University of Denver Digital Commons @ DU

Fuel Efficiency Automobile Test Publications Fuel Efficiency Automobile Test Data Repository

1998

Remote Sensing of Commercial Aircraft Emissions

Peter J. Popp

Donald H. Stedman

Follow this and additional works at: https://digitalcommons.du.edu/feat_publications

Part of the Environmental Chemistry Commons

Peter J. Popp & Donald H. Stedman Department of Chemistry and Biochemistry, University of Denver Denver, CO, 80208 (303) 871-2580 (303) 871-2587 fax

Introduction

On September 23 and 24, 1997, a study was undertaken by the University of Denver, with the cooperation of British Airways and the British Airports Authority, to remotely measure the emissions of commercial aircraft. During the two day sampling period at London's Heathrow Airport, a total of 131 measurements were made of 96 different aircraft. The aircraft, ranging in size from Gulfstream executive jets to Boeing 747-400s, were measured in a mix of idle, taxi-out, and takeoff modes.

While it has been shown that air pollution totals from automobiles and many major industrial sources have been steady or decreasing with time, emissions from commercial aircraft continue to increase. This trend is primarily driven by a constantly increasing number of commercial flights worldwide.¹ In the United States, levels of carbon monoxide (CO), volatile organic compounds (VOCs), and nitrogen oxides (NO_x, which is the sum of nitrogen oxide, NO, and nitrogen dioxide, NO₂) emitted from aircraft during commercial flights have all more than doubled from 1970 to 1993.²

Carbon monoxide is known to cause respiratory distress, particularly among individuals with cardiovascular disease, and at elevated levels also causes impairment of visual perception, work capacity and learning ability. Combined, VOCs and NO_x are the principal precursors in the photochemical production of tropospheric ozone, a major component of urban smog. Individually, NO_x has been shown to be responsible for the production of atmospheric particulate matter and acidic precipitation, and may contribute to aquatic algal blooms.²

Technical Description

The remote sensor used in this study was developed at the University of Denver for measuring the pollutants in motor vehicle exhaust, and has previously been described in the literature.^{3,4} The instrument consists of a non-dispersive infrared (IR) component for detecting carbon monoxide, carbon dioxide (CO₂), and hydrocarbons (HC), and a dispersive ultraviolet (UV) spectrometer for measuring nitrogen oxide. The system is shown schematically in Figure 1. The source and detector units are positioned to create an open-air sample path between them, approximately 20 feet in

Figure 1. Schematic diagram of the University of Denver remote sensing system. length. Colinear beams of IR and UV light are passed across the sample path into the IR detection unit, and are then focused onto a dichroic beam splitter, which serves to separate the beams into their IR and UV components. The IR light is then passed onto a spinning polygon mirror, which spreads the light across the four infrared detectors (CO, CO_2 , HC and reference).

The UV light is reflected off the surface of the beam splitter, and is focused into the end of a quartz fiber-optic cable, which transmits the light to the ultraviolet spectrometer. The UV unit is then capable of quantifying nitrogen oxide by measuring an absorbance band at 226.5 nm in the ultraviolet spectrum and comparing to a calibration spectrum in the same region. Since most of the NO_x emitted from a combustion engine is in the form of NO,⁵ this instrument is effectively measuring NO_x .

When measuring aircraft exhaust, the system is manually triggered when the operator determines that exhaust is present at the sensor. Once data collection is initiated, the instrument samples continuously at 100 Hz, for a period of 10 seconds. At the end of the 10 s sampling period, a data file is compiled that contains 1000 voltages from each of the 4 IR detectors, as well as the corresponding 1000 calculated NO concentrations from the UV spectrometer. Post-processing first involves converting the 4 IR voltages to concentration values for CO, CO₂, and HC for all of the 1000 measurements. The ratios of CO/CO₂, HC/CO₂, and NO/CO₂ in the exhaust are then determined by a classical least squares analysis involving the 1000 values for CO₂ along with the corresponding 1000 values for CO, HC and NO. On their own, the ratios of CO/CO₂, HC/CO₂, and NO/CO₂ are useful parameters to describe a hydrocarbon combustion system³, but a knowledge of combustion chemistry allows one to use these ratios to further calculate the mass emissions of CO, HC and NO in the exhaust, in units of g/kg of fuel consumed.

