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SULFURIZATION OF NANOSTRUCTURED COBALT OXIDE FOR ENERGY STORAGE APPLICATIONS 
 
 

An Abstract of the Thesis By 
Samiyah Aloqayli 

 
 

Development of energy storage devices with high energy performance, power density, 

fast charge-discharge capability and long cyclability is needed to meet the increasing demand for 

energy, power and environmental protection in our daily life. Supercapacitors have great 

potential in future energy storage devices with magnificent properties. Recently, researchers have 

shown great progress for the improvement of supercapacitor performance by fabrication of 

nanostructured transition metal chalcogenides materials. 

One of the main objectives of this thesis is to synthesize nanostructured cobalt oxide and 

then converte them to cobalt sulfide using a facile hydrothermal method. The synthesized cobalt 

oxide and cobalt sulfide were structurally and electrochemically characterized. The structural 

characterizations were performed using X-ray diffraction and scanning electron microscopy. The 

electrochemical properties were studied using a standard three-electrode cell containing a 

platinum wire as a counter electrode, saturated calomel electrode as a reference electrode, and 

synthesized materials as a working electrode. The energy storage capacity was investigated using 

cyclic voltammetry (CV) and galvanostatic charge-discharge techniques. Cobalt oxide and cobalt 

sulfide showed specific capacitances of 983 and 7358 mF/cm2 at 2 mA/cm2, respectively.  The 

electrochemical properties of cobalt oxide have been improved significantly after converting to 

cobalt sulfide. Moreover, the effect of temperature on the electrochemical properties of the 

supercapacitor device fabricated using cobalt sulfide was studied. It was observed that the charge 

storage capacity of the device increased with increase in the temperature, which could be due to 
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decrease in series resistance of the device. Our results suggest that cobalt sulfide could be used 

as an advanced material for energy storage applications.  
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CHAPTER I 
 
 

INTRODUCTION 
 
 

Energy has become a main focus of science and of national policy as a response to growing 

environmental concerns. The increasing number of the technological developments around the 

world has caused the demand to generate different sources of energy. Since energy is the ability 

to do work, there’s an urgent need to develop efficient and low-cost energy generation and 

storage devices. One of the ways to generate energy is with a conventional source such as coal 

and petroleum. However, there are also non-conventional sources such as solar light, hydro 

power, and wind energy, which are considered to be environmentally-friendly energy sources. 

1.1. Different methods to generate energy:  

Energy can be generated using both conventional and non-conventional ways. Non-conventional 

sources are environmental friendly.  Solar cells, which are based on the conversion of solar light 

into electricity by the photovoltaic effect, have the highest efficiency and greatest number of 

practical applications. Solar cell technologies are divided into three generations based on 

materials used. The first generation of solar cells are mainly based on wafers, cells that are made 

of crystalline silicon. Silicon wafers are widely used due to their effective performance, as well as 

their high stability. The second generation is based on amorphous silicon, such as copper indium 

gallium selenide (CIGS) and cadmium telluride (CdTe), which are commercially significant in utility-

scale photovoltaic power stations, flexible at some degree, lower in terms of material 

consumption, and simpler technologically to manufacture than the first generation. The third 
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generation is made using a variety of different organic materials such as small molecules, 

polymers and conductive plastics, which have low efficiency, and short stability of the absorber 

materials. Despite that, they are considered to be promising technologies that can achieve the 

goal of producing low cost and high efficiency solar cells [1]. 

The second common non-conventional energy source is hydro-energy, where flowing 

water creates energy that can be captured and turned into electricity. There are three types of 

hydro-energy facilities: impoundment hydroelectric, which is typically a large hydropower system; 

diversion hydroelectricity, which is sometimes called run-of-river, in which electricity is generated 

when a large proportion of a river’s flow is diverted into a tunnel to power turbines before 

returning the water to the river further downstream; and, pumped storage hydroelectricity, which 

works as a battery, storing the electricity generated by other power sources [2]. Hydro-energy 

facilities range in size from large hydro to small hydro and micro hydro.  

Wind power, another non-conventional energy source, can generate energy by 

converting the kinetic energy in the wind to mechanical power or electricity. There are two major 

types of utility-scale wind power: land-based, which is energy generated by wind turbines diffused 

in the ground; and offshore wind, which is similar to the standard land-based turbine, with an 

improvement of the conversion, which redesigns the system to be consistent with ocean 

conditions [3].  Since their efficiency has dramatically increased, they will be promising and 

effective ways of generating power in the future.  
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1.2. Most popular methods to store energy:  

To have a practical application of non-conventional energy, the generated energy must be stored 

so that it can be available when needed. Batteries, fuel cells and capacitors are some of the most 

commonly used energy storage devices. Supercapacitors produce high power density with a long 

life cycle, and they are safer than batteries [4]. The comparisons of the power density and energy 

density of these devices are shown in Figure 1.1 

1.2.1. Batteries and capacitors: 

A battery is a source of electrical energy that is provided by conversion of stored chemical energy. 

Batteries can be divided into two major categories: primary and secondary batteries. Primary 

(disposable) batteries include alkaline batteries, mercury batteries, silver-oxide batteries, and 

zinc-carbon batteries.  Primary cells can produce current directly on assembly. Secondary 

batteries, which are also known as rechargeable batteries, include lead-acid batteries and lithium-

ion batteries. Secondary cells are recharged by using electric current, which reverses the chemical 

Figure 1.1: Ragone plot for various kinds of energy storage devices. 
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reactions that occur during discharge use. Generally, batteries come in many shapes and sizes 

from miniature cells to battery banks the size of a room [5]. Ideally, batteries should have high 

energy density, and should be made from environmentally friendly materials; the main problems 

facing various conventional batteries are slow electrode process kinetics and low-rate ionic 

diffusion/migration; thus, conventional batteries show huge gaps between their theoretical and 

practical performance [6].  

On the other hand, a capacitor stores energy in the form of an electric field. The common 

capacitor consists of two conductive plates separated by a thin insulating material known as the 

dielectric as shown in Figure 1.2. The charge stored in a capacitor is proportional to the potential 

difference (V) between the two plates which generates an electrical field in the dielectric material 
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causing a charge (Q) on the both electrodes. The capacitance (C) of the device is equal to Q/V. 

