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Measurement of the branching fractions of the semileptonic decays
B+ → η`+ν` and B+ → η′`+ν` with signal-side only reconstruction at

the Belle experiment

Abstract

This thesis presents a measurement of the branching fractions of the decays B+ → η`+ν` and
B+ → η′`+ν`. The entire data sample collected by the Belle experiment at the energy of the

Υ(4S) resonance is used, which contains in total 772× 106BB pairs. The η meson is
reconstructed in two decay channels and the η′ meson in one decay channel. Only the decay

products of one of the two B mesons from the BB pair are explicitly reconstructed to achieve a
high efficiency. Instead of explicitly reconstructing the remainder of the event, the neutrino in
the decay is inferred using conservation laws to allow reconstruction of the B+. Background

events are reduced using boosted decision trees. A binned maximum likelihood fit of MC
distributions to the data sample is used to extract the signal yield in the end. The entire

reconstruction chain keeps the dependence on the transferred momentum q2 as low as possible
to reduce effects of the modelling of the decay. The determined branching fractions are

B (B+ → η`+ν`) = (2.83± 0.55± 0.34)× 10−5 and
B (B+ → η′`+ν`) = (2.79± 1.29± 0.30)× 10−5 with the statistical uncertainty first and the

systematic second.





Messung des Verzweigungsverhältnisses der semileptonischen Zerfälle
B+ → η`+ν` und B+ → η′`+ν` mit Rekonstruktion nur der

Signal-Seite am Belle-Experiment

Zusammenfassung

Diese Dissertation präsentiert eine Messung des Verzweigungsverhältnisses der Zerfälle
B+ → η`+ν` und B+ → η′`+ν`. Dabei wird der gesamte an der Energie der Υ(4S)-Resonanz

gemessene Datensatz des Belle-Experiments verwendet. Dieser enthält 772× 106BB-Paare. Das
im Zerfall entstehende η-Meson wird in zwei und das η′-Meson in einem Zerfallskanal

rekonstruiert. Nur die Zerfallskette eines der beiden B-Mesonen wird explizit rekonstruiert,
wobei das Neutrino mittels Erhaltungssätzen aus dem Rest des Ereignisses abgeleitet wird.

Hiermit wird eine größtmögliche Rekonstruktionseffizienz erzielt. Der Anteil an
Untergrundereignissem im rekonstruierten Datensatz wird mittels Boosted Decision Trees

verringert, bevor die Anzahl an Signalereignissen im Datensatz mittels eines
Binned-Maximum-Likelihood-Fits ermittelt wird, bei dem die einzelnen MC Verteilungen an
den Datensatz gefittet werden. Die gesamte Analyse hält die Abhängigkeit der Selektion vom

Impulsübertrag q2 so gering wie möglich, um Auswirkungen der Zerfallsmodellierung zu
vermeiden. Die gemessenen Verzweigungsverhältnisse sind

B (B+ → η`+ν`) = (2.83± 0.55± 0.34)× 10−5 und
B (B+ → η′`+ν`) = (2.79± 1.29± 0.30)× 10−5 mit statistischer und systematischer

Unsicherheit.
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CHAPTER 1

Introduction

Particle physics has been improving the understanding of the behaviour of the world on
the smallest known scales for over a hundred years, starting from the discovery of the
electron in 1897 up to the Higgs boson in 2012. While the Standard Model describing
the known fundamental particles and their interactions has been very successful, com-
paring it to the world around us points to many open questions. One of them concerns
the asymmetry of matter and antimatter. While they are produced in equal amounts in
the early universe, evidence from astrophysics [1] confirms that the observable universe
is dominated by matter.

Three criteria are necessary for such an asymmetry, as determined by Sakharov [2]:

1. Violation of baryon number conservation,

2. CP violation,

3. Interactions out of equilibrium.

The first two are especially accessible through particle physics experiments. While no
experimental evidence against baryon number violation has been found so far, CP vio-
lation was experimentally verified in the weak interaction, described by the CKM mech-
anism [3]. However, when compared to astrophysical measurements, the magnitude of
CP violation in the Standard Model is still too small to produce the observed amount
of matter in the universe.

Nonetheless, as the only known source of CP violation, the weak interaction warrants
closer inspection. One of the facilities specifically built to detect and study this effect is
the Belle experiment, whose focus lies on studying the behaviour and decay of B mesons
via the weak interaction. Out of these, the decays of the type b → u are of special
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1. Introduction

interest as their heavy suppression in the CKM mechanism makes them sensitive to
additional processes not yet included in the Standard Model. The Belle experiment is a
particle detector situated at the asymmetric KEKB accelerator, producing B mesons in
pairs from electron and positron annihilation and measuring their decay products. It is
a so-called B-Factory optimized to produce a large dataset of B meson decays.

This thesis measures the decays1 B+ → η`+ν` andB+ → η′`+ν` with the dataset taken
at the Belle experiment. In these, the `+ is either an electron or a muon, the ν` is the
corresponding neutrino and the η(′) is a charmless hadron. The world averages [4] of the
branching ratios from previous measurements, combined from Belle, Babar and CLEO,
are B (B+ → η`+ν`) = (3.9± 0.5)× 10−5 and B (B+ → η′`+ν`) = (2.3± 0.8)× 10−5.
As the low branching fractions lead to a small amount of signal events expected in the
dataset, the yield is maximised by explicitly reconstructing only one B meson out of
the original pair. The b → u transition can be measured in different processes and via
different methods, however, the results from these are not always compatible. To keep
the effect of uncertainties in the theoretical description low, special importance is laid
on reconstructing the entire kinematic spectrum as uniformly as possible.

The thesis begins with an overview of the relevant theoretical foundations of particle
physics in Chapter 2. Afterwards, the Belle detector is presented in Chapter 3 followed
by an introduction to various statistical methods used throughout this thesis in Chap-
ter 4. In Chapter 5 the actual reconstruction of the decay process B+ → η(′)`+ν` is
presented introducing the methods to form candidates for the involved particles out of
the detector measurements. Out of the vast amount of candidates, a subset with a
higher concentration of correctly reconstructed signal decays is selected in Chapter 6.
The fit procedure to determine the signal yield from the selected sample is introduced in
Chapter 7. In Chapter 8 several validation steps are summarized to confirm the analysis
procedure, followed by the introduction of the sources of systematic uncertainty consid-
ered in Chapter 9. The thesis concludes with the presentation of the measured branching
fractions and their discussion in Chapter 10.

1Unless explicitly stated otherwise, whenever a process or particle is mentioned with a specific charge
throughout this thesis the charge-conjugated process, that is the process where every particle is
exchanged with its anti-particle, is implicitly included.
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CHAPTER 2

Theory

This chapter introduces the various theoretical concepts and backgrounds important for
the physics investigated at B-Factories. It starts by explaining the Standard Model and
its particle content in Section 2.1, introducing the fermions included and subsequently
the bosons together with their corresponding interactions. The fundamental discrete
symmetries are introduced in Section 2.2, followed by their violations at the hands of
the weak force in Section 2.3. In Section 2.4 the CKM mechanism is presented as an
explanation of these violations. The last part, Section 2.5, narrows the focus towards
the decay processes of interest for this thesis, starting from the general behaviour of B
mesons.

2.1. The Standard Model of Particle Physics

The Standard Model of Particle Physics (SM ) [5] is the theoretical description of all
currently known elementary particles and three of the four fundamental interactions. It
takes the form of a quantum field theory with the combined symmetry group SU(3)C ⊗
SU(2)L⊗U(1)Y from the strong, the weak and the electromagnetic interactions. While
the SM is a very well tested theory consistent with overwhelming experimental evidence
for its predictions, it does not contain everything. The fourth interaction, gravity, is not
included in the SM . The strength of gravity is negligible at typical reactions the SM is
used to describe due to the small number of involved particles and their low individual
masses. When comparing the SM predictions with astrophysics, further discrepancies
become visible. The SM currently provides no mechanism to generate the matter den-
sity observed, and also contains no candidate to explain dark matter as observed.
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2. Theory

Elementary particles are defined as all particles not possessing any further substruc-
ture and assumed as point-like particles. The elementary particles included in the SM
are grouped in two categories depending on their spin. The first category are fermions
with half-integer spin, which for the known fundamental fermions always is 1/2. The
fermions contain all particles making up ordinary matter, and are themselves divided
into quarks (q) and leptons (`). Both of these two groups contain six1 fermions, divided
into three generations, which consist of two fermions each. Between the three genera-
tions, the particles, while distinct, differ only in mass but are identical otherwise. For all
fermions, a corresponding antiparticle exists with the same mass but opposite charge.
The fermions included in the SM with some of their properties are listed in Table 2.1.

Generation Type Particle Charge [e] Mass [MeV/c2]

1.
Quarks Up (u) 2⁄3 2.16+0.49

−0.26

Down (d) -1⁄3 4.67+0.48
−0.17

Leptons Electron (e) −1 0.5109989461(31)
Electron neutrino (νe) 0 < 1.1× 10−6

2.
Quarks Charm (c) 2⁄3 1270± 20

Strange (s) -1⁄3 93+11
−5

Leptons Muon (µ) −1 105.6583745(24)
Muon neutrino (νµ) 0 < 0.19

3.
Quarks Top (t) 2⁄3 172760± 300

Bottom (b) -1⁄3 4180+30
−20

Leptons Tau (τ) −1 1776.86± 0.12
Tau neutrino (ντ ) 0 < 18.2

Table 2.1.: Fermions included in the Standard Model of Particle Physics. The quarks
come in three colour variations not separately listed. For all particles a
corresponding antiparticle with opposite charge exists. For the neutrinos
only upper bounds are known. Values taken from Reference [4].

The quarks are the only fermions coupling to all three fundamental forces included in
the SM . The first generation consists of the up and down quark, with the charm and
strange quarks in the second, and the top (or truth) and bottom (or beauty) quarks in the
third generation. All quarks carry one of the three colours of the strong interaction. The
confinement rule of the strong interaction requires all quarks to form bound, colourless
states called hadrons2. These bound states generally fall into either baryons containing
three quarks (qqq) all with different colours, or mesons (qq) containing a quark-antiquark
pair with cancelling colour and anti-colour. While the individual quarks carry a frac-
tional electric charge, these combinations always result in integer charges. While all

1Strictly speaking each quark is further subdivided into three varieties of different colour.
2The top quark is an exception, as it decays too fast for bound states to form.
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2.1. The Standard Model of Particle Physics

mesons are unstable and eventually decay, the stable3 proton (uud) together with the
neutron (udd) makes up the core of ordinary matter as nucleons.

The leptons consists of a charged lepton and a corresponding neutrino at every gen-
eration. While the charged leptons interact both weakly and electromagnetically, the
neutrinos, being electrically neutral, only interact weakly. The charged leptons are the
electron, muon and tau in order of generation and mass. The electron, which is also the
first elementary particle to have been discovered, is part of every atom. As the neutri-
nos interact only weakly, they pass through matter without much interaction and do not
form bound states. The neutrinos are assumed to be massless in the SM , however the
detection of neutrino oscillations [6] has shown this can not be correct for at least two
of them. So far, only upper limits could be set for these masses.

The other type of particles are bosons with integer spin. Three types of spin-1 gauge
bosons act as carriers of the three interactions included in the SM , together with the
spin-0 Higgs boson. The bosons are summarised in Table 2.2.

Name Interaction Charge [e] Spin Mass [GeV/c2]

Photon (γ) Electromagnetic 0 1 0
Z0

Weak 0 1 91.1876± 0.0021
W± ±1 1 80.379± 0.012
Gluon (g) Strong 0 1 0
Higgs (H) Higgs field 0 0 125.10± 0.14

Table 2.2.: Bosons included in the Standard Model of Particle Physics. The total of
eight gluons are identical except for their colour charge. Values taken from
Reference [4].

2.1.1. Electromagnetic interaction

The electromagnetic interaction, described by Quantum Electrodynamics (QED), is me-
diated by the massless photon. It couples to all electrically charged particles with the
fundamental vertex shown in Figure 2.1. As the photon itself is uncharged, photons can
not couple to themselves.

The electromagnetic interaction is the only one included in the SM with an unlimited
range in vacuum. Its gauge group is U(1), the unitary group of order 1. The electro-
magnetic interaction, together with gravity, is responsible for all macroscopic events on

3No proton decay has been measured in several searches, leading to a current limit [4] for the life time
above 3.6× 1029 years.
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2. Theory

e−

e−

γ

Figure 2.1.: The fundamental QED vertex. The electron can be replaced by any charged
particle.

scales larger than individual atoms. Particles which primarily decay via the electromag-
netic interaction have average lifetimes of the order of 10−16 s.

2.1.2. Strong interaction

The strong interaction is described by Quantum Chromodynamics (QCD) and has the
gauge group SU(3)C , the special unitary group of order 3, where the index C stands for
the colour charge. It is mediated by eight gluons. While they are massless similar to the
photons, they themselves carry the colour charge they couple to. This allows the gluons
to couple to themselves, adding additional vertices consisting only of gluons. These are
shown in Figure 2.2. There are three colour charges, together with corresponding anti-
colours.

q

q

g

g

g

g

g

g

g

g

Figure 2.2.: The fundamental QCD vertices.

Although the gluons are massless, the effective range of the strong interaction is very
limited. Unlike the electromagnetic interaction, the coupling strength of the strong inter-
action increases with distance to objects carrying net colour charge. While inside bound
states, the quarks experience asymptotic freedom without much effect of the strong in-
teraction, increasing energy is needed the further a colour-charged part is separated.
This causes all produced quarks to quickly hadronise into colour-neutral bound states.

The strong interaction is the strongest interaction in the SM and whenever available
strong processes dominate over the other. As a result, bound states which can decay via a
strong process are generally the shortest lived at average lifetimes in the order of 10−23 s.
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2.1. The Standard Model of Particle Physics

2.1.3. Weak interaction
The weak interaction, as described by Quantum Flavourdynamics (QFD) with the sym-
metry group SU(2)L, is special in several ways. It is mediated by two types of massive
gauge bosons, the electrically chargedW±-bosons and the neutral Z0-boson. They couple
to all types of fermions. While the Z0 couples to a pair of a particle and the correspond-
ing antiparticle, the W± couples to a pair of either two different leptons or quarks. The
W±-bosons can also couple to both themselves as well as to one or two photons or Z0.
The fundamental vertices of the weak interaction are shown on Figure 2.3, including
those involving both weak and the electromagnetic gauge bosons.

f

Z0

f

`−

W−

ν`

q−1/3

W−

q2/3

W

γ/Z0

W

W

W

W

W

W

W

γ/Z0

γ/Z0

Figure 2.3.: The fundamental QFD vertices.

The W± have the unique feature of being able to change the flavour of the quarks
they couple to. They can couple to a pair of quarks from different generations, providing
the only way for the quarks of the second and third generation to decay into quarks of
lower generations. These couplings across generations are however suppressed compared
to couplings within a generation. The mechanism is discussed further in Section 2.4.
The Z0 can only couple to quarks within the same generation.

Another feature unique to the W± and Z0 is that their coupling depends on the chi-
rality of a particle, the eigenvalue to γ5. For massless particles, this coincides with the
helicity, which depends on the relative directions of its spin and movement, if both have
the same direction it is right-handed, and of they are opposite it is left-handed, while for
other particles the helicity only serves as an approximation [5]. For the Z0 the coupling
strength differs depending on the handedness, but the W± only couple to left-handed
particles (and right-handed antiparticles) at all. This leads to the grouping of the left-
handed leptons and quarks of each generation into doublets that couple to the W±, while
their right-handed counterparts form singlets. This difference on handedness is further
elaborated in Section 2.3. The mass of the weak gauge bosons not only restricts the
range of the interaction, but is also the reason the weak interaction is the weakest in the
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2. Theory

SM at low energy scales, and mostly visible when the strong and electromagnetic one
are impossible or heavily suppressed, corresponding to particles having lifetimes higher
than 10−13 s.

2.1.4. Higgs mechanism
A theoretical problem in the SM was the inclusion of a mass term for the W± and Z0

bosons. In the context of the electroweak unification [7–9], combining both the weak
and the electromagnetic interaction, this is solved by introducing the Higgs field with
four degrees of freedom [10, 11]. In a spontaneous symmetry breaking three of these give
mass to three of the gauge bosons, forming the W± pair and the Z0. The fourth stays
massless and forms the photon. The massive fermions gain their mass by their Yukawa
coupling to the Higgs field.

The remaining degree of freedom forms the Higgs boson, the only spin-0 particle in
the SM . It is the most recently discovered fundamental particle [12, 13], with discovery
in 2012.

2.2. Symmetries
Every physical system or interaction can be characterized by its symmetries. Symmetries
are operations on a system leaving its physical behaviour invariant, that is the trans-
formed system behaves indistinguishably from the original one. In classical physics,
these are continuous transformations such as translations in time, space and also rota-
tions. Their importance comes from Noether’s theorem [14], which relates continuous
symmetries to fundamental conservation laws.

In particle physics, three additional discrete symmetries are important: Parity (P ),
Charge Conjugation (C) and Time Reversal (T ). These will be explained in more detail
in the following. A common point between all three discrete symmetries is that they are
inversions, and applying them two times returns to the original state. Therefore, every
symmetry operator X out of P ,C, T must fulfil

X2 = I (2.1)

with the identity operator I. Accordingly, the only possible eigenvalues are ±1.

Parity Parity is the inversion of a system in its spatial coordinates. The parity opera-
tion (P ) is defined as the inversion around the origin:

P (~x) = −~x. (2.2)

8



2.3. Symmetry violations

From this, inversions around arbitrary points or mirroring around arbitrary planes can
be reached by additional translations and rotations. This inversion does not affect
pseudovectors, leaving direction of angular momentum unchanged. As a result, par-
ity changes the handedness of a particle from left to right-handed and vice versa. The
fermions are arbitrarily assigned the eigenvalue P |f〉 = +1 |f〉, while antifermions have
P |f̄〉 = −1 |f̄〉. The eigenvalues of composite hadrons are determined by multiplication
of the components together with any orbital angular momentum contributions.

Charge Conjugation The charge conjugation (C) symmetry inverts not only the elec-
tric charge, but all additive quantum numbers including flavour and colour charge, while
mass and momentum stay unchanged. This turns a particle into its antiparticle. Charge
inversion does not change the handedness of a particle. Eigenstates of C are particles
who are their own antiparticle, which can only be the case for neutral particles.

Time Reversal The last of the set of discrete symmetries is time reversal (T ). In a
particle reaction, this results in the exchange of the ingoing and the outgoing states.
Unlike for the other two symmetries no particles are eigenstates of T .

CPT As a fundamental theorem of quantum field theory, the CPT -theorem [15] re-
quires that the combination of all three symmetries together is absolutely conserved.
Any violations in CPT symmetry would imply violations of Lorentz invariance. Another
consequence of the CPT theorem is that particles and their corresponding antiparticles
have the same masses.

2.3. Symmetry violations
The three discrete symmetries are individually conserved in both the electromagnetic and
strong4 interactions. While it originally was assumed that they would also be conserved
in the weak interaction, when first measured experimentally by Wu [16] in 1956 it was
found that the weak interaction maximally violated parity. The experiment used the
beta decay of spin polarized Cobalt nuclei:

40Co → 40Ni + e− + ν̄e (2.3)

Due to conservation of angular momentum, the electron and neutrino have to be emitted
along the polarization axis. If P was a symmetry of the weak interaction, the electrons
would be emitted equally often parallel and anti-parallel to the Cobalt spin. However,
it was found that electrons were only emitted anti-parallel to the polarization, which

4While the strong interaction theoretically allows violations, they seem to not be realized in nature.
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2. Theory

resulted in left-handed electrons. This meant the weak interaction only acts on one pre-
ferred handedness, violating the parity symmetry which would require equal treatment.

From the discovery of parity violation follows immediately that charge symmetry is
also violated, as can be seen in the decay of charged pions:

π+ → µ+νµ. (2.4)

Conservation of angular momentum requires the decay products of the pion to have the
same handedness. As the neutrino is (almost) massless, it needs to be left-handed for
the weak interaction to couple to it, resulting in the anti-muon also being left-handed.
Applying charge conjugation would yield the decay

π− → µ−ν̄µ (2.5)

with the decay products still being left-handed as before. While chirality is Lorentz-
invariant, the helicity is not. For massive particles, the handedness is therefore not an
exact quantum number, allowing the chirality-based coupling of the weak force to par-
ticles of opposite helicity. This coupling to the wrong handedness, which applies to the
muon in the original process, is suppressed for particles with lower masses5, becoming
impossible for massless particles as chirality and helicity become equal. In the charge
inverted process in Equation (2.5) however, the neutrino would have the wrong handed-
ness, and this process is not seen.

