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Abstract 

Emission measurements were collected from heavy-duty (HDVs) and medium-duty vehicles 

(MDVs) at the Peralta weigh station long-term measurement site near Anaheim, CA in 2017. 

Two Fuel Efficiency Automobile Test units sampled elevated and ground-level exhaust vehicles 

totaling 2,315 measurements. HDVs (1844 measurements) exhibited historical reductions in fuel 

specific oxides of nitrogen (NOx) from the 2008 measurements (55%) with increased use of 

exhaust gas recirculation and selective catalytic reduction systems. However, as these 

technologies have aged, the in-use benefits have declined. Infrared %opacity measurements of 

tailpipe soot decreased 14% since 2012 with increased diesel particulate filter (DPF) use, DPF 

longevity and fleet turnover. 63% of the HDV fleet in 2017 was chassis model year 2011+ 

compared to only 12% in 2012. The observed MDV fleet (471 measurements) was 1.4 years 
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older than the HDV fleet with average NOx 14% higher. A significant reduction in MDV NOx 

occurred approximately 2 model years prior to similar HDV reductions (2014 versus 2016 

chassis model year). MDV chassis model years 2014+ were able to meet their corresponding 

NOx laboratory certification standards in-use, whereas HDVs remain slightly above this 

threshold. Similar MDV NOx emission trends were also observed in data previously collected in 

Chicago, IL. 

Introduction 

Diesel powered heavy-duty (HDVs) and medium-duty vehicles (MDVs) historically 

comprise only a small percentage of the overall, on-road fleet (around 3% each), but contribute 

an increasing percentage of particulate matter (PM) and oxides of nitrogen (NOx) emissions.1-4 In 

compliance with current regulations that require the reduction of tailpipe PM and NOx, engine 

control strategies and after-treatment systems such as diesel particulate filters (DPFs), exhaust 

gas recirculation (EGR) and selective catalytic reduction systems (SCRs) have been utilized in 

both HDV and MDVs for emissions control. DPFs work by way of interception and reduce 

tailpipe particle emissions by a high percentage, reducing human exposure to PM.5-8 DPFs have 

proven to be a beneficial addition to diesel engines, as PM can worsen respiratory and lung 

diseases and cause premature death, and the black carbon (BC) component of PM is a known 

climate forcing agent. Therefore HDVs and MDVs have installed DPFs to meet the current PM 

standard.9 

NOx contributes to ozone formation, acid rain and secondary PM formation once emitted 

into the atmosphere.10, 11 Because of this, EGR and SCRs have been introduced into diesel 

engines to help reduce tailpipe NOx in two distinctive ways. Chassis model year 2008-2010 
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diesel vehicles rely solely on EGR to meet their corresponding NOx standards by cooling and 

injecting part of the exhaust stream back into the cylinders, which reduces cylinder temperature 

and decreases oxygen concentrations, lowering engine out NOx. With the newest and most 

stringent NOx regulations, many chassis model year 2011 and newer diesel vehicles utilize SCRs 

to reduce NOx into nitrogen (N2) and water. These systems have tailpipe reduction efficiencies 

up to 95% when working at optimum conditions. This requires enough thermal energy to 

thermalize the reducing agent, urea, and the SCRs’ catalyst is required to be above a certain 

temperature, typically 200-250°C depending on the catalyst, in order to overcome the activation 

barrier of nitrogen oxide (NO) to N2.
6-8, 12  

Along with these new certification standards that translate to improvements in tailpipe 

emissions, California has required faster in-use emissions reductions as a key component of their 

Diesel Risk Reduction Plan accelerating fleet turnover.13-16 This has resulted in a California fleet 

which is younger than those found in other states.  The average age for medium and heavy-duty 

vehicles in the United States in 2015 was ~14 years old, whereas those observed in California are 

significantly newer (~6 years old).17, 18 The impact of the new California regulations on HDV 

tailpipe NOx emissions have been monitored by multiple groups both on-road and in-lab. These 

groups have shown that the introduction of lower NOx standards have resulted in reduced on-

road emissions due to the use of various after-treatment systems and engine control strategies, 

although some researchers have shown that initial reduction levels are not persistent.18-24  

MDV emissions have received far less research attention. MDV’s emissions have 

previously been combined into overall fleet studies, or studies that are comprised of only a few 

MDVs or single engine dynamometer measurements.3, 25-29 This lack of information forced the 

California Air Resources Board (CARB) to use HDV emission factors to estimate MDV 
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deterioration rates in their emission factor model. CARB has estimated that 23% of the truck 

fleet in California is made up of MDVs and that MDVs operating in California have lower 

mileage accrual rates and are newer, on average, than the HDV fleet.30   

We report here in-use emission measurements collected on both HDV and MDV fleets at 

the Peralta weigh station, a long-term measurement site on State Route 91 in California’s South 

Coast Air Basin. The HDV measurements extend a data record that began in 1997, and for the 

first time we have also captured a significant number of emission measurements from the MDV 

fleet which passed through this site.  

Experimental 

The Fuel Efficiency Automobile Test (FEAT) technology has been used by the 

University of Denver to study HDVs, as previously described in the literature.31-33 Carbon 

monoxide (CO), carbon dioxide (CO2), total hydrocarbons (HC) and infrared (IR) percent 

opacity are measured via non-dispersive IR absorption, and nitrogen oxide (NO), nitrogen 

dioxide (NO2), and ammonia (NH3) are measured with two dispersive UV spectrometers. 