Capacitance is measured in farads (F) [7].  

A supercapacitor (SC), which is often called an ultra-capacitor or electrochemical 

capacitor, differs from an ordinary capacitor in terms of charging storage capacity, which is mostly 

higher than the storage capacity of a conventional capacitor. High power density, remarkable 

cyclic stability and long cycle life have been observed in supercapacitors. 

Supercapacitors can be divided into three general classes: (i) electrochemical double-

layer capacitors (EDLC), (ii) redox electrochemical capacitors (pseudocapacitors), and (iii) hybrid 

capacitors. They are, respectively, non-faradic capacitors, in which the capacitance comes from 

the charge separation at the electrode/electrolyte interface; faradic capacitors, in which the 

process occurs at the electrode interface resulting in increased capacitance; and, a combination 

of faradic and non-faradic capacitors. Electrical double-layer capacitors commonly use carbon-

based materials, whereas pseudocapacitors use metal oxides and conducting polymers. The 

classification of the capacitors and most commonly used materials is shown in Figure 1.3. 
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1.2.2. Electrical double-layer capacitors:  

Electrochemical double-layer capacitors are constructed from two carbon-based electrodes, an 

electrolyte, and a separator. EDLCs store charge electrostatically, or non-faradically, and there is 

no transfer of charge between electrode and electrolyte.   Charge storage in EDLCs is highly 

reversible, which leads them to achieve high cycling stabilities. Capacitance is proportional to the 

surface area of the electrode, as given in the equation: 

𝐶 =  𝜖𝐴/𝑑   ………………………………   (1.1) 

where C is the capacitance, 𝜖 is the dielectric constant and 𝑑 is the distance between the two 

electrodes. Therefore, the working electrode, which is made from carbon-based material with 

higher surface area, could provide high charge storage capacity [8]. 

The nature of the electrolyte plays a great role in the supercapacitor’s design and 

performance. Different forms of carbon materials that can be used to store a charge in EDLC 

electrodes are (i) activated carbons, which are the most commonly used electrode material, and 

are less expensive and possess a higher surface area than other carbon-based materials; (ii) 

carbon aerogel, which is formed from conductive carbon nanoparticles with interspersed 

mesopores; and, (iii) carbon nanotubes that have high surface area, low resistance, and high 

stability, which allow them to be used as a stable material for an electrode in EDLC [9].  Electrical 

double layer capacitors can utilize different types of electrolytes: (i) aqueous electrolytes, such as 

sulfuric acid (H2SO4) and potassium hydroxide (KOH); or, (ii) organic electrolyte, such as 

acetonitrile. Aqueous electrolyte has low potential limit, while organic electrolyte achieved the 

highest energy density.  

1.2.3. Pseudocapacitors: 

While EDLCs charge electrostatically, pseudocapacitors charge faradically by electron charge 

transfer (redox process) between the electrode and electrolyte. Therefore, the faradic process 
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allows pseudocapacitors to achieve greater capacitance and energy densities than EDLCs. 

Pseudocapacitors’ electrodes use mainly two materials to store a charge: conducting polymers 

such as polyaniline, polypyrrole, polythiophene and their related derivatives; and, metal 

oxides/metal sulfides [10].  Various transition-metal oxides, such as RuO2, NiO, Fe2O3, Fe3O4, and 

MnO2, are being studied for supercapacitor applications [11]. 

Ruthenium oxide (RuO2) capacitance has been achieved by the insertion and removal of 

protons into its amorphous structure. It has been reported that ruthenium oxide is one of the 

most promising materials for supercapacitors due to the mixed electronic–protonic conductor 

[12-13]. Furthermore, the equivalent series resistance (ESR) of hydrous ruthenium oxide is lower 

than other materials which allow the ruthenium oxide pseudocapacitors to achieve higher energy 

and power densities than another conducting polymer pseudocapacitors [13]. 

Iron oxide (Fe3O4) has been studied for various supercapacitor applications. For example, 

Guan at al. reported specific capacitance values of 80.1 F/g, 36.1 F/g and 117.2 F/g for carbon 

nanotubes (CNT), Fe3O4 nanoparticles and CNT/Fe3O4, respectively, indicating that the presence 

of a supporting material can increase the capacitance values [14]. Mishra et al. reported that 

Fe3O4-functionalized graphenes can achieve a specific capacitance value of 180 F/g [15]. Wang et 

al. have used a composite of Fe3O4 nanoparticles grown on reduced graphene oxide (Fe3O4 /rGO) 

and obtained a specific discharge capacitance of 220.1 F/g [16]. 

1.2.4. Hybrid Capacitors: 

Hybrid capacitors are capacitors which have properties of both electrochemical double layers and 

pseudocapacitors. Therefore, by using both faradic and non-faradic processes to store a charge, 

hybrid capacitors have achieved energy, power densities and cycling stability greater than EDLCs 

and pseudocapacitors. The principal storage in a hybrid capacitor is configured with dissimilar 

electrodes, a battery-like faradic electrode and a capacitive carbonaceous electrode; it is 
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obligatory to optimize both electrodes by choosing a careful design [17].  Mainly, research 

interests have focused on three different types of hybrid capacitors distinguished by their 

electrode configuration: asymmetric, composite, and battery-type respectively. Since hybrid 

capacitors have high cell capacity, due to the large anode capacity, high reliability, high power 

density, and high energy density due to the electrochemical redox process at the faradic 

electrode, they can be used in a wide range of applications, causing a reduction in cost [18]. Wu 

et al. have deposited hybrid films from MnO2 nanowires and graphene, resulting in an energy 

density of 30.4 Wh/kg compared to those composed of graphene/graphene with 2.8 Wh/kg, and 

MnO2/MnO2 with 5.2 Wh/kg [19]. The asymmetric hybrid MnO2/graphene cell reported by Wu’s 

group showed a significant superiority in energy density. After that, Fan et al. improved the energy 

density by incorporating MnO2 into graphene as an electrode and complementing it to an 

activated carbon nanofiber-based electrode with outstanding energy density of 51.1 Wh/k [20]. 