Additionally applying P inverts the handedness as well and returns the observed decay
of the π−. This gave hope that the true symmetry was in fact the combination of the
two, CP . Neutral kaons gave Cronin and Fitch [17] the opportunity to test this in an
experiment. Neutral kaons are produced in the strong eigenstates K0(ds) and K

0
(sd)

with a well-defined quark content. However, like other neutral mesons they can convert
into each other via the weak interaction, shown in general in Figure 2.4. This produces
mixed states.

s d

d s

W

W

K0 K
0

s d

d s
W WK0 K

0

Figure 2.4.: Oscillation diagrams for neutral kaons.

The two strong states K0 and K
0 are not eigenstates of CP , but instead related via

CP |K0〉 = +1 |K0〉. In general, mixed states can be constructed out of the two as

|±〉 = N
(
p |K0〉 ± q |K0〉

)
, (2.6)

5This is incidentally also the reason why the pion preferentially decays into a muon instead of the
lighter electron.
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2.3. Symmetry violations

with an appropriate normalisation factor N . From this relation the actual CP -states for
the neutral kaons immediately follow as:

|K1〉 =
1√
2

(
|K0〉+ |K0〉

)
, (2.7)

|K2〉 =
1√
2

(
|K0〉 − |K0〉

)
. (2.8)

The K1 has the CP -eigenvalue 1 and quickly decays to two pions. However, the K2

with its eigenvalue of −1 does not have this decay channel available. It instead decays to
three pions with much less remaining phase space, and is therefore much longer lived. In
the experiment, a beam of neutral kaons was allowed to propagate long enough for the
short-lived component to decay down to a negligible level. Nonetheless, a small amount
of decays into two pions was still observed. The explanation lies in the long-lived state
K0

L not being exactly the CP -eigenstate K2, but having a small contribution of the
CP -opposite state:

|K0
L〉 =

1√
1 + |ε|2

(|K2〉+ ε |K1〉) . (2.9)

The strength of this CP -violation due to the mixing of the neutral states was found [4]
to be |ε| = (2.228± 0.011)× 10−3.

In general, in this type of CP -violation the decay rates of the final states are identical
for both mesons, and the violation happens at the mixing state, where the oscillation
rate is not equal for both directions. This causes the discrepancy between the weak
and the CP -eigenstates. It happens whenever the mixing is not perfectly equal, that is
|q/p| 6= 1.

For decays of an initial, mixed state i0phys and its charge-conjugate partner to a state
with a charged lepton `± used to determine the decaying flavour, the asymmetry can be
defined as:

ASL(t) :=
dΓ
dt (i

0
phys(t) → `+X)− dΓ

dt (i
0
phys(t) → `−X)

dΓ
dt (i

0
phys(t) → `+X) + dΓ

dt (i
0
phys(t) → `−X)

=
1− |q/p|4

1 + |q/p|4
. (2.10)

It is interesting to note that although the decay rates are time-dependent due to the
oscillation, the resulting asymmetry itself is not and can be expressed as a constant only
depending on the factors q and p.

Direct CP -violation in decays has also been observed. Here, the decay rate differs
after every particle is exchanged with its antiparticle.

B (i→ f) 6= B
(̄
i→ f̄

)
. (2.11)
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2. Theory

For the decay amplitudes Af of the decay to the final state f , and Af for the process
with all particles exchanged with their antiparticles, this is equivalent to |Af/Af | 6= 1.
The decay amplitudes are not invariant under the exchange of particles with antiparticles.

For neutral kaons, this effect is even smaller than that of the mixing mentioned above,
with the factor determining the size, ε′, being [4] ε′/ε = (1.66± 0.23)× 10−3. However,
direct CP -violation is possible for charged mesons and baryons too, which can not oscil-
late. For the general decay of a charged meson, the fully time-independent asymmetry is:

Af± :=
Γ(i− → f−)− Γ(i+ → f+)

Γ(i− → f−) + Γ(i+ → f+)
=

|Āf−/Af+ |2 − 1

|Āf−/Af+ |2 + 1
. (2.12)

A third type of CP -violation exists in the interference of direct decay and mixing.
For this interference to be possible, mixing between the particle and antiparticle state
must occur, therefore this type is also only possible for neutral mesons. In an interference
process, the decay can both happen directly as i→ f and with an intermediate oscillation
step as i→ i→ f . The asymmetry for the decay into an CP -eigenstate fCP is:

AfCP
(t) :=

dΓ
dt (i

0
phys(t) → fCP )− dΓ

dt (i
0
phys(t) → fCP )

dΓ
dt (i

0
phys(t) → fCP ) +

dΓ
dt (i

0
phys(t) → fCP )

. (2.13)

Unlike the other two types of CP -violation, this asymmetry can not be expressed in a
time-independent form. It is the dominant source of CP -violation for B mesons, and
will be discussed in more detail together with them in Section 2.5.

If the CPT theorem holds, violation of CP directly leads to violation of time-symmetry.
Long after the others, this was the last symmetry violation to be experimentally discov-
ered [18].

2.4. The CKM-mechanism
With the third discovered quark, the strange quark, the question appeared how to explain
its observed decay and coupling to the other quarks. The solution from Cabibbo was that
the strange quark mixes with the down quark in the decay via the weak interaction [19].
This was soon extended to the GIM (Glashow, Illiopoulos and Maiani)-mechanism, a
2× 2 rotation matrix [20] relating the mass eigenstates of the down and strange quarks
in the weak current: (

d′

s′

)
=

(
cos θC sin θC
− sin θC cos θC

)(
d
s

)
. (2.14)

The matrix predicted a fourth quark, later discovered as the charm, to complement the
up-quark. The second up-type quark also provided a mechanism to suppress decays
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2.4. The CKM-mechanism

of down-strange pairs by cancellation effects, explaining why these were not observed.
While the mixing allows the mass eigenstates of up and strange to couple in a vertex to
the W±; in the neutral current, the mixing matrix appears twice, with the two appear-
ances cancelling each other. The 2 × 2 rotation matrix has only one parameter giving
the strength of the mixing, the Cabibbo angle θC .

The GIM -mechanism can not explain CP -violation. This is only possible with an
extension from two to three generations of quarks, as was proposed by the Cabibbo-
Kobayashi-Maskawa (CKM ) mechanism [3], before even the charm quark was exper-
imentally observed. The confirmation of CP -violation for B mesons as described by
the CKM mechanism lead to half of the Nobel prize in physics for Kobayashi and
Maskawa in 2008. With the additional third generation of quarks introduced by the
CKM -mechanism, the mixing matrix, now called the CKM -matrix (VCKM), is extended
to a 3× 3 matrix6.d′s′

b′

 = VCKM

ds
b

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 (2.15)

As a general complex 3 × 3 matrix, it starts with 18 free, real parameters, while a 3-
dimensional rotation matrix only has three angles as parameters. After constraining the
matrix to be unitary and absorbing parameters into quark phases where possible, not
only the three angles but an additional fourth parameter, a complex phase, remains.
This additional phase is what allows for CP -violation with three generations of quarks,
as now the amplitude of a process after taking the CP -inverse and summing up the
constituent amplitudes can result in a different strength.

The entries of the matrix, and from them the four fundamental parameters, can only
be determined experimentally. Each of the matrix entries gives the relative coupling
strength of the corresponding pair of quarks to the W±. For a pair of quarks i and j,
the corresponding matrix element enters the vertex factor for the coupling to the W±

as:
−igw
2
√
2
γµ(1− γ5)Vij . (2.16)

Multiple definitions of the four parameters and how to relate them to the entries are
possible, one of them is [21]:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 , (2.17)

with cij = cos(θij) and sij = sin(θij). The three angles in this parametrisation corre-
spond to the coupling strength between the three generations. The angle θ12 corresponds

6In principle it is arbitrary if the down or up-type quarks are mixed.
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2. Theory

to the Cabibbo angle θC . While the three angle terms are all real, the phase δ in the
term e−iδ results in complex matrix elements.

Another possibility is the Wolfenstein parametrisation [22]. It uses a Taylor expansion
in the factor λ = sin(θ12). With terms up to the order of λ3 it is:

VCKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.18)

The strength of CP -violation in this parametrisation is measured by the factor of ρ−iη7.

The magnitudes of the matrix elements according to measurement [4] are currently:

|VCKM| =

0.97370± 0.00014 0.2245± 0.0008 0.00382± 0.00024
0.221± 0.004 0.987± 0.011 0.0410± 0.0014

0.0080± 0.0003 0.0388± 0.0011 1.013± 0.030

 . (2.19)

The structure of the matrix preferring couplings within the same generation is clearly
visible.

One way to validate the CKM mechanism is to use the fact that VCKM is required
to be a unitary matrix, which results in range of restrictions the elements must fulfil,
depending on which direction the matrix is traversed:∑

i

VijV
∗
ik = δjk (2.20)∑

j

VijV
∗
kj = δik. (2.21)

The relations summing up to zero can be visualized as triangles in the complex plane,
called unitarity triangles. As both the length of the sides and the three angles of each
triangle can be measured independently, this allows to overconstrain the equations. The
most commonly used triangle is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (2.22)

as all the sides are in the same order λ3 in the Wolfenstein parametrisation. The other
triangles have one side much smaller than the others, which not only makes visualization
more difficult but also requires different precision levels for the different sides to give a
useful measurement overall.

Instead of the form from Equation (2.22), the triangle is often shown with the bottom
side normalised and two of the corners at (0, 0) and (0, 1). The apex gives the CP -
violation strength in this formulation, which can be seen in Figure 2.5.

7Often the parameters ρ̄ and η̄ are used instead, which are modified to ensure the unitarity of the
Wolfenstein parametrisation in higher orders of λ.
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(0, 0) (1, 0)

(ρ̄, η̄) ∣∣∣ VtdV ?
tb

VcdV
?
cb

∣∣∣∣∣∣VudV ?
ub

VcdV
?
cb

∣∣∣
γ = φ3

α = φ2

β = φ1

Figure 2.5.: The unitarity triangle for b quarks.

The current result on the measurements to constrain various parameters is shown in
Figure 2.6. All measurements are compatible with each other, forming a closed triangle
and showing no discrepancies from the CKM -mechanism.
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Figure 2.6.: Summary of all current measurements and fits to the unitarity triangle,
from [23]
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2.5. B mesons

The b quark is the lighter quark of the third generation pair, and the heaviest quark
forming bound states. Depending on the type of lighter quark, there are four ground-
state mesons, the B0

d(db), B+
u (ub), B0

s (sb) and B+
c (cb)

8. The B+
u and B0

d are often simply
called B+ and B0 and are, together with their charge-conjugated partners, the two most
important for this analysis.

The large mass of B mesons yields a large variety of decay channels. Via the unitar-
ity triangle shown in Figure 2.5 they are useful to test the theory and detect possible
deviations due to new physics or effects not yet accounted for. As the decay of both the
B± and the B0 involve one of the suppressed CKM elements |Vcb| and |Vub|, they have
a relatively long lifetime of τB± = 1638± 4 fs and τB0 = 1519± 4 fs.

The neutral B mesons, like the lighter mesons mentioned before, can oscillate between
the B0 and the B0 states via the diagrams shown in Figure 2.7. Unlike the neutral kaons,
the two states resulting from the mixing have almost the same lifetime and instead differ
in mass. This oscillation plays an important role in the dominant type of CP -violation
for neutral B mesons, which is the interference between the direct and mixing types.
The oscillation amplitudes are also useful in measuring the CKM matrix elements |Vtb|
and |Vtd|, as the internal quark lines are dominantly t quarks.

b d

d b

W

W

B0 B
0

b d

d b

W WB0 B
0

Figure 2.7.: Oscillation Diagrams for neutral B mesons.

This interference occurs in decays to final states accessible by both B0 and B
0, to

allow a B0 to either directly decay or decay to the same state after an intermediate os-
cillation into a B0. As such, the final state must be an CP -eigenstate. One such decay
channel commonly used is to the final state J/ψK0

S. The Feynman diagram both with
and without the oscillation step for B0 → J/ψK0

S can be seen in Figure 2.8.

The neutral B mesons, B0 and B
0, form mixed states similar to the kaons described

in Section 2.3. Instead of the lifetime, the main difference between the two mixed states
is their mass, consequently they are labelled BH (heavy) and BL (light) with the mass
difference ∆m. For this channel, the asymmetry from Equation (2.13) then takes the

8To each of them a charge-conjugated antiparticle is implied
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b

d
B

0
c

c
J/ψ

s

d
K

0

W−
d

b
B

0
c

c
J/ψ

s

d
K0

b

d

W

W W+

Figure 2.8.: Diagram for B0 → J/ψK0
S, once direct (left) and once with and intermediate

oscillation (right). The K0
S is produced via either a K0 or a K0.

form

AJ/ψK0
S
(t) = sin(∆mt) sin(2φ1). (2.23)

The time t is the duration after the decaying B meson was in a defined quark state,
either after production or tagged via the decay of another correlated B meson out of a
coherent production via the Υ(4S) resonance, as is done at B-Factories. This asymmetry
provides an opportunity to determine the angle φ1, which enters the asymmetry due to
a phase difference of 2φ1 between the direct decay and the decay after mixing.

Unlike for direct or mixing CP -violation, the asymmetry in Equation (2.23) disappears
when integrated over time. The requirement to resolve the asymmetry time-dependently
to measure the size of CP -violation was a major factor in the design of the B-Factories
like Belle, which will be described in Chapter 3.

2.5.1. Semileptonic B meson decays
All B mesons eventually decay. As they are the lightest mesons containing a b quark,
their only way of decay involves the decay of this b via the weak interaction, explaining
their relatively long lifetime compared to particles with strong decay modes available. In
general the decay modes can be grouped into three categories depending on the particles
in the final state. They are fully hadronic decays, fully leptonic decays and semileptonic
decays. The general decay patterns can be seen in Figure 2.9.

In both hadronic and semileptonic decays the b decays into an up-type quark of the
first two generations, due to the difference in size in the CKM -matrix elements involved
in the coupling, |Vcb| � |Vub|, the decay into a charm quark is much more likely. Due to
the coupling ratio of the W , the hadronic decay is the most likely. However, the hadronic
decay channels come with several drawbacks for analyses. The large amount of quarks
produced complicate theoretical modelling due to QCD effects. Also, as the W couples
to quarks on both its creation and decay, two CKM matrix elements enter in the decay
amplitude, making precise measurements more difficult.
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b q−1/3

q2/3

c/ud

d

W−

B−
b ν`

`−

c/ud

d

W−

B−
b

d ν`

`−W−
B−

Figure 2.9.: From left to right: Fully hadronic, semileptonic and purely leptonic decay
of a B− meson at tree level.

In contrast, purely leptonic decays are processes without any QCD contribution on the
side of the decay products, and therefore theoretically easier to handle. They also only
involve one CKM matrix element. However, they are helicity suppressed and have a low
branching fraction, requiring large datasets for analysis. Semileptonic decays then are
in an intermediate position. Their branching fraction is in between the purely hadronic
and leptonic types, and like the leptonic decays they only involve one CKM matrix ele-
ment. Also, the leptons created in the W decay do not couple to the strong interaction,
greatly reducing, although not eliminating, the QCD effects on the kinematics. This
makes them useful to study especially the elements |Vcb| and |Vub| involved in b quark
decays.

2.5.2. Charmless semileptonic decays
While the majority of B mesons decay into mesons containing a charm quark, a small
amount decays in a so-called charmless decay via a direct b→ u transition. As this decay
has to cross two generations, it is strongly suppressed by the small size of |Vub|. One use
of these decays is to measure |Vub| via semileptonic decays, just as b→ c transitions are
used in measuring |Vcb|. The large suppression of charmless decays can be seen when
comparing the inclusive branching fractions [24] of all semileptonic decays containing
a meson with a c quark (Xc) with that for semileptonic decays so mesons where the b
turned into an u (Xu):

B
(
B → Xc`

+ν`
)

= (10.65± 0.16)%, (2.24)
B
(
B → Xu`

+ν`
)

= (2.13± 0.30)× 10−3. (2.25)

In the case of B → Xu`
+ν` decays, the inclusive branching fraction measured above

amounts to about twice as much as the sum of all currently exclusively measured individ-
ual channels. The matrix element |Vub| can be determined from both the inclusive mea-
surements, accepting all final states containing a b→ u transition, as well as the exclusive
measurements explicitly reconstructing specific decay channels. However, while the in-
clusive measurements results in a value of |Vub|incl = (4.32± 0.12exp ± 0.13theo)× 10−3,
the measurement using the channel B → π`−ν` results in the significantly lower value of
|Vub|excl = (3.67± 0.15)× 10−3. This discrepancy shows that there still is improvement
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in the understanding of charmless decays needed, both in the theoretical description and
in determining the exact composition of the decay modes.

2.5.3. Semileptonic decays to η and η′ mesons

Two possible charmless mesons in the B → Xu`
+ν` channel are the η(uu+ dd− 2ss/

√
6) and

the η′(uu+ dd+ ss/
√
3) mesons. Both are neutral, pseudoscalar mesons. Their masses [4]

are:

mη = 547.862± 0.017MeV (2.26)
mη′ = 957.78± 0.06MeV (2.27)

The decay process can be seen in Figure 2.10. As the η(′) mesons are both neutral, the
only semileptonic decays they can be produced in are those of charged B mesons. The
averages of previous measurements [4] of the branching fractions for the two decays are
B (B+ → η`+ν`) = (3.9± 0.5)× 10−5 and B (B+ → η′`+ν`) = (2.3± 0.8)× 10−5.

b u

u u

`+

ν`

W+

B+ η(′)

Figure 2.10.: Diagram of the decay process B± → η(′)`±ν`.

Decay Branching Fraction [%]

η → γγ 39.41± 0.20
η → π0π0π0 32.68± 0.23
η → π+π−π0 22.92± 0.28

Table 2.3.: The three most common decay modes [4] of the η meson.

Decay Branching Fraction [%]

η′ → π+π−η 42.5± 0.5
η′ → ρ0γ 29.5± 0.4
η′ → π0π0η 22.4± 0.5

Table 2.4.: The three most common decay modes [4] of the η′ meson.
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The three most common decay modes for both mesons are listed in Table 2.3 and
Table 2.4. In principle all decays of the type B → Xu`

+ν` are suited to determine |Vub|,
however for the B± → η(′)`±ν` decays, the necessary theoretical description is not avail-
able with sufficient precision. Nonetheless, understanding these decays and measuring
their branching fractions precisely is an important step not only to be prepared when
theoretical calculations advance, but also to determine the composition of the inclusive
B → Xu`

+ν` range. The quark transition in the decays is described using form factors.
These model the energy distribution between the resulting particles, depending on the
energy transfer to the virtual W -boson. Various theoretical models exist to describe
the shape, which needs to be verified with experimental results, which are also neces-
sary to derive the overall normalization, as well as other factors depending on the model.

Due to its lower mass compared to mesons containing c quarks, decays to η(′) can
transfer more momentum to the produced leptons. However large amounts of transferred
momentum q result in very low-energy, and therefore difficult to measure, hadrons. As
a result most previous measurements had limited the acceptance in q to below some
threshold, although knowledge over the entire range is important to validate the theo-
retical description. For the determination of the CKM matrix element, the description
over the entire range is needed.
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CHAPTER 3

Experiment

In the search for CP -violation in B mesons, two experiments were built, Belle and
Babar. The data analysed in this work was taken at the Belle experiment located at the
High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan. It consists
of the KEKB [25] e+e− accelerator and storage ring paired with the Belle detector [26]
at the single interaction point. As a B-Factory, the setup is optimized to produce and
measure as many B mesons as possible. This is accomplished by operating the collider
at the Υ(4S) resonance of 10.58GeV [4]. The Υ(4S) is the lightest of the bb states heavy
enough to decay via the strong interaction, almost exclusively producing coherent pairs
of B+B− and B0B

0 mesons1 at about the same rate. The production of a B+B− pair
is shown in Figure 3.1.

e−

e+

Υ(4S)

b

b

u

b

u

b

B−

B+

Figure 3.1.: Reaction forming an Υ(4S) from the two beams, followed by the decay to a
B+B− pair.

To measure the CP -violation according to Equation (2.23), the two B mesons have to
be reconstructed individually and their decay-time measured. However, due to the very
small difference in mass between the Υ(4S) and the BB pair, the B mesons are almost

1These are referred to collectively as BB
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at rest in the frame of reference of the Υ(4S), making it very challenging to separate
decay vertices between them. A unique feature of the B-Factories provides a solution.
By using an asymmetric collider, the BB system is strongly boosted in the frame of the
detector, which leads to better separation between the vertices due to relativistic effects.
The asymmetric design also provides an advantage in measuring the decay time. While
measuring the time passed between the two decays is impossible, the distance between
the vertices can be measured with much better precision. With the known boost factor
this difference directly translates into a temporal difference between the decays.

Following the construction and commissioning phase, the Belle experiment took data
in the years from 1999 to 2010. After the end of operation, the detector was upgraded
to Belle II [27], together with an upgrade of the accelerator to SuperKEKB [28]. This
upgraded setup started data taking in 2019. An overview of the results from the Belle
experiment, together with those of the other B-Factory Babar, can be found in [29, 30].

