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Abstract 

 

Bioenergetics deals with energy conversion in organisms and is essential for the 

understanding of living systems. In all extant organisms adenosine triphosphate (ATP) is the 

energy carrier and transmitter of free energy from exergonic to endergonic processes. Since 

ATP is a complex molecule, it was unlikely available on prebiotic Earth. Considerations of 

plausible energy-rich compounds have to be made. After many compounds were mentioned, 

the most attention got LIPMANNS proposal that inorganic pyrophosphate (PPi) could be a 

precursor of ATP. However, a robust synthesis under prebiotic conditions was not yet 

achieved.  

In this thesis, a synthesis of PPi under prebiotic conditions is indicated by condensation of 

orthophosphate (Pi) in aqueous solution. The Pi dimerization was coupled to a reaction, which 

was known to form C/C-bonds from present carbon monoxide (CO), methanethiol (CH3SH) 

under transition metal catalysis (FeS, NiS). This reaction compounds can be considered at 

certain hydrothermal vents, which were referred to be the cradle of the origin of life. 

Formed PPi in the reaction was monitored with fluorescence spectroscopy using a fluorescent 

PPi-sensor assay based on enhanced fluorescence upon binding of PPi to a sensor fluorophore. 

Furthermore, the formation of PPi under reaction conditions was confirmed with a another 

more sensitive PPi-Light assay by measuring the luminescence of PPi-containing samples.  

Acetyl phosphate (AcP) was also considered as energy carrier on early Earth and therefore 

measurements of the hydrolytically kinetics of both AcP and PPi were carried out to draw 

conclusions about the stability of the compound at certain temperatures. 

In a side project of this thesis, attempts were made towards synthesizing a peptidic minimal 

model of the active site A-Cluster in acetyl CoA synthase (ACS), which is a key enzyme in 

combination with carbon monoxide dehydrogenase (CODH) in ancient WOOD-LJUNGDAHL 

pathway. New findings indicated that metal sulfides catalyse the CO2 fixation in CODH/ACS 

enzyme. A precursor of the A-cluster, which is able to catalyse the formation of thioester from 
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CO and e.g. thioacetic acid in analogy to the ACS enzyme would corroborate to the concept 

that primordial biochemical metabolisms have geochemical roots.
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1. Introduction 

 

In living systems energy conversion is coupled to electrochemical gradients across lipid 

membranes controlled by complex protein systems. A disequilibrium of pH-, concentration-, 

and redox gradients have to be sustained due to harnessing the proton-motive-force. To this 

process known as chemiosmotic coupling the ATP-synthase-catalysed formation of Adenosine 

triphosphate (ATP) is coupled from Adenosine diphosphate (ADP) and phosphate (Pi). ATP is 

referred as the universal energy currency of extant organisms due to available energy in the 

phosphoanhydride bonds. 

The enzyme-based formation of ATP is complex and unlikely on early Earth ~4.0 Ga ago, to 

provide an energy source for metabolic reactions. LIPMANN proposed that inorganic 

pyrophosphate (PPi) could be a plausible predecessor of ATP considering the rule that complex 

compounds may evolve from simpler ones.[1] However, PPi is a simpler molecule with energy-

rich phosphoanhydride bond and could be considered as plausible energy-rich source on 

prebiotic Earth. 

Since there is no clue about available polyphosphate deposits on (early) Earth, PPi must have 

been synthesized [2]. Many scientists made experimental attempts to couple PPi condensation 

of Pi to the hydrolysis of condensing agents of doubtful availability on early Earth.[3–6] Without 

using condensing agents PPi synthesis was not realized.[7]  

The intention of this work was no further consideration of PPi condensation by condensing 

agents and instead to couple the dimerization of Pi to a sustainable geochemical redox process 

with the result of energy driven condensation of PPi (Figure 1.1, eq. 3). Great advantages of 

PPi as prebiotic energy currency were the ability to distribute the energy stored in the 

phosphoanhydride bond to drive energy dependent reactions and its stability to hydrolysis. 

For this approach the geochemical redox reaction (Figure 1.1, equation 2), in which C/C-bonds 

were formed, catalysed by transition metal sulfides (FeS, NiS) from inorganic molecules only, 

seems to be suitable and was originally performed by HUBER and WÄCHTERSHÄUSER.[8] The 
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experimental conditions were comparable to some underwater volcanos known as 

hydrothermal systems, in which CO, CH3SH and transition metal sulfid were available. Under 

these reaction conditions it was shown that FeS and NiS can catalyse reactions in absence of 

proteins. Additionally, recent investigations demonstrated that in the ancient acetyl-CoA 

(WOOD-LJUNGDAHL pathway) pathway the CO2 fixation is accomplished by metal sulfide-clusters 

in the key enzymes carbon monoxide dehydrogenase (CODH) and acetyl-CoA synthase (ACS). 

These findings indicated that some of the oldest features of today’s biochemistry not only 

have similarities to the primary metabolisms, but also provide clues to their inanimate 

precursors and thus to the path from geochemistry to biochemistry. Between the Hadean 

ocean and the underwater volcanos temperature-, pH-, concentration- and redox gradients 

were expected and thus form a plausible region to drive early carbon and energy metabolism.  

 

 

 

Scheme 1.1 In Equation (1) the condensation of Pi to PPi is shown. In (2) the acetic acid 

formation from CO, CH3SH in aqueous solution is presented. The combination of 

both (1) and (2) lead to PPi condensation. 

 

This thesis targets the following two main points: First, coupling the P/P-bond formation to 

the prebiotically plausible geochemical redox reaction (Figure 1.1, eq. 2) to yield energy-rich 

PPi. This would indicate that in prebiotic Earth thioester, which were considered as energy 

carrier before inorganic phosphate entered the building blocks of life and PPi had been present 

simultaneously and therefore is no need to imply a thioester world [9] as a distinct evolutionary 

stage of preceding phosphoanhydride-based bioenergetics. Both energy carriers may have 
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been present from the beginning with the later shift to PPi (later ATP) as more efficient 

catalyst. 

Second, to carry out experiments towards synthesizing a peptidic minimal model as prebiotic 

precursor of the active site A-cluster in ACS enzyme from very ancient carbon fixation Acetyl-

CoA pathway (WOOD-LJUNGDAHL pathway). The A-cluster consists of metal sulfide-cluster and 

catalyses the formation of acetyl-CoA from CO, CH3-residue and Coenzyme A to acetyl-CoA. A 

peptidic minimal model, which is able to catalyse the formation of thioester from CO and e.g. 

thioacetic acid in analogy to the ACS enzyme would corroborate to the concept that primordial 

biochemistry has been of geochemical origin.  



 
 
 

 
 

 

  

  

 

 

 



 
 
 

 
5 

 

 

2. Fundamentals of Origin of Life 

2.1 Early Earth 

The Earth is about 4.6 billion years (Ga) old.[10] This was determined with geochemistry and 

comparisons to meteorites from other solar system, since geological record is scare. The moon 

formed  ~4.45 Ga ago (Figure 2.1), when the Earth collided with a Mars-sized object, which 

melted and vaporized (~ 20%) the Earth mantle [10]. This lead to temperatures above 2000 K 

on early Earth and transferred all water into the gas phase, as well as accreted carbon into 

carbon monoxide.[11] 1-2 Ga later the Earth cooled down (Figure 2.1) and a primordial ocean 

was formed, but twice as deep as today’s oceans due to later onset of the primordial crust 

through hydrothermal convection currents.[12]  

 

2.1.1 Early Earth Atmosphere 

Many attempts were made to find a satisfactory answer to the composition of the 

atmosphere, surface area and the primeval ocean on early Earth. UREY and others argued that 

the gas phase have been strongly reducing based on models of the early terrestrial 

atmosphere.[13] In MILLERS famous experiment to investigate the prebiotic synthesis of organic 

molecules, a reducing atmosphere containing CH4, NH3 and H2O, was exposed to electrical 

discharge and led to the formation carboxylic acids, amino acids and other building blocks of 

life.[14,15] The accumulation of these compounds in surface environments at the ocean or lakes 

could contribute to a plausible chemical evolution. After publishing the very promising results 

of the MILLER-UREY-Experiment [15], the scepticism about the composition of the atmosphere 

on early Earth increased. [16] More and more scientist favoured the idea of recent models, 

which indicated that the atmosphere was rather neutral than reducing, dominated by CO2 and 

N2 with traces of H2.[17] However, it is plausible that the formation of the atmosphere, 

dominated by the gases CO2 and N2 seemed to be a natural consequence of planetary 

accretion in the terrestrial planet region. [18,19]
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2.2 Emergence of Life 

The first indications of life was dated ca. 3.8 Ga ago (Figure 2.1) and were found in the form 

of carbon isotope signature, microbial structures and microfossils in the Eoarchean 

sedimentary rocks in Canada (Isua supracrustal belt rocks).[20,21] However, the interpretation 

of the findings was controversial discussed.[22] More indications of life were found in 3.5 Ga 

old stromatolites preserved microbial mats of deposition by photosynthetic prokaryotes. [23] 

First widely accepted evidence for biological activity in stromatolites, microfossils were found 

in Archean rocks of the Pilabara Craton in Australia (Figure 2.1). [24] It is still unclear when life 

emerged due to absent records on Earth. It is assumed that that first important steps, which 

lead to the emergence of life happened in the late Hadean (~4.0 Ga), since potentially liquid 

water, molecular compounds and energy were available. The oldest zircon with an age of 

~4.4 Ga was found in Australia and analysis have shown that it has undergone low-

temperature interactions with a liquid hydrosphere. These findings indicated that in the 

period 4.4-4.0 Ga the Earth was may cool enough for the presence of liquid water and allow 

the survival of organic compounds (Figure 2.1). From this can be derived that key steps in the 

emergence of first life may have started 4.4-4.0 Ga ago.[25] 

 

 

 

Figure 2.1 Events on early Earth in Hadean and Archean time period. Earth and Moon 

formation were major events in the Hadean. The oldest found zircon is ca. 4.4 Ga 

old leads to the assumption of cool Earth and presence of liquid water. First traces 

of life were found in Isua, Canada ca. 3.8 Ga ago.[25] 
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It can be assumed that in a narrow time window of 200-600 Ma on early Earth, first cells may 

have evolved.  

 

2.2.1 Chemoautotrophic Origin of Life 

The theory about the chemoautotrophic origin of life indicated that first life developed in a 

metabolic system, before replication processes could evolve and was supported by 

WÄCHTERSHÄUSER (see chapter 2.6.2).[26][27] The first living cells, these so-called pioneer 

organisms[28], which evolved chemoautotrophically may have populated sites at reducing 

volcanic exhalations like hydrothermal vents.[29] The author claimed that first metabolisms 

could develop on the surface of certain minerals like pyrites (FeS2), which were according to 

geological data abundant on prebiotic Earth. The suggestion of WÄCHTERSHÄUSER was that the 

required free energy for carbon fixation on prebiotic Earth was provided by the oxidative 

pyrite (FeS2) formation from iron sulfide (FeS). 

 

The energy source had to fulfil following requirements: [30] 

 Geochemical abundant on early Earth 

 Selective and work under mild conditions (UV radiation is excluded) 

 Direct electron flow to the reducing agent (CO2) 

 Sufficient reduction potential for all reduction reactions  

Chemoautotrophs are able to exist and develop under extreme conditions. The form of energy 

conversion is considered to be the oldest on Earth. It is suggested that first free-living cells 

emerged 3.8 Ga ago and had been chemoautotrophic prokaryotes such as eubacteria and 

archaebacteria. These organisms may populate deep sea vents or acidic environments (see 

chapter 2.3).  

A physical law of thermodynamics (Boltzmann entropy law) is that life only exists far from 

equilibrium. Only a system that actively maintains disequilibria is able to decrease the entropy 

locally and thus to generate building blocks of life.[31] 
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Life could be understood as self-organizing system driven by disequilibrium, which could be 

e.g. temperature, pH and redox gradients. Those far-from-equilibrium states of living systems 

keep metabolic systems going and are highly relevant for the emergence of life on early Earth. 

Hydrothermal settings could be considered as geochemical and physical non-equilibrium 

settings with existing pH-, temperature and mineral concentration gradients.[32]  

 

2.3 Hydrothermal Settings 

The discussion about plausible first emergence of life scenarios was expanded by the discovery 

of hydrothermal vents in 1977. [33][34] These hydrothermal systems are unique ecosystems and 

the hydrothermal circulation is assumed to form the basis of life for the organisms.  

As soon as the sea water seeps through fissures in the ocean crust, a series of chemical 

reactions occur (Figure 2.2). This influences the chemistry of the ocean by changes of the sea 

water composition and that of the volcanic rocks.  

The idea that the first organisms on early Earth were anaerobic and chemoautotrophs 

(Chapter 2.2.1), which were able to metabolise CO2 in combination with reducing agents like 

hydrogen (H2) is widely accepted in science. [35] 

Experiments have shown that transition metal compounds (FeS, NiS, etc.), which were present 

in hydrothermal fluid could serve as a catalysts to synthesize various small molecules including 

methanethiol (CH3SH) from CO2 and H2S [36] or to accomplish C-C-bond formation to acetic acid 

from CO and CH3SH on FeS/NiS-cluster.[8] Hydrothermal vents were suggested to be the place, 

where those reactions can occur and where first life may have evolved.[37] 

 

 



2. Fundamentals of Origin of Life 
 
 

 
9 

 

 

Figure 2.2  Hydrothermal circulation on the mid Atlantic ridge (MAR) [30]. Cold sea water 

seeps through fissures in the ocean crust and accumulates through various 

reactions with metals and minerals. The fluid is heated up to 400 °C as it reaches 

deeper layers in the ocean crust and is pushed with high pressure to the sea 

surface. [38][39] 

 

In figure 2.3 a tentative pathway for CO2 fixation with inorganic transition metal sulphides as 

catalysts is illustrated.  H2 is formed due the geochemical serpentinization[40] process and 

therefore considered as plausible reducing agent for the reduction of CO2 to CO. Since HEINEN 

and LAUWERS demonstrated that CH3SH can be successfully synthesized under FeS catalysis 

from carbon dioxide and sulphur species in the presence of H2, the formation of energy-rich 

compounds including e.g. methyl thio esters is plausible and was indicated by HUBER and 

WÄCHTERSHÄUSER (1997). The reducing power of hydrothermal vents makes this area 

particularly interesting as starting point for the origin of biochemistry.[41] 
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Figure 2.3 Suggested carbon-fixation pathway on primordial Earth, in which inorganic   

transition metal compound e.g. NiS catalyses the CO2 fixation to energy-rich 

compounds. 

 

 

2.4 Last Universal Common Ancestor (LUCA) 

The last universal ancestor (LUCA) could be understood as an evolutionary stage that links the 

abiotic phase on early Earth with the first biotic signatures in 3.8 Ga old rocks.[11,20] It is 

considered that LUCA is the common ancestor of bacteria and archaea (Figure 2.4). 

LUCA is a theoretical structure and was assumed to have a simple construction like 

prokaryotes. In literature exist many theories how LUCA was physically assembled and which 

characteristics it possessed, but nothing concrete can be said about its nature.[42] This 

hypothesis lead to propose an unrooted universal phylogenetic tree of life, that emerged from 

ribosomal RNA (rRNA) sequence.[43]   
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Figure 2.4 Schematic unrooted phylogenetic tree of life. The tree is splitted in two main 

branches and illustrates that is assumed as the last common ancestor of archaea 

and bacteria [44]. LUCA can be understood as interface between abiotic early Earth 

and the first biotic traces of life in old rocks.[20] 

 

The primary branches demonstrated (Figure 2.4) a common predecessor of RNA, transcription 

compounds and few other genes. It became an organismal tree during the grow process and 

evolving of many more functions, especially their crystallization. [45] It is assumed that LUCA 

was not a particular organism, but rather a loosely knit, a conglomeration of primitive cells, 

which possibly developed and became the primary lines of descent.[45,46] 

Scientists reconstructed the genomic data by removing transdomain lateral gene transfers 

(LGT) in proteins up to LUCA and concluded that it emerges as an anaerobic autotroph. [44,47] 

It´s assumed that LUCA used a WOOD-LJUNDAHL pathway  (Chapter 2.5) and inhabited 

hydrothermal settings.[48] 

 

2.5 Wood-Ljungdahl Pathway 

Autotrophy is the fixation of inorganic carbon into organic material and is a requirement for 

the explanation of the biological evolution. The most ancient pathway of CO2 fixation known 

as acetyl-CoA pathway or WOOD-LJUNGDAHL pathway for carbon assimilation and energy 

conservation was suggested to be used by LUCA.[49] The acetyl CoA formation from CO2 in 

acetogenic bacteria was studied especially by LJUNGDAHL, WOOD and THAUER.[49–52] This 
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autotrophic acetyl-CoA pathway is highly relevant for the emergence of life on early Earth and 

was first investigated and descibed in the thermophilic acetogen Moorrella thermoacetica 

(formerly Clostridium themoaceticum).[51,52] The fundamental reactions of the WOOD-

LJUNGDAHL pathway are schematically illustrated in Figure 2.5.  

 

 

Figure 2.5  Fundamental reactions of CO2 fixation in the WOOD-LJUNGDAHL pathway. CO2 is 

CODH assisted reduced to CO in the “Carbonyl Branch” and in the “Methyl 

Branch” transformed to a CH3-residue. ACS converts both compounds and 

Coenzyme A (CoA) to acetyl CoA. 

 

In the carbon fixation is CO2 reduced to a CH3-residue in the “Methyl Branch” and to CO in the 

“Carbonyl Branch”. 

