried out at various scan rates (1-300 mV/s) in 0-0.6 

V potential range. The supercapacitor device was also tested at various scan rates at room 

temperature. The effect of temperature on charge storage capacity of the device was studied at a 

scan rate of 100 mV/s in the temperature range of 10-60 oC. 

2.3.2. Galvanostatic Charge-Discharge Measurements: 

The charge storage capacity of the synthesized samples was studied by using galvanostatic 

charge-discharge measurements. The charge-discharge cycles were carried out in 0-0.6 V potential 

range at various applied currents (0.5-20 A/g). In the same manner, the supercapacitor device was 

tested in applied currents 0.3, 0.4, 0.5, 0.75 and 1 A/g at room temperature and in applied current 

equal to 0.75 A/g at a temperature range of 10-60 oC. 

2.3.3. Electrochemical Impedance Spectroscopy: 

The synthesized samples’ impedance analysis was determined by using an impedance 

analyzer with an amplitude of 10 mV in 0.05- 10,000 Hz frequency range. Moreover, the effect of 

temperature on the electrochemical behaviors of the supercapacitor device was also studied. The 

purpose of these synthesized samples as an electrocatalyst for oxygen evolution reaction and 

hydrogen evolution reaction was also examined. To illustrate, the water electrolysis could provide 

hydrogen which could be used as fuel, and oxygen which could be released into the atmosphere as 

a breathable gas as shown in Figure 2.6. Thermodynamically, water splitting should occur at 1.23 

V, but practically it occurs at a higher potential called overpotential. The water splitting is described 

by the following electrochemical reaction36: 

                                                        2H2O → 2H2 + O2 

The OER activity of the sample electrode was conducted using linear sweep voltammetry 

(LSV) in 1 M KOH electrolyte at a scan rate of 2 mV/s in 0.14 – 0.84 V potential range, while the 

HER activity was carried out at a scan rate of 2 mV/s in -0.9 – -1.5 V potential range. The 
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electrochemical impedance spectra were also studied to understand the charge-transport 

mechanism. 

  

Figure 2.6. Schematic represents water splitting where the gases 

of oxygen and hydrogen are produced. 
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CHAPTER III 

 

 

RESULTS AND DISCUSSION 

 

 

3.1. Structure characterization: 

3.1.1. X-ray diffraction analysis: 

The powder X-ray diffraction technique was used to determine the phase purity and 

crystallinity of the synthesized samples. A broad characteristic peak due to amorphousness of the 

sample S1 was observed as shown in Figure 3.1.  All the cobalt-based nanocomposites showed 

presence of mixed phases of cobalt oxides as shown in Figure 3.3- 3.6. XRD patterns showed 

presence of Co(OH)2 and CoO phases which could be due to low temperature annealing of the 

samples. The majority of the peaks were corresponding to the face-centered cubic structure of 

Co3O4. Figure 3.7 shows the XRD patterns of the sample obtained after sulfurizing S5 sample. All 

the observed peaks match well with the cubic structure of Co9S8.  
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Figure 3.1. XRD patterns of sample S1. 
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Figure 3.2. XRD patterns of sample S2. 
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Figure 3.3. XRD patterns of sample S3. 
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Figure 3.4. XRD patterns of sample S4. 
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Figure 3.5. XRD patterns of sample S5. 
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Figure 3.6. XRD patterns of sample S6. 



 

19 
 

10 20 30 40 50 60 70 80

(5
1

1
)

(6
0

0
)

(2
2

2
) (4

4
0
)

In
te

n
s
it

y
 (

a
.u

.)

2 (Degree)

(3
1

1
)

Co9S8

 

Figure 3.7. XRD patterns of sample sulfurized S5. 

3.1.2. Scanning Electron Microscopy: 

The morphology and structure of all the synthesized samples were determined using 

scanning electron microscopy. Figure 3.8 show the SEM images S1 sample at various 

magnifications. As can be seen, the sample is highly porous in nature, resembling naturally porous 

stones. The SEM images of the nanocomposites of polypyrrole and cobalt oxides are shown in 

Figures 3.9- 3.12. It is observed that the morphology of the nanocomposites depends on the 

concentration of cobalt oxide. For example, the sample with lower concentrations of cobalt oxide 

produced spherical-like particles with the presence of nanorods on the surface as shown in Figure 

3.9 and Figures 3.10. On the other hand, higher concentrations of cobalt oxide looked like multiple 

layered sheets structured, as seen in Figures 3.11 and Figures 3.12. The cobalt oxide without 

polypyrrole (sample S6) showed a similar morphology (Figure 3.13) as was observed for the 

samples with higher concentrations of cobalt oxide. The sulfurized nanocomposites of polypyrrole 
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and cobalt oxide showed a sheet-like structure (Figure 3.14) which was very similar to the structure 

of the S5 sample.  