This chapter starts with a short introduction to the accelerator KEK in Section 3.1,
before discussing the construction of the Belle detector in Section 3.2, its particle identi-
fication system in Section 3.3 and finally the dataset taken over the operation period in
Section 3.4. A more detailed description of accelerator and detector can be found in [25,
26].

3.1. KEKB
The KEKB accelerator complex generates the colliding beams for the Belle experiment
by accelerating electrons and positrons in several steps. It developed out of its predeces-
sor TRISTAN, whose general layout and tunnel it inherited. The general layout of the
accelerator can be seen in Figure 3.2. Electrons are accelerated in the linear accelerator
(LINAC)2 up to their collision energy. Partway during the acceleration, some of these
electrons are collided with a target to generate positrons, which are also accelerated to
serve as the collision partners.

After reaching their required energies, the electron and positron beams are injected
into a pair of storage rings with a circumference of 3016m. The storage rings are placed
side-by-side in the tunnel. Due to the asymmetric design of the accelerator, these rings
are operated at different energies. The electrons are injected into the high energy ring
(HER) and the positrons into the low energy ring (LER). When operating at the Υ(4S)
resonance with

√
s = 10.58GeV, the HER has an energy of 8.0GeV and the LER of

3.5GeV, which corresponds to a Lorentz boost factor of βγ = 0.425 for the centre-of-
mass(CM) frame. Other energy settings have also been used.

The decay channels used to investigate CP -violation have a low overall branching frac-
tion. A statistically significant measurement therefore requires the collection of a large

2Despite the name it contains a 180° turn necessary to fit inside the KEK area.
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Figure 3.2.: Schematic view of the KEKB installation, from Ref. [29]

data sample of collisions. The amount of collision data an accelerator setup accumulates
is measured with the luminosity:

L =
Nbne−ne+f

Aeff
. (3.1)

In both rings, the electrons and positrons circulate in discretely spaced groups called
bunches. Each ring is designed to contain Nb = 1584 such bunches, with the number of
particles contained in a bunch ne± , typically between 1010 and 1011. The bunches cir-
culate with the frequency f , and Aeff is the effective cross-section between the bunches
at their point of interaction.
The original design luminosity of the KEKB accelerator was L = 1× 1034/(cm2 s). Af-
ter several improvements over the time of operation more than twice of that design goal
could be achieved with L = 2.1× 1034/(cm2 s). During beam operation, the electrons
and positrons continually deplete and the beam currents decrease. KEKB used a con-
tinuous injection scheme to constantly replenish spent particles.

The complex housing KEKB has four experimental halls inherited from its predeces-
sor TRISTAN. Only one of these contains a detector, built around the only interaction
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point at Tsukuba Hall.

3.2. Belle

The Belle detector is a general-purpose detector covering almost the entire solid angle
range, situated at the only interaction point (IP) of the KEKB accelerator complex. At
this point, the two beams collide under an angle of 22mrad producing either the desired
Υ(4S) meson or a variety of background processes. These background processes can
themselves be used as signal for a variety of other studies not involving a Υ(4S). Before
reaching the collision, the beams pass through a final set of focusing magnets. Due to
the collision angle the interaction region is limited to only the point where the beams
intersect, allowing a precise determination of the IP for analyses.

The detector consists of three main segments, the barrel in the central region with
the various sub-detectors arranged in layers, and the forward and backward endcaps
measuring particles travelling at angles close to the beam pipe. The forward direction
is defined as the direction of the electron beam, and coincides with the boost direction
of the CM system. The boosted CM system results in an asymmetric detector design
to account for the difference in particles expected between the forward and backward
sides. The detector is surrounded by a solenoid magnet producing a 1.5T magnetic field
oriented in parallel to the positron beam direction.

To measure CP -violation, both a full coverage to detect all resulting particles, as well
as a high precision is required. Good vertexing capabilities are necessary to distinguish
the decay vertices of the two B mesons and determine their distance, together with
particle identification (PID) capabilities to determine the B meson flavour. The high
luminosity requires the inner detectors to have an especially high tolerance for radiation
damage to not significantly degrade in performance during the operation. Conversely,
to minimize the effect of interactions with the detector material by the passing particles
on the resolution, the material budget in terms of radiation length X0 has to be kept as
low as possible especially for the inner detectors.

The global coordinate system of Belle is defined around an z axis along the inverse of
the positron beam direction. Due to the small crossing angle this is different from the
electron beam axis. The x and y axes point outward and upward of the accelerator rings
respectively. Additionally, polar coordinates are used with the angles polar angle θ with
respect to the z axis and the azimuthal angle φ. The radius is defined as r =

√
x2 + y2.

In the following the individual sub-detectors making up Belle are described in more
detail. They are, beginning from the innermost sub-detector, the Silicon Vertex Detec-
tor (SVD), the Central Drift Chamber (CDC), the Aerogel Cherenkov Counter (ACC), the
Time-of-Flight (TOF) system, the Electromagnetic Calorimeter (ECL) and the K0

L and
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Figure 3.3.: Schematic side view of the Belle detector, showing locations of the compo-
nents, taken from Ref. [26].

Muon Detector (KLM). An overview of the entire layout can be seen in Figure 3.3. The
angular acceptance of all subsystems, when not stated otherwise, is 17° < θ < 150°.

3.2.1. Silicon Vertex Detector

The innermost sub-detector is the Silicon Vertex Detector (SVD). It is situated directly
outside of the beam pipe, which is made out of beryllium to reduce the effects of Coulomb
scattering, together with a gold coating to reduce synchrotron radiation. The beam pipe
has two layers with cooling in between to counteract the energy absorbed from the beam.

The SVD uses layers of double sided strip detectors (DSSD) to measure the point of
traversal of particles to reconstruct the trajectory of charged particles and from it the
decay vertex. Particles passing through the strips release electrons from the silicon,
which can be measured as an electric current. The modules of each layer contain strips
on both sides rotated by 90° relative to each other. The combination of the two sides
allows the determination of the point of traversal of particles.

Over the time of its operation, Belle used two different SVD configurations. The origi-
nal design, called SVD1, had three layers of DSSD modules. The three layers are positioned
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Figure 3.4.: Layout of the modules of SVD1, and schematic of one such module. Taken
from Ref. [26].

at radii of 30mm, 45.5mm and 60.5mm from the IP with some overlap between the
modules of each layer to prevent gaps. The layout can be seen in Figure 3.4. The
angular acceptance of SVD1 was smaller than that of the detector in general at only
23° < θ < 139°. The original design was not sufficiently radiation hard and needed
frequent exchanges of damaged parts.

Figure 3.5.: Layout of the upgraded SVD2. Taken from Ref. [31].

In the summer of 2003, it was replaced with the SVD2 [31] of a new design. Besides
being more durable, it added a fourth layer. Due to a new beam pipe of smaller diame-
ter, the innermost layer could be placed closer to the IP than before, with the radii of
the layers now being 20mm, 43.5mm, 70mm and 88mm. The configuration is shown
in Figure 3.5. The SVD2 also improved the angular acceptance to 17° < θ < 150°. The
impact parameter resolution of both SVD configurations was determined with cosmic rays
and can be seen in Figure 3.6. The resolution is strongly dependent on the momentum
of the measured particle. Especially in the z direction SVD2 provides a significant im-
provement over the previous SVD1. About 85% of the integrated luminosity was taken
with this second configuration. This is sufficient to achieve the 100µm resolution on the
decay vertex distance between the BB necessary for measurements of CP -violation.
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Figure 3.6.: Resolution of the SVD1 and SVD2, on the left in rφ and on the right in z.
Taken from Ref. [31].

Hits on the SVD are matched to charged particle tracks extrapolated inwards from
the following detector, the CDC. These added hits increase the precision of the track ex-
trapolation and give a better determination of the original vertex inside the beam pipe.
When multiple particles pass through the SVD close enough together, an ambiguity can
develop between the strips in both directions, giving rise to additional hits unrelated to
real particles. These can be resolved as only combinations related to an actual particle
passing through should have a corresponding CDC track pointing towards them.

3.2.2. Central Drift Chamber

The Central Drift Chamber (CDC) is used to measure the trajectory of charged parti-
cles and, together with the SVD, forms the Belle tracking system. The CDC is inside the
1.5T magnetic field. The Lorentz force induces a curvature on the trajectory of particles
which is used to determine the momentum. It also contributes to identifying the particle
type by measuring the energy loss dE/dx and provides information to trigger events on
charged tracks.

The CDC is a typical drift chamber, consisting of a gas-filled barrel with wires inside
both for applying an electric field and measuring current. It occupies the region from an
inner radius of 80mm to an outer radius of 880mm. In parallel to the upgrade to SVD2,
the inner configuration was changed to accommodate the new, larger SVD2 detector. This
changed the inner radius to 110mm. The original design before this change is shown in
Figure 3.7. The gas used to fill the CDC is a mixture of 50%He and 50%C2H6(ethane).

27



3. Experiment

A gas mixture with a low atomic number Z was chosen to minimize multiple scattering
and the resulting effects on the particle trajectory.
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Figure 3.7.: Overview of the Belle drift chamber design, taken from Ref. [26].

The CDC contains a total of 8400 drift cells, each consisting of one anode sense wire,
surrounded by eight cathode field wires. The sense wires used for the actual measure-
ment are made out of 30µm thick, gold-plated tungsten, while the field wires are 126µm
thick aluminium. The wires are grouped into 50 cylindrical layers. Between three and
six layers form groups, alternating between axial layers parallel to the beam pipe and
stereo layers being positioned at a small angle. The angled stereo wires are used to gain
additional information on the z coordinate. The three innermost layers are formed out
of cathode strips. These are segmented and used to improve the resolution in z and to
trigger on events.

If a charged particle traverses the gas volume, it ionizes the gas particles and frees
electrons. These electrons get accelerated towards the sense wires, turning into a cascade
due to collisions and further ionizations with the gas until they reach the wire, where
the induced current of these electrons is measured. The initial energy of the electrons,
and therefore the strength of the cascade reaching the wire, depends on the type of the
particle. The timing until the electrons reach the sense wire is used to determine the
distance between the wire and the trajectory at its closest approach. The CDC reaches a
spatial resolution of around 130µm.

Particles traversing the CDC lose energy when interacting with the gas by scattering
and ionization. This energy loss dE/dx for a given momentum is different for each type of
particle due to their different masses and can be measured proportional to the current
induced by the ionization. The different behaviour of the particles typically measured
by the CDC is compared in Figure 3.8. The dE/dx measurement forms an important part
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Figure 3.8.: dE/dx behaviour of different particle types in the CDC, taken from Ref. [26].

of the PID.

3.2.3. Aerogel Cherenkov Counter

Directly outside the CDC come two PID systems primarily used to distinguish π± from
K±. The first is the Aerogel Cherenkov Counter (ACC) for particles with high momenta
above 1.2GeV/c, up to a limit of about 4GeV/c. It consists of two parts, the barrel
covering an angular acceptance of 33.3° < θ < 127.9°, and the forward endcap covering
13.6° < θ < 33.4°.

The barrel part contains a total of 960 sensor modules, arranged in 16 sectors along
the θ angle. Each sector consists of 60 identical modules arranged symmetrically around
φ. The forward endcap consists of 288 modules, arranged in 5 layers around the beam
pipe. All modules are oriented to point towards the IP. The general layout of the ACC
can be seen in Figure 3.9.

The detection uses Cherenkov light emitted by particles travelling faster than the
speed of light in the traversed medium. If the material has the refractive index n, the
threshold velocity to emit Cherenkov light is β = v/c = 1/n. An individual ACC module
contains five layers of silica aerogel material with a refractive index between 1.01 and
1.03, depending on the polar angle. Photons caused by passing particles are detected
with one or two fine-mesh photomultiplier tubes capable of operating inside the 1.5T
magnetic field of Belle. The construction of a barrel and endcap module is shown in
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Figure 3.9.: Arrangement of the ACC modules, taken from Ref. [26].

Figure 3.10.

The refractive index of the aerogel is chosen such that π± in the ACC energy range emit
Cherenkov light while K± do not. If tracks found with the CDC and SVD point towards
towards an area inside the ACC acceptance, whether a module in that direction detected
sufficient photons gives a clear distinction about what type of particle caused the track.

3.2.4. Time-of-Flight counter

The Time-of-Flight (TOF) system is the second of the PID detectors, complementing the
ACC in distinguishing particles between π± and K±. It is effective for particles with
momenta below 1.2GeV/c, extending on the ACC range. The TOF only contains a barrel
part with an angular acceptance of 34° < θ < 120°. In the forward direction therefore
particle identification has to rely on ACC. Particles in the momentum range covered by
TOF make up 90% of the decay products in an average Belle event. The position of the
TOF directly outward of the ACC can be seen in Figure 3.9.

The TOF determines particle type by precisely measuring the time it takes a particle
originating from the IP to reach the TOF detector modules, which are about 1.2m away.
The exact flight length and momentum the particle is derived from the tracking detectors
CDC and SVD. The time of interaction in the beam pipe is determined from the accelerator
timing and needs to be precisely calibrated to the TOF readout to determine the exact
difference. Adding this time of flight to the trajectory information allows determination
of the mass and therefore type of the measured particle. The minimal energy needed to
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Figure 3.10.: Schematic of two different types of individual ACC modules, taken from
Ref. [26].

reach the TOF is 0.28GeV, particles with even lower momentum stay inside the CDC and
PID must rely on the dE/dx measurement alone.

The TOF consists of 128 plastic scintillators read out by fine-mesh photomultiplier
tubes at each end. These scintillators are grouped in pairs into 64 TOF modules, to-
gether with an additional scintillator located inwards. This additional scintillator is
used for the Trigger Scintillation Counter (TSC) as part of the trigger system and only
read out my one photomultiplier tube located at the backwards side. The layout of one
such module can be seen in Figure 3.11. The TSC is separated from the TOF with a 1.5 cm
gap. This gap prevents background events arising from photon interactions in the TSC
to reach the TOF scintillators, allowing background events to be reduced by requiring a
signal in both. The time resolution achieved by the TOF is around 100 ps.

31



3. Experiment

TSC    0.5 t  x  12.0 W  x  263.0 L

PMT
 122.0

182. 5 190. 5

R= 117. 5

R= 122. 0
R=120. 05

R= 117. 5R=117. 5

PMT PMT

- 72.5 - 80.5- 91.5

Light guide

 TOF    4.0 t  x  6.0 W  x  255.0 L

1. 0

PMT
PMT

ForwardBackward

 4. 0 

 282. 0  

 287. 0  

I.P (Z=0)

1. 5

Figure 3.11.: Measurements and general arrangement of the TOF and TSC, taken from
Ref. [26].

3.2.5. Electromagnetic Calorimeter

Electrons and photons are stopped by the material of the Electromagnetic Calorimeter
(ECL). This interaction allows to measure their energy. Photons can only be measured
by the ECL and occur in a wide range of energies at Belle, from about 4GeV directly in B
meson decays down to below 0.5GeV at the end of a decay chain. Separating individual
photons requires a high granularity of the detector. The ECL is also used in separating
electrons from other charged hadrons.

The ECL consists of a central barrel part and two endcaps for particles at angles closer
to the beam pipes. The barrel with an inner radius of 1.25m is situated directly outside
the TOF, which is attached to it. The barrel length is 3.0m and it provides an angular
acceptance of 32.2° < θ < 128.7°. The forward endcap is located 2.0m forward of the IP
and provides an additional angular acceptance 12.4° < θ < 31.4°. The backward endcap
is located 1.0m backwards from the IP and has an acceptance of 130.7° < θ < 155.1°.
The endcaps are used to measure particle on trajectories leaving the CDC at the front or
back. Between the barrel and the endcaps are small gaps in acceptance to make room
for cables to the inner detectors to pass, reducing the overall acceptance by about 3%.
The general layout can be seen in Figure 3.12.

The ECL is an array of 8736 modules using thallium-doped caesium iodide CsI(Tl) crys-
tals as scintillation material and silicon photodiodes to measure the scintillation light.
Unlike in the inner detectors, where a low material budget is desired, the ECL scintilla-
tor material is optimized for the opposite. The crystal length of 30 cm corresponds to
16.2 X0, here a large value is desired to stop the particles and measure their total energy
inside the ECL. The modules are oriented to point approximately towards the IP. The
slight deviation allows for some overlap between modules to increase the acceptance, as
otherwise particles could pass through the gaps between the modules undetected.

Electrons and charged hadrons entering the scintillator crystals emit bremsstrahlung
photons reducing their energy, while photons convert to electron-positron pairs. These
processes repeat, creating a shower of particles until they fall below an energy threshold
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Figure 3.12.: The layout of the Belle electromagnetic calorimeter, taken from Ref. [26].

and instead cause the emission of visible light by the interaction with the scintillator.
This light is then measured by the photodiodes. In general the particles created dur-
ing the shower process are not limited to only one crystal cell, but spread out over the
neighbouring cells as well. These cells together form a cluster in the ECL.

The resolution in energy and incident angle measurement depends on the energy of
the measured particle, improving with increasing energy. Starting at 0.1GeV it is 4% in
energy and about 13mrad in angle, improving to 1.6% and 3mrad for energies of 8GeV.

Similar to the ECL is the Extreme Forward Calorimeter (EFC). It is a separate system
located outside the main Belle detector, close to the beam pipe to measure particles at
very small angles, mostly coming from Bhabha scattering and beam backgrounds. Mea-
suring the rate of Bhabha events is important as it is directly linked to the luminosity
of the accelerator. While the general principle is the same as for the ECL, the crystals
are made out of Bismuth Germanate (Bi4Ge3O12), which is more resistant to the high
radiation levels in this region.

3.2.6. K0
L and Muon Detector

The outermost sub-detector is the KLM, primarily measuring K0
L and µ±. These interact

weakly at the energies typical for the Belle experiment and are not stopped inside the
previous components. Even the additional material of the KLM is not enough to fully
stop these particles however and they leave the detector. The energy of muons can be
determined with the momentum measurement from the tracking detectors, the KLM giv-
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ing additional hits for the trajectory and providing PID information as no other charged
particle should reach that far. However, K0

L leave no track, so only a lower bound on
their energy can be determined from the energy they deposit in the KLM and ECL together
with a measurement of their direction.

The KLM, like the ECL, consists of a barrel and two endcaps and also serves as the flux
return for the 1.5T solenoid magnet. The angular coverage is 20° < θ < 155°, of which
the barrel covers 45° < θ < 125°. The KLM is build of a structure of alternating 4.7 cm
thick iron plates and detection modules. While the barrel has 15 detection modules, the
endcaps have only 14. The iron serves as interaction material for the passing particles,
and the 14 iron plates used in all regions of the detector add 3.9 interaction lengths to
the 0.8 interaction lengths of the ECL for the K0

L to react and deposit energy.
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Figure 3.13.: Configuration of one KLM detection layer, taken from Ref. [26].

A detection module consists of two resistive plate counters, each composed of two
glass electrodes with a gas-filled gap in between and readout strips at the outer ends.
The arrangement can be seen in Figure 3.13. Particles passing through the detection
module ionize the gas, and the ionized gas in turn causes and electric discharge between
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the electrodes. This discharge is measured and with the orientation of the readout strips
gives the point of traversal. Particles need a momentum of at least 600MeV/c to reach
the KLM. The angular resolution achieved is below 10mrad.

3.2.7. Trigger and Data Quality Monitoring

It is important to save all physics events useful for a later analysis. However, most of the
signals measured by the detector components are background events or noise. Attempt-
ing to save these as well would overwhelm both the bandwidth of the data acquisition
(DAQ) as well as the data storage. The trigger system (TRG) is responsible to select which
events are worth saving and which can be discarded immediately.

The trigger works in several stages, starting with the level 1 (L1) trigger implemented
in hardware using custom electronics. It takes inputs from several sub-detectors, the CDC
and TSC to determine the presence of charged particles and from the ECL for photons,
as well as the KLM. These inputs are used by the Global Decision Logic (GDL) to select
events with indications of particles high enough in energy and sufficiently away from the
beam direction to indicate more than beam background.

This selection is followed by the level 3 (L3) trigger after all data is provisionally read
out. It uses a simplified form of the event reconstruction optimized for speed. This
further inspects events chosen by L1 due to criteria indicating charged tracks in more
detail, and reject further background. Events passing both trigger levels are saved for
further analysis, where additional selections are applied depending on their purpose.
The trigger efficiency for hadronic events is above 99.5%.

If the conditions of one of the sub-detectors deteriorates during operation, all data
recorded from then on is taken under suboptimal conditions, if that sub-detector still
records usable data at all. It is therefore important to detect problematic behaviour as
early as possible, so the cause can be rectified and the quality of the data improved.
This is the task of the Data Quality Monitoring (DQM). It uses a subset of the recorded
events to immediately calculate quantities indicating detector performance, while also
providing a reference for nominal conditions. This comparison is used to quickly discover
and investigate any deviations.