The first reaction of the Methyl Branch is the reduction of CO2 to formic acid (HCOOH). [53] 

With 10-formyl-H4folate synthetase HCOOH is catalysed to formyl-H4folate.[54] The next two 

steps were catalysed by H4folate cyclohydrolase to methenyl H4folate and with H4folate 

dehydrogenase to methylene H4folate. [55] In the last step of the Methyl Branch CH3-H4folate 

is formed due catalysis with methylene H4folate reductase.[56] 

CO2 is reduced in the Carbonyl Branch of acetogens to CO by the enzyme CO dehydrogenase 

(CODH).[57] CODH is a homodimeric enzyme and contains five metal clusters [58], in which the 
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C-Cluster (Figure 2.6) is the catalytical active site for the reduction process. [59] The structure 

of the C-Cluster can be described as a combination of a [3Fe-4S] cluster with a binuclear [NiFe] 

cluster (Figure 2.6).[60] 

Then the enzyme acetyl-CoA synthase (ACS) catalyzes the reaction from Coenzyme A, the CH3-

residue from the “Methyl Branch” and the CO from “Carbonyle Branch” to the energy-rich 

acetyl-CoA (Figure 2.5). As mentioned above the C-Cluster (Figure 2.6, A) in CODH is the active 

site and the A-Cluster (Figure 2.6, B) in ACS is indicated to be the catalytical active site for the 

condensation of acetyl CoA.[61] In the A-cluster a [4Fe4S] cluster is bridged through a cysteine 

to a proximal Ni, which is connected to a peptide coordinated distal Ni.[62,63] 

 

 

Figure 2.6  Ni-metallocentres are the catalytic active centers of the bifunctional CODH/ACS 

protein. A: Ni[Fe4S4] C-Cluster in CODH and B: Ni2[Fe4S4] A-Cluster in ACS.[61] 

 

This key enzymes in the WOOD-LJUNGDAHL pathway is called bifunctional CODH/ACS complex 

and is a heterotetrameric protein. 

As mentioned above, carbon records indicated that first life emerged ca. 3.8 Ga ago. From 

Carbon isotopic fractions can be deduced that these anaerobic organisms used the WOOD-

LJUNGDAHL pathway to metabolise inorganic compounds like CO2 and H2. [64] The simplicity of 

the WOOD-LJUNGDAHL pathway for carbon fixation makes it plausible to be the first metabolism 

on early Earth.[41] 

Enzymes like bifunctional CODH/ACS were unlikely available on early Earth to catalyse the 

transformation to acetyl-CoA. Therefore, transition metals compounds e.g. heteroleptic Fe,Ni-

complexes could be considered as prebiotic precursor of ACS in analogy to the A-cluster.[65][66]  
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2.6 Bioenergetics on Early Earth 

2.6.1 Modern Bioenergetics 

All extant organisms use adenosine triphosphate (ATP, Figure 2.7) as mobile molecular system 

of energy storage and retrieval. Available energy is stored in the phosphor anhydride-bonds 

between the phosphates and released 30.5 kJ/mol upon to hydrolysis.[67] 

 

 

Figure 2.7  ATP released 30.5 kJ/mol due to hydrolysis to adenosine diphosphate (ADP) and 

phosphate (Pi). Cells require this energy to drive reactions that need to be 

activated, to transport substances across membranes or to do mechanical work.[67] 

For ATP synthesis from ADP and Pi energy (30.5 kJ/mol) is required.  

 

The contemporary bioenergetics of anaerobic organisms is well understood and described. [68] 

In chemolithotrophs electrons are transferred from the major donors H2 and H2S to the major 

acceptors CO2 and NO3
-, in which CO2 is reduced to organic compounds. The electro chemical 

energy is used to pump protons through the membranes. The energy from the proton gradient 

is used to synthesize ATP catalyzed by transmembrane incorporated ATP-synthase 

(Figure 2.8).  
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Figure 2.8  Molecular model of ATP synthase[69]. The F0-unit consists of various sub-units (F0a, 

F0b, F0c) and is incorporated into the membrane. The F1-unit consists of three - 

and - proteins, which are connected to the F0-unit via -, -, an -units. [69,70] 

 

The F0-unit of ATP synthase is incorporated into the membrane and consists of three subunits. 

It was suggested that the F0c complex rotates. Experiments indicated that in the subunit of F0c 

the protonation and deprotonation of aspartic acid could considerably change the structure 

of the subunit.[71] The so called “head” of ATP-synthase consists of three -and -units. Each 

- and -subunit forms a functional unit with a binding site and active center for ATP, ADP and 

Pi. The three pairs of F1-unit are in three different states at any point in time. [72] The F0- and 

F1 complex are connected through a central and peripheric stalk of - and -

subunits (Figure 2.8).  

The modern bioenergetics of ATP formation by ATP-synthase is a very progressive and 

complex enzyme. Therefore, this enzyme-catalysed process is an unlikely scenario to produce 

energy sources on early Earth. In the following, especially sulfur and phosphate compounds 

will be discussed as plausible energy sources in the evolution from small organic molecules to 

biomolecules of life.  
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2.6.2 Sulfur Chemistry On Early Earth 

As described in chapter 2.4. (Hydrothermal Settings), CH3SH and CO should have been present 

in reasonable concentrations under vent conditions. Available sulfur on early Earth is of great 

interest since the absence of molecular oxygen leads to an abundance of elemental sulfur or 

hydrogen sulfide (H2S) or to high concentrations of iron sulfides (FeS). [27,73] WÄCHTERSHÄUSER 

considered that the reaction of H2S with transition metals (Fe, Ni, etc.) yields insoluble 

transition metal sulfides and generates electrons, which can be used by other compounds to 

activate reactions. Under FeS/NiS catalysis the formation of acetyl thioester was 

demonstrated [8] only by using inorganic compounds like CO and methanethiol (CH3SH) as 

reactants. The authors presented a notional mechanism of the prebiotic reaction (Figure 2.9) 

based on the Monsanto acetic acid process [74]. They assumed that a bimodal precipitated NiS-

FeS surface is formed in the reaction and acts as an active site on which the reactants CO and 

CH3SH can adsorb (Figure 2.9, a). Bound on the NiS-FeS surface, the groups could undergo 

various migration steps (Figure 2.9, b-d) until activated acetic acid is formed. The activated 

intermediate can be cleaved from the surface by hydrolysis to acetic acid, or by an attack of 

aniline or methanethiol to yield N-acetaniline or methyl thio ester respectively Figure 2.9, e). 
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Figure 2.9 Notional mechanism of acetic acid, N-acetylaniline and methyl thioacetate 

formation from CO and CH3SH on a NiS-FeS cluster.[8] The mechanism is based on 

established Monsanto acetic acid process. [74] 

 

The experiment to form C/C-bonds and energy-rich thioester from small organic molecules 

under plausible prebiotic conditions was widely noticed and a great progress in the 

investigation of the origin of life.  

Thioesters are uncontested energy rich compounds, likely available on early Earth and 

therefore especially from DE DUVE considered as prebiotic energy carriers.[9,75] DE DUVE has 

recognized the prebiotic potential of sulfur as he proposed that thioesters could have served 

as activating agents for chemical reactions in the first primitive metabolic pathway before 

ATP.[9] Prominent scientists have demonstrated the synthesis of acetyl thioesters (Huber and 

Wächtershäuser 1997) or -amin acid thioesters[76] under possible prebiotic conditions. 

WIELAND [77] described spontaneous formation of peptide bonds in aqueous solutions from 

amino acid thioesters and the elongation of decapeptide in the presence of thioglutamic acid 

by ORGEL and MAUREL.[78] All these achievements from many scientists lead to the conclusion  
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that sulfur chemistry has to be considered for the understanding of the early Earth 

bioenergetics.  

 

2.6.3 Phosphate Chemistry On Early Earth 

WÄCHTERSHÄUSER and HUBER have experimentally shown that the metal-sulphide catalysed 

formation of methyl thioester under prebiotic conditions is possible. [8] However, thioesters 

are more or less prone to hydrolysis and DE DUVE proposed in addition to hydrolysis of the 

thioester bond, the transfer of acetyl group to inorganic phosphate as a conceivable step.[9] 

This would ultimately lead to the formation acetyl phosphate (AcP) and the free thiol. DE DUVE 

claimed that an attack from inorganic phosphate compounds could have been plausible to 

generate AcP and suggested that reactions of this type could be the entry of phosphate into 

bioenergetic pathways. However, plausible phosphate or polyphosphate sources on prebiotic 

earth have to be discussed first.[79]   

 

2.6.3.1 Phosphate and Polyphosphate Sources 

Poly phosphate minerals are not available on contemporary Earth except few kilograms of a 

calcium diphosphate mineral in New Jersey.[7] YAMAGATA et al. made an interesting discovery 

that acidic basalts containing apatite are able to release phosphorus pentoxide (P4O10) when 

the rock is heated up to 1200 °C.  

In addition, they also found tripolyphosphate and pyrophosphate (5 µM) in a fumarole near 

Uzo in Hokkaido, Japan.[80] The reaction in the basalt could be: 

 

4 H3PO4                 P4O10 + 6 H2O 

 

Scheme 2.1 Proposed reaction in the basalt, which probably leads to the found 

polyphosphates in the fumarole in Uzo, Japan.[80] 
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However, the areas where those reactions can occur and produce poly phosphates are very 

rare and unlikely the main providers of phosphates or polyphosphates for phosphorylation 

reactions.  

The predominant phosphate minerals currently on Earth are hydroxy apatite 

(Ca10(PO4)6(OH)2), fluoro apatite (Ca5(PO4)3F) and other apatites. The solubility of calcium 

phosphate minerals in aqueous solutions is low and actual sedimentary phosphate mineral 

estimations of 48 x 1019 kg would produce ca. 0.2 µM dissolved phosphate in the ocean [81]. 

Concentrations in micromolar area are too low for phosphorylation reactions and therefore 

other scenarios must be considered, how phosphate got available on early Earth. It was 

supposed that phosphorus on prebiotic Earth was present in lower oxidation states than 

today. Therefore, the formation of more soluble calcium phosphates was favoured instead of 

apatite and thus higher concentrations of phosphate in the ocean could be expected.  

It is assumed that the pH value of the primordial ocean was around 6 and thus more acidic 

than modern ocean (ca. 8.2).[18]  GEDULIN and ARRHENIUS [82] observed that in the pH-range of 6-

7.5 the only precipitated mineral is brushite (CaHPO4 ∙ 2H2O), which crystallizes when 

phosphate is initiated into sulfate-free seawater medium. The great advantage of 

CaHPO4 ∙ 2H2O is the higher solubility compared to apatite minerals. Under this circumstances 

CaHPO4 ∙ 2H2O could be considered as potential phosphate source on early Earth. 

Experimental approaches from Hagan et al. have shown that the solubility of CaHPO4 ∙ 2H2O 

depends on the pH and the concentrations of Ca2+-ions. Derived from their results a tentative 

estimation points out that the phosphate concentration in primordial ocean was 102-103 times 

higher than today.[83] Since these results are very interesting it has to be noted that 

magnesium ions (Mg2+) have been intentionally ignored in the experimental procedures to 

avoid replacing Ca2+ in the brushite by Mg2+, which would decrease the phosphate solubility. 

GLINDEMANN et al. showed in model experiments that ca. 11 % of phosphate minerals (hydroxy 

apatite, fluoro apatite, etc.) can be converted into phosphite salts with electrical discharges 

under CH4/N2 (10 % CH4) atmosphere.[84] The chosen prebiotic gas mixture from GLINDEMANN 

did not correspond to assumed geologically plausible neutral prebiotic atmosphere containing 

mainly CO2 and N2. Therefore, DE GRAAF and SCHWARTZ repeated the experiment, but they 

changed the composition of the atmosphere to CO2 and N2 as main gas components and 

added small amounts of the reducing gases CO and H2. Also in this attempt the formation of 
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phosphite salts could be observed and the yield was proportional to the concentration of CO 

and H2.[85] The chosen composition of the atmosphere is often criticized as too reducing, but 

it is speculated that those reducing conditions prevailed at limited areas on early Earth for 

shorter periods e.g. after volcanic eruptions.  

2.6.3.2 Acetyl Phosphate (AcP)  

In chapter 2.6.1 was mentioned that acetyl thioester are more or less prone to hydrolysis and 

DE DUVE proposed in addition to hydrolysis of the thioester bond, the transfer of acetyl group 

to inorganic phosphate (Pi) as conceivable step.[9,86] He supposed that an attack from inorganic 

phosphate on thioesters would lead to AcP formation (Figure 2.10). 

 

R’SCOR + H2PO4
-            R’SH + RCOPO4H- 

 

Scheme 2.2   De Duve proposed that probably phosphate enterted the bioenergetic pathways 

on early Earth by attacking thioesters phosphorytically to form energy-rich acetyl 

phosphates (AcP).[41] 

 

AcP is a reactive and energy rich compound with a high phosphorylation potential. The 

hydrolysis of AcP releases free energy of approximately G0 = - 43 kJ/mol [87] and is therefore 

considered as a plausible source of prebiotic energy. 

The synthesis of AcP under prebiotic conditions was investigated and indicated by NICK LANE et 

al.[88] AcP formation was described from orthophosphate and thioacetic acid in water at 

temperatures of approx. 20-50 °C under neutral to slightly alkaline conditions without using 

catalysts. It was pointed out that AcP is reasonably stable to hydrolysis under the mentioned 

conditions. In addition, the formed AcP was able to acetylate Glycine to N-acetylglycine and 

phosphorylation of adenosine and of ribose under slightly alkaline conditions was observed 

too. Nevertheless, a polymerization driven by AcP was not obtained. Based on the 

experimental findings the authors concluded that AcP is a credible primordial energy currency. 

AcP is worth considering as key intermediate in the prebiotic context, especially since it was 

experimentally pointed out that PPi can be synthesized from AcP and Pi.[3,4,89,90] 
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Figure 2.10  Structures of key molecules of modern and possibly prebiotic biochemistry. The 

thioester group (green), which is known from the carbon fixation acetyl CoA has 

analogues to the possibly prebiotic relevant molecules thioacetic acid and methyl 

thioacetate. AcP and PPi (see chapter 2.6.3.3) shows structural analogues (blue 

and pink highlighted) to the present-day universal energy currency ATP and is a 

phosphorylation agent, too.[88] 

 

2.6.3.3 Attempts to form Pyrophosphate (PPi) under prebiotic conditions 

Inorganic pyrophosphate (PPi) is considered as plausible precursor of ATP in a prebiotic world. 

The required chemical energy to drive or activate reactions is present in the phosphor 

anhydride bonds between the phosphates. Since there are no clues about a pyrophosphate or 

polyphosphate source on Earth, it would need to be synthesized. LIPMANN and BALTSCHEFFSKY 

proposed PPi as first phosphate energy currency. [82,91] This hypothesis leads to great efforts 

to synthesize PPi under prebiotic  
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conditions in laboratories all over the world with more or less promising results. The great 

advantage of PPi over AcP as precursor of ATP is its much higher stability to hydrolysis. This 

fact is not surprising and was shown experimentally in this thesis (Chapter 4.3).  

 

- First experimental approaches to form PPi under prebiotic conditions were made by 

Stanley Miller and Michael Parris.[5] A synthesis reaction of PPi was described by 

reacting cyanate and hydroxyapatite under aqueous conditions at pH 8 and 35 °C. They 

proposed that first may a carbamyl phosphate intermediate be formed, which reacts 

with a second phosphate molecule to PPi (Scheme 2.3). 

 

4

2

2

4 2 3

 

 

Scheme 2.3  Proposed mechanism of PPi synthesis from cyanate and Pi via carbamyl 

phosphate as high energy phosphate intermediate.[5] 

 

The authors mentioned that LIPMANN and JONES [92] proposed carbamyl phosphates as 

possible high energy phosphates on early Earth and that the experimental data 

supported this hypothesis. 

 

- Further approaches of PPi formation under prebiotic conditions were made by WEBER 

in 1981.[3] WEBER described the synthesis of PPi with N, S-Diacyl cysteamine as 

condensing agent at pH 7 and 8 at 50 °C. The author assumed that initially acetyl 

phosphate (AcP) is formed from the thioester and the orthophosphate, which reacts 

further with a second orthophosphate to PPi. In 1982 WEBER published another 

synthesis reaction for PPi formation under prebiotic conditions.[4] The experimental 
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procedure of PPi formation was like the described in 1981, in which thioesters were 

used as condensing agents and sodium phosphate as phosphate source. However, in 

this approach the formation of PPi occurs on the site of the most abundant phosphate 

mineral hydroxyapatite.  

 

- HERSCHLAG and JENCKS published PPi synthesis reacting AcP and Pi under concentrated 

aqueous (6.4 M) sodium perchlorate conditions at 54 °C.[90] The necessarily high 

concentrations of sodium perchlorate to achieve significant amounts of PPi could be 

required to overcome the electrostatic repulsion between AcP and Pi. It was assumed 

that the sodium ions bridged the negatively charged oxygen atoms of the compounds 

AcP and Pi (Figure 2.11). 

 

 

Figure 2.11 Schematic structure of the sodium bridged compounds AcP and Pi. Negative 

charged oxygen atoms of AcP and Pi are bridged by sodium to overcome 

electrostatic repulsion.[90] 

 

- A controversial discussion about Are Polyphosphates or Phosphate Esters Prebiotic 

Reagents? was published in 1995 by MILLER and KEEFE.[7] The authors state the 

occurrence of polyphosphates in nature was present in very low amounts and 

therefore, a significant accumulation of natural polyphosphates in the early ocean 

could be neglected. They continued, if polyphosphates were not available naturally 

then maybe synthesized under prevailing conditions on early Earth. They pointed out 

that many attempts to polymerize phosphates under prebiotic conditions have been 

made, but a solid synthesis was not achieved yet. Either were the plausible phosphates 



2. Fundamentals of Origin of Life 
 
 

 
24 
 

e.g. cyanovinyl phosphate poor phosphorylation agents or the used condensing agents 

were unlikely on early Earth. The authors explained in some experimental attempts 

soluble Pi concentration was set higher than 10-3 M, which would not correspond to 

the estimated concentration of Pi in primeval ocean. Also, utilizing Pi on apatite 

surfaces to form PPi was not convincing, because some phosphate minerals would 

hydrolyse phosphate anhydrides.[93] 

MILLER and KEEFE concluded that all attempts to synthesize polyphosphate under 

plausible prebiotic conditions were unconvincing. Therefore, they deduced that 

phosphate may not play a role in the formation of the first living cell and refer to such 

theories, which were already proposed by CAIRN-SMITH [94] and DE DUVE.[9] 

 

This judgement may have been premature. 