Supercapacitors have some common advantages and disadvantages. One of the 

advantages is that the storage and release of energy does not require any chemical reactions. 

Also, compared to electrochemical batteries, they have unlimited and controllable cycle life. They 

charge and discharge very quickly and more simply than batteries, and they provide high power 

density. The disadvantages are that their energy density is commonly low, typically holding 1/5 to 

1/10 of a battery [21].   

1.3. Recent advances in materials for energy storage applications:  

Since electrochemical devices have various applications in electronic devices, new improvements 

are required in terms of energy density, rate capability, and durability of electrodes, which clearly 

depend on the development of new electrode materials and electrode structures [22].  In recent 

years, a great deal of research has been accomplished for the improvement of supercapacitor 

performance by fabrication of nanostructured electrode materials such as transition metal oxides 
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and metal sulfides. These are important and promising electrode materials for supercapacitors 

due to their redox reaction that enriches energy store mechanisms, high specific capacity, which 

is typically 2 to 3 times higher than that of the carbon/graphite-based materials, and long cycle 

life [23].  Below is a literature survey for advanced materials for supercapacitor applications. 

1.3.1. Cobalt oxide: 

Among the transition metal oxides, Co3O4 is found to be one of the most important electrode 

materials [25]. Among important features are their higher surface area, redox properties, and 

controlled size and shape. Cobalt oxide has a broad range of potential applications such as 

electrochromic devices, heterogeneous catalysts, energy storage, active material in lithium ion 

batteries and solar energy absorbers [24-26-27].  Since carbon material is used as the anode 

material in the secondary lithium ion batteries, graphitic carbon anodes suffer from a relatively 

low specific capacity of (372 mA·h/g). Among potential alternatives to carbon, cobalt oxides have 

emerged in recent years and attracted much research effort. Cobalt oxide can be present in 

various phases such as CoO, Co2O3 and Co3O4; however, Co3O4 is the most stable cobalt oxide for 

LIBs [28-29]. 

Since size, morphology, porosity and pore size distribution of Co3O4 greatly affect its 

electrochemical performance, many researchers are attempting to fabricate it in nanoscale 

dimensions, such as cubic single crystals, hollow nanospheres, particles, tubes and films [25–30]. 

Among various synthetic routes to synthesis of Co3O4, hydrothermal synthesis has been shown to 

be a simple route for the preparation of such metal oxide nanoparticles. 

Manteghi et al. studied the morphologies of nine prepared Co3O4 nanostructures under 

different temperature conditions in the presence and absence of surfactants by fabricating cobalt 

oxide from cobalt oxalate in the presence and absence of surfactant cetyltetramethylammonum 

bromide (CTAB) or Pluronic (F-127) to control the particle size [30]. They found that by using the 
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surfactant CTAB and F-127, and cobalt chloride in preparing cobalt oxalate precursor, the oxide 

particles become smaller in size. Therefore, these two structures maintain higher surface area 

and shorter diffusion length for electrolyte ions, which give best specific capacitance of 351 F/g 

and good stability over 1,000 cycles. Moreover, the Co3O4 coated nickel foam electrode gives high 

surface area with pore diameter of 17.22 nm. It was reported that similar work has been done by 

synthesis Co3O4 by (1) same salts without template having specific capacitance of 202.5 F/g ; and,  

by (2) CoCl2 and urea without any template having specific capacitance of 280.5 F/g. 

1.3.1.2. Nickel Oxide:  

With high electrochemical activity, low cost, ease of process, and environmentally-friendly 

electrode materials, nickel oxide shows outstanding performance for lithium- ion batteries and 

electrochemical supercapacitors. Dar et al. studied the morphology effects on the energy storage 

capability of 1D NiO nanostructures [31]. By using anodized aluminum oxide (AAO) templates and 

oxidization of Ni nanotubes, they process 1D NiO nanostructures.  Furthermore, they controlled 

the time and temperature of annealing to change the morphology from NiO nanotubes to NiO 

nanorods. Thus, after 25 min of annealing, the NTs maintained the tubular structure, and after a 

further 300 min of annealing time, nanorods (NRs) were formed.  NiO nanotube structures give a 

specific capacitance of 2,093 F/g, which shows the highest ever obtained for NiO approaches the 

theoretical value of approximately 2,584 F/g, due to the convenient combination of high surface 

area and nanocrystalline grain size, while the NiO nanorod structure gave a lower a capacitance 

of 797 F/g. Both nanostructures give long-term stability against cyclic charging-discharging; NiO 

nanotubes give 125 A/g, while NiO nanorods give 80 A/g; both have no alteration to performance 

over 500 cycles.  

Lately, Lu et al. did a series of new experiments trying to fabricate NiO nanorod arrays on 

Ni foam using hydrothermal method [32].  It provided a specific capacitance of 2,018 F/g with high 



 

11 

power density (reaching 80% of the theoretical value) as well as good cycling stability. The great 

performance of NiO was due to the thin rod morphology (< 20 nm), good crystallinity, well-aligned 

array structure and stable chemical bonding of the NiO nanorods on the Ni foam.  

1.3.1.3. Nickel cobalt oxide:  

Among the various metal oxides, nickel cobaltite (NiCo2O4), has become a new class of energy 

storage material for electrochemical supercapacitors due to low cost, low toxicity, high natural 

abundance, specific morphologies and structural features, and excellent electrochemical 

performance [35]. NiCo2O4 adopts a spinel structure in which Ni occupies the octahedral interstice 

and Co can take both octahedral and tetrahedral interstices [33]. Nickel cobaltite has a high 

degree of redox chemistry and electronic conductivity compared to the single phase of nickel and 

cobalt oxides. It holds at least two magnitudes higher electronic conductivity than that of NiO and 

Co3O4 [34]. Moreover, NiCo2O4 has a large power density and high energy density of up to 35 

Wh/kg [35]. The synthesis of NiCo2O4 can be achieved by using one of three primary methods: (1) 

hydrothermal synthesis, (2) sol–gel method, and (3) electrodeposition process [35]. 

