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Does California’s EMFAC2017 Vehicle Emissions Model Under-predict California Light-

duty Gasoline Vehicle NOx Emissions? 

Gary A. Bishop 

Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208 U.S.A. 

gbishop@du.edu 

Abstract 

On-road remote sensing measurements of light and medium-duty gasoline vehicles collected 

within California’s South Coast Air Basin since 1999 generally fall within the range of observed 

summer ambient molar NOx/CO measurements collected during morning rush hours. Compared 

with ambient and on-road emissions, the California Air Resources Board EMFAC model under 

predicts 2018 gasoline vehicle NOx emission factors by more than a factor of 2.6. Contributing to 

these differences is that vehicles older than model year 2006 have NOx emission deterioration 

rates that are up to 4 time’s higher on-road than predicted by the EMFAC model. A fuel-based 

inventory using the 2018 on-road gasoline emission factors for CO and NOx results in total CO 

emissions similar to the basin inventory but NOx emissions that are 74% higher than the 

inventory. The higher NOx emission estimates from on-road gasoline vehicle measurements 

makes their contribution to the inventory slightly larger than heavy-duty diesel vehicles. We 

have found LEV I (1994 - 2003) gasoline vehicles are a major source of these on-road emissions 

and that significant NOx reductions in the South Coast Air Basin are being overlooked by not 

targeting the high emitters for removal.  

Keywords 

Emissions, Automotive; Emissions, Oxides of Nitrogen; EMFAC2017    

Introduction 

With the introduction of the National Ambient Air Quality Standards (NAAQS) in the early 

1970’s as part of the Clean Air Act the United States began establishing networks of ambient air 

monitors in urban areas across the country.(U. S. Environmental Protection Agency)The 

NAAQS were intended to limit common pollutants found in outdoor air that were considered to 

be harmful to public health. The species to be monitored were carbon monoxide (CO), lead, 
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nitrogen dioxide (NO2), particulate matter, ozone and sulfur dioxide. California’s South Coast 

Air Basin (SoCAB), which includes Los Angeles, has over the years experienced elevated levels 

of most of these species but through tremendous reductions in mobile and stationary source 

emissions over the last 60 years now only exceeds levels for particulate matter and 

ozone.(Warneke et al., 2012; Pollack et al., 2013; United States Environmental Protection 

Agency, 2020b, a)   

Since Haagen-Smit first documented the presence of ozone in Los Angeles air, reducing it to 

healthful levels has proven to be a difficult task.(Haagen-Smit et al., 1953; Haagen-Smit and 

Fox, 1954) Unlike most of the criteria pollutants, ozone is not directly emitted but is a secondary 

product formed in a nonlinear reaction involving volatile organic compounds (VOC), carbon 

monoxide (CO) and oxides of nitrogen (NOx ≡ NO + NO2) in sunlight.(Finlayson-Pitts and Pitts, 

2000; Stedman, 2004) Despite significant reductions in ozone levels in the SoCAB, with the 

2015 revisions of the NAAQS 8 hour ozone rule that lowered the standard to 70ppb (fourth-

highest daily maximum, averaged across three consecutive years), compliance is not expected for 

many decades.(Fujita et al., 2013; U. S. Environmental Protection Agency, 2015; Parrish et al., 

2017) 

Because of the interplay between VOC and NOx emissions, ozone production can be limited by 

either species depending on the atmospheric chemistry at a particular location.(Stedman, 2004) 

HC limited ozone formation, as documented by increases in ozone formation on weekends when 

NOx emissions from diesel vehicles decrease significantly, has previously been the predominate 

mechanism in the SoCAB; however, some recent observations and models are predicting this to 

be changing in some areas of the basin to a NOx limited regime.(Chinkin et al., 2003; Pollack et 

al., 2012; Baidar et al., 2015; Fujita et al., 2016; South Coast Air Quality Management District, 

2017; Laughner and Cohen, 2019) This has shifted the focus of California regulatory agencies to 

significantly lowering NOx emissions (45% reduction beyond current control measures by 2023) 

as called for in the SoCAB 2016 State Implementation Plan.(South Coast Air Quality 

Management District, 2017) 

Achieving the desired NOx reductions relies on an accurate local emissions inventory. On-road 

vehicles in 2018 were estimated to emit approximately 50% of the SoCAB NOx emissions, with 

diesel trucks estimated to contribute the larger share (60%) of this total (see supporting material). 
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In California, on-road vehicle emissions contributions to the inventory are estimated using the 

California Air Resources Board developed EMission FACtors (EMFAC) vehicle emissions 

model. The current version, EMFAC2017, combines vehicle emission factors (grams per mile 

and per start) for selected pollutants with vehicle activity (miles driven and starts) to estimate 

total emissions.(California Air Resources Board, 2020b)    

Using SoCAB ambient air monitor measurements and on-road vehicle emission measurements, 

we examine the SoCAB on-road mobile source NOx emission inventory, and in particular the on-

road gasoline and diesel apportionment. The apportionment of NOx emissions is particularly 

important since any policies aimed toward reducing NOx emissions need to be targeted 

appropriately in order to be effective. Absent this the expected reductions will not materialize 

and the needed improvements in ozone levels will be pushed even further into the future. 

Experimental Methods 

Ambient Measurements. Long-term (1960 – 2010) ambient molar NOx/CO trends in California’s 

SoCAB were described by Pollack et al. for a number of field measurement campaigns and two 

basin surface network monitoring sites (Azusa and Upland).(Pollack et al., 2013) Hassler et al. 

extended this NOx/CO trend through 2015 and added eight additional surface network 

monitoring sites (La Habra, Long Beach, Magnolia, Mira Loma, North Main, Pomona, Reseda 

and Rubidoux).(Hassler et al., 2016) The NOx/CO ratios were determined by bivariate least 

squares linear regression using only summer (May – September), non-holiday, weekday morning 

(0500 – 0900 local time) hourly ambient measurements. Ratios were only reported for sites 

where two thirds of the possible number of hourly data existed and where the resulting NOx/CO 

correlation coefficient was greater than or equal to 0.5 (r2 ≥ 0.5) helping to restrict the 

measurements to fresh local motor vehicle emissions. We have extended this data record using 

this approach through 2018, using data from nine of the ten sites as the Magnolia site ceased 

operation at the end of 2014. 

On-road Measurements. On-road vehicle tailpipe exhaust measurements have been collected 

with a remote sensor developed at the University of Denver named Fuel Efficiency Automobile 

Test (FEAT).(Bishop and Stedman, 1996) FEAT is composed of an infrared (IR) and ultraviolet 

(UV) light source placed across a single lane roadway from four non-dispersive IR and one (NO 
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only for the pre-2008 data sets) or two dispersive UV detectors (includes NO2 starting in 2008) 

that allow the measurement of vehicle exhaust gases as a molar ratio to exhaust CO2 (i.e., 

CO/CO2, NO/CO2, NO2/CO2 etc.).(Burgard et al., 2006a)  Each measured species ratio is scaled 

using certified (± 2% accuracy) gas cylinder ratios measured daily as needed at each site by 

FEAT. This corrects for variations in instrument sensitivity and most importantly ambient CO2 

levels caused by changes in atmospheric pressure, temperature and background pollutants. The 

molar ratios can also be converted into fuel-based emission factors of grams of pollutant per kg 

of fuel by the carbon balance method. This uses a carbon mass fraction for the fuel of 0.86 and a 

doubling of the HC/CO2 ratio to normalize the reading with a flame ionization detector and 

compensate for the weak IR absorbance of many aromatic compounds.(Singer et al., 1998) Each 

measurement includes a video image of the license plate of the vehicle that is manually 

transcribed and used to retrieve non-personal vehicle information (i.e. age and type) from the 

California registration records that is combined with the emission measurements into a final 

database for analysis. 