Collinear beams of IR and UV light are passed from the source, on one side of the road, to a 

detector on the other side of the roadway. UV absorbance bands at wavelengths of 195-226nm 

are used to quantify NO and NH3, and 429-446nm are used for NO2. IR %opacity is measured 

correlating reductions in the IR reference channel (3.9μm) by soot particles against exhaust CO2. 

These reductions are proportional to reductions in fuel-based soot mass and number emissions 

provided the soot size distribution and optical properties remain constant during the sampling 

period. Previous data suggests that an IR %opacity of 0.5% is approximately 0.5 to 2 g of soot/kg 

of fuel. Ratios of CO, HC, NO, NO2, and NH3 to CO2 are directly measured, and the 
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requirements for valid measurements have been detailed in a previous publication.34 Conversion 

from these ratios to fuel specific data in g/kg of fuel is performed via carbon mass balance using 

a carbon mass fraction of 0.86 for diesel and gasoline and 0.75 for natural gas.35 The FEAT 

measured ratios were calibrated in the field with three separate certified gas cylinders containing 

known amounts of 1) CO (6%), CO2 (6%), propane (HC, 0.6%), NO (0.3%) , N2 balance, 2) NO2 

(0.05%), CO2 (15%) and air balance, 3) NH3 (0.1%) , propane (0.6%), N2 balance.  

With the introduction of DPFs, the traditional use of elevated exhaust pipes for HDVs has 

changed and a growing number of HDVs are now manufactured with ground level exhaust. 

MDVs are also mainly comprised of low exhaust. Therefore, new to this campaign, two FEAT 

instruments were utilized to study and analyze the entire Peralta fleet. One instrument was placed 

on the ground to capture low exhaust vehicles, (MDVs and some HDVs, Low FEAT) and 

another was placed on a scaffold, putting this FEAT at 4.3 meters high and collected data from 

elevated exhaust pipes (HDVs, High FEAT). A picture showing the equipment setup is shown in 

the Supporting Information (Figure S1). Low FEAT’s half second of data was triggered by 

vehicle wheels which block the IR reference beam, whereas High FEAT’s 1 second of data 

collection was prompted from a block of a separate IR body sensor on the roadway for each 

vehicle that passed through. Each vehicle triggered measurement is attempted on both 

instruments but exhaust was generally only measured by the detector that corresponds to the 

vehicles’ exhaust pipe location. Low FEAT employed a shorter sampling time in order for the 

measurement to finish between the tractor and trailer wheels and High FEAT’s sampling time 

remained at 1 second as in previous studies. Front license plate images were captured for both 

systems to obtain non-personal vehicle information, such as make and model year, which was 

then linked to the vehicle’s emission measurement in the final database. The speed and 
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acceleration were also independently measured by each system. Lastly, thermographs of elevated 

exhaust pipes were obtained to gather qualitative information on engine temperature for the High 

FEAT measurements.  

The Peralta weigh station is located on State Route 91 (exit number 39, see Supporting 

Information Figures S1 and S2), in Southern California. The Peralta measurement site utilized 

the same combined uphill exit lane of the weigh station after the scales as the five previous 

campaigns in: 1997, 2008, 2009, 2010 and 2012.36-38 Table S1 in the Supporting Information 

includes an emissions measurement summary for all of the previous campaigns. In 2017, four 

days of data (March 20-23) were collected, three of which (March 21-23) included Low FEAT 

measurements.  

Results and Discussion 

The research conducted at the Peralta weigh station resulted in 1,368 HDVs measured 

with High FEAT over four days and 476 HDVs measured with Low FEAT over the course of 3 

days which accounted for approximately 30% of the HDVs measured during the last three days. 

Table 1 shows fuel specific averages for CO, HC, NO, NO2, NOx, and NH3 in g/kg of fuel, as 

well as average IR %opacity, model year, speed (kmph), and acceleration (kmph/s). The 

uncertainties are standard errors of the mean calculated using the daily means (see supporting 

information). The percentage of diesel vehicles that comprises each category is also displayed. 

There were also a small number of HDV measurements (22) powered by natural gas that account 

for the remaining HDV measurements.  

The IR %opacity measurement validity rate is prone to decreases due to increased noise 

from road debris and physical interferences from vehicle parts and for these measurements only  
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60% of the Low FEAT measurements had valid opacity readings while the High FEAT had an 

88% validity rate. This can bias the IR %opacity readings high as the validity criteria is more 

stringent on the lower values with a fixed percent error criterion and is likely why the Low 

FEAT IR %opacity was 2.25 times the average opacity of the High FEAT for the HDVs.  

Newer HDVs have a higher percentage of vehicles with low exhaust, measured with Low 

FEAT, and have a corresponding 12% lower NOx average than the High FEAT HDV mean. The 

Supporting Information (Figure S3) shows all other gases measured separated by High and Low 

FEAT, but for subsequent analyses High and Low HDV FEAT data will be combined. The HDV 

fleet observed at Peralta was approximately 6.25 years old, which emphasizes the turnover 

occurring in the California HDV fleet. However, contrary to the earlier CARB modeling 

assumptions, the MDV fleet observed is 1.4 model years older than the HDV fleet. 