Since the electrochemical properties and the charge storage capacity of any electrode 

depends on its size and morphology, many researchers have made attempts to optimize the 

reaction conditions and form special morphologies for NiCo2O4 electrodes [35]. In general, 3D 

nanostructures have an advantage over 1D and 2D nanostructures in energy storage. For example, 

Chen et al. synthesized 3D hierarchical NiCo2O4 nanosheet–nanowire clusters using a facile 

hydrothermal method, having an ultrahigh specific capacitance of 2,000 F/g at 10 A/g, with 

excellent cycling stability, 93.8% retention, and high-power density of 26.1 kW k/g at a current 

density of 80 A/g [36].  Moreover, Zou et al. reported a facile hydrothermal synthesis for 3D 

NiCo2O4 micro-spheres constructed by radial chain-like NiCo2O4 nanowires with different exposed 
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crystal planes, having specific capacitance of 1,284 F/g with a high level of cycling stability after 

3,000 cycles, and higher rate capability [37].  

1.3.2. Metal sulfides: 

Metal sulfides, with unique physical and chemical properties, have received a great interest as 

potential electrode material for energy storage applications. Metal sulfides have specific 

capacitance higher than metal oxides/carbon-based materials due to its rich redox chemistry, 

better electrical conductivity, and mechanical and thermal satiability [38 -39].  Recently, transition 

metal sulfides such as binary cobalt sulfides, nickel sulfides and ternary nickel cobalt sulfides, have 

shown great performance as supercapacitor electrode materials with a tremendous 

electrochemical performance [40-42].  

Yang et al. used a hydrothermal method to prepare hollow CoS hexagonal nano-sheets 

[41]. The results showed a capacitance of 326.4 F/g and high current density in the three electrode 

measurements. Yang et al. synthesized flower-like NiS for supercapacitors, having high specific 

capacitance of 965.98 F/g [42].  

1.3.2.1. Cobalt sulfide:  

Cobalt sulfides have attracted extensive attention due to their remarkable physical, chemical, and 

electronic properties [43]. Thus, they could be used in many applications such as in catalysts, Li-

ion batteries, and charge storage devices [43-44]. Cobalt sulfides are present in alternative phases 

such as CoS, CoS2, Co3S4 and Co9S8.  

Recently, more attention has been given to other cobalt sulfide morphologies to enhance 

their electrochemical performances.  Hu et al. reported that the surface morphology of the cobalt 

sulfide depends on its phase [45]. A facile and efficient solvothermal method was used for the 

synthesis of cobalt sulfide CoS nanoflakes and cobalt disulfide CoS2 nanoparticles. Thiourea and 

sulfur powders were used as precursors, respectively. The CoS nanoflakes showed regular 
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hexagonal shape, whereas CoS2 nanoparticles showed a single-crystalline cubic structure with an 

average side length of 100 nm. Moreover, it was observed that the quantity of thiourea influenced 

the corresponding morphologies of the CoS nanostructures, but had no effect on their phase 

structures. Wang et al. have fabricated a 3D flower-like CoS that was used as high energy storage 

material [46]. This 3D flower-like CoS exhibited a high specific capacity of 850 mA h/g, which 

decreased to 300 mA h/g after 25 cycles.  

Meng et al. have synthesized nanocomposites of 3D CoS/graphene composite hydrogel 

(CGH) which contain the reduced GO sheets with anchoring of CoS nanoparticles [47]. It was 

observed that the obtained 3D CGH have a high specific capacitance of 564 F/g at a current density 

of 1 A/g, with superior rate capability and high stability. The enhanced electrochemical properties 

were attributed to the special structure, which prevents the CoS nanoparticles from aggregating. 

Gu et al. have synthesized graphene-wrapped CoS nanoparticles using a solvothermal approach 

[48].  Results showed that CoS/graphene exhibits a high reversible capacity of 1,056 mA.h/g 

unique among all sulfide-based anode materials, with high cycling performances.  

Unlike Meng et al., who synthesized nanocomposites of cobalt sulfide over graphene, 

other researchers have synthesized nanocomposites of cobalt sulfide over nickel foam. Pu et al. 

have successfully synthesized uniform Co9S8 nanotube arrays on conductive nickel foam by using 

a facile two-step hydrothermal method [49]. The SEM indicates that the Co9S8 nanotubes have a 

hexagonal crystal structure. The Co9S8 based electrode showed a specific capacitance of 1,775 F/g, 

with high rate capability and stable cycling performance [49]. Jana et al. prepared Co9S8/reduced 

graphene oxide (RGO) composites on nickel foam using hydrothermal reaction [50]. X-ray 

diffraction showed that the average crystal size of the Co9S8/RGO nanorods was ∼25–36 nm. The 

electrical conductivity of the Co9S8/RGO composite was recorded as 1,690 S/m at room 

temperature, which is much higher than that of pure GO. Thus, the Co9S8/RGO composites coated 
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on nickel foam showed significant specific capacitance of 1,349 F/g with about 96% capacitance 

retention after 1,000 cycles. 

1.3.2.2. Nickel sulfide: 

Nickel sulfide, as one of the transition metal chalcogenides, has some special properties, such as 

paramagnetic–antiferromagnetic transition and metal insulation, and it has been used as a 

catalyst for hydrodenitrogenation and hydrodesulfurization reactions, a transformation 

toughener in window glasses, IR detectors, rechargeable lithium batteries and solar storage 

device [51-52]. Furthermore, nickel sulfide contains a variety of phases such as NiS, NiS2, Ni3S4, 

and Ni4S3, which are electrochemically active, chemically stable, and compatible with organic 

solvents. Currently, researchers have been synthesizing different nickel sulfide nanostructures 

such as nanoparticles, nanorods, nanospheres, nanoplates flower-like architectures and urchin-

like nanocrystals by different chemical solution routes [53]. Pan et al. reported the synthesis of 

flower- and rod-like nickel sulfide nanostructures using a green hydrothermal route [54]. The 

scanning electron microscopy showed that the flower-like NiS has been constructed with several 

nanorods with diameters of 30–160 nm. The effects of temperature and reaction time on the 

morphology have been also investigated. It showed that when the reaction times increased, the 

nanorods grew into new flakes, and the new flakes cracked and formed new nanorods with 

smaller diameters, while when the temperature was increased to 180 oC, the nanorods appeared 

with a diameter of 22 nm.  

