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1.General Introduction 
 

I. Chromatin plasticity and gene expression 
 

• Epigenetics and histone modifications 
 
Eukaryotic cellular DNA being tightly packed with histone proteins in the nucleus is 

termed as chromatin. While gene expression was thought to be controlled only by the 

DNA sequences, decades of research have established epigenetic control being equal or 

even more important in transcriptional control of a typical cellular event, more 

importantly, as a sensor to communicate between gene and environment (Marsit 2015). 

We now know that the DNA of a given eukaryotic cell is tightly packed in a chromatin 

environment, of which, nucleosome is the fundamental subunit consisting of 147 base 

pairs of DNA, wrapped twice around octameric histone proteins.  

 

  
Diagram 1: Depiction of gene-chromatin environment inside a eukaryotic cell nucleus. 
Numbering refers to the layers of epigenetic and transcriptional controls for gene 
expression. 
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Epigenetic regulation comes in different modalities. The term “Epigenetics” originally 

implies changes in phenotypes without the change of the genotype (Waddington 1942). 

Among the most studied epigenetic mark is the cytosine-5 methylation in the DNA itself, 

enriched at CpG (Cytosine-Guanine rich) islands, that inversely correlates with gene 

expression(Jones 2012, Jones, Goodman et al. 2015, Kim and Costello 2017). Other key 

epigenetic regulations discovered till today are histone modifications, histone variants, 

microRNA, circular RNA, long noncoding RNA and RNA methylation (Fischer 2014, Chen, 

Li et al. 2017, Wei, Huang et al. 2017, Meng, Zhou et al. 2019, Mongan, Emes et al. 2019).  

However, discussion for all the other types of epigenetic mechanisms is beyond the 

scope of this thesis. Therefore, I will focus only on describing histone modification, which 

is part of this thesis work and probably one of the most widely studied epigenetic 

mechanisms till date.  

 
Diagram 2: Diverse histone modifications at its N-terminal tail. Major modifications are 
methylation, acetylation, ubiquitination and phosphorylation. 

Histone proteins are divided into 5 major classes. H1 (linker histone), H2A, H2B, H3 and 

H4 (core histones) are some of the most long lived proteins in a cellular system (Bhasin, 

Reinherz et al. 2006, Toyama, Savas et al. 2013). They are positively charged due to their 



General Introduction 

 3 

abundance in arginine and lysine contents, by which they form dimers of each core 

histones and produces octameric nucleosome to form chromatin with the negatively 

charged DNA. 

 

• Histone modifications mediate gene expression control 
 

Nucleosome core histones can bear hundreds of different chemical modifications 

including acetylation, methylation, phosphorylation, ubiquitination etc. Earliest evidence 

of histone modification was shown from the study by Allfrey et. Al, where they showed 

for the first time that histones can be acetylated and methylated using radio isotope 

labelling and proposed its role in gene expression regulation around 55 years ago(Allfrey, 

Faulkner et al. 1964). Apart from these modifications, there are several new modifications 

discovered till today where the authors found that histones can be tagged with dopamine 

or serotonin, two key neurotransmitters of the brain. Hence they are called histone 

dopaminylation and serotonylation, which have been shown to be involved in 

transcriptional plasticity (Farrelly, Thompson et al. 2019, Lepack, Werner et al. 2020). 

These new found modifications suggest that there still might be undiscovered histone 

modifications to be found in future. 

 
Diagram 3: Example of enzymatic histone modifications resulting in open or closed 
chromatin, thereby inducing or inhibiting gene transcription. For acetylation, Acetyl-CoA 
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and for methylation, S-adenosyl methionine (SAM) moiety is being used to chemically 
modify histones.  

While histones can be chemically modified by its “writer”, it is not permanent, and can be 

reversed by specific enzymes termed as “erasers”. Based on their dynamic interplay, 

histone modifications form the “Histone code” that regulates gene transcription. The two 

most common marks, histone acetylation and methylation are chemically added or 

removed via vast numbers of histone acetyltransferases (HAT) and histone deacetylases 

(HDAC) or histone methyltransferases (HMT) and histone demethylases (HDM), 

respectively (Hyun, Jeon et al. 2017, Xu, Zhang et al. 2017). 

 

Histone modifications effect chromatin conformation and/or gene expression mainly via 

two different processes(Bannister and Kouzarides 2011);  

(i) Influencing chromatin structure by opening with an activatory or closing them 

with an inhibitory histone mark (Diagram 3), and 

(ii) They act as molecular beacons to attract effector molecule binding, be it 

transcriptional activator or repressor. 

Although many of these mechanisms are currently being heavily studied, we are still on 

the way of understanding and deciphering more. However, it is evident that histone 

modifications are strong predictors of gene expression (Karlic, Chung et al. 2010). 

 

• Bivalent chromatin region: pathway to neurodegeneration?  
 
“Bivalent domain” or “Bivalent region” were first coined in 2006 when the authors found 

activatory H3K4me3 and inhibitory H3K27me3 marks at essentially the same genomic 

regions while studying mouse embryonic stem cells (Bernstein, Mikkelsen et al. 2006). 

They were found at silent promoter regions which were supposed to code for 

developmentally expressed transcription factors. But they were not expressed since they 

were in “poised” state due to having bivalent promoters, but were later expressed during 

cell differentiation. Interestingly, genes were activated by losing the inhibitory H3K27me3 

or inhibited by losing the activatory H3K4me3 mark from the bivalent regions. These 

histones of bivalent chromatin regions are modified by two groups of proteins, Trithorax 

group (TrxG, responsible for H3K4me3) and Polycomb group (PcG, responsible for 

H3K27me3) proteins (Geisler and Paro 2015, Harikumar and Meshorer 2015, Blanco, 

Gonzalez-Ramirez et al. 2020).  
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Although bivalent regions are extremely important in cell developmental stages and 

differentiation, recent publication have implicated role of bivalent promoter regions to be 

crucial in adult neurons, where the authors have shown that bivalent promoters suppress 

developmental and non-neuronal gene expression in adult neurons and genetic knockout 

of PcG proteins led to de-repression and activation of those silent promoters, allowing 

neurons to have aberrant gene transcription and eventually neurodegeneration in mice 

cerebellum (von Schimmelmann, Feinberg et al. 2016). All these evidences suggest that 

further investigation is needed to untangle the role of bivalent chromatin regions in 

aspect of aging, dementia and hippocampal memory impairment.  

 
 
 

II. Nuclei instead of cells as next generation approach for 

brain cell type specific investigations 
 
Our brain is an ensemble of billions of neurons and non-neuronal cells, encompassed by 

uncountable number of synapses that is rapidly firing every second, which is the basis of 

sensory-motor control, cognition, learning, memory formation and retrieval of memory. It 

is of paramount importance to fully understand individual cell type specific gene 

expression and epigenome to fully comprehend the concurrent mechanisms and 

discover novel therapy options where the origin of any diseases is thought to be 

potentially starting from few deregulated, distinct cell types. While utilizing fluorescence-

activated cell sorting (FACS) have been generally utilized to produce cell type specific 

data from the brain (Saxena, Wagatsuma et al. 2012, Abruzzi, Chen et al. 2015, Okaty, 

Freret et al. 2015), it is not a viable method as it is difficult to isolate whole cells from the 

brain and using protease based cell dissociation methods led to unwanted gene and 

protein expression changes during sample processing(Huang, Hsing et al. 2010). 

 

The very first attempt of isolating and FACS sorting distinct cell type from the brain was 

performed in 1977 (Campbell, Schanchner et al. 1977), where the authors, for the first 

time, did density gradient centrifugation and subsequent FACS sorting for glia enriched 

cell populations from the mouse cerebellar cortex. The discovery of pan-neuronal nuclei 
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marker protein and monoclonal antibody for its detection(Mullen, Buck et al. 1992) led 

towards utilizing this antibody to FACS sort neuronal nuclei specifically and study DNA or 

chromatin modifications for the first time (Siegmund, Connor et al. 2007, Jiang, 

Matevossian et al. 2008). Throughout last decade, nuclei-based methods to study cell 

type specific genomics have been on exponential level, with its wide ranges of application 

in RNAseq, ChIPseq, ATACseq, single nuclei RNAseq and so on (Nishioka, Shimada et al. 

2013, Dincer, Gavin et al. 2015, Krishnaswami, Grindberg et al. 2016, Lacar, Linker et al. 

2016, Fullard, Giambartolomei et al. 2017, Habib, Avraham-Davidi et al. 2017, Reddy, 

O'Brien et al. 2017).  

 

Diagram 4: Utility of brain nuclei isolation for multi-omics studies. Isolated nuclei can be 
subjected to cell type specific sorting and subsequent analysis of gene expression, 
epigenome or even proteome.  

Apart from RNA and DNA based studies, nuclei sorting has also been used to profile 

protein mass-spec based studies where neuronal and non-neuronal nuclear protein half-

lives were measured (Fornasiero, Mandad et al. 2018, I am an author in this study). Major 

utility of this method is unbiased isolation of intact cell nuclei that can be used to either 

FACS sort cell types of interest using antibody targeting nuclear protein markers, or use 
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this nuclei suspension to perform single nuclei RNA sequencing. This avoids harsh 

treatments applied to isolate whole cells that perturbs gene expression. Studies have 

compared nuclear and cellular gene expressions and concluded that nuclear 

transcriptome can substitute whole cell based transcriptome given the high correlation 

(Grindberg, Yee-Greenbaum et al. 2013). Moreover, nuclei-based methods enable to 

utilize frozen tissues from archived patient brain samples that can unlock plethora of new 

data for more precise measurements of genome information.  

 

 

 

III. Cortical folding: tale of the progenitors 
Cerebral cortex regulates complex social behaviors in the mammalian brain. Mammalian 

species have great variation with cortical dimensions, even though body-size : brain-

weight is not correlated with intelligence (Striedter 2005, Zilles, Palomero-Gallagher et al. 

2013). In pathological terms, having both smaller or larger brains then usual (termed as 

micro- or macro- cephaly, respectively) can be prognosed with intellectual disabilities, 

autism and cognitive disorders (Woods, Bond et al. 2005, Olney 2007). Cortical 

development relies upon augmented neural progenitor and neural stem cell division 

during embryogenesis, and concomitant differentiation into mature neurons. This in turn 

leads to subsequent folding of the cortex. Evolutionarily, small mammals, primarily 

rodents and small primates have smooth-surfaced brain (lissencephalic), while most 

primate brains and ferrets have folded cortices (gyrencephalic)(Kelava, Lewitus et al. 

2013). 

(continued to next page….) 
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Diagram 5: Difference of basal intermediate progenitor (bIP) cell numbers could 
potentially give rise towards gyration of primate(human) brains. aIPs = apical 
intermediate progenitors, aRGCs = Apical radial glial cells, bIPs = Basal intermediate 
progenitors, bRGCs = Basal radial glial cells, CP = cortical plate, IZ = intermediate zone, 
SVZ = subventricular zone, ISVZ = inner SVZ, OSVZ = outer SVZ, VZ = ventricular zone. 
Adapted from Sun and Hevner 2014. 

Previous studies have identified several key molecular underpinnings of cortical folding, 

ranging from role of cell cycle related genes (Estivill-Torrus, Pearson et al. 2002, Chen, 

Melendez et al. 2009, Glickstein, Monaghan et al. 2009, Mi, Carr et al. 2013), neuronal 

apoptosis (Haydar, Kuan et al. 1999), microRNAs (De Pietri Tonelli, Pulvers et al. 2008, 

Hong, Zhang et al. 2013, Saurat, Andersson et al. 2013) and asymmetric-symmetric 

division (Cappello, Attardo et al. 2006). All these mechanisms point towards core 

mechanistic role of neural progenitors, specifically basal intermediate progenitor cells 

(bIPs), controlling the gyrification across mammals, as well as in human abnormal 

cortical size related diseases (Kriegstein, Noctor et al. 2006, Lange, Huttner et al. 2009, 

Gruber, Zhou et al. 2011). Since the number of bIPs vary across lissencephalic and 

gyrencephalic mammals evolutionarily (Sun and Hevner 2014), the “Intermediate 

progenitor hypothesis” suggests that differential proliferation rate of bIPs contributes 
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towards cortical folding (Kriegstein, Noctor et al. 2006). Typically, bIPs expresses 

Eomesodermin/Tbr2(T-box brain protein 2) gene, a nuclear protein. Antibody against it 

can be used to visualize bIPs in brain sections via immunohistochemistry (Mutch, Schulte 

et al. 2010, Narayanan, Pham et al. 2018). As no epigenetic mechanisms has been 

discovered before controlling this process of gyrification, it will be highly interesting to 

utilize nuclei isolation, staining and sorting of Tbr2 nuclei specifically to study epigenome 

and gene expression in context of cortical folding in different mammalian species 

(demonstrated in manuscript 1).  

 

 

 

IV. Histone H3K4 methylation, learning and memory 
As discussed in the first section, histone modifications are crucial epigenetic processes 

regulating gene expression, thereby protein synthesis. Among all the marks, Histone 3 

Lysine 4 (H3K4me) methylation is a prominent and conserved epigenetic mark that 

denotes transcriptional activation, either being present at mono-methylation form 

(H3K4me31) at the enhancers or tri-methylation form (H3K4me3) at the promoter 

elements of a gene (Diagram 6). While memory formation in the brain, i.e. encoding, 

consolidation and recall happens due to trillion neuronal synapses, gene transcription 

and protein translation seems to be an absolute requirement due to classical 

neurobiological experiments linking neuronal long-term potentiation (LTP) and de novo 

protein synthesis (reviewed in Fischer 2014). In the last decade, functional studies of 

lysine methyl transferases and demethylases has strengthened the fact that H3K4 

methylation is a fundamental neuroepigenetic factor for learning and memory formation 

related transcriptional programs (Gupta, Kim et al. 2010, Kerimoglu, Agis-Balboa et al. 