On-road emission measurements have been collected using FEAT from light and medium-duty 

vehicles in California’s SoCAB since 1989. However, NO measurements were not collected until 

the late 1990’s when the instrumentation for collecting those measurements was 

developed.(Popp et al., 1999) Beginning in 1999, emission measurements have been collected at 

the on-ramp from southbound La Brea Ave. to eastbound I-10, about midway between 

downtown LA and Santa Monica. To date there have been eight data sets collected at this West 

Los Angeles location (1999, 2001, 2003, 2005, 2008, 2013, 2015 and 2018) that includes more 

than 165,000 vehicle emission measurements.(Bishop and Stedman, 2008; Bishop et al., 2010; 

Bishop and Stedman, 2015) The 1999 - 2005 measurements were made in the fall of each year. 

Beginning with the 2008 measurements we began collecting emission measurements of NO2, 

allowing for the reporting of vehicle NOx emissions, and the measurement dates switched to the 

spring.(Burgard et al., 2006b) Though only a single site within the basin, other researchers have 

shown that these measurements are representative of basin-wide emissions.(Nowak et al., 2012; 

Pollack et al., 2013; Hassler et al., 2016; Kim et al., 2016) 

Seven additional data sets, also collected within the basin since 1999, in Riverside (1999, 2000 

and 2001), at the intersection of I-710 and SR91 (1999), Van Nuys (2010) and at two sites in 
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Lynwood (2018) are included in this analysis.(Bishop and Stedman, 2008; Bishop et al., 2012; 

Bishop, 2019) Heavy-duty diesel trucks with either elevated or ground level exhaust emissions 

were also measured in the spring of 2017 at the Peralta weigh station on SR 91 in the Anaheim 

Hills of the SoCAB.(Haugen et al., 2018) All of the databases used in this study, as well as many 

others compiled by the University of Denver, are available at www.feat.biochem.du.edu. 

EMFAC2017 Modeling. California’s EMFAC2017 vehicle emissions factor model was run 

using the online EMFAC2017 web database v1.0.2 (https://www.arb.ca.gov/emfac/2017/). For 

comparison with the ambient measurement ratios summer emissions (online model allows 

summer or annual estimates) for the SoCAB were modeled for years 2001, 2003, 2005, 2008, 

2010, 2013, 2015 and 2018 to match the West Los Angeles remote sensing measurement years. 

This version of the EMFAC model only predicts emissions back to calendar year 2000 so we did 

not compare modeled emissions to the 1999 measurements.  

Running exhaust molar ratios were calculated for each year by summing the model predicted 

short tons per day for the thirteen gasoline vehicle types output by EMFAC. The tons were 

converted into grams and the grams into moles of each pollutant and then ratioed. Model years 

were aggregated by the model for each vehicle type and predictions were generated for two 

speeds, aggregated over all of the drive cycles included in the model and at a fixed 20mph. The 

latter most closely matches the average speed observed at the West Los Angeles FEAT on-road 

measurement site. The supporting material includes a sample output of this process (see Table 

S6). 

Annual running exhaust emission factors (grams per kilogram of fuel) for 2018 were calculated 

by model year for gasoline powered light-duty passenger vehicles (model type LDA) and trucks 

(fuel consumption weighted composite of model vehicle types LDT1, LDT2 and MDV) from the 

tons/day predicted by the EMFAC model. The chosen truck types cover the weight classes 

observed at the West Los Angeles site and account for more than 87% of the predicted truck 

gasoline fuel consumption by the model. Aggregated speeds were used for these calculations as 

the model does not provide fuel consumption at a fixed speed setting. The model predicted 

tons/day for each model year were converted into grams/day, the predicted gallons of gasoline 

consumed were converted into kilograms assuming a density of 0.75 g/ml for California 
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reformulated gasoline and the two ratioed for each pollutant. The supporting material includes 

the 2018 calculations (see Table S9). 

Annual fuel specific NOx emission factors for the 2017 heavy-duty diesel truck measurements 

were calculated using EMFAC2017 in a similar manner. A fuel weighted composite of diesel 

trucks included all medium-heavy duty diesel trucks greater than 26,000 lbs. (EMFAC model 

type T6) and all heavy-heavy duty diesel trucks (EMFAC model type T7) except those using the 

Truck and Bus rule agricultural provision (T7 Ag) with aggregated speeds.(California Air 

Resources Board, 2018) The density of ultra-low sulfur diesel fuel was assumed to be 0.86 g/ml. 

Results 

NOx/CO Trends. Maintaining the graphical approached used in Hassler et al., Figure 1 plots the 

log of the molar NOx/CO ratios for the California SoCAB surface network sites against 

measurement year for the 1983 - 2018 time period.(Hassler et al., 2016) The solid lines in Figure 

1 represent a quadratic fit applied to the 1983 - 2009 ambient measurement ratios and a best fit 

straight line for the remaining 2010 - 2018 ratios. The scatter in these measurements reflects the 

distribution differences between the gasoline and diesel fleets, vehicle operating characteristics 

and any observed contributions from stationary or non-road sources. It is expected that gasoline 

vehicles will figure more prominently in the CO emission contributions while diesel vehicles 

will contribute a larger fraction of the NOx emissions.  

The ambient ratios increase steadily until about 2010 after which they level out and then 

decrease. The rise is consistent with the observation by Pollack et al. that vehicle CO emissions 

decreased at about twice the rate of NOx emissions over the earlier time period.(Pollack et al., 

2013) Since 2010, on-road NOx emissions have seen significant reductions from both the light-

duty gasoline and heavy-duty diesel fleets.(Bishop and Haugen, 2018; Haugen et al., 2018) 

These reductions have been driven by the introduction of LEV II light-duty vehicles in 2009 

(phased in between 2004 & 2009 in California) and by the phase-in of selective catalytic 

reduction systems for NOx control in heavy-duty diesel trucks beginning with 2011 trucks. 

FEAT molar NOx/CO ratios for the gasoline portion of each site’s fleet are plotted against 

measurement year for the 15 data sets collected in the SoCAB since 1999. For the data sets 

collected prior to 2008 the molar NOx/CO ratios only include measurements for the moles of  
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NO. However, since we have restricted these comparisons to only gasoline powered vehicles this 

should only slightly (< 1%) underestimate the true NOx/CO ratios as gasoline engines emit little 

NO2. The number of diesel vehicles with ground level exhaust at these on-road sites is small (1.5 

to 3%) and their inclusion does, as expected, increase the ratios (~8% on average) but does not 

significantly change the results (Table S7in the supporting material). Uncertainties displayed are 

standard error of the mean calculated from the daily means.  

This is not a direct comparison with the ambient measurements, as the ratios derived from the 

on-road measurements exclude diesel powered vehicles. However, in general the on-road 

measurements fall within the lower range of the observed ambient NOx/CO ratios, rising along 

with them until the 2010 peak. The figure indicates that after 2010 the on-road NOx/CO ratios 

continue to increase slightly and do not show the decreases observed in the ambient ratios. 

 

Figure 1. Molar NOx/CO emission ratios from California’s SoCAB ambient monitors (○), on-
road measured average ratios for gasoline vehicles from six basin locations and EMFAC2017 
running exhaust modeled ratios for gasoline only vehicles with aggregated speed or fixed at 
20mph versus measurement year. A quadratic fit is shown for the 1983 – 2009 ambient data and 
a best fit straight line for the 2010 to 2018 measurements. Uncertainties for the FEAT 
measurements are standard error of the mean calculated using the daily means. 
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As noted, summer EMFAC2017 molar NOx/CO ratios were calculated from the model for the 

SoCAB gasoline fleet using two speed selections: 1) a static 20mph and 2) aggregated speeds; 

these are shown in Figure 1. The aggregated speed setting produces slightly higher NOx/CO 

ratios than the static 20 mph speed for each of the years modeled. The EMFAC2017 predicted 

ratios begin in 2001 with values that are in general agreement with the ambient and the on-road 

measurements but then steadily decrease in the following years. Noticeably absent from the 

modeled ratio predictions is the rising ratio values found in the ambient and on-road 

measurements between 2001 and 2010. The 2018 molar NOx/CO ratios estimated by EMFAC 

are 1.8 (aggregated speed) and 2.4 (20mph fixed speed) times lower than the average ambient 

measurements.  