 

- HERMES-LIMA and VIEYRA have shown a synthesis route for PPi formation at low 

temperatures from phosphor(enol)pyruvate (PEP) adsorbed onto precipitated calcium 

phosphate without using condensing agents.[95] PEP was described by the authors as 

an analogue of the high energy compound cyanovinyl phosphate, which was 

synthesized under prebiotic conditions [6]. From the experimental results they 

concluded that calcium phosphate can catalyse PPi formation enzyme-like. In further 

experiments the authors tried to synthesize PPi with PEP in the presence of 

precipitated magnesium phosphate and dimethyl sulfoxide.[96] Also, with this approach 

PPi synthesis was detected. Adsorption of PEP onto precipitated magnesium 

phosphate was observed and a reaction of the phosphoryl group of PEP with the 

phosphate containing magnesium precipitate was assumed. The authors suggested 

that the magnesium structure not only provides a phosphate group, but also catalyses 

the formation of PPi.[96]  

- BARGE and co-worker published in 2014 a method to synthesize PPi in iron mineral films 

and membranes simulating prebiotic submarine hydrothermal precipitates. [97] They 

simulated iron-rich inorganic membranes at early Earth alkaline hydrothermal vents. 

In a solid phase reaction Pi and AcP were precipitated with iron sulfides or iron silicates. 

In agreement of the findings of HERSCHLAG and JENKS detected the higher the AcP 
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concentration in the reaction, the higher the PPi yield.[90] The authors assume that the 

membrane stabilizes the reactants against hydrolysis and that the compounds can 

accumulate in the membranes. BARGE et al. pointed out that PPi synthesis under 

prebiotic alkaline vent conditions is possible, if AcP is present in the membrane. They 

don’t use condensing agents or very high salt concentrations to overcome electrostatic 

repulsion between the reactants. 
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3. Outline 

 

3.1 Prebiotic PPi Condensation Reaction 

The understanding of Bioenergetics is highly relevant for living systems and must be 

considered on prebiotic Earth. In modern bioenergetics adenosine triphosphate (ATP) is 

referred to be the universal energy storing system of extant organisms. ATP and its complex 

enzyme-based formation is unlikely to be the energy source on prebiotic Earth.  

LIPMANN hypothesized that inorganic pyrophosphate (PPi) should be considered as plausible 

precursor of ATP. Many attempts in the past to find experimental support for LIPMANNS 

proposal were in vein. PPi condensation occurred only by using condensing agents of doubtful 

prebiotic availability on early Earth. 

The aim of this project was to couple the P/P-bond formation to a geochemical redox reaction, 

in particular to drive endergonic condensation of orthophosphate (Pi) to metastable inorganic 

pyrophosphate (PPi). The motivation was to find and establish a synthesis route for energy- 

rich pyrophosphate without using prebiotically unplausible condensing agents. 

The geochemical redox reaction from HUBER and WÄCHTERSHÄUSER appears to be a candidate 

reaction for this approach. The authors demonstrated C/C-bond formation under transition 

metal catalysis (FeS, NiS) by reacting inorganic compounds like CH3SH and CO. The reactants 

and transition metals were available at hydrothermal systems, where its assumed that first 

life evolved. 

We suppose that if ortho phosphate (Pi) is added as further nucleophile next to CH3SH to the 

geochemical redox reaction, the acetyl group will be transferred from the catalyst to Pi and 

acetyl phosphate (AcP) would be formed (Figure 3.1)
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Figure 3.1 Schematic overview of PPi condensation linked to the geochemical redox reaction 

of HUBER and WÄCHTERSHÄUSER. Carbon monoxide (CO) and methanethiol (CH3SH) 

adsorb at NiS surface and an acetyl group is assembled catalyst bound [8]. A 

nucleophilic attack of orthophosphate (Pi) yields acetyl phosphate (AcP). Inorganic 

pyrophosphate (PPi) is formed due to a nucleophilic attack at of Pi at AcP 

 

In the next step AcP reacts with another Pi to pyrophosphate (PPi) and would thus present a 

synthesis route for metastable, energy-rich PPi under plausible prebiotic conditions 

(Figure 3.1). 

 

3.2 Experiments towards Peptidic Minimal Models of Acetyl coenzyme A Synthase 

Acetyl CoA synthase (ACS) is a key enzyme in the WOOD-LJUNGDAHL pathway, which is assumed 

to be the oldest metabolic pathway on Earth. The active site for ACS activity is the A-cluster 

(Figure 3.2) and contains three components, a cuboidal Fe4S4 unit, a square planar distal Nid 

coordinated by two peptide backbone amide nitrogens and two cysteine side chains thiolates 

and a four coordinated proximal nickel site.  

It is considered that the evolution of ACS could have started from inorganic transition metal 

sulfides like NiS in the hydrothermal fluids to peptide coordinated Ni-compounds, which 

evolved over the time to complex enzymes like ACS.  
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Figure 3.2    A-cluster of acetyl coenzyme A synthase (ACS) containing a cuboidal Fe4S4 unit, a 

peptide coordinated distal Nid and a proximal metal (Mp), which is known to be 

Nip in the active site.[98] 

 

The motivation for this part of the project was to synthesize a peptidic minimal model as 

precursor of the active site of ACS.  

First, the square planar coordinated distal Ni-center has to be synthesized with a peptide 

sequence from thermophilic acetogen Moorella Thermoacetica (594-598), containing the 

amino acids serine (S), cysteine (C), glycine (G), cystein (C) and phenylalanine (F). Afterwards 

the peptide coordinated Ni-complex would be expanded by a second proximal Ni-center and 

connected to a Fe-S-cluster in analogy to the A-cluster (Figure 3.2).  

Experimental results about a prebiotic, catalytically active precursor of ACS would corroborate 

to the hypothesis that first biochemical metabolisms have geochemical origin. 
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4. Results and Discussion 

 

4.1. Prebiotic PPi Condensation Reaction 

HUBER and WÄCHTERSHÄUSER [8] demonstrated plausible that C-C-bond formation is 

accomplished from small organic molecules under prebiotic conditions (see chapter 2.6.2). 

The authors proposed that at hydrothermal settings carbon monoxide, methanethiol (CH3SH) 

and hydrothermal fluids containing metal sulfides such as nickel sulfides (NiS) were likely 

present. In a widely noticed experiment they reacted CO, CH3SH transition metal catalysed 

(FeS, NiS) in an aqueous suspension at 100 °C and detected acetic acid and methyl thioester. 

If other nucleophiles like aniline were present in the reaction, then N-acetylaniline was 

detected (Figure 4.1).     

 

Figure 4.1.    Tentative reaction scheme of acetic acid, methylthioacetate and N-acetylaniline 

under prebiotic reaction conditions. Detachment of the covalently bound acetyl 

group from the catalyst by water (II) or excess methanethiol to yield acetic acid 

or methylthioacetate (III) respectively. Aniline as competing nucleophile to 

CH3SH and H2O in the reaction mixture and would yield N-acetylaniline (IV). 

 

The results from the experiment indicated formation of acetyl group on NiS surface from CO 

and CH3SH, which covalently bound on the catalyst.  
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Figure 4.2    Proposed reaction scheme of PPi synthesis by linking the P/P-bond formation to 

geochemical redox reaction from HUBER and WÄCHTERSHÄUSER. Reaction [A] 

described the formation of acetyl bound catalyst, which detached AcP by a Pi 

attack [B]. An attack of Pi on the phosphate moiety of AcP yield PPi [C]. 

 

Detachment of the covalently bound acetyl group from the catalyst by water or excess 

methanethiol leads to acetic acid (Figure 4.2, A) or methyl thioacetate, respectively 

(Figure 4.1, A).[8,99] If inorganic phosphate (Pi) is present in the reaction mixture, formation of 

acetyl phosphate (AcP) would be expected (Figure 4.2, B) and an attack of a second molecule 

Pi would ultimately lead to pyrophosphate (PPi) with energy storage in a hydrolytically stable 

molecule (Figure 4.2, C). Before linking P/P-condensation to the geochemical redox reaction, 

it was examined whether PPi formation can be accomplished with AcP and Pi in aqueous 

solution (Scheme 4.1).
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Scheme 4.1  Reaction scheme for PPi formation from AcP and Pi in aqueous solution. AcP can 

hydrolyse to acetic acid (AcOH) and Pi. In competition to hydrolysis the 

phosphate-moiety of AcP can be attacked by Pi to produce PPi. 

 

To form PPi, AcP need to be attacked by Pi in the solution, but under pH 8 reaction conditions 

AcP and Pi are negatively charged (Scheme 4.1). Therefore, a suitable molecular additive need 

to be found to overcome electrostatic repulsion in the reaction mixture. In a similar case 

HERSCHLAG and JENCKS [90] demonstrated that the electrostatic repulsion to form PPi from AcP 

and Pi can be overcome with high salinity of the reaction medium. They used sodium 

perchlorate concentrations up to 7 M to increase the PPi yields due to bridging the negatively 

charged oxygen atoms of the reactants by sodium ions. Applied to the results of HERSCHLAG and 

JENCKS calcium phosphate (Ca3(PO4)2) was considered to be a suitable and prebiotic plausible 

compound to assist overcoming the electrostatic repulsion between Pi and AcP. The calcium 

cations could shield the negatively charged oxygen ions of Pi and AcP to form calcium cation 

bridges between the reactants (Figure 4.3). 
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Figure 4.3      Proposed structure of bridged AcP and Pi by calcium cations inspired by HERSCHLAG 

and JENCKS.[90,100] AcP (black atoms) and Pi (blue atoms) bridged by the calcium 

cations from Ca3(PO4)2 to overcome the electrostatic repulsion between the 

reactants and to yield PPi formation. 

 

With the knowledge of the results from HERSCHLAG and JENKS an experiment was performed to 

confirm the formation of PPi from AcP and Pi. Commercially available AcP, freshly precipitated 

Ca3(PO4)2 and a 100 mM solution of orthophosphate (pH 8) as Pi source were reacted at 50 °C. 

To detect synthesized PPi in the reaction a commercial fluorophore was used to bind PPi with 

high affinity and high selectivity towards PPi.[101] The naphthalene-based fluorescent sensor 

detected PPi with high affinity in aqueous solution over a wide pH range. In Figure 4.4 LEE 

proposed a mechanism for the binding mode for PPi at the sensor is illustrated and shows that 

the two sets of oxygen anions of PPi bind to the binuclear zinc complex by bridging the two 

metal ions.[101] Furthermore, the charged sensor shows emission (Em) shift to higher 

wavelength upon addition of PPi. Summarized can be concluded that PPi -ligands bonded to 

the sensor increase the quantum yield of fluorescence (for more details see Experimental 

Section). 
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Figure 4.4    Proposed mechanism for the complexation of fluorescent PPi sensor by PPi. LEE 

proposed that the two sets of oxygen anions of PPi bind to the binuclear zinc 

complex by bridging the two metal ions. [101] 

 

In Figure 4.5 fluorescent spectra of sampled aliquots at indicated time points of reacted AcP 

with soluble and insoluble Pi were shown. The first fluorescence signal is detected directly 

after 0 h caused by PPi contaminated AcP, which was also confirmed by NMR spectrometry 

(see NMR-spectra in Appendix A.3). However, the increasing signals after 3-6 hours can be 

attributed to synthesized PPi in the reaction mixture. Also, the emission shift to higher 

wavelength is noticeable due to increasing synthesis of PPi over the reaction time. After 6 h 

no further increase of fluorescence intensity was observed. That can be explained by the half-

life time (T1/2 ) of AcP, which was determinde to be T1/2 = 3 h at 39 °C.[102] Therefore, it can be 

concluded that AcP is consumed after 6 h under prevailing reaction conditions with the result 

that no more PPi can be formed and thus further fluorescence intensity is not monitored.  

 

 

 

 



4. Results and Discussion 
 
 

 
36 
 

 

Figure 4.5   Fluorescence spectra of sampled aliquots (10-3 diluted with 20 mM TRIS∙HCl-buffer, 

pH 8) after 0, 3, 6, 24 and 48 h to monitor PPi formation. Excitation wavelength was 

Ex = 316 nm. An increasing of fluorescence intensity is obtained up to 6 h and stays 

within 48 h unchanged, because of consumed reactant AcP, which has a half-life 

time below 3 h under reaction conditions. [102] 

 

The experimental results demonstrated formation of PPi from AcP with orthophosphate as Pi 

source and freshly precipitated calcium phosphate to overcome electrostatic repulsion 

between the negatively charged reactants.  

Since the results from the reaction of AcP and PPi were convincing (Figure 4.5), the next step 

was to link the of P/P-bond formation in analogy to the C/C-bond formation to the 

geochemical redox reaction from HUBER and WÄCHTERSHÄUSER  (Figure 4.1). In the reaction 

scheme (Scheme 4.2) is illustrated, how PPi formation can be carried out without using 

condensing agents. In this process synthesized active species (Figure 4.1) is utilized as acetyl 

transferring compound to build the key intermediate AcP, which can under reaction 

conditions lead to formation of PPi. 
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Scheme 4.2    Condensation of Pi to PPi (1). Acetic acid formation from CO and methanethiol 

under aqueous conditions (2). Coupled reaction (1)+(2) to form PPi. 

 

In the experimental procedure NiS was precipitated from NiSO4 and Na2S under CO 

atmosphere at 60°C. Soluble aqueous solution of orthophosphate (Na2HPO4, pH 8) and 

insoluble, freshly precipitated calcium phosphate (Ca3(PO4)2) were added to the suspension. 

With a constant stream of CO (1 bar) and CH3SH the reaction mixture was stirred for 8 h at 

60 °C. Aliquots were taken at indicated time points and PPi formation was monitored with 

previously described fluorescent PPi sensor (Figure 4.4).  
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Figure 4.6       Monitored PPi -formation of the reaction at 60°C, pH 8 by fluorescent PPi -sensor. 

The ordinate shows intensities of fluorescence emission in arbitrary units and 

the excitation wavelength was adjusted at 316 nm. In panel A unsoluble 

Ca3(PO4)2 was not added to the reaction mixture. Panel B: Same as in panel A, 

but soluble NaHPO4 was left out. Panel C: Both soluble and insoluble Pi present 

in the reaction mixture. Panel D: Same as in Panel C, but aliquots were 

withdrawn in shorter time points.  

 

At the beginning of the reaction (after 0 h) fluorescence signal is detected at all panels (Figure 

4.6, A-D), which can be attributed to fluorescence of the free sensor (for spectra see Appendix) 

and may to the presence of PPi traces in the commercial NaHPO4. However, the increasing 

fluorescence intensity (Figure 4.6, red line, panel C and D) over the reaction time is interpreted 

to be caused by synthesized PPi. This analysis is supported also by the fluorescence spectra at 

panel D, in which an ordered increasing of the fluorescence signal is observed due to PPi 

formation in the reaction mixture. In the absence of insoluble or soluble Pi no or not significant 
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amounts of growing fluorescence signal is detectable (Figure 4.6, Panel A and B). These results 

corroborate that PPi can only be formed in the presence of soluble and insoluble Pi. [4,100,103] 

and experimentally in Figure 4.6 confirmed. Due to electrostatic repulsion of negatively 

charged AcP and Pi in the reaction mixture it seems to be necessary to add a compound to 

connect the reactants by bridging them (Figure 4.3). The results from Figure 4.6 were 

reproduced in several experiments.  

Nevertheless, an alternative assay was used to confirm the observations and conclusions from 

Figure 4.6 to get higher reliability for the interpretation of the results. The PPi formation in the 

reaction was monitored with a bioluminescence assay for the detection of PPi [104], which 

consists of two coupled enzymatic reactions. In the first reaction PPi reacts with AMP under 

energy consumption to ATP, which again hydrolyses to PPi and AMP in a second reaction. To 

the hydrolysis of ATP the luciferin/luciferase oxidation is linked, which caused the emission of 

light. The produced light is directly proportional to the amount of PPi present in the sample 

and shows linearity between 0.02-10 µM PPi concentrations, which was confirmed in 

reference measurements (Figure 4.7). The ordinate in Figure 4.7 indicates the luminescence 

intensity in relative light units (RLUs) of PPi -reference concentrations from 0.02-10 µM PPi. 

The light output is detected by a luminometer, which measures electrical current and read 

arbitrary light units, usually referred as RLUs. [105] 

The reference curves from Figure 4.7 demonstrated that present Pi in the reaction samples 

inhibits the luminescence of PPi in the sample.  
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Figure 4.7   Reference curves from a mixture containing 100 mM Pi and PPi in varying 

concentrations between 0.02-10 µM (red circles) and only PPi samples (black 

squares). 

 

Therefore, attempts for separation of Pi / PPi containing samples with HPLC at strong anion 

exchange column (SAX) were performed. Pi is at maximum 3-fold negatively charged and was 

expected to eluate faster than at maximum four-fold negatively charged PPi (Figure 2.10). 

Since PPi and Pi have no chromophores, no signal in the chromatogram is detectable. However, 

purification attempts on HPLC were carried out with assistance of reference chromatograms 

of the nucleotides AMP, ADP, ATP and Adenosine on strong anion exchange column (4.8). The 

retention time of Pi and PPi could be then estimated from the retention times of the equally 

charged nucleotides. 
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Figure 4.8 Chromatogram of each 5 mM Adenosine tR = 2 min, AMP tR = 12 min, 

ADP tR = 21 min and ATP tR = 27 min on SAX column (Dionex PA-200 anion 

exchange 250 x 4.0 mm) and detected at  = 254 nm and 260 nm. Flow rate 

1 mL/min and gradient 5  70 % B (100 mM (Na+/NH4
+) Acetate, pH 8). With 

increasing charge of the compounds, the interaction with the solid phase of the 

SAX column is stronger and leads to higher retention times.  

 

In Figure 4.8 was observed that the compounds adenosine, AMP, ADP and ATP are 

sequentially eluted according to the charge. Uncharged adenosine did not interact with the 

solid phase and eluted after 2 min from column. Two-fold charged AMP interacts with the SAX 

column and eluted therefore after tR = 12 min. Very strong interactions with the solid phase 

of the column are noticeable at three-fold charged ADP with tR = 21 min and four-fold charged 

ATP with tR = 27 min. As PPi is equally charged to ATP and Pi to ADP it was expected that both 

eluate in the retention time areas of ATP or ADP respectively. After SAX chromatography of a 

test mixture (100 mM Pi/10 mM PPi) the collected aliquots were screened whether the 

separation from Pi and PPi succeeded. This was determined by adding CaCl2 solution (1 M) to 

the fractions to precipitate insoluble calcium phosphate in the PPi containing aliquots. 

However, it did not work out to yield significant amount of separated PPi for a meaningful 

quantification.  
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The main reason for the failure of the Pi / PPi separation with SAX chromatography was the 

absence of a signal in the chromatogram and therefore the fractions were collected blind. 