     

 

 

Figure 3.8. SEM images of sample S1 at different magnifications. 

Figure 3.9. SEM images of sample S2 at different magnifications. 
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Figure 3.10. SEM images of sample S3 at different magnifications. 

 

Figure 3.11.SEM images of sample S4 at different magnifications. 
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Figure 3.12. SEM images of sample S5 at different magnifications. 

  

 

Figure 3.13. SEM images of sample S6 at different magnifications. 
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Figure 3.14. SEM images of sample sulfurized S5 at different magnifications. 

3.1.3. X-ray photoelectron spectroscopy:  

X-ray photoelectron spectroscopy was used to study the chemical nature of the prepared 

nanocomposites of polypyrrole and cobalt oxide before and after sulfurization. Figure 3.15 and 

Figure 3.16 show the survey-scan spectrum of S5 and sulfurized S5 samples. The presence of Co, 

O, N and C in S5 sample and Co, O, N, C and S in sulfurized S5 sample is quite evident.     
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Figure 3.15. XPS survey spectra of S5 sample. 
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Figure 3.16. XPS survey spectra of sulfurized S5 sample. 

In the high resolution spectrum of the Co 2p region for sample S5 and sulfurized S5 (Figure 

3.17. and 3.18), the Co 2p3/2 and Co 2p1/2 peaks are deconvoluted into four components 

corresponding to Co+3 and Co+2.  The deconvolution of the O 1s spectra (Figure 3.19 and 3.20) 

confirm the existence of a metal oxygen bond at 529.7 eV in the spinel Co3O4.37 The other observed 
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peaks are associated with the oxygen of OH- and the H2O adsorbed onto the surface. Figure 3.21 

and Figure 3.22 represent the C 1s spectra of S5 and sulfurized S5 samples, respectively. The peak 

at 284.6 eV represents C-C and C-H bonds, while peaks at 285.5 and 288.2 eV could be assigned 

to carbon-net defects and different oxygen-containing moieties, respectively.38  The N 1s spectra 

of sample S5 and sulfurized S5 samples showed two peaks at 400.1 and 398.6 eV which correspond 

to pyrrolic nitrogen and pyridinic nitrogen respectively (Figure 3.23 and 3.24). In the S 2p spectrum 

of sample sulfurized S5, a peak at 161.6 eV corresponds to cobalt sulfide. The peaks at 163.7 and 

164.9 eV correspond to carbon-bonded sulfur, which demonstrates the successful doping of S into 

C atoms as shown in Figure 3.25. 
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Figure 3.17. XPS spectra of Co 2p for S5 sample. 
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Figure 3.18. XPS spectra of Co 2p for sulfurized S5 sample. 
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Figure 3.19. XPS spectra of O 1s for S5 sample. 
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Figure 3.20. XPS spectra of O 1s for sulfurized S5 sample. 
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Figure 3.21. XPS spectra of C 1s for S5 sample. 
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Figure 3.22. XPS spectra of C 1s for sulfurized S5 sample. 
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Figure 3.23. XPS spectra of N 1s for S5 sample. 
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Figure 3.24. XPS spectra of N 1s for sulfurized S5 sample. 
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Figure 3.25. XPS spectra of S 2p for sulfurized S5 sample. 

3.1.4. Surface area measurements: 

The nitrogen adsorption–desorption isotherms and surface area of synthesized samples 

were studied using Brunauer–Emmett–Teller Surface Area measurement. All studied samples 

showed a combination of type I and IV isotherm curves as shown in all BET N2 adsorption–
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desorption isotherm figures39. S1, S3, S4 and S5 in Figures 3.26- 3.29 display the majority of N2 

adsorption at relative pressures (P/Po) 0.9 to 1.0 with high slope, while the noticeable hysteresis 

loops for all of them appear at lower relative pressure (P/Po). The majority of N2 adsorption for S6 

at relative pressures (P/Po) 0.6 to 0.8 with distinguishable hysteresis curve, followed by slight 

incensement in N2 adsorption, as shown in Figure 3.30. The sulfurized S5 sample shows the 

majority adsorption at relative pressures (P/Po) 0.9 to 1.0 with high slope, the hysteresis loop 

appears at relative pressure (P/Po) 0.5 to 1.0 as shown in Figure 3.31.  All surface areas of all 

samples are shown in Table 3.1. It is obvious that the specific surface areas of the synthesized 

materials are influenced by the mass ratio of the polypyrrole. S1 (100% polypyrrole) has shown the 

highest surface area and S6 (100% Co3O4) has shown the lowest 153 m²/g, 66 m²/g, respectivly. 