2013, Aguilar-Valles, Vaissiere et al. 2014, Jakovcevski, Ruan et al. 2015, Shen, Jiang et 

al. 2016, Kerimoglu, Sakib et al. 2017, Scandaglia, Lopez-Atalaya et al. 2017, Webb, 

Sanchez et al. 2017). Mutations in writers or erasers of H3K4 methylation have been 

implicated in severe cognitive disorders such as autism, schizophrenia, intellectual 

disability and other rare diseases affecting the brain (Jensen, Amende et al. 2005, Ng, 

Bigham et al. 2010, Jones, Dafou et al. 2012, Dong, Walker et al. 2014, Takata, Xu et al. 

2014, Tunovic, Barkovich et al. 2014, Zech, Boesch et al. 2016).  
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Diagram 6: Stepwise H3K4 methylation and enrichment patters in genomic elements 
such as promoters or enhancers. While H3K4me1 is mostly present at enhancers, 
H3K4me3 is exclusively present at transcription start sites (TSS). Adapted from (Collins, 
Greer et al. 2019) 

Writers of H3K4 methylation have been functionally conserved from yeast to drosophila 

till mammals (Shilatifard 2012). For any given histone methyltransferase, SET domain 

(Su(var)3-9, Enhancer-of-zester and Trithorax) performs the catalysis of modifying H3K4 

with methyl groups, sourced from S-adenosyl methionine (SAM) moiety (Shilatifard 

2012). There are currently six histone methyltransferases and another six histone 

demethylases identified and functionally characterized in mammals (Allis, Berger et al. 

2007). Our lab is particularly interested into histone methylation machineries and we have 

previously shown two histone methyltransferases, namely Kmt2a and Kmt2b to be 

involved in learning and memory formation (Kerimoglu, Agis-Balboa et al. 2013, 

Kerimoglu, Sakib et al. 2017). While different histone methylation machineries have been 

implicated into completely different human diseases, it is of utmost importance to 

functionally characterize all other HMTs and HDMs in aspect of learning and memory 

formation to gain deeper insight of the H3K4 methylation dynamic ranges with respect to 

neuronal functions. In this aspect, in this thesis, I have characterized one of the key 

histone methyltransferases implicated in intellectual disability and autism, Setd1b and its 

molecular imprints due to loss of function specifically from the forebrain excitatory 

neurons (demonstrated in manuscript 2).  
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V. Aging related dementia and epigenetic therapy 
Dementia and cognitive decline are parts of normal aging, manifested by progressive 

worsening of declarative memory, namely the ability to retrieve certain experiences and 

facts(Albert and Moss 1988). Age related cognitive decline starts during middle of the 

lifespan and since not everybody ages equally, human age itself is not sufficient to predict 

the start of this incident. However, human cognitive decline generally starts at around 50 

years of age (Hedden and Gabrieli 2004).  

Molecular mechanisms related to terminally aged brain has been linked to upregulated 

gene expression related to inflammation, calcium signaling, oxidative stress, 

mitochondrial dysfunction, dysregulated splicing and downregulated genes related to 

neuronal synapses (Prolla 2002, Blalock, Chen et al. 2003, Stilling, Benito et al. 2014, 

Benito, Urbanke et al. 2015, Ianov, Rani et al. 2016, Ianov, De Both et al. 2017). Very 

recently, large scale multi tissue bulk and single cell RNA sequencing study from around 

20 organ types and 10 different age groups in mice revealed systemic manifestation of 

aging into overall physiology (Schaum, Lehallier et al. 2020, Tabula Muris 2020). These 

two studies are by far the most comprehensive transcriptome based longitudinal 

approach to find systemic gene expression deregulation due to aging in mice. The 

authors of those studies have concluded that genome instability, senescence and 

immune dysregulation are the key mechanisms driving age related systemic failure. 

Recent cross species epigenetic studies for H3K4me3 and H3K27ac (histone mark for 

enhancer) from heart, liver, brain cerebellum and olfactory bulb have also been linked to 

age related genome wide histone modification changes and induction of inflammatory 

responses (Benayoun, Pollina et al. 2019). However they did not perform cell type 

specific, not even hippocampus specific epigenetic profiling, which is crucial to link 

epigenetic changes with cognitive function(Halder, Hennion et al. 2016). 

While the onset of age-related cognitive decline showed little to no gene expression 

changes, our group has previously shown that the molecular basis of early cognitive 

decline can be connected to decreased histone acetylation mark in mice (Peleg, 

Sananbenesi et al. 2010). By using an epigenetic drug to increase histone acetylation via 

inhibition of histone deacetylases, this age induced cognitive decline can be restored in 

aged mice as well. This was the very first evidence that by altering one of the histone 

modifications, age related dementia can be rescued.  
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As discussed in the previous section (4. Histone H3K4 methylation, learning and 

memory), histone methylation is an important neuroepigenetic marker that has not been 

characterized intensively in a genome wide fashion in age related cognitive decline till 

date. Evidences from western blot of mass-spectrometry-based analysis detected 

changes in histone methylation in aged mouse brains (Wang, Tsai et al. 2010, Gong, Qian 

et al. 2015). Given the vast implications of histone methylation changes in diverse cellular 

and tissue aging (Sen, Shah et al. 2016), urgent investigation of hippocampal cell type 

specific histone methylation changes and age-related cognitive decline is needed 

(demonstrated in manuscript 3). Afterwards, appropriate epigenetic drugs can be utilized 

to rescue age induced cognitive decline by reversing the aging brain histone methylome 

to a healthy state.  
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2. General Summary 
Histone modifications and gene expression are tightly regulated processes in the brain 

that has been shown to play crucial role from the beginning of brain development, 

learning-memory formation and aging. While brain comprises of numerous types of 

neurons and non-neuronal cells, this regulation is highly cell type specific. To gain more 

mechanistic insights on cell type specific epigenetic and transcriptomic processes, in 

this thesis, I demonstrated brain nuclei isolation, cell nuclei specific antibody staining and 

FACS sorting can be successfully utilized to perform cell type specific genome wide 

histone mark characterization, gene expression and single nuclei RNA sequencing. I have 

applied these tools to gain valuable mechanistic insights of the causal epigenetic 

mechanism for cortical folding, functional role of a histone methyltransferase in memory 

impairment, and multi omics-based characterization of aged induced cognitive decline 

model. 

In the first manuscript, we found that embryonic mice treated with histone deacetylase 

inhibitors (therefore, increasing histone acetylation) led to higher amounts of basal 

progenitor (BP) cells in their cortex. This resulted into higher number of mature neurons, 

thereby producing cortical gyration phenotypes in lissencephalic rodent brains. To 

understand causal mechanisms, I established and performed for the first time, BP nuclei 

specific gene expression and histone 3 lysine 9(H3K9) acetylation dataset from 

embryonic mice cortex. This cell type specific analysis led to discovering distinct 

increased H3K9ac induced gene expression signature, that contained key regulatory 

transcription factor, resulting into higher amount of BP proliferation. Further validation 

experiments via epigenome editing confirmed the epigenetic basis of cortical gyrification 

in a lissencephalic brain via increasing histone acetylation.  

For the second manuscript, I investigated the molecular role of a histone 

methyltransferase (HMT), Setd1b in mature neurons. Forebrain excitatory neuron specific 

Setd1B conditional knockout (cKO) resulted into severe memory impairment which 

required further characterization of neuron specific epigenetic and transcriptomic 

perturbation due to this cKO. To understand molecular function of Setd1b cKO in neurons, 

I isolated neuron specific nuclei from WT vs cKO mice hippocampal CA region and 

performed 4 different histone modification ChIPseq (H3K4me3, H3K4me1, H3K9ac, 

H3K27ac) and neuron specific nuclear RNA seq. Bioinformatic data analysis revealed 

promoter specific alteration of all 4 marks and significant down regulation of memory 
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forming genes. Comparison with other two previously studied HMT revealed Setd1b to 

be having broadest H3K4me3 peaks and regulating distinct sets of genes, which 

manifested to the severe most behavioral deficit. To understand expression pattern of 

those three HMTs, I performed single nuclei RNA sequencing of sorted neurons from wild 

type mice and found, even though Setd1b is expressed in a small subset of neurons, those 

neurons had the highest level of neuronal function and memory forming gene expression, 

compared to other two HMT expressing neurons studied previously by our group. Overall, 

our work shows neuron specific role of Setd1b and its contribution towards hippocampal 

memory formation.  

In the third manuscript, I applied neuronal and non-neuronal epigenome and 

transcriptome data generation and analysis of 3 vs 16 months old mice. As it is well 

known that memory impairment starts during the middle of life, and previous gene 

expression studies in mice showed very little to no changes while having cognitive deficit, 

I utilized nuclei based cell sorting method to study two promoter epigenetic 

marks(H3K4me3, H3K27me3) and RNA expression (including coding and non-coding) in 

neuronal and non-neuronal cells separately. Due to the novelty of the data, I first 

characterized the basal activatory H3K4me3, inhibitory H3K27me3, bivalent regions and 

gene expression in neuronal and non-neuronal nuclei. These epigenomic and 

transcriptomic datasets would be a valuable resource to the community to compare cell 

type specific gene expression and epigenomes with their datasets. Moreover, profiling 

epigenetic marks in old hippocampal CA1 neurons and non-neurons revealed massive 

decrease of epigenetic marks mostly in the non-neurons, while neurons only had 

decreased inhibitory H3K27me3 mark. Mechanistically, these epigenome changes 

correspond to probable non-neuronal dysfunction and neuronal upregulation of aberrant 

developmental pathways. Surprisingly, nuclear RNAseq revealed significant number of 

genes deregulated in non-neuronal cells, compared to neurons. By integrating 

transcriptome and epigenome, I found decreased H3K4me3 leading to decreased gene 

expression in non-neuronal cells, that resulted into probably downregulated neuronal 

support function and downregulated important glial metabolic pathways related to extra 

cellular matrix. 

Therefore, in this thesis, I have described cell type specific neurodevelopmental, neuronal 

and cognitive decline related epigenetic and transcriptional pathways that would add 

valuable knowledge and resources to the neuroscientific community.
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ABSTRACT 
Evolutionarily, the expansion of the human neocortex accounts for many of the unique 

cognitive abilities of humans. This expansion appears to reflect the increased 

proliferative potential of basal progenitors (BPs) in mammalian evolution, which may 

have evolved through epigenetic alterations in BPs. However, whether or how the 

epigenome in BPs differs between humans and other species is unknown. Here, we report 

that histone H3 acetylation is a key epigenetic regulation in BP amplification and cortical 

expansion. Through epigenetic profiling of sorted BPs, we show that H3K9 acetylation is 

low in murine BPs and high in human BPs. Elevated H3K9ac preferentially increases BP 

proliferation, increasing the size and folding of the normally smooth mouse neocortex. 

Mechanistically, H3K9ac drives BP amplification by increasing expression of the 

evolutionarily regulated gene, TRNP1, in the developing cortex. Our findings demonstrate 

a previously unknown mechanism that controls cortical architecture. 

 

One Sentence Summary: H3 lysine 9 acetylation promotes basal progenitor 

amplification, neocortex expansion and gyrification by activating TRNP1 expression in 

evolution. 

  



Manuscript 1 

 20 

INTRODUCTION 
The neocortex of the mammalian brain is radially structured into six neuronal layers and 

multiple functional domains that form the structural basis for human sensorimotor 

processing and intellectual ability. During embryogenesis, most cortical neurons are born 

from the successive division of neural progenitors cells (NPCs) located in the forebrain 

germinal zones (i.e., the ventricular (VZ) and subventricular (SVZ) zones). The various 

types of NPCs can be distinguished by their cell morphology, polarity, ability to generate 

a given cell lineage, and the site at which they undergo mitosis (Lui, Hansen et al. 2011, 

Borrell and Gotz 2014, Taverna, Gotz et al. 2014, Dehay, Kennedy et al. 2015). The two 

main types of NPCs in the developing cortex are the apical progenitors (APs) and basal 

progenitors (BPs). APs include the apical/ventricular radial glia cells (a/vRGs), which 

divide at the surface of the apical VZ. BPs, which are derived from APs, include the basal 

(or outer) radial glia (bRGs) and the basal intermediate progenitors (bIPs); the latter lack 

apical contact and have defined mitotic activities in the inner and outer subventricular 

zones (iSVZ and oSVZ, respectively) (Lui, Hansen et al. 2011, Borrell and Gotz 2014, 

Taverna, Gotz et al. 2014, Dehay, Kennedy et al. 2015). The aRGs and bRGs are capable 

of asymmetric division to self-renew, and can directly or indirectly (via bIPs) produce 

neurons (Lui, Hansen et al. 2011, Borrell and Gotz 2014, Taverna, Gotz et al. 2014, Dehay, 

Kennedy et al. 2015).  

In rodents, which have a lissencephalic cortex, most BPs are neurogenic bIPs. In 

gyrencephalic species, such as primates, BPs (including bIPs and bRGs) are capable of 

undergoing self-amplification through symmetric proliferative divisions before they 

terminally divide to generate neurons (Lui, Hansen et al. 2011). The intricate folding 

(gyrification) of the human neocortex is considered to be an evolutionary adaptation to 

the massive expansion of neuronal populations arising from the high proliferative 

competence of human NPCs, especially BPs (Lui, Hansen et al. 2011, Nonaka-Kinoshita, 

Reillo et al. 2013, Stahl, Walcher et al. 2013, Dehay, Kennedy et al. 2015).  