Furthermore, the interactions of four-fold charged PPi with the solid phase of the column were 

possibly too strong and PPi eluted over a larger timescale or did not elute completely from 

column at all. Since high concentrated PPi (10 mM) in the test mixture could not be separated 

and quantified by HPLC, it would not make sense to try the SAX purification with reaction 

sample, in which the PPi concentration is expected far below 10 mM. 

Further approaches to separate Pi from PPi via strong anion exchange chromatography on 

MonoQ column (HiTrap® Q Fast Flow, Sigma Aldrich, bed size 16 mm × 25 mm) based on a 

robust, 6% highly cross-linked beaded agarose matrix with good flow properties and high 

loading capacities, were successful and contributed to a robust qualitative interpretation of 

PPi in the reaction samples.  

The purification was performed first for a test mixture of 100 mM Pi / 2 mM PPi and afterwards 

for a crude reaction sample. Each sample (5 mL) was 10-fold diluted with 10 mM TRIS (pH 8) 

and applied on anion-exchange MonoQ column. The compounds were eluted sequentially 

according to Figure 4.11 with increasing concentrations of NaCl solution (0.04-1 M). 31P-NMR 

analysis was used to detect Pi and PPi in the eluted fractions. For the test mixture 

100 mM Pi/2 mM PPi a satisfactory separation of Pi and PPi was achieved (Figure 4.10). The 

signals at ~2.5 ppm was attributed to Pi and for at -6.7 ppm to PPi. The 31P-NMR spectra from 

the fractions demonstrated that only in two fractions both Pi and PPi were present (Figure 

4.10). The remaining fractions contain only one compound.  
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Figure 4.9     Pi -free sample preparation on strong anion exchange column (HiTrap® Q Fast 

Flow, 5 mL). 5 mL of a crude reaction sample was diluted with 45 mL basis-

buffer BP (10mM TRIS/HCl, pH 8). The sample was eluted with increasing NaCl-

concentrations and collected aliquots were analysed with 31P-NMR. The Pi -free 

fractions were merged, diluted with BP and applied again on a smaller strong 

anion exchange column (HiTrap® Q Fast Flow, 1 mL). The sample was eluted 

with 0.4 M triethyl ammonia bicarbonate buffer (TEAB) and lyophilized multiple 

times to obtain the eluted product (EP*). 

 

Since the results from the test mixture were very promising, attempts to separate Pi and PPi 

in the reaction sample with the described procedure (4.9) on anion-exchange MonoQ column 

were carried out. It was obtained that the elution of the Pi-containg fractions was comparable 

to the results from the test mixture, but a PPi signal was not detected in any fraction. This was 

not surprising, concentrations up to 1 mM are needed to detect 31P-NMR signals in the 

spectra.  
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However, the results from the fractions of the test mixture (Figure 4.10) were attributed to 

the reaction samples. Therefore, Pi -free fractions were merged, eluted once more from strong 

anion exchange column with the volatile triethyl ammonium bicarbonate buffer (TEAB) and 

lyophilized multiple times. Thereafter, lyophilized samples were analysed by PPi -specific 

bioluminescence assay (see Experimental Section). The results are shown in Figure 4.11. 

 

 

Figure 4.10  Pi (100 mM) and PPi (2 mM) Reference mixture separation on anion exchange 

column (HiTrap® Q Fast Flow). The Pi signal is located at 2.5 ppm and the PPi 

signal at -6.7 ppm. Except a mix fraction after the elution with 10 mM TRIS-HCl, 

pH 8 and 160 mM NaCl, in sample present Pi and PPi are almost separated.  
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Figure 4.11   Luminescence measurements of lyophilized “Pi -free” (left) and crude reaction 

samples. Data points were measured in 1 s intervals over 25 s time period in Area 

scan mode (5x5). Black squares: Both soluble NaHPO4 and insoluble Ca3(PO4)2 

present in the reaction mixture. Samples with only NaHPO4 (red circles) or 

Ca3(PO4)2 (blue triangles) present in the reaction mixture.  

 

The illustrated results in Figure 4.11 show luminescence measurements of crude reaction 

sample and of lyophilized “Pi-free” sample purified by anion-exchange chromatography 

(Figure 4.11, left). It was noticed that the reaction mixture containing only soluble (red circles) 

or insoluble Pi (blue squares) shows no significant luminescence signal and thus were 

comparable with the obtained results from the fluorescence spectra (Figure 4.6, A and B). 

However, the reaction mixture containing both soluble and insoluble Pi, yield significant 

luminescence signal caused by formed PPi. These results from the bioluminescence assay 

agree with those from the fluorescent measurements (Figure 4.6).  

Although, the bioluminescence assay is more sensitive to small amounts of PPi than 

fluorescent PPi -sensor, it was not possible to quantify formed PPi in the reaction mixture. 

Reasons could be that synthesized PPi, which is anyway formed in low yields is further reduced 

by the several chromatography steps (Figure 4.9), although impeding Pi was separated. 

Luminescence measurements of the crude reaction samples show even less RLUs compared 

to the “Pi -free” samples, because of present Pi, which impede the luminescence of PPi.  

From the obtained measurements can be concluded that the results from the 

bioluminescence assay (Figure 4.11) indicated PPi formation in the reaction mixture containing 
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soluble and insoluble Pi (Figure 4.11, black squares) and goes along with the results obtained 

by fluorescent PPi -sensor (Figure 4.6, Panel C and D).  

The PPi -formation experiment can be understood as bridge between the findings from HUBER 

and WÄCHTERSHÄUSER to synthesize on the one hand prebiotically plausible an activated 

catalyst-bound acetyl group, which is able to acetylate compounds such as Pi to AcP and on 

the other hand with the results from WEBER and VIEYRA, who have shown that AcP and Pi react 

to PPi. [3,8,103] This occur in a coherent chain of reactions with the result of a plausible procedure 

for PPi condensation in hydrothermal fluids.  

 

4.2 The Nature of the Active Species 

In the fluorescence measurements (chapter 4.1, Figure 4.6, Panel D) was noticed that the PPi 

synthesis is not constant during 8 h reaction time. Therefore, the original C/C-bond formation 

reaction was performed to observe product formation in a reaction time of 12 h. The approach 

was monitoring the kinetics of N-acetylaniline formation as product from catalyst bound 

acetyl group and in reaction present aniline. From the kinetic studies it was expected to draw 

conclusions about the catalytic activity in the reaction. 

 

 

Scheme 4.3  Reaction scheme of N-acetylaniline formation from aniline and CH3SH under CO 

atmosphere on NiS in aqueous suspesion at 100°C reaction temperature. 

 

Aniline and N-acetylaniline have no prebiotic meaning and are just used as proxy for the 

synthesized acetic acid and methyl thioester, which were in very low yield present and 

therefore hardly to detect and quantified at all. But with present aniline as nucleophile in the 
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reaction mixture N-acetylaniline (Figure 4.1. IV) is synthesized and easily detected by HPLC 

due to an existing chromophor group (Scheme 4.3). The formation of N-acetylaniline requires 

the preliminary stage of activated catalyst-bound acetyl group (Figure 4.1, I) and is therefore 

an indirect proof for its existence. 

 

4.2.1 Analytical Tools 

Preliminary experiments were carried out to find an appropriate internal standard for 

quantitation of the formed N-acetylaniline and to ensure that the product is not concentrated 

due to evaporation at 100°C reaction temperature. The demands for the internal standard are 

stability under reaction conditions, significant but not too high affinity to the HPLC reversed 

phase (rp) and a high UV-absorption in the wavelength range, where the product is detected. 

Adenosine and tyrosine were chosen as possible internal standards, since they have an 

absorption maximum in the range of the product N-acetylaniline (Tab. 4.1.). Towards 

hydrolytic stability experiments at various reaction times from 0-64 h and constant pH 8, it 

has been found that adenosine was a suitable internal standard (Figure 4.12).  

Tab.4.1. Absorption maxima of the incubated samples adenosine, tyrosine and N-

acetylaniline. 

Compound 

 

Absorption maximum [106] 

max [nm] 

Adenosine 260 

Aniline/Tyrosine 280 

N-acetylaniline 240-250 

 

In Figure 4.12 (C) was indicated, that the product N-acetylaniline and adenosine are 

hydrolytically stable at long term incubations experiments (Figure 4.12., C, blue squares) at 

100°C. From this it can be concluded that adenosine is stable under reaction conditions and 

can be used as internal standard in the reaction.  
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Figure 4.12 HPLC-Traces of adenosine and N-acetylaniline mixture at 100 °C after 0 h (A) and 

after 64 h (B). HPLC conditions: A: 0.1 M ammonium acetate, B: acetonitrile 

(MeCN), grad: 0  80 % B in 25 min on C18-column (MN Nucleodur®100 5, 250 x 

4.6 mm, 5 µm),  = 254 nm. C) Integrated peaks for adenosine (internal standard, 

black squares) and N-acetylaniline (product, blue squares) at each incubation time 

from 0 to 65 h. 

 

Next was to determine suitable conditions for the HPLC analysis of the reaction mixture, 

containing the relevant compounds aniline, adenosine and N-acetylaniline. Therefore, 
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individual, and co-injected reference chromatograms (Figure 4.13) were measured to analyse 

the signals and retention times (tR) of these compounds.  

 

 

 

Figure 4.13 HPLC chromatograms of reference samples of adenosine (A), aniline (B), N-

acetylaniline (C) and a co-injection of all three compounds (D). HPLC conditions 

were A: 0.05 M Trietyl ammonium citrate buffer (TEAC, pH 4.5), B: MeCN, 

gradient: 5  60% B in 25 min. on a C18-column (MN Nucleodur®100 5, 250 x 

4.6 mm, 5 µm)  = 254 nm. 

 

To avoid overlapping signals of aniline and N-acetylaniline, it was necessary to protonate the 

amino group of aniline to reach faster elution than N-acetylaniline from column. Therefore a 

0.05 M triethyl ammonia citrate buffer (TEAC, pH 4.5) was prepared as elution solvent, which 

was acidic enough to protonate the amino group of the aniline, but not too acidic to hydrolyse 

the adenosine’s N-glycosidic bond. Adenosine eluted after tR = 13.5 min, aniline after 

ab
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tR = 16.9 min and N-acetylaniline after 21.2 min from column (Figure 4.13). Thus, the 

preliminary experiments for the prebiotic reaction were finished and the kinetical 

experiments were described in the following. 

 

4.2.2 Kinetical studies 

The scale (Tab.2) of the prebiotic reaction was calculated and carried out as described in 

experimental section. Insoluble nickel sulfide (NiS) was precipitate from nickel sulfate 

(NiSO4 ∙ 6 H2O) and disodium sulfide (Na2S∙ 9 H2O). The CO-atmosphere was created by 

passing CO-gas through the suspension. For the purpose of binding liberated protons to keep 

the pH constant during the reaction progress calcium carbonate (CaCO3) was added 

(Scheme 4.3). Adenosine, aniline and methanethiol (CH3SH) were added to the suspension and 

the reaction mixture was heated up 

Tab.4.2. Reaction scale for kinetical studies of the prebiotic reaction. 

# compound m [mg] n [mmol] 

1 NiSO4 ∙ 6 H2O 786 3 

2 Na2S∙ 9 H2O 600 2.5 

3 Aniline 0.05 0.5 

4 Adenosine 53 0.2 

5 CaCO3 150 1.5 

6 25 mM TRIS ∙ HCl buffer, pH 8   

 Total reaction volume   30 mL 

to 100°C. Aliquots (1 mL) were taken hourly from the suspension, filtered, cooled down to 

room temperature (rt) and analysed by analytical HPLC to detect in reaction formed N-

acetylaniline during the reaction time (Figure 4.14).  
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Figure 4.14  Aliquots after 0.5 (A), 3 (B), 6 (C) and 12 hours (D) from reaction mixture were 

analyzed by HPLC to detect N-acetylaniline formation from aniline, CO and 

methanethiol at detection wavelength of 254 nm. Adenosine was the internal 

standard for quantitation. In panel E the absorbance of integrated N-acetylaniline 

signal relative to integrated adenosine signal was plotted against time. 
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In the demonstrated time courses of N-acetylaniline formation (Figure 4.14, A-D) the signals 

at tR = 13.8 min can be attributed to adenosine and the tR = 14.4 min to aniline. During ongoing 

reaction progress a new peak arises with an tR = 22.1 min (Figure 4.14, B-D). This peak was 

further analysed with mass spectrometry to confirm formed N-acetylaniline in the reaction. 

The time course of the reaction progress (Figure 4.14, E) illustrated the absorbance integral of 

N-acetylaniline relative to the absorbance integral of the internal standard adenosine against 

the time and shows the amount of formed product in 12 hours reaction time. The results 

between 0 to 6 hours can be interpretated as lag phase, in which no significant amount of N-

acetylaniline is formed. After 8 hours reaction progress an exponential increase of product 

formation can be observed (Figure 4.14, E).  

 

Cat.

Cat.

 

Figure 4.15 Structures of possible side products in the prebiotic reaction next to N-

acetylaniline, which can be synthesized starting from aniline. Signals in the ESI-

MS indicated the formation of ethyl aniline and N-propylaniline. The formation 

of biochemical important pyruvic acid under reaction conditions could be 

possible.  
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However, it was also noticed in Figure 4.14 that the aniline concentration decreased faster 

than N-acetylaniline was formed. An explanation for that could be possibly formed side 

products in the prebiotic reaction next to N-acetylaniline (Figure 4.15). Some proposed 

structures have been derived from signals in performed ESI-MS such as ethyl aniline or N-

propylaniline. Another side product would also be conceivable under reaction conditions like 

pyruvic acid, which is an important compound in biochemistry. 

Attempts to understand the kinetics of the C/C-bond forming prebiotic reaction were initially 

promising, but with the noticed aniline-leak the interpretation gets more complicated. It 

cannot be assumed that N-acetylaniline is under reaction conditions stable enough to 

accumulate in the reaction medium and therefore no clear conclusions about the active 

catalyst can be drawn. 

 

4.2.3 Nickel mobilization 

Even though the kinetical studies did not provide to the expected understanding of the 

catalyst forming process, a lag-phase between ca. 0-6 h in the time course (Figure 4.14, E) was 

noticed.   

This finding lead to the hypothesis that freshly precipitated NiS may not be the active catalyst 

of the prebiotic reaction as assumed from the authors HUBER and WÄCHTERSHÄUSER [8]. From the 

time course it could be considered that NiS undergoes some slow chemical conversions (lag 

phase) in the presence of the reaction components carbon monoxide (CO) and methanethiol 

(CH3SH) to form the active species. As soon as a steady state concentration of the active 

species would be reached fast catalysis leads to exponential N-acetylaniline formation (Figure 

4.14, E). 

The nature of the active species is of great interest and would contribute to a better 

understanding of the prebiotic reaction. As possible alternative to the hypothetical 

mechanism from HUBER and WÄCHTERSHÄUSER (Figure 2.9) an in situ reduction of nickel (II) to 

nanoparticles of elemental nickel (0) with regard of the sulfides and carbon monoxide in the 

reaction mixture is considered. In this context, a similar experiment was carried out from 
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HUBER and co-worker, in which Ni-particles embedded in a matrix from coprecipitated Na(OH)2 

and CaSO4 were observed after exposure to CO (55 bar, 160 °C).[107] 

For the reaction considered here, nanoparticles could subsequently mobilize from the 

heterogeneous phase to form an active Ni-based species. Under the prevailing reaction 

conditions and CO-atmosphere, the volatile tetracarbonyl nickel (Ni(CO)4, TB = 43°C) is 

expected to be formed [108]. Ni(CO)4 catalysts are known from the industrial Monsanto acetic 

acid process by carbonylation of methanol, where nickel-based homogeneous catalysts are 

used as low-priced alternative to rhodium-complexes. [109] 

 

Scheme 4.4  Formation of active Ni(CO)4 from NiI2 under CO atmosphere in industrial 

processes. [109] The starting materials and implementation of the reaction are 

similar to the geochemical redox reaction.[8] 

 

The active catalyst in this industrial acetic acid production is soluble Ni(CO)4 and is synthesized 

in situ at 150°C (Scheme 4.4). The synthesis of the active species is comparable to the 

conditions in the geochemical redox reaction reaction (CO-atmosphere, 100 °C) and it seems 

probable that nickel-based complex is formed in situ from NiS. [109]  

Since the mobilization of Ni(II) is conceivable, it is required to synthesize Ni(CO)4 and 

investigate the catalytic activity of this compound under prebiotic reaction conditions. 

MOND discovered coincidentally Ni(CO)4 as he extracted and purified elemental nickel with 

carbon monoxide at high temperatures [110]. During the different purification steps the 

reaction temperatures also varied and at 130°C the present elemental nickel reacted under 

CO atmosphere to a volatile complex, which was afterwards analysed as Ni(CO)4. MOND 

described that as soon as the gas phase was enriched with Ni(CO)4, a highly luminous flame 

was observed at the Bunsen burner.  

Under consideration of the results from MOND et al., the approach of this part of the project 

was to mobilize nickel (II) under prebiotic conditions and then to characterize the compound 
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with the flame test. The first step was to reduce Ni(II) to Ni (0) under reaction conditions to 

identify the volatile in situ formed nickel species as active catalyst. Alternative analysis method 

for Ni(CO)4 beside the flame test was found in the publication of HIEBER [111] in which he 

described that reacting Ni(CO)4 with pyridine gives a yellow pyridine tricarbonyl nickel 

complex (Scheme 4.5). 

 

Scheme 4.5 Ni(CO)4 reacts with pyridine to a yellow Ni(CO)3pyr complex. [111] 

Therefore, NiSO4∙6H2O was filled in a combustion boat and transferred to a glass tube 

(Figure 4.16). CO-stream (1 bar) was passed through the glass tube and heated up to 130°C in 

a tube furnace. The glass tube was connected to a bubbler filled with pyridine to identify 

formed volatile Ni(CO)4 by colouring the pyridine solution yellow. [111] 

 

 

Figure 4.16 Glass tube with NiSO4∙6H2O or elemental Ni (H2O slurry) filled combustion boat 

and heated up to 130°C in a tube furnace. CO-gas is passed (1 bar) through the 

glass tube and afterwards through pyridine containing bubbler. 