Gaikar et al. have studied the growth of interconnected nanorods/nanoplates of nickel 

sulfide (NiS) on titanium (Ti); an additive-free synthesis is performed by using a simple chemical 

bath deposition method [55]. It was observed that a NiS thin film electrode obtained high specific 

capacitance of 788 F/g at 1 mA/cm2, with excellent cycling stability of 98% retention after 1,000 
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cycles, mostly due to the interconnected-type surface, which could provide fast electron and ion 

transport.  

1.3.2.3. Ternary nickel cobalt sulfide: 

Ternary nickel cobalt sulfide (NiCo2S4) has been considered as a promising electrode material for 

supercapacitors [56]. One of the advantages of NiCo2S4 is it has richer redox reactions than the 

corresponding binary nickel oxide and cobalt sulfide [57]. Park et al. reported that NiCo2S4   has 

higher conductivity than NiCo2O4, indicating that the replacement of oxygen (O) with sulfur (S) 

creates a more flexible structure due to sulfur’s electronegativity being lower than that of oxygen, 

which lengthens the space between the layers, preventing the disintegration of the structure, 

followed by the enhancement of the electron transport efficiency in the structure [58].  However, 

it has disadvantages such as the difficulties of reaching its high theoretical capacitance due to the 

challenge in controlling the microstructures, chemical compositions, shapes, morphologies, and 

structural instability [59-60].  

One effective way to control problems above for (NiCo2S4) is preparing a hybrid composite 

with highly conductive materials such as nanoporous carbons, carbon nanotubes (CNTs), and 

graphene sheets [56]. Li et al. prepared a novel carbon nanotubes (CNTs)/NiCo2S4 composite via 

a simple chemical bath deposition combined with a post-anion exchange reaction [56]. It was 

observed that CNTs/NiCo2S4 composites were used as a conductive network for the NiCo2S4 

hexagonal nanoplates. Compared to pure NiCo2S4, they exhibited high supercapacitive 

performance up to 1,537 F/g, with discharge current density of 1 A/g, due to CNTs 

1.4. The objective of the thesis:  

The main objective of the thesis is to fabricate high performance energy storage devices which 

could be flexible as well as operate at high temperatures. The research was carried out in two 

phases: (i) the electrochemical performance evaluation of Co3O4 and Co9O8 based electrodes for 
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supercapacitors; and, (ii) the fabrication and testing of the device using two Co9O8 based 

electrodes. In the first phase, the synthesis of binder-free cobalt oxide on nickel substrate, which 

was subsequently converted to cobalt sulfide using hydrothermal method, were carried out and 

the Co3O4 and Co9S8 based electrodes were characterized using electrochemical and structural 

characterization techniques, such as Scanning Electron Microscopy (SEM); Cyclic Voltammetry 

(CV); and, galvanostatic charge-discharge in different electrolytes, such as 3M KOH, LiOH, and 

NaOH electrolytes. Based on the electrochemical studies, a further study was carried out to 

investigate the electrochemical properties of Co9S8 based electrode for supercapacitor 

applications. In the second phase, two Co9S8 based electrodes were used to fabricate a 

symmetrical supercapacitor device. The device’s performance was studied electrochemically to 

validate its applicability.  
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CHAPTER II 
 
 

EXPERIMENTAL DETAILS 
 
 

2.1. Materials and synthesis: 

Cobalt nitrate hexahydrate Co(NO₃)₂·6H₂O was obtained from Strem Chemicals, USA. 

Polyvinylpyrrolidinone (PVP), urea (CH4N2O), and sodium sulfide (Na2S) were obtained from Acros 

Organics, USA. All the materials were used without further purification. The nickel foam that used 

to coat Co3O4 nanostructures was purchased from MTI Corporation, USA.  

For the synthesis of cobalt oxides coated on Ni foam, cobalt nitrate (0.873 g), poly(vinyl 

pyrrolidone)(0.300 g), urea (0.722 g) and Ni foam were used. In typical synthesis, Ni foam was 

cleaned in 3M HCl followed by cleaning in DI water and isopropanol and acetone, respectively. Ni 

foam was completely dried before measuring its weight.  Three millimoles of cobalt nitrate was 

dissolved in 8 ml of DI water/ ethanol (1:1 v/v) solution. In another beaker, 300 mg of PVP was 

dissolved in 10 ml DI water/ ethanol (1:1 v/v). Twelve millimoles of urea was dissolved in 18 ml DI 

water /ethanol (1:1 v/v) solution.  After slowly adding the PVP and urea solutions to the cobalt 

nitrate solution, with the help of bath sonication for 10 min, the entire solution was transferred 

to a 45 mL Teflon line stainless steel autoclave having the pre-cleaned and weighted Ni foam and 

heated to 140 oC for 12 h. After 12 h of reaction at 140 oC, the reactor was cooled to room 

temperature naturally. The nickel foam was taken out and washed several times with distilled 

water and absolute ethanol. The obtained precipitate at the bottom of the Teflon container was 

filtered out and washed several times with deionized water. The Ni foam and the obtained powder 
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was dried at 60 oC for 8 h, and finally at 350 oC for 3 h. The synthesized cobalt oxide was converted 

to cobalt sulfide by immersing in 30 ml of 0.2M Na2S solution. The solution was transferred into 

45 ml Teflon-lined stainless steel autoclave. The reaction was carried out at 140 oC for 24 h. After 

cooling to room temperature naturally, the Ni foam was washed with DI water and alcohol. Ni 

foam was dried in vacuum at 60 oC for 6 h.  

2.2. Characterizations: 

The synthesized materials were characterized using a variety of techniques such as X-ray 

diffraction (XRD), scanning electron microscopy (SEM), and electrochemical measurements. More 

information of these techniques is given below: 

2.2.1. X-ray diffraction: 

The phase purity and structure of the prepared products were characterized by X-ray diffraction 

using a Shimadzu X-ray diffractometer set on the 2θ-θ scan with CuKα1 radiation (λ=1.5406 Å) 

which was operating at a voltage of 40 kV with a current of 30 mA. The slits used for source and 

detector were 0.2 mm. Diffraction patterns in the form of X-ray counts were collected by the 

detector while the sample 2θ = 10° - 80°. To fulfil the geometry, an X-ray detector was placed; 

thus, the angle between the detector and the atomic planes was 2θ. Figure 2.1 describes the 

process. 