The optimum combination of plypyrrole and Co3O4 represented in S5 the best sample for water 

splitting activities and S4 the best sample for energy storage, 80 m²/g and 82 m²/g respectively. 

Moreover, their surface areas are lower than S1 and higher than S6. The surface area for S3 is 93 

m²/g  since it contains a higher amount of polypyrrole. However, sulfurized S5 sample shows the 

lowest surface area among all synthesized sample 38 m²/g, even the improvement obtained in 

electrocatalysis activity.  
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Figure 3.26. Nitrogen adsorption–desorption isotherms of S1. 
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Figure 3.27. Nitrogen adsorption–desorption isotherms of S3. 
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Figure 3.28. Nitrogen adsorption–desorption isotherms of S4. 
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Figure 3.29. Nitrogen adsorption–desorption isotherms of S5. 
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Figure 3.30. Nitrogen adsorption–desorption isotherms of S6. 
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Figure 3.31. Nitrogen adsorption–desorption isotherms of sulfurized S5. 
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Table 2. BET surface area. 

Sample code BET Surface area m²/g 

S1 153 

S3 93 

S4 82 

S5 80 

S6 66 

Sulfurized S5 38 

 

3.2. Electrochemical measurements for supercapacitors: 

To demonstrate the potential application of the synthesized nanocomposites for 

supercapacitors, electrochemical testing was performed in 3M KOH electrolyte. The 

electrochemical testing was done using cyclic voltammetry, galvanostatic charge-discharge 

measurements and electrochemical impedance spectroscopy.  

3.2.1. Cyclic voltammetry: 

The cyclic voltammetry using a three electrode system was used to study the 

electrochemical behavior of the synthesized samples. Figures 3.32-3.37 show the CV curves of all 

the samples at various scan rates. It was observed that the shape of the CV curves was retained 

even at higher scan rates suggesting a high rate electrochemical stability of the synthesized 

materials.40 Moreover, the CV curves showed a pair of redox peaks during the cathodic and anodic 

sweeps which confirms the presence of Faradaic redox reactions. The cyclic voltammetry was used 
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to calculate the charge storage capacity of the samples. The specific capacitance (Csp) of the 

samples was calculated using the following expression: 

                    𝐶𝑠𝑝 =  
𝑄

∆𝑉.𝑚
     …. (1) 

Where Q is the area under the CV curve, ΔV is the potential window, and m is the mass of 

the synthesized sample used in the electrode. The variation of the specific capacitance as a function 

of scan rate for all the synthesized samples is shown in Figure 3.38. It was observed that specific 

capacitance of all the nanocomposites decreases with an increase in scan rates. Lower specific 

capacitance at higher scan rates could be due to lack of time for the electrolyte ions to be active on 

the surface of the electrode.41 The higher specific capacitance in the nanocomposites could be due 

to participation of cobalt oxides in the redox reactions. The specific capacitance for all the 

synthesized samples at 1 mV/s of scan rate is given in Table 3.2. As seen in Table 3.2, sample S4 

showed the highest specific capacitance of 1,533 F/g at 1 mV/s.  The specific capacitance of 

polypyrrol (sample S1) and cobalt oxide (sample S6) was observed to be 439 and 582 F/g, 

respectively.  
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Figure 3.32. CV curves of S1 sample at various scan rates in 3M KOH electrolyte. 
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Figure 3.33. CV curves of S2 sample at various scan rates in 3M KOH electrolyte. 
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Figure 3.34. CV curves of S3 sample at various scan rates in 3M KOH electrolyte. 
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Figure 3.35. CV curves of S4 sample at various scan rates in 3M KOH electrolyte. 
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Figure 3.36. CV curves of S5 sample at various scan rates in 3M KOH electrolyte. 
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Figure 3.37. CV curves of S6 sample at various scan rates in 3M KOH electrolyte. 
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Figure 3.38. The variation of specific capacitance as a function of scan rates for all synthesized 

samples in 3M KOH electrolyte. 
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Table 3. Specific capacitance of all the synthesized samples at 1 mV/s. 