3.3. Particle identification

Most measurements at Belle rely on reconstructing decay chains originating from B
mesons out of the numerous particles measured by the detector in each event. The five
charged particles with sufficient lifetime to be candidates for the tracks measured are
e±, µ±, π±, K± and p±. The Particle Identification (PID) assigns one of these particle
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hypotheses to the tracks measured in the detector by combining information from several
sub-detectors. For a track, the likelihood of a particle of each type giving the measured
response is formed, and ratios of these likelihoods are used in analyses.

3.3.1. Hadronic likelihood
For the three types of hadrons π±, K± and p±, likelihood ratios are built comparing the
probability to be one type over the other [32]. The likelihood of a candidate being a π±
over a K± is:

Pπ/K =
Lπ

Lπ + LK
. (3.2)

For other combinations of particles the likelihood is built analogously. The individual
likelihoods Li for particle type i are

Li = L CDC
i × L TOF

i × L ACC
i (3.3)

combining likelihoods from three different sub-detectors. The specific measurements
used are:

• The energy loss in the CDC. The different behaviour for the particle types can be
seen in Figure 3.8. In case a track is outside of the angular acceptance of the ACC
and TOF, or has not enough energy to reach those, dE/dx is the only measurement
available.

• The Cherenkov light yield measured by the ACC.

• The flight time measured by the TOF.

3.3.2. Electron likelihood
The electron probability [33] is defined as the likelihood ratio of a track being an electron
against not being one:

Pe =
Le

Le + Lnon−e
. (3.4)

These likelihoods use five measurements, two of which are also used in the hadronic
likelihoods:

• The energy loss dE/dx in the CDC

• The Cherenkov light yield measured by the ACC

Additionally, three measurements based on the ECL are included:

• The shape of the shower measurement. Electrons produce more compact showers
spread over fewer crystals than hadrons.
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• The ratio of the energy absorbed by the ECL to the track momentum determined
in the CDC. As most electrons get stopped in the ECL and deposit all their energy,
this should be close to one, while hadrons pass through the ECL without depositing
their entire energy.

• The quality of the matching between the CDC track and the associated ECL cluster.
A well reconstructed trajectory should point directly toward its associated cluster.

3.3.3. Muon likelihood
The muon identification [34] is defined as the likelihood ratio of a track being a muon
against the hadrons π± and K±:

Pµ =
Lµ

Lµ + Lπ + LK
. (3.5)

Muon candidates are all CDC tracks that have associated hits in the KLM. Two quantities
correlating these two are used to build the likelihood:

• The matching quality between the trajectory extrapolated outwards of the CDC and
the KLM hits. If the trajectory is well determined, it should pass close to correctly
assigned hits.

• The penetration range determined from the momentum in the CDC compared with
the range required to reach the associated part of the KLM.

3.3.4. Neutral particles
While not strictly part of the PID, neutral particles have to be assigned as well. All
clusters in the ECL without an associated track pointing towards it are reconstructed as
photons, while similarly all KLM hits without a corresponding track are reconstructed as
K0

L.

3.4. Dataset
During the operational period from 1999 to 2010 the Belle experiment took data mainly
at the Υ(4S) resonance. However, significant data sets where also taken with other ac-
celerator settings, investigating the lighter resonances Υ(1S), Υ(2S) and Υ(3S) as well
as the heavier Υ(5S), which can decay into BsBs pairs. So called off-resonance data was
taken with the beam energy set just slightly below each of these resonances, to study
the background components not involving an intermediate Υ resonance. All data taken
together reached an integrated luminosity over 1 ab−1.

This analysis uses the entire dataset available to study BB pairs at the Υ(4S) reso-
nance, which has an integrated luminosity of 711 fb−1. This corresponds to

NBB = 772± 11× 106 (3.6)
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BB pairs [30]. Additionally, 79.4/fb of data taken 60MeV below the Υ(4S) resonance is
used to validate the simulation of background processes.
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CHAPTER 4

Statistical Methods

Analysing the data taken at experiments in particle physics requires a variety of statis-
tical tools and methods. They broadly fall into two categories. The first are methods to
classify events into categories and techniques to construct quantities useful for that pur-
pose, often using simulated data. The second method concerns generating such simulated
data, called Monte Carlo (MC), to develop the analysis and compare the expectation
with the measured result.

This chapter starts with introducing boosted decision trees (BDT) as a method to cat-
egorize events in Section 4.1. Following is a description of the fit method used to extract
the amount of signal events in the final sample in Section 4.2. At Belle, B mesons are
always produced in pairs. In Section 4.3 different reconstruction methods for the second
B meson in an event are compared. Afterwards, methods to identify events without
such a pair of B mesons are introduced in Section 4.4. Finally, Section 4.5 discusses the
simulated data used throughout this analysis.

4.1. Boosted decision trees
One of the most important steps in reconstruction analyses such as this work is to cate-
gorize events into either signal events, containing the process of interest, or background.
To improve on the traditional method of using sequential cuts on variables one after
another, multivariate algorithms (MVA) [35] are used. Instead of only a single variable at
each step, they can use the full variable space including the correlations between vari-
ables to develop a prediction which category a given event belongs to.

Before such an MVA can be used to classify events, it needs to be trained first. This

39



4. Statistical Methods

training determines the parameter set used later in the classification. One commonly
used way is supervised machine learning with a set of events, usually from a simulation,
for which the category they belong to is known in advance. Besides the category, the
events need to have a set of variables quantifying the features the MVA can use in learning
how to distinguish the categories.

When training any type of MVA classifier, it is important for the method to have
enough flexibility to learn the features of the input variables, but stop learning once
all real features are accounted for and only statistical fluctuations of the training set
are left. Further training to build a more complex classification model including these
fluctuations is called overtraining. While overtraining can lead to better classification
performance on the data set used during the training, this does not translate to the same
performance on statistically independent data sets.

To prevent this type of overtraining, the sample used by the MVA is split in two. The
first half is used by the MVA to learn the features to develop the classification model.
The separation achieved during the training phase is compared with that achieved on
the second half. As long as actual features of the underlying distribution are learnt,
the performance on both should be similar, however once overtraining sets in, further
improvements can only be seen on the training sample and the performance begins to
diverge.

The following explains the MVA classifier used in this thesis, boosted decision trees, in
more detail. Out of the many different configurations possible, this chapter will mostly
focus on what is used in the application following in Chapter 6.

4.1.1. Decision trees
A decision tree (DT) consists of a series of one-dimensional splits of the dataset. The
starting point is a root node containing the entire data set. At each node, the variable
and split value on it that gives the largest improvement in separation is determined, and
used to separate the remaining sample into two new nodes. The concept is visualized in
Figure 4.1. Multiple definitions of this separation are possible, a common one and used
here is the Gini index p × (1 − p) with the purity p. The purity is defined as NSig/NAll,
the fraction of signal events (NSig) in the sample (NAll). The lower the value of the Gini
index for a given node is, the more it is dominated by events of one particular category,
as it is by definition symmetric in both categories. The best split is the one where the
sum of the Gini indices of the two newly created nodes, weighted by the amount of
events in them, is lowest.

This procedure is repeated until a predefined depth in number of splits from the root
node is reached. Nodes without further splits are taken as signal or background nodes
depending on their contents. Such nodes without further splits are called leafs. When
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Root
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S B

S B

Var1 < x1

Var2 < x2 Var2 > x2

Var4 < x4 Var4 > x4

Var1 > x1

Var3 < x3 Var3 > x3

Figure 4.1.: Schematic view of a single decision tree, growing downwards from the root
node at the top.

using such a decision tree to classify data, each event passes through the splits after
each node until it reaches a leaf and is assigned to the corresponding category. A single
decision tree therefore gives a binary response for one of the two categories, without any
measure of certainty.

Single decision trees need to be trained to a great depth to reach significant classifica-
tion power. However, this results not only in many branches where the final splits only
marginally improve the separation, but also makes them vulnerable to overtraining. Such
splits are therefore usually removed after training finished by a procedure called pruning.

4.1.2. Boosting
As the performance achievable with a single decision tree is limited, several methods to
improve performance are available. Instead of single trees, they use boosting methods
to build a collection of decision trees, called a forest. The results of the trees in the
forest are combined to give the classifier response. These work best with a large number
of individually weak trees of a shallow depth, containing only a few splits each. As the
individual trees are not grown to full size, the need for pruning also disappears.

The method used in this work is AdaBoost [36]. It sequentially trains the trees making
up the forest. For each tree, the events in the training sample are weighted depending on
the results of the previous trees, giving a higher weight to events previously misclassified.
This way, later trees preferentially learn to classify the events where trees earlier in the
procedure failed to give an accurate result.

When beginning with the first tree, all events are weighted equally. Until a specified
number M of trees is reached, the following procedure is repeated:
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1. Train a decision tree with the current set of weighted events.

2. Determine the fraction err of events which are misclassified by the newly trained
tree and calculate the factor

αi =

(
1− err

err

)
(4.1)

associated with this tree.

3. The weights of all events misclassified by the newly trained tree are multiplied by
αβ, with the learning rate β.

4. The weights are normalized by rescaling the sum of all weights back to the original
value.

The optimal value of the learning rate β depends on the training set and the number of
trees to be trained. Events which misclassified repeatedly continuously grow in weight.
Later trees therefore start to concentrate their training on these events, until they get
classified correctly and their weight decreases again with every normalization step.

The output of a forest of M trees is then determined by combining the individual
binary responses of the trees. For a set of variables x, each tree provides such a response
bi(x). In the average over the trees, the factor αi determined during the training is used
to weight the trees. The influence on the output is higher for trees correctly classifying
a larger fraction of the training events:

yBDT(x) =
1

M
×

M∑
i

ln(αi)× bi(x). (4.2)

Unlike individual decision trees, a BDT gives a response y(x) in a range of values. The
ideal point above which events are classified as signal has to be determined separately
depending on the needs of the analysis. One way to determine such a value is to maximise
a Figure-of-Merit (FoM) using the number of signal (NSig) and background (NBkg) events
in the sample passing the requirement. Multiple definitions are available, the one used
later in this thesis in Chapter 6 is:

FoM =
NSig√

NSig +NBkg

. (4.3)

For a sample size following a Poisson distribution, the term
√
NSig +NBkg corresponds

to the uncertainty of NSig. Maximizing this FoM therefore means maximizing the preci-
sion in the yield of signal events.
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4.2. Binned maximum likelihood fit

4.2. Binned maximum likelihood fit
After all selection criteria are applied, the remaining sample often still contains a sig-
nificant contribution of background events. When measuring branching fractions it is
however important to determine the actual amount of signal events in the sample. If the
shape of both the signal as well as the background components in some measurement
variable is known well enough, these shapes can be fitted to the measured data to deter-
mine what fraction each of them contribute to the selected sample. Together with the
overall measured yield, these fractions directly translate to the desired number of events
for each contribution.

If the shapes of the contributions are not analytically known, they have to be derived
from simulated data (MC). Such simulated events can be used to create histograms in the
fitting variables. While the data sample always only has a limited amount of measured
events and therefore an associated statistical uncertainty, with simulated data filling the
histograms to be used as templates for the shape, the same is true for them. In regular
binned maximum likelihood fits, this statistical uncertainty stemming from the number
of simulated events in each histogram bin in the MC distribution is neglected. However,
when fitting histograms with many bins and complex distributions, there can often be
regions of the distribution with very low yield and correspondingly a low number of
simulated events per bin, making this uncertainty relevant for the fit.

One solution to take the limited MC statistics into account during a binned maximum
likelihood is the method developed by Barlow and Beeston in [37], which is also used
in this analysis in Chapter 7. For the fit the data sample as well as the m MC shapes
are binned in identical histograms with n bins each. The weights of the m predictions
are determined by a fit to the data sample. For each bin i there are di measured data
events, and fi events from the simulated MC predictions. The fi are a function of the
fractions Pj that each MC template j has in the data sample. These Pj , together with
their uncertainties, are ultimately the quantities of interest, as they together with the
size of the signal sample give the yield for each of the contributions.

For each bin, the template j has a generated number of events aij , giving a total
number of events generated for the contribution as

Nj =

n∑
i=1

aij . (4.4)

Similarly the total number of measured data events is:

ND =

n∑
i=1

di. (4.5)

A normalization factor ND
Nj

is introduced to absorb the difference in measured data events
and number of events used to simulate the template. With this, the number of predicted
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events in the bin i follows as:

fi =
m∑
j=1

Pj
ND

Nj
aji =

m∑
j=1

pjaji. (4.6)

with pj = Pj
ND

Nj
(4.7)

The factors pj , which decide the event numbers in each bin in Equation (4.6), are to
be fitted via maximisation of a likelihood function1. If the number of MC events per
bin were high enough for their uncertainty to be negligible, this would simply consist of
the Poisson distributions for getting the measured number of events di, which carries its
own uncertainty, from the predicted fi:

L =
n∏
i=1

fdii
di!

e−fi (4.8)

⇒ lnL =
n∑
i=1

di ln fi − fi (4.9)

However, the predicted number of events aji for each bin might not perfectly represent
the underlying distribution due to the finite size of the simulation. Instead, they are
derived from an unknown, ideal prediction Aji for the case of unlimited MC sample size.
In general, the aji generated in the simulation originate from the unknown Aji via a
binomial distribution. If they can be assumed small compared to the overall sample
size, that is Aji � Nj , a Poisson distribution can safely be assumed instead. Instead
of a fixed value as in the pure binned likelihood fit, the bin contents now vary, and the
fitter can adjust by varying the Aji. The resulting bin content and likelihood function
used are:

fi =

m∑
j=1

pjAji (4.10)

lnL =

n∑
i=1

di ln(fi)− fi +

n∑
i=1

m∑
j=1

aji ln(Aji)−Aji (4.11)

The fit now has two sets of variables it needs to optimise, the pj and the much more
numerous Aji. However, only the pj are ultimately of interest. The maximisation of the
likelihood function uses the derivative set to zero for both sets of variables:

∂ lnL

∂pj
= 0 ⇒

n∑
i=1

(
di
fi

− 1)Aji = 0 ∀ j (4.12)

∂ lnL

∂Aji
= 0 ⇒ dipj

fi
− pj +

aji
Aji

− 1 = 0 ∀ i, j (4.13)

1Constant terms are omitted as they do not affect the maximisation.
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Besides the n equations in Equation (4.12), the Aji introduce an additional n × m
equations in Equation (4.13). However, solving for Aji,

Aji =
aij

1 + pj

(
1− di

fi

) , (4.14)

shows that they only depend on the fi for given pj . The problem simplifies therefore to
n equations. The fitting procedure now consists of alternatively determining a new set
of pj from Equation (4.12), then using these to determine new Aji in Equation (4.13).
These alternate steps repeat until a maximum in the likelihood function is reached.

If the MC templates contain bin-dependent weights for corrections or due to merging
of sources of different statistics, all the aji and Aji acquire another factor of wji in front
of them. These are the average of all the weights of the events of source j in the bin
i, this treatment assures that while the shape correction of the weights takes effect the
information of the number of generated events is conserved. In case a bin contains no
events at all for the source with the highest overall contribution pj , the corresponding
Aji can take higher values even though the generated aji is zero.

4.3. B meson pair reconstruction

At a B-Factory like Belle, B mesons are always produced in pairs. In this analysis, how-
ever, the signal process of interest is only the decay of one B meson (Bsig), whose decay
products are mixed together in the detector with the second B meson (Btag) produced.
Several options exist for treatment of this Btag with a different trade-off between effi-
ciency and precision. The most common approaches are listed in the following together
with their advantages and disadvantages.

4.3.1. Full reconstruction

The full reconstruction [38] approach attempts to reconstruct the exact decay chain of
the Btag. Before any selection of the signal side is started, neural networks [39] attempt
to reconstruct B decays in a large number of decay channels.

Two variants of the full reconstruction exist, the hadronic and the semileptonic full re-
construction. They both start with the same initial steps and reconstruct a B → D(∗)X
decay, for both charged and neutral B and D(∗). The reconstruction proceeds in four
stages with a specially trained neural network each, starting with the final state particles,
followed by D mesons and J/ψ, D∗ and in the final stage B candidates in B → D(∗)X
together with a quality indicator for each candidate. The hadronic and semileptonic full
reconstruction differ in their choice of X for the final step, in the hadronic case it is
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another hadron, while the semileptonic one selects either an electron or muon. Addi-
tional neural networks can be used to identify background events not from a BB process.

The decay channel used in the reconstruction determines from which type of B meson
the Btag was, from which the flavour of the Bsig at that exact point in time directly
follows. Additionally, as the original Υ(4S) state is well known from the initial beam
conditions, the reconstructed Btag momentum directly gives access to the momentum of
the Bsig. The Bsig momentum can either serve as a cross-check if all decay products are
visible and therefore give a second determination of this momentum, or it can be used
to access the momentum of an invisible particle in the signal side decay, usually either
neutrino or K0

L. For the semileptonic full reconstruction, the original decay contains a
neutrino and therefore the B momentum is only constrained, but not exactly determined.

As the Btag decay is explicitly reconstructed, all particles used do not need to be
considered for the Bsig decay, greatly reducing the combinatorial possibilities. If, af-
ter both sides are reconstructed, any unused particles remain in the event that do not
convincingly come from background sources unrelated to the Υ(4S), at least one of the
reconstructions must be wrong by not considering this particle. This results in a very
high purity.

The main disadvantage of the full reconstruction is its low efficiency. The decay chan-
nels used only cover a part of the B decay width, and the reconstruction itself also has
limited efficiency, especially if a high reliability in the candidates is desired. Even when
accepting all candidates, the overall efficiency only reaches 0.18% in B0B

0 and 0.28% in
B+B− events for the hadronic case. Adding the semileptonic reconstruction increases
the efficiency at the cost of less precise determination of the B momentum.

4.3.2. Untagged analysis

Instead of attempting to reconstruct the Btag, the untagged approach concentrates only
on the signal decay. This allows all events to be used when building candidates and
thereby greatly increases the available statistics. However, as all final state particles in
the event have to be considered, the amount of combinations to consider is much larger
than when using a full reconstruction before. As only one half of the Υ(4S) decay is
reconstructed, the particles remaining unused do not help in judging the accuracy of the
reconstruction, and the potential for mixing particles from both B mesons is larger.

In exchange for the highest efficiency in reconstructing the signal events, this approach
comes with the lowest purity, making suppressing backgrounds a challenge. It is there-
fore mostly suited when either the sample size is small and efficiency is important, or
when other effective methods to isolate signal events are available. Otherwise there is the
possibility that the increase in efficiency is lost again during background discrimination.
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Without reconstructing the Btag, there is no direct way to access the missing neutrino
momentum in semileptonic signal processes. However, the loose neutrino reconstruc-
tion [40] is a method to get an approximation of the neutrino even in an untagged
analysis. This method to infer the neutrino momentum is used in this analysis.

Loose Neutrino Reconstruction

The detectors at the B-Factories almost fully enclose the interaction region, detecting
outgoing particles. On the other hand, being built around e+e− colliders, the Υ(4S)
momentum is also exactly known as the sum of the ingoing electron and positron. From
conservation of momentum it immediately follow that the sum of incoming and outgoing
momenta should be identical. Any difference between these can be attributed to parti-
cles that are not measured by the detector, like a neutrino.

In the loose neutrino reconstruction [40] this difference, called missing momentum
(pmiss) 4-momentum with its invariant mass as the missing mass (mmiss), is determined:

pmiss = pΥ(4S) −

(
Particles∑

i

Ei,Σ~pi

)
(4.15)

m2
miss = |pmiss|2. (4.16)

However, the missing momentum is always the sum of all unmeasured particles in the
event, which can not be further disentangled with the information available. A clear
identification of the missing momentum with a neutrino is therefore only possible if a
single neutrino is the only particle that escaped detection in an event. As neutrinos
are nearly massless, the missing mass allows to test this assumption, as any additional
missing particles shift it to higher values.

4.4. Continuum suppression
A common source of background events at a B-Factory are interactions of the type
e+e− → qq, where q is any of the four lighter quarks u, d, s or c. They are collectively
known as continuum background. These events differ in shape from those containing
an intermediate Υ(4S) resonance, which allows specified variables to be used to identify
them. In the centre-of-mass frame, both B mesons are almost at rest. Their decay
products have no preferred direction and are distributed isotropically. In qq events how-
ever the two quarks have lower mass and are produced with significant momenta in the
centre-of-mass frame, and produce two jets of particles travelling in the same general
direction. A comparison of the general shapes is shown in Figure 4.2. In the following
some variables used throughout this analysis are introduced.
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BB event continuum event

Figure 4.2.: Comparison of the typical shape of events in the centre-of-mass frame of
reference, where either a BB pair or a pair of lighter quarks was produced.