Recent cell sorting- and single cell-based transcriptional profiling analyses have identified 

a number of factors that are important for BP proliferation, cortical expansion, and folding 

(Nonaka-Kinoshita, Reillo et al. 2013, Stahl, Walcher et al. 2013, Bae, Tietjen et al. 2014, 

Florio, Albert et al. 2015, Johnson, Wang et al. 2015, Pollen, Nowakowski et al. 2015, Ju, 

Hou et al. 2016, Wang, Hou et al. 2016, Del Toro, Ruff et al. 2017, Liu, Liu et al. 2017, 

Fiddes, Lodewijk et al. 2018, Suzuki, Gacquer et al. 2018). Epigenomic methods have been 



Manuscript 1 

 21 

recently established to unravel epigenetic landscapes at the single-cell level, but such 

strategies are limited by their low coverage of the genome and tend to cluster cells in a 

manner that is biased toward easily profiled genomic regions. Thus, epigenetic profiling 

of BPs is still challenging, and the epigenetic mechanisms that are thought to coordinate 

the expression/repression of gene sets during the evolutionary expansion of the 

neocortex remain unknown. 

Here, we used cell sorting and a new mass spectrometry-based epigenetic profiling to 

identify H3K9 acetylation as a key epigenetic regulation in BP proliferation, cortical 

expansion, and cortical folding. We found that although the levels of H3K9ac are 

comparable in murine and human APs, species-specific differences exist in the histone 

H3 acetylation of BPs, which is low in mouse BPs and high in human BPs. Interestingly, 

elevation of H3K9ac in the developing mouse cortex led to BP-specific increases in the 

promoter H3K9 acetylation and expression of TRNP1, which is a well-known regulator of 

NPC proliferation and cortical expansion (Stahl, Walcher et al. 2013, Martinez-Martinez, 

De Juan Romero et al. 2016). The experimental enhancement of H3K9ac also 

dramatically augmented the TRNP1 expression-dependent proliferative capacity of BPs, 

leading to enlarged cortical size and formation of gyri in the developing mouse cortex. 

The use of an epigenome editing-based approach to increase H3K9ac specifically at the 

TRNP1 promoter resulted in increased TRNP1 expression and BP proliferation. Notably, 

the promoter H3K9 acetylation and expression of TRNP1 were both higher in human BPs 

compared to mouse BPs, underscoring the relevance of H3K9ac-associated TRNP1 

expression changes in neocortical evolution. Our findings demonstrate a novel 

mechanism of cortical expansion during evolution and suggest that it may contribute to 

the formation of neocortical gyri in higher primate/human brain.  
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RESULTS  
 

Assessing the epigenetic changes in BPs during cortical 
evolution 

 
Figure 1: Systematic screening for epigenetic marks showing differential levels between 
mouse and human basal progenitors (BPs) (A) A scheme of the experimental design used 
to compare the transcriptomes and epigenomes of mouse and human BPs. (B, C) 
Purification of TBR2+ BPs in developing mouse and human cortex. Representative 
images of cell suspensions from mouse cortex (B) and human cortex (C) stained with 
DAPI and a TBR2 antibody. (D) The data for epigenetic marks is presented as a heat map. 
Bottom: enlarged pattern showing that the levels of H3K18ac, H3K9ac, and H3K4ac are 
low in mouse BPs and high in human BPs. (E) Western blot analysis of protein extracts 
from TBR2+ BPs of whole mouse cortex (Cx) and from human cortex at rostral (r), medial 
(m) and caudal (c) areas at indicated stages with H3K9ac antibody (in red) and with 
GAPDH antibody (in green, as loading control). 

To test whether cortical expansion in evolution is correlated with alteration of the 

epigenetic landscape, we first investigated whether histone post-translational 

modifications (PTMs) differ between TBR2 positive (+) BPs from mouse and human 

cortices (Fig. 1A). To purify TBR2+ BPs from mouse and human developing cortices, we 

adapted a previously reported intracellular immunofluorescent staining and FACS 

protocol. We used an antibody to label intracellular TBR2 in single-cell suspensions 

isolated from E13.5 and E16.5 mouse cortices and gestational week (GW)14 and 18 
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human cortices, and then performed cell sorting of TBR2+ and TBR2 negative (-) cells 

(Fig. 1, fig. S1). Previous studies showed that TBR2 is expressed in bIPs (Englund, Fink et 

al. 2005) and in a subset of PAX6+, HOPX+ bRGs (Wang, Tsai et al. 2011, Vaid, Camp et 

al. 2018) in the lissencephalic rodent brain. In the gyrencephalic brains of ferret and 

primates, TBR2 labeling was seen for bIPs and almost half of the SOX2+, PAX6+ bRG 

population (Fietz, Kelava et al. 2010, Hansen, Lui et al. 2010). The expression of TBR2 

however was not found in TNC+, PTPRZ1+ bRG subpopulation (Pollen, Nowakowski et al. 

2015). Thus, the sorted TBR2+ cells from mouse and human developing cortices actually 

represent the majority of mouse BPs and human BPs, with the latter including human 

bIPs and a subset of human bRGs. 

A newly-established mass spectrometry-based method (see Supplemental methods) was 

applied to quantify peptides containing methylated (me) or acetylated (ac) amino acid 

residues (Lysine, K; Glutamine, Q; Arginine, R) on the core histones (H2, H3, H4) and the 

linker histone H1 (Fig. 1D). Intriguingly, the levels of several epigenetic marks, 

predominantly modified H3 and its variants, appeared to be higher in human BPs at GW14 

and GW18 than in mouse BPs at E13.5 and E16.5 (Fig. 1D, in selected frame). Some of 

the relevant H3 acetylation marks (Fig. 1D; red-labeled in the frame with a higher 

magnification shown at the bottom), including H3K9ac, H3K18ac, and H3K4ac, were 

previously shown to be enriched at promoters and enhancers, and to activate 

transcription. These findings suggest that epigenetic landscapes, particularly H3 

acetylation, reflect extensive changes in BPs during cortical evolution, from rodents to 

humans. 

 

Differential levels of acetylated histone H3 in basal progenitors 
of developing mouse and human cortex 
From among the histone acetylation marks found to differ between murine and human 

BPs, we selected H3K9ac for further in-depth analysis because it exhibited the highest 

difference between BPs from these species (Fig. 1D) and has been implicated in neuronal 

function, development, and plasticity. To validate the screening result, we first performed 

immunohistochemical (IHC) analyses with antibodies against H3K9ac and progenitor 

subtype markers (as indicated in the legend of Fig. 2). In E15.5 and E16.5 mouse cortices, 

high levels of H3K9ac (H3K9achigh) were associated with cells in the cortical plate (CP) 

and the majority of PAX6+ APs in the VZ, whereas relatively low levels of H3K9ac 
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(H3K9aclow) were observed in most cells of the intermediate zone (IZ) and many cells of 

the VZ/SVZ (Fig. 2A/C). Remarkably, all TBR2+ BPs and many PAX6+ BPs in the SVZ and 

IZ were H3K9aclow cells (Fig. 2A/C/D).  

 
Figure 2: Histone H3K9 is acetylated differently in BPs in the murine and human 
developing cortex. (A) Images of cortical sections that were obtained from E15.5 mouse 
embryos and subjected to triple IHC of using antibodies against H3K9ac and PAX6 (to 
label APs in the VZ and BPs in the IZ) and TBR2 (to mark BPs in the SVZ). The lower 
panels show higher-magnification images of the boxed areas within the VZ and IZ; they 
reveal that PAX6high+, TBR2low+ APs are H3K9achigh+ cells (filled arrows), whereas 
PAX6high+ BPs in the IZ and TBR2high+ BPs are H3K9aclow+ cells (hollow arrows). (B) Images 
of cortical tissue from human embryos obtained at GW20 and subjected to triple 
immunolabeling with antibodies against H3K9ac, PAX6, and TBR2. Most of the PAX6+ 
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APs and BPs (red arrows) and the TBR2+ BPs (magenta arrows) are highly 
immunoreactive for H3K9ac. (C) Statistical analyses of IHC results (shown in A and B) 
comparing the levels of H3k9ac (H3k9achigh and H3k9aclow) in progenitor subtypes in 
developing mouse and human cortex. The following were compared: PAX6+ APs in the 
VZ, TBR2+ BPs in the VZ/SVZ, and PAX6+ BPs in the IZ of the mouse cortex; and PAX6+ 
APs in the VZ, TBR2+ BPs in the VZ/iSVZ/oSVZ, and PAX6+ BPs in the iSVZ/oSVZ of the 
human cortex. (D) Schema illustrating the higher level of H3 acetylation found in human 
versus mouse BPs. Abbreviations: APs, apical progenitors; BPs, basal progenitors; VZ, 
ventricular zone; SVZ, subventricular zone; iSVZ, inner subventricular zone; oSVZ, outer 
subventricular zone; IZ, intermediate zone; CP, cortical plate. Scale bars = 50 Pm. 

Likewise, in the human cortex at GW20, a high level of H3K9ac was detected in the CP 

and in PAX6+ APs (Fig. 2B–D). In striking contrast to the mouse cortex, most PAX6+ BPs 

and TBR2+ BPs in the human iSVZ and oSVZ were H3K9achigh cells (Fig. 2B–D). The 

difference in the H3K9ac levels of mouse and human TBR2+ BPs was also confirmed by 

Western blot analysis with lysates from FACS-collected TBR2+ cells (Fig. 1E). 

To determine whether the detected difference in the H3 acetylation levels of the two 

species was restricted to lysine (K) 9 or also present on other amino acid residues, we 

examined the pan-acetylation of H3 (H3ac) (fig. S2). Triple IHC analysis of cortical tissues 

from E15.5 mouse and GW20 human embryos revealed that in the mouse cortex, H3ac is 

highly expressed in PAX6+ APs, but not in TBR2+ BPs. In the human cortex, however, 

PAX6+ APs in the VZ and PAX62+/TBR2+ BPs in the iSVZ and oSVZ showed high-level 

H3ac expression (fig. S2A-C). Notably, numerous H3ac- and H3K9ac- progenitors were 

found among the KI67+ cycling cells, suggesting that the elevations of H3ac and H3K9ac 

are not a common general trait of proliferating progenitors (fig. S2D/E). As histone H3 is 

acetylated more highly in human BPs than in mouse BPs, we designed experiments to 

elucidate the in vivo outcome of increased H3ac levels, using HDAC inhibition and 

overexpression of the H3K9 acetyltransferase, KAT2A/GCN5, during mouse cortical 

development.  

  



Manuscript 1 

 26 

Increased H3 acetylation promotes the generation of basal 
progenitors 
We first tested whether increased acetylation of H3 could increase the genesis and 

proliferation of BPs. To elevate H3ac, we administered Trichostatin A (TSA), which is a 

selective class I/II histone deacetylase inhibitor (HDACi), to embryos from control (WT) 

mice (Fig. 3A). We previously showed that the cortex-specific loss of BAF155, as seen in 

BAF155cKO embryos, promoted delamination of APs, increasing the population of 

PAX6+, TBR2+ BPs in the IZ, and diminished the pool of PAX6+ APs in the VZ (Narayanan, 

Pham et al. 2018) (see also Fig. 3B/C, panels: Control + Veh and BAF155cKO + Veh). As 

PAX6+ BPs are relatively rare in the WT mouse cortex (Wang, Tsai et al. 2011, Vaid, Camp 

et al. 2018), we used the BAF155cKO mutant as a mouse model to investigate the effect 

of HDAC inhibition on the proliferation of BPs. TSA was injected beginning at 12.5 days 

post coitum (d.p.c.), and WT and BAF155cKO embryos were examined at E16.5–E18.5 

(Fig. 3A). TSA treatment had no major effect on the pool of PAX6+/AP2γ+/SOX2+ APs in 

the VZs of WT and BAF155cKO mutants when compared to the corresponding vehicle 

(Veh)-treated controls (Fig. 3B/C). Interestingly, TSA injection increased the numbers of 

PAX6+/AP2γ+/SOX2+/TBR2+ BPs in the SVZ/IZ (Fig. 3B/C, left panels) of WT mice and 

more pronouncedly in BAF155cKO embryos (Fig. 3B/C, right panels).  
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Figure 3: Enhanced acetylation of H3 increases the number of basal progenitors.(A) 
Experimental paradigm in which BAF155cKO and control embryos were treated with 
HDAC inhibitors (HDACi: TSA, SAHA, VPA) at the indicated developmental stages. (B) IHC 
images showing TBR2 (BPs), PAX6 (APs, BPs), and AP2γ (APs, BPs) in sections from 
control and BAF155cKO embryos with or without TSA treatment. (C) Statistical 
comparisons indicate that increased H3 acetylation enhanced the number of BPs (TBR2+, 
PAX6+, AP2γ+ cells of the IZ) in TSA-treated WT and BAF155cKO embryos compared to 
vehicle (Veh)-treated controls. (D-F) Confirmation of BPs/bRGs (arrows) based on their 
morphology. BPs/bRGs exhibit long basal processes but no apical processes in TSA-
treated cortex, as revealed by double labeling of Pax6 with either DiI (D), or retroviral GFP 
(E), or pVIM (F).  Notably, fanned fibers of PAX6+ BPs/bRGs were observed when DiI 



Manuscript 1 

 28 

labeling was applied at the pia (D). (F) High-magnification image of a PAX6+/pVIM+ 
BPs/bRG, indicated by a red arrow. (G) Statistical analysis comparing number of 
PAX6+/pVIM+ BPs/bRGs with basal processes in the SVZ/IZ of the indicated embryos. 
(H, I) IHC analysis shows the expression of the human-enriched bRG markers, PTPRZ1 
(H), and TNC (I), in PAX6+/TBR2- cells (arrows) of TSA-treated BAF155cKO cortex at 
E16.5 (see also fig. S8 for E18.5 cortex). Values are presented as means ± SEMs (*p < 
0.05, ***p < 0.01, ***p < 0.005). Abbreviations: VZ, ventricular zone; SVZ, subventricular 
zone; IZ, intermediate zone. Scale bars = 50 Pm. 