Sample code Specific capacitance (F/g) 

S1 439 

S2 494 

S3 591 

S4 1533 

S5 385 

S6 582 

3.2.2. Galvanostatic charge-discharge studies: 

The charge storage capacity of the synthesized samples was also studied using 

galvanostatic charge-discharge measurements at various applied current densities in the potential 

range of 0- 0.6 V (vs. SCE). A current density of 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 7, 10, 15, and 20 A/g 

was applied to study the charge-discharge characteristics of all the samples. Figures 3.39-3.44 show 

the charge-discharge characteristics of all the samples. As seen in these figures, the discharge time 

decreased with increasing current density which could be due to insufficient time for the 

electrolytes to perform redox reactions at the electrode/electrolyte interface. The notable plateau 

regions in galvanostatic charge-discharge curves further confirm the pseudocapacitive behaviors of 

the synthesized materials. The pseudocapacitive behaviors resulted due to charge-transfer reaction 

and the electrochemical adsorption-desorption process at the electrode/electrolyte interface 

consistent with the redox peaks in the CV curves.11 The following equation was used to calculate 

the specific capacitance of the electrodes from the galvanostatic charge-discharge studies42: 
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𝐶𝑠𝑝 =  
𝐼.∆𝑡

𝑚.∆𝑉
   …. (2) 

Where Csp (F/g), I (A), Δt (s), m (g), and ΔV (V) represent the specific capacitance, the 

applied current density, the discharge time, mass of the active material, and working potential 

range, respectively. The highest specific capacitance of 468 F/g (at 0.5 A/g) was observed for 

sample S4 which is consistent with CV measurements. Guan et al 43 reported a specific capacitance 

of 60 F/g (at 1 A/g) for the composite of the needle-like Co3O4/graphene. Our result showed a 

specific capacitance of 451 F/g (at 1 A/g) for sample S4 which is over six times better than Guan 

et al’s report. The variations in the specific capacitance as a function of current densities are shown 

in Figures 3.45. It is observed that specific capacitance decreases with increasing current densities; 

that could be due to lack of the available time for the electrolyte ions to react with the material.41 
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Figure 3.39. Galvanostatic charge-discharge curves of S1 sample at different current densities in 

3M KOH. 
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Figure 3.40. Galvanostatic charge-discharge curves of S2 sample at different current densities in 

3M KOH. 

0 50 100 150 200 250 300 350 400
0.0

0.1

0.2

0.3

0.4

0.5

P
o

te
n

ti
a

l 
(V

, 
S

C
E

)

Time (s)

 0.5A/g

 0.75 A/g

 1 A/g

 1.5 A/g

 2 A/g

 3 A/g

 4 A/g

 5 A/g

 7 A/g

 10 A/g

 15 A/g

 20 A/g

 

Figure 3.41. Galvanostatic charge-discharge curves of S3 sample at different current densities in 

3M KOH. 
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Figure 3.42. Galvanostatic charge-discharge curves of S4 sample at different current densities in 

3M KOH. 
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Figure 3.43. Galvanostatic charge-discharge curves of S5 sample at different current densities in 

3M KOH. 
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Figure 3.44. Galvanostatic charge-discharge curves of S6 sample at different current densities in 

3M KOH. 
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Figure 3.45. The variation of specific capacitance as a function of current density for all the 

synthesized samples in 3M KOH. 

3.2.3. Electrochemical stability of the nanocomposite: 

The electrochemical cyclic stability and Columbic efficiency of the best nanocomposite 

(sample S4) were studied using the cyclic galvanostatic charge-discharge method. Figure 3.46 

shows the capacitance retention as a function of the number of charge-discharge cycles studied at 
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a current density of 4 A/g. The inset of Figure 3.46 shows the first ten and the last ten charge-

discharge cycles. As seen in the plot, the electrode exhibited an exceptional cycling stability with 

87% retention of its initial capacitance. On the other hand, the electrode exhibited a Columbic 

efficiency of 98% over 5,000 cycles of this study.  The Columbic efficiency (n) was calculated 

using the following equation:8 

𝑛 =  
𝑡𝐷

𝑡𝐶
 . 100 %     …. (3) 

Where the tD and tC are the discharge and charge time in seconds.  
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Figure 3.46. Cycling performance and Columbic efficiency of sample S4. 

3.2.4. Electrochemical behavior of supercapacitor: 

The symmetric supercapacitor device was fabricated using the best sample (S4) to check 

the potential applicability of the nanocomposite for supercapacitor applications. The 

electrochemical performance of the device was examined using cyclic voltammetry and 

galvanostatic charge-discharge measurements in 3M KOH electrolyte. Figure 3.47 shows the CV 
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curves of the supercapacitor device at different scan rates at room temperature. The CV curves are 

identical in shape even at a high scan rate, indicating high electrochemical rate stability of the 

device. It was further observed that specific capacitance of the supercapacitor device decreases with 

increasing scan rate as shown in Figure 3.48. The highest specific capacitance of 43 F/g was 