 

Table 1. FEAT data summary for 2017 

FEAT 

Number of Measurements 

High 

1408 

Low 

907 

HDV 

1844 

MDV 

471 

Mean gCO/kg of fuel 5.5 ± 0.5 9.1 ± 1.7 5.9 ± 0.9 11.0 ± 2.4 

Mean gHC/kg of fuel 2.1 ± 0.5 1.8 ± 0.4 2.2 ± 0.4 1.0 ± 0.3 

Mean gNOa/kg of fuel 7.8 ± 0.3  7.6 ± 0.5 7.4 ± 0.4 8.8 ±0.5 

Mean gNH3/kg of fuel 0.08 ± 0.02 0.06 ± 0.05 0.09 ± 0.02 0.002 ± 0.013 

Mean gNO2
b/kg of fuel 1.1 ± 0.02 1.0 ± 0.03 1.1 ± 0.04 1.1 ± 0.1 

Mean gNOx
b/kg of fuel 13.0 ± 0.5 12.5 ± 0.9 12.4 ± 0.6 14.5 ±0.9 

Mean IR %opacity 0.4 ± 0.02 0.9 ± 0.1 0.5 ± 0.05 0.9 ± 0.2 

Mean Model Year 2010.7 2010.7 2011.0  2009.6 

Mean Speed (kmph) 22.5 ± 0.2 24.2 ± 1.3 22.5 ± 0.9 25.4 ± 1.3 

Mean Acceleration (kmph/s) 1.2 ± 0.3 0.4 ± 0.2 1.0 ± 0.3 0.4 ± 0.3 

Diesel Vehicle Percentage 99% 95% 99% 92% 
aGrams of NO 
bGrams of NO2 
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Historical Trends 

The Peralta fleet has incorporated the new lower emissions technology, where regulated 

species, such as NOx and PM, were positively impacted. The fleet in 2017 is mainly comprised 

of vehicles chassis model year 2011 and newer (63% of the HDV fleet compared to only 12% of 

the fleet previously measured in 2012), which would have after-treatment systems responsible 

for decreasing the fleet average IR %opacity and NOx. 

There are two important decreases in IR %opacity by measurement year, shown in Figure 

1, where IR %opacity is represented by grey bars (right axis) and the uncertainties are standard 

errors of the mean calculated using the daily means. The 70% reduction from 1997 to 2008 is 

likely due to the early emphasis in reducing particle emissions by manufacturers and the 

accompanying improved PM management in newer engines, as reported in the literature.39 This 

was followed with little change in IR %opacity until the 2017 measurements. A further reduction 

of 14% from the 2012 mean is accompanied by rapid infiltration of both HDVs manufactured 

with DPFs as well as retrofit DPFs, a response to the new regulations put in place by California 

on the remaining older vehicles.18, 40 Previous studies only utilized High FEAT technology, and 

for comparison, the IR %opacity for only the High FEAT measurements was 0.4 in 2017 (28% 

overall reduction from 2012) compared to the combined HDV mean of 0.5. This High FEAT IR 

%opacity level is comparable to that measured for a fully equipped DPF fleet at the Port of Los 

Angeles in 2012, required by the San Pedro Clean Air Action Plan, indicating that the Peralta 

fleet is now fully DPF equipped.37  

Fuel specific NOx emissions by measurement years are also shown in Figure 1 for all 

HDVs, giving a historical look at implemented diesel technologies. The fleet average gNO is  
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plotted as NO2 equivalents (black bars, left axis), gNO2 (open red bars, left axis) and gNOx/kg of 

fuel (total bar height, left axis). Uncertainties are standard errors of the mean calculated using the 

daily means. Fleet average model year is shown above the corresponding measurement year. 

There has been a 61% reduction in fuel specific NO from 1997 to 2017 (NO2 was measured 

starting in the 2008 field work). Changes in engine management, such as enriching the air to fuel 

ratio and cooling the mixture via EGR, allows for lower engine out NOx and is likely the source 

responsible for much of the NOx decreases seen from 2008 to 2010. The additional reductions in 

NOx measured in 2012 correspond to the initial introduction of SCRs to HDVs. Further adoption 

of SCRs and fleet turnover is responsible for the additional 37% reduction observed in total NOx 

from 2012 to 2017.41 

 

Figure 1. IR %opacity (grey bars, right axis) and gNO as NO2 equivalents (black bars, left axis), 
gNO2 (open red bars, left axis) and gNOx/kg of fuel (total bar height, left axis) by measurement 
year. Uncertainties are standard errors of the mean calculated using the daily means. Fleet 
average model year is shown at the top of the graph above the corresponding measurement year. 
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The reductions observed in the 2017 fleet’s opacity and NOx was a result of new 

technologies and combustion management changes that have helped vehicles achieve the model 

year certification standards. Because on-road emissions are one important metric to evaluate how 

well specific certification standards translate to in-use vehicles, Figure 2a) shows 2012 (black) 

and 2017 (blue) IR %opacity (hatched and striped bars, right axis) and fuel specific NOx (solid 

and open bars, left axis) emissions for in-use vehicles grouped by model year into four categories 

that are consistent with the certification standards: pre-2004 chassis model year HDVs with no 

manufactured aftertreatment technologies, 2004-2007 HDVs with combustion management such 

as EGR and subject to more recent PM retrofit activities, 2008-2010 with EGR and first 

generation DPFs, and 2011 and newer chassis model years that are equipped with DPFs and an 

increased use of SCR systems. Uncertainties are standard errors of the mean calculated using the 

daily means. As more HDVs are equipped with aftertreatment systems and as these systems 

improve, mean IR %opacity and NOx show continual declines.  

2017 observed IR %opacity has decreased from the 2012 measurements for the earliest 

chassis model year grouped vehicles (pre-2004 and 2004-2007) that were not manufactured with 

any particle emission control technologies, suggesting retrofit DPFs in 2017 measured vehicles 

in compliance with the California Truck and Bus rule and agrees with previously observed 

retrofit activity at a different California weigh station.18, 40 Both 2012 and 2017 data for chassis 

model year groups 2008 – 2010 and 2011 and newer model year HDVs have similar IR %opacity 

for both measurement years. Therefore, the different DPF generations (2008-2010 versus 2011+) 

at Peralta in 2017 are performing similarly.  