Triple IHC analysis of PAX6, TBR2, and KI67 at E16.5 and E18.5 revealed that inhibition 

of HDAC leads to regionally restricted increases in TBR2+, PAX6+, KI67+ BPs in sections 

taken from the rostral, middle, and caudal dorsolateral cortex (d/lCx), but not the medial 

cortex (mCx) (fig. S3). HDAC inhibition exerted a dose-dependent effect, as more 

TBR2+/PAX6+ BPs were found in E18.5 cortex treated with TSA for 6 days (E12.5–E17.5) 

compared to those of embryos treated for only 3 days (E12.5–E15.5) (fig. S4A/B). Most 

TBR2+ BPs of the WT cortex were previously reported to be negative for PAX6 

immunostaining (Englund, Fink et al. 2005). Interestingly, the proportion of cortical 

progenitors expressing both PAX6 and TBR2 was high in TSA-treated cortex (fig. S4C), as 

also reported in the developing gyrencephalic neocortex (Fietz, Kelava et al. 2010, 

Hansen, Lui et al. 2010). 

Abundant PAX6+/DiI+ or PAX6+/retroviral GFP+ or PAX6+/pVIM+ cells with basal 

processes characteristic of BPs/bRGs were found in TSA-treated mouse cortex (Fig. 3D-

G). Notably, TSA treatment resulted in increased numbers of PAX6+/pVIM+ BPs/bRGs, 

with the highest numbers found in TSA-treated BAF155cKO cortex (Fig. 3G). In addition, 

cell-surface proteins enriched in human bRG cells, such as TNC and PTPRZ1 (Pollen, 

Nowakowski et al. 2015), were also highly expressed in a subset of PAX6+/TBR2- a/bRG 

cells from TSA-treated mouse cortex (Fig. 3H/I, see also fig. S8).   

To further confirm that the genesis of BPs is increased upon HDAC inhibition, pregnant 

mice were treated with agents whose properties are similar to those of TSA; these 

included valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA), which also 

inhibit class I/II HDACs. Both VPA- and SAHA-treated developing cortices had more BPs 

than vehicle-treated cortex (fig. S5; see also Fig. 6H and fig. S10E/F for cortical phenotype 

of the H3K9 acetyltransferase KAT2A overexpression), supporting the idea that the HDAC 

inhibition-induced elevation of H3 acetylation directly contributes to increasing the 

generation of BPs. 
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Increased H3 acetylation preferentially enhances the 
proliferation of basal progenitors but not apical progenitors 

 
Figure 4: H3 acetylation specifically promotes proliferation of basal progenitors and 
directly activates expression of ADRB1, TRNP1, and PCDH1 in TBR2+ basal progenitors. 
(A, B) Images showing double IHC of PAX6/pHH3 and TBR2/pHH3 in control or BAF155-
deficient cortex treated with Veh- or HDACi, as assessed at E16.5. Lower panels show 
higher magnifications of the areas indicated by the white box. (C) Statistical analyses 
reveal that elevated acetylation of H3 causes a significant increase in the number of 
TBR2+/pHH3+ BPs and PAX6+/pHH3+ BPs, whereas the number of apical 
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PAX6+/pHH3+ APs cells is not affected. (D, E) Volcano plots showing statistically 
significant changes (Paired Student’s t-test < 0.01, FC > 1.2) visualized by our RNA-Seq 
(D) and H3K9ac ChIP-Seq (E) analyses of TBR2+ BPs in TSA vs. Vehicle experiments (see 
also fig. S7 for E16.5 BAF155cKO cortex and TBR2- cells). (F) Stepwise exclusion 
parameters were applied to the H3K9ac ChIP-Seq and RNA-Seq data sets to search for 
genes specifically activated by H3K9ac in TBR2+ BPs. (G) The expression levels of 
ADRB1, TRNP1 and PCDH1 are upregulated in TSA-treated BPs. (H) Distribution of 
H3K9ac along the gene bodies of ADRB1, TRNP1, and PCDH1 in TSA-treated BPs (red) 
and Vehicle-treated BPs (blue). Input (bottom row) and distributions after 
immunoprecipitation (upper two rows) are depicted. Values are presented as mean ± 
SEM (*p < 0.05, ***p < 0.01, ***p < 0.005). Abbreviations: VZ, ventricular zone; SVZ, 
subventricular zone; IZ, intermediate zone. Scale bars = 50 Pm. 

The presence of more BPs in TSA-treated BAF155cKO cortex (Fig. 3A-C) suggested that 

the delaminated progenitors undergo self-amplification in response to enhanced H3 

acetylation. To ascertain if H3 acetylation is important for the proliferation of cortical 

progenitors (APs, BPs), we examined their proliferative capacity by performing IHC with 

antibodies against PAX6, TBR2, and phosphorylated histone H3 (pHH3) (Fig. 4A/B). 

Based on the expression of PAX6 in the VZ and pHH3 at the apical VZ surface (Fig. 4A/C), 

our data suggest that TSA injection did not influence the proliferation of APs, which 

already have a high endogenous level of acetylated H3. Strikingly, upon HDAC inhibitor 

treatment, both control and BAF155cKO cortices presented more non-apical proliferating 

(pHH3+ BPs) cells, along with higher ratios of proliferating BPs (TBR2+/pHH3+) to total 

TBR2+ BPs and proliferating BPs (basally located PAX6+/pHH3+) to total PAX6+ BPs 

(Fig. 4A–C). Consistent with these data, the numbers of actively cycling BPs 

(KI67+/TBR2+) and BPs (KI67+/PAX6+) in the SVZ/IZ were considerably increased in 

TSA-treated BAF155cKO cortex (fig. S6A/B). In addition to the slower cell cycle in neural 

progenitors from primate than that from rodent (Dehay, Kennedy et al. 2015), both 

proliferative APs and BPs exhibit a substantially longer S-phase than neurogenic 

progenitors (Arai, Pulvers et al. 2011). We therefore focused on examining the effect of 

TSA on progression between S-phase to G2+M- phases in APs and BPs. Given that, the 

average lengths at mid-gestation stage of the S- and G2+M- cell cycle phases are about 

3.5 hours and 2 hours, respectively (Arai, Pulvers et al. 2011), we then examined whether 

the TSA treatment affect the progression within S-G2-M phases in APs and BPs. A 

thymidine analog injection paradigm (4 hours- IdU pulse-labeling) was used to mark 

cortical progenitors within these phases. Double immune-staining with antibodies 
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against IdU and pHH3 to label APs (apical surface- located IdU+/pHH3+) and BPs (basally 

located IdU+/pHH3+), which already entered into G+M- phases  (Fig. S6C/D). Remarkably, 

less BPs (not APs) reached to late G2-M phases in TSA- treated cortices compared to 

Veh-treated cortices.  This implicated that TSA treatment resulted in lengthening of cell 

cycle progression in S-G2-M phases in BPs, specifically. 

Together, these data indicate that the proliferative capability of murine BPs is enhanced 

by elevated acetylation of H3. 

 

Identification of H3K9ac target genes in TBR2+ BPs 
Given that TSA treatment had a much stronger effect on BP genesis in BAF155cKO 

cortex, we firstly compared the gene expression and genome-wide H3K9ac profiles of 

TSA- and vehicle-treated BAF155cKO cortices by RNA-Seq and ChIP-Seq (fig. S7A/B; 

Table S1, S2). We found that TSA treatment yielded upregulation of 1961 genes and 

downregulation of 1799 genes (p-value < 0.01 & |fold change| > 1.2) (fig. S7A, Table S1). 

Examination of H3K9 acetylation on the TSA-regulated genes revealed that the 

upregulated genes had clear increases in the level of H3K9ac (fig. S7C), whereas the 

downregulated genes did not show any significant change in H3K9ac (fig. S7D). This 

result is in accordance with data showing that loss of H3K9 acetyltransferases can 

trigger activation of a set of genes via secondary effects.  

In accordance with our IHC data showing an increase in the number of TBR2+/PAX6+ 

BPs, many neurogenic BP/bIP genes (e.g., NEUROG1, NEUROG2, EOMES/TBR2, 

NEUROD2, NEUROD6) were upregulated in the cortex of TSA-injected BAF155cKO 

mutants (fig. S7A; Table S1). TSA treatment also yielded increased expression of genes 

previously shown to be enriched in BPs/bRGs (e.g. TNC, PTPRZ1, PAQR8, GIGYF2, 

PDLIM3, ZC3HAV1; fig. S8A; Table S1) (Pollen, Nowakowski et al. 2015). The increased 

expression of many BP-enriched genes in response to HDAC inhibition in both 

BAF155cKO and WT cortex was also confirmed by qPCR and IHC analyses (fig. S7C, S8). 

Furthermore, the results from our ChIP-Seq and ChIP/qPCR analyses also confirmed that 

many of the BP genes (e.g., TNC, PAQR8, NEUROG2, EOMES, NEUROD1, NEUROD6; fig. 

S7D; Table S2) exhibited increases in their H3K9ac levels in the cortices of TSA-treated 

BAF155cKO and WT embryos. These findings indicated that H3 acetylation positively 

regulates the expression of BP genes. 
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Next, we evaluated the TSA treatment response of TBR2+ BPs (Fig. 4D/E; Table S3, S4) 

and TBR2- cells (fig. S7E/F; Table S5, S6). For this purpose, TBR2+ and TBR2- nuclei were 

sorted by FACS (Fig. 1; fig. S1). TSA treatment yielded expressional upregulation of 895 

genes in TBR2+ BPs. To gain an evidence that H3 acetylation induces expression of BP 

genes during evolution, we compared the upregulated genes in TSA-treated TBR2+ BP 

genes (Fig. 5c) and BP/IP genes, which were recently identified specifically for macaque 

and human (Pollen, Bhaduri et al. 2019). Remarkably, the TSA treatment provoked 

expression of 40.1% (166 out of 414) macaque- specific BP genes and 13.3% (62 out of 

467) human- specific BP genes in TBR2+ BPs in the developing mouse cortex (fig. 7G/H; 

Table S7), suggesting H3 acetylation has an evolutionary relevance in BP genesis during 

mammalian evolution. Among the upregulated genes in TSA-treated TBR2+ BP genes, 37 

showed correlation between their upregulation and an increased level of H3K9ac upon 

TSA treatment (fig. S7I; Table S4; p-value < 0.01). Surprisingly, neither the H3K9ac level 

nor the expression levels of typical BP genes (e.g., EOMES, NEUROG1, NEUROG2, 

NEUROG1, NEUROD4) were found to be altered in TSA-treated BPs (fig. S7I; Table S3-S6). 

Thus, the expressional upregulation of most typical BP genes in TSA-treated TBR2+ cells 

seems to be a secondary effect. 

The increased proliferation of BPs, which was visualized as increases in TBR2+/pHH3+ 

and TBR2+/KI67+ cells (Fig. 4A/B, fig. S6), suggested that the expression of proliferation-

related genes would be increased. Indeed, we found that the expression levels of cell 

cycle genes (e.g., CDK19, CDK5R1, CDK14) and INSM1, which is known to promote BP 

proliferation, were upregulated in TSA-treated BPs (Fig. 4D; Table S3). Remarkably, 

however, the levels of H3K9ac at the promoters of these genes were not increased 

following TSA treatment (Fig. 4E; Table S4). These findings suggested that TSA treatment 

might influence the expression of factors that act upstream of the aforementioned 

proliferation-regulating genes.          

To identify candidates for functional analysis, we undertook an unbiased approach. From 

among all genes that exhibited increased H3K9ac at their promoters in TBR2+ BP cells 

after TSA injection (|fold change| > 1.2; Fig. 4F), we selected those that also showed a 

trend for increased expression (|fold change| > 1.2; Fig. 4F). This screen netted 148 genes 

(Fig. 4F). From them, we filtered out those that exhibited increased expression in TBR2- 

cells, yielding 58 genes that had increased H3K9ac and were uniquely upregulated in 

TBR2+ BP cells following TSA treatment (Fig. 4F). These genes were further filtered 
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according to their basal expression levels (baseMean > 20) and selection of those that 

increased by more than 2-fold. This pipeline yielded three candidates: ADRB1, TRNP1, 

and PCDH1 (Fig. 4G/H, fig. S7K). This suggests that H3 acetylation promotes BP 

amplification by directly activating the expression of a small set of genes. 
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H3 acetylation controls the amplification of basal progenitors by 
regulating TRNP1 expression in the developing cortex 

 
 
Figure 5: H3 acetylation controls the proliferation of BPs by activating TRNP1 expression. 
(A, B) Western blot analysis of protein extracts from TBR2+ BPs obtained from mouse 
and human cortices at the indicated stages, as assessed with antibodies against TRNP1 
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(red), Tubulin, and GAPDH (green, as loading controls). (B) Relative levels of TRNP1 
protein are presented in the diagram. Little to no TRNP1 protein is expressed in mouse 
BPs, whereas this expression is relatively high in human BPs. (C) ChIP-qPCR comparing 
the H3K9ac levels at the TRNP1 promoters in mouse and human TBR2+ BPs. (D) 
Schematic overview of the CRISPR/dCas9-based deposition of H3K9ac at the TRNP1 
promoter, which was used to activate its expression. (E) Mouse E14.5 dorsolateral cortex 
was in utero electroporated with a gTRNP1-dCas9-KAT2A-T2A-eGFP plasmid (gTRNP1) 
or gControl-dCas9-KAT2A-T2A-eGFP plasmid (gControl), and IHC analysis of GFP, TBR2, 
pHH3, or BrdU was performed at E16.5. Images represent triple optical sections. White 
box indicates areas shown at higher magnification and red arrows point to examples of 
cells that are immunoreactive for GFP, TBR2, pHH3, or BrdU. (F) Descriptive scheme of 
the rescue experiment, in which mouse cortex was treated with the HDAC inhibitor, TSA, 
and gTRNP1 or shControl constructs at the indicated stages. (G) Triple IHC analysis for 
the markers listed in panel E. (H) Statistical quantification of the results shown in panels 
E and G is shown. Values are presented as mean ± SEM (*p < 0.05, ***p < 0.01, ***p < 
0.005). Abbreviations: VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate 
zone. Scale bars = 50 Pm. 