observed at 5 mV/s. The charge storage capacity was further analyzed using Galvanostatic charge-

discharge measurements. Figure 3.49 shows charge-discharge characteristics of the device at 

various current densities. The variation in the specific capacitance of the device as a function of 

applied current is shown in Figure 3.50. The maximum charge storage capacity of 16 F/g was 

observed at current density of 0.3 A/g.  
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Figure 3.47. CV curves of the supercapacitor device at room temperature. 
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Figure 3.48. Specific capacitance of the device versus scan rate at room temperature. 
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Figure 3.49. Galvanostatic charge-discharge characteristics of the supercapacitor device at room 

temperature. 
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Figure 3.50. Specific capacitance of the device versus current density at room temperature. 

The electrochemical properties of the supercapacitor device were studied at various 

temperatures to understand the effect of operating temperature on the performance of the 

supercapacitor device. Figure 3.51 shows the CV curves of the device at different temperatures. As 

seen, the shape of the CV curves are identical and the area under the curve increases with increase 

in temperature. Identical shapes in the CV curves even at higher temperature confirm the 

electrochemical stability of the device.  Figure 3.52 shows the percentage change in the specific 

capacitance of the device with increase in temperature. About 80% improvement in the specific 

capacitance of the device was observed when the temperature was increased from 10 to 60 oC.  The 

effect of temperature on the charge-discharge characteristics was also studied. The discharge time 

was observed to be increasing with increase in temperature as seen in Figure 3.53, which confirms 

the improvement in the charge storage capacity of the device at higher temperature. From the 

galvanostatic charge-discharge measurements, about 300% improvement in charge storage 

capacity of the supercapacitive device was observed on increasing temperature from 10 to 60 oC 

(Figure 3.54).  
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Figure 3.51. CV curves of the supercapacitor device at different temperatures. 
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Figure 3.52. Effect of temperature on charge storage capacity of S4 device determined from CV 

measurements. 
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Figure 3.53. Galvanostatic charge-discharge curves of S4 device at various temperatures. 

10 20 30 40 50 60 70

0

50

100

150

200

250

300

350

Temperature (oC)

%
 C

h
a
n

g
e
 i
n

 c
a
p

a
c
it

a
n

c
e

@ 0.75 A/g

 

Figure 3.54. Effect of temperature on charge storage capacity of S4 device determined from 

GCD characteristics. 

3.3. Electrochemical measurements for oxygen and hydrogen evolution reaction: 

3.3.1. Oxygen evolution reaction: 

The oxygen evolution reaction was studied using linear sweep voltammetry and 

electrochemical impedance spectroscopy. Electrocatalytic properties of all the prepared samples 
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were studied using the materials on nickel foam in 1M KOH electrolyte.  Figure 3.55 shows the 

polarization curves of all the samples.  It is clear from the polarization studies that sample S5 

exhibited the lowest overpotential of 316 mV to achieve a current density of 10 mA/cm2. The 

overpotential for all samples at a current density of 10 mA/cm2 is shown in Table 3.3. The 

corresponding Tafel slopes for all the samples are shown in Figure 3.56. The Tafel slopes provide 

information about the kinetics of electron transfer during OER process. As observed, sample S1 

shows the best Tafel slope among the studied samples.   
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Figure 3.55. Polarization curves of all the samples. 
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Figure 3.56. Tafel slopes for all the samples. 

 

Table 4. OER overpotential for all samples at 10 mA/cm2. 

Sample code Overpotential (mV) 

S1 350 

S2 358 

S3 336 

S4 354 

S5 316 

S6 356 

Furthermore, electrochemical impedance spectroscopy was used to study the 

electrocatalytic activities of the synthesized samples. Figure 3.57 shows the variation of total 

impedances as a function of frequency (at 0.50 V vs SCE) for all the samples. It is clear from the 
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figure that sample S5 has the lowest impedance. The charge transport resistance of the studied 

samples was further investigated using Nyquist plots as shown in Figure 3.58. The charge-transport 

resistance which is represented by the radius of the semicircle in the high-frequency range is the 

lowest for sample S5, suggesting fastest electron transfer rate among the studied samples. The 

electrochemical impedance spectra for sample S5 were studied at various potentials (0, 0.40, 0.45, 

0.50, 0.55 and 0.60V vs SCE) and shown in Figures 3.59 and Figure 3.60.  
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Figure 3.57. Variation of Z versus frequency for all the samples at 0.5 V vs SCE. 
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Figure 3.58. Variation Zre versus Zim for all the samples at 0.50 V vs SCE. 
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Figure 3.59. Variation of Z versus frequency for S5 sample at various voltages. 
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Figure 3.60. Variation Zre versus Zim for S5 sample at various voltages. 