As previously mentioned, SCRs were phased into chassis model years 2011 and newer 

vehicles. Fuel specific NOx emissions show similar decreases for both measurement years as  
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Figure 2. a) IR %opacity (right axis, hatched and striped bars) and gNOx/kg of fuel (left axis, 
solid and open bars) for 2012 (black) and 2017 (blue) data grouped by chassis model year. 
Uncertainties are standard error of the mean calculated using the daily means. b) Fleet 
percentage for grouped model years in 2012 (solid black bars) and 2017 (open blue bars) data. 
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older HDVs are replaced with model year vehicles with newer technology. The 2011 and newer 

model year vehicles measured in 2017 have an 80% reduction from the pre-2004 vehicles 

measured in 2017 (32.2 gNOx/kg of fuel to 6.4 gNOx/kg of fuel), an encouraging result for 

California’s desire to reduce NOx emissions with newer, lower emitting HDVs operating within 

the state. Known durability issues with EGR could be a possible explanation for the 36% 

increase in NOx observed for chassis model years 2004 – 2007 (18.6 to 25.3 gNOx/kg of fuel) 

and 25% increase for model years 2008 – 2010 (13.0 to 16.3 gNOx/kg of fuel) between the 2012 

and 2017 measurements. The only NOx management these vehicles are subject to is EGR, and 

therefore as these vehicles age and accumulate wear, their ability to limit engine out NOx has 

decreased.42 In 2017, chassis model years 2011 and newer also show increased NOx emissions by 

49% compared to 2012, although both of these average emissions are significantly decreased 

from previous model year vehicles without SCR systems (4.3 and 6.4 gNOx/kg of fuel, 

respectively). Comparing 2011+ fleets are problematic because these vehicles are not all certified 

to the same NOx emission level and the observed differences may simply be the result of 

differences in the two fleets’ certification level, which cannot be obtained through any vehicle 

registration information. However, these observed increases in NOx emissions with age may be a 

contributing factor in the noted slowdown in NOx emission levels observed in top-down NOx 

inventories.43  

Figure 2b shows the 2012 (black solid bars) and 2017 (blue open bars) fleet percentages 

for the corresponding model year categories documenting the changes that have occurred since 

2012. 41% of the fleet in 2012 was pre-2004 model years, whereas only 10% of the 2017 fleet 

was older than model year 2004. This supports the idea that California is making progress in 

replacing the older HDV fleet with newer lower emitting vehicles.  
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California Site Comparison 

Figure 3 compares the fuel specific NOx by chassis model year measured at Peralta (red 

squares) to data collected using a different measurement technique at the Cottonwood weigh 

station (blue circles) in northern California off I-5, 17 miles south of Redding, CA.44 At both 

locations the emission trends are similar with a noticeable decrease in fuel specific NOx 

emissions starting in model year 2008 when EGR is used to reduce engine out NOx. The start of 

SCR installations in model year 2011, and the phase-in of these systems presents another step 

reduction observed at both locations. Importantly, the newest model years, 2014 and newer, have 

nearly identical fuel specific NOx emissions at both locations. This newest model year subsection 

is largely comprised of HDVs equipped with SCRs and certified to the lowest NOx emission 

standards and shows consistently low NOx measurements. From model year 2007 to 2017, there 

was an 88% and 89% reduction in NOx at Cottonwood and Peralta, respectively.  

  

 

Figure 3. Fuel specific HDV NOx by chassis model year at Cottonwood (blue circles) and 
Peralta (red squares) for 2017 data. Uncertainties are standard error of the mean calculated 
using the daily means. 
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There are noticeably higher fuel specific NOx emissions observed at the Cottonwood site 

for the 2004 – 2013 model year vehicles. The exact reason for this is unknown, however 

instrument calibration issues can be ruled out, as pre-2004 and post-2013 vehicles have similar 

emissions within the measurement uncertainties at the two sites. The model years that deviate 

between the sites largely depend on EGR and engine management strategies for the control of 

NOx emissions. The NOx differences observed for model years 2011-2013 could also be the 

result of a higher percentage of HDVs at Peralta that have SCRs and are certified to lower NOx 

emission levels. Figure 2a shows that these intermediate model years (2008-2010) at Peralta 

experienced increased NOx emissions since the 2012 measurements, suggesting deterioration of 

the NOx controls.  

It is known that diesel engine EGR coolers can suffer from particulate fouling that can 

compromise their effectiveness in reducing NOx emissions.42 In addition, mileage accumulation 

rates are likely to vary for trucks at different weigh stations due to the activity in which they are 

involved in and could be a contributing factor to the different NOx emission levels observed. 

CARB has reported that out-of-state registered HDVs have a mileage accumulation ~30-40% 

higher than in-state registered HDVs depending on where the vehicle originated.30 Peralta is 

mainly comprised of instate plated vehicles (81%) whereas Cottonwood only has 57% of its fleet 

registered within California. The fleet at Peralta, based on CARB’s analysis, would likely have 

lower mileage accumulation per year than at Cottonwood due to the respective fleet’s activity. 

To help test the speculation that NOx differences are linked to mileage accumulation and thus 

wear on the EGR systems, Figure S4 in the Supporting Information shows the fuel specific NOx 

emissions from Cottonwood in 2013 compared to the 2012 and 2017 Peralta data. This figure 

shows that the 2013 Cottonwood NOx measurements fall between the two Peralta data sets for 
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most model years. This would be expected as the vehicles at Peralta have undergone a longer 

period of lower mileage accumulation with a predominantly in-state HDV fleet.  