Because we are comparing ratios it is not immediately clear whether the disagreement between 

the model and the ambient measurements is the result of an under prediction of NOx or an over 

prediction of CO. Since the on-road measured ratios generally fall within the range of the 

ambient measurements we will use the on-road data from the West Los Angeles site to 

investigate potential differences with the model predictions.  

Gasoline Vehicle Emissions Comparison. Figure 2 compares the fuel specific CO emissions for 

the 2018 West Los Angeles FEAT measurements and the EMFAC2017 predicted emission 

factors by model year for gasoline light-duty passenger vehicles (top graph) and light-duty trucks 

(bottom graph). EMFAC2017 light-duty trucks, as previously mentioned, are a fuel use weighted 

composite emission factor for the model types LDT1, LDT2 and MDV. The model emission 

factors were calculated on an annual basis for the SoCAB using aggregated speeds since that 

speed setting predicted the higher ratio values (see supporting material). Uncertainties for the 

FEAT data are standard error of the mean determined from the daily measurements. Because of 

the decline in the number of vehicle measurements with age and their increasing uncertainty the 

on-road measurement plotted at model year 1990 is the average for all 1987 - 1993 vehicles. 

The emissions by model year comparisons between the on-road measurements and the model 

predictions, within the uncertainties, are in generally good agreement. We can calculate an age 

normalized fleet mean emissions for the EMFAC2017 model output using the fleet CO 

measurement fractions by model year and vehicle type observed in the 2018 West Los Angeles 

measurements to further compare the overall agreement (see Table S8). Mean fuel specific  
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EMFAC2017 CO emissions are slightly over-predicted (+11%) for passenger vehicles (10.5 vs. 

9.3 ± 0.5 gCO/kg of fuel) and are slightly under-predicted (-20%) for the light-duty trucks (11.1 

vs 13.9 ± 0.6 gCO/kg of fuel). When combined, the fleet means are not statistically different at 

the 95% CI (10.7 vs 11.2 ± 0.6 gCO/kg of fuel). 

Figure 3 is the companion graph comparing the fuel specific NOx emissions by model year for 

gasoline light-duty passenger vehicles (top) and light-duty trucks (bottom) for the 2018 FEAT 

West Los Angeles measurements and the EMFAC2017 model predictions. The NOx comparison 

is quite good for the 2009 and newer model year vehicles that all have near-zero emissions.  

 

Figure 2. Fuel specific CO emissions for the 2018 West Los Angeles gasoline fleet (Δ) and the 
EMFAC2017 predicted 2018 SoCAB gasoline fleet (model type LDA) emissions (●) versus 
model year for light-duty passenger vehicles (top panel) and trucks (bottom panel). 
EMFAC2017 truck emission factors are a fuel use weighted composite of model types LDT1, 
LDT2 and MDV. Uncertainties for the FEAT measurements are standard error of the mean 
calculated using the daily means. 
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Unlike the CO emissions comparison however, the observed on-road gNOx/kg of fuel emissions 

for both vehicle types are substantially higher than predicted by the EMFAC2017 model for 

2008 and older models. For passenger vehicles (0.7 vs 1.8 ± 0.1 gNOx/kg of fuel) and trucks (1.1 

vs 3.0 ± 0.1 gNOx/kg of fuel) the on-road age normalized mean emissions are factors of 2.6 and 

2.7 times higher than predicted by the model. It is these differences in light-duty gasoline NOx 

emissions that are the likely explanation for the differences observed in the EMFAC NOx/CO 

ratio comparison with the ambient and on-road measurements (see Figure 1).  

Fujita et al. reported on an under-prediction of NOx emissions with an earlier version of the 

model, EMFAC2007, for measurements collected in a Van Nuys, CA tunnel in the summer of 

 

Figure 3. Fuel specific NOx emissions for the 2018 West Los Angeles gasoline fleet (Δ) and the 
EMFAC2017 predicted 2018 SoCAB gasoline fleet (model type LDA) emissions (●) versus 
model year for light-duty passenger vehicles (top panel) and trucks (bottom panel). 
EMFAC2017 truck emission factors are a fuel use weighted composite of model types LDT1, 
LDT2 and MDV. Uncertainties for the FEAT measurements are standard error of the mean 
calculated using the daily means. 
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2010.(Fujita et al., 2012) EMFAC2007 under reported NOx emissions by factors of 1.2 and 1.4 

for the median weekday and weekend measurements respectively.  However, the under-

prediction was larger (factor of 1.8) for a Sunday morning measurement when the fleet was 

almost exclusively gasoline powered vehicles (8 diesel vehicles in 1290 total vehicles) while CO 

emissions were accurately predicted.  

A study to model PM2.5 levels in California’s San Joaquin Valley came to a similar conclusion 

using the 2014 version of EMFAC.(Kleeman et al., 2019) Observed ambient NOx emissions in 

Fresno in the winter of 2013 were significantly higher during the morning rush hour period than 

predicted by the model even after including soil NOx emissions. Concentrations of total reactive 

nitrogen were consistently under-predicted due to insufficient levels of NOx emissions. The 

authors concluded that there is an “unknown source of NOx emissions that is not currently 

represented in the emissions inventory”.(Kleeman et al., 2019)  

On-road measurements collected in Fresno in 2008, prior to the recession, found an older light-

duty fleet (~8.7 years) than data collected during the same campaign in San Jose (~7.9 years) and 

West Los Angeles (7.3).(Bishop et al., 2010) The 2008 - 2009 recession increased fleet age by 2 

years at the West Los Angeles site as observed in 2013 and we would expect fleets in the San 

Joaquin Valley to have aged at least this much.(Bishop and Stedman, 2014) This would amplify 

the number of LEV I vehicles (1994 - 2003 model years) in the San Joaquin Valley during the 

2013 measurements that we have found to have NOx emissions most under-predicted by the 

EMFAC model which could be the source for the missing NOx emissions.   

One possible explanation for the differences observed in the fuel specific NOx emissions for the 

2005 and older model year vehicles is that emission deterioration rates are actually larger on-

road than assumed in EMFAC. Using the multiple years of emission measurements collected at 

the West Los Angeles site and plotting fuel specific NOx emissions for the gasoline fleet versus 

vehicle age at the time of measurement by model year we can estimate the on-road NOx 

emissions deterioration rates and compare those with model predictions using the same multi-

year approach.(Bishop and Stedman, 2008) The supporting material details the calculation 

process and Figure S1 shows the graphs for the multi-year on-road and model predicted NOx 

emission factors. We have used year 2000 in the EMFAC2017 model for the eighth data point as 

a substitute for the 1999 on-road measurements since the year 1999 cannot be modeled. 
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Figure 4 plots the emissions deterioration rates in gNOx/kg of Fuel/Year versus model year for 

the gasoline fleet obtained from the fitting results using the data shown in Figure S1. The 

uncertainties plotted are the standard error of the least squares fit for each model year. The 

deterioration rate comparison has a similar trend within the uncertainties for the 2007 and newer 

model years but the on-road deterioration rates, like the fuel specific emissions (see Figure 3), 

are much higher than the EMFAC estimates for the 2006 and older model year vehicles. The 

EMFAC2017 estimated emissions deterioration rates do not show any increases until the 2003 

model year vehicles. This may be the result of the model assuming California LEV II vehicle 

emission deterioration rates through the 2004 model year vehicles. This is when their 

introduction into the California fleet was to begin but we would not expect them to be a 

significant fraction of the fleet until later model years.(DieselNet, 2018) For the oldest model 

year vehicles (pre-1999) the final deterioration rates are approximately a factor of 4 higher (~0.5 

vs ~0.125 gNOx/kg of Fuel/Year) for the on-road measurements. For perspective 1996 model 

year vehicles with a 0.49 gNOx/kg of Fuel/Year emissions deterioration rate represents a 

5.8%/year emissions increase or an emissions doubling time of 12 years. The lower rates 

predicted by the model are likely the result of the NOx emission factors appearing to be capped 

around 10 gNOx/kg of Fuel for 1996 - 1989 model year vehicles (see Figure S1) which we do not 

observe in the on-road measurements. 