 

But neither the pyridine solution coloured yellow, nor the apparatus passed gas-exhaust 

showed a highly luminous flame in the burner. It seemed that CO is not reductive enough to 

reduce Ni(II) compounds to Ni(0) particles and to mobilize them to Ni(CO)4. Therefore, 

NiSO4∙6H2O was replaced by Ni (0) powder to skip the reduction process of Ni(II) with CO and 

the experiment was repeated. But also, in this attempt Ni(CO)4 could not be qualitatively 

detected neither as pyridine tricarbonyl nickel, nor in the flame test. The reason for that could 

be a passivated surface of elemental nickel, which leads to inactivity. In a third reaction 
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execution elemental nickel powder was replaced by Raney®-Nickel (slurry in H2O, Sigma 

Aldrich) and the rest of the implementation was retained. This approach led to a positive flame 

test for Ni(CO)4 after 60 min reaction time (Figure 4.17). 

 

Figure 4.17 CO-stream (1 bar) passed through the glass tube, which is heated up to 130 °C in 

a tube furnace and the exhaust was led into the burner flame. A: The CO-stream 

passed into the flame after 5 min reaction time is not luminous. But after 60 min 

the exhaust was again led into the burner flame and a highly luminous flame could 

be observed (B). 

 

The colour or luminosity of the burner flame in Panel A did not differ from the flame, when 

pure CO-stream was led in. During ongoing reaction time, enough nickel particles were 

mobilized to form volatile Ni(CO)4 (TB = 43°C), which can accumulate in the CO-gas phase to 

give the characteristic highly luminous flame illustrated in figure 4.17 (B). However, 

approaches to detect Ni(CO)4  in the prebiotic reaction with the flame test weren’t successful. 

It must be considered that the flame test is an uncomplicated method to analyse volatile 

compounds but has difficulties to detect small amounts of compounds and relies on subjective 

perception. Spectroscopic techniques can be used for a robust compound characterization, 

which can resolve small amounts much better. Hence, gasphase-infrared spectroscopy (G-IR) 

was chosen to detect in situ formed Ni(CO)4 but first in a reaction, which is known to produce 

significant amounts of Ni(CO)4.[112] 

A B 
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Ni(COD)2

1) Toluene

2) CO(g)

-30°C
Ni(CO)4

 

Scheme 4.6 In toluene dissolved Ni(COD)2 reacts immediately to Ni(CO)4 under CO 

atmosphere.  

 

Therefore, zero-valent bis(cyclooctadiene)nickel(0) (Ni(COD)2) was reacted with CO to form 

Ni(CO)4. After 30 min ongoing reaction the gas phase was collected in a cylindrical vessel and 

was analysed by gasphase -infrared (G-IR) spectroscopy to observe characteristic IR-bands for 

Ni(CO)4. 

 

Figure 4.18  Gasphase-IR spectra of gaseous Ni(CO)4 in CO atmosphere (red course) and in N2 

atmosphere (blue course). The fundamental of Ni(CO)4 is obtained at 2059 cm-1 

in both spectra, but with a stronger band in IR-inactive N2 atmosphere. 

In Figure 4.18 the gasphase-IR spectra from synthesized Ni(CO)4 were measured in CO- and N2 

atmosphere to obtain the fundamental band of Ni(CO)4 at 2059 cm-1 in accordance with 

literature values.[113] The spectrum under CO atmosphere (red course) is dominated by the 

CO-bands at 2170-2116 cm-1 interfering with Ni(CO)4. Therefore, the CO-gas stream in the 



4. Results and Discussion 
 
 

 
58 
 

reaction mixture was replaced for 5 min by IR-inactive nitrogen (N2) to yield a stronger Ni(CO)4 

band (blue course) by reducing the strong CO-bands. The obtained results about the synthesis 

and analysis method for Ni(CO)4 can be used for further investigation of the active species in 

the geochemical redox reaction. As volatile Ni(CO)4 is assumed as probably in situ formed 

active species, an experiment could provide further results about it. In fact, if the reaction 

vessel, where the active species is synthesized (Scheme 4.7, eq.1) was separated from the 

reaction vessel, where it should catalysis the reaction (Scheme 4.7, eq.2). 

 

 

 

Scheme 4.7  Proposed reaction to Ni(CO)4 in vessel 1 (eq. 1, Figure 4.19) and subsequent 

enrichment of Ni(CO)4 in connected vessel 2 (eq. 2, Figure 4.19) to catalyse the 

reaction from aniline to N-acetylaniline under CO and CH3SH atmosphere. 

 

In a modified two-vessels experimental set up of the prebiotic reaction, it was tried to 

synthesize the assumed volatile catalyst in the high temperature vessel 1, which can then 

enrich in a connected vessel 2 to catalyse there the formation of N-acetylaniline (Figure 4.19). 

In vessel 1 nickel could be mobilized from NiS and CO at 70 °C to form Ni(CO)4, which could be 

the active species of the reaction. As Ni(CO)4 is known to be volatile (TB = 43°C) it can 

accumulate in the connected vessel 2. In vessel 2 aniline is present, as well as CH3SH at room 

temperature (rt) and if mobilized active species from vessel 1 is the catalyst of the 

reaction (Figure 4.19), then it would be expected that N-acetylaniline is formed in vessel 2. 

But neither by HPLC, nor by mass spectrometry N-acetylaniline was detected in the reaction 

samples. Different temperatures in both vessels were adjusted, but still no N-acetylaniline 
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could be monitored. The reasons why the experiment did not work out could be that NiS 

cannot be easily mobilized under the reaction conditions or Ni(CO)4 is not or just an 

intermediate of the active species.  

              

Figure 4.19  Modified two-vessel experimental set up of the prebiotic reaction. CO-stream was 

purified by initiating through pyrogallol and NaOH solutions. In vessel 1 NiS, OH- 

at 60-80°C are present and in vessel 2 aniline, OH- at 25-35°C are present. The 

intention was to separate the place, where the catalyst is formed (vessel 1) and 

the place, where it catalyses the reaction (vessel 2). 

 

In a second experimental approach the confirmed Ni(CO)4 producing reaction (Scheme 4.6) 

was carried out [112] in vessel 1 and vessel 2 remains unchanged. However, the detection of N-

acetylaniline was still negative, what could mean that Ni(CO)4 is not the active species at least 

under the described modified experimental conditions (Figure 4.19).  

 

4.3 Hydrolytic Stabilities of PPi and AcP 

For energy storing compounds (“energy currency”), especially compounds that were 

considered as prebiotic energy currency similar to present ATP, metastability is required. In 

this regard the energy-bearing bond must be kinetically stable enough in aqueous solution, 

not hydrolyse too fast, but at the same time to be reactive enough to undergo reactions to 
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pass the energy to other molecules. In this context AcP [88] and PPi
[1] were considered as 

plausible energy storing compounds on early Earth. To evaluate, which compound is more 

stable, the hydrolysis rate was measured under various conditions.  

 

 

Figure 4.20 AcP hydrolysis kinetics at 40°C (squares), at 50°C (circles) and at 60 °C (triangles). 

The spectra show the decrease of the 31P-NMR AcP integrated signal over the 

time. At increasing temperatures, faster hydrolysis of AcP is noticeable. 

 

The hydrolysis kinetics from 20 mM AcP at different temperatures was measured wit 31P-

NMR-spectroscopy (Figure 4.20). In 5-10 minute intervals, spectra were recorded for 

60 minutes to analyse the decrease of the integrated AcP signal and calculate the half-life-

time of AcP at the respective temperature. The spectra show that the reaction follows a 

pseudo-first order kinetics with half-life-times for AcP at 40 °C of 150 min, for 50 °C of 88 min 

and for 60 °C of 40 min. 
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Figure 4.21 Hydrolysis kinetics from AcP (left) and PPi (right) at 60°C. Both reactions follow 

pseudo-first order kinetics. The illustration pointed out that PPi is much more 

stable than AcP. 

 

It can be concluded that AcP is not too labile to hydrolysis but may not stable enough to serve 

as primordial energy storing molecule. Comparing the hydrolysis rates of AcP and PPi at 60 °C 

(Figure 4.21), it is evident that PPi with a half-life time of 310 days compared to 40 min of AcP 

is more stable and therefore plausible to be considered as long-term energy storing compound 

on prebiotic Earth.  

 

4.4 Experiments towards Peptidic Minimal Model of Acetyl coenzyme A Synthase 

4.4.1. Ni-Oligo Peptide Complex 

The solid emissions from hydrothermal vents of black smoker type consists mainly of transition 

metal sulfides. Among other compounds, CO, H2S and various intermediates are dissolved in 

the fluid.  

The evolution of the acetyl CoA synthase enzyme (ACS, see Wood-Ljundahl Pathway) could 

have started from inorganic nickel compounds e.g. NiS to reduced Ni(CO)4 and to gradual 

exchange of the inorganic ligands by peptides. This could have led to a heteroleptic complex, 
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which could catalyse reactions of CO and thiol to thioester similar to the reaction on the active 

site of ACS. 

The idea is that Ni (II) is selectively mobilized from the sulfides by reduction to Ni (0) and 

subsequent complexation to Ni(CO)4. The latter is either the catalyst for the C-C-bond linkage 

of CO and methanethiol or it is the intermediate for the formation of catalytically active, 

heteroleptic complexes. As soon as small peptides were present in the fluids they could have 

served as ligands and contributed to complex formation. Such nickel-peptide complexes, 

which have occupied at least one coordination site with CO are the best candidates for being 

the earliest evolutionary precursors of the enzyme acetyl-CoA synthase (ACS). ACS, for 

example, from the anaerobic bacterium Moorella thermoacetica [114] is a 22 quaternary 

protein and consists four different metal clusters.[115][116] 

 

Figure 4.22  A cluster of acetyl coenzyme A synthase (ACS) containing a cuboidal Fe4S4 unit, a 

peptide coordinated distal Nid and a proximal metal (Mp), which appears to be 

Nip in the active site.[98] 

 

The A-Cluster is the active site for ACS activity (Figure 4.22) and contains three components, 

a cuboidal Fe4S4 unit, a square planar distal Nid coordinated by two peptide amide nitrogens 

and two side Cysteine chain thiolates and a four coordinated proximal metal site (Mp). The 

metal in the central site appears to be nickel in the active enzyme. [62,98] 

To form heteroleptic nickel peptide complexes as predecessors of ACS, it is firstly required to 

synthesize an expedient peptide sequence of Moorella Thermoacetica. [117] Therefore, a short 

peptide sequence 594-598 from the A cluster of Moorella Thermacetica was synthesized by 

manual or automated Solid Phase Peptide Synthesis (SPPS, for details see Experimental 
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Section).[118] The peptide sequence 594-598 contains the amino acids serine (S), cysteine (C), 

glycine (G),  cystein (C) and phenylalanine (F) (Figure 4.23).  

 

 

Figure 4.23   Peptide sequence 594-598 from Moorella Thermoacetica [62,117], synthesized by 

Solid Phase Peptide Synthesis (SPPS). 

 

The protected amino acids were firstly deprotected with piperidine (20 %) in DMF and then 

linked activator assisted, sequentially on an insoluble solid phase. Polystyrene based MBHA 

rink amide was chosen as resin for the synthesis of the peptide 1 (Figure 4.23) due to higher 

swelling properties and low load density (0.38 mmol/g), which reduces aggregation of the 

peptide. The activator reagent N, N diisopropylcarbodiimid (DIC), HATU to impede 

racemization and DIPEA to reduce precipitation of the reagents were used. All amino acids 

were coupled twice, in which coupling methods were chosen by the nature of the amino acid 

and if the coupling process was manually or automated accomplished. The finished peptide 

sequence still bound on resin was capped with acetanhydride to block residual free amino 

functionalities. After cleavage from resin with TFA/H2O/EDT/TIS (94 : 2.5 : 2.5 : 1) the crude 

peptide (Figure 4.23) was purified via HPLC (Figure 4.24) and analysed with ESI-MS to result 

the pure peptide for nickel complexation.[119]  
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Figure 4.24  Chromatogram of peptide (1) with a retention time of 13.1 min after manual SPPS. 

Eluent A: H2O + 0.1 % TFA, B: MeOH and the gradient was 5  80 % B in 30 min, 

flow rate: 10 mL/min, column specification: C18, size: 250 x 21 mm. Detection 

wavelength  = 215 nm. 

 

 

Figure 4.25   ESI-MS of the peptide 1. The signal for the synthesized peptide 1 as sodium adduct 

[M+Na]+ was found at 579.2 m/z in the ESI-MS spectrum. The signal for the 

protonated molecule ion peak of 1 was found at [M+H]+: 557.2 m/z. 
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The synthesized peptide sequence (Figure 4.32) was dissolved in DMF and reacted with an 

Ni(acac)2 under alkaline conditions in analogy to experiments of Riordan et al. [98] to form the 

square planar Ni-center coordinated by two peptide amide nitrogens and two Cysteine side 

chain thiolates (Scheme 4.8). 

 

 

 

Scheme 4.26 Pentapeptide 1 reacted with Ni(acac)2 to form a square planar Ni-center 

coordinated by the peptide K2[Ni(SCGCF)] (2). 

 

In presence of molecular oxygen formation of disulfide bridges between the cysteins is very 

likely, therefore the reaction was carried out under N2 atmosphere in a glovebox and the 

product was stored under exclusion of oxygen. The formed complex 2 was confirmed by ESI-

MS, HR-MS (Figure 4.26) and also analysed by UV-spectroscopy (Figure 4.27). 
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Figure 4.27 UV-spectrum of K2[Ni(SCGCF)] (2) in MeOH with maxima at 450 nm, 350 nm and 

320 nm. 

 

The transitions at 450 nm can be assigned to N  Ni attributed to ligand-metal-charge-

transfer (LMCT) and the band at 350 nm to SNi LMCT. Transitions around 320 nm can be 

expected for π-π* transitions of aromatic rings and n-π* of C=N groups respectively. d-d 

transitions at 500-550 nm of the Ni-ion are very weak and indicates square planar geometry 

around the Ni-center.[120] 
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Figure 4.28  Experimental (top) and calculated (bottom) HR-MS-spectra of synthesized nickel 

peptide complex 2 in DMF. For calculated C22H29N6O7S2Ni [M]: 611.0887 was 

found m/z: 611.0863 and the isotopic pattern of compound 2. 

 

Compound 2 was elongated by introducing a second nickel center with 1,2-

bis(diphenylbosphino)ethane nickel(II) chloride (Ni(dppe)Cl2) (Figure 4.29). Therefore, to 

the solution of 2 in DMF the reactant Ni(dppe)Cl2 was added an stirred for 12 h under 

exclusion of oxygen (Scheme 4.9).  
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Scheme 4.29 Reaction of 2 and 1,2-bis(diphenylbosphino)ethane nickel(II) chloride 

(Ni(dppe)Cl2) to form the second Ni-center in the heteroleptic complex.  

The product 3 was analysed and confirmed by ESI-MS and HR-MS (Figure 4.30). 
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Figure 4.30  Experimental (top) and calculated (bottom) HR-MS-spectra of synthesized nickel 

peptide complex 3 in DMF. For calculated C49H55N6O7S2Ni2P2 [M]: 1083.1709 was 

found m/z: 1083.1701 and the isotopic pattern of compound 3. 

 

The experimental results indicated that it was possible to develop a heteroleptic complex 3 

containing two nickel centers. The first complex 2 contained one Ni-center, which was square 

planare coordinated by synthesized peptide sequence 1 (594-598) from Morella 

Thermoacetica. This complex 2 was expanded in a further reaction by another Ni-center to 

complex 3. The experimental procedure was carried out according to RIORDIAN [98], but with a 

pentapeptide instead of a tripeptide. The next synthesis step of modelling compound 3 would 

be an Fe-S-cluster in analogy to ACS A-cluster (4.22). The final heteroleptic complex could be 

used to check whether it can catalyse the reaction of inorganic compounds like CO and CH3SH 

to methyl thioester. 

The final nickel complexes connected to an Fe-S-cluster could be understood as probable 

precursor of the binuclear complex of the A-cluster in ACS on prebiotic Earth. 
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5. Conclusions 

 

5.1 Prebiotic PPi Synthesis  

In this thesis, a prebiotically plausible synthesis for inorganic pyrophosphate (PPi) 

condensation by coupling the Pi dimerization to a geochemical redox reaction was 

demonstrated. For this approach the geochemical C/C-bond formation experiment containing 

carbon monoxide (CO), methanethiol (CH3SH) on the surface of hydrothermal fluids containing 

metal sulfides e.g. NiS was utilized.[8] Adding soluble orthophosphate (Pi) and insoluble 

Ca3(PO4)2 to the reaction mixture led after 8 h reaction time to PPi formation, which was 

detected with fluorescence spectroscopic measurements by using fluorescent PPi -sensor (see 

Chapter 4, Figure 4.6). PPi formation was indicated by increased fluorescence signal after 8 h 

reaction progress, but not if one of the compounds Pi or Ca3(PO4)2 was absent in the 

suspension. 

Since the yield of PPi was low, an alternative more sensitive bioluminescence assay was used 

to confirm the PPi formation with a further independent method. PPi formation in the 

prebiotic reaction with present soluble Pi and insoluble Ca3(PO4)2 was also detected with the 

luminescence measurement method (Figure 4.11). In these measurements too, it was 

observed that no significant increasing of the luminescence signal was detected in absence of 

Pi or Ca3(PO4)2. 

Attempts to quantify formed PPi in the reaction samples with the assays was complicated since 

it was detected that present Pi in the samples impede the fluorescence and luminescence 

intensity. Efforts to separate Pi from PPi with strong anion exchange chromatography (SAX) 

were complicated and did not yield the expected results (Figure 4.11). 

Summarized, can be concluded that PPi synthesis under prebiotic conditions at 60°C, pH 8 and 

without using condensing agents was indicated (Chapter 4.1). These results demonstrated 

that there is no need to postulate a thioester world (DeDuve) as a distinct phase of prebiotic 
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evolution preceding phosphoanhydride bioenergetics, since thioester and PPi could have been 

synthesized simultaneously on prebiotic Earth. 

 

5.2 The Nature of the Active Species 

It was noticed that PPi formation in 8 h reaction time was not constant (Figure 4.8, D) and 

therefore an explanation for that was researched in the original C/C-bond formation 

experiment. From the kinetical studies it was noticed that between 0-8 h reaction time no 

significant amount of product formation was detected, but after 8 h an exponential increase 

of product formation was observed (Figure 5.1).  

 

 

Figure 5.3 The absorbance of integrated adenosine relative to integrated N-acetylanilne 

plotted against the reaction time. After a lag phase (0-7 hours) no significant 

amounts of N-acetylaniline is formed. But after 8 hours an increase of product 

formation can be observed. 