There were primarily two locations used for data collection at Heathrow Airport. The first was the Lima cul-de-sac, where measurements were made from approximately 11:30 to 13:30 on September 23. Aircraft measured at this location were either idling or lightly accelerating immediately after push-out. The second location was directly north-west of the west end of runway 09 Right. Depending on wind conditions, aircraft at this location were measured during either taxi-out or takeoff. Data were collected at the second location from 15:30 to 16:30 on September 23 and from 11:00 to 15:00 on September 24.

Results

A complete listing of all data collected is shown in Appendix A. This table includes the measured values for CO, HC and NO, in units of g/kg of fuel, as

well as the associated error (±1 s.d.) for these values. Carbon monoxide is measured and reported as such, and hydrocarbons are measured and reported as propane equivalents. We measure and report NO_x emissions as NO, and do not use the convention by which the mass is assumed to be NO₂. Also included is the date and time of the measurement, as well as the airline, aircraft model, and registration. The emissions data are summarized graphically in Figures 2, 3, and 4, for NO, CO, and HC, respectively. These scatter plots show the measured values for each of the pollutants, in the order the measurements were made. Also shown on these plots are the idle and takeoff emissions for three representative aircraft as calculated from the FAA Aircraft Engine Emission Database.⁶ The three aircraft shown are a Boeing 747-400 with RB211-524G engines, a Boeing 737-400 with CFM56-3C-1 engines, and a Boeing 757-200 with RB211-535C engines. The final point on each of these plots is an airport service light-duty diesel truck that we measured on the last day of testing.

One can see from the scatter plot of NO emissions that aircraft were measured in a mix of idle, taxi, and takeoff modes. The data collected agrees well with the values from the FAA database, and this plot also shows that a typical light-duty diesel truck emits NO, in units of g/kg of fuel, at a rate comparable to a commercial airplane at takeoff. This point seems less surprising, however, when one considers that a B757-200 consumes over 7600 times more fuel at takeoff than the diesel truck does when cruising at 50 km/h.

The scatter plots for both CO and HC (Figures 3 and 4) show that we were less effective at measuring these pollutants. Aircraft are typically thought to emit very low levels of CO and HC regardless of operating mode, and this is illustrated in Figures 3 and 4 by the values derived from the FAA database. If the range of the measured points lying below the zero line in these plots is an indication of the instrumental noise, one can see that the noise in the system is far too great to draw confident conclusions regarding the CO and HC measurements made in this study. These high noise levels are in contrast to previous studies using this instrument to measure motor vehicle exhaust in a roadside situation. Figures 5 and 6 show scatter plots of the noise obtained on the CO and HC channels of the instrument that was used in this study. These plots were obtained from an audit truck, equipped to simulate automobile exhaust that contains CO₂, but no CO or HC. One can clearly see that the noise about zero in these plots is much lower than the noise in Figures 3 and 4. It is suspected that the winds created by the aircraft exhaust are the cause of the increased noise. This may be a result of the winds either shaking the instrument or cooling the infrared light source, thereby causing fluctuations in the voltage output of the

infrared detectors. It should be possible in future studies to greatly reduce the noise levels in the instrument by securing the source and detector with sandbags, and installing shielding to prevent wind from cooling the source.

The NO channel of the instrument is much less susceptible to instrument movement or voltage fluctuations due to the spectroscopic technique by which NO is measured. Nitrogen oxide is quantified by measuring the height of an absorption peak above a baseline, and although fluctuations in source intensity caused by movement or cooling may change the level of the baseline, the height of the peak above the baseline remains constant.