In the developing mouse cortex, TRNP1 was exclusively localized in the nuclei of APs in 

the VZ and newborn neurons in the CP, with little to no TRNP1 expression seen among 

TBR2+ BPs in the SVZ (Fig. 5A) (Stahl, Walcher et al. 2013); it thus exhibits a pattern 

similar to that of H3K9ac (Fig. 1E, Fig. 2). In line with this, the expression and promoter 

H3K9ac levels of TRNP1 were lower in TBR2+ BPs than in TBR2- cells of the developing 

mouse cortex, as revealed by our RNA-Seq and ChIP-Seq experiments (fig. S9A/B). 

Notably the expression (Fig. 5A/B) and promoter H3K9ac (Fig. 5C, fig. S9C) levels of 

TRNP1 were strikingly higher in human TBR2+ BPs than in mouse TBR2+ BPs. These data 

suggest that the H3K9ac level directly controls the expression of TRNP1 (also see the 

model in Fig. 6I). This proposal was further corroborated by our observation that TRNP1 

expression is increased specifically in TBR2+ cells upon TSA treatment (fig. S9D/E).  

To more directly investigate whether a higher level of H3K9ac at the TRNP1 locus might 

enhance the gene expression and proliferation of BPs in the mouse developing neocortex, 

we sought to increase H3K9ac at the TRNP1 locus and examine the associated 

phenotype. To increase deposition of the H3K9ac mark, we adapted a CRISPR/Cas9‐

based system (Albert, Kalebic et al. 2017) that allows targeted editing of H3K9ac in the 

developing cortex (Fig. 5D). Given that the levels of H3K9ac at the TRNP1 promoter 

differed between mouse TBR2+ BPs and human TBR2+ BPs (Fig. 5C) and between mouse 

TBR2+ BPs and TBR2- cells (fig. S9B), and TSA treatment increased H3K9ac at the TRNP1 
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promoter specifically in BPs (fig. S9D/E), we selected the TRNP1 promoter for targeted 

H3K9ac editing. Several guide RNAs (gRNAs) targeting the TRNP1 promoter were 

designed and tested (fig. S9F/G). To edit histone acetylation at the TRNP1 locus, we 

generated plasmid constructs (gTRNP1-dCas9-KAT2A-T2A-eGFP) harboring DNA 

sequences that encoded a gRNA, dCas9 (a nuclease‐deficient Cas9) fused with an 

H3K9ac writer KAT2A, and a fluorescent reporter (GFP) (Fig. 5D). For targeting of the 

TRNP1 locus, two constructs, each expressing one gRNA (gRNA#2 or gRNA#4), were 

used; these were designated gTRNP1 (fig. S9F/G). 

To validate that H3K9ac levels were altered upon introduction of gTRNP1, we performed 

ChIP-qPCR in FACS-purified transfected (GFP+) Neuro2A cells. H3K9ac levels were found 

to be significantly increased at the TRNP1 promoter region upon gTRNP1 transfection, 

compared to control conditions (fig. S9H). In addition, qPCR analysis of the sorted cells 

revealed that TRNP1 expression was also increased following transfection with the 

generated editing constructs (fig. S9I). These results confirm that the CRISPR/Cas9-

based epigenome-editing system established here achieved targeted deposition of 

H3K9ac at the TRNP1 promoter and increased the expression of TRNP1 in neural cells. 

To achieve epigenome editing-based modulation of H3K9ac levels in the developing 

cortex, we delivered the constructs into APs by in utero electroporation (IUE) at E14.5. At 

E16.5, we analyzed the progeny of the electroporated APs, including TBR2+ BPs (Fig. 

5D/E). By comparing the proportion of TBR2+/pHH3+ (BPs in M-phase of the cell cycle) 

and TBR2+/BrdU+ (BPs in S-phase) cells among the targeted TBR2+ BPs (revealed by 

GFP) in control- and editing construct-injected cortices, we examined whether the altered 

levels of H3K9ac might influence the proliferation of BPs (Fig. 5E/F). Similar to TSA 

treatment, epigenome editing-based augmentation of the promoter H3K9ac level of 

TRNP1 increased the percentage of basal mitosis (GFP+/TBR2+/pHH3+ or BrdU+) 

among targeted BPs (GFP+/TBR2+; Fig. 5E/H). 

Because TRNP1 overexpression was shown to promote the proliferation of NSCs in the 

developing mouse and ferret cortex (Stahl, Walcher et al. 2013, Martinez-Martinez, De 

Juan Romero et al. 2016), we performed rescue expression to examine whether a specific 

increase in TRNP1 expression caused the aberrantly enhanced proliferation of BPs upon 

TSA treatment. To this end, we electroporated TSA-treated cortex with shTRNP1 

constructs (Stahl, Walcher et al. 2013) to downregulate TRNP1 expression (Fig. 5F/G). 

Remarkably, the observed TSA treatment-induced proliferation phenotype of TBR2+ BPs 
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was largely rescued by TRNP1 knockdown in the cortex (Fig. 5G/H). These findings 

suggest that the elevated level of H3K9ac at the TRNP1 promoter is directly involved in 

facilitating the proliferation of BPs (also see the model in Fig. 6I).       
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Elevated H3ac leads to radial expansion and induces gyrification 
of the developing mouse cortex 

 
Figure 6: Elevated H3ac levels promote cortical expansion and folding. (A) Dorsal-view 
images of brains from control and BAF155cKO mice with and without TSA treatment (B) 
and quantification of their cortical surfaces at P0 (C, see also Supplemental methods). 
(C-F) IHC (C) and quantitation (D-F) of the number of neuronal subsets labeled by the 
neuronal markers, SATB2, CTIP2, TBR1, and NeuN, in control and BAF155cKO cortices 
with and without HDAC inhibitor treatment at E17.5. Elevated H3 acetylation increases 
neurogenesis and cortical thickness and induces gyrification (indicated by arrows). (G) 
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Serial coronal sections at E17.5 marked by CTIP2 and SATB2 expression showing the 
folded cortex in different cortical areas. (H) Images of GFP, SATB2, and CTIP2 
immunofluorescence of a coronal section of an E17.5 cortical hemisphere from a mouse 
embryo that had been in utero electroporated at E12.5 with KAT2A-ires-eGFP expression 
plasmids. Lower images show higher-power magnification of a sulcus-like structure, 
which is indicated by white arrows. (I) Hypothetical model proposing how the changes in 
H3K9ac levels in evolution and in mouse models with epigenetic manipulation affect the 
H3K9ac level at the TRNP1 promoter, the expression of TRNP1, the proliferation of BPs, 
and the expansion and folding of the cortex.  Symbols: +, +++, and ++++ indicate weak, 
moderate, and strong relative expression levels, respectively. Abbreviations: VZ, 
ventricular zone; SVZ, subventricular zone; IZ, intermediate zone; CP, cortical plate; APs, 
apical progenitors; BPs, basal progenitors; Ac, H3K9ac. Values are presented as mean ± 
SEM (*p < 0.05, ***p < 0.01, ***p < 0.005). Scale bars = 100 Pm. 

To address the role of H3 acetylation in late corticogenesis in vivo, mouse embryos were 

treated with TSA for a prolonged period. Remarkably, TSA-treated mice exhibited cortices 

with larger surface areas compared with vehicle (Veh)-injected controls (Fig. 6A/B). To 

evaluate the effect of the increased level of H3 acetylation on neuron production in the 

developing cortex, we examined the expression of laminar and neuronal subtype-specific 

genes at E17.5 (Fig. 6C). Immunostaining for the pan-neuronal marker, NeuN, indicated 

that there was a considerable increase in cortical radial thickness after TSA treatment 

(Fig. 6D). The number of SATB2+ callosal and CTIP2+ subcerebral projection neurons 

was also significantly increased in the cortex of TSA-treated embryos compared with 

controls (Fig. 6E/F). 

 

Previous evidence suggested that an increased number of bRG cells offers extra 

scaffolding for the radial migration of neurons and causes divergence (fanning out) of 

radial glial processes in gyrated cortices (Lui, Hansen et al. 2011, Nonaka-Kinoshita, Reillo 

et al. 2013, Stahl, Walcher et al. 2013, Borrell and Gotz 2014). Indeed, RC2 and NESTIN 

immunostaining, which reveal the layout of RG processes, showed that in the TSA-treated 

cerebral cortex radial fibers spread out divergently when traversing the CP (fig. S10A, 

white dashed lines). Fanned-out fibers of PAX6+ bRGs were observed by labeling with the 

lipophilic dye, DiI, which was applied at the pia (Fig. 3D). At E17.5, most early-born 

neurons (L6, L5) had completed their migration. Strikingly, TSA treatment often led to 

mild folding of the cortex in WT embryos (fig. S10B-D), but more profound folding in 

BAF155cKO mutants in distinct cortical areas, as indicated by L6 (TBR1) and L5 (CTIP2) 
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immunostaining (Fig. 6G, S10B–D). Although HDAC inhibitor-treated mice died soon after 

birth, increased folding of TSA-treated cortex was observed at all examined stages 

(E16.5–P0) (fig. S10D). Our findings also provide further link between abundance level of 

BPs and folding feature in mammalian cortex as the inhibition of HDAC leads to regionally 

restricted increases in BPs (fig. S3) and cortical folding (fig. S10B) in sections taken from 

the rostral, middle, and caudal dorsolateral cortex (d/lCx), but not the medial cortex 

(mCx). We distinguished cortical folding by the presence of an intact basement 

membrane and rostro-caudal continuity of both sulci and gyri; this allowed us to 

distinguish our findings from the defining features of classical neuronal ectopias, such 

as that seen in lissencephaly type II (also known as cobblestone lissencephaly).  

Finally, we investigated whether increasing the level of H3K9ac by overexpressing KAT2A, 

which encodes H3K9 acetyltransferase, might induce proliferation of BPs and cortical 

folding. E13.5 WT or BAF155cKO brains were electroporated with a KAT2A-expression 

plasmid. Compared with control (GFP-injected cortex) at E15.5, overexpression of KAT2A 

increased the percentage of proliferating BPs (GFP+/Ki67+/TBR2+ or PAX6+) among 

targeted BPs (GFP+/TBR2+ or PAX6+) in WT (fig. S10E) and BAF155cKO cortex (fig. 

S10F). Furthermore, five out of six BAF155cKO and three out of six WT cortices injected 

with KAT2A expression plasmids at E12.5 displayed focal neocortex folding at E17.5 (Fig. 

6H).  

Collectively, these findings suggest that increased H3 acetylation at the promoter region 

of the evolution-related gene, TRNP1, selectively promotes the proliferative capacity of 

BPs, leading to enhanced neuronal output, increased cortical expansion, and gyrification 

during mammalian evolution (Fig. 6I). 
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DISCUSSION 
 

In this study, we describe H3 acetylation as a novel epigenetic mechanism that regulates 

neocortical expansion. We present evidence that human BPs have higher H3 acetylation 

levels than mouse BPs, and that elevated levels of H3ac preferentially promote BP self-

amplification and augment neuronal output, leading to enlarged size and folding of the 

mouse neocortex (summarized in Fig. 7H). Mechanistically, this process involves the 

epigenetic and gene expression controls of the evolutionarily regulated gene, TRNP1, in 

cortical development.   

 

Contribution of BP proliferation to cortical expansion and folding 
In lissencephalic rodents, APs in the VZ and TBR2+ BPs in the SVZ are largely responsible 

for neuron production during cortical development. Previous works showed that β-

catenin overexpression-induced VZ progenitor amplification in the mouse brain yielded 

folding of the ventricular surface, not the cortical surface (Chenn and Walsh 2002), and 

that increasing the pool of BPs/bIPs enlarged brain size but did not induce cortical folding 

(Nonaka-Kinoshita, Reillo et al. 2013, Tuoc, Boretius et al. 2013).  

On the other hand, published evidence suggests that there is a link between the 

proportion of BPs/bRGs and the extent of cortical gyrification in various species (Hansen, 

Lui et al. 2010, Reillo, de Juan Romero et al. 2011, Shitamukai, Konno et al. 2011, Wang, 

Tsai et al. 2011). bRG progenitors are derivatives of APs that presumably after becoming 

delaminated from their apical anchorage (Borrell and Gotz, 2014). However, when 

adherens junction proteins are lost (Narayanan, Pham et al. 2018) or the linkages to 

cytoskeletal belts are broken by downregulation of the small GTPase, RhoA, apically 

anchored progenitor cells are delaminated without significant change in bRG generation 

or cortical folding. Likewise, our data and that of others indicate that PAX6 and BAF155 

control the delamination of RGs at least partly by regulating the expressional programs 

of genes encoding adherens junction proteins and RhoA (Narayanan, Pham et al. 2018). 