4.4.1. Thrust angle

For a group of N particles, each of which has the momentum ~pi, the thrust in the
direction of a unit vector ~t is defined as:

T :=

∑N
i=1 |~t · ~pi|∑N
i=1 |~pi|

. (4.17)

The thrust axis is then the vector ~t which results in the maximal value for T . After all
particles have been assigned to either the signal or the tag side, the thrust axis in the
centre-of-mass frame can be determined for both individually. In events originating from
a BB pair, the two thrust axes are uncorrelated, while for qq events they are strongly
correlated to the direction of motion of the original two quarks, which travel in opposite
directions.

The angle between the two axes, or rather its cosine | cos(θthrust)|, can therefore be
used to distinguish events. For BB it should be evenly distributed, while for qq events
it peaks it high values [41].

4.4.2. Fox-Wolfram Moments

The general shape of an event with N particles can be quantified by the Fox-Wolfram
moments [42]. These make no distinction between signal or tag side particles. They are
defined as the sum over all particle pairs, together with the k-th Legendre polynomial
Pk:

Hk :=
N∑
i,j

|~pi||~pj |Pk(cos θij). (4.18)
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As the lowest order Legendre Polynomial P0 = 1 is constant, the lowest order Fox-
Wolfram moment is used to normalize the other moments. In particular, the second-
order moment with P2 = 1/2(3x2 − 1) is often used in this way:

R2 =
H2

H0
. (4.19)

Its value increases as the shape of the event gets closer to two collimated groups of par-
ticles travelling in opposite directions. This feature makes R2 a good measure on the
shape typical for continuum events.

4.4.3. Modified Fox-Wolfram moments
The modified Fox-Wolfram moments, also known as the Kakuno Super Fox-Wolfram
(KSFW) moments [43], have been developed to more precisely take into account rela-
tionships between the signal and tag side of an event, as well as the different types of
particles. They fall into two types.

The first type relates signal to tag side particles. The index j selects one of three
types of tag-side particles l for the sum, either charged (c) or neutral (n) particles, or
the missing momentum (m) of the event, which is treated as a separate category. The
index k always runs over all signal particles. There are two types of moments, which
differ in whether they take into account the charges of the particles:

Rsoj,i =
∑
k,l

QkQl|~pl|Pi(cos θkl), i ∈ 1, 3 (4.20)

Rsoj,i =
∑
k,l

|~pl|Pi(cos θkl). i ∈ 0, 2, 4 (4.21)

The terms for i ∈ 1, 3 vanish except when j takes on charged particles.

The second type considers only particles on the tag side. Here, no distinction is made
between charged and uncharged particles in the sum:

Rooi =
∑
k,l

QkQl|~pk||~pl|Pi(cos θkl), i ∈ 1, 3 (4.22)

Rooi =
∑
k,l

|~pk||~pl|Pi(cos θkl). i ∈ 0, 2, 4 (4.23)

For i ∈ 0, 2, 4, these reproduce the regular Fox-Wolfram momenta, except for considering
only tag-side particles.

Originally, these moments are combined into one discriminant with the Fisher coef-
ficients αi,j , βi and γ. Disregarding the vanishing Rsoj,i terms, this gives a total of 17

49



4. Statistical Methods

coefficients, with the sum of the transverse momentum of all particles added:

KSFW =
∑
j

4∑
i=0

αi,j
Rsoj,i

Ebeam −∆E
+

4∑
i=0

βi
Rooi

Ebeam −∆E
+ γ

Particles∑
|pt| (4.24)

However, in this analysis the moments are used individually instead of this combination.
In the original application thisKSFW is further split into seven bins in the missing mass.

4.5. Monte Carlo Simulation

For the development of the analysis and comparison to the expected behaviour, as well
as to extract the signal contribution according to Section 4.2, Monte Carlo samples with
known features and classification of the contained particles are needed. The generation
of such MC samples proceeds in several steps.

At first, the initial beam collision producing an Υ(4S) decaying into a BB pair and its
subsequent decay is simulated by EVTGEN [44] and PYTHIA [45]. The Belle detector
is modelled in GEANT3 [46]. In this model the decay products of the initial collision are
propagated through the detector and their interaction with detector material, including
energy loss via ionisation and creation of secondary particles via bremsstrahlung or pair
production, is simulated. Final state radiation is afterwards added by PHOTOS [47, 48].
The particle trajectories and interactions are used to simulate the specific response for
each sub-detector. Additional background is added using data taken without collision
events. These backgrounds include cosmic rays and beam effects like Bhabha scattering
and interaction with the beam and gas particles. The simulated detector responses are
then processed as if they were real data and can be used for analyses.

4.5.1. MC samples used

For use in Belle analyses, several MC samples have been prepared. Each sample contains
events of one type of interaction that can occur in real data. The samples are further
divided into streams, where one stream corresponds to the number of events of the sam-
ple’s type expected in the Belle dataset (see Section 3.4) taken at the Υ(4S) resonance.
The MC simulates changes in detector configuration and conditions to follow the de-
velopments in real data over time. Multiple streams were generated for each sample to
decrease the statistical uncertainty associated with their use.

The most common outcome after an Υ(4S) decays to a BB pair is a further decay of the
both the b quarks via a b→ c. Ten streams of such decays, involving at least one charmed
hadron, that is a hadron containing a c quark, have been generated. This type of events
are collectively called b → c. The signal decay is included in a special sample where
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one part of the BB pair decays semileptonically as B → Xu`
+ν` in a b → u transition.

This sample, called b→ u for the component it is defined by, has a size corresponding to
twenty streams, however, the partial branching fraction of charmless semileptonic decays
of B mesons is very small. The sample is therefore not split into twenty, but only two
subsets in the analysis, each corresponding to ten times the total Belle luminosity. Ad-
ditionally, there is a sample (continuum) containing e+e− → qq, q ∈ u, d, s, c processes
not involving an Υ(4S) resonance. The size of this sample corresponds to six streams.
This type of events is an important background to consider in the signal extraction. The
sizes are summarized in Table 4.1.

Type Size [Streams]

b→ c 10
continuum 6
b→ u 20

Table 4.1.: MC sample sizes used in this analysis. One streams corresponds to the ex-
pectation for that type at the total measured Belle luminosity.

Branching fractions used in the MC reflect the measured or calculated knowledge at
the time of its generation. The used values have been updated to the most recent av-
erages [4] for the semileptonic B decays to D, D∗, π and ω, while the B → ρ`ν decay
instead takes the result of the Belle measurement [49]. These decays together make up
the most important sources of background.

The b → u sample contains an inclusive part to fill the discrepancy between the sum
of all measured exclusive modes and the inclusive measurement of the B → Xu`

+ν`
branching fraction. Its size has been adjusted so the total size of the sample corresponds
to the most recent inclusive value [24]. This analysis assumes a branching fraction of
the Υ(4S) to B+B− and B0B

0 of 51.3% and 48.7%. Besides the branching fractions,
the form factors involved in the simulation of the semileptonic decays to D, D∗ and D∗∗

(D1, D0, D′
0, D2) have also been updated [50] to the newest values [24].
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CHAPTER 5

Decay chain reconstruction

After an event has been recorded by the detector, basic steps of data processing and
track finding are common to all analyses. Besides these, every analysis needs to imple-
ment their own scheme to reconstruct the particles in the desired decay modes and to
distinguish them from background.

In this analysis, the decay B+ → η`+ν` is reconstructed in two channels:

• η → γγ,

• η → π+π−π0.

The branching fractions of these decays are listed in Table 2.3. The second most frequent
decay channel, η → π0π0π0, is not considered as the final state of six photons would be
too difficult to distinguish from combinatorial background in an untagged analysis. For
the B+ → η′`+ν` decay, two of the channels from Table 2.4 are used:

• η′ → π+π−η,

• η′ → ρ0γ,

Here the third channel, η′ → π0π0η, is not considered for just the same reason. The η in
the η′ → π+π−η is reconstructed in the two channels η → γγ and η → π+π−π0, and the
following η′ reconstruction is treated as two independent channels, η′ → π+π−η(γγ) and
η′ → π+π−η(π+π−π0) within this analysis. Throughout the reconstruction of a decay
chain, each original track or cluster can only be used once. In this thesis, the notation
η(′) stands for the neutral hadron originating from the B meson in the B± → η(′)`±ν`
decay.

53



5. Decay chain reconstruction

In this chapter, candidates for these decays are constructed from the measured parti-
cles in each event. As these are rare decays, it is important to get a large sample size of
events to keep statistical uncertainties low. In this first step only loose selection crite-
ria are applied, prioritizing a high acceptance over background removal. Increasing the
signal fraction in the selected sample by removing events considered background is done
afterwards in Chapter 6. All selection criteria are chosen so as to avoid introducing a
bias in the q2 distribution wherever possible, especially to avoid restricting the selected
candidates to a specific part of the range.

The chapter starts with identifying the final state particles used in Sections 5.1 and 5.2,
that is photons, electrons, muons and pions. This is followed by the reconstruction of
η(′) candidates in Sections 5.3 and 5.4. In Section 5.5, the candidates reconstructed in
the previous sections are combined in a first step of background rejection. Afterwards,
the kinematics of the final missing particle, the neutrino, is estimated in Section 5.6.
After all signal particles are identified, they are combined to a B± in Section 5.7 and
the variables used later in the signal extraction are introduced. In Section 5.8, several
methods to determine the transferred momentum q2 are compared.

From here onward, all unmarked quantities are measured in the rest frame of refer-
ence of the detector, while those marked with ”?” are in the centre-of-mass frame, which
corresponds to the frame of reference of the Υ(4S). Any other frames of reference used
will be mentioned explicitly. Some of the distributions shown are very similar for the
different reconstruction channels. In these cases, usually only the channel η → γγ is
shown with the main text, while the other channels are provided in Appendix A for
reference.

5.1. Photon identification
Photon candidates to be used in the reconstruction are all well measured energy clusters
inside the ECL without a charged track pointing to the same direction, which would
indicate a charged particle showering instead of a photon produced in the initial reaction.
All photons must be above the ECL energy threshold for reliable measurement. This
threshold is different depending on whether the photon is measured in the barrel region
or the endcaps due to direction-dependent beam backgrounds:

17° < θ < 32° : Eγ > 100MeV, (5.1)
32° < θ < 130° : Eγ > 50MeV, (5.2)
130° < θ < 150° : Eγ > 150MeV. (5.3)

From the accepted photons, π0 candidates are built automatically using a mass-range
around the nominal mass by the Belle detector software. The π0 candidates are con-
strained to their nominal mass of 135MeV/c2 [4] before being used in the reconstruction.

54



5.2. Charged final state particles

5.2. Charged final state particles
The analysis contains a variety of charged particles, which need to be identified from
the tracks measured by the detector. Assigning a particle type uses the PID explained in
Section 3.3. Before assigning a specific type however, the following constraints common
to all tracks are applied:

When a charged particle has a transverse momentum (pT ) below 275MeV/c, it can
move in a spiral inside the CDC instead of passing through and leaving the CDC. When
such a track passes through the interaction point (IP) again, it can be reconstructed as
two or even more separate tracks. These duplicates have to be removed. For all pairs of
tracks in the momentum range, their momentum difference

δp = |~p1 − ~p2| (5.4)

is determined, together with their relative angle. Pairs with δp < 100MeV/c and an
angle below 15°, if they are both reconstructed with the same charge, or 165° if oppo-
sitely charged, are considered duplicates. Which of the pair is kept is decided using the
distances parallel (dz) and transversal (dr) to the beam axis of their point of closest
approach to the IP. These together form

χ2 = |5 · dr|2 + |dz|2 , (5.5)

giving higher weight to the parallel distance, and from the pair of tracks only the one
with the lower value is kept.

Charged particles far away from the IP are also removed. While these could be real
particles, they are very likely to originate not from the Υ(4S) decay, but are background
from other processes. All tracks to be used must therefore lie within a certain distance:

|dr| ≤ 0.5 cm, (5.6)
|dz| ≤ 2 cm. (5.7)

As all particles in an event originate from the electrically neutral Υ(4S), the sum of
charges of all particles should be neutral as well. However, due to either misrecon-
structed tracks, tracks not reconstructed at all or additional background tracks from
other sources, this is not always the case. To remove events clearly missing particles
while also keeping as many as possible for the reconstruction, a total charge of all ac-
cepted tracks of up to ±2 is allowed, all events outside this range are discarded.

5.2.1. Leptons
Common to all signal decays is the presence of exactly one charged lepton from the orig-
inal B+ → η(′)`+ν` decay. This charged lepton can be either an electron or a muon1. As

1From now on, lepton always means either an electron or muon for simplicity.
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5. Decay chain reconstruction

it originates directly from the B+ decay to particles which together are comparatively
light, it often inherits a large part of the original B+ momentum. Therefore, a general
requirement of at least 1.3GeV/c in the CM frame for both types is applied to remove
leptons from secondary decays, which have lower energy.

Lepton candidates can only be reliably identified if they have enough momentum in
the detector frame of reference to reach the outermost sub-detector important for their
respective PID. This is the ECL for electrons and the KLM for muons, and the resulting
requirements are pe > 0.4GeV/c and pµ > 0.8GeV/c. As muons are measured further
out in the detector, they need to have a higher momentum than electrons. Additionally,
they are required to lie within the detector angular acceptance with 17° < θe < 150°
and 25° < θµ < 145°. Out of these candidates, electrons and muons are selected using
the PID introduced in Sections 3.3.2 and 3.3.3. The chosen requirements are Pe > 0.5
and Pµ > 0.9.

Due to conservation laws, leptons are always either produced in pairs or, more often
in the processes relevant as backgrounds, together with a neutrino. However, a second
neutrino in the event would make the loose neutrino reconstruction approach, as detailed
in Section 4.3.2, infeasible. The number of neutrinos in an event can, however, not be
directly measured. Instead, only events with exactly one lepton satisfying the above
criteria are accepted.

5.2.2. Hadrons

Charged pions are the most common source of tracks in the Belle experiment, and ap-
pear in all signal decays except η → γγ. The requirement for a charged track to be
accepted as a pion is Pπ/K > 0.6 according to the PID from Section 3.3.1. The track
already identified as a lepton in Section 5.2.1 is not considered. Due to the requirement
of only one lepton candidate per event, all other tracks necessarily failed a comparison
against a lepton hypothesis.

For some parts of the analysis, kaons are needed as well. These are taken as all re-
maining tracks which satisfy PK/π > 0.6. As PK/π = 1− Pπ/K by definition, no tracks
are assigned to both the kaon and pion candidates.

5.3. Reconstructing the η meson

Reconstruction of η mesons is done separately in two decay channels, η → γγ and
η → π+π−π0. Their branching fractions are listed in Table 2.3. Reconstructed η candi-
dates are required to have an invariant mass close to the nominal mass of 548MeV/c2 [4].
As the precision of the reconstructed mass is dependent on the reconstruction channel,
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5.3. Reconstructing the η meson

the range of accepted masses is determined individually for each channel by fitting a
Gaussian to the reconstructed mass distribution. As a compromise between accepting
most of the signal events while removing unnecessary background, in general a window
of 3σ around the fitted peak position is accepted.

5.3.1. η → γγ

Candidates in the decay channel η → γγ are reconstructed as combinations of two
photons in the event. However, the number of photons in a typical Belle event is
large, which leads to a lot of combinations close to the mass of an η without an ac-
tual η decay involved. Most of these background photons originate from decays of π0,
which is a common particle to appear in many decays. Therefore, a veto [51] is used
against photons likely to originate from a π0 decay. For all combinations of photons
in the event, the invariant mass is determined and if a combination lies in the range
110MeV/c2 < mγγ < 160MeV/c2, both photons are not considered for the η → γγ
reconstruction.

From all remaining photons, η candidates are built by combining the two 4-momenta.
Candidates with an invariant mass within 510MeV/c2 < mγγ < 580MeV/c2 are con-
sidered for further analysis. The reconstructed mass distribution on simulated data is
shown in Figure 5.1a. The majority of the background events consist of random com-
binations lying inside the acceptance window, these are equally distributed throughout
the range. There are also events containing correctly reconstructed η mesons, which do
not originate from a B+ → η`+ν` process and share the same mass distribution as those
that do. These can not be distinguished at this step.

5.3.2. η → π+π−π0

η candidates in this channel are combinations of two pions of opposite charge with one
π0. All combinations are required to have a mass inside 540MeV/c2 < mπ+π−π0 <
555MeV/c2 to be accepted as candidates. Additionally, the three pion system needs to
pass a vertex fit with a result of χ2/d.o.f. < 3 to assure they are compatible with orig-
inating from a common decay vertex. The mass distribution of accepted candidates is
shown in Figure 5.1b. Similar to the η → γγ channel, the background events separate
into η mesons from other sources, and combinatoric background showing no peak at the
nominal η mass.
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Figure 5.1.: Reconstructed η-masses on MC, after all requirements within this chapter
have been applied. Background containing a correctly identified η not from
a signal decay is listed separately. The background types correspond to
the different MC sets. The signal contribution is also superimposed with
arbitrary scale.

5.4. Reconstructing the η′ meson
In addition to the two B+ → η`+ν` channels, the decay B+ → η′`+ν` is also recon-
structed. The main approach is to use the previously reconstructed η-candidates to
reconstruct the process via η′ → π+π−η. Afterwards, the reconstruction in η′ → ρ0γ
is also attempted. As in Section 5.3, candidates are required to lie within 3σ of the
reconstructed mass peak, with the nominal mass being 958MeV/c2 [4].

In the channel η′ → π+π−η, the resolution in mass depends on the resolution of the
reconstructed η, which in turn depends on the decay channel. The channel is therefore
split into η′ → π+π−η(γγ) and η′ → π+π−η(π+π−π0). While the general procedure is
identical for both, the mass requirements are determined separately.

5.4.1. η′ → π+π−η

η′ candidates are reconstructed by matching η candidates with two additional, oppositely
charged pions. Besides the requirement on the reconstructed mass, wrong combinations
are further removed by a requirement on the mass difference between the η′ candidate and
the associated η, determined similarly to the mass requirements. This mass difference
is defined as

∆m = mη′ −mη. (5.8)

The resulting mass requirements are for the channel η′ → π+π−η(γγ) 913MeV/c2 <
mη′ < 996MeV/c2 and 400MeV/c2 < ∆m < 420MeV/c2, while in the channel η′ →
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5.4. Reconstructing the η′ meson

π+π−η(π+π−π0) they are 947MeV/c2 < mη′ < 969MeV/c2 and 404MeV/c2 < ∆m <
417MeV/c2. The final criterion is another vertex fit including the newly added pions,
again required to succeed with χ2/d.o.f. < 3.

The resulting mass distribution is shown in Figure 5.2 and the ∆m distributions in
Figure 5.3. Due to the combination of multiple requirements on reconstructed masses,
the background develops a peaking structure in the same region as the signal. How-
ever, a method to reduce background candidates sufficiently without such an effect is
not available. Unlike in the B+ → η`+ν` channels, the contribution from true η′ with a
different origin is small.
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Figure 5.2.: Reconstructed η′-masses on MC, after all requirements within this chapter
have been applied. Background containing a correctly identified η not from
a signal decay is listed separately. At this stage the signal contribution is
barely visible due to its small size. The signal contribution is also superim-
posed with arbitrary scale.

5.4.2. η′ → ρ0γ

Independent from the η candidates, the channel η′ → ρ0γ is also reconstructed. Here
at first a ρ0 candidate is built by combining two oppositely charged π±, into which the
ρ0 almost exclusively decays [4]. Due to the very high width of the ρ0, instead of the
3σ mass window used for the other reconstructions, here the mass has to lie inside the
world average measured width [4] of [625MeV/c2, 925MeV/c2].

These ρ0 candidates are then combined with all photons not affected by the π0-veto
in Section 5.3.1, and the resulting η′ candidates are required to lie within 924MeV/c2 <
mη′ < 995MeV/c2. As in the other channels, a vertex fit requirement of χ2/d.o.f. < 3 is
also applied. The reconstructed masses are shown in Figure 5.4. The ρ has a very large
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Figure 5.3.: Reconstructed ∆m = mη′ −mη on MC, after all requirements within this
chapter have been applied. Background containing a correctly identified η′

not from a signal decay is listed separately. The signal contribution is also
superimposed with arbitrary scale.
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Figure 5.4.: Reconstructed ρ0 and η′ masses in the channel η′ → ρ0γ on MC, after all
requirements within this chapter have been applied. Background containing
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signal contribution is also superimposed with arbitrary scale.
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5.5. Combination requirements

width, and the reconstructed η′ mass also has larger width than the other η′ channels.
This channel has the largest background contribution.

5.5. Combination requirements
Each event now contains exactly one lepton candidate and a variety of η(′) candidates.
In case the lepton is an electron, it is possible that it emitted a bremsstrahlung photon
before discovery, reducing the electron energy. Recovery is attempted by searching for
the photon with the smallest angle to the electron among those with Eγ < 1GeV. If the
angle of this photon to the electron is below 5°, and it is not previously used in the η(′)
reconstruction, it is added to the 4-momentum of the electron.