Fuel-Based Inventory. The SoCAB inventory is a critical piece of information that is used to 

shape regulatory policy for future emission reductions toward the goal of achieving compliance 

with the NAAQS. To estimate the extent of the NOx under-prediction we have constructed a NOx 

fuel-based inventory for the SoCAB using our on-road emission measurements for light-duty 

gasoline and heavy-duty diesel vehicles. On-road heavy-duty diesel truck emissions were 

measured at the Peralta weigh station on SR 91 in the spring of 2017.(Haugen et al., 2018) 

Figure S2 shows the fuel specific NOx emissions by model year comparison for the on-road 

heavy-duty diesel measurements and the EMFAC2017 predictions. Annual EMFAC2017 

emission factors were calculated using aggregated speeds and a fuel weighted composite 

emission factor for year 2017 using the diesel truck types previously described. The on-road 

emissions are generally higher than the model predictions but comparison of estimated mean 

emissions using the Peralta model year distribution for both sets of emission factors results in 

only a 20% difference (10 vs 12.5 gNOx/kg of fuel) which overall is good agreement. 
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Following the methodology of Hassler et al. we have calculated the 2018 daily gasoline and 

diesel fuel consumption for the SoCAB in kilograms/day using annual fuel sales data for the 

State of California (Table S10 in the supporting material).(Hassler et al., 2016) These values are 

multiplied by the mean on-road emission factors measured at the West Los Angeles site (for the 

gasoline fleet) in 2018 and the Peralta weigh station in 2017 (heavy-duty diesel fleet) to estimate 

short tons/day emissions in the Basin. Table 1 compares the on-road fuel-based inventory with 

the 2018 Annual California Air Resources Board inventory predicted by the online California 

Emission Projections and Analysis Model (CEPAM) emission tool for the SoCAB (see 

supporting material).(California Air Resources Board, 2020a) The fuel-based inventory indicates 

74% more NOx emissions from the light-duty gasoline fleet than accounted for in the inventory 

despite the fact that the fuel-based inventory does not include idle and starting emissions. The 

light-duty CO and heavy-duty diesel NOx emissions inventory comparisons are in better 

agreement with the fuel-based results.  

  

 

Figure 4. Fuel specific NOx emissions deterioration rates (gNOx/kg of Fuel/Year) versus model 
year for the West Los Angeles on-road measurements (Δ) and deterioration rates calculated 
using the EMFAC2017 model (●) for the gasoline fleet since 1999. The uncertainties are the 
standard error of the slope for each model year’s least squares fit. 

����

����

����

����

�
��
�	

�
	�
�

�


�
��
�

�
�
�

�
��
�
�
�
�
�
��
��

��
	

����������������������������

�� �� ���	

!�"� #$ ��
%�
�"��

&��$'����

�&$(



 14

The fuel-based inventory estimates increase the light-duty gasoline NOx emissions to being on 

par, or slightly higher than, the heavy-duty NOx emissions. This is not a new observation as Kim 

et al. previously reported this for the 2010 SoCAB fleet.(Kim et al., 2016) It does however, raise 

the question as to whether the extra NOx emissions increases the total NOx inventory or are they 

offset by over estimates in other categories? The 2018 total inventory estimates of 1741 tons 

CO/day and 356 tons NOx/day result in a molar NOx/CO ratio of 0.12 which is within the spread 

of the morning ambient measurements and supports the two totals (see Table S5 in the 

supporting material). In addition Morris et al. showed good agreement between OMI satellite 

NO2 observations and the 2018 basin NOx inventory again supporting the NOx total and 

suggesting that over estimates exist in other inventory categories.(Morris et al., 2019)  

Figure 5 is a plot of the percent of the total gNOx/kg of Fuel emissions contributed by vehicle 

type and fuel, compared with the vehicle age distribution, by model year for the 2018 West Los 

Angeles on-road measurements. The newest model LEV II vehicles account for the largest 

percentage of vehicles in the fleet (2009 & newer ~62% of fleet) but only a small minority of the  

Table 1. 2018 Inventory Comparison for California’s South Coast Air Basin 

South Coast Air Basin West Los Angeles (Gasoline) Peralta Weigh Station (Diesel) 

kg Fuel/daya (4.8 ± 0.3) x 107 (8.1 ± 0.7) x 106 

On-road gNOx/kg of Fuelb 2.3 ± 0.1 12.5 ± 0.6 

Fuel-Based NOx tons/dayc,d  122 ± 13 111 ± 15 

CEPAMe NOx tons/dayc 70 111 

On-road gCO/kg of Fuelb 11.2 ± 0.2 5.9 ± 0.9 

Fuel-Based CO tons/dayc,d 592 ± 47  53 ± 13 

CEPAMe CO tons/dayc 620 24 

aderived from State annual fuel sales from Hassler et al., (2016) see supporting material. 

buncertainties are standard error of the mean derived from the daily measurements. 

cshort tons; 1 ton = 0.907 metric tons. 

duncertainties are the combined uncertainty from the fuel and emission factors. 

eCalifornia Emission Projections and Analysis Model 



 15

 
emissions (~11% of fuel-based NOx). The simple addition of lower emitting new vehicles, even 

if they are zero emitting vehicles, will not appreciably change the light-duty NOx emissions 

distribution and will not provide any significant changes to the NOx inventory. The majority of 

the light-duty NOx emissions are found in the older LEV I vehicles. LEV I vehicles (1994 - 

2003) are approximately 16% of the fleet observed at the West Los Angeles site but account for 

half of the fuel specific NOx emissions. The highest emitting 10% of the LEV I vehicles are 

responsible for more than half of these emissions. Even small reductions in this segment of the 

fleet will yield large reductions in NOx emissions. Currently 2001 model year vehicles, as an 

example, have a year over year percentage removal from the fleet of 8.3% (~8.5 year half-life). 

The desire for large reductions in the NOx inventory in the SoCAB will require an extraordinary 

effort to achieve and LEV I gasoline vehicles appear to be a significant source. It is unlikely that 

we can expect the elimination of these vehicles from the fleet through natural attrition, especially 

 

Figure 5. 2018 West Los Angeles light-duty vehicle percent of total gNOx/kg of fuel emissions 
by vehicle type and fuel and the 2018 fleet age distribution percentage by model year. Along 
the top of the plot are the approximate model years for the California vehicle certification 
levels. 
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within the current economic downturn, will occur very fast. This suggests that other methods 

need to be explored to hasten the removal of high NOx emitters from the fleet. 

Summary 

State and regional air quality officials depend on air basin inventories for designing emission 

reduction plans to help a region comply with the NAAQS. Because the time frames involved in 

these plans are typically long and the implementation costs are often high any errors in the 

inventory can result in costly missteps and lost time if the emissions reductions anticipated are 

not achieved. The SoCAB currently experiences some of the nation’s highest ozone levels; as a 

result local and state regulations are targeting large NOx reductions from heavy-duty diesel 

vehicles but admittedly believe that reductions from other sources will be necessary to achieve 

these targets.  

Ambient molar NOx/CO ratios collected on weekdays during the morning rush hour in the 

SoCAB were compared with those estimated for gasoline powered vehicles by California’s 

EMFAC2017 emissions model and on-road emission measurements collected from gasoline 

powered vehicles at sites within the SoCAB. The ambient molar NOx/CO ratios steadily increase 

until around 2010 when they level off and then begin to decline through 2018. Both the 

EMFAC2017 predictions and the on-road emission measurements from 1999 - 2001 have ratios 

that are along the lower edge of the ambient measurements. However, after 2001 the 

EMFAC2017 and the on-road NOx/CO ratios diverge with the model predicted ratios decreasing 

significantly through 2018 and ending up factors of 1.8 to 2.4 below the 2018 average. The on-

road measured ratios increase along with the ambient measurements until their peak and then 

increase slightly through 2018. 