A frequency distribution plot for the aircraft NO emissions is shown in Figure 7. This plot is constructed by assigning each measurement to an emission category, and it can be seen that the data forms a bi-modal distribution. The majority of planes emit NO at levels between 0-4 g/kg of fuel, with another maximum occurring in the chart at 20-24 g/kg of fuel. This distribution is a result of aircraft being measured in two distinctly different operating modes; idle or taxi, where little or no NO is being produced, and takeoff mode, where most NO production takes place. In contrast to the results shown here, NO emissions from automobiles follow a gamma distribution.⁷ This observation is primarily driven by a combination of vehicle age and lack of maintenance, with the latter problem not normally associated with commercial aircraft.

Figure 2. Scatter plot of aircraft NO emissions. Data is shown in the order measurements were made.

7

Figure 3. Scatter plot of aircraft CO emissions. Data is shown in the order measurements were made.

Figure 4. Scatter plot of aircraft HC emissions. Data is shown in the order measurements were made.

Figure 5. Scatter plot of the noise from the CO channel when the remote sensor is operated in an on-road situation.

Figure 6. Scatter plot of the noise from the HC channel when the remote sensor is operated in an on-road situation.

Figure 7. Frequency distribution plot for the aircraft NO emissions.

Conclusions

A study was successfully undertaken to remotely measure the emissions of commercial aircraft. A fleet of 96 aircraft were characterized for NO emissions, and it was shown that these emissions follow a bi-modal distribution, driven primarily by the operating mode of the airplane during measurement. The CO and HC emissions of the aircraft were also measured, but the noise levels displayed by the instrument during these measurements was higher than expected. It is believed that installing the remote sensor more securely on the airfield, and shielding the light source from any wind created by the aircraft would alleviate these problems. Future studies should then allow an aircraft fleet to be characterized for CO and HC emissions as well.

References

- 1. Natural Resources Defense Council. "Flying Off Course Environmental Impacts of America's Airports". October 1996.
- 2. United States Environmental Protection Agency. "National Air Pollution Trends, 1900-1993". October 1994.
- 3. Bishop, G.A.; Stedman, D.H. "Measuring the Emissions of Passing Cars." *Acc. Chem. Res.* **1996**, 29, 489.
- 4. Popp, P.J.; Bishop, G.A.; Stedman, D.H. Proceedings of the 7th CRC On-Road Vehicle Emissions Workshop. San Diego, California. April 1997.
- 5. Heywood, J.B. Internal Combustion Engine Fundamentals. McGraw-Hill: New York, 1988.
- 6. Federal Aviation Administration Aircraft Engine Emissions Database. Reference No. AEE-110.
- 7. Zhang, Y.; Stedman, D.H.; Bishop, G.A.; Beaton, S.P.; Guenther, P.L.; McVey, I.F. "Enhancement of Remote Sensing for Mobile Source Nitric Oxide." *J. Air & Waste Manage. Assoc.* **1996**, 46, 25.