At this stage, the vast majority of candidates are background, either wrong combi-
nations of final state particles that just by chance happen to have the same mass as
an η(′) but are otherwise unrelated, or correctly reconstructed η(′) coming from other
decay processes. Adding the lepton allows to already remove some additional candidates.

The η(′) and the lepton together can be considered as a pseudoparticle, which, for
correctly reconstructed particles, only differs from the B+ in the missing neutrino. Its
momentum is:

p`η(′) = p` + pη(′) . (5.9)

Instead of a direct reconstruction, the B+ energy and momentum E?B, |~p ?B| can be
approximated using the centre-of-mass energy

√
s by assuming it at rest in the CM

frame, as its momentum is low:

E?B =

√
s

2
, (5.10)

|~p ?B| =

√
E?B

2

c2
−
m2
B

c4
=

√
s

4c2
−
m2
B

c4
. (5.11)

With the missing neutrino being (nearly) massless, the angle between the η(′) − `+

combination and the B+ can be determined [52]:

(P ?B − P ?
`η(′))

2 = m2
ν ≈ 0, (5.12)

⇒ 0 = m2
B +m2

`η(′) − 2E?BE
?
`η(′) + 2~p ?B · ~p ?

`η(′) , (5.13)

⇒ cos(θ?
B,`η(′)) =

2E?BE
?
`η(′)

−m2
B −m2

`η(′)

2|~p ?B||~p ?`η(′) |
. (5.14)

For correctly reconstructed events, the θ?
B,`η(′)

is a physical angle and therefore, barring
detector inaccuracies, it follows that | cos(θ?

B,`η(′)
)| < 1. For background events the as-

sumption in Equation (5.12) is violated and, correspondingly, Equation (5.14) could take
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5. Decay chain reconstruction

any value. Both to remove this region almost entirely populated by background, and to
allow the determination of the momentum transfer q2 in Section 5.8 using θ?

B,`η(′)
, all

events with | cos(θ?
B,`η(′)

)| > 1 are discarded. The distributions for signal and background
can be seen in Figures 5.5 and A.1, showing the large amount of background events that
can be removed.
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Figure 5.5.: Reconstructed cos(θ?
B,`η(′)

) in the η → γγ channel on MC, with all other
cuts throughout this section applied. Only events inside the yellow lines are
accepted. The signal contribution is also superimposed with arbitrary scale.

An event can still contain multiple candidates in the same reconstruction channel.
After a final combined vertex fit of the entire decay chain including the lepton, for each
channel only the candidate with the lowest resulting χ2/d.o.f. is kept. In case no candidate
succeeds the fit, the event is discarded.

5.6. Neutrino reconstruction

Unlike the other final state particles in the B+ → η(′)`+ν` decay, the neutrino leaves
the detector without further interaction and can not be measured directly. However, its
momentum can be inferred with the method presented in Section 4.3.2. This method
equates the missing momentum, which is the difference between initial Υ(4S) momentum
and sum of all outgoing momenta, with the neutrino momentum.

To determine pmiss via Equation (4.15), the sum of all particles in the event is needed.
In this summation, the requirements on the distance of tracks to the IP is weakened
from those in Equation (5.6) to dr < 1.5 cm and dz < 10 cm. The decay chain of the tag
side is not explicitly reconstructed. However, the particle type of the final state particles
needs to be decided to correctly assign their momentum. All remaining tracks that fulfil

62



5.7. B meson reconstruction

the K± requirements in Section 5.2.2 are treated as such, otherwise they are considered
as π±. The remaining energy in the ECL not associated to one of these charged particles
is added as photons.

If the sum in Equation (4.15) correctly adds to the neutrino in the event, the result in
Equation (4.16) should be m2

miss = 0. Any further unmeasured particles however lead
to a higher missing mass. Even without additional particles the detector resolution can
cause the missing mass to shift. To remove clearly wrong candidates early, only events
with |m2

miss| < 7GeV2 are accepted. The distribution in the accepted range is shown in
Figures 5.6 and A.2. Due to missing particles from the Btag decay, there is a significant
contribution of higher values both for signal and background.
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out this section applied. The signal contribution is also superimposed with
arbitrary scale.

The resolution of the Belle detector is significantly better for momentum than for
energy. After the summation of all charged and neutral particles, the neutrino is therefore
constrained to be massless by adjusting the energy of pmiss from Equation (4.15):

pν = (|Σ~pi| ,Σ~pi) . (5.15)

This improves the following reconstruction of the B meson.

5.7. B meson reconstruction
With candidates for the η(′), the lepton and the neutrino reconstructed, a B+ candidate
can now be built. For this, no requirement on the invariant mass is made, as it would
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restrict the fit range described in the following. A very small number of events contain
candidates with a negative invariant mass, these are discarded.

Continuum background among the remaining candidates is removed using the Fox-
Wolfram moments explained in Section 4.4.2. Here, only events with the ratio R2 (Equa-
tion (4.19)) below 0.4 are kept. This first reduction allows the BDT in Chapter 6 to
concentrate on the remaining background events, which are more difficult to separate.

The signal extraction in Chapter 7 uses a two-dimensional fit in two variables. These
are the beam-constrained mass (Mbc) and the energy difference (∆E). For Mbc the mass
of the reconstructed B+ is determined using the sum of the reconstructed momenta, but
substituting the reconstructed energy with the beam energy. ∆E, on the other hand,
is the difference between the reconstructed energy of the B+ candidate and the beam
energy. The two variables are defined as:

Mbc =
√
E?2

beam/c4 − ~p ?2
B /c2, (5.16)

∆E = E?B − E?beam, (5.17)

where E?beam is the energy of one of the beams in the CM system, equivalent to half the
centre-of-mass energy. In a perfectly reconstructed event, Mbc would come out at the
nominal mass of a B+, and the energy difference would vanish. The fit to determine
the signal fraction only uses the limited range of 5.1GeV/c2 < Mbc < 5.3GeV/c2 and
−1GeV < ∆E < 1GeV. All candidates outside are discarded at this step to allow the
BDT training in the following section to concentrate on events useful for the signal deter-
mination later. The distributions are shown in Figures 5.7, A.3 and A.4, showing how
signal events peak at the expected value.
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Figure 5.7.: The Mbc and ∆E distribution in the channel η → γγ in the range to be used
later for the fit on MC, with all selections throughout this section applied.
The signal contribution is also superimposed with arbitrary scale.

64



5.8. Momentum transfer q2

5.8. Momentum transfer q2

One important quantity in describing the kinematics of a semileptonic decay is the
momentum transfer q2. In the decay b→ uW−, the W− further decays into the charged
lepton and neutrino, which therefore carries information about the relative distribution
of the energy of the original particle. The general definition is:

q2 = (p` + pν`)
2. (5.18)

The resolution of the only indirectly reconstructed neutrino is the limiting factor in the
precision in Equation (5.18). This section introduces two different methods available to
increase the precision.

5.8.1. Neutrino correction

One such method [53] uses the inferred neutrino as the starting point. This neutrino is
then adjusted using Equations (5.16) and (5.17) and their expected values for an ideal
reconstruction.

Firstly, the energy of the neutrino is rescaled by a factor α chosen so that the energy
difference ∆E vanishes:

αEν + E` + Eη(′) − Ebeam = 0. (5.19)

After the energy, the direction of the neutrino is corrected as well. As the neutrino is
massless, the same scaling factor α applies to the momentum as well. This corrected
neutrino is used as part of the B+ momentum in Equation (5.16):

Mbc =
√
E2

beam/c4 − (α~pν + ~p` + ~p
η(′) )

2/c2. (5.20)

The direction of the neutrino vector is set to the direction closest to the original recon-
structed one that fulfils Mbc = mB+ for the nominal mass of the B+. This corrected
neutrino is used in Equation (5.18) to determine q2α.

5.8.2. Cone averaging

Another approach [54] is to estimate the momentum of the B+ instead of the neutrino
to calculate the momentum transfer with the reconstructed η(′) as:

q2 = (p`+ + pν`)
2 = (pB+ − pη(′))

2 (5.21)

While the energy of the B± can be determined from the Υ(4S) via momentum conserva-
tion, the direction of its momentum can not. However, the angle from Equation (5.14)
allows to constrain the momentum to a cone around the combined η(′) + `+ direction.
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Instead of further constraining the direction, q2 is determined for four equally spaced
directions along this cone, with the first determined randomly:

φ1 = φ, (5.22)
φ2 = φ+ π/2, (5.23)
φ3 = φ+ π, (5.24)
φ4 = φ+ 3π/2. (5.25)

The final value is determined by averaging the four values of q2, weighted with the angle
θBφi to the beam axis of each B+ direction.

q2cone =
sin2 θBφ1q

2
φ1

+ sin2 θBφ2q
2
φ2

+ sin2 θBφ3q
2
φ3

+ sin2 θBφ4q
2
φ4

sin2 θBφ1 + sin2 θBφ2 + sin2 θBφ3 + sin2 θBφ4
(5.26)

5.8.3. Comparison
The three methods to determine q2 are compared in Figure 5.8 by showing the differ-
ence to the generated value. The comparison uses correctly reconstructed events in the
channel η → γγ, because they have the highest number of events. Both methods clearly
improve the accuracy compared to using the inferred neutrino from Equation (5.15) di-
rectly. The level of precision achieved between both other methods is similar, however
the neutrino correction shown in Figure 5.8b seems to be slightly better in accuracy than
the averaging method shown in Figure 5.8c when comparing the RMS.
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Figure 5.8.: Comparison of the accuracy of the three methods to determine q2, using
correctly reconstructed events in the channel η → γγ.
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CHAPTER 6

Background reduction with boosted decision trees

Signal candidates have been reconstructed in Chapter 5. However, as the B± → η(′)`±ν`
decays only make up a small fraction of the total amount of events, the vast majority
of these candidates are actually composed of various backgrounds. While some back-
ground rejection was already performed, further selection is necessary to increase the
signal fraction. This chapter describes the use of Boosted Decision Trees (described in
Section 4.1) to increase the fraction of events actually containing a signal decay in the
sample. Everything described in this chapter is done independently for each of the signal
decay channels.

This chapter begins with a detailed description of the setup used by the BDTs and their
training variables in Section 6.1. Afterwards, the performance of the resulting BDTs is
evaluated in Section 6.2.

6.1. Configuration
For the training of the BDT the background is grouped into two categories, events origi-
nating from Υ(4S) decays and those from continuum processes. The former corresponds
to the combined b → c and b → u components of the MC. These two categories differ
in the general kinematic distributions of the events, as discussed in Section 4.4. In each
reconstruction channel two separate BDTs are trained to make use of these difference, one
using BB and the other continuum type background in the training. In the selection
both BDTs are used in combination to classify every event.

To train the BDTs, a sample with known categorisation is needed. For the b → c and
continuum MC, one stream of each is used. For the b → u ten streams worth of events
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are used because of the low amount of signal events, and these types of MC only being
provided in two sets worth ten streams each, as detailed in Section 4.5.1. The streams
used in the training are not reused in further analysis steps to ensure statistical inde-
pendence and prevent biases from overtraining effects.

6.1.1. Training variables

There are several, often conflicting, requirements on the variables used to classify events.
They need to have a sufficient difference in distribution between the signal events and
at least some part of the background to be useful in distinguishing the two. However, to
prevent introducing a bias or dependence on the decay model and preserving the entire
range of q2 as uniformly as possible, variables correlated to q2 should be avoided. If the
BDT selection removes part of the range of the correlated variable, due to the correlation
a part of the q2 range could be removed as well. Moreover, as only a few perfectly uncor-
related variables exist and sufficient separation power is necessary to extract the signal
component, the selection of variables to use contains a large number of compromises.

The features used in the classification are the same for all reconstructed η(′) decay
channels. The BDT trained on continuum uses additional, specialized variables in addition
to the full set used by the BB BDT. Two of the variables use a special pseudo-particle
Y , calculated similarly to the neutrino in Section 5.6 from only the tag-side particles,
that is leaving out the signal lepton and η(′) candidate in the sum in Equation (4.15).
This pseudo-particle serves as an approximation to the second B meson and especially
its direction vector. The variables used by both BDTs are:

• The total number of particles in the event satisfying the criteria in Section 5.1 and
Section 5.2.

• The missing invariant mass mmiss of the event as determined in Equation (4.16).

• The energy asymmetry between the daughter particles of the η(′) decay. In the
η → γγ channel, these are the two photons. In the η → π+π−π0 and the two
η′ → π+π−η channels there are three daughter particles, the asymmetry uses the
π+π− pair. Finally, in the η′ → ρ0γ channel the two daughters are the ρ0 and the
γ. The energy asymmetry is defined as:

Aη =
Ed1 − Ed2
Ed1 + Ed2

. (6.1)

• The difference between the transferred momentum squared q2 calculated with the
adjusted neutrino as described in Section 5.8.1, and using the inferred neutrino
from Section 5.6 without any adjustments in Equation (5.18). For correctly recon-
structed events, both are distributed around the correct value, and the adjustment
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6.1. Configuration

of the neutrino improves the precision. For background however, the inferred neu-
trino does not correspond to any real particle, causing the modification to move the
neutrino towards an unrelated direction. The distribution is shown in Figure 6.1.

• The angle between the η(′) candidate and the Y representing the other side of the
event.

• The angle between the lepton candidate and the Y .

• The number of distant tracks, these are tracks failing the requirement in Equa-
tions (5.6) and (5.7) by being too far away from the IP.

• The number of K± candidates in the event as determined in Section 5.2.2.
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Figure 6.1.: The ∆q2 distribution of the decay mode η → γγ used in the BDT training.
Signal events are symmetrical around zero, while background events peak
at much smaller values. The signal contribution is also superimposed with
arbitrary scale.

The BDTs trained with continuum events as the background source use the following
additional variables:

• The cosine of the angle between the thrust axes of the particles reconstructed
for the signal decay and the remaining particles in the event, as described in
Section 4.4.1. The distribution with the background concentrated at high values
can be seen in Figure 6.2.

• The modified Fox-Wolfram moments introduced in Section 4.4.3. Some of the
individual moments are strongly correlated with q2 and therefore not used. The
remaining moments going into the BDT training are: Rsoc,0, Rsoc,1, Rsoc,2, Rsoc,3, Rsoc,4,
Rson,0, Rson,2, Rson,4, Roo1 , Roo2 , Roo3 , Roo4 and Rmm, which is similar to the missing mass.
Not used are the three moments using the missing energy and Roo0 .
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6. Background reduction with boosted decision trees

The distributions for all used variables are compared between signal and background in
Figure 6.3 and Appendix A.2.1.
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Figure 6.2.: The | cos(θthrust)| distribution in the η → γγ decay channel used in the BDT
training. The signal contribution is also superimposed with arbitrary scale.

The correlations between the variables used are shown in Figure 6.4 and Appendix A.2.2.
Removing any of these decreases performance, as variables might be useful for some
background components and correlated for others.

6.1.2. BDT settings

While the BDTs are trained completely separately, they use the same settings to improve
comparability between channels. The only exceptions are number of events used in the
training, which is directly limited by the number of events available, and the number of
trees, which is different for each channel. While a higher number of trees allows the BDT
to learn more features of the data sample, eventually all underlying features the BDT can
learn are indeed learned, and the BDT begins to overtrain. The limiting factor in this
analysis is the amount of signal in the sample. The number of events used is listed in
Table 6.1. In most cases all available data in the sample were included in the training,
however in cases with very many events in the BB background, a limit was set due to
hardware constraints in the training.

As the amount of signal training events is the same for both the BB and the contin-
uum BDT, they have the same amount of trees in the BDT. Here, the number of trees for
each channel is listed in Table 6.2. The ideal numbers are determined experimentally as
the point where further increase leads to a higher amount of overtraining in the resulting
classifier.
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6.1. Configuration
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Figure 6.3.: BDT training variables in the channel η → γγ

73



6. Background reduction with boosted decision trees

100−

80−

60−

40−

20−

0

20

40

60

80

100

Particles

N
miss
2m η

A 2 q∆
 Yη

θ
lY

θ
Distant

N
±K

N
)T

θ
cos( mm

R so
c,0

R so
c,1

R so
c,2

R so
c,3

R so
c,4

R so
n,0

R so
n,2

R so
n,4

R oo
1

R oo
2

R oo
3

R oo
4

R

ParticlesN
miss
2m

ηA

2 q∆
 Yηθ
lYθ

DistantN
±KN
)Tθcos(

mmR

so
c,0R

so
c,1R

so
c,2R

so
c,3R

so
c,4R

so
n,0R

so
n,2R

so
n,4R

oo
1R

oo
2R

oo
3R

oo
4R

Correlation Matrix (signal)

100 -14  -1  -9  -1  -1  52  -6   5 -13 -29  10   1  36   4   5 -11   2  -6
-14 100 -10  -4  -5  -4 -12  74 -38   1   2   1 -12   1   2 -12  -6
 -1 100   1
 -9 -10 100  -5  49  -1  -3  -6   9  -6   3   8   1   2
 -1  -4  -5 100 -55  -1  -4   2   6  -1   3   2   1
 -1  -5  49 -55 100  -4   2 -11   1   1   4
 52  -4  -1 100  -9   2   4 -11   5   1   4   1   5  -5   1  -1
 -6 -12  -3  -1  -9 100  10  15 -23   1  -4  -2
  5   2 100  64  -1  -8  43  -5  -3
-13  74  -6  -4  -4   4  10 100 -38   1   1   1 -22  -1   3 -15  -7
-29 -38   9   2   2 -11  15 -38 100  -5  -1 -75   4   3  -5   5  -2   3

  1   1  -6   6 -11   1 100  -7  -1   1
 10   2   5  64   1  -5 100 -11   5  15  -3   2  -5

 -1   1  -1  -7 100
  1   1   1  -8   1  -1 -11 100  -3   5  -2  -2  -4
 36 -12   3   3   1   4 -23 -22 -75   5 100  -4  -2   3   7   2   3
  4   1   1   1  43   4  15  -3  -4 100  -7  -3

 -5  -1   3  -3   5  -2  -7 100  -1  -3
  5   2   5   3  -5   2   3 100  -5  45  -3
-11 -12   8   2   4  -5  -4 -15   5  -1  -2   7  -1  -5 100  19
  2   1   1  -2  -2   1  -2   2  45 100  -3
 -6  -6   2   1  -1  -3  -7   3  -5  -4   3  -3  -3  -3  19  -3 100

Linear correlation coefficients in %

(a) Signal sample

100−

80−

60−

40−

20−

0

20

40

60

80

100

Particles

N
miss
2m η

A 2 q∆
 Yη

θ
lY

θ
Distant

N
±K

N
)T

θ
cos( mm

R so
c,0

R so
c,1

R so
c,2

R so
c,3

R so
c,4

R so
n,0

R so
n,2

R so
n,4

R oo
1

R oo
2

R oo
3

R oo
4

R

ParticlesN
miss
2m

ηA

2 q∆
 Yηθ
lYθ

DistantN
±KN
)Tθcos(

mmR

so
c,0R

so
c,1R

so
c,2R

so
c,3R

so
c,4R

so
n,0R

so
n,2R

so
n,4R

oo
1R

oo
2R

oo
3R

oo
4R

Correlation Matrix (background)

100 -24  -3 -16  -7 -13  53  -9  -2 -22 -14   3  -5  32  -5  -2
-24 100  -3  -5 -10  -7 -11 -16  -4  73 -41   2 -11  -5 -15  -6  -4   1 -18  -8
 -3  -3 100  10  -3   4  -1   2  -1  -1   1   1   3   8  -7  -1
-16  -5  10 100   8  72  -2  -4  -2   5  -4   5   3   2   1  15   1   6
 -7 -10  -3   8 100  -5   7 -11   7  -2   5   1   1   3  -1  10   2
-13  -7   4  72  -5 100  -1  -3  -1  -5   2  -5  -1   1   7   4
 53 -11  -1  -2  -1 100 -10  -1  -3   1   2   2  -1
 -9 -16   2  -4  -3 -10 100   4  20  -3   2 -23  -6  -2  -1  -1  -1
 -2  -4  -1   7  -1 100  -6   2  -4  55  -1   7   6  40   9  -2  42   6
-22  73  -1  -2 -11  -5  -1   4  -6 100 -42   3 -13  -5 -28 -12  -8   1 -23 -10
-14 -41   5   7   2  -3  20   2 -42 100  -3  22   8 -64 -16  -5  -2  11   4
  3   2  -4  -2  -5   1  -3  -4   3  -3 100  -5  26  -1  -2  -1  -6  -7  -1  -2
 -5 -11   1   5  -1   2  55 -13  22  -5 100  -2  22  -9  15   3  -5  46  10

 -1  26  -2 100  -3  -3  -1  -2
 -5   1   1   2   7  -5   8  -1  22  -3 100  -2   1   3  -1  10  -1  19

 32 -15   5   1   1   2 -23   6 -28 -64  -9  -2 100  35  17  13   7
 -6   3   3   3  -6  40 -12 -16  -2  15   1  35 100  36  36  11
 -4   8   2  -2   9  -8  -5  -1   3   3  17  36 100  10  13
  1   1  -1  -1  -2   1  -2  -6  -5  -3  -1 100  -4  24

 -5 -18  -7  15  10   7  -1  -1  42 -23  11  -7  46  -1  10  13  36  10  -4 100  29
  1  -1  -1  -1  24 100  -1

 -2  -8  -1   6   2   4   6 -10   4  -2  10  -2  19   7  11  13  29  -1 100
Linear correlation coefficients in %

(b) Background sample

Figure 6.4.: Correlations between the BDT training variables for signal and background
events in the reconstruction channel η → γγ.