2.2.2. Scanning electron microscopy:  

Scanning electron microscopy uses a beam of highly energetic electrons to examine the 

morphology of the synthesized materials.  The shape and size of the particles and morphology of 

the samples was studied. SEM recording was done with help from Dr. Bibin Gupta and his group 

at NPL, India. Schematic diagram of scanning electron microscopy is shown in Figure 2.2. 
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2.2.3. Electrochemical techniques: 

The electrochemical tests were carried out in a standard three electrode cell configuration. In the 

three electrode measurements, cobalt oxides coated Ni foam and cobalt sulfide were used as 

working electrodes.  A platinum wire (Pt) was used as a counter electrode, whereas the saturated 

calomel electrode (Hg/Hg2Cl2) served as the reference electrode. The schematic diagram of the 

three-electrode system is shown in Figure 2.3. Aqueous solutions of 3M KOH, NaOH and LiOH 

were used as electrolytes for these electrochemical measurements. All the electrochemical 

measurements were performed on a Versastat 4-500 electrochemical workstation (Princeton 

Applied Research, USA). 

The electrochemical performance of cobalt oxide and cobalt sulfide was studied by using 

cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. Using VersaStudio 

software provided by Princeton Applied Research for analyzing the giving electrochemical data, 

the potential applications of cobalt sulfide for electronic devices were also investigated.  
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A supercapacitor device was fabricated by sandwiching an ion transporting layer (Celgard, 

25µm thick, 39% porosity) between two cobalt sulfide electrodes. A 3M KOH was used as an 

electrolyte for all the electrochemical measurements. A schematic diagram of the symmetric 

quasi-solid state supercapacitor is given in Figure2.4. Additionally, the electrochemical properties 

of cobalt sulfide performance were investigated at various temperatures (10–70 oC). The effect of 

temperature on the electrochemical behavior of the supercapacitor was further investigated 

using electrochemical impedance spectroscopy (EIS). All the electrochemical impedance 

measurements were performed in a frequency range of 0.05Hz to 10,000 Hz. 

  



 

22 

 
 
 
 
 
 
 

CHAPTER III 
 
 

RESULTS AND DISCUSSION 
 
 

Phase purity and crystallinity of the prepared Co3O4 and Co9S8 nanostructures have been analyzed 

using powder X-ray diffraction. The XRD patterns of the hydrothermally synthesized Co3O4 over 

nickel foam and the converted Co9S8   were recorded in the two-theta range of 10-80 degrees. The 

pattern of Co3O4 shows characteristic peaks of (220), (311), (400), (511) and (440) planes, 

corresponding to the cubic structure of Co3O4. These patterns showed the intense and broad 

peaks suggesting highly crystalline nature of Co3O4 is, as shown in Figure 3.1. From synthesized 

Co3O4, that was converted to Co9S8 by the sulfurization process, the XRD patterns for Co9S8 show 

prominent peaks at 2 degree values of 30.6, 36.34, 47.57 and 55.66 which are indexed 

respectively, as (311), (400), (511) and (600) planes of peak positions of the cubic structure of 

Co9S8, as shown in Figure 3.2. As evident from the XRD pattern, Co9S8 is well crystallized in nature. 

The two synthesized materials, Co3O4 and Co9S8, match well with standard diffraction pattern data, 

and the reflections can be indexed to the cubic phase of Co3O4 (JCPDS 42–1467) and Co9S8 (JCPDS 

03-0631).  

The XRD patterns of the cobalt oxide and cobalt sulfide were used to estimate the 

crystallite size of the synthesized materials. The average crystallite size (t) of all the samples was 

calculated using the Debye Scherrer equation [61]: 

                𝑡 =  
0.9 𝜆

𝛽 𝑐𝑜𝑠𝜃
   ………………. (3.1) 
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Where 𝜆 is the X-ray wavelength, 𝛽 is the full width at half maximum of the diffraction line, and 

𝜃 is the diffraction angle of the XRD spectra. The average crystalline size of the two samples are 

given in Table 3.1 
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3.2. Scanning electron microscopic studies:  

The morphology of the synthesized Co3O4   and Co9S8 over nickel foam has been analyzed using 

scanning electron microscopy. The SEM images of the Co3O4 grown on nickel foam at various 

magnifications are shown in Figure 3.3. The images show flower-like morphology composed with 

needles, which were observed over the entire nickel foam, confirming an even deposition of 

cobalt oxide. The diameter of these needle-like structures is less than 10 nm with lengths of 

several microns. Sulfurization of these needle-like structures using a hydrothermal process 

convert them as nano-sheets of Co9S8 as shown in Figure 3.4. Elemental composition of cobalt 

oxide and cobalt sulfide was investigated using energy dispersive X-ray spectrometer. The EDX 

analysis demonstrates the presence of Co and O with atomic ratio of ∼3:4 for cobalt oxide, 

confirming the Co3O4 phase. For Co9S8 sample, the observation of Co and S with atomic ratio of 

8:9 was observed, confirming Co9S8 phase.  The EDX patterns of the samples are shown in Figures 

3.5.-3.6  
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3.3. Electrochemical measurements: 

The electrochemical performances of cobalt oxides and cobalt sulfide were systematically 

investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. Three 

different electrolytes, 3M LiOH, NaOH and KOH, were used to determine the effect on the 

electrochemical properties of the metal oxide/sulfide. Figures 3.7-3.12 show the CV curves of the 

Co3O4 and Co9S8 recorded at multiple scan rates. It can be clearly observed that the shape is identical 

in both cobalt oxide and cobalt sulfide during the anodic and cathodic sweeps, indicating 

pseudocapacitance behavior of the materials. Figures 3.13-3.14 show CV curves of cobalt oxide 

and cobalt sulfide at low scan rates. It can be noticed that the area of the CV curves and 

corresponding cathodic and anodic currents  improves with an increase in the scan rate, indicating 

that the reaction kinetics during the redox process are likely controlled by diffusion processes 

[66]. Two sets of redox peaks were observed in the CV curves of Co3O4, (peaks I/II) and (peaks 

III/IV) which results from reversible transition between Co3O4 and CoOOH and CoOOH and CoO2. 