Appendix A

Aircraft Emissions Data

0.25	0.47	1.57	81.59	8.39	-191.94	100133	M789UA	B777	United	16:01	9/23/97
0.03	0.36	0.09	-0.22	0.69	11.26	095935	GBMPF	B757	BA	15:59	9/23/97
0.04	3.27	0.14	5.38	1.62	-9.01	095806	PHAGE	A310	MEA	15:58	9/23/97
						095824	PHAGE	A310	MEA	15:58	9/23/97
0.05	-1.08	0.41	19.74	1.08	87.96	095703	GBUSH	A300	BA	15:57	9/23/97
0.05	2.53	0.07	2.40	1.54	8.02	095624	YUWNK	B737	JAT	15:56	9/23/97
0.06	0.89	0.12	8.22	1.05	-16.07	095301	GBNWY	B767	BA	15:53	9/23/97
0.06	0.24	0.25	13.03	3.29	-42.76	095211	GOBING	B737	British Mid.	15:52	9/23/97
0.15	0.55	0.72	26.63	5.97	-174.68	094452	SUGBO	A340	Egyptair	15:44	9/23/97
		1.43	35.52			094417	CFYIOX	A340	Air Canada	15:44	9/23/97
0.11	0.42	0.44	-0.88	6.88	109.01	094353	CFYIOX	A340	Air Canada	15:43	9/23/97
0.24	-0.21	0.45	-32.29	5.53	7.00	094210	GBVKC	B737	British Mid.	15:42	9/23/97
0.07	4.84	0.13	5.52	1.18	33.06	094153	GBVKC	B737	British Mid.	15:41	9/23/97
0.03	1.88	0.04	3.01	0.64	3.74	094009	GBMPB	B757	BA	15:40	9/23/97
0.11	-3.41	0.30	-9.39	2.62	97.86	093851	GBUSK	A320	BA	15:38	9/23/97
0.14	23.24	0.73	-34.25	2.72	10.59	093610	GBNWV	B767	BA	15:36	9/23/97
0.10	7.04	0.29	-3.50	1.55	2.53	093553	GBNWV	B767	BA	15:35	9/23/97
0.37	24.34	0.52	-7.08	8.09	224.19	093312	DAIPD	A320	Lufthansa	15:33	9/23/97
0.56	19.87	2.27	81.64			093332	DAIPO	A320	Lufthansa	15:33	8/23/97
						093350	DAIPD	A320	Lufthansa	15:33	9/23/97
0.15	4.79	0.13	-6.51	1.23	85.97	093254	DAIPO	A320	Lufthansa	15:32	9/23/97
0.03	1,14	0.12	-5.01	0.78	16.74	092907		B757	BA	15:29	9/23/97
0.05	3.99	0.33	13.54	1.76	-11.43	073129	VHOJI	B747-400	Quantas	13:31	9/23/97
0.15	5.52	0.42	6.03			073113	VHOJ	B747-400	Quantas	13:31	9/23/97
		3.72	-107.36			073149	NHOI	B747-400	Quantas	13:31	9/23/97
0.10	1.17	0.48	1.23	3.58	72.43	073057	VHOJI	B747-400	Quantas	13:30	9/23/97
0.11	0.69	0.32	2.72	3.25	94.30	072951	VHOI	B747-400	Quantas	13:29	9/23/97
0.26	-0.81	0.68	22.75	5.93	-7.06	072925	VHQI	B747-400	Quantas	13:29	9/23/97
						072311	N14068	A300	American	13:23	9/23/97
0.16	1.90					072254	N14068	A300	American	13:22	9/23/97
0.04	-0.16	0.17	8.19	1.37	101.86	070200	CFTOC	B747	Air Canada	13:02	9/23/97
0.05	1.32	0.20	2.88	2.18	32.84	070142	CFTOC	B747	Air Canada	13:01	9/23/97
0.15	-2.37	0.55	17.13	3.86	144.87	065820	CFTOC	B747	Air Canada	12:58	9/23/97
0.23	-3.17	0.63	2.26	5.33	191.50	065841	CFTOC	B747	Air Canada	12:58	9/23/97
0.02	0.83	0.11	2.80	0.96	48.95	054729		B747	Virgin	11:47	9/23/97
0.16	-2.30	0.65	5,98			054603		B747	Virgin	11:46	9/23/97
VO err. (g/kg)	NO (g/kg) N	HC err. (g/kg)	HC (g/kg)	20 err. (g/kg) t	CO (g/kg)	n Data File	Registratio	Aircraft	Airline	Time	Date