The large number of trees used was found to work best with very shallow individual
trees, each of which has a depth of only two layers. The learning rate β (see Section 4.1.2)
is set to 0.25. Before the training, the input variables are automatically transformed into
uniform shapes by first flattening and then transformation into a Gaussian to help the
comparison in the training procedure.
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6.2. BDT performance and application

Channel Signal BB background Continuum background

η → γγ 22328 100000 131989
η → π+π−π0 6300 100000 14515
η′ → π+π−η(γγ) 2287 97811 9916
η′ → π+π−η(π+π−π0) 335 11584 718
η′ → ρ0γ 522 10000 23375

Table 6.1.: Number of training events of each category for the BDT. The sample for testing
has the same size.

Channel Trees

η → γγ 2000
η → π+π−π0 1000
η′ → π+π−η(γγ) 400
η′ → π+π−η(π+π−π0) 200
η′ → ρ0γ 200

Table 6.2.: Number of trees contributing in each reconstruction channel.

6.2. BDT performance and application

The Figure-of-Merit (FoM) defined in Equation (4.3) is maximised to select events for
further analysis steps, with all events failing the resulting requirement discarded. In
this case, the FoM is a two-dimensional function of the two BDT selections. To prevent
any overtraining effects, the FoM is determined on the statistically independent MC sam-
ple not used in the BDT training. The resulting distributions are shown in Figures 6.5
and A.13.

The value of the FoM is directly dependent on the assumption for the B
(
B+ → η(′)`+ν`

)
used in generating the sample. For comparison, the FoM has also been determined as-
suming the current world average [4] for the signal branching fractions. The results for
both are compared in Table 6.3. While the resulting FoM changes significantly due to the
different relative amount of signal and background, the position of the maximum, which
determines the BDT selection, stays largely unaffected. The resulting selection values for
the BDT are listed in Table 6.4.

In the FoM results, a clear hierarchy between the channels can be seen. In channels
with a high FoM a lower statistical uncertainty is expected, showing that the channel
η → γγ is the most promising for a good result. On the other hand, especially the two
channels η′ → π+π−η(π+π−π0) and η′ → ρ0γ only have a very low FoM.

The efficiencies achieved with the resulting selection are listed in Table 6.5. Together,
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6. Background reduction with boosted decision trees
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Figure 6.5.: Figure-of-Merit as a function of the two BDT outputs in the channel η → γγ.

Channel FoM MC FoM PDG

η → γγ 14.1 6.65
η → π+π−π0 8.46 3.97
η′ → π+π−η(γγ) 3.18 1.47
η′ → π+π−η(π+π−π0) 1.43 0.663
η′ → ρ0γ 0.296 0.134

Table 6.3.: Achieved Figure-of-Merit of the BDT selection.

the efficiencies of the initial event selection are also listed. The overall efficiency is
determined as the fraction of generated events with the signal decay retained throughout
all selection steps:

ε =
NMC
Signal,Reco

NMC
Signal,Gen

. (6.2)

For partial efficiencies, the generated and reconstructed number of events are replaced
with the number of events before and after the selection step.

The efficiencies show a separation in two groups of channels. The three channels
η → γγ, η → π+π−π0 and η′ → π+π−η(γγ) all have efficiencies in the same order
of magnitude. While the selection efficiency is highest in the η → γγ channel, this is
balanced by a lower efficiency of the BDT. The two channels η′ → π+π−η(π+π−π0) and
η′ → ρ0γ however have a significantly lower efficiency.
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6.2. BDT performance and application

Channel BB BDT Continuum BDT

η → γγ 0.138 0.124
η → π+π−π0 0.134 0.086
η′ → π+π−η(γγ) 0.167 0.124
η′ → π+π−η(π+π−π0) 0.232 0.092
η′ → ρ0γ 0.222 0.251

Table 6.4.: Selection for each type of BDT used, all events of a channel which are above
both values are accepted for further analysis.

Channel Event selection BDT Combined

η → γγ 9.38 31.1 2.92
η → π+π−π0 4.49 45.3 2.03
η′ → π+π−η(γγ) 5.23 42.6 2.23
η′ → π+π−η(π+π−π0) 1.38 34.9 0.482
η′ → ρ0γ 0.708 30.6 0.217

Table 6.5.: Selection efficiencies for the selection in Chapter 5 and the BDT selection in
%
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CHAPTER 7

Signal determination

After applying the BDT requirement, the remaining sample still contains more background
than signal events. The amount of signal events in the remaining sample is determined
with a binned maximum likelihood fit as described in Section 4.2 to calculate the branch-
ing fraction of the η(′) decays.

This chapter begins with an explanation of the specific setup of the fit for this analysis
in Section 7.1. In Section 7.2 the translation from the fit result to a branching fraction
is given. The reliability of the fit is evaluated using the MC in Section 7.3. Finally, the
data sample is fitted in Section 7.4 and compared to a restricted fit of the background
region.

7.1. Fit setup
Each decay channel is fitted separately. The data sample is binned in two dimensions in
the variables Mbc and ∆E (Equations (5.16) and (5.17)) and fitted to MC templates of
the background sources. The fit range in both variables is:

5.1GeV/c2 <Mbc < 5.3GeV/c2 (7.1)
−1GeV <∆E < 1GeV (7.2)

The fit range is wide to make the most out of the available data sample. By extending
the range into regions without many signal events, the fit can better estimate contribu-
tion purely from background events.

The sample is split eight times in both variables with a width of 25MeV in Mbc

and 250MeV in ∆E. The signal events are concentrated in the area 5.25GeV < Mbc
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7. Signal determination

and −0.25GeV < ∆E < 0.25GeV. The size of this area is mostly determined by the
resolution of the neutrino reconstruction. In this area a further division of bins in both
variables is conducted, turning one bin into four bins. This results in an increased pre-
cision of the distribution of the signal events for the fit process. At the end the total
number of bins is 76.

Four MC components are used in the fit. One contains events correctly reconstructed
in the signal decay. The other three correspond to the three types of MC listed in Sec-
tion 4.5.1, with the signal component removed from b → u. Only signal events with all
particles assigned correctly are included in the signal sample, events containing a signal
decay but wrong selection of particles, or with a different channel of signal decay are part
of the b → u sample. The amount of such events together is about 10% of the correct
signal events. The distribution of these four components in the fitted bins is shown in
Figure 7.1 and Appendix A.3.1.
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Figure 7.1.: Distribution of the four fit components over the fit area in the decay channel
η → γγ.
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7.2. Branching fraction

The b→ u contribution is fixed to the expected contribution from previous measure-
ments listed in Equation (2.25). The other three components, that is signal, b → c and
continuum, are freely floated and determined by the fit.

7.2. Branching fraction
The fit procedure as described in Section 4.2 gives the fraction PSignal of signal events
in the data sample. Combined with the overall number of data events Ndata remaining
in the sample after the selection, this gives the number of signal events measured as
Ndata ×PSignal. For the other fit components the yield is determined similarly with the
corresponding fit fractions Pj .

Together with the efficiency ε from Equation (6.2) and the sample size NBB from
Section 3.4 this gives the desired branching fraction B

(
B± → η(′)`±ν`

)
as:

NdataPSignal = 4NBBB
(
Υ(4S) → B+B−)×

×B
(
B+ → η(′)`+ν`

)
B
(
η(′) → X

)
ε, (7.3)

⇒ B
(
B+ → η(′)`+ν`

)
=

NdataPSignal

4NBBB (Υ(4S) → B+B−)B
(
η(′) → X

)
ε
. (7.4)

As both parts of the B+B− pair could potentially decay in the signal mode, and the
lepton `+ could be both an electron and a muon1, a factor of four appears in the
branching fraction of the entire decay chain. The branching fractions of η(′) to the
reconstructed final states, B

(
η(′) → X

)
are listed in Tables 2.3 and 2.4. The branching

fraction B (Υ(4S) → B+B−) is taken as 51.3± 0.6% [4].

7.3. Fit validation on MC samples
Before the fit is performed on data, its behaviour is tested using the MC samples avail-
able. Out of these, pseudo-data is generated by merging all fit components together at
the appropriate ratio and randomly varying the contents of each bin interpreting the
original bin content as the expected value of a Poisson distribution. For this section,
10000 such pseudo-data sets are generated.

Pull distributions are a way to check the reliability of the fit against variations in
the data set. The pull [29] is defined as the residual of the fit normalized to the fit
uncertainty:

Pull =
Pfit − Pinput

σfit
. (7.5)

1This analysis assumes lepton universality.
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7. Signal determination

As the pseudo-data is generated from known MC distributions, the original input frac-
tion is precisely known. Considering the variation when generating each new sample,
the fit result should vary equally in both directions. If the uncertainties are determined
accurately, with a width close to one. The distribution over all fits to pseudo-data is
shown in Figure 7.2 for the signal component.

From each of these fits, the fit quality χ2/d.o.f. can be determined, with a the number
of degrees of freedom being 72. The distributions for all channels are summarized in
Figure 7.3. The χ2/d.o.f. distribution looks similar for all channels. While in an ideal case
the maximum would lie at one, in these cases it lies at slightly lower values. This can
be explained by the fitted pseudo-data ultimately originating from the templates used
in the fit. Although they are varied, this correlation leads to a higher similarity.

The pull distributions show the channels separating into two groups. The three chan-
nels η → γγ, η → π+π−π0 and η′ → π+π−η(γγ) are reasonably close to the ideal
distributions. However, the channel η′ → π+π−η(π+π−π0) shows a very asymmetric
distribution without a recognizable Gaussian shape, while η′ → ρ0γ has a mean signifi-
cantly offset from one, showing a fit with an expected bias. This observation conforms
with the observed efficiencies in Table 6.5, where the problematic two channels are an or-
der of magnitude lower. As a consequence, these two channels are removed from further
analysis and for the decay B+ → η′`+ν` only the reconstruction channel η′ → π+π−η(γγ)
is used.
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7.3. Fit validation on MC samples
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Figure 7.2.: Pull distributions for all η(′) reconstruction channels.
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Figure 7.3.: χ2/d.o.f. distributions from the fits to pseudo-data.
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7.4. Fit on data

7.4. Fit on data
After the additional validation summarized in Chapter 8 was finished, the MC compo-
nents were fitted to the reconstructed data sample. The fitted yields are summarized in
Table 7.1. While the fit quality in both B+ → η`+ν` channels is very similar, the η → γγ
channel has the highest overall yield of events, and also the lowest relative uncertainty
in the yield of signal events. In Figure 7.4, the projections on the two fit variables Mbc

and ∆E are shown with the fitted yield applied to the MC.

Component η → γγ η → π+π−π0 η′ → π+π−η(γγ)

Signal 530± 116 196± 77 166± 76
b→ u 2219± 47 674± 26 459± 22
b→ c 4337± 233 2262± 147 2078± 150
continuum 2285± 221 692± 137 479± 129

Data 9373 3828 3185

χ2/d.o.f. 88.0/72 86.3/72 64.4/72

Table 7.1.: Fitted event yields and quality, together with the total yield of the data
sample. Uncertainties are those of the fit procedure, except for the fitted b→
u component, which instead has a Poissonian uncertainty as

√
N associated.

7.4.1. Background fit
As a validation of the fit result, the same fit procedure has been repeated in a region
dominated by background events. Compared to the nominal fit, the background area
removes all bins in the signal-rich region 5.25GeV/c2 < Mbc and |∆E| < 0.25GeV.
Additionally, all bins are removed where the signal contribution is expected to be above
5%. The signal template is not fitted in this region. The resulting event yields are listed
in Table 7.2 and compared to the yields the nominal fit would expect in this area.

The yields of background events by both method are compatible within their uncer-
tainties for all three channels, increasing confidence in the fit result over the full range.
As the nominal fit does contain a small yield of signal events in the background region
too, the remaining background yields are generally lower than for the background-only
fit. The signal component is however very small and does not compromise comparability
between the two fits.
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Figure 7.4.: Fit variables comparing data to the MC templates scaled to the fit result.
The difference between data and MC events is normalized to

√
MC, corre-

sponding to the MC yield uncertainty assuming Poisson statistics.
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7.4. Fit on data

Template η → γγ η → π+π−π0 η′ → π+π−η(γγ)

Nominal Bkg only Nominal Bkg only Nominal Bkg only

Signal 85± 19 0 36± 14 0 54± 25 0
b→ u 696± 15 693± 26 229± 9 228± 15 213± 10 213± 15
b→ c 2001± 107 2133± 120 1072± 70 1177± 75 1205± 87 1205± 96
continuum 972± 94 848± 111 313± 62 235± 66 296± 80 338± 90
Data 3678 1642 1759

χ2/d.o.f. 88.0/72 28.7/34 86.3/72 50.4/37 64.4/72 51.4/49

Table 7.2.: Yields in the background-only region, both by the fit exclusive to this region
as well as the nominal fit. The nominal yield and uncertainty of the b → u
component are those of the full range scaled to the background region and
therefore differ slightly from the background-only yield.
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CHAPTER 8

MC validation

Before the fit was applied to data in Section 7.4, several studies were conducted to
confirm the reliability of the MC and the assumptions made during the reconstruction.
These are collected in this chapter.

It starts with sideband studies in the η(′) mass in Section 8.1 to validate the back-
ground description, followed by a more specific look at the continuum background in
Section 8.2. Afterwards, the dependence of the reconstruction on q2 is evaluated in Sec-
tion 8.3. A control mode is presented in Section 8.3.1.

8.1. Sidebands
An accurate description of the background distributions is important for extracting the
signal component. To validate this description, so called sidebands are used, samples
containing almost only background events. These are reconstructed in the same way as
in Chapter 5 and use the BDTs from Chapter 6. However, to remove the signal compo-
nent, the mass selection of η(′) candidates is changed.

Sidebands are useful to study the agreement of MC and data without introducing a
bias. When studying the agreement on signal distributions, the size and shape of the
observed data can influence the selections chosen. This could lead to optimizing the
selection around statistical fluctuations and biasing the result. As the sideband does not
contain significant signal, such a risk is not present.

For the two channels η → γγ and η → π+π−π0, the sideband uses events with a
mass between 3 and 5σ around the reconstructed peak. Table 8.1 summarises the ac-
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8. MC validation

cepted ranges. For η′ → π+π−η(γγ) the sideband is defined in the mass difference ∆m
(Equation (5.8)). All candidates with more than 6σ above the reconstructed peak, here
above 430MeV/c2, are used as sideband candidates. Events are not considered for the
sideband if they also contain an accepted signal candidate in the same channel.

Channel Lower Range [MeV/c2] Higher Range [MeV/c2]

η → γγ [487, 510] [580, 603]
η → π+π−π0 [535, 540] [556, 561]

Table 8.1.: Mass ranges of the B+ → η`+ν` sidebands.

The most important variables to have good agreement between data and MC are those
used in the signal determination, specifically the fit variables Mbc and ∆E. In the two
channels η → γγ and η → π+π−π0 the comparison is shown in the Figures 8.1 and 8.2.
In both of these good agreement between MC and data can be observed.
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Figure 8.1.: Fit variables in the sideband for the reconstruction channel η → γγ.

In the channel η′ → π+π−η(γγ), shown in Figure 8.3, the distribution is slightly dif-
ferent. Especially in Figure 8.3a the data can be observed to consistently lie below the
MC. However, no structure can be seen beyond fluctuations, indicating this is purely a
problem of overall normalisation. As only the shape of the components is relevant for
the fit procedure, a slight discrepancy in normalisation does not affect the result. This
is consistent with the results in Section 7.4.1 showing no discrepancy when fitting only
the background to the data sample.

While agreement in all variables is desirable, MC generators are always only an ap-
proximation of the true behaviour. Figure 8.4 shows θη(′)Y , one of the variables used
in the BDT. While here a generally good agreement is seen, small discrepancies in the
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Figure 8.2.: Fit variables in the sideband for the reconstruction channel η → π+π−π0.
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Figure 8.3.: Fit variables in the sideband for the reconstruction channel η′ →
π+π−η(γγ).

training variables are not a problem in this analysis. If the BDT output was later used as
a fit variable, agreement would be more important and could bias the result. However, if
the BDT is only used to separate events, discrepancies only lead to a loss in performance
due to non-optimal selections. As with all other selection steps, discrepancies can affect
the efficiency estimation however.
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Figure 8.4.: Angle between the η(′) and the pseudoparticle representing the other side.

8.2. Continuum MC comparison
At the energy of the Υ(4S) resonance, the cross sections for continuum processes going
to one of the four lighter quarks are about three times as large as the cross section for
the production of an Υ(4S) resonance:

σΥ(4S) = 1.1× 10−9 b, (8.1)
σuds = 2.05× 10−9 b, (8.2)

σcharm = 1.25× 10−9 b. (8.3)

The heaviest of the four is listed separately, as it has the highest chance to produce
heavier particles mimicking signal processes. In the MC the charm component is also
generated separately from the combined uds component.

The data taken slightly below the Υ(4S) resonance can be used to validate the de-
scription of this part of the MC separately from the rest. The difference in event shape
explained in Section 4.4 allows for an effective determination of these events, but with
their large cross section, they stay a relevant part of the background.
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8.3. Efficiency dependence of q2

When comparing the MC with the off-resonance data in Figure 8.5a, a clear differ-
ence can be seen with significantly more data events. This is not unexpected, as the
off-resonance data contains more processes than just the e+e− → qq events. One such
additional process is e+e− → τ+τ−.
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Figure 8.5.: Off-resonace data compared to continuum MC for Mbc in the η → γγ chan-
nel

When scaling the continuum MC to attain the same integral as the off-resonance data
in Figure 8.5b, the agreement improves. As the continuum part is a separate component
freely floating in the fit as detailed in Section 7.1, the effect of the overall scaling does
not affect the result.

The off-resonance data could in principle be used to independently determine the con-
tribution of off-resonance effects. However, due to the efficiency of the BDT in reducing
continuum background, the remaining sample size is very small, leading to high uncer-
tainties on the yield from off-resonance data and making this approach infeasible.

For the other two reconstruction channels, the comparison is shown in Figures A.18
and A.19. The observed discrepancy in yield is smaller than in the η → γγ channel.
The continuum parts not described by the MC are in part removed by the additional
requirements on the charged hadrons.

8.3. Efficiency dependence of q2

The analysis aims to keep the entire q2 range intact throughout the reconstruction to
avoid modelling errors, as the description of the decay kinematics often depends on the
transferred momentum. Examining the selection efficiencies relative to q2 in Figure 8.6
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gives an indication to what extent this has been achieved.
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Figure 8.6.: Signal efficiencies over the entire event selection chain as a function of q2,
determined on MC samples.

The first observation is that in all channels, the entire range is retained with the effi-
ciency never falling to zero. While the ideal case would be a flat distribution, giving an
efficiency independent of the momentum transfer, this is not reached. The form of the
efficiency dependence varies for the different decay channels. For η → γγ, a slight linear
decrease towards higher values can be observed. The other two channels show the same
general structure. At low values, the efficiency is flat and independent of q2, followed
by a decrease above a certain threshold. This effect is caused by the detection efficiency
of the pions included in both channels being dependent on their energy, which in turn
depends on q2.

8.3.1. Control mode

The signal extraction method is validated by reconstructing a control mode, a process
that is similar to the nominal signal process. It can be reconstructed in the same way
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8.3. Efficiency dependence of q2

while being much better known from previous analysis. Ideally suited are decays with a
high enough branching fraction that reconstruction can be applied with as little modifica-
tion as possible. As the control mode is well known, its reconstruction should reproduce
the previous measurements.

The decay process chosen as control mode is B+ → D0`+ν`, as it combines a relatively
high and well measured branching fraction with an event topology somewhat similar to
the signal decays. The D0 is reconstructed in the decay D0 → K−π+.

Reconstruction

The D0 candidates are reconstructed as pairs of one kaon and one pion of opposite
charge. The pair is required to have a reconstructed invariant mass in a 3σ window
around the fitted maximum mass similar to the signal modes. This results in a require-
ment of 1850MeV/c2 < mKπ < 1879MeV/c2. All following steps, including the BDT
training, are not changed compared to the signal modes.