The mechanism for the redox reactions in the following equations [65]:  

 𝐶𝑜3𝑂4 +  𝑂𝐻− ↔  3𝐶𝑜𝑂𝑂𝐻 + 𝑒−                          (I/II peaks) ………….  (3.2)  

 𝐶𝑜𝑂𝑂𝐻 +  𝑂𝐻− ↔  𝐶𝑜𝑂2  + 𝐻2𝑂 +  𝑒−                (III/IV peaks) …......  (3.3)    
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whereas, the CV curves of Co9S8 show one set of redox peaks, which could be due to following 

faradic reaction in alkaline media [67]: 

 𝐶𝑜9𝑆8  +  9𝑂𝐻−  ↔  𝐶𝑜9𝑆8(𝑂𝐻)9 +  9𝑒−             (I/II peaks) ……….    (3.4) 

The specific capacitance of the cobalt oxide and cobalt sulfide electrodes was calculated 

by using data from cyclic voltammetric measurements [62]: 

           𝐶𝑠𝑝 =
𝑄

∆𝑉×(
𝜕𝑣

𝜕𝑡
)×𝐴 

       …………………..   (3.5) 

Where Q is the area under the CV curve, 𝜕𝑣/𝜕𝑡 is the scan rate, V is the potential window and 

A is the surface area (in cm2) of the material used such as cobalt oxide or cobalt sulfide. The 

variation of specific capacitance as a function of scan rate for Co3O4 and Co9S8 in different 

electrolytes is shown in Figures 3.15-3.22. We have determined that the highest area under the 

CV curve and specific capacitance in both materials was obtained from the KOH electrolyte. It was 

observed that the specific capacitance of the cobalt oxide electrode was decreased from 2.02 to 

0.28 mF/cm2 with an increasing scan rate from 1 mV/s to 200 mV/s, and decreased in the specific 

capacitance of cobalt sulfide from 14.77 to 0.55 mF/cm2 with increasing scan rate from 1 mV/s to 

200 mV/s, respectively, which could be due to an insufficient time for the electrochemical 

reactions to occur at each electrode. At a higher scan rate, the concentration of the ions at the 

electrode/electrolyte interface increases rapidly and the diffusion rate of electrolyte from 

electrode/electrolyte interface to electrode will not be enough to satisfy the electrochemical 

reactions [64].  
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The charge storage capacity of the Co3O4 and Co9S8 electrodes for supercapacitors was 

further investigated using galvanostatic charge-discharge measurements. These measurements 

were performed in three different electrolytes, 3M LiOH, NaOH and KOH, in the potential range 

of 0 to 0.6V (vs. SCE). The charge-discharge study was performed at various discharge current 

densities. The charge-discharge characteristics of the cobalt oxide and cobalt sulfide electrodes 

are shown in Figures 3.23-3.28. The discharge curves were observed to be decreased when the 

current increased due to the faradic reactions and fast reaction kinetics of cobalt oxide and cobalt 

sulfide electrodes [63]. A potential platform was observed in charge-discharge curves, which 

indicates that the electrode was behaving as a typical pseudocapacitor. This might refer to the 

charge transfer reaction or to the electrochemical adsorption/desorption process at the 

electrode/electrolyte interface. Moreover, the charge time was increased after sulfurization of 

Co3O4 suggesting improved charge storage capacity. The specific capacitance of cobalt and cobalt 

sulfide, 983 and 7358 mF/cm2 at 2 mA/cm2, respectively.  The specific capacitance (Csp) of the 

electrode materials was calculated using the equation given below [11]:  

   𝐶𝑠𝑝 =  
𝐼×∆𝑡

∆𝑉 ×𝐴
 

Where I is the discharge current (A), t is the discharge time (s), V is the potential window (V), 

and A is the surface area of the cobalt oxide and cobalt sulfide. Figures 3.29-3.36 show the 

variation of specific capacitance versus discharge current for the cobalt oxide and cobalt sulfide 

electrodes, respectively, in various electrolytes. As seen, the specific capacitance of Co3O4 and 

Co9S8 nanostructures decreased when discharge current was increased. This could be due to an 

increase in potential drop and insufficient faradic redox reaction at higher current density [11]. 

 

 

…………….………………..  (3.6)
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The energy density and the power density of the cobalt oxide and cobalt sulfide 

nanostructures were calculated to examine the performance of the supercapacitors using the 

expressions below [63]:  

Where 𝐶𝑠𝑝 (mF/cm2) is the specific capacitance calculated from charge-discharge characteristics, 

𝑉 (V) is the potential window and 𝑡 (s) is the discharge time. Figures 3.37-3.44 show variations 

of power density versus energy density (Ragone plot) for cobalt oxide and cobalt sulfide 

electrodes in 3M KOH, LiOH and NaOH electrolytes. It was observed from these figures that the 

higher energy density corresponds to the lower discharge currents. On the contrary, power 

density is higher for the higher discharge currents. The highest specific capacitance for Co3O4  (983 

mF/cm2 ), specific energy density (0.038 Wh/kg), and power density (2.80 W/kg) was observed for 

the KOH electrolyte, and the highest specific capacitance for Co9S8 (7,358 mF/cm2), specific energy 

density (0.27 Wh/kg), and power density (4.24W/kg) was observed for the KOH electrolyte. 

Furthermore, the high values of power density and energy density observed in the cobalt sulfide 

electrode suggest that this material could be used for high performance energy storage devices.  

 

 

……………….. (3.7)
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Based on cobalt oxide and cobalt sulfide electrochemical studies, the performance of 

Co9S8 electrode is higher compared to the Co3O4 electrode. Thus, the electrochemical properties 

of Co9S8 were tested for their application in flexible and high performance devices. Figure 3.45 

shows the cyclic voltammograms of Co9S8 at various bending angles. As seen from the figure, the 

shape and size of the cyclic voltammograms of Co9S8 were the same at various bending angles, 

suggesting high flexibility and bending stability of the Co9S8 electrode. This study suggests that 

hydrothermally grown Co9S8 could be used as flexible electrodes for energy storage devices.  