Similar to many other mouse mutants that exhibit delamination of APs during 

corticogenesis, BAF155cKO (Narayanan, Pham et al. 2018, Xie, Castro-Hernandez et al. 

2019) and PAX6cKO mice (Tuoc, Radyushkin et al. 2009, Tuoc, Boretius et al. 2013) do 

not exhibit an enlarged and folded cortex, suggesting that the ectopic localization of RGs 

outside of the VZ may be insufficient to trigger cortical expansion and/or folding. Recent 
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observations in the cortex of marmoset (a lissencephalic species) or agouti (a rodent 

with a moderately gyrencephalic cortex) revealed that the presence of an augmented 

population of bRGs in the expanded oSVZ of some mammalian subclasses may not 

correlate with the occurrence of cortical folding and gyrencephaly (Garcia-Moreno, 

Vasistha et al. 2012, Kelava, Reillo et al. 2012). In gyrencephalic ferrets, for example, the 

oSVZ initially appears as a massing of numerous bRGs that are directly produced by the 

transient delamination of APs during early cortical development (Martinez-Martinez, De 

Juan Romero et al. 2016). Later, however, the generation of bRGs becomes completely 

independent of AP delamination, instead relying on their self-expansion (Martinez-

Martinez, De Juan Romero et al. 2016). Along the same lines, functional blockade of TBR2 

in ferrets was shown to cause premature neuronal differentiation of SVZ progenitors, 

diminishing the numbers of bIPs and bRGs and impairing gyrification (Toda, Shinmyo et 

al. 2016). These findings support the idea that BP proliferation is a key driver of cortical 

folding (Toda, Shinmyo et al. 2016). Thus, the simple delamination of VZ progenitors is 

insufficient to generate BPs with a high proliferative capacity; instead, this process seems 

to critically involve altered expression of regulatory factors that boost BP amplification.   

 

H3 acetylation promotes BP proliferation and cortical expansion 
BPs from rodents and primates have distinct characteristics. In the lissencephalic rodent 

cortex, BPs are mainly neurogenic progenitors that express the transcription factor (TF), 

TBR2. In gyrencephalic species (such as ferret, primate, and human), in contrast, most of 

the BPs are proliferative progenitors and almost half of them co-express the TFs, TBR2 

and PAX6 (Lui, Hansen et al. 2011). In the developing ferret cortex, TBR2 is required for 

the production of both types of BPs (bIPs and bRGs) (Toda, Shinmyo et al. 2016). A 

prerequisite for identifying the gene expression and epigenetic programs of BPs during 

evolution is thus the analysis of BP-specific signatures in distinct species. Recent single-

cell transcriptomic and genetic studies have sought to explain the phylogenic expansion 

and gyrification of the mammalian cortex (Arai, Pulvers et al. 2011, Fietz, Lachmann et al. 

2012, de Juan Romero, Bruder et al. 2015, Florio, Albert et al. 2015, Johnson, Wang et al. 

2015, Pollen, Nowakowski et al. 2015, Thomsen, Mich et al. 2016). A few factors (such 

as TRNP1, ARHGAP11B, and TBC1D3) have been found to control BP genesis, BP 

proliferation, cortical expansion, and folding (Nonaka-Kinoshita, Reillo et al. 2013, Stahl, 

Walcher et al. 2013, Tuoc, Boretius et al. 2013, Bae, Tietjen et al. 2014, Florio, Albert et al. 
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2015, Ju, Hou et al. 2016, Wang, Hou et al. 2016, Del Toro, Ruff et al. 2017). Recently, 

remodeling of chromatin via histone post-translational modifications has also been 

implicated in cortical neurogenesis (Albert and Huttner 2018). However, the epigenetic 

mechanisms that coordinate the expression or repression of genes that are essential for 

the developmental events underlying cortical expansion and folding during evolution are 

still largely unknown.  

In this study, we purified TBR2+ BPs from mouse and human cortices. To compare the 

bulk level of epigenetic marks between mouse and human BPs, we quantified the PTMs 

of histones by simultaneously measuring the relative abundance of most known histone 

methylation and acetylation marks. This method requires a moderate number of cells that 

can be obtained by FACS, and allows for the systematic screening of epigenetic changes 

during evolution. We identified a few epigenetic marks that display different levels in 

TBR2+ BPs isolated from mouse versus human cortex. As PAX6+, SOX2+ BPs/bRGs are 

relatively rare in the WT mouse cortex (Wang, Tsai et al. 2011, Vaid, Camp et al. 2018), 

we used the BAF155cKO mutant as a mouse model to investigate the effect of HDAC 

inhibition on the proliferation of BPs.  

 

Based on the expression of PAX6, AP2γ, and SOX2 in the VZ and pHH3 at the apical VZ 

surface (Fig. 4A/C), our data suggest that the elevation of H3ac in developing mouse 

cortex did not influence the proliferation and delamination of APs, which were consistent 

with a relatively high level of H3K9ac in both mouse and human APs.  Intriguingly, we 

found that the level of H3K9ac is higher in human BPs than in mouse BPs. Moreover, we 

found that elevated H3K9ac specifically expands the pool of BPs, but not APs, and 

increases the number of both lower-layer CTIP2+ neurons and upper-layer SATB2+ 

neurons.  

The gyrification formation involves in generating a big population of neurons and the 

sufficient scaffold for neuronal migration in lateral dispersion manner into cortical layers. 

In gyrencephalic species, the cortical expansion is achieved by an extraordinary increase 

in neurogenic bIPs and the neurogenic/scaffold bRG in the oSVZ, which are critical to lead 

radially migrating neurons into lateral dispersion (Lui, Hansen et al. 2011, Borrell and Gotz 

2014, Taverna, Gotz et al. 2014, Dehay, Kennedy et al. 2015). The generation of more bIP 

and bRGs in TSA- treated BAF155cKO cortex than in TSA- treated WT cortex could explain 

the corresponding difference in cortical size (Fig. 6A-F) and level of cortical folding (fig. 
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S10B) in two mouse models. In agreement with previous studies (Garcia-Moreno, 

Vasistha et al. 2012, Kelava, Reillo et al. 2012, Liu, Liu et al. 2017), our findings suggest 

that the formation of cortical folding requires a great abundance of both bIPs and bRGs.  

Together, our findings indicate that H3 acetylation has prominent impacts on the cerebral 

cortex, in terms of both radial and tangential expansion (Figure 7H), by increasing the 

population of highly proliferative BPs and thus the degree of cortical gyrification (as seen 

in the primate brain).  

 

TRNP1 is a main target gene of H3 acetylation in BP 
amplification 
Our RNA-Seq and H3K9ac ChIP-Seq analyses for many genes in the sorted TBR2+ BPs 

indicate that HDAC inhibition either increases the H3K9ac level or upregulates the 

expression of the studied genes. Interestingly, the correlation of these data indicates that 

H3K9ac directly activates the expression of only a few genes (Fig. 4F-H). Such genes 

include TRNP1, whose manipulated expression in the mouse and ferret cerebral cortex 

was previously reported to affect various cortical expansion-related features, including 

the proliferation of cortical progenitors and the induction of cortical folding (Pilz, 

Shitamukai et al. 2013, Stahl, Walcher et al. 2013, Martinez-Martinez, De Juan Romero et 

al. 2016). We herein show that H3K9ac positively regulates the expression of TRNP1 in 

BPs to orchestrate BP proliferation in the developing cortex. Expressional analyses 

indicate that the expression patterns of H3K9ac (this study) and TRNP1 (Stahl, Walcher 

et al. 2013) are similar in developing mouse and human cortex. In particular, H3K9ac and 

TRNP1 exhibit low or undetectable levels in mouse BPs, whereas their expression is much 

higher in human BPs. Furthermore, we show that the overexpression of TRNP1 by means 

of H3K9ac epigenome editing increases BP proliferation, as also seen in HDAC inhibitor-

treated cortex, and that this phenotype is largely reverted to control levels upon TRNP1 

knockdown. These findings bring to light the role of H3 acetylation as a mechanism 

upstream of TRNP1 function for BP proliferation in cortical development during evolution.  

In summary, we herein identify a mechanism whereby BP amplification is epigenetically 

controlled through H3 acetylation, which specifically affects the expression level of 

TRNP1. Our findings show that the temporally dynamic regulation of H3 acetylation and 

its downstream effector, TRNP1, are part of an evolutionary epigenetic mechanism aimed 

at enlarging the diversity of neocortical phenotypes during evolution.  
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MATERIALS AND METHODS 
 

Plasmids 

Plasmids used in this study: pCIG2-KAT2A-ires-eGFP, gTRNP1-dCas9-KAT2A-T2A-eGFP 

(this study), shTRNP1 constructs (Stahl, Walcher et al. 2013). 

 

Antibodies  

The following polyclonal (pAb) and monoclonal (mAb) primary antibodies used in this 

study were obtained from the indicated commercial sources: H3K9Ac rabbit pAb 

(Abcam), SOX2 mouse mAb (1:100; R&D Systems), SOX2 goat (1:100; Santa Cruz), PAX6 

mouse mAb (1:100; Developmental Studies Hybridoma Bank), PAX6 rabbit pAb (1:200; 

Covance), TBR2 rabbit pAb (1:200; Abcam), CidU rat pAb (1:100; Accurate), KI67 rabbit 

pAb (1:50; Vector), GFP rabbit pAb (1:1000; Abcam), GFP chick pAb (1:1000; Abcam), 

AP2J mouse mAb (1:100; Abcam), phospho-H3 rat pAb (1:300; Abcam), pVIM mouse 

mAb (1:500; MBL), TNC  rabbit pAb (Abcam), PTPRZ1  rabbit pAb (Sigma), BAF170 rabbit 

pAb (Bethyl),  BAF170 rabbit pAb (Sigma), BAF155 rabbit pAb (1:20; Santa Cruz), BAF155 

mouse mAb (1:100; Santa Cruz), CASP3 rabbit pAb (1:100; Cell Signaling), CTIP2 rat pAb 

(1:200; Abcam), HuCD mouse mAb (1:20; Invitrogen), TBR1 rabbit pAb (1:300; Chemicon), 

SATB2 mouse mAb (1:200; Abcam), CUX1 rabbit pAb (1:100; Santa Cruz), β-actin rabbit 

pAb (Sigma), H3ac rabbit pAb (Upstate), NeuN mouse mAb (Chemicon), REELIN mouse 

mAb (Gift from Prof. Goffine), SOX5 rabbit pAb (Santa Cruz), KAT2A rabbit pAb (Abcam), 

NESTIN mouse mAb (BD), RC2 mouse mAb (Developmental Studies Hybridoma Bank), 

Secondary antibodies used were horseradish peroxidase (HRP)-conjugated goat anti-

rabbit IgG (1:10000; Covance), HRP-conjugated goat anti-mouse IgG (1:5000; Covance), 

HRP-conjugated goat anti-rat IgG (1:10000; Covance), and Alexa 488-, Alexa 568-, Alexa 

594- and Alexa 647-conjugated IgG (various species, 1:400; Molecular Probes).  

 

Human fetal brain collection and processing 

Human fetal brain tissue was obtained from spontaneous abortions that occurred in the 

Hospital for Obstetrics and Gynecology "Prof. Dimitar Stamatov”, Medical University – 

Varna, Bulgaria, after an informed written maternal consent, and with the approval of the 

local Ethics Committee (Protocol No 19/April 2012; Protocol No 55/June 2016). The 

gestation age in weeks (GW) has been determined based on the history of last 
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menstruation as reported by the patients. The heads were placed in 4% PFA solution in 

PBS 7.5 pH for 24h, and then the brains were dissected and postfixed in PFA for 5-7 days, 

cryoprotected in sucrose and frozen in OCT medium prior to cryosectioning at 20 Pm. 

Cortical tissues from additional cases were used for FACS as described for mouse 

tissues in the below section.  

 

Animal care, generation of transgenic mice, in utero electroporation  

Floxed BAF155 (Choi, Ko et al. 2012), Emx1-Cre (Gorski, Talley et al. 2002) mice were 

maintained in a C57BL6/J background. In utero electroporation was performed as 

described previously (Tuoc and Stoykova 2008, Xie, Castro-Hernandez et al. 2019). 

Animals were handled in accordance with the German Animal Protection Law and with 

the permission of the Bezirksregierung Braunschweig.  

 

Mice with treatment of HDAC inhibitors (HDACi) 

Trichostatin A (TSA) (Sigma-Aldrich, Cat. T8552-1MG) was dissolved in vehicle (8% 

ethanol in 1xPBS) at a concentration of 100µg/ml. Suberoylanilide hydroxamic acid 

(SAHA) (Biomol, Cat. CAS 149647-78-9) was dissolved in Vehicle (DMSO) (10 mg/ml). 

Sodium salt Valproic acid (VPA) (Sigma, Cat. P4543) was dissolved in Vehicle (saline) at 

concentration of 100 mg/ml. E12.5 d.p.c. pregnant females were injected 

intraperitoneally twice on the first day, then once from second day with either vehicle or 

150µl of 100 µg/ml TSA solution or 20µl of 10 mg/ml SAHA solution plus 110 µl Saline 

or 120µl of 100 mg/ml VPA solution. Treated mice were sacrificed at different 

developmental stages as indicated in the text. 