This mileage accumulation effect appears to be demonstrated in early SCR systems as 

well. Figure 2a shows NOx emission increases at Peralta for the 2011 and newer chassis model 

year vehicles between the 2012 and 2017 measurements, though this comparison is limited by 

the number of 2011 and newer chassis model year vehicles sampled during the 2012 campaign 

(only 15% of the total measurements). However, there is a corresponding increase in NOx for 

these model years observed for the Cottonwood fleet, which has a substantial number of vehicles 

model year 2011 and newer (646 measurements). Figure 4 plots fuel specific NOx emissions 

against chassis model year 2008 and newer at the Cottonwood weigh station for measurement 

years 2013 (left, grey bars), 2015 (middle, blue bars) and 2017 (right, red bars). Open portion 

represent gNO2/kg of fuel, filled portion represent the amount of NO expressed as NO2, and the 

height of each bar represents total gNOx/kg of fuel for the given model year. Uncertainties are 

standard error of the mean calculated using the daily means of total NOx. Not only is there a 

continual increase in model years 2008-2010 NOx emissions, but this trend is present for 2011-

2014 chassis model year vehicles as well.18 Figure S5-S7 in the supporting information are 

similar graphs categorized by engine manufacturer (determined from decoding the vehicles 

VIN), to minimize the influence of NOx certification levels, for the 2017 Cottonwood and Peralta 

data sets. Because this reduces the number of vehicles in each chassis model year grouping, the 

uncertainties increase significantly, but all three manufacturers at both locations have fuel 

specific NOx emissions that increase over time for the first-generation SCR equipped vehicles.  

The observed variability patterns in NOx emissions from newer model year repeat 

vehicles can help validate the degradation in EGR and SCR systems. Figure S8 in the Supporting  
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Information shows the 145 HDVs that were measured multiple times at Peralta. The truck 

number in Figure S8 is calculated using the average gNOx/kg of fuel for each vehicle and thus 

higher truck numbers correspond with increased average NOx for the particular vehicle. When 

assessing large databases of emissions in general, mean emissions and variability decreases 

moving from the oldest model years to the newest model years. However, due to the lack of 

engine controls in the oldest model years (2007 and older) there is actually less variability in 

these high NOx emissions. In this data set, chassis model years 2008 – 2010 and 2011 – 2013 

have, on average, more variable NOx emissions, underscoring that these control technologies 

have the potential to dramatically lower NOx emissions, but the reductions observed for some 

vehicles are inconsistent. The 2014 and newer vehicles comprise the majority of the low NOx 

 

Figure 4. Fuel specific nitric oxides by chassis model year at Cottonwood weigh station for 
measurement years 2013 (left bars), 2015 (middle bars) and 2017 (right bars). Open portion 
represent gNO2/kg of fuel, filled portion represent the amount of NO expressed as NO2, and the 
height of each bar represents total gNOx/kg of fuel for the given chassis model year. 
Uncertainties are standard error of the mean calculated using the daily means of total NOx. 
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measurements for trucks measured more than once, emphasizing the level of control that can be 

achieved for HDV NOx controls found in the newest vehicles.  

 Medium versus Heavy-duty Emissions 

MDVs are subject to the same regulations imposed on HDVs in California but there are 

no recent emissions measurement studies that include the newest model years.30, 39 The MDV 

data set presented here contains the largest number of on-road emission measurements reported 

to date allowing a detailed look at this fleet’s emission trends. Figure 5 depicts 2017 fuel specific 

gNO as gNO2 equivalents (open bars), gNO2 (solid and striped bars) and total gNOx (total bar 

height) for diesel vehicles. Uncertainties are standard errors of the mean calculated using the 

daily means by model year for MDVs (blue) and HDVs (black). The 2010 homologous NOx 

certification standard present for 2011 and newer chassis model years, assuming that 0.15 kg of 

fuel is consumed per brake-horsepower hour, is also shown in a dark blue line.  

From 2007 to 2017 model year vehicles, NOx declined by 90% for MDVs (26.5 to 2.6 

gNOx/kg of fuel) and 89% for HDVs, (29.4 to 3.4 gNO/kg of fuel) as newer model years 

incorporated SCRs into their fleets.  Both MDVs and HDVs show a significant drop in NOx from 

model year 2010 to model year 2011 with the initial introduction of SCRs, and both have similar 

total NOx concentrations through model year 2013. These model years are likely above the 

certification standard due to a combination of actions: manufacturers using credits that allowed 

the production of engines with higher NOx emission levels (see Figure S9 in the supporting 

information) and a Federal lawsuit that delayed additional HDVs equipped with SCRs.45 

Beginning with the 2014 models, MDVs show further reductions in fuel specific NOx emissions 

which are not mirrored by the HDVs (MDVs are 68% lower than HDVs model year 2014 –  
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2017). HDVs remained at ~7 gNOx/kg of fuel on average until chassis model year 2016 where a 

54% reduction was achieved from 2013 vehicles. The two most abundant engine manufacturers 

for HDVs in 2017 at the Peralta site show a self-consistency in on-road NOx emissions for the 

2011 to 2015 chassis models (the emission difference between manufactures likely reflect 

differences in the fraction of non-credit engines) followed with reductions in chassis model year 

2016 (see Figure S9 in the Supporting Information), whereas most MDVs show reductions 

starting earlier in 2014.  