The difference between the two sets of ratios was found to most likely be that the EMFAC2017 

model underestimates the NOx emission factors for the gasoline fleet as the CO emission factor 

comparison was good. Comparisons with 2018 on-road measurements collected in West Los 

Angeles found that the fuel specific NOx emission factor comparison was good for the 2009 and 

newer model year vehicles that all have near-zero emissions. However, for the 2008 and older 

models the observed on-road gNOx/kg of fuel emissions for both passenger vehicles and trucks 

increase at a higher rate than predicted by the EMFAC2017 model. For gasoline passenger 
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vehicles (0.7 vs 1.8 ± 0.1 gNOx/kg of fuel) and trucks (1.1 vs 3.0 ± 0.1 gNOx/kg of fuel) the on-

road age normalized mean emissions are factors of 2.6 and 2.7 times higher than predicted by the 

model. For the oldest model year vehicles (pre-1999) we found NOx emission deterioration rates 

that were approximately a factor of 4 higher (~0.5 vs ~0.125 gNOx/kg of Fuel/Year) for the on-

road measurements, a likely cause of the under prediction. 

A fuel-based inventory for the 2018 SoCAB constructed using the on-road measurements from 

the West Los Angeles site indicates that there is 74% more NOx emissions from the light-duty 

gasoline fleet than represented in the inventory. These estimates imply that NOx emissions from 

light-duty gasoline vehicles are comparable or slightly higher than those from heavy-duty 

vehicles. The majority of the light-duty NOx emissions are found in the older LEV I (1994 - 

2003) vehicles, which make up approximately 16% of the fleet observed in 2018 at the West Los 

Angeles site but account for half of the fuel specific NOx emissions. The emissions of these 

vehicles are as expected skewed with the highest emitting 10% responsible for more than half of 

the LEV I contribution or 25% of the total NOx emissions. 

The under reporting of NOx emission factors by the EMFAC model has been reported by other 

researchers, however the newer iterations continue to carry forward this problem. This issue 

significantly changes the NOx emissions distribution for mobile sources in the SoCAB and will 

lead to an overestimation in the percent reductions that can be achieved in lowering diesel 

vehicle NOx emissions. In addition it overlooks the possibility of significant NOx emission 

reductions by targeting the removal of older high emitting gasoline vehicles. 
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Table S1. California’s 2018 South Coast Air Basin CO and NOx Emissions Inventory for 
Stationary Sources (https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat2016.php). 
 

 
 

Stationary Sources AREA CO NOx

Fuel Combustion tons/day tons/day

ELECTRIC UTILITIES SOUTH COAST 6.5907 5.177

COGENERATION SOUTH COAST 0.5742 0.424

OIL AND GAS PRODUCTION (COMBUSTION) SOUTH COAST 0.7754 1.7425

PETROLEUM REFINING (COMBUSTION) SOUTH COAST 4.9539 8.2539

MANUFACTURING AND INDUSTRIAL SOUTH COAST 16.1448 14.1926

FOOD AND AGRICULTURAL PROCESSING SOUTH COAST 0.3039 0.2268

SERVICE AND COMMERCIAL SOUTH COAST 16.1491 10.8974

OTHER (FUEL COMBUSTION) SOUTH COAST 2.632 3.219

Total Fuel Combustion 48.124 44.1332

Waste Disposal

SEWAGE TREATMENT SOUTH COAST 0.0064 0.007

LANDFILLS SOUTH COAST 0.5176 0.6491

INCINERATORS SOUTH COAST 0.5618 1.7638

SOIL REMEDIATION SOUTH COAST 0 0

OTHER (WASTE DISPOSAL) SOUTH COAST 0 0

Total Waste Disposal 1.0858 2.4199

Cleaning and Surface Coatings

LAUNDERING SOUTH COAST 0 0

DEGREASING SOUTH COAST 0 0

COATINGS AND RELATED PROCESS SOLVENTS SOUTH COAST 0.0099 0.0148

PRINTING SOUTH COAST 0 0

ADHESIVES AND SEALANTS SOUTH COAST 0 0

OTHER (CLEANING AND SURFACE COATINGS) SOUTH COAST 0.0604 0.027

Total Cleaning and Surface Coatings 0.0703 0.0418

Petroleum Production and Marketing

OIL AND GAS PRODUCTION SOUTH COAST 0.0185 0.0381

PETROLEUM REFINING SOUTH COAST 5.161 1.3006

PETROLEUM MARKETING SOUTH COAST 0.0066 0.0057

OTHER (PETROLEUM PRODUCTION AND MARKETING) SOUTH COAST 0.0006 0.0009

Total Petroleum Production and Marketing 5.1867 1.3453

Industrial Processes

CHEMICAL SOUTH COAST 0.0314 0.0072

FOOD AND AGRICULTURE SOUTH COAST 0 0.0001

MINERAL PROCESSES SOUTH COAST 0.1625 0.3991

METAL PROCESSES SOUTH COAST 0.1853 0.0422

WOOD AND PAPER SOUTH COAST 0 0

GLASS AND RELATED PRODUCTS SOUTH COAST 0.0029 0

ELECTRONICS SOUTH COAST 0.0004 0.0004

OTHER (INDUSTRIAL PROCESSES) SOUTH COAST 0.1257 0.0225

Total Industrial Processes 0.5082 0.4715

Total Stationary Sources 54.98 48.41
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Table S2. California’s 2018 South Coast Air Basin CO and NOx Emissions Inventory for 
Areawide Sources (https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat2016.php). 
 

 
 
 
Table S3. California’s 2018 South Coast Air Basin CO and NOx Emissions Inventory for 
Natural Sources (https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat2016.php). 
 

 
  

Areawide Sources AREA CO NOx

Solvent Evaporation tons/day tons/day

CONSUMER PRODUCTS SOUTH COAST 0 0

ARCHITECTURAL COATINGS AND RELATED PROCESS SOLVENTS SOUTH COAST 0 0

PESTICIDES/FERTILIZERS SOUTH COAST 0 0

ASPHALT PAVING / ROOFING SOUTH COAST 0 0

Total Solvent Evaporation 0 0

Miscellaneous Processes

RESIDENTIAL FUEL COMBUSTION SOUTH COAST 46.7507 14.5577

FARMING OPERATIONS SOUTH COAST 0 0

CONSTRUCTION AND DEMOLITION SOUTH COAST 0 0

PAVED ROAD DUST SOUTH COAST 0 0

UNPAVED ROAD DUST SOUTH COAST 0 0

FUGITIVE WINDBLOWN DUST SOUTH COAST 0 0

FIRES SOUTH COAST 3.0231 0.0751

MANAGED BURNING AND DISPOSAL SOUTH COAST 6.3053 0.191

COOKING SOUTH COAST 0 0

OTHER (MISCELLANEOUS PROCESSES) SOUTH COAST 0 0

Total Miscellaneous Processes 56.0791 14.8238

Total Areawide Sources 56.08 14.82

Natural (Non‐Anthropogenic) Sources AREA CO NOx

Natural Sources tons/day tons/day

BIOGENIC SOURCES SOUTH COAST 0 0

GEOGENIC SOURCES SOUTH COAST 0 0

WILDFIRES SOUTH COAST 243.8116 4.4644

Total Natural Sources 243.81 4.46
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Table S4. California’s 2018 South Coast Air Basin CO and NOx Emissions Inventory for Mobile 
Sources (https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat2016.php). 