The total impedance decreases with increasing potential, confirming that resistance 

decreases with increase in overpotential. The diameter of the semicircle decrease with increase in 

potential, indicating faster electron transfer at higher overpotentials.  Moreover, the electrochemical 
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stability of S5 as an electrocatalyst was studied using linear sweep voltammetry, electrochemical 

impedance spectroscopy and chronoamperometry measurments. As shown in Figure 3.61, S5 

showed a very durable electrocatalytic performance up to 2,000 cycles of testing. A very slight 

differenc in overpotential equal to 5 mV at 10 mA/cm2 was observed between the first and the 

2,000th cycles, which confirms the electrochemical durability of the S5 sample during the 

polarization measurements. Figure 3.62 and Figure 3.63 show the electrochemical impedance 

spectroscopy measurements for sample S5 before and after 2,000 cycles of polarization study. It is 

clear from these figures that nanocomposite of polypyrrole and cobalt oxide is electrochemically 

very stable. Electrochemical stability of the S5 sample was further studied using 

chronoamperometric testing. The resultant chronoamperometric plot is shown in Figure 3.64. Our 

results suggest that the nanocomposite of polypyrrole and cobalt oxide is electrochemically very 

stable with low overpotential and could be used for water splitting application. 27   
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Figure 3.61. Electrochemical stability test for S5 sample using linear sweep voltammeter. 
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Figure 3.62. Impedance versus frequency plots for S5 sample at 0.50 V vs SCE. 
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Figure 3.63. Zre versus Zim plots at 0.5 V for S5 sample before and after stability test. 
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Figure 3.64. Durability test for S5 sample using chronoamperometry. 

3.3.2. Hydrogen evolution reaction: 

The electrocatalytic performance of the synthesized materials for hydrogen evolution 

reaction was also studied using linear sweep voltammetry and electrochemical impedance 

spectroscopy. The polarization curves for all the synthesized samples are shown in Figure 3.65. As 

seen in the polarization curves, sample S5 required the lowest overpotential of 132 mV to achieve 

a current density of 10 mA/cm2. The overpotential for all the samples at 10 mA/cm2 is presented in 

Table 3.4. The corresponding Tafel slope for all samples is shown in Figure 3.66. Even though S5 

showed the lowest overpotential, it was not the fastest in kinetic reaction.  



 

57 
 

-0.4 -0.3 -0.2 -0.1 0.0 0.1

-100

-80

-60

-40

-20

0

C
u

rr
e

n
t 

d
e

n
s

it
y

 (
m

A
/c

m
2
)

Potential (V, RHE)

 S1

 S2

 S3

 S4

 S5

 S6

 

Figure 3.65. Polarization curves of all the samples. 
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Figure 3.66. Tafel plots for all the samples. 
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Table 5. HER overpotential required for all the samples to achieve a current density of 10 

mA/cm2. 

Sample code Overpotential (mV) 

S1 201 

S2 204 

S3 225 

S4 259 

S5 132 

S6 243 

 

The electrochemical impedance spectroscopy measurements were used to analyze the HER 

activity and the electrical conducting behavior of the samples at -1.25 V vs SCE. The variation in 

the impedance of the samples as a function of frequency is shown in Figure 3.67. As seen in the 

figure, S5 displayed the lowest impedance which resulted in high electro-catalytic activity because 

of the lower charge transfer resistance.44 The Nyquist plots for all the samples are displayed in 

Figure 3.68. As seen in the Nyquist plots, sample S5 showed the lowest charge-transport resistance 

(smallest diameter), which resulted in the faster electron transfer rate. The electrochemical 

impedance spectroscopy measurements for sample S5 were investigated at various potentials (1.1, 

1.15, 1.2, 1.25, 1.30 and 1.35 V vs SCE) and shown in Figures 3.69 and Figure 3.70. As seen in 

both figures, the total impedance of sample S5 decreases with increasing potential. Figure 3.71 

shows the electrochemical stability performance of S5 electrocatalyst for HER using linear sweep 

voltammeter. A slight increase in the overpotential was observed after 2,000 cycles of polarization. 
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The result of chronoamperometric testing is shown in Figure 3.72. A very small loss in current 

density was observed indicating electrochemical stability of the sample.  
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Figure 3.67. Variation of Z versus frequency for all the samples measured at -1.25 V vs SCE. 
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Figure 3.68. Nyquist plots for all the samples at -1.25 V vs SCE. 
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Figure 3.69. Variation of Z versus frequency for S5 sample at various potentials. 
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Figure 3.70. Variation Zre versus Zim for S5 sample at various potentials. 
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Figure 3.71. Stability test of S5 electrocatalyst using linear sweep voltammeter. 
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Figure 3.72. Durability test of S5 electrocatalyst using chronoamperometry. 
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3.4. Electrochemical measurements sulfurized nanocomposites: 

The electrochemical properties of metal oxides could be improved by sulfuring them. 