To assess the fleet’s possible future NOx reductions, the newest observed model years’ 

NOx averages (chassis model year 2016 and 2017) were calculated to be 1.6 ± 1.2 and 3.2 ± 0.4 

gNOx/kg of fuel for MDVs and HDVs, respectively. The large uncertainty for MDVs is 

 

Figure 5. Total gNOx/kg of fuel (total bar height) for MDVs (blue) and HDVs (black) diesel 
vehicles. Mean gNO2/kg of fuel (solid or hatched) and gNO/kg of fuel as gNO2/kg of fuel 
equivalent (open bars) as graphed by chassis model year. Uncertainties are standard error of the 
mean calculated using the daily means. The 2010 homologous NOx certification standard is 
represented with a dark blue line assuming 0.15kg of fuel is consumed per brake-horsepower 
hour. 
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completely dictated by one vehicle with 31.0 gNOx/kg of fuel (chassis model year 2017). 

Converted to regulation units, assuming 0.15 kg of fuel is burned per bhp-hr, MDVs observed 

NOx average of 0.23 ± 0.17 g/bhp-hr is indistinguishable from the certification standard for the 

newest model years of 0.2 g/bhp-hr, and 0.46 ± 0.06 g/bhp-hr for HDVs is 2.3 times this same 

threshold.46 These trends show that the MDVs are currently more efficient at NOx reduction for 

the newest model years and are able to meet their corresponding certification standards in-use for 

earlier chassis model years compared to the HDVs. 

Medium-duty Comparison 

To understand the improvements solely in the MDV diesel fleets, the Peralta MDVs were 

compared to vehicles measured at an on-road measurement site in the northwest suburbs of 

Chicago, IL. In Chicago, only Low FEAT was used with the site measurements previously 

reported in the literature.47, 48 The Low FEAT was situated at the same location for all 

measurement years on the ramp from Algonquin Rd. to eastbound I-290 in 1997, 1998, 1999, 

2000, 2002, 2004, 2006, 2014 and 2016. The Chicago fleet measurements at this site include a 

number of MDVs. The state of Illinois categorizes their license plates with suffixes of D, F or H 

(GVW of 14,001 to 26,000 lbs) as the last letter of the plate allowing MDVs to be extracted from 

these data sets (see Table S2 in the Supporting Information). Figure 6 shows the fleet average 

fuel specific NO, NO2 and NOx for Chicago’s measured diesel-powered MDV fleet in 2014 

(green open bars) and 2016 (blue hatched bars), as well as the Peralta 2017 diesel MDV fleet 

(solid grey bars). Uncertainties are the standard error of the mean calculated using the daily 

means.  
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Chicago’s fleet mean model year measured in September of each year went from 2006.1 

in 2014 to 2009.2 in 2016, and the spring 2017 Peralta MDV fleet had a model year average of 

2009.6. As the fleets incorporate newer vehicles with SCRs, represented by a newer model year 

average, NOx emissions decrease. Therefore, MDVs from both Illinois and California are 

continually reducing NOx emissions from their medium-duty fleets, and the observed HDV 

trend, shown in Figure 1, is emulated with MDVs. However, analysis of previous Illinois data 

sets shows that the observed decreases in fleet averaged fuel specific NOx emissions for the 

diesel MDV fleet, shown in Figure 6, have only occurred since the 2014 measurements (see 

Figure S10 in Supporting Information) unlike the slow but steady decreases observed in the 

HDV Peralta fleets (see Figure 1). The NOx reductions correspond to a decrease in fleet age; 

 

Figure 6. Chicago 2014 (green open bars), Chicago 2016 (blue hatched bars) and Peralta 2017 
(grey filled bars) fleet averages for gNO/kg of fuel (g of NO), gNO2/kg of fuel and gNOx/kg of 
fuel (g of NO2). Uncertainties are standard error of the mean calculated from the daily means. 
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25% of the 2014 Chicago fleet, 40% of the 2016 Chicago fleet and 50% of the 2017 Peralta were 

model year 2011 and newer. Although the fleet model year composition changes, the fuel 

specific NOx emissions by individual model year for all three fleets show similar trends (see 

supporting information Figure S11), including the lower NOx emissions observed for the MDVs 

in the 2014 and newer model year vehicles. The similarity between the Chicago fleets and 

Peralta fleet helps demonstrate that the observed NOx reductions at Peralta are generalizable to 

other MDV fleets across the United States.  

Supporting Information 

 Supporting figures (S1-S11) and tables (S1 and S2) referenced in the text. This material is 

available free of charge at http://pubs.acs.org 
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Tables 

Table S1. Example calculation of mean gNO/kg of fuel and the associated uncertainties for all 
HDV in 2017 at the Peralta weigh station.   

Table S2. Emission Summary for previous measurement years.  

Table S3. Chicago Historical Mean Fuel Specific Emissions for Diesel and Gasoline Medium-duty 
Vehicles 

Figures 

Figure S1. Photograph at the Peralta Weigh Station of the setup used to detect exhaust emissions 
from heavy and medium-duty trucks in 2017. 

Figure S2. A satellite photo of the Peralta weigh station located on the Riverside Freeway (State 
Route 91). The scales are located on the inside lane next to the building in the top center and the 
outside lane is for unloaded trucks. The measurement location is circled at the upper right with 
approximate locations of the scaffolding, support vehicle and camera. 

Figure S3. 2017 Peralta HDV CO, HC, NO, NO2, NOx, and NH3 fuel specific emissions (g/kg of 
fuel) and IR %Opacity for the high (black, solid) and low (blue, open) FEAT. Uncertainties are 
standard errors of the mean calculated using the daily means. 
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Figure S4. Fuel specific gNOx/kg of fuel by chassis model year at Cottonwood in 2013 (blue 
circles), Peralta in 2012 (black squares) and Peralta in 2017 (orange squares). Uncertainties are 
standard errors of the mean calculated using the daily means. 