Mobile Sources AREA CO NOx

On‐Road Motor Vehicles tons/day tons/day

LIGHT DUTY PASSENGER (LDA) SOUTH COAST 266.4686 22.8899

LIGHT DUTY TRUCKS ‐ 1 (LDT1) SOUTH COAST 56.4124 5.1051

LIGHT DUTY TRUCKS ‐ 2 (LDT2) SOUTH COAST 123.6348 13.5449

MEDIUM DUTY TRUCKS (MDV) SOUTH COAST 144.0057 16.5407

LIGHT HEAVY DUTY GAS TRUCKS ‐ 1 (LHDGT1) SOUTH COAST 17.3217 5.0034

LIGHT HEAVY DUTY GAS TRUCKS ‐ 2 (LHDGT2) SOUTH COAST 2.2808 0.7972

MEDIUM HEAVY DUTY GAS TRUCKS (MHDGT) SOUTH COAST 8.2656 1.4127

HEAVY HEAVY DUTY GAS TRUCKS (HHDGT) SOUTH COAST 3.4053 0.3647

LIGHT HEAVY DUTY DIESEL TRUCKS ‐ 1 (LHDDT1) SOUTH COAST 2.292 10.7233

LIGHT HEAVY DUTY DIESEL TRUCKS ‐ 2 (LHDDT2) SOUTH COAST 0.7253 3.2044

MEDIUM HEAVY DUTY DIESEL TRUCKS (MHDDT) SOUTH COAST 3.3642 22.4182

HEAVY HEAVY DUTY DIESEL TRUCKS (HHDDT) SOUTH COAST 8.4102 60.8844

MOTORCYCLES (MCY) SOUTH COAST 47.986 2.5065

HEAVY DUTY DIESEL URBAN BUSES (UBD) SOUTH COAST 9.2827 10.2338

HEAVY DUTY GAS URBAN BUSES (UBG) SOUTH COAST 2.9786 0.5497

SCHOOL BUSES ‐ GAS (SBG) SOUTH COAST 0.562 0.0707

SCHOOL BUSES ‐ DIESEL (SBD) SOUTH COAST 0.0975 2.0059

OTHER BUSES ‐ GAS (OBG) SOUTH COAST 1.9521 0.3753

OTHER BUSES ‐ MOTOR COACH ‐ DIESEL (OBC) SOUTH COAST 0.1006 0.9907

ALL OTHER BUSES ‐ DIESEL (OBD) SOUTH COAST 0.0759 1.0301

MOTOR HOMES (MH) SOUTH COAST 2.1093 0.7132

Total On‐Road Motor Vehicles 701.73 181.36

Other Mobile Sources

AIRCRAFT SOUTH COAST 37.0541 15.2761

TRAINS SOUTH COAST 3.9777 17.6595

OCEAN GOING VESSELS SOUTH COAST 1.3714 13.1882

COMMERCIAL HARBOR CRAFT SOUTH COAST 2.6125 3.7041

RECREATIONAL BOATS SOUTH COAST 86.4411 4.8787

OFF‐ROAD RECREATIONAL VEHICLES SOUTH COAST 3.6753 0.0722

OFF‐ROAD EQUIPMENT SOUTH COAST 544.662 49.9524

FARM EQUIPMENT SOUTH COAST 4.9233 2.0758

FUEL STORAGE AND HANDLING SOUTH COAST 0 0

Total Other Mobile Sources 684.72 106.81

Total Mobile Sources 1386.45 288.17
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Table S5. California’s 2018 South Coast Air Basin CO and NOx Emissions Inventory Totals 

 
2018 CO (tons/day) Percent of Total CO NOx (tons/day) Percent of Total NOx

Total Stationary Sources 54.98 3.16 48.41 13.60

Total Areawide Sources 56.08 3.22 14.82 4.16

Total Natural Sources 243.81 14.00 4.46 1.25

Mobile Sources

         On‐road Gasoline 677.38 38.90 69.87 19.63

         On‐road Diesel 24.35 1.40 111.49 31.33

         Other Mobile 684.72 39.32 106.81 30.01

Total Mobile Sources 1386.45 79.62 288.17 80.98

Grand Total for South Coast (tons/day) 1741.32 355.86

Grand Total for South Coast (moles/day) 56468520 7024367.0

Total Inventory Molar NOx/CO ratio 0.124
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Table S6. How Molar Ratios are Calculated from the EMFAC2017 Output. 
 
 

 
 
  

EMFAC2017 (v1.0.2) Emissions Inventory

Region Type: Air Basin

Region: SOUTH COAST

Calendar Year: 2018

Season: Summer

Vehicle Classification: EMFAC2011 Categories

Units: miles/day for VMT, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

Region Calendar Year Vehicle Category Model Year Speed Fuel VMT CO_RUNEX NOx_RUNEX

SOUTH COAST 2018 LDA Aggregated 20 GAS 15943834 26.7394124 1.325437872

SOUTH COAST 2018 LDT1 Aggregated 20 GAS 1601609 5.80930955 0.382634827

SOUTH COAST 2018 LDT2 Aggregated 20 GAS 5293119 12.5840715 0.92779679

SOUTH COAST 2018 LHD1 Aggregated 20 GAS 334227.5 0.67648173 0.112403456

SOUTH COAST 2018 LHD2 Aggregated 20 GAS 51931.45 0.08268494 0.018627359

SOUTH COAST 2018 MCY Aggregated 20 GAS 114978.2 3.11216087 0.131973032

SOUTH COAST 2018 MDV Aggregated 20 GAS 3449977 10.2119046 0.782326648

SOUTH COAST 2018 MH Aggregated 20 GAS 14426.6 0.07327705 0.009083731

SOUTH COAST 2018 OBUS Aggregated 20 GAS 13054.78 0.04893067 0.010840672

SOUTH COAST 2018 SBUS Aggregated 20 GAS 7963.556 0.02600965 0.005200338

SOUTH COAST 2018 T6TS Aggregated 20 GAS 63835.39 0.32038395 0.060354298

SOUTH COAST 2018 T7IS Aggregated 20 GAS 393.9754 0.03086229 0.002786383

SOUTH COAST 2018 UBUS Aggregated 20 GAS 41013.35 0.02049782 0.014442386

Total tons/day 59.74 3.78

Total grams/day 54240276 3435788

Total moles/day 1937152 74691

Molar NOx/CO 0.0386
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Table S7. FEAT South Coast Air Basin On-road Campaigns and Statistics. 

 

  

La Basin Non‐Diesel Non‐Diesel Non‐Diesel Fleet Molar

Total Mean Mean Molar Molar NOx/CO

Year/Location Records Non‐Diesel %Diesel gCO/kg gNOx/kg NOx/CO SEM NOx/CO SEM %Difference

2018 Lynwood I‐710 14302 14098 1.43 12.42 2.41 0.1028 0.0063 0.1149 0.0043 10.57

2018 Lynwood I‐105 7724 7591 1.72 10.52 2.89 0.1435 0.0054 0.1592 0.0068 9.87

2018 West LA 19167 18844 1.69 11.15 2.28 0.1097 0.0065 0.1215 0.0068 9.68

2015 West LA 20100 19774 1.62 13.20 2.59 0.1093 0.0087 0.1185 0.0095 7.74

2013 West LA 26284 25750 2.03 16.61 3.09 0.0966 0.0035 0.1098 0.0049 11.97

2010 Van Nuys 12701 12540 1.27 19.58 3.82 0.0966 0.0061 0.1032 0.0074 6.45

2008 West LA 17866 17557 1.73 21.66 5.43 0.1266 0.0111 0.1364 0.0120 7.19

2005 West LA 19581 19102 2.45 27.58 4.79 0.0865 0.0031 0.0956 0.0035 9.56

2003 West LA 20176 19650 2.61 43.36 6.57 0.0741 0.0021 0.0801 0.0019 7.44

2001 West LA 20234 19614 3.06 55.07 8.43 0.0727 0.0029 0.0783 0.0033 7.15

1999 West LA 18899 18540 1.90 72.03 10.04 0.0647 0.0068 0.0672 0.0071 3.58

2001 Riverside 19783 19039 3.76 49.61 8.07 0.0787 0.0018 0.0861 0.0021 8.68

2000 Riverside 23285 22509 3.33 62.65 8.67 0.0641 0.0023 0.0688 0.0025 6.94

1999 Riverside 18740 17998 3.96 68.17 7.41 0.0508 0.0024 0.0554 0.0025 8.30

1999 LA710/91 12655 12372 2.24 66.69 9.35 0.0585 0.0018 0.06164 0.00177 5.04

Average 8.01
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Table S8. Example Calculation of EMFAC2017 Mean gCO/kg of Fuel for 2018 LDA Type 
Vehicles Age Normalized to Match the On-road West Los Angeles Gasoline Passenger Fleet. 
 