Date	Time	Airline	Aircraft	Registration	Data File	CO (g/kg)	CO err. (g/kg)	HC (g/kg)	HC err. (gvkg) I	NO (g/kg)	NO err. (g/kg)
			1	A TOOLA	100111	4 60	O AR	7 40		0	4 75	0.04
10/22/07	18.02	RA	B757	COPEL CO	100208	13.76	2.48	5.04			1.82	0.05
9/23/97	16:12	American	A300	N2S021	101250	53.05	0.52	4.01		0.08	-0.23	0.03
9/23/97	16:13	Air Canada	B747-400	CGACN	101357	-55.16	1.65	1.21	2	0.36	2.50	0.06
9/23/97	16:14	Air Canada	B747-400	OGAON	101414	-0.71	1.40	2.62		0.15	2.45	0.07
9/23/97	16:16	BA	B757	GBIKD	101654	-14.73	1.08	-1.39		0.15	8.56	0.09
9/23/97	16:17	BA	B757	GBIKD	101714	144.44	3.38	-12.38		0.20	19.82	0.10
9/23/97	16:18	BA	A320	GBUSJ	101846	34.02	1.97	5.09		0.08	3.67	0.07
9/23/97	16:20	Air France	A320	FGFRM	102003			7.55		0.58	0.44	0.17
9/23/97	16:21	Virgin	B747-400	GVFAB	102150	9.17	1.15	4.63		0.09	0.08	0.04
9/23/97	16:22	Virgin	B747-400	GVFAB	102206	-38.63	2.25	12.52		0.15	3.84	0.03
9/23/97	16:26	Iberia	B727	ECOCO	102641	35.86	1.49	10.51		0.18	-0.19	0.06
9/24/97	11:09	private	Gulfstream	N900MP	050957	-3.54	5.11	28.34		0.43	-2.98	0.19
9/24/97	11:13	United	B777		051323	-123.92	3.03	5.25		0.21	13.21	0.13
9/24/97	11:25	Thai	B747-400	HSTGT	052533	-29.98	6.79	0.02		0.31	20.35	0.28
9/24/97	11:25	Thai	B747-400	HSTGT	052551			-16.75		0.60	20.12	0.16
9/24/97	11:29	BA	B757	GBIKY	052942			18.61		0.91		
9/24/97	11:30	BA	B757	GBIKY	053001	0.75	1.82	31.19		0.63	3.33	0.09
9/24/97	11:39	BA	B777	GUID	053951							
9/24/97	11:39	BA	B777	GUID	053934	263.52	12.93					
9/24/97	11:45	BA	B747	GAWNP	054542	-7.72	1.31	12.67		0.08	-1.42	0.05
9/24/97	11:55	BA	B747-400	GBNLX	055501							
8/24/97	12:13	BA	B767		061306	25.58	0.81	2.18		0.15	4.17	0.07
9/24/97	12:42	BA	B737	GDOCT	064219	93.42	2.11	6.08		0.20	0.66	0.07
9/24/97	12:44	Lufthansa	A320-200	DAIOF	064403	69.44	3.96	5.59		0.21	-0.43	0.05
9/24/97	12:49	BA	B757		064916	126.80	1.80	30.29		0.15	-2.03	0.03
9/24/97	12:53	Olympia	A300	BBCS	065343	-64.39	2.17	-13.07		0.36	7.19	0.08
9/24/97	12:53	Olympia	A300	SUBB	065326	31.79	2.96	3.17		0.20	0.65	0.06
9/24/97	12:54	British Mid.	B737	BSMDB	065412	60.36	1.77	3.36		0.10	6.60	0.05
9/24/97	12:55	SAS	MD80	SEDWE	065558	-5.36	2.27	-0.45		0.22	6.63	0.05
9/24/97	12:57	Turkish Air	A310	TCJOM	065755	116.26	1.27	27.66		0.14	-1.79	0.05
9/24/97	12:58	BA	B757	GOPEN	065851	48.29	3.24	-1.43		0.19	11.10	0.12
9/24/97	13:03	BA	B757	GBMF	070335	184.49	7.09				28.49	0.43
9/24/97	13:03	BA	B747-400	GCIVG	070313	38.13	1.76	4.72		0.24	15.14	0.15
9/24/97	13:05	Air Jamaica	A310	N837AB	070555	254.74	7.43	-48,10		0.93	6.53	0.18
9/24/97	13:06	TARDOM	B737	VRGBC	070625	132.59	1.98	-6.20		0.43	-0.33	0.21

.