Figure S5. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by 
Manufacturer A at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement 
years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. 
Uncertainties are calculated from the standard error of the mean using the daily means. 

Figure S6. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by 
Manufacturer B at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement 
years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. 
Uncertainties are calculated from the standard error of the mean using the daily means. 

Figure S7. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by 
Manufacturer C at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement 
years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. 
Uncertainties are calculated from the standard error of the mean using the daily means. 

Figure S8. HDVs measured more than once at the Peralta weigh station in 2017. Truck number is 
calculated using the average gNOx/kg of fuel for individual vehicles. The HDVs are segregated by 
model year: 2007 and older (black), 2008-2010 (blue), 2011-2013 (red) and 2014 and newer 
(purple). 

Figure S9. HDV gNOx/kg of fuel versus chassis model year for the 2017 Peralta measurements by 
engine manufacturer (VIN decoded). Uncertainties are standard errors of the mean calculated using 
the daily measurements.  

Figure S10. Medium-duty fuel specific NO by measurement year in Chicago, IL. Uncertainties are 
standard error of the mean calculated using the daily means. 

Figure S11. Medium-duty fuel specific NOx by chassis model year for Chicago 2014 (green 
squares) and 2016 (blue triangles) data and 2017 Peralta data (black circles). Uncertainties are 
standard error of the mean calculated using the daily means. 
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How we estimate standard errors of the mean for our reported uncertainties:  

Vehicle emissions from US vehicle fleets are not normally distributed, thus the assigning 
of uncertainties on fleet emission means involves a process that many readers may not be familiar 
with. Standard statistical methods that were developed for normally distributed populations, when 
used on a skewed distribution, result in uncertainties that are unrealistically too small due to the 
large number of samples. The Central Limit Theorem in general indicates that the means of 
multiple samples, randomly collected, from a larger parent population will be normally distributed, 
irrespective of the parent populations underlying distribution. Since we almost always collect 
multiple days of emission measurements from each site, we use these daily measurements as our 
randomly collected multiple samples from the larger population and report uncertainties based on 
their distribution. We calculate means, standard deviations and finally standard errors of the mean 
for this group of daily measurements. We report the fleet weighted means for all of the emission 
measurements and then calculate a standard error of this weighted mean by applying the same 
error percentage obtained from the ratio of the standard error of the mean for the daily 
measurements divided by the daily measurement mean.  

An example of this process is provided below for the 2017 Peralta HDV gNO/kg of fuel 
measurements. While this example is for a fleet mean, we also use this technique when we report 
uncertainties for other statistics such as individual model years, specific fuel or technology types, 
and VSP. For example, each model year will have its daily means averaged and then its standard 
error of the mean for the daily average computed and that percent uncertainty (Daily STD Error 
MY/Daily MY average) will be applied to that entire model year’s mean emissions. 

 

Table S1. Example calculation of mean gNO/kg of fuel and the associated uncertainties for all 
HDV in 2017 at the Peralta weigh station.  

Date 
Daily Average 
gNO/kg of fuel 

Number of 
Measurements 

3/20/2017 7.92 357 
3/21/2017 7.15 507 
3/22/2017 6.53 454 
3/23/2017 8.15 526 
Average for Daily Mean 7.43 
Standard Error for Daily Mean 0.38 
Weighted Fleet Mean 7.43 
Standard Error Calculated for the Fleet Mean 0.38 
Value as reported in Table 1 7.4 ± 0.4 
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Table S2. Peralta weigh station Emission Summary for Previous Measurement Years.  

Study Year 1997 2008 2009 2010 2012 

Mean CO/CO2 

(g/kg of fuel) 

0.008 

(16.1) 

0.005 

(10.0) 

0.005 

(10.6) 

0.005 

(10.0) 

0.004 

(7.3) 

Median gCO/kg 9.3 6.7 6.6 6.6 4.0 

Mean HC/CO2 

(g/kg of fuel) 

0.0008 

(5.0) 

0.0004 

(2.7) 

0.0007 

(4.8) 

0.0007 

(4.2) 

0.0001 

(0.6) 

Median gHC/kg 3.7 2.1 2.9 2.9 1.3 

Mean NO/CO2 

(g/kg of fuel) 

0.009 

(19.2) 

0.008 

(16.4) 

0.007 

(15.4) 

0.006 

(14.7) 

0.006 

(11.8) 

Median gNO/kg 18.0 15.2 14.3 13.5 11.5 

Mean SO2/CO2  

(g/kg of fuel) 
NA 

0.00006 

(0.26) 

0.00004 

(0.16) 

-0.00004 

(-0.22) 

-0.00008 

(-0.36) 

Median gSO2/kg NA 0.22 0.11 -0.2 -0.28 

Mean NH3/CO2 

(g/kg of fuel) 
NA 

0.00003 

(0.03) 

0.00002 

(0.003) 

0.000007 

(0.008) 

0.00002 

(0.02) 

Median gNH3/kg NA 0.02 0.016 0.006 0 

Mean NO2/CO2 

(g/kg of fuel) 
NA 

0.0006 

(2.1) 

0.0006 

(1.9) 

0.0005 

(1.9) 

0.0005 

(1.8) 