EMFAC2017 (v1.0.2) Emissions Inventory

Region Type: Air Basin

Region: SOUTH COAST

Calendar Year: 2018

Season: Annual

Vehicle Classification: EMFAC2011 Categories

Units: miles/day for VMT, trips/day for Trips, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

EMFAC EMFAC EMFAC EMFAC EMFAC West LA EMFAC

LDA LDA LDA Fuel LDA LDA Gas Pass Mean CO

Model Year CO Fuel kg/day gCO/Day gCO/kg Fraction Fraction

1974 2.077 2.501 7077 1885554 266.43 0.001056 0.28132

1975 0.685 1.429 4043 621547 153.73 0 0

1976 0.658 1.347 3813 597580 156.72 8.8E‐05 0.013789

1977 0.692 1.495 4231 628178 148.47 0.000176 0.026127

1978 0.851 1.845 5222 772336 147.91 8.8E‐05 0.013015

1979 0.999 2.204 6238 906930 145.38 8.8E‐05 0.012792

1980 0.530 1.460 4132 481162 116.45 0 0

1981 0.566 1.468 4154 514208 123.78 8.8E‐05 0.010891

1982 0.594 1.566 4432 539750 121.79 0 0

1983 0.645 1.803 5103 585339 114.71 0 0

1984 0.953 2.960 8377 865077 103.27 0.000176 0.018173

1985 0.974 3.968 11229 884026 78.72 8.8E‐05 0.006927

1986 1.183 4.564 12915 1074008 83.16 0.000176 0.014635

1987 1.500 5.790 16385 1362192 83.14 0.000352 0.02926

1988 1.710 6.593 18659 1552241 83.19 0.000616 0.051238

1989 2.470 9.539 26996 2242939 83.08 0.000704 0.058484

1990 3.588 13.824 39123 3257913 83.27 0.002552 0.212489

1991 4.563 17.559 49691 4142957 83.37 0.002376 0.198075

1992 4.689 18.037 51044 4257386 83.41 0.0022 0.183473

1993 5.889 21.197 59988 5347265 89.14 0.002992 0.266673

1994 7.676 27.700 78392 6969426 88.90 0.004223 0.375488

1995 11.083 40.204 113777 10063107 88.45 0.004927 0.43581

1996 13.455 44.041 124636 12216926 98.02 0.004839 0.474363

1997 15.318 63.445 179548 13909016 77.47 0.006511 0.504404

1998 14.729 81.181 229742 13374218 58.21 0.010911 0.635155

1999 12.332 101.096 286103 11197877 39.14 0.01575 0.616449

2000 9.399 143.957 407398 8534141 20.95 0.01663 0.348364

2001 10.198 164.348 465106 9260030 19.91 0.017334 0.34511

2002 11.578 192.857 545785 10512871 19.26 0.02015 0.38812

2003 12.927 238.305 674404 11738004 17.41 0.024637 0.428808

2004 5.330 261.768 740803 4839503 6.53 0.029564 0.193138

2005 6.223 319.568 904377 5650410 6.25 0.038187 0.238589

2006 5.488 355.150 1005075 4983398 4.96 0.038275 0.189778

2007 6.618 397.153 1123943 6009151 5.35 0.050418 0.269559

2008 5.904 345.967 979086 5360754 5.48 0.041003 0.224503

2009 4.575 291.160 823981 4154021 5.04 0.032908 0.165903

2010 5.311 332.909 942133 4822137 5.12 0.040827 0.208966

2011 5.498 359.110 1016281 4992395 4.91 0.041795 0.205314

2012 7.771 477.349 1350899 7056384 5.22 0.062209 0.324945

2013 9.525 591.159 1672979 8648665 5.17 0.073559 0.380273

2014 10.167 637.639 1804518 9231821 5.12 0.080422 0.411437

2015 12.773 781.295 2211064 11598252 5.25 0.099956 0.524324

2016 12.526 751.783 2127546 11373948 5.35 0.099692 0.532958

2017 13.983 819.454 2319054 12696314 5.47 0.095996 0.52556

2018 14.315 817.813 2314410 12997642 5.62 0.03546 0.199141

Age Normalized EMFAC2017 LDA Mean gCO/kg of fuel 10.54
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Table S9. Example Calculation of EMFAC2017 Fleet Composite NOx Emission Factors for 
2018. 
 
EMFAC2017 (v1.0.2) Emissions Inventory

Region Type: Air Basin

Region: SOUTH COAST

Calendar Year: 2018

Season: Annual

Vehicle Classification: EMFAC2011 Categories

Units: miles/day for VMT, trips/day for Trips, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

Gasoline only and aggregated speed. CA RFGII density assumed to be 0.75 g/ml

LDA LDA LDT1 LDT1 LDT2 LDT2 MDV MDV Emissions

NOx NOx NOx NOx Fuel/Day Fuel/Day NOx Factor

Model Year RUNEX Fuel RUNEX Fuel RUNEX Fuel RUNEX Fuel 1000's gal Kilograms Tons/Day gNOx/Day gNOx/kg of Fuel

1974 0.184 2.501 0.063 0.785 0.148 1.835 0.112 1.369 6.491 18433.684 0.506 459802.855 24.944

1975 0.110 1.429 0.023 0.293 0.085 1.081 0.125 1.508 4.311 12243.204 0.342 310988.555 25.401

1976 0.071 1.347 0.019 0.365 0.038 0.723 0.205 1.965 4.400 12497.048 0.333 302292.512 24.189

1977 0.057 1.495 0.026 0.497 0.026 0.504 0.397 3.848 6.345 18018.902 0.506 459318.164 25.491

1978 0.070 1.845 0.036 0.704 0.037 0.727 0.133 2.731 6.007 17058.901 0.276 250303.480 14.673

1979 0.084 2.204 0.029 0.746 0.035 0.704 0.131 2.737 6.392 18152.980 0.279 253547.072 13.967

1980 0.047 1.460 0.024 0.616 0.021 0.416 0.052 1.069 3.562 10115.330 0.144 130493.509 12.901

1981 0.049 1.468 0.030 0.878 0.024 0.642 0.025 0.648 3.636 10326.209 0.128 115928.824 11.227

1982 0.053 1.566 0.039 1.094 0.023 0.602 0.026 0.664 3.927 11152.244 0.140 127278.916 11.413

1983 0.058 1.803 0.061 1.177 0.032 0.864 0.023 0.766 4.611 13094.318 0.174 158179.668 12.080

1984 0.090 2.960 0.129 2.544 0.055 1.525 0.052 1.314 8.343 23694.477 0.326 295911.568 12.489

1985 0.093 3.968 0.212 4.156 0.063 1.750 0.049 1.704 11.578 32881.648 0.417 378411.216 11.508

1986 0.113 4.564 0.359 6.955 0.099 2.433 0.059 1.908 15.859 45039.102 0.630 571980.624 12.700

1987 0.143 5.790 0.356 6.951 0.113 2.813 0.060 1.963 17.517 49747.870 0.672 610589.550 12.274

1988 0.163 6.593 0.341 6.970 0.155 4.034 0.087 2.850 20.448 58072.613 0.745 676526.748 11.650

1989 0.234 9.539 0.331 9.679 0.232 6.052 0.120 3.907 29.177 82863.791 0.917 832812.191 10.050

1990 0.339 13.824 0.186 7.881 0.287 7.566 0.133 4.381 33.652 95572.318 0.944 857209.563 8.969

1991 0.431 17.559 0.219 9.461 0.407 10.966 0.137 4.520 42.505 120715.031 1.193 1083584.090 8.976

1992 0.443 18.037 0.200 8.718 0.399 10.845 0.184 6.109 43.709 124132.911 1.226 1113619.878 8.971