 

These results indicated that NiS is may not the active catalyst as assumed, but rather NiS 

undergoes some slow chemical conversions (lag phase) to form the active species, which 

catalyses then fast the reaction as soon as a steady state concentration is reached. Under the 

prevailing reaction conditions NiS, CO atmosphere, 60 °C and a mobilization of Ni to a Ni(0)-

compound e.g. nickel tetra carbonyle (Ni(CO)4) was considered.  
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Attempts to detect hypothesized Ni(CO)4 in the reaction mixture were not effective. However, 

the nature of the active species, the acetyl group transferring catalyst of the prebiotic reaction 

remained open. Investigation of the mobilization of the nickel-compound in the reaction  

process would contribute to a understanding, whether nickel is being mobilized or the 

reaction occur on the surface of precipitated NiS.  

 

5.3 Hydrolytic Stabilities of PPi and AcP 

In the literature PPi and AcP were both considered as plausible prebiotic energy storing 

compounds similar to present day ATP. For this circumstance metastability in aqueous 

solutions is required and the hydrolytic stability of both compounds was determined with 

31P - NMR-spectroscopy (Figure 4.20). The signals from AcP and PPi were integrated and the 

half-life-time at the respective temperature was determined. The processed data from the 

31P - NMR-measurements have shown that the reaction follows a pseudo-first order kinetics. 

From the hydrolysis kinetics at 60°C a half-life-time for AcP of 40 min was determined and 

310 days for PPi. Therefore, it can be concluded that PPi is more stable than AcP and plausible 

to be considered as long-time energy storing compound on prebiotic Earth.  

 

5.4 Experiments towards Peptidic Minimal Models of Acetyl coenzyme A 

Synthase (ACS) 

The key enzyme ACS in the ancient WOOD-LJUNDAHL pathway catalyses the formation of acetyl-

CoA from CoA, CO and CH3 in bacteria and archaea. The active site for this reaction is the A-

cluster which consists a peptide coordinated Ni-center, which is thiolate bridged to a second 

Ni-center and connected to a cuboidal Fe4S4-unit. Since ACS was unlikely on early Earth 

heteroleptic Ni-complexes could be considered as prebiotic precursor of ACS. 

Modelling a complex containing two Ni-centers in analogy to the A-cluster of ACS was 

achieved. First, a peptide sequence from thermophilic acetogen Moorella Thermoacetica 

(594-598) containing the amino acids serine (S), cysteine (C), glycine (G), cystein (C) and 

phenylalanine (F) was synthesized. Afterwards the distal Ni-center (2) was coordinated square  
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Scheme 5.1 Square planar coordinated distal Ni-center (2) by peptide. Ni-complex 2 was   

extended by a second Ni-center in analogy to the A-cluster in ACS.[98] 

 

planar by the peptide (Figure 5.5), which was indicated due to UV-spectroscopy. Then the 

peptide coordinated Ni-complex was extended by a second Ni-center (3), which was detected 

with ESI-MS method. 

The next synthesis step of complex 3 would be the connection to a synthesized Fe-S-cluster in 

analogy to the A-cluster of ACS. The modelled complex would be then finalized and the 

catalytic activity could be examined by reacting CO and methanethiol in aqueous solution to 

thioester to investigate whether this complex could be considered as precursor of ACS on 

prebiotic Earth. 
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6. Experimental Section 

 

6.1. General Equipment and Methods 

6.1.1  Solvents, Chemicals and Gases 

Solvents used were either analytical ("p.a.") or HPLC grade. Ultrapure water was prepared by 

passing standard demineralized water through an arium mini lab water system (Sartorius, 

Göttingen, Germany). Nickel chloride hexahydrate (≥99.999 %) was from Chempur (Karlsruhe, 

Germany), sodium sulfide nonahydrate (≥98.0 %) from Fluorochem (Hadfield,UK), disodium 

hydrogen phosphate heptahydrate (≥98.0 %) from Alfa Aesar (Kandel, Germany) and Calcium 

chloride (anhydrous) from Grüssing (Filsum, Germany). Tris base (99.9 %) was from ROTH 

(Karlsruhe, Germany). Carbon monoxide (99.9 %) and methanethiol (>98 %) were purchased 

from Linde AG (Pullach, Germany) and Sigma-Aldrich (St. Louis, MO, USA), respectively. 

 

6.1.2 General Procedures 

Experiments were carried out under nitrogen atmosphere in ultrapure water, deoxygenized 

by bubbling a stream of nitrogen through it for 45 min. Glassware was heat-dried under 

reduced pressure and flushed with nitrogen prior to use. Freeze-drying was performed using 

an Alpha-2-4-LD plus benchtop freeze-dryer from Christ (Osterode am Harz, Germany) at 

pressures < 1 mbar. Small sample amounts (< 2 mL) were freeze-dried in a RVC 2-18 CD plus 

vacuum centrifuge by Christ. 

6.1.3 Software 

Chemical structures and Schemes were drawn with ChemBioDraw (version 20). 31P-NMR 

spectra were processed with MestReNova (version 10). Graphs were plotted with OriginPro 

(version 8.5G). 
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6.2 Analytical Methods 

6.2.1 Mass Spectrometry 

For sample preparation aqueous or freeze-dried samples were filtered or dissolved in 

ultrapure water and mixed with MeOH (HPLC grade) up to a 1:1 ratio. A few drops 10 % 

formic acid were added to samples prior to injection into the spectrometer. Electrospray 

ionization (ESI) was applied to obtain mass sepectra with a maXis or MicroTOF spectrometer 

from Bruker Daltonik GmbH (Bremen, Germany). For detection of ionizable derivatives of 

phosphoric acid, the instrument was set to negative mode. Data were processed with 

Compass DataAnalysis (version 4.0) software by Bruker. Selected peaks of high-resolution 

spectra (HR-MS) were compared to masses calculated for particular molecular species (all 

values stated as m/z). 

 

6.2.2 High Performance Liquid Chromatography (HPLC) 

For kinetical studies an analytical HPLC system by JASCO (Tokio, Japan) was used, equipped 

with an MD-2010 diode array detector, PU-2085 pumps, a CO-2060 column thermostat and a 

AS-2055 autosampler. For purification preparative HPLC systems by JASCO were used, 

equipped with UV-4075 detector, PU-4086 pumps, a column oven CO-4060, LC-NetII/ADC 

interface and a fraction collector Fraction Collector Controller. Data were processed with 

ChromNav 2.01.06 provided by the manufacturer. The compounds were detected, if not 

otherwise indicated at wavelengths of 220 nm, 254 nm and 280 nm. Used columns with 

Nucleodur phase were from Machery-Nagel and those with Spherisorb SAX phases were from 

Waters.  

Tab. 6.1 List of used columns for HPLC chromatography.  

Column Name Specification Flow rate 

MN Nucleodur, C18 C18, 250 x 4.6 mm, 100 Å, 5 µm 1 mL/min 

MN Nucleodur, C18 C18, 250 x 10.0 mm, 100 Å, 5 µm 5 mL/min 

Spherisorb SAX OBD 250 x 10 mm, 80 Å, 5 µm 5 mL/min 

MN Nucleodur, C18 C18, 250 x 21 mm, 100 Å, 5 µm 10 mL/min 
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The flow rates with 1mL/min for analytical, 5 mL/min for semi-preparative and 10 mL/min for 

preparative runs were adjusted. The gradients for each measurement were indicated at each 

case. Used solvents for HPLC analysis were listed below (Tab 6.2). 

 

Tab. 6.2 Solvent systems used for HPLC analysis and purification. 

Solvent A Solvent B 

H2O MeCN 

0.05 M Triethyl ammonium citrate buffer, 

pH 4.5 (0.05 M TEAC) 

MeOH 

H2O + 0.1 % TFA MeOH 

 

The 0.05 mM TEAC-buffer was prepared as described in the following. 1000 mL of TEAC-buffer 

was prepared from citric acid monohydrate (10.5 g, 0.05 mol) and triethyl amine (7.6 g, 

0.075 mol). All solvents were degassed prior to use. 

For purification of the crude peptides preparative HPLC system from Jasco equipped with PU-

4086 pumps, UV-4075 detector, column oven CO-4060 and a fraction collector CHF122SC 

(Advantec) was used. 

The compounds were detected at 215 nm and 220 nm. Used columns with Nucleodur phase 

were from Machery-Nagel (Tab. 6.1). 

The gradients for each measurement were indicated at each case.  

6.2.3 Liquid Chromatography Mass Spectrometry (LC-MS) 

LC-MS analysis was performed at UltiMate 3000 system from Thermo Fischer Scientific 

(Waltham, USA), equipped with 3000 series pumps, autosampler, column oven and diode 

array detector. The chromatographic system was coupled to the mass system LTQ XL from 

Thermo Fischer Scientific. 
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6.2.4 Nuclear Magnetic Resonance Spectroscopy (NMR) 

For 31P-NMR measurements Acetyl phosphate (AcP) and pyrophosphate (PPi) were prepared 

as described in the following. 

The samples of acetyl phosphate (3.7 mg, 20 mmol) dissolved in 100 mM TRIS∙HCl buffer (10 % 

D2O, 1 mL) were transferred to NMR-Tubes and measured at different temperatures (22-60°C) 

over a time period between 20-180 minutes.  

Samples of pyrophosphate (20 mM) were incubated for 0 to 11 days at 60°C. The pH value of 

all samples was tested before and after measurement to be constantly pH 8. 

Spectra were recorded using an AV 401 spectrometer by Bruker (Billerica, Massachusetts, 

USA) equipped with a heater for setting variable temperatures. The spectrometer was field 

frequency locked on the deuterium resonance of deuterium oxide (D2O) used as a solvent. The 

spectra are referenced to external 85% phosphoric acid (H3PO4), which accomplished 

electronically using the lock signal without running the spectrum of the standard sample every 

time. All spectra were broadband 1H-decoupled, and the chemical shifts are given in parts per 

million (ppm). All FIDs are processed with an exponential multiplication prior to Fourier 

transform. Spectra are baseline- and phase corrected before they are fitted with the T1/T2 

relaxation module of the software TopSpin (version 3.6.2).  

 

6.2.5 Fluorescence Spectroscopy 

Spectra were recorded using a FP-6200 spectrophotometer from Jasco (Tokyo, Japan) at 20 °C, 

controlled by an ETC-272T Peltier thermostat (Jasco) connected to a Thermo Haake WKL26 

water recirculator of Thermo Fisher Scientific (Waltham, MA, USA). Samples were kept in 

Hellma Quartz SUPRASIL QS fluorescence cuvette of 1.0 cm path length from Hellma Analytics 

(Müllheim, Germany) under a continuous stream of nitrogen. Settings were as follows. 

Excitation wavelength: 316 nm; recording range for emission: 350 nm - 550 nm; bandwidth: 

5 nm; response: 0.5 s; scanning speed: 200 nm/min; data pitch: 1.0 nm; sensitivity: 'high'. Raw 

data were processed with Spectra Manager software (version 1.54.03) provided by the 

manufacturer. 
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6.2.6 UV Absorption Spectroscopy 

The sample was dissolved in MeOH and transferred to a cuvette (10 mm, 500 µL) from 

Hellman Analytics (Mühlheim, Germany). UV absorption was measured with V-550 

spectrometer from JASCO (Tokio, Japan) and the data were processed with Spectra Manager 

software (1.54.03) provided by the manufacturer. 

 

6.2.7 Gasphase- Infrared Spectroscopy (Gasphase-IR) 

Aliquots of gaseous phase was collected in a cylindrical vessel to analyse with Gasphase 

Infrared (Gasphase-IR) Spectroscopy. The spectra were recorded with a Bruker Vertex 70 

(Billerica, Massachusetts) spectrometer and processed with the associated program OPUS 7.5. 

 

6.2.8 Luminescence Spectroscopy 

The luminescence spectra were recorded on a Cytation 3 plate reader from BioTek Instruments 

(Winooski, Vermont, USA). Samples were read (0.1 s integrated reading) with area scan 

mode (5x5) over the entire area of the well. The crude data were given as excel files and 

processed with the software program Origin (Northampton, Massachusetts, USA).  
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6.3 N-Acetylaniline Synthesis  

 

H
N CH3

O

C8H9NO

135.17 g/mol  

Caution: Carbon monoxide (CO) is an odorless, colourless and toxic gas and therefore it is 

necessary to work under a good ventilated fume hood. 

Hazard symbols  

 

TLV (threshold limit value): 40 ppm 2 min 

 

6.3.1 Synthesis of N-Acetylaniline at 100 °C 

Reactions were carried out in a 100 mL three-necked flask equipped with a reflux condenser, 

a gas inlet tube, a rubber septum and a magnetic stirring bar. Carbon monoxide (CO) and 

methanethiol (CH3SH) were individually passed through bubblers filled with silicon oil and 

united in a Y-junction between bubblers and gas inlet tube. A solution of Na2S∙9 H2O (600 mg, 

2.5 mmol) in 2 mL water was added dropwise to NiSO4 ∙ 6H2O (786 mg, 3.00 mmol) in 3 mL 

water. Carbon monoxide was bubbled through the resulting suspension in which 

aniline (46 µL, 0.5 mmol) was given to the mixture. Afterwards CH3SH was initiated and the 

reaction mixture was filled up to 30 mL with 25 mM TRIS∙HCl buffer (pH 8). Then the 

suspension was heated up to 100 °C over 12 hours and a sample (1 mL) was hourly withdrawn 

by syringe through the rubber septum. After filtered through a syringe filter (regenerated 

cellulose, 0.45 µm pore size), 25 µL of the sample was analysed by analytical HPLC. The signal 

with the retention time (tR) 22.1 min was collected and analysed with ESI-MS. 
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Analytical Data 

HPLC (analytical) on C18-column (MN Nucleodur®100 5 C18, 250 x 4.6 mm, 5 µm), 

solvent A: 0.05 M trietyl ammonium citrate buffer (TEAC, pH 4.5) and solvent B: MeCN, 

gradient: 5  60% B in 25 min. The absorption was recorded at  = 254 nm, tR = 22.2 min. 

ESI-MS: (MeOH) m/z (rel %) = 136.1 (100) [M+H]+. 

 

6.3.2 Synthesis of N-acetylaniline at 60 °C 

 

 

Reactions were carried out in a 100 mL three-necked flask equipped with a reflux condenser, 

a gas inlet tube, a rubber septum and a magnetic stirring bar. Carbon monoxide (CO) and 

methanethiol (CH3SH) were individually passed through bubblers filled with silicon oil and 

united in a Y-junction between bubblers and gas inlet tube. A solution of Na2S∙9 H2O (600 mg, 

2.5 mmol) in 2 mL water was added dropwise to NiSO4 ∙ 6H2O (786 mg, 3.00 mmol) in 3 mL 

water. Carbon monoxide was bubbled through the resulting suspension in which 

aniline (46 µL, 0.5 mmol) was given to the mixture. Afterwards CH3SH was introduced and the 

reaction mixture was filled up to 30 mL with 25 mM TRIS∙HCl buffer (pH 8). Then the 

suspension was heated up to 60 °C over 12 hours and a sample (1 mL) was hourly withdrawn 

by syringe through the rubber septum. After filtered through a syringe filter (regenerated 

cellulose, 0.45 µm pore size), 25 µL of the sample was analysed by analytical HPLC. The signal 

with the retention time (tR) 22.1 min was collected and analysed with ESI-MS. 
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Analytical Data 

HPLC (analytical) on C18-column (MN Nucleodur®100 5 C18, 250 x 4.6 mm, 5 µm), solvent 

A: 0.05 M trietyl ammonium citrate buffer (TEAC, pH 4.5) and solvent B: MeCN, gradient: 

5  60% B in 25 min. The absorption was recorded at  = 254 nm, tR = 22.2 min. 

ESI-MS: (MeOH) m/z (rel %) = 136.1 (100) [M+H]+. 

 

6.3.3 N-acetylaniline Synthesis with Modified Experimental Set Up 

 

 

 

Experimental Set Up 

 

 

Figure 6.1: Modified two-vessel experimental set up of the prebiotic reaction. CO-stream was 

purified by initiating through pyrogallol and NaOH solutions. In vessel 1 NiS, OH- 

at 60-80°C are present and in vessel 2 aniline, OH- at 25-35°C are present. The 

intention was to separate the place, where the catalyst is formed (vessel 1) and 

the place, where it catalyses the reaction (vessel 2). 
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Reactions were carried out in two 100 mL three-necked flask equipped with a reflux 

condenser, a gas inlet tube, a rubber septum, and a magnetic stirring bar. In reaction flask 1 

NiS was precipitated from Na2S∙9 H2O (600 mg, 2.5 mmol) in 2 mL water and  

NiSO4 ∙ 6H2O (786 mg, 3.00 mmol) in 3 mL water. Carbon monoxide (CO) passed through a 

pyrogallol solution and sodium hydroxide solution (2 M) was introduced through a Y-junction 

with a gas inlet tube to the reaction mixture in flask 1. In a TRIS-HCl containing three neck-

flask 2 aniline (46 µL, 0.5 mmol) is added and methanethiol is passed through a tap into the 

reaction mixture. Both flasks are connected through the condenser of flask 1 and a gas inlet 

tube in flask 2. Then the suspension in flask 1 was heated up to 70 °C and flask 2 was held at 

room temperature. A sample (1 mL) was hourly withdrawn by syringe through the rubber 

septum from flask 2. After filtered through a syringe filter (regenerated cellulose, 0.45 µm 

pore size), 25 µL of the sample was analysed by analytical HPLC. The signal with the retention 

time (tR) 22.1 min was not detected. 

 

6.4 Ni (II) Reduction and Tetracarbonyle Nickel (NiCO4) Synthesis  

 

Ni

CO

OC

CO

CO

C4NiO4

170.73 g/mol
 

 

Caution: The Ni(CO)4 compound is volatile (43°C), very toxic and therefore it is necessary to 

work under a good ventilated fume hood. 

Hazard symbols 

 

TLV: 0.05 ppm 
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Lethal concentration [121]: 2 ppm 

6.4.1 Reduction of Ni (II)  

NiS was precipitated from NiSO4∙6H2O (524 mg, 2 mmol) and Na2S∙9H2O (600 mg, 2.5 mmol). 