 

TBR2+ nuclei sorting from embryonic cortex 

Since typical cell sorting methods comprise of protease treatment for cell dissociation 

that can lead to unwanted effects, we opted for unbiased approach to minimize biasness 

due to sample processing. In this regard, we opted for nuclei sorting, instead of cell 

sorting, as this is a well-established method of getting the cell types of interest from the 

brain without the biasness of the sample preparation (Halder, Hennion et al. 2016). Since 

we were interested to obtain epigenetic and transcriptomic data from TBR2+ and TBR2- 

nuclei, two different protocols were followed, respectively.  
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TBR2+ nuclei sorting protocol from embryonic mouse brain for ChIP-Seq 

The protocol were adapted from (Halder et al., 2016) with modifications. Freshly prepared 

embryonic cortices from 5 CD1 pups were pooled for each replicates and homogenized 

briefly in low-sucrose buffer(320 mM Surcrose, 5mM CaCl2, 5 mM MgAc2, 0.1 mM EDTA, 

10mM HEPES pH 8, 0.1% Triton X-100, 1mM DTT, supplemented with Roche protease 

inhibitor cocktail) with plastic pestles in 1.5mL tubes. 1% Formaldehyde was added as a 

final concentration and incubated at room temperature for 10 minutes on a rotating 

wheel. 125mM Glycine was added as final concentration and incubated for 5 minutes at 

room temperature for quenching remaining formaldehyde. The homogenate was 

centrifuged at 2000g for 3 minutes at 4°C and supernatant was discarded. The remaining 

crude nuclear pellet was resuspended in additional low-sucrose buffer and further 

homogenized with a mechanical homogenizer (IKA Ultraturax T10, with S10N-5G tool). 

The solution was carefully layered onto 6mL high-sucrose buffer(1000mM Sucrose, 3mM 

MgAc2, 10mM HEPES pH 8, 1 mM DTT, Roche protease inhibitor) in oak-ridge tubes and 

centrifuged at 3220g for 10 minutes at 4°C in a swinging bucket rotor centrifuge to get 

rid of myelin debris. The resulting nuclear pellet were resuspended into left over buffer, 

transferred into 2mL microfuge tubes(DNA-low bind), centrifuged for 3 minutes at 2000g 

at 4°C to recover the nuclear pellet. It was resuspended into 500uL PBTB buffer(PBS-

Tween-BSA buffer, 1% BSA, 0.2% Tween-20, protease inhibitor in 1X PBS) and 5uL Anti-

TBR2(Eomes)-Alexa488 conjugated antibody(IC8889G-025) was added. After incubating 

for 1 hour at 4°C, the samples were washed with PBTB once and proceeded with the 

sorting in FACSAria III with 85µm nozzle. Sorted nuclei were collected into PBTB coated 

falcon tubes, pelleted with brief centrifugation and pellets were flash frozen and saved at 

-80°C until further processing for ChIP-seq. ChIP was performed according to (Halder et 

al., 2016) with desired antibodies and the library preparation was performed using 

NEBNext Ultra II DNA library preparation according to manufacturer’s protocol.  

TBR2+ nuclei sorting protocol from embryonic mouse brain for RNA isolation and RNA-Seq  

Freshly dissected mouse embryonic cortices from 5 CD1 pups were pooled and 

immediately submerged into enough RNAlater solution in a microfuge tube and kept at 

4°C for at least 24 hours. The excess RNAlater solution were pipetted out and washed 

twice with 1x RNAse free PBS. After last wash, all the steps were done on ice. The tissues 

were immediately submerged into 500 uL nuclei EZ prep lysis buffer(Sigme, NUC101), 

dounce homogenized with plastic pestles for 30-45 times and additional lysis buffer was 
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added to make the volume upto 2 mL. Homogenates were incubated on ice for 7 minutes, 

then centrifuged for 5 minutes at 500g, 4°C. After removing the supernatant, pellet was 

resuspended into 2mL lysis buffer and incubated on ice for 7 minutes. Lysates were 

filtered through 40µm filter into a new 2mL tube and centrifuged for 5 minutes at 500g, 

4°C. The pellet was resuspended into 1800uL nuclei suspension buffer(NSB, 1x RNAse-

free PBS, 0.5% RNAse-free BSA, 1:200 RNaseIN plus inhibitor, Roche protease inhibitor), 

centrifuged at 500g for 5 minutes at 4°C and the pellet was resuspended in 500uL NSB. 

5uL Anti-TBR2(Eomes)-Alexa488 conjugated antibody(IC8889G-025) was added and 

incubated for 1 hour at 4°C. The stained nuclei were washed once and resuspended into 

NSB and sorted with FACSAria III with 85µm nozzle. Sorted nuclei were collected into 

NSB coated falcon tubes, pelleted with brief centrifugation and the RNA was isolated 

using Trizol LS(Invitrogen) protocol along with aqueous phase cleanup using Zymo RNA 

clean & concentrator-5 kit. RNAseq libraries were prepared using Takara SMART-Seq v4 

Ultra Low Input RNA kit using 1ng of RNA according to the manufacturer’s protocol. 

 

Mass Spectrometry analysis of epigenetic marks. 

Histone extraction and preparation for mass spectrometry  

Bulk histones were acid-extracted from the sorted TBR2+ nuclei pellets, propionylated 

and subjected to trypsin digestion as described previously (Zheng, Thomas et al. 2013). 

Briefly, histones were extracted by incubating samples at room temperature for 1 hour in 

0.2M sulfuric acid with intermittent vortexing. Histones were then precipitated by the 

addition of trichloroacetic acid (TCA) on ice, and recovered by centrifugation at 10,000 x 

g for 5 minutes at 4°C. The pellet was then washed once with 1mL cold acetone/0.1% HCl 

and twice with 100% acetone, and then air dried in a clean hood. The histones were 

propionylated by adding 1:3 v/v propionic anhydride/2-propanol and incrementally adding 

ammonium hydroxide to keep the pH around 8, and subsequently dried in a SpeedVac 

concentrator. The pellet was then resuspended in 100mM ammonium bicarbonate and 

adjusted to pH 7-8 with ammonium hydroxide. The histones were then digested with 

trypsin resuspended in 100mM ammonium bicarbonate overnight at 37°C, and dried in a 

SpeedVac concentrator. The pellet was resuspended in 100mM ammonium bicarbonate 

and propionylated a second time by adding 1:3 v/v propionic anhydride/2-propanol and 

incrementally adding ammonium hydroxide to keep the pH around 8, and subsequently 
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dried in a SpeedVac concentrator. Histone peptides were resuspended in 0.1% TFA in 

H2O for mass spectrometry analysis.  

 

 

Mass spectrometry  

Samples were analyzed on a triple quadrupole (QqQ) mass spectrometer (Thermo Fisher 

Scientific TSQ Quantiva) directly coupled with an UltiMate 3000 Dionex nano-liquid 

chromatography system. Peptides were first loaded onto an in-house packed trapping 

column (3cm×150μm) and then separated on a New Objectives PicoChip analytical 

column (10 cm×75 μm). Both columns were packed with New Objectives ProntoSIL C18-

AQ, 3μm, 200Å resin. The chromatography gradient was achieved by increasing 

percentage of buffer B from 0 to 35% at a flow rate of 0.30 μl/min over 45 minutes. 

Solvent A: 0.1% formic acid in water, and B: 0.1% formic acid in 95% acetonitrile. The QqQ 

settings were as follows: collision gas pressure of 1.5 mTorr; Q1 peak width of 0.7 

(FWHM); cycle time of 2 s; skimmer offset of 10 V; electrospray voltage of 2.5 kV. 

Targeted analysis of unmodified and various modified histone peptides was performed. 

This entire process was repeated three separate times for each sample. 

 

Data analysis  

Raw MS files were imported and analyzed in Skyline with Savitzky-Golay smoothing 

(MacLean, Tomazela et al. 2010). All Skyline peak area assignments for monitored 

peptide transitions were manually confirmed. A minimum of 3 peptide transitions were 

quantified for each modification. For each monitored amino acid residue, each modified 

(and unmodified) form was quantified by first calculating the sum of peak areas of 

corresponding peptide transitions; the sum of all modified forms was then calculated for 

each amino acid to represent the total pool of modifications for that residue. Finally, each 

modification is then represented as a percentage of the total pool of modifications. This 

process was carried out for each of the three separate mass spec runs, and the raw data 

provided in the data delivery spreadsheet corresponds to the mean and standard 

deviation of the resulting three values from this analysis for each modified and 

unmodified form of the corresponding amino acid residue.  

To generate the heatmaps, for each individual modification, the data for each sample was 

converted to the fraction of the sum across all samples to display relative abundances 
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across the sample group, and then conditionally formatted in Excel using the default 

red/white/blue color scheme. The hierarchical clustering heatmap was generated in R 

using the “pheatmap” function with default settings. 

 

Chromatin immunoprecipitation (ChIP) 

The ChIP protocol was described previously (Narayanan et al., 2015). Mouse embryonic 

cortices or TBR2+ BPs, TBR2- cells were homogenized in sucrose solution (0.32 M 

sucrose, 5 mM CaCl2, 5 mM Mg(Ac)2, 0.1 mM EDTA, 50 mM HEPES pH 8, 1 mM DTT, 0.1% 

Triton X-100), fixed in 37% formaldehyde, and then treated with 1.25 M glycine. The 

samples were then centrifuged, and the pellet (i.e., nuclei) was washed with Nelson buffer 

(140 mM NaCl, 20 mM EDTA pH 8, 50 mM Tris pH 8, 0.5% NP-40, 1% Triton X-100). 

Thereafter, nuclei were re-suspended in RIPA-SDS buffer (140 mM NaCl, 1 mM EDTA, 1% 

Triton X-100, 0.1% sodium deoxycholate, 10 mM Tris pH 8, 1% SDS) and incubated on a 

rotating wheel for 10 min at 4°C. The samples were then transferred to sonication tubes 

(Diagenode) and sonicated in a Bioruptor Plus NGS (Diagenode) at a setting of “High” at 

4°C. Samples were spun down after every fifth cycle to ensure homogeneous shearing. 

After sonication, samples were centrifuged at 18,000 u g for 5 min and the supernatant 

was transferred to a fresh tube. The sheared chromatin was snap frozen and kept at -

80°C prior to any further treatment. A small amount was kept in order to test shearing 

efficiency and total chromatin amount using an Agilent 2100 Bioanalyzer (Agilent 

Technologies) and QuBit fluorometer (Life Technologies), respectively, after reverse-

crosslinking. To that end, samples were treated with 0.1 μg/μl RNase A (Qiagen) and 

Proteinase K (Roth). 

Protein A-coated Dynabeads (Life Technologies) were blocked in 500 µl of 0.5% bovine 

serum albumin (BSA) for 2 h at 4°C on a rotating wheel. The chromatin was diluted 10-

fold in immunoprecipitation (IP) buffer (140 mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 50 mM Tris pH 8, 20 mM EDTA, 0.1% SDS) and pre-cleared by incubating 

with 20 µl of blocked Dynabeads for 1 h at 4°C on a rotating wheel. For 

immunoprecipitation for the purpose of ChIP sequencing, 1000 ng of pre-cleared 

chromatin was incubated overnight at 4°C on a rotating wheel with 2 µg of anti-H3K9ac 

antibody (Millipore). For ChIP-qPCR, 500 ng of pre-cleared chromatin was used with 1 µg 

of the same antibody. The next day, the samples were incubated with 15 µl of blocked 

Dynabeads for 2 h at 4°C on a rotating wheel. Beads were then washed with IP buffer and 
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wash buffer (100 mM Tris pH 8, 500 mM LiCl, 1% NP-40, 1% sodium deoxycholate, 20 mM 

EDTA), and collected on magnetic stands (Invitrogen). DNA was eluted with 20 µl elution 

buffer (10 mM Tris pH 8) containing 0.1 µg/µl RNase A. Samples were incubated for 30 

min at 37°C in a thermomixer (Eppendorf) with gentle agitation, then diluted 2-fold with 

Wiemann Buffer (100 mM Tris pH 8, 20 mM EDTA, 2% SDS) containing 1 µl of Proteinase 

K (20 µg/µl) and incubated overnight at 65°C in a thermomixer (Eppendorf) with agitation. 

The next day, 3 µl of linear polyacrylamide (Bioline) and 60 µl of SureClean (Bioline) were 

added to the samples. Samples were then transferred to magnetic stands, the beads were 

washed with 80% ethanol, and DNA was eluted with 30 µl elution buffer for ChIP-Seq 

experiment or with 60 µl elution buffer for ChIP-qPCR. Inputs were handled in parallel with 

immunoprecipitated samples. Finally, DNA quality and quantity were measured on an 

Agilent 2100 Bioanalyzer and QuBit fluorometer, respectively. 

In ChIP/qPCR experiment (Fig. 6C, Fig. S6C) to compare the H3K9ac level of mouse and 

human TBR2+ BPs, identical conditions (ChIP, PCR) were performed.  

 

ChIP-Seq 

Libraries were prepared with NEBNext Library Prep Kit for Illumina (NEB). Input DNA (100 

ng) was isolated from all the samples and was pooled for each group separately. The 

quality and quantity of the libraries were measured with an Agilent 2100 Bioanalyzer and 

QuBit fluorometer, respectively.  