.....

17

0.10	5.38	0.20	10.64	2.73	122.29	081017	FOHLA	A310	MEA	14:10	9/24/97
0.08	9.10	0.08	-2.93	0.99	60.19	080824	CSTEH	A310	Air Portugal	14:08	9/24/97
0.18	0.37	0.41	-3.42			080702	GBNWE	B767	BA	14:07	9/24/97
0.11	2.56	0.34	-2.42	4.26	0.39	080644	GBNWE	B767	BA	14:06	9/24/97
0.07	13.00	0.16	4.57	1.42	36.16	080426	GBIKZ	B757	BA	14:04	9/24/97
0.05	1.45	0.25	2.02	3.33	73.66	080035	SEDOS	MD80	SAS	14:00	9/24/97
0.10	2.37	0.49	0.93	3.83	0.63	075516	N788UA	B777	United	13:55	9/24/97
0.07	6.71	0.23	19.71	3.27	26.19	075316	FOGYV	A310	Aeroflot	13:53	9/24/97
0.28	20.56					075333	FOGYV	A310	Aeroflot	13:53	9/24/97
0.08	5.10	0.77	11.14	2.42	29.82	075223	N319AA	B767	American	13:52	9/24/97
0.08	4.14	0.17	1.27	2.38	27.67	074907	TFFH	B757	lcelandair	13:49	9/24/97
0.16	-0.30	0.22	13.95	4.41	175.91	074749	QFTOG	B747-100	Air Canada	13:47	9/24/97
0.09	0.79	0.19	-2.97	2.48	40.48	074651	GBIKN	B757	BA	13:46	9/24/97
0.04	3.68	0.09	1.64	1.59	107.01	074500	GOMBE	B737-400	British Mid.	13:45	9/24/97
0.14	1.84	0.46	-11.82	3.34	-50.12	074418	NHOIB	B747-400	Quantas	13:44	9/24/97
0.03	3.30	0.08	8-48	1.01	-44.28	074359	NHOIB	B747-400	Quantas	13:43	9/24/97
0.05	6.15	0.07	4.42	0.98	-14.90	074317	GBNWJ	B767	BA	13:43	9/24/97
0.04	0.19	0.16	6.85	2.10	47.09	073849	VTESP	B747-400	Air India	13:38	9/24/97
0.03	2.02	0.21	-8.11	1.59	-47.12	073624	GBNNS	B767	BA	13:36	8/24/97
0.06	0.28	0.18	-1.91	2.67	173.24	073522	CEUSC	A320	BA	13:35	9/24/97
0.03	2.13	0.10	9.79	1.67	0.29	073455	GDOCX	B737	BA	13:34	9/24/97
0.09	-0.09	0.37	7.95	4.60	32.75	073318	GSFBH	B737	British Mid.	13:33	9/24/97
0.06	4.13	0.50	12.63	1.83	23.85	073055	FORM	A320	Air France	13:30	9/24/97
0.04	-0.30	0.11	8.93	3.50	133.95	072315	N33069	A300	American	13:23	9/24/97
0.08	15.29	0.16	4.00	2.20	-19.57	072357	GBMRJ	B757	BA	13:23	9/24/97
0.03	5.90	0.29	8.66	3.25	-39.39	072145	NAEBEN	B767	American	13:21	9/24/97
0.11	3.75	0.28	10.79	4.62	-23.34	072000	DAIAN	A300	Lufthansa	13:20	9/24/97
0.23	2.46	0.84	-32.93	6.18	84.05	072019	DAIAN	A300	Lufthansa	13:20	9/24/97
0,05	0.63	0.14	7.72	1.70	98.74	071854	N768UA	B777	United	13:18	9/24/97
0.19	-2.57	0.48	-6.10	4.88	104.34	071816	CGAGA	B747-400	Air Canada	13:18	9/24/97
0.04	-1.87	0.09	0.73	1.30	157.56	071757	CGAGA	B747-400	Air Canada	13:17	9/24/97
0.17	-1.05	0.41	-6.51	4.61	63.36	071715	GBUHC	146	Air UK	13:17	9/24/97
0.10	4,95	0.39	8.38	3.15	6.89	071417	9ACTE	B737	Croatia	13:14	9/24/97
0.05	5.38	0.32	-3.70	0.05	5.76	071342	MEMED	B747-400	Air Canada	13:13	9/24/97
0.12	9.86	0.14	5.23	1.77	18.38	071325	OGAGM	B747-400	Air Canada	13:13	9/24/97
0.04	4.36	0.18	0.21	1.65	-14.25	070811	GBNWV	B767	BA	13:08	9/24/97
NO BIT. (grag)	(6×6) ON	nv en, (grig)		CO BIT. (g/kg)	(Bwb) OO	TUata File	Hegistration	Aircrait	Airline	Time	Date
NO are failed	NO Indiat	LD and Jallah	In Indian	Son laker	N 1-2-1					!	