Afterwards 1 M NaOH (20 ml) was added to the suspension and CO-gas stream was passed 

through the mixture [122]. The suspension was heated up to 100°C and hydrazine acetate was 

added after 100 min ongoing reaction. During 5 h reaction time the gas exhaust was led in 

10 min intervals into the burner flame. 

The from MOND et al. described characteristically, highly luminous flame [110] was not 

observed. 

 

6.4.2 Reduction of Ni (II) with CO in water 

NiSO4∙6H2O (262 mg, 1 mmol) was dissolved in ultrapure water (10 mL). CO (~1 bar) was 

passed through the solution (pH 7) and the solution was heated up to 100 °C. 

No nickel (0) particles could be observed in the solution. 

 

6.4.3 Reduction of Ni (II) with CO in 100 mM NaHCO3 

NiSO4∙6H2O (262 mg, 1 mmol) was dissolved in 100 mM NaHCO3 solution (10 mL). CO (~1 bar) 

was passed through the solution (pH 9-10) and heated up to 100 °C. 

No nickel (0) particles could be observed in the solution. 

 

6.4.4 Reduction of Ni (II) with CO in 100 mM NaCO3 

NiSO4∙6H2O (262 mg, 1 mmol) was dissolved in 100 mM NaCO3 solution (10 mL). CO (~1 bar) 

was passed through the solution (pH 11) and heated up to 100 °C. 

No nickel (0) particle could be observed in the solution. 
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6.4.5 Reduction of Ni (II) with CO in NH3  

NiSO4∙6H2O (262 mg, 1 mmol) was dissolved in NH3 solution (25 %, 10 mL). CO (~1 bar) was 

passed through the solution and heated up to 100 °C. 

No nickel (0) particle could be observed in the solution. 

 

6.4.6 Reduction of Ni (II) with CO in tube furnance 

NiSO4∙6H2O (0.5 g, 2 mmol) was filled in a combustion boat and transferred to a glass tube. 

After evacuation of the solid, a carbon monoxide (CO) stream (~1 bar) passed through the 

glass tube, which was heated up to 130°C in a tube furnace HTM Reetz (Berlin, Germany) for 

6 h. The glass tube was connected to a pyridine filled bubbler, which was passed from the gas 

stream. The exhaust leaves through the fume hood shaft. At certain times the exhaust was led 

into the burner flame. 

Neither pyridine solution, nor the burner flame indicated Ni(CO)4 formation due to 

mobilization of nickel. 

 

6.4.7 Ni(0) compounds in a Tube Furnance 

Solid Ni-powder (325 Mesh) (0.5 g, 8.5 mmol) was filled in a combustion boat and transferred 

to a glass tube. After evacuation of the solid, a carbon monoxide (CO) stream (1 bar) passed 

through the glass tube, which was heated up to 130°C in a tube furnace (HTM Reetz, Berlin) 

for 6 h. The glass tube was connected to a pyridine filled bubbler, which was passed from the 

gas stream. The exhaust leaves through the fume hood shaft. At certain times the exhaust was 

led into the burner flame. 

Neither pyridine solution, nor the burner flame indicated Ni(CO)4 formation. 
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6.4.8 Urushibara Nickel Synthesis  

NiCl2∙6H2O (2 g, 8.5 mmol) was dissolved in HCl (conc.) (3 mL) and heated up to 90°C. The 

solution was added to zinc powder (100 Mesh) (1.3 g, 20 mmol) a precipitation was observed. 

After gas formation finished the precipitated compound was filtered under oxygen-free 

conditions and washed with degassed ultrapure water (2 x 25 mL). Thereafter, the precipitate 

was transferred to 100 mL acetic acid solution (15 %), which was again filtered under oxygen-

free conditions after gas formation finished. Then it was washed with ultrapure water 

(2 x 25 mL), ethanol (2 x 10 mL) and was stored in ethanol. [123] 

The synthesized Urushibara Nickel (0.5 g) was transferred in a combustion boat and 

transferred to a glass tube. After evacuation of the solid, a carbon monoxide (CO) stream (~1 

bar) passed through the glass tube, which was heated up to 130°C in a tube furnace HTM Reetz 

(Berlin, Germany) for 6 h. The glass tube was connected to a pyridine filled bubbler, which was 

passed from the gas stream. The exhaust leaves through the fume hood shaft. At certain times 

the exhaust was led into the burner flame. 

Neither pyridine solution, nor the burner flame indicated Ni(CO)4 formation. 

 

6.4.9 Raney-Nickel 

Raney®-Nickel (2 g, slurry in H2O, Sigma Aldrich) in a combustion boat was transferred to a 

glass tube and degassed. CO-stream (~1 bar) was passed through the glass tube and an heated 

up to 130°C in a tube furnace type LOSA from HTM Reetz (Berlin, Germany). The exhaust was 

held in a gas flame and the characteristical Ni(CO)4 flame was observed, which was highly 

luminous and greenish. [110,124] 
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Figure 6.2   CO-stream (1 bar) passed through the glass tube, which is heated up to 130 °C in 

a tube furnace and the exhaust was led into the burner flame. A: The CO-stream 

passed into the flame after 5 min reaction time is not luminous. But after 60 min 

the exhaust was again led into the burner flame and a highly luminous flame could 

be observed (B). 

 

6.4.10. Ni(CO)4 Synthesis  

The preparation and experimental part was carried out under nitrogen atmosphere due to 

highly air sensitive bis(cyclooctadiene)nickel(0) (Ni(COD)2) educt.  

 

Ni(COD)2

1) Toluene

2) CO(g)

-30°C
Ni(CO)4

 

 

Ni(COD)2 (200 mg, 0.7 mmol) was dissolved in dry toluol (17 mg, 20 mL, 0.2 mmol) and cooled 

down to -20 °C with a dry ice/acetone mixture. Through a pyrogallol solution (2 M) passed CO 

stream (~ 1 bar) was introduced to the reaction solution.[112] After 30 min. aliquots of 

synthesized gaseous Ni(CO)4 was collected in a cylindric vessel for gasphase-IR analysis and 

the rest was quenched passing the gas stream through aqueous HNO3-solution (2 M). 

 

Analytical Data 

Gasphase-IR: ��/cm-1 = 2059 (s, CO)

A B 
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6.5 Synthesis and Detection of Inorganic Pyrophosphate (PPi) 

6.5.1 Detection of PPi with fluorescent Pyrophosphate Sensor Assay 

Accumulation of PPi in synthesis reactions was monitored using the pyrophosphate (PPi) assay 

kit MAK168 of Sigma-Aldrich (St. Louis, MO, USA). The assay is based on enhanced fluorecence 

(λEx = 316 nm, λEm = 456 nm) upon binding of PPi to a sensor fluorophore. Assay mixtures were 

prepared as described in the Technical Bulletin provided by the manufacturer. Briefly, 50 µL 

aliquots of samples taken from a reaction mixture, diluted 5-fold with Tris∙HCl (pH 8), were 

mixed with 50 µL of 200x PPi sensor stock solution. Prior to recording fluorescence spectra, 

mixtures were incubated at room temperature for 20 min. 

Reference spectra were recorded to examine the sensitivity for low PPi yields and how other 

compounds in the sample influence the fluorescence intensity of the sensor. 
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6.5.1.1 Unloaded “free” fluorescent sensor  

The sensor shows fluorescence intensity without present PPi in solution (“True Backround”) 

at the excitation wavelength 316 nm and 304 nm.  

Tab. 6.3 Data from fluorescence measurements of unloades fluorescent sensor in 100 mM 

TRIS-buffer (pH 8) and H2O (Spectra see Appendix). 

  Ex  [nm]  Em  [nm] Em,max  [nm] Em,max /Int. [nm] 

„True Background“ (sensor without PPi) 

100mM TRIS, pH8 316 350-550 435 1334.9 

 H2O (ultrapure) 316 350-550 437 1282.3 

100mM TRIS, pH8 304 350-550 436 1439.6 

 H2O (ultrapure) 304 350-550 438 1400.3 
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6.5.1.2 Fluorescence Sensor + PPi   

With increasing PPi concentrations the fluorescent PPi sensort shows increasing fluorescent 

intensity and a shift of Em,max to higher wavelength. 

 

Tab. 6.4 Data from fluorescence measurements for various PPi concentrations (Spectra see 

Appendix. 

  Ex  [nm]  Em  [nm] Em,max  [nm] Em,max /Int. [nm] 

PPi, pH 8 

0.5 µM 304 350-550 439 1721.6 

1 µM 304 350-550 440 1710.4 

5 µM 304 350-550 452 5135.9 

10 µM 304 350-550 454 6390.0 

0.5 µM 316 350-550 438 1557.1 

1 µM 316 350-550 443 1709.1 

5 µM 316 350-550 453 5761.3 

10 µM 316 350-550 454 7950.0 

 

 

 

 

 

 



6. Experimental Section 
 
 

 
89 

 

6.5.1.3 Fluorescent sensor + Pi   

 

Though the fluorescent sensor is highly sensitive to PPi, it responds also to high Pi 

concentrations. 

 

Tab. 6.5 Data from fluorescence measurements for various Pi concentrations (see spectra in 

Appendix). 

  Ex [nm]  Em [nm] Em,max  [nm] Em,max /Int. [nm] 

Pi, pH 8 

10 mM 304 350-550 443 1547.1 

20 mM 304 350-550 444 1548.1 

50 mM 304 350-550 448 2537.3 

100 mM 304 350-550 450 2992.9 

10 mM 316 350-550 442 1415.7 

20 mM 316 350-550 444 1620.0 

50 mM 316 350-550 449 2507.2 

100 mM 316 350-550 450 3390.7 

 

6.5.2 PPi LightTM inorganic pyrophosphate assay 

A 5 mL sample from the crude reaction mixture was filtered, 10-fold diluted with 10 mM TRIS 

(pH 8), and purified over a strong anion exchange column (HiTrap® Q Fast Flow, Sigma Aldrich, 

bed size 16 mm × 25 mm) based on a robust, 6% highly cross-linked beaded agarose matrix 

with good flow properties and high loading capacities. The Pi -free fractions Ex3B, Ex4 an Ex5 

(Figure 6.4) were merged, applied again on an anion exchange column (HiTrap® Q Fast Flow, 
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Sigma Aldrich, bed size 7 mm × 25 mm) and eluted with triethyl ammonia bicarbonate buffer 

(TEAB, 0.4 M, 2 mL). Afterwards the eluate was lyophilized multiple times, dissolved in 

ultrapure water (500 µL) and further processed with the PPi LightTM inorganic pyrophosphate 

assay for luminescence measurements. 

The converting and detecting reagents where prepared as in the PPi LightTM inorganic 

pyrophosphate assay instruction described. Converting reagent (20 µL) was added to the 

sample (40 µL) in the 96-well F-bottom plate from Greiner Bio-One (Frickenhausen, Germany)  

 

and incubated at room temperature for 30 minutes. Then detecting reagent (20 µL) was added 

to the mixture and incubated again for 30 minutes. Afterwards the luminescence of the 

samples was read (0,1 s integrated reading) at the plate reader Cytation 3 from BioTek 

(Winooski, USA). 

Before measuring the samples, the assay was calibrated with varying PPi concentrations and 

Pi / PPi mixtures. 

 

 

Figure 6.3 Luminescence signal of varying PPi concentrations from 0.05 µM (blacksquares, 

0.2 µM (red circles), 1 µM (blue triangles), 2 µM (pink triangles) 5 µM (green 

diamond) to 10 µM (blue triangles) in 25 s. 
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Figure 6.4 Luminescence signal of a mixture of constant 100 mM Pi and varying PPi 

concentrations from 0.05 µM (blacksquares, 0.2 µM (red circles), 1 µM (blue 

triangles), 2 µM (pink triangles) 5 µM (green diamond) to 10 µM (blue triangles) 

in 25 s. 

 

The luminescence intensity increases proportional to the PPi concentration in the range of 

0.05 – 10 µM as described from the manufacturer.  

6.5.3 Prebiotic PPi Synthesis 

Reactions were carried out in a 100 mL three-necked flask equipped with a reflux condenser, 

a gas inlet tube, a rubber septum and a magnetic stirring bar. Carbon monoxide and 

methanethiol were individually passed through bubblers filled with silicon oil and united in a 

Y-junction between bubblers and gas inlet tube. The experiment was carried out as follows. A 

solution of Na2S∙9 H2O (600 mg, 2.5 mmol) in 2 mL water was added dropwise to NiCl2∙6 H2O 

(713 mg, 3 mmol) in 3 mL water. Carbon monoxide was bubbled through the resulting 

suspension and Na2HPO4 (15 mL) of a 120 mM aqueous solution, adjusted to pH 8 by addition 

of HCl was added. In a separate flask, 5 ml 600 mM Na2HPO4 (3 mmol) were added dropwise 

to 5 mL 300 mM CaCl2. The suspension of precipitated calcium orthophosphate was stirred for 

30 min, allowed to settle, washed with 3 x 5 mL 100 mM Na2HPO4, then taken up in another 

10 mL 100 mM Na2HPO4 and added to the reaction mixture to give 3 mmol of insoluble 

orthophosphate corresponding to a formal concentration of 100 mM in the total volume of 

30 mL. Concentration of soluble orthophosphate was 93.3 mM. Thereafter, the 
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methanethiol gas stream was turned on and the suspension was stirred at 60 °C. At various 

time points, samples of 1 mL each were withdrawn from the reaction mixture by syringe 

through the rubber septum and analysed with fluorescent Pyrophosphate Sensor.  

Analytical: With both soluble and insoluble Pi present in the mixture the formation of PPi was 

indicated through increasing of fluorescence intensity in the measurements. 

 

6.5.4 PPi synthesis without insoluble Ca3(PO4)2 

Reactions were carried out in a 100 mL three-necked flask equipped with a reflux condenser, 

a gas inlet tube, a rubber septum and a magnetic stirring bar. Carbon monoxide and 

methanethiol were individually passed through bubblers filled with silicon oil and united in a 

Y-junction between bubblers and gas inlet tube. The experiment was carried out as follows. A 

solution of Na2S∙9 H2O (600 mg, 2.5 mmol) in 2 mL water was added dropwise to NiCl2∙6 H2O 

(713 mg, 3 mmol) in 3 mL water. Carbon monoxide was bubbled through the resulting 

suspension and Na2HPO4 (25 mL) of a 120 mM aqueous solution, adjusted to pH 8 by addition 

of HCl was added. Thereafter, the methanethiol gas stream was turned on and the suspension 

was stirred at 60 °C. At various time points, samples of 1 mL each were withdrawn from the 

reaction mixture by syringe through the rubber septum and analysed with fluorescent 

Pyrophosphate Sensor.  

Analytical: Without insoluble Pi no increasing fluorescent signal could be observed between 

0- and 8-hours reaction time. 

 

6.5.5 With insoluble 100 mM Ca3(PO4)2 and without soluble Na2HPO4 

Reactions were carried out in a 100 mL three-necked flask equipped with a reflux condenser, 

a gas inlet tube, a rubber septum and a magnetic stirring bar. Carbon monoxide and 

methanethiol were individually passed through bubblers filled with silicon oil and united in a 

Y-junction between bubblers and gas inlet tube. The experiment was carried out as following 

described. A solution of Na2S∙9 H2O (600 mg, 2.5 mmol) in 2 mL water was added dropwise to 

NiCl2∙6 H2O (713 mg, 3 mmol) in 3 mL water. In a separate flask, 10 ml 600 mM Na2HPO4 (3 

mmol) were added dropwise to 10 mL 300 mM CaCl2. The suspension of precipitated calcium  
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orthophosphate was stirred for 30 min, allowed to settle, washed with 3 x 10 mL 100 mM 

Na2HPO4, then taken up in another 10 mL 100 mM Na2HPO4 and added to the reaction mixture 

to give 3 mmol of insoluble orthophosphate corresponding to a formal concentration of 

100 mM in the total volume of 30 mL adjusted with ultrapure water.  Thereafter, the 

methanethiol gas stream was turned on and the suspension was stirred at 60 °C. At various 

time points, samples of 1 mL each were withdrawn from the reaction mixture by syringe 

through the rubber septum and analysed with fluorescent Pyrophosphate Sensor. 

Analytical: Without insoluble Pi no increasing fluorescent signal could be observed between 

0- and 8-hours reaction time. 

 

6.5.6 With soluble 10 mM Na2HPO4 and insoluble Ca3(PO4)2 

The prebiotic synthesis reaction of PPi was exactly carried out as described in 6.5.1, but the 

concentration of soluble ortho phosphate was decreased from 93.3 mM to 10 mM Pi. 

Analytical: With decreased soluble Pi from 93.3 mM to 10 mM Pi no increasing fluorescent 

signal could be observed between 0- and 8-hours reaction time. 

 

6.6. Purification with Anion Exchange Chromatography 

6.6.1. Separation of adenosine, AMP, ADP and ATP by HPLC 

In sample present Pi impede the PPi signal in fluorescent and bioluminescent assay. Therefore, 

Pi / PPi containing samples were purified on HPLC at strong anion exchange (SAX) column. 

Purification attempts on HPLC were carried out with assistance of reference chromatograms 

of the nucleotides AMP, ADP, ATP and Adenosine due to missing chromophores in Pi and PPi. 

The retention time of Pi and PPi could be estimated from the retention times of the equally 

charged nucleotides. 

A mixture of each 5 mM Adenosine, AMP, ADP and ATP was prepared and applied on SAX 

column Spherisorb SAX phases from Waters.  The sample was analysed with analytical HPLC 

system by JASCO (see Experimental Section 6.2), purified with a preparative HPLC system from 

Jasco and detected at  = 254 nm and 260 nm.  
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The flow rates with 1mL/min for analytical and 8 mL/min for preparative runs were adjusted. 

Used solvents for HPLC analysis was listed below. 

 

Tab. 6.6 Solvent systems used for HPLC analysis of adenosine, AMP, ADP and ATP. 

Solvent A Solvent B 

H2O 100 mM (Na+/NH4
+) Acetate, pH 8 

H2O + 0.1 % TFA MeOH 

 

Analytical Data 

HPLC (JASCO): Gradient: 5  70 % B in 30 min. Retention times (tR): Adenosine tR = 2 min, 

AMP tR = 12 min, ADP tR = 21 min and ATP tR = 27 min. 