Transition metal sulfides have better electronic conductivity compared with their oxides. Higher 

electronic conductivity reduces the sheet and charge transfer resistance of the electrodes and thus 

improves electrochemical properties. We sulfurized the best sample (S5) to see the effect of 

sulfurization on electrocatalytic properties of nanocomposite.  

3.4.1. Oxygen evolution studies: 

The linear sweep voltammetry was employed to study the oxygen evolution reaction of 

sulfurized sample in 1M KOH electrolyte. Figure 3.73 shows the polarization curves of S5 and 

sulfurized S5 samples for comparison. A significant reduction in overpotential after sulfurization 

was observed. The sulfurized S5 sample required 293 mV to achieve a current density of 10 

mA/cm2, while S5 required an overpotential of 316 mV. There was a reduction in overpotential by 

23 mV after sulfurization. Furthermore, the Tafel slope was also improved. The Tafel slope 

improved from 116 to 89 mV/dec after sulfurization (Figure 3.74). The lower Tafel slope after 

sulfurization indicates better OER kinetics and faster electron transfer.  
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Figure 3.73. Polarization curves of S5 and sulfurized S5 samples. 
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Figure 3.74. Tafel plots and slopes of S5 and sulfurized S5 samples. 

The effect of sulfurization on impedance properties of the S5 sample was also investigated 

using electrochemical impedance spectroscopy. Figure 3.75 shows the variation of impedance 

versus frequency for S5 and sulfurized S5 samples at 0.50 V vs SCE. It is clear from the graphs 

that the sulfurized S5 sample has lower impedance compared to S5. The charge transport resistance 

of these samples was further analyzed using Nyquist plots (Figure 3.76). The charge-transfer 

resistance, represented by the diameter of the semicircle in high frequency range, is significantly 

reduced after sulfurization of sample S5. Figure 3.77 and Figure 3.78 show the impedance studies 

for the sulfurized S5 sample at various potential. It was observed that impedance and charge-

transfer resistance decreases with increasing potential.  
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Figure 3.75. Variation of Z versus frequency for S5 and sulfurized S5 at 0.50 V vs SCE. 
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Figure 3.76. Variation Zre versus Zim for S5 and sulfurized S5 at 0.50 V vs SCE. 
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Figure 3.77. Variation of Z versus frequency for sulfurized S5 sample at various potentials. 
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Figure 3.78. Variation Zre versus Zim for sulfurized S5 sample at various potentials. 

 

Furthermore, the electrochemical stability of sulfurized S5 sample was studied using linear 

sweep voltammetry, electrochemical impedance spectroscopy and chronoamperometry 

mesurments. The linear sweep voltammetry measurements of sulfurized S5 were investigated up 
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to 2,000 cycles as shown in Figure 3.79. The 1st and 2,000th cycles overlap each other, indicating 

that sulfurized S5 has a high durable electrocatalytic performance up to 2,000 cycles of testing. 

Figure 3.80 and Figure 3.81 represent the electrochemical impedance spectroscopy stability studies 

of the sulfurized S5 sample. It is clear from both graphs that impedance and resistance are constant 

even after 2,000 cycles, which confirms the stable performance of the sample after sulfurization.  

In continuous electrolysis measurement, a slight decrease in current density during more than 12 

hours was observed as shown in Figure 3.82, indicating chronoamerometic stability of the 

sulfurized sample. 
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Figure 3.79. Polarization curves of sulfurized sample at different cycles of linear sweep 

voltammetry measurements. 



 

67 
 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

|Z
| 

(O
h

m
)

Frequency (Hz)

 1
st

 cycle

 2000
th 

cycle

 

Figure 3.80. Impedance versus frequency plots for sulfurized sample before and after cyclic 

studies. 
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Figure 3.81. Zre versus Zim plots for sulfurized sample before and after cyclic studies. 
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Figure 3.82. Electrochemical stability performance of sulfurized sample studied using 

chronoamperometry. 