The main background source in the control mode are D mesons originating from other
sources, mostly from semileptonic decays B → D∗`+ν`, with the D∗ subsequently de-
caying into a D and an unreconstructed pion. While the D is correctly selected, it
is incorrectly associated directly with the original B meson, as neither an attempt to
reconstruct D∗ mesons not to veto them is made. Another source for D mesons are
e+e− → cc processes, making up almost the entire continuum component. This can be
seen in the resulting mass peak in Figure 8.7. This mass peak also shows one of the
deficiencies of the MC used. The simulated peak is significantly narrower than on real
data. The selection width chosen is wide enough that the difference on the efficiency
between data and MC is however negligible.

Control mode result

The fit in the control mode uses the same setup as for the signal modes in Chapter 7.
The fit result for the branching fraction is:

B
(
B+ → D0`+ν`

)
= (2.536± 0.036± 0.087)%, (8.4)

where the first uncertainty is statistical from the fit and the second is systematic. The
systematic uncertainties follow the determination for signal events detailed in the Chap-
ter 9, with the individual breakdown in Table 9.1. As the B+ → D0`+ν` decay has a
very high statistic, the uncertainty is dominated by systematic effects.

The current world average [4] for this decay is B
(
B+ → D0`+ν`

)
= 2.35± 0.09%, or

B
(
B± → D0`±ν`

)
= 2.29± 0.09% (8.5)
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Figure 8.7.: The reconstructed D mass. The true D meson category contains all correctly
reconstructed D0 → K−π+ processes in which the D does not originate
from a B+ → D0`+ν` decay. These D mesons make up the majority of the
background. The MC simulates a mass peak narrower than what is found
in data.

when rescaling to B (Υ(4S) → B+B−) = 51.3%, as is assumed in this analysis. Within
their combined uncertainties, these two values are just slightly incompatible.

A previous analysis of this channel by Belle measured [55] B
(
B+ → D0`+ν`

)
=

2.58 ± 0.04 ± 0.15% and this is very well compatible with the obtained result. This
comparison suggests a systematic source of the discrepancy to the measurement aver-
age. There is also the possibility of additional systematic uncertainties specific to the
B+ → D0`+ν` decay being neglected, possibly related to the imperfect MC simulation.

The fit variables scaled to the result are shown in Figure 8.8. Even with the fit result
applied, there is still a significant amount of discrepancy to be seen between the data
and the MC. This is considered to be due to defects in the MC, as the mass peak in
Figure 8.7 is also not well modelled. This kind of discrepancy is however not seen in the
sidebands of the signal channels in Section 8.1.

To account for this discrepancy to the world average a systematic uncertainty will be
applied for the signal modes as detailed in Section 9.4.
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CHAPTER 9

Systematics

Besides the statistical uncertainty of the result, which originates from an uncertainty in
the fit as described in Chapter 7, there are also a variety of systematic uncertainties.
These are listed here together with their determination.

The chapter begins with uncertainties related to the description of the initial inter-
actions and particle decays in Section 9.1, followed by uncertainties on the detector
response to traversing particles in Section 9.2. Effects of the limited size of simulated
data are described in Section 9.3. Finally, an uncertainty due to the control mode
discrepancy is introduced in Section 9.4. The size of all uncertainties is collected in
Table 9.1.

9.1. MC description
The generation of the MC relies on previous measurements and theoretical descriptions
of the decay properties of the involved particles. Both of these always have an associated
uncertainty. As most of these translate into uncertainties in the composition of the tem-
plates in the fit, the uncertainty of the end result is generally determined by varying each
value individually within one standard deviation and repeating the fit. The difference
to the nominal fit result is interpreted as the uncertainty of the result.

The main background processes are semileptonic decays of the type B → X`+ν`.
Therefore, the main contributing decay modes are updated to the current averages in
Section 4.5.1 by reweighting the corresponding events in the sample. For each of these
decays, a corresponding uncertainty is assigned from the uncertainty of the new weight.
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9. Systematics

A separate case is the inclusive B → Xu`
+ν` measurement. Here only the inclusive

part of the b → u is varied to achieve the overall variation in size in the b → u compo-
nent. The exclusive modes are not affected by the original rescaling in Section 4.5.1 and
are evaluated separately.

The branching fraction B
(
B+ → η(′)`+ν`

)
is determined from the event yield and the

full decay chain. Part of this chain are the initial probability to produce a B+B− pair,
B (Υ(4S) → B+B−), and the branching fractions of the η(′) to the various final states.
Their associated uncertainties are evaluated directly within Equation (7.4).

In this analysis, the main unknown about the continuum contribution is its overall
size, however as the normalization is determined in the fit this has no effect on the anal-
ysis. The remaining uncertainty comes from the relative cross section of the charm and
uds components. By varying the two contributions by 20% relative to each other the
effect of this uncertainty is estimated.

9.1.1. Form factors
The kinematic behaviour of particle decays is described using different models, which use
a certain number of measured parameters, called form factors. This modelling can lead
to two kind of uncertainties: either an uncertainty on the form factors used, or the theo-
retical model itself being imprecise and not accurately describing the underlying physics.

For most of the particle transitions described, the models used differ. This leads to
two general ways of assigning uncertainties depending on whether the decay is via an
initial b → c or b → u transition. All reweightings and uncertainties concern semilep-
tonic decays, which dominate the background.

The decays B → D`+ν` and B → D∗`+ν` are modelled using HQET (Heavy Quark
Effective Theory) [56] in the MC. HQET describes bound states between a heavy and a
light quark assuming the masses of the b and c quarks involved in the decay as infinite, a
limit in which they behave identical except for spin and flavour, and later adds corrections
for the masses. This approach is, however, only valid for masses larger than the strong
coupling ΛQCD and HQET can not be used to describe b→ u decays as the u is too light.

The description of the decays B → D`+ν` uses one form factor, while B → D∗`+ν`
uses three form factors. These have been updated [50] to the most recent values [4]. The
decays B → D∗∗`+ν`, where the D∗∗ can be one of the four states, D1, D0, D

′
0 and D2,

are described with the ISGW2 [57] model in the MC samples. These decays have been
reweighted to conform to the more accurate LLSW [58] model describing the decays
with three form factors. To determine the uncertainty, each form factor was individually
varied within its uncertainty in the reweighting procedure.
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The signal decays B+ → η`+ν` and B+ → η′`+ν` use the ISGW2 [57] model in the
MC. The uncertainty on the modelling of the kinematics is determined by reweight-
ing [59] the signal contribution, with the form factors updated to the Ball07 [60] model.
The b → u background decay B+ → ω`+ν` uses the Ball98 [61] in the MC, and is
reweighted using the same procedure to the Ball05 [62] model for comparison.

The comparison models for the b→ u processes are based on LCSR [63] (Light Cone
Sum Rule). The difference in fit result between the two models is assigned as the uncer-
tainty. The shape parameters [64] describing the inclusive component in the b→ u MC
are also considered.

9.2. Experimental conditions

The last step in the MC generation is the simulation of the behaviour of the detector
reacting to the MC particles. As the description is not always perfect, discrepancies in
detection efficiency can occur. Separate studies are available to compare the MC be-
haviour with data for different particle types, leading to corrections on the MC events if
divergences are found. These corrections lead to associated uncertainties on their size.
However, even in cases where no divergence could be observed, an uncertainty is pro-
vided representing the precision of the comparison.

9.2.1. Particle detection

The reconstruction efficiency for charged tracks was studied in D∗ decays [65]. In
this study, the D∗ was only partially reconstructed, leaving one charged particle out
whose presence was inferred from the vertices. The detection efficiency is determined by
whether or not a corresponding track to the inferred particle has been measured.

No significant difference in efficiency between data and MC was observed. The uncer-
tainty of this measurement results in the assignment of a fully correlated uncertainty of
0.35% per charged track with a momentum p > 200MeV/c in the reconstructed state.
All tracks considered in this analysis fulfil this criterion.

Besides charged particles, photons are the main type of particles to be detected. Their
detection efficiency is determined in a study using radiative Bhabha events [66]. This
study determined the momentum of the radiative photon in e+e− → e+e−γ reactions by
using the missing momentum of the combined e+e− pair, and compared the efficiency in
finding the accompanying photon between real and simulated data. No correction results
from this, but an uncertainty of 2% per photon in the final state is introduced. This
uncertainty is not applied to the Bremsstrahlung photon used to correct the electron
momentum in Section 5.5.
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Photons pairs used to reconstruct π0 candidates are treated differently. Here, the effi-
ciency was studied separately [67] using decays of η mesons containing different numbers
of π0, without restrictions on the production channel of the η. This results in a lower
uncertainty of 2.5% assigned per π0 used in the reconstruction, instead of 2% for each
of the photons.

The particle identification procedures, both for leptons and hadrons, behave differ-
ently on data and in MC predictions. The difference for hadrons was determined in
D+∗ → D0π+ decays, followed by D0 → K−π+. For charged leptons, e+e− → e+e−`+`−

events were used. Corrections [68, 69] are provided to compensate for this discrepancy.
Each of these corrections comes with an uncertainty, the size of which is depending on
the momentum and angle inside the detector of the corrected particles.

The total number of BB pairs listed in Equation (3.6) is derived from the measured
integrated luminosity. There, the luminosity is measured via Bhabha events. This mea-
surement is the main source of uncertainty on the listed value. This uncertainty is
propagated through the calculation of the branching fraction to the end result.

While events containing additional neutrinos are mostly removed by requiring exactly
one lepton candidate, this does not constrain the number of K0

L. As these are only
partially measured by the KLM system, they constitute a second unmeasured particle
compromising the assumptions made in Section 5.6, or fake a muon candidate. As a
conservative estimation of the uncertainty, the fraction of events containing at least one
K0

L in the fit templates is varied by 20%.

Events accepted in the reconstruction should only contain one lepton coming directly
from the signal B+ decay. However, in background events the used lepton candidate
can also originate from a subsequent decay of a B daughter, continuum or beam back-
grounds, or not be a lepton at all, as hadrons can be misidentified as leptons. These
parts of the MC are not well modelled. To estimate an upper bound on the effect, an
uncertainty is assigned after increasing and decreasing the weight of all events with a
lepton candidate not directly out of a semileptonic B decay by 20%.

9.3. Event yield

The efficiency in reconstructing an event is important to determine the branching frac-
tion out of the measured yield. This efficiency is summarized in Table 6.5. While the
determination would be exact in the case of unlimited statistics, the limited amount of
events available in any MC sample causes an uncertainty in the efficiency. While the
number of generated events can be treated as exactly known, the yield of accepted events
during the reconstruction is interpreted as following a Poissonian distribution with the
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uncertainty as

NMC
Signal,Reco ±

√
NMC
Signal,Reco. (9.1)

The same situation appears in the b→ u component, fixed in the fit procedure. Here
too the uncertainty on the yield is taken as an Poissonian uncertainty. The accompanying
uncertainty is determined by varying the fixed yield within this Poissonian uncertainty
before repeating the fit.

9.4. Control mode
The branching fraction determined in the control mode B+ → D0`+ν` in Section 9.4
does not exactly agree with the reference value. The level of disagreement between the
measurements of the branching fraction is quantified as

σD = |B (Fit)−B (Ref)| −
√
σ2stat + σ2syst + σ2Ref . (9.2)

Here, B (Ref) is the reference branching fraction (Equation (8.5)) with the uncertainty
σRef . B (Fit) is the measured branching fraction as quoted in Equation (8.4) with the
uncertainties σstat and σsyst. Interpreting this as a general uncertainty of the fit, an ad-
ditional uncertainty of 5% is added to the determination of the B+ → η(′)`+ν` branching
fractions.
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Source η → γγ η → π+π−π0 η′ → π+π−η(γγ) D0 → K−π+

Statistical 22 39 46 1.4
Combined Systematic 11 14 11 3.4

B (B+ → XBkg) 2.4 1.7 1.3 0.52
B (Υ(4S) → B+B−) 1.2 1.2 1.2 1.2
B
(
η(′) → X

)
0.51 1.2 1.7 1

Continuum 0.2 0.62 0.63 0.093
B → D(∗,∗∗)`+ν` form factors 0.82 1.1 1.3 0.36
B+ → η(′)`+ν` form factors 3.0 2.9 0.14 0.00039
B+ → ω`+ν` form factors 0.81 2.1 2 0.00039
b→ u`−ν` shape 0.39 0.15 0.21 0.00039
Charged tracks 0.35 1.1 1.1 1.1
γ detection 4.0 2.5 4.0 0
Electron ID 1.6 1.6 1.5 1.5
Muon ID 2.1 2.1 2 1.9
First π±/K± PID 0 0.97 1.1 0.89
Second π± PID 0 1.3 2.2 0.86
NBB 1.4 1.4 1.4 1.4
Background with K0

L 3.5 8.6 3.8 0.36
Misidentified leptons 4.3 5.5 2.3 0.27
Efficiency determination 0.86 1.3 2.3 0.11
b→ u`ν yield 4.1 5.2 4.4 0.0051
Control Mode 5.0 5.0 5.0 -

Table 9.1.: All systematic uncertainties in %, with the statistical uncertainty for com-
parison.
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CHAPTER 10

Results and Conclusion

This chapter presents the final branching fractions determined for the signal decay modes
in Section 10.1. Afterwards, the results are discussed and compared to previous mea-
surements in Section 10.2. Finally, Section 10.3 gives a very brief outlook into the future
that further studies could bring.

10.1. Results
The yield of events in the B+ → η(′)`+ν` decays was determined in Section 7.4. This
measurement allows to determine the branching fractions of these decays. The results
for the B+ → η`+ν` decay are:

B
(
B+ → η`+ν`

)
= (10.1)

using η → γγ : (2.91± 0.64± 0.32)× 10−5, (10.2)
using η → π+π−π0 : (2.65± 1.04± 0.37)× 10−5. (10.3)

The first uncertainty is statistical from the fit, while the second is systematic as listed in
Table 9.1. The results from both measurement channels are in good agreement with each
other. This allows to average the two results, leading to the overall branching fraction
for the η meson of:

B
(
B+ → η`+ν`

)
= (2.83± 0.55± 0.34)× 10−5. (10.4)

While the statistical uncertainties are considered as uncorrelated in the average, the
systematic uncertainties are treated as fully correlated between the two results. This
is a conservative approach likely to slightly overestimate the uncertainty, however the
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measurement is dominated by the statistical uncertainty and the effect is very small.

Only the η′ → π+π−η(γγ) mode of the B+ → η′`+ν` was usable to determine the
branching fraction. The result is:

B
(
B+ → η′`+ν`

)
= (2.79± 1.29± 0.30)× 10−5. (10.5)

10.2. Discussion
The current world averages [4] for the two measured decay channels are B (B+ → η`+ν`) =
(3.9± 0.5)× 10−5 and B (B+ → η′`+ν`) = (2.3± 0.8)× 10−5. While the η′ result is very
compatible, the η result, while still compatible, is lower in this analysis. However, all
the measurements of these channels come with a large uncertainties.

This analysis is the second measurement of the B+ → η(′)`+ν` branching fraction at
Belle. It complements the previous measurement [70]. Both measurements are compati-
ble and independent due to the difference in methodology. The earlier measurement uses
the full reconstruction approach discussed in Section 4.3.1 to achieve a higher purity,
compared to this analysis which focused on a high efficiency. The B+ → η`+ν` decay has
been measured multiple times by the Babar experiment [71–73] with similar precision.
One of their measurements [73] diverges, while the others are compatible with the result
in this analysis.

For the B+ → η′`+ν` decay, the result presented here is compatible with the newest
measurement by Babar [71], which is also more precise, while their earlier result [73] has
a significantly larger uncertainty. An earlier measurement by CLEO [74] is an order of
magnitude larger and incompatible, but has a very large uncertainty.

The low purity in the selected data sample of the presented analysis is directly con-
nected to the approach keeping the entire range of q2 intact. As can be seen in Fig-
ure 10.1, the background contribution concentrates at high values of q2, where at the
same time the signal contribution is expected to be lower with the used model. A deter-
mination of partial branching fractions in at least the lower range of q2 was considered,
but discarded as no validation method with a similar behaviour and range in q2 was
available in place of the B+ → D0`+ν` decay used.

Several systematic uncertainties are significant. Besides detector effects like the pho-
ton identification, one of the larger effects is that assigned to the control mode dis-
crepancy, which is the largest single contribution in η → γγ and η′ → π+π−η(γγ).
For η → π+π−π0 the largest systematic uncertainty comes from the K0

L backgrounds.
This suggests that in the case of better statistical uncertainties further studies to better
quantify this effect and possibly to remove such backgrounds might be useful. However,
within this analysis the statistical uncertainty dominates in all reconstructed modes.
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Figure 10.1.: Reconstructed distribution of q2, with the MC scaled to the fitted yield.

10.3. Outlook

As this measurement is limited by the size of the dataset, significant improvements in
precision can be expected after the dataset collected by the Belle II experiment exceeds
that of Belle. With higher statistics and improved measurement precision, the first task
would be to find selection criteria that can improve the purity of the sample, which might
open up further decay channels of the η(′) for reconstruction. The improved detector
is also expected to reduce the systematic uncertainties related to particle detection effi-
ciencies.

Besides pure measurements of branching fractions, the expected Belle II dataset could
allow further measurements. One clear candidate would be a measurement of the branch-
ing fraction in bins of q2 to measure the decay form factors. As can be seen in Figure 10.1,
especially the bins of high q2 pose a challenge for future analyses. To measure this region
with high precision against the large background contamination a novel approach might
be needed.

With improvements in the theoretical descriptions, and with them the quality of the

107



10. Results and Conclusion

MC, the B+ → η(′)`+ν` decays could also provide an additional source to measure the
CKM matrix element |Vub| and help to clear up the tension between measurements.
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APPENDIX A

Additional plots

Throughout the main body of this thesis, only a subset of plots is shown at times to
save space. In these cases, the remaining plots are collected here for reference.

A.1. Reconstruction
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Figure A.1.: Reconstructed cos(θ?
B,`η(′)

) on MC, with all other cuts throughout Chap-
ter 5 applied. Only events inside the yellow lines are accepted. The signal
contribution is also superimposed with arbitrary scale.
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Figure A.2.: Accepted m2
miss range on MC, with all selections throughout Chapter 5

applied. The signal contribution is also superimposed with arbitrary scale.
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Figure A.3.: The Mbc distribution in the range to be used later for the fit on MC, with
all selections throughout Chapter 5 applied. The signal contribution is also
superimposed with arbitrary scale.
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Figure A.4.: The ∆E distribution in the range to be used later for the fit on MC, with
all selections throughout this section applied. The signal contribution is
also superimposed with arbitrary scale.
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A. Additional plots

A.2. BDT

A.2.1. BDT training variables
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Figure A.5.: BDT training variables in the channel η → π+π−π0120



A.2. BDT
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Figure A.6.: BDT training variables in the channel η′ → π+π−η(γγ)
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A. Additional plots
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Figure A.7.: BDT training variables in the channel η′ → π+π−η(π+π−π0)
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A.2. BDT
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Figure A.8.: BDT training variables in the channel η′ → ρ0γ
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A. Additional plots

A.2.2. Correlation coefficients
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Figure A.9.: Correlations between the BDT variables in the channel η → π+π−π0.
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Figure A.10.: Correlations between the BDT variables in the channel η′ → π+π−η(γγ).
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A.2. BDT
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Figure A.11.: Correlations between the BDT variables in the channel η′ →
π+π−η(π+π−π0).
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Figure A.12.: Correlations between the BDT variables in the channel η′ → ρ0γ.
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A. Additional plots

A.2.3. BDT figure of merit
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(a) η → π+π−π0
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(b) η′ → π+π−η(2γ)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
ig

ur
e-

of
-M

er
it

0.5− 0 0.5
BDT BB

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

B
D

T
 C

on
tin

uu
m

(c) η′ → π+π−η(3π)
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(d) η′ → ρ0γ

Figure A.13.: Figure-of-Merit as a function of the two BDT outputs.

A.3. Fit

A.3.1. Fit variable distribution

0

10

20

30

40

50

5.1 5.15 5.2 5.25 5.3
bcM

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1 E∆

(a) Signal

0

10

20

30

40

50

5.1 5.15 5.2 5.25 5.3
bcM

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1 E∆

(b) b→ u

0
20
40
60
80
100
120
140
160
180
200
220

5.1 5.15 5.2 5.25 5.3
bcM

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1 E∆

(c) b→ c

0
2
4
6
8
10
12
14
16
18
20
22
24

5.1 5.15 5.2 5.25 5.3
bcM

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1 E∆
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Figure A.14.: Distribution of the four fit components in the channel η → π+π−π0
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A.3. Fit
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Figure A.15.: Distribution of the four fit components in the channel η′ → π+π−η(γγ)
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Figure A.16.: Distribution of the four fit components in the channel η′ →
π+π−η(π+π−π0)
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A. Additional plots
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Figure A.17.: Distribution of the four fit components in the channel η′ → ρ0γ

A.4. Validation
A.4.1. Continuum comparison
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Figure A.18.: Off-resonace data compared continuum MC for Mbc in the η → π+π−π0

channel
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A.4. Validation
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Figure A.19.: Off-resonace data compared continuum MC for Mbc in the η′ →
π+π−η(γγ) channel
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