1993 0.556 21.197 0.263 10.600 0.571 14.129 0.258 7.411 53.337 151476.425 1.649 1496954.933 9.882

1994 0.720 27.700 0.276 13.336 0.685 17.209 0.461 13.315 71.560 203230.492 2.143 1945970.833 9.575

1995 1.040 40.204 0.283 13.573 0.719 24.669 0.513 17.021 95.467 271127.301 2.555 2319720.730 8.556

1996 1.269 44.041 0.322 14.785 0.787 25.857 0.381 17.097 101.780 289056.381 2.760 2506131.080 8.670

1997 1.432 63.445 0.318 19.491 1.022 44.326 0.589 26.385 153.648 436358.994 3.362 3052248.257 6.995

1998 1.354 81.181 0.320 26.094 0.974 55.427 0.614 32.764 195.466 555124.494 3.262 2961864.169 5.335

1999 1.084 101.096 0.200 24.313 0.880 72.167 0.951 61.515 259.092 735821.623 3.115 2828594.319 3.844

2000 0.715 143.957 0.120 28.854 0.774 108.438 0.933 85.531 366.781 1041656.654 2.543 2308590.843 2.216

2001 0.779 164.348 0.132 33.252 0.749 110.078 0.957 118.645 426.324 1210758.913 2.618 2377186.842 1.963

2002 0.889 192.857 0.124 32.198 0.787 119.010 1.242 158.322 502.386 1426777.530 3.043 2762651.328 1.936

2003 0.995 238.305 0.074 21.045 0.981 145.121 1.237 186.172 590.643 1677427.351 3.286 2984130.124 1.779

2004 0.212 261.768 0.013 17.720 0.120 172.440 0.310 207.198 659.126 1871917.931 0.655 595115.254 0.318

2005 0.260 319.568 0.008 10.782 0.125 185.299 0.231 180.929 696.578 1978281.810 0.623 566121.155 0.286

2006 0.242 355.150 0.011 18.121 0.102 161.207 0.048 177.312 711.790 2021482.276 0.403 365892.555 0.181

2007 0.298 397.153 0.018 27.631 0.103 167.146 0.092 176.958 768.887 2183639.334 0.511 463772.889 0.212

2008 0.260 345.967 0.030 46.032 0.083 132.747 0.068 130.306 655.051 1860346.109 0.442 401414.944 0.216

2009 0.211 291.160 0.022 34.449 0.052 78.651 0.028 51.286 455.546 1293749.564 0.313 284201.795 0.220

2010 0.245 332.909 0.011 16.302 0.084 136.531 0.036 70.690 556.433 1580268.814 0.375 340868.216 0.216

2011 0.253 359.110 0.009 14.939 0.108 172.103 0.052 98.793 644.945 1831643.723 0.422 383562.865 0.209

2012 0.348 477.349 0.017 27.240 0.100 162.788 0.050 96.952 764.329 2170695.333 0.516 468292.148 0.216

2013 0.422 591.159 0.025 39.026 0.145 217.689 0.058 104.306 952.179 2704189.666 0.649 589343.354 0.218

2014 0.445 637.639 0.028 45.891 0.144 216.765 0.093 168.939 1069.233 3036623.016 0.710 644903.976 0.212

2015 0.528 781.295 0.064 108.154 0.177 267.082 0.107 195.308 1351.840 3839224.433 0.877 796365.803 0.207

2016 0.503 751.783 0.062 105.103 0.169 255.396 0.127 232.058 1344.340 3817926.241 0.861 781769.766 0.205

2017 0.548 819.454 0.057 96.710 0.217 317.137 0.130 230.163 1463.464 4156237.290 0.951 863317.787 0.208

2018 0.510 817.813 0.051 93.400 0.207 305.134 0.118 211.430 1427.777 4054886.673 0.886 804312.523 0.198
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Calculation of emission deterioration rates from the on-road and EMFAC2017 predicted 

emission factors. 

Assuming that emissions deterioration can be modeled as a linear process we plot the fuel 

specific NOx emission factors for the gasoline fleet versus vehicle age at the time of 

measurement for each model year. This creates a graph for each model year of emissions versus 

time (see Figure S1) whose data is then fit with a best fit straight line. The slope of this line is 

equal to that model year’s emissions deterioration rate in gNOx/kg of Fuel/Year. 

Because of the lack of on-road NO2 measurements prior to 2008 for the emission deterioration 

rate calculations we have chosen for consistency to only use the NO measurements for the eight 

West Los Angeles measurement campaigns (1999, 2001, 2003, 2005, 2008, 2013, 2015 and 

2018). However, to compare NOx emissions with the model we have converted the grams of NO 

to grams of NO2 using the molecular weights of each species (30 and 46 g/mole; grams NO2 = 

grams NO * 46/30) and plotting the data as gNOx/kg of fuel. Because we have restricted these 

calculations to only the gasoline fleet the contribution of NO2 to the total NOx emissions is not 

significant. For the EMFAC2017 gasoline fleet we have created fuel weighted composite 

running exhaust emission factors that include the model vehicle classes LDA, LDT1, LDT2 and 

MDV (see Table S9 for an example) for each measurement year. Model years older than 2001 

have a data point from each campaign while that number decreases in newer model years until 

the 2009 - 2013 model years have only the minimum necessary to fit a straight line, 3 data points 

from the 2013, 2015 and 2018 measurements. This results in significantly larger uncertainties in 

the slope estimates for the on-road measurements for these model years.   
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Figure S1. Fuel specific NOx emission for the gasoline fleet versus vehicle age for 2013 - 

1989 model year groupings for the FEAT on-road measurements (top) and EMFAC2017 

emission factor predictions (bottom). Best fit lines are plotted for the 2009 (green), 2004 

(red), 2000 (purple) and 1994 (orange) model years. 
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Figure S2. Fuel specific NOx emissions versus model year for heavy-duty diesel trucks 

measured in 2017 at the Peralta weigh station on SR 91 in the Anaheim Hills and 

EMFAC2017 annual running exhaust emission factors with aggregated speed for a fuel 

weighted heavy-duty diesel composite using all T6 vehicle types with gvwr>26,000 lbs. and 

all T7 vehicle types except T7 Ag. ULSD density assumed to be 0.86g/ml. Uncertainties are 

standard error of the mean determined from the daily measurements. EMFAC2017 mean 

emissions have been calculated using the model year distribution of the Peralta weigh station 

on-road fleet. 
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Table S10. Calculation of 2018 South Coast Air Basin Gasoline and Diesel Fuel Use. 

Year Basin 
Gasoline 
(kg/day) 

State Total 
Gasolineb 
(kg/day) 

Basin 
Fraction of 
State Total 
Gasoline 

Basin 
Diesel 
(kg/day) 

State Total 
Dieselb 
(kg/day) 

Basin 
Fraction of 
State Total 
Diesel 

2011 (4.5 ± 0.3) x 
107a 

1.1 x 108 0.4 (6.8 ± 0.7) x 
106a 

2.0 x 107 0.34 

2012 (4.5 ± 0.3) x 
107a 

1.1 x 108 0.4 (6.8 ± 0.7) x 
106a 

2.0 x 107 0.34 

2013 (4.5 ± 0.3) x 
107a 

1.1 x 108 0.4 (7.1 ± 0.7) x 
106a 

2.1 x 107 0.34 

2014 (4.6 ± 0.3) x 
107a 

1.1 x 108 0.4 (7.2 ± 0.7) x 
106a 

2.2 x 107 0.34 

       
2018 (4.8 ± 0.3) x 

107c 
1.2 x 108 0.4 (8.1± 0.7)  x 

106c 
2.4 x 107 0.34 

aData from Hassler et al., uncertainties are reported as absolute error. 
bState gasoline sales minus aviation gasoline derived from annual sales. Source: California 

Department of Tax and Fee Administration (https://www.cdtfa.ca.gov/taxes-and-

fees/spftrpts.htm). 
cSouth Coast Air Basin daily fuel consumption using basin fraction calculated from Hassler et 

al. 
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