 

3.4.2. Hydrogen evolution studies: 

The effect of sulfurization of HER activity was also studied. Figure 3.83 shows the 

polarization curves of S5 and sulfurized S5 samples. Significant improvement in HER activity in 

terms of overpotential after sulfurization was not observed. However, a significant improvement in 

the Tafel slope was observed. The Tafel slope improved from 166 to 133 mV/dec after sulfurization 

(Figure 3.84). That indicated a faster electron transfer process after sulfurization.  
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Figure 3.83. Polarization curves of S5 and sulfurized S5 samples. 
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Figure 3.84. Tafel plots and slopes of S5 and sulfurized S5 samples. 

 

Figures 3.85 and Figure 3.86 represent the electrochemical impedance studies of the HER 

process of sample S5 and sulfurized S5 at -1.25 V vs SCE. As seen in both figures, the sulfurized 

sample has lower impedance than the unsulfurized. Figure 3.87 shows variation of impedance 



 

70 
 

versus frequency of sulfurized sample in HER region at different potentials. As seen, the impedance 

decreases with increasing potential. Figure 3.88 represents Nyquist plots for the sulfurized sample 

at various potentials. It is observed that the charge-transfer resistance decreases with an increase in 

potential. The linear sweep voltammetry stability of the sulfurized sample is shown in Figure 3.89. 

It is clear from this study that the sulfurized sample is quite stable in the HER process too. The 

charge transfer resistance before and after the stability test was observed to be very similar (Figure 

3.90 and Figure 3.91). There is clear improvement in impedance. Finally, the durability test of the 

sulfurized sample for the HER process was studied using chronoamperometry (Figure 3.92). The 

sample showed a very stable performance over 16 hours of continuous electrolysis process.   
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Figure 3.85. Variation of Z versus frequency for S5 and sulfurized S5 sample at -1.25 V vs SCE. 
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Figure 3.86. Variation Zre versus Zim for S5 and sulfurized S5 sample at -1.25 V vs SCE. 
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Figure 3.87. Variation of Z versus frequency for sulfurized sample at various potentials. 
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Figure 3.88. Variation Zre versus Zim for sulfurized sample at various potentials. 
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Figure 3.89. Polarization curves of sulfurized sample at different cycles of linear sweep 

voltammeter measurements. 
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Figure 3.90. Impedance versus frequency plots for sulfurized sample before and after cyclic 

studies. 
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Figure 3.91. Zre versus Zim plots for sulfurized sample before and after cyclic studies. 
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Figure 3.92. Electrochemical stability performance of sulfurized sample studied using 

chronoamperometry. 
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CHAPTER IV 

 

 

CONCLUSION 

 

 

In conclusion, polypyrrole was successfully synthesized by chemical polymerization. The 

nanocomposites of cobalt oxide and polypyrrole were synthesized using a hydrothermal method. 

The synthesized nanocomposites and its components were characterized using different techniques 

such as x-ray diffraction for phase purity, scanning electron microscopy for microstructure and 

morphology, the Brunauer-Emmett-Teller method for surface area, and x-ray photoelectron 

spectroscopy for elemental composition. Electrochemical measurements were performed in three 

electrodes system using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical 

impedance spectroscopy measurements. Electrochemical measurements were performed to 

understand the charge storage capacity of the nanocomposites and their ability to perform as 

electrocatalysts for water splitting applications.  

The nanocomposites showed a hybrid behavior in charge storage mechanism. The 

contribution from double-layer capacitance and pseudocapacitance made nanocomposites superior 

to their counterparts. The optimized nanocomposite showed the maximum capacitance of 1533 F/g 

at 1 mV/s with outstanding cycle stability. About 87% of the initial capacitance was retained after 

5,000 cycles of continuous charging-discharging studies. A supercapacitor device fabricated using 

the best nanocomposite showed 300% improvement in charge storage capacity on increasing device 

temperature from 10 to 60 oC. Our results clearly suggest that nanocomposites of conducting 

polymer and metal oxide could be used as electrode material for fabrication of high-performance 

supercapacitor devices.  
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The potential application of these nanocomposites for water splitting was also investigated 

in an alkaline medium. It was observed that the nanocomposites were good electrocatalysts for 

water splitting compared to their counterparts as they required very low overpotential to generate 

hydrogen and oxygen from water. The optimized nanocomposite required 316 and 132 mV to 

achieve a current density of 10 mA/cm2 for oxygen evolution and hydrogen evolution reactions, 

respectively. Chronoamperometric measurements confirmed their electrochemical stability as an 

electrocatalyst for oxygen and hydrogen evolution reactions. Furthermore, the sulfurization of S5 

showed a clear and stable improvement in performing as electrolysis for oxygen and hydrogen 

evolution reactions. Our results suggest that optimized nanocomposites of polypyrrole and cobalt 

oxide could be suitable materials for energy storage as well as energy generation via water splitting.  
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