3.4. Electrochemical behavior of the device: 

To understand the potential applicability of Co9S8 for flexible supercapacitor applications, the 

symmetrical supercapacitor device was fabricated by sandwiching an ion transporting layer 

between two Co9S8 electrodes, using 3M KOH as an electrolyte for this device. The performance 

of the fabricated device was studied by measuring cyclic voltammetry curves, galvanostatic 

charge-discharge curves under various conditions to validate its applicability, and electrochemical 
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impedance spectroscopy. The cyclic voltammograms of the device at room temperature at various 

scan rates are shown in Figure 3.46. As seen from the figure, the CV curves of the device are clearly 

identical in shape and are retained even at high scan rates indicating high electrochemical stability 

of the device. Figure 3.47 shows the specific capacitance as a function of scan rate for the 

supercapacitor device in 3M KOH electrolyte, showing that the specific capacitance of the device 

decreases with increase in scan rate which could be due to insufficient time for electrochemical 

reactions at the electrode. 

The cyclic electrochemical stability of the supercapacitor device was examined using 

constant current charge-discharge method. Figure 3.48 shows the percentage of the device as the 

number of the cyclic studies. The device showed tremendous cyclic stability. It was observed that 

the percentage retention of the device first decreases up to the 1,000 th  cycle and then increases 

with increase cyclic studies up to the 4,000 th  cycle and then become almost constant. The 

increase in the specific capacitance of the device could be due to activation of the electrode and 

more complete intercalation and de-intercalation of electrolytes after the 1,000th cycle. The inset 

of Figure 3.48 presents the first and the 5,000th charge-discharge cycle for the device. As seen 

from the figure, the charge-discharge time for the 5,000th cycle is higher than that of the 1st cycle, 

suggesting enhancement in energy retention property. Figure 3.49 shows the electrochemical 

stability of the device, where the charge-discharge curves retain its shape and principally 

symmetrical even after a long charge-discharge (>122k s) process.  

The temperature-dependent electrochemical performance of the device was investigated 

using cyclic voltammograms, galvanostatic charge-discharge and electrochemical impedance 

measurements. Figure 3.50 shows cyclic voltammograms of the device at various temperatures. 

The CV curves of the device indicted the near ideal capacitive nature of the fabricated device 

within a wide temperature window. The area under the CV curves was increased with increasing 
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temperature, indicating enhanced charge storage capacity of the device at high temperature. 

Figure 3.51 shows the effect of temperature on the charge storage capacity. As seen from the 

figures, the specific capacitance of the device increases with increasing temperature, showing 

about 100% improvement in the specific capacitance when the working temperature was 

increased from 10 to 70 oC. The results suggest that supercapacitor devices based on cobalt 

sulfides are more efficient at higher temperature. Furthermore, the charge-discharge study is 

shown in Figure 3.52. The discharge-time curves were observed to increase with the increasing in 

the temperature indicating a high storage property of the device.  

Electrochemical impedance spectroscopy (EIS) was further used to analyze the 

temperature-dependent electrochemical behavior of the device, such as the effect of 

temperature on the resistive and capacitive properties.  Figure 3.53 shows a decrease in the real 

(Zreal) and imaginary (Zimg) impedance with increasing device temperature. The equivalent series 

resistance (ESR) of the device decreases with increasing temperature, indicating the improvement 

of the charge storage capacity of the device. The decrease in the ESR value might be due to the 

enhanced mobility of the ions in the electrolyte, which increases the conductivity of the 

electrolyte [53]. It was further noted that the impedance of the supercapacitor decreases with 

increase in temperature and frequency as shown in Figure 3.54. 
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CHAPTER IV 
 
 

CONCLUSION 
 
 

In summary, binder free cobalt oxide transformed into cobalt sulfide nanostructures has 

been successfully synthesized via a facile hydrothermal technique. The obtained nanostructured 

cobalt oxide and cobalt sulfide has been characterized electrochemically and structurally. The 

structural analysis for the synthesized cobalt oxide and cobalt sulfide was conducted by employing 

X-ray diffraction and energy-dispersive X-ray spectrometer. The X-ray diffraction patterns of the 

synthesized powders showed the purity phases of cobalt oxide and cobalt sulfide. Additionally, 

EDX was used to confirm the cobalt oxide and cobalt sulfide formation.  Scanning electron 

microscopy images were used to detect the surface morphology and particle size of cobalt oxide 

and cobalt sulfide growth on nickel foam. Electrochemical investigations have been carried out 

systematically preforming the effect of the electrolytes on the charge storage capacity of 

fabricated cobalt oxide and cobalt sulfide. All electrochemical measurements were performed in 

a standard three electrode cell. The cyclic voltammograms of Co3O4 and Co9S8 electrodes at low 

scan rates showed two sets of redox peaks indicating typical pseudocapacitive behavior. 

Moreover, the specific capacitance was decreased with increasing scan rate. The electrochemical 

properties of cobalt oxide have been improved significantly after converting to cobalt sulfide, 

showing specific capacitances of 983 and 7358 mF/cm2 at 2 mA/cm2, respectively which is over 7 

times improvement in charge storage capacity. The electrochemical properties were further 

analyzed using galvanostatic charge-discharge measurements. The specific capacitance of both 
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fabricated materials electrodes was decreasing with increasing current. A cobalt sulfide based 

electrode showed outstanding flexibility without compromising its energy storage properties. 

Symmetrical supercapacitor device was fabricated by sandwiching an ion transporting layer 

between two Co8S9 electrodes. The performance of the device was evaluated at room 

temperature and elevated temperatures using cyclic voltammetry and galvanostatic charge-

discharge. Cyclic voltammetry curves were increased when the temperature was increased, 

suggesting improvement in the charge storage capacity of the device. The device showed 

outstanding stability for 5,000 of cyclic study. Temperature has a drastic effect on the charge 

storage capacity. The device showed 100% enhancement in specific capacitance on increasing 

temperature 10 to 70oC.  Our results suggest that cobalt sulfide could be used as appropriate 

electrode material for high performance energy storage devices which could be operated 

effectively at elevated temperatures.  
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