9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	9/24/97	Date
15:02	14:55	14:51	14:49	14:48	14:43	14:43	14:43	14:36	14:33	14:32	14:31	14:30	14:28	14:26	14:25	14:24	14:18	14:18	14:17	14:15	14:14	14:13	14:11	Time
BAA truck	Air Canada	Lufthansa	BA	BA	Virgin	Virgin	Virgin	British Mid	Lingus	BA		Lingus	BA	Air France	Varig	BA	Air France	Emirates	Emirates	United	Luxair	BA	Lingus	Airline
yellow Isuz	B767	A320	B757	B777	B747-100	B747-100	B747-100	B737	B737	B757	Fokker 10	B737	B737	BA146	MD11	B767	A320	B777	B777	B777	B737	B757	B737-400	Aircraft
u diesel	CGDSU615	DAIPA	GBMRI	GZZZC	GVGN	GVGN	GVGIN	GDBMH	EIBXA	GBMRA	0 GBVJC	EIBOOK	GDOCH	GIGNO	PPVPK	GBINIF	FGFID	AGEMH	AGEMIH	N776UA	LXLG0	80000	EIBX8	Registratio
090246	085533	085137	084903	084834	084337	084321	084355	083601	083305	083233	083119	083035	082853	082659	082558	082404	081849	081801	081744	081528	081418	081329	081136	n Data File
83.89	29.88	32.40	28.00	103.93		94.01		96.21	10.51	100.29	7.80		16.48	107.27	104.43	-16.60	-11.05	33.17	36.66	24.21	51.64	13.47	72.25	CO (g/kg)
0.11	1.3	1.4	1.73	3.80		1.2		1.42	1.4	2.60	0.72		3.50	2.8	3.3	1.32	3.10	2.10	2.39	4.80	1.88	1.13	2.76	CO err. (g/kg)
7.00	7 1.9	7.72	5.44	-14.44		7.92	-0.19	6.46	4,30	0.44	1.8	-3.50	5.37	2.41	16.12	-0.40	5.50	-12.71	3.42	-6.57	2.51	6.11	8.30	HC (g/kg)
0.1	0.1	0.0	0.1	0.2		0.1	0.8	0.1	0.0	0.2	0.0	0.5	0.2	0.1	0.2	0.1	0.1	0.5	0.1	0.4	0.0	0.1	0.1	HC err. (g/kg
8 26.22	0 5.16	7 3.74	-3.37	7 28.91		7 -1.32	0 31.83	1 -2.86	8 0.59	3 0.21	6 0.68	5 1.23	6 2.58	5 1.58	7 1.97	4 2.75	4 7.05	1 8.71	1 1.68	5 3.40	8 2.58	4 4.25	6 6.22) NO (g/kg)
0.2	0.0	0.0	0.2	0.0		0.0	0.1	0.1	0.0	0.0	0.0	0.2	0.0	0.2	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	NO err. (g/k