Median gNO2/kg NA 1.6 1.4 1.4 1.4 

Mean / Median gNOx/kg NA 27.3 / 
25.2 

25.4 / 
23.6 

24.5 / 
22.3 

19.9 / 
19.1 

Mean/Median IR %Opacity 2.5 / 1.9 0.73 / 0.6 0.73 / 0.6 0.68 / 0.6 0. 69 / 0.5

Mean Model Year NA 2000.4 2001.3 2002.0 2004.0 

Mean Speed (mph) NA 13.4 13.5 13.4 13.9 

Mean Acceleration (mph/s) NA 1.1 0.9 0.8 1.1 

Mean VSP(kw/tonne) 

Slope (degrees) 

NA 

1.8° 

6.3 

1.8° 

5.8 

1.8° 

4.9 

1.8° 

6.6 

1.6° 
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Table S3. Chicago Historical Mean Fuel Specific Emissions for Diesel and Gasoline Medium-
duty Vehicles 

Measurement Year gCO/kga gHC/kgb gNO/kgc Vehicles Fuel 
1997 33.9 ± 4.6 6.2 ± 1.5 18.7 ± 0.9 72 D 
1998 48.5 ± 16.6 16.3 ± 6.1 15.6 ± 0.4 90 D 
1999 20.2 ± 3.8 4.4 ± 1.9 18.5 ± 1.4 114 D 
2000 14.6 ± 1.3 1.9 ± 1.6 16.6 ± 0.6 122 D 
2002 16.3 ± 2.1 1.9 ± 0.6 17.7 ± 1.3 93 D 
2004 13.5 ± 3.3 3.3 ± 2.1 18.7 ± 0.7 114 D 
2006 10.7 ± 0.6 0.3 ± 1.3 15.9 ± 0.6 108 D 
2014 -0.4 ± 0.5 5.0 ± 1.1 16.0 ± 1.5 81 D 
2016 6.8 ± 2.2 1.2 ± 1.7 13.0 ± 1.3 142 D 

1997 109.4 ± 16.4 7.8 ± 3.1 13.5 ± 1.3 30 G 
1998 153.7 ± 59.5 14.1 ± 7.3 11.4 ± 3.1 25 G
1999 108.0 ± 44.8 8.6 ± 7.4 15.3 ± 1.8 38 G
2000 96.2 ± 36.6 10.3 ± 10.0 10.3 ± 10.0 20 G
2002 18.1  ± 10.8 -1.5 ± 0.7 2.7 ± 1.1 20 G
2004 48.3 ± 12.4 1.4 ± 1.7 6.8 ± 3.0 26 G
2006 50.1 ± 25.2 6.0 ± 2.2 3.0 ± 1.8 17 G
2014 80.8 ± 41.7 23.9 ± 13.4 9.6 ± 3.6 19 G
2016 7.7 ± 10.3 -0.5 ± 0.4 2.8 ± 1.7 41 G

 
a Calculated using a carbon mass fraction of 0.86 for both fuels and uncertainties are calculated 
using the daily means. 

b HC grams of propane expressed using an NDIR to FID correction factor of 2 and means are 
offset normalized as described in Bishop and Haugen, Environ. Sci. Tech., 25:7587-7593, 2018. 

c grams of NO 
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Figure S1. Photograph at the Peralta Weigh Station of the setup used to detect exhaust 
emissions from heavy and medium-duty trucks in 2017. 

 

Figure S2. A satellite photo of the Peralta weigh station located on the Riverside Freeway 
(State Route 91). The scales are located on the inside lane next to the building in the top center 
and the outside lane is for unloaded trucks. The measurement location is circled at the upper 
right with approximate locations of the scaffolding, support vehicle and camera. 
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Figure S3. 2017 Peralta HDV CO, HC, NO, NO2, NOx, and NH3 fuel specific emissions (g/kg 
of fuel) and IR %Opacity for the high (black, solid) and low (blue, open) FEAT. Uncertainties 
are standard errors of the mean calculated using the daily means. 

 

Figure S4. Fuel specific gNOx/kg of fuel by chassis model year at Cottonwood in 2013 (blue 
circles), Peralta in 2012 (black squares) and Peralta in 2017 (orange squares). Uncertainties are 
standard errors of the mean calculated using the daily means. 
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Figure S5. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by 
Manufacturer A at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement 
years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. 
Uncertainties are calculated from the standard error of the mean using the daily means. 
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Figure S6. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by 
Manufacturer B at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement 
years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. 
Uncertainties are calculated from the standard error of the mean using the daily means. 
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Figure S7. Fuel specific gNOx/kg of fuel by chassis model year for engines manufactured by 
Manufacturer C at the Cottonwood weigh station (top) for 2013, 2015 and 2017 measurement 
years and at the Peralta weigh station (bottom) for 2012 and 2017 measurement years. 
Uncertainties are calculated from the standard error of the mean using the daily means. 
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Figure S8. HDVs measured more than once at Peralta weigh station in 2017. Truck number is 
calculated using the average gNOx/kg of fuel for individual vehicles. The HDVs are segregated 
by model year: 2007 and older (black), 2008-2010 (blue), 2011-2013 (red) and 2014 and newer 
(purple). 
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Figure S9. HDV gNOx/kg of fuel versus chassis model year for the 2017 Peralta measurements 
by engine manufacturer (VIN decoded). Uncertainties are standard errors of the mean 
calculated using the daily measurements.  
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Figure S10. Medium-duty mean fuel specific NO by measurement year in Chicago, IL. 
Uncertainties are standard error of the mean calculated using the daily means. 
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Figure S11. Medium-duty fuel specific NOx by chassis model year for Chicago 2014 (green 
squares) and 2016 (blue triangles) data and 2017 Peralta data (black circles). Uncertainties are 
standard error of the mean calculated using the daily means. 
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