 

6.6.2 Mono Q Chromatography 

A 5 mL sample from the crude reaction mixture (Experimental Section 6.6.1) was filtered, 10-

fold diluted with 10 mM TRIS (pH 8), and purified over a strong anion exchange column 

(HiTrap® Q Fast Flow, Sigma Aldrich, bed size 16 mm × 25 mm) based on a robust, 6% highly 

cross-linked beaded agarose matrix with good flow properties and high loading capacities. The 

compounds were eluted sequentially with increasing concentrations of NaCl solution (0.04-

1 M). The eluted aliquots were analysed with 31P-NMR to discover in which fractions Pi and P 

Pi were present. Afterwards the Pi -free fractions were merged, applied again on an anion 

exchange column (HiTrap® Q Fast Flow, Sigma Aldrich, bed size 7 mm × 25 mm) and eluted 

with triethyl ammonia bicarbonate buffer (TEAB, 0.4 M, 2 mL). Then the eluate was lyophilized 

multiple times, dissolved in ultrapure water (500 µL) and further processed with the PPi 

LightTM inorganic pyrophosphate assay for luminescence measurements. 
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Figure 6.5     Pi -free sample preparation on strong anion exchange column (HiTrap® Q Fast 

Flow, 5 mL). 5 mL of a crude reaction sample was diluted with 45 mL Basis-

Buffer BP (10mM TRIS/HCl, pH 8). The sample was eluted with increasing NaCl-

concentrations and collected aliquots were analysed with 31P-NMR. The Pi -free 

fractions were merged, diluted with BP and applied again on a smaller strong 

anion exchange column (HiTrap® Q Fast Flow, 1 mL). The sample was eluted 

with 0.4 M Triethyl ammonia bicarbonate buffer (TEAB) and lyophilized multiple 

times to obtain the eluted product (EP*) 

 

 

 

 

 

 

 



6. Experimental Section 
 
 

 
96 
 

6.7 Hydrolysis Kinetics 

6.7.1 Acetyl Phosphate (AcP) Hydrolysis Kinetics 

Spectra were recorded using an AV 401 spectrometer by Bruker (Billerica, Massachusetts, 

USA) equipped with a heater for setting variable temperatures. The spectrometer was field 

frequency locked on the deuterium resonance of deuterium oxide (D2O) used as a solvent. 

The spectra are referenced to external 85% phosphoric acid (H3PO4), which accomplished 

electronically using the lock signal without running the spectrum of the standard sample 

every time. All Spectra were broadband 1H-decoupled, and the chemical shifts are given in 

parts per million (ppm). All FIDs are processed with an exponential multiplication prior to 

Fourier transform. Spectra are baseline- and phase corrected before they are fitted with the 

T1/T2 relaxation module of the software TopSpin (version 3.6.2).  

Sample Preparation 

Samples of acetyle phosphate (3.7 mg, 20 mmol) and pyrophosphate (8.92 mg, 20 mM) were 

dissolved in 100 mM TRIS∙HCl buffer (pH 8, 10 % D2O, 1 mL) and transferred to NMR-Tubes. 

For acetyl phosphate 31P-NMR spectra were recorded in 5-minute intervals at room 

temperature, 30°C, 40°C, 50°C and 60°C in 60 minutes (Figure 4.27). Samples of 

pyrophosphate were incubated from 0-11 d at 60°C and analysed with 31P-NMR 

spectroscopy (Figure 4.28). The pH-value of all samples (pH 8) were monitored and did not 

change before and after the measurements.  

The samples of acetyl phosphate (3.7 mg, 20 mmol) dissolved in 100 mM TRIS∙HCl buffer 

(10 % D2O, 1 mL) were transferred to NMR-Tubes and measured at different temperatures 

(22-60°C) over a time period between 20-180 minutes.31P-NMR spectra were recorded at 

AV 401 spectrometer by Bruker (Billerica, Massachusetts, USA) equipped with a heater for 

setting variable temperatures. The spectrometer was field frequency locked on the 

deuterium resonance of deuterium oxide (D2O) used as a solvent. The spectra are referenced 

to external 85% phosphoric acid (H3PO4), which accomplished electronically using the lock 

signal without running the spectrum of the standard sample every time. All Spectra were 

broadband 1H-decoupled, and the chemical shifts are given in parts per million (ppm). All 

FIDs are processed with an exponential multiplication prior to Fourier transform. Spectra are 
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baseline- and phase corrected before they are fitted with the T1/T2 relaxation module of the 

software TopSpin (version 3.6.2) (see spectra in Appendix). 
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6.7 Peptide Synthesis 

 

The Peptide sequence was synthesized using manual or automated Solid Phase Peptide 

Synthesis (SPPS) 

 

 

6.7.1. Manual SPPS 

For 0.076 mmol scale 200 mg Rink amide resin MESH 200 (0.38 mmol/g) was swollen in DMF 

for 2 hours. Afterwards the swollen resin was transferred to a PE-frit BD syringe, washed 

(3 x DMF, 3 x NMP) and Fmoc deprotection was carried out with piperidine (20 %, in DMF, 

1 mL, v/v) microwave assisted using a Discover microwave (MW) from CEM (Kamp-Lintford, 

Germany) at 50°C and 25 W for 300 s. Then Fmoc protected amino acids (3 eq., Tab.1) were 

added to a solution of HOBt (3 eq.) in DMF and dissolved with a sonicator. Then NMP (250 µL), 

DMF (250 µL) and DIC (58 µL) were added to the solution and directly transferred to the resin.  

 

Tab.6.7 Initial weight of protected amino acids for peptide synthesis in a 0.076 mmol scale. 

Amino Acid m [mg] 

Phe (Fmoc) 147.2 

Cys (MMT) 233.07 

Gly (Fmoc) 113.0 

Cys (MMT) 233.7 

Ser (But) 145.7 

The double coupling process was started under microwave irradiation (50°C, 25 W, 10 min.). 

Afterwards the resin was washed (7 x DMF) and the double coupling process was repeated for 
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the residual amino acids. For the double coupling process of the amino acid Cystein (MMT) 

the temperature and microwave irradiation were decreased to 40 °C, 20 W for 10 min. 

As soon as the peptide sequence was completed Ac2O (1mL), DIPEA (1 ml) and NMP 80 ml) 

were added to the resin to block residual free amino functionalities and shaked for 10 min at 

room temperature.  After thoroughly washing the resin with DMF (3 x 1 mL), DCM (3 x 1 mL) 

and MeOH (3 x 1 mL), it was dried under reduced pressure in the desiccator.  

 

6.7.2. Automated SPPS 

Peptide sequences were synthesized with automated Liberty Blue synthesizer by CEM 

(Matthews, North Carolina, USA) connected to a Discover microwave unit by CEM. 

0.2 M amino acids solutions in DMF (Tab.6.8) were prepared. Phe (Fmoc) was filtered before 

use. The Rink-Amide LL (357 mg) was swollen for 1 h at room temperature and transferred to 

a reaction vessel. 

 

Tab.6.8 Protected amino acids for automated peptide synthesis in a 0.25 mmol scale. 

Amino Acid 

 

m [mg] 

Phe (Fmoc) 360 

Cys (MMT) 1540 

Gly (Fmoc) 510 

Ser (But) 630 

 

For the deprotection of the protecting groups a solution of piperidine in DMF (20 %, v/v) was 

used. A solution of DIC (0.5 M in DMF) for amino acid activation and Oxyma (1 M in DMF) as 

activator base were prepared. After all solutions were set and placed at the designated 

positions, the synthesizer was started. The first step was the deprotection and removal of 

Fmoc protection group under microwave irradiation (i) 75°C, 90 W, 15s, ii) 90°C, 20 W, 50 s). 

After washing with DMF (4 x 4 mL) the amino acids (5 eq) were transferred together with DIC  
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(5eq.) and Oxyma (5 eq.) to the resin. Next the double coupling started under microwave 

irradiation (i) 75°C, 170 W, 15 s, ii) 90°C, 30 W, 110 s).  For the attachment of Cys (MMT) the 

microwave conditions were reduced to 50°C, 30 W, 110 s. After the peptide sequence was 

finished, the resin was transferred to a PE-frit BD syringe, washed thoroughly with DCM 

(7 x 2 mL), MeOH (3 x 2 mL) and dried under reduced pressure in the desiccator.  

 

6.7.3 Cleavage from Resin 

The peptide sequence was cleaved from resin in an BD syringe equipped with PE-frit. A 

cleavage mixture containing TFA/H2O/EDT/TIS (94 : 2.5 : 2.5 : 1) was prepared and added to 

the resin. Afterwards the resin shaked at least for 2 h, but not longer than 3 h at room 

temperature. After treated with the cleavage cocktail, the solution was filtered from the resin, 

washed with the cleavage mixture (2 x 3 mL), collected in a tube and concentrated in a 

nitrogen stream. Thereafter, the crude peptide was precipitated with icecold diethylether (or 

methyl tert-butyl ether) and centrifuged (9000 rpm, 30 min, -15°C). In the next step the pellet 

was separated from the solvent and dried under reduced pressure in desiccator. The crude 

peptide was stored under oxygenfree atmosphere to avoid disulfide bridge formation 

between the sulfides of the cysteins in the peptide. 

 

 

 

The crude peptide was dissolved in MeOH and purified via HPLC. The HPLC conditions are 

described in the following: 

 

Column:                  MN Nucleodur, C18, 250 x 4.6 mm, 100 Å, 5 µm 

             Gradient:                10  90 % MeCN in 50 min 
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             Solvent A:               H2O + 0.1 % TFA 

             Solvent B:               MeCN 

 

With a retention time (tR) of 16 min the peptide eluated from column and was analysed further 

with ESI-MS. 

 

Analytical data 

MS (ESI): m/z (%) = 557.2 (21) [M+H]+, 579.2 (99) [M+Na]+. 

HR-MS (ESI): calc. for C22H32N6O7S2 [M+H]+: 557.1847, found: 557.1843; 

calc. for C22H32N6O7S2Na [M+Na]+: 579.1666, found: 579.1667. 

 

 

Figure 6.6 In the ESI-MS spectrum from the synthesized peptide the peaks for 579.2 [M+Na]+ 

and 557.2 [M+H]+ were detected. 

 

6.8. Experiments towards Peptidic Minimal Models of Acetyl-CoA Synthase (ACS) 

The synthesis of peptide coordinated products were highly sensitive to oxygen and therefore 

performed in a Glovebox.  
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1. Step 

 

 

The synthesized and purified peptide (12 mg, 0.01 mol, see Experimental Section 6.7) was 

dissolved in dry toluol (1 mL). Ni(acac)2 (5 mg, 0.02 mmol) was also dissolved in dry DMF (1 mL) 

and added to the peptide solution. The clear solution turned subsequently to red and after 

30 min KOH (2.2 mg, 0.04 mol) was added to the solution. The mixture stirred for 12 h at room 

temperature in the Glovebox.  

After separation of the solid KOH, dry diethylether was added to precipitate the 

product (5.5 mg, 0.008 mmol) as highly pink solid. 

 

Analytical data 

MS (ESI, negative mode): m/z (%) = 611.1 (11) [M-K2]2-. 

HR-MS (ESI): calc. for C22H29N6O7S2Ni [M-K2]: 611.0887, found: 611.0891. 

UV-Vis: max = 450 nm, 350 nm, 250 nm. 
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Figure 6.7 In the ESI-MS spectrum from the nickel complex the calculated peak for m/z [M-K2]- 

611.0863 was detected. 

 

2. Step 

 

Ni

N S

N S

O

O

Ser(NHAc)

(H2NOC)Phe

DMF, 12h

Ni

N S

N S

O

O

Ser(NHAc)

(H2NOC)Phe

Ni

P

P

(Ph)2

(Ph)2

C49H55N6Ni2O7P2S2

1083.18 g/mol

Ni

(Ph)2

(Ph)2

Cl

Cl

+

 

 

To K2[Ni(SCGCF)] (5.5 mg, 0.008 mmol) dissolved in DMF (2 mL) was 1,2-

Bis(diphenylbosphino)ethane nickel(II) chloride (4 mg, 0.007 mmol) dissolved in DMF (2 mL) 

added. The reaction mixture was stirred for 12 h at room temperature in the glovebox. 

Afterwards diethylether was added to precipitate the product, which was washed with MeCN 

and dried under reduced pressure in the desiccator.  
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Analytical data 

MS (ESI): m/z (%) = 1083.2 (11) [M]. 

HR-MS (ESI): calc. for C49H55N6O7S2Ni2P2 [M]: 1083.1709, found: 1083.1701. 

 

 

Figure 6.8 In the ESI-MS spectrum from the nickel complex the calculated peak for m/z [M] 

1083.1701 was detected. 
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Appendix 

 

A.1. Calibration measurements of fluorescent Pyrophosphate Sensor Assay 

 

Figure A.1  Fluorescent PPi-sensor in water (red course) and in 100 mM TRIS (pH 8, black 

course) at EX = 304 nm. 

 

 

 

Figure A.2: Fluorescent PPi-sensor in water (red course) and in 100 mM TRIS (pH 8, black 

course) at EX = 316 nm. 
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Figure A.3   PPi Fluorescent PPi-sensor + 0.5 µM PPi (red course), 1 µM PPi (green course), 

5 µM PPi (blue course) and 10 µM PPi (light blue course at EX = 304 nm, pH 8. 

 

 

 

Figure A.4  PPi Fluorescent PPi-sensor + 0.5 µM PPi (black course), 1 µM PPi (red course), 5 µM 

PPi (green course) and 10 µM PPi (blue course at EX = 316 nm. 
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Figure A.5 PPi Fluorescent PPi-sensor + 0.5 µM PPi (black course), 1 µM PPi (red course), 10 µM 

PPi (green course) and 10 µM PPi (light blue course at EX = 304 nm and pH 10. 

 

 

 

Figure A.6 Fluorescent PPi-sensor + 0.5 µM PPi (black course), 1 µM PPi (red course), 10 µM 

PPi (green course) and 10 µM PPi (light blue course at EX = 316 nm and pH 10. 
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Figure A.6  Fluorescent PPi-sensor + 10 mM Pi (black course), 20 mM PPi (red course), 50 mM 

PPi (green course) and 100 mM PPi (light blue course at EX = 304 nm. 

 

 

Figure A.7 Fluorescent PPi-sensor + 10 mM Pi (black course), 20 mM Pi (red course), 50 mM 

PPi (green course) and 100 mM PPi (light blue course at EX = 316 nm 
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A.2 Further Kinetical measurements of prebiotic reaction 

 

Figure A. 8 Absorbance integral of adenosine signals against time as a measure of reaction 

progress.  

 

 

Figure A.9 Absorbance integral of adenosine signals against absorbance integral of aniline 

signals against time as a measure of reaction progress.  
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Figure A.10 Absorbance integral of adenosine signals against absorbance integral of N-

acetylaniline signals against time as a measure of reaction progress 

 

 

A.3 31P-NMR of PPi, Pi and AcP 

 

A.11 Stacked 31P-NMR spectra from 20 mM AcP (in 25 mM TRIS, pH 8) at 30°C. In 5 min 

intervals spectra were recorded for 80 min. The signal at ~2.05 ppm is attributed to Pi, 

at ~1.8 ppm to AcP and at ~-6.95 ppm to PPi. 
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A.12 Stacked 31P-NMR spectra from 20 mM AcP (in 25 mM TRIS, pH 8) at 60°C. In 5 min 

intervals spectra were recorded for 80 min. The signal at ~2.05 ppm is attributed to Pi, 

at ~1.8 ppm to AcP and at ~-6.95 ppm to PPi. 
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A.13 Stacked 31P-NMR spectra from 20 mM AcP (in 25 mM TRIS, pH 8) at 50°C. In 5 min 

intervals spectra were recorded for 60 min. The signal at ~2.05 ppm is attributed to Pi, 

at ~1.8 ppm to AcP and at ~-6.95 ppm to PPi. 
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A.14 Stacked 31P-NMR spectra from 20 mM AcP (in 25 mM TRIS, pH 8) at 60°C. In 5 min 

intervals spectra were recorded for 60 min. The signal at ~2.05 ppm is attributed to Pi, 

at ~1.8 ppm to AcP and at ~-6.95 ppm to PPi. 
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A.15  Stacked 31P-NMR spectra from 20 mM PPi (H2O, pH 7) at 60°C. The spectra were recorded 

after 0, 1, 3, 4, 5 and 10 days. The signal at ~2.5 ppm is attributed to Pi and at ~-7.21 ppm 

to PPi.
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Abbreviations  

AcP acetyl phosphate 

ACS acetyl-CoA synthase 

ADP Adenosine diphosphate 

AMP Adenosine monophosphate 

ATP Adenosine triphosphate 

CO Carbon monoxide 

CoA Coenzyme A 

CODH carbon monoxide dehydrogenase 

DCM dichloromethane 

DIC N, N diisopropylcarbodiimid 

DIPEA N,N-diisopropylethylamine 

DMF dimethylformamide 

EDT 1,2-ethanedithiole 

ESI-MS electrospray ionisation mass spectrometry 

FeS Iron sulfide 

Fmoc 9-fluorenylmethoxycarbonyl protection group 

Ga "giga anum", billion years 

gasphase-IR Gasphasen Infrared Spectroscopy 

HATU 1-(bis(dimethylamino)methylene)-1H-1,2,3-triazolo[4,5-b] 

HOBt 1-Hydroxybenzotriazol 

HPLC high performance liquid chromatography 

HR-MS high resolution mass spectrometry 

LC-MS) Liquid Chromatography Mass Spectrometry 

LMCT ligand-metal-charge-transfer 

LUCA Last Universal Common Ancestor 

MeCN acetonitrile 

MeOH methanol 
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MMT Monomethoxytrityl 

Ni(COD)2 bis(cyclooctadiene)nickel(0) 

Ni(dppe)Cl2 1,2-Bis(diphenylbosphino)ethane nickel(II) 

NiS Nickel sulfide 

NMP N-methylpyrrolidone 

NMR nuclear magnetic resonance 

Pi orthophosphate 

PPi inorganic Pyrophosphate 

rp reversed phase 

rt room temperature 

SAX strong anion exchange 

SPPS Solid Phase Peptide Synthesis 

TEAB triethyl ammonia bicarbonate 

TEAC trietyl ammonium citrate 

TFA trifluoroacetic acid 

TIS triisopropylsilane 

TLV threshold limit value 

tR retention times 

TRIS 2-Amino-2-(hydroxymethyl)propane-1,3-diol 

WLP Wood-Ljungdahl pathway
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