Base calling and conversion to fastq format were performed using Illumina pipeline 

scripts. Afterwards, quality control on raw data was conducted for each library (FastQC, 

www.bioinformatics.babraham.ac.uk/projects/fastqc). The following control 

measurements and information were obtained: per base sequence quality, per sequence 

quality scores, per base sequence content, per base GC content, per sequence GC 

content, per base N content, sequence length distribution, sequence duplication levels, 

overrepresented sequences, Kmer content.  

The reads were mapped to a mouse reference genome (mm10) using STAR aligner v2.3.0 

(Djebali, Davis et al. 2012). rmdup function of samtools (Li, Handsaker et al. 2009) was 

used to remove PCR duplicates from each BAM file. merge function of samtools was 

used for merging BAM files with unique reads (i.e., with duplicates removed) belonging 

to replicates from the same group into a single BAM file. All the downstream analyses 

were performed on BAM files with only unique reads. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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Profile plots of H3K9ac were created with NGSPlot (Shen, Shao et al. 2014) using merged 

BAM files from immunoprecipitated samples and inputs. H3K9ac enrichment at different 

gene loci was visualized through the Integrated Genome Browser (Nicol, Helt et al. 2009) 

using wiggle files that were created from the merged BAM files with the script from the 

MEDIPS package of Bioconductor (Lienhard, Grimm et al. 2014).  

Peaks were called on individual with MACS2 with q-value < 0.1(Feng, Liu et al. 2011). 

Differential binding was assessed with DiffBind package of Bioconductor (Ross-Innes, 

Stark et al. 2012) with in-built DESEQ2 option implemented in differential analysis. In 

differential binding analyses promoters were defined as +/- 2000 bp from transcription 

start site (TSS). Peak annotation was done with HOMER (Heinz, Benner et al. 2010).  

RNA-Sequencing 

RNA was extracted (RNeasy kit; Qiagen) from the embryonic cortex of E15.5 embryos. 

cDNA libraries were prepared using the TruSeq RNA Sample Preparation v2 Kit. DNA was 

quantified using a Nanodrop spectrophotometer, and its quality was assessed using an 

Agilent 2100 Bioanalyzer. 

Base calling, fastq conversion, quality control, and read alignments were all performed as 

outlined for ChIP-Seq. Reads were aligned to mouse genome mm10 and counted using 

FeaturesCount  

(http://bioinf.wehi.edu.au/featureCounts/). Differential expression was assessed using 

DESeq2 from Bioconductor (Love, Huber et al. 2014). Functional GO enrichment analyses 

were performed using ToppGene (Chen, Bardes et al. 2009). 

 

Epigenome editing 

Constructs for epigenome editing  

The backbone vector encoding sgRNAs and 3xFlag-dCas9 (nuclease dead-Cas9)-T2A-

GFP expression cassette was generated from the vector pSpCas9n(BB)-2A-GFP (PX461 

in addgene):  H840A was introduced into Cas9n to produce dCas9 through PCR-mediated 

mutagenesis cloning, and a polylinker sequence 5’-

TCCGGACGGGGATCCACTAGTGTCGACACCGGTCCTAGG-3’ was inserted right after the 

Cas9 coding sequence.  The vectors for the mouse TRNP1 promoter epigenome editing 

were derived from the above generated backbone vector. gRNA sequences targeting 

specific mouse TRNP1 promoter region (Chr4: 133497514-133498529) was designed 

using the software ‘Genious’, and cloned into the vector between BbsI sites after in vitro 

http://bioinf.wehi.edu.au/featureCounts/
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test, then the coding sequence for mouse KAT2A was amplified from the vector pCMV-

sport2-mGCN5 (Martínez-Balbás, Bauer et al. 2000) (gift from Sharon Dent, Addgene 

plasmid # 23098), and cloned into the backbone vector between SpeI and AvrII sites, in 

frame with that of dsCas9 and T2A-GFP. The vectors were confirmed by sequencing.  

 

In vitro test for TRNP1 sgRNAs, quantification of H3K9ac level at TRNP1 promoter and 

expression of TRNP1 in gTRNP1-dCas9-KAT2A- transfected Neuro2A  

For in vitro test, sgRNAs were synthesized through in vitro transcription from a PCR-

produced sgRNA template, which habors the T7 promoter abided by the gRNA sequence 

and the sharped gRNA scaffold (Chen, Gilbert et al. 2013) using MEGAscript T7 

Transcription Kit (Invitrogen) according the manufacturer’s protocols. Cas9 protein was 

purchased from IDT (#1074182). In vitro test of Cas9/gRNAs complexes cutting 

efficiency was performed using a 1016 bp PCR product from TRNP1 promoter according 

the protocol described in (Kalebic, Taverna et al. 2016).  

Based on the in vitro testing result, the gRNA2 and gRNA4 were selected and cloned into 

above mentioned vector to generate vectors TRNP1-sg2-Flag-dCas9-2A-GFP (TRNP1-

sg2), and TRNP1-sg4-Flag-dCas9-2A-GFP (TRNP1-sg4). 12 µg of parental vector Flag-

dCas9-2A-GFP or TRNP1-sg2, or/and TRNP1-sg4 were transfected into Neuro2A cells 

cultured on 10 cm dishes using lipofectamine 2000 reagent (thermofisher) following the 

manufacture’s protocol, and cells were harvested for FACS analysis 3 days post-

transfection for qPCR and ChIP/qPCR analyses. 

 

Cell cultures  

Cortical primary cells were dissociated from mouse embryos and cultured as described 

previously (Conti, Pollard et al. 2005, Tuoc and Stoykova 2008). For cell culture assays, 

plasmids were transfected into Neuro2A cells using Lipofectamine 2000, or were 

electroporated into primary cortical cells using a mouse neural cell Nucleofector kit and 

a nucleotransfection device (Amaxa).  

 

 

 

IHC and cell-cycle parameter experiments 



Manuscript 1 

 54 

IHC and determination of cell-cycle index were performed as previously described (Tuoc, 

Radyushkin et al. 2009).  

 

DiI labeling 

Mouse brains were dissected out in cold PBS and fixed in cold 4% PFA in PBS at 4°C 

overnight, followed by removal of the meninges that covers the cortical surface. The DiI 

crystals (Life Technologies) were dissolved in 100% ethanol to a final concentration of 1 

mg/ml in 1 ml final volume. Then each brain sample was transferred to 1 ml fresh 4% 

PFA in PBS added with 30 ml of 1 mg/ml DiI solution and incubated at 37°C for another 

24 hr. After DiI labeling, brains were washed with PBS, sectioned on the vibratome (Leica 

VT1200S) into 100 mm slices, and stained with PAX6 antibody and DAPI before 

mounting. 

 

Retrovirus production and viral infection in slices 

GFP expressing retrovirus was produced from the stably transfected packaging cells 

(293gp NIT-GFP) by transfection with pCMV-VSV-G plasmid (Addgene #8454) (Stewart, 

Dykxhoorn et al. 2003). Viral particles with their low titer of about 106 PFU/ml were used 

for infection. For the viral infection, cortical slices from brain of TSA- treated BAF155cKO 

embryos were prepared and cultured as described previously (Wang, Tsai et al. 2011). To 

label the bRGs, GFP-expressing retrovirus (106 PFU/ml) was microinjected into 

intermediate zone of the cultured brain slice, using a beveled and calibrated glass 

micropipette (Drummond Scientific). After 60 hours post-infection, brain slides were 

washed with PBS and stained with antibodies against GFP and PAX6. 

 

qRT-PCR and WB analyses  

qRT-PCR and WB analyses were performed as described previously (Tuoc and Stoykova 

2008) using primers described in Supplementary Table S7 and the RT² Profiler PCR Array 

profiles (Qiagen). 

 

Relative quantification of cortical surface  

The cortical surface was measured and analysed as described by O'Leary et al (Bishop, 

Rubenstein et al. 2002, Bishop, Garel et al. 2003, Sahara and O'Leary 2009, Tuoc, Boretius 

et al. 2013, Narayanan, Pham et al. 2018). Shortly, forebrains of mutants and controls at 
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P0 with their presented dorsal view were photographed under a dissection microscope. 

The cortical surface from the digitized images were processed to compare this 

parameter between mutants and controls by using NIH ImageJ software.  

 

Cell counts and quantitative analysis of immunohistochemical signal intensity 

For the quantitative analyses of immunohistochemical signal intensity of H3K9ac and 

H3ac, confocal fluorescent images of sections of mouse and human cortex were used. 

The IHC Images with corresponding IgG isotopes were used as immune-staining 

controls. The color images of cortex were converted to gray scale to eliminate 

background. The pixel values of the fluorescent signal intensity were measured by using 

Analyze/Analyze Particles function (ImageJ software) as previously described (Tuoc and 

Stoykova 2008, Tuoc, Boretius et al. 2013, Narayanan, Pirouz et al. 2015, Bachmann, 

Nguyen et al. 2016). The measured value was then subtracted from immune-staining 

controls (without primary antibody).  

Similarly, the relative amount of protein from developed films in WB experiment was 

quantified densitometrically using ImageJ software as described previously (Tuoc and 

Stoykova 2008, Tuoc, Boretius et al. 2013, Narayanan, Pirouz et al. 2015, Bachmann, 

Nguyen et al. 2016). 

Immunostaining in IHC images was quantified using anatomically matched forebrain 

sections from control and mutants or HDACi-treated embryos. Nucleus-marker–positive 

cells within the cortex of confocal images were counted for comparison. In most cases, 

cell counts of six matched sections were averaged from three biological replicates. 

Statistical analyses of histological data were performed using Student’s t-test. All bar 

graphs are plotted as means ± SEM. All statistical tests are two-tailed, and P-values are 

considered to be significant for α = 0.05. Details of statistical analyses of histological 

experiments are presented in Table S8. 

 

Image acquisition and statistical analysis 

Images were acquired with epifluorescence (Leica DM 6000) and confocal microscopes 

(Leica TCS SP5). Images were further analyzed with Adobe Photoshop. Statistical 

significance was determined by Student’s t-test or Mann-Whitney test. All graphs are 

plotted as mean ± SEM. The statistic quantification was carried out as average from at 
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least three biological replicates. All details of statistical analyses for histological 

experiments are presented in Table S8. 

 

Data availability 

All RNA-Seq and ChIP-Seq data have been deposited in GEO and will be released to public 

upon acceptance of the manuscript. 
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SUPPLEMENTAL DATA 
 

 
 
Fig. S1. Purification and characterization of TBR2+ BPs. (A) Images showed stained 

samples as isotype control (see also Fig. 1B/C). (B, C) Representative plot showing 

sorting gates for TBR2+ cells and TBR2- cells from mouse cortex at E16.5 (B) and human 

cortex at GW18 (C). (D, E) Purity of the sorted TBR2+ BPs and TBR2- cells was further 

proven by RNA-Seq (D) and H3K9ac ChIP-Seq (E). TBR2+ BPs had much higher levels of 

TBR2 RNA expression (D) and much higher levels of H3K9ac at TBR2 gene locus (E) 

compared to TBR2- cells.  
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Fig. S2. Histone H3 is acetylated differently in basal progenitors in murine and human 

developing cortex.   (A) Images of triple IHC with cortical section from mouse embryo at 

E15.5 stained with antibodies against: H3ac, PAX6, and TBR2. The lower panels showing 

selected frames at VZ and IZ at higher magnification revealed that PAX6high+, TBR2low+ 

APs are H3achigh+ cells (filled arrows), whereas many PAX6high+ BPs in IZ and all TBR2high+ 

BPs are H3aclow+ cells (empty arrows). (B) Images showing triple immunolabeling with 

antibodies against H3ac, PAX6 and TBR2 and human fetal cortex at GW20 demonstrate 

that both the PAX6+ APs and PAX6+ BPs (arrows in red) and the TBR2+ BPs (arrows in 

magenta) are highly immunoreactive with H3ac. (C) Statistical analyses of IHC assay 

(shown in A and B) comparing the level of H3ac (H3achigh and H3aclow) in progenitor 

subtypes in developing mouse and human cortex confirm the high level of H3ac mark in 

both APs and BPs in humans. (D, E) IHC (D) and statistical analyses (E) of GW20 human 

cortical sections with H3K9ac and KI67 antibodies revealed that not all H3K9ac+ cells co-

express KI67. Abbreviations: BPs, Basal progenitors; vRGs, ventricular radial glial 

progenitors; IPs, intermediate progenitors; oRGs, outer sub-ventricular radial glial 

progenitors; VZ, ventricular zone; SVZ, subventricular zone; iSVZ, inner subventricular 

zone; oSVZ, outer subventricular zone; IZ, intermediate zone; CP, cortical plate. Scale bars 

= 50 Pm. 
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Fig. S3. Area-restricted increases of TBR2+, PAX6+, KI67+ BPs in HDACi– treated 

cortex  

(A) Merged confocal micrographs of fluorescent immunostaining for PAX6 (APs and 

BPs), TBR2 (BPs), and KI67 (actively-proliferating progenitors in cell cycle) with rostral, 

middle and caudal levels from unfolded areas of Veh-treated WT and TSA-treated 

BAF155cKO cortex at stages E16.5 and E18.5. In each level, upper rows present coronal 

mouse brain sections while lower rows present confocal images of an area in dorsal 
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pallium. (B) Statistical analyses of immunostainings shown in A for dorsal cortex (dCx) 

at E16.5. Values are presented as mean ± SEM (*P <0.05, ***P <0.01, ***P <0.005). 

Abbreviations: BPs, Basal progenitors; vRGs, ventricular radial glial progenitors; IPs, 

intermediate progenitors; VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate 

zone; CP, cortical plate. Scale bars = 50 Pm. 
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Fig. S4. HDAC inhibition increase the genesis of BPs in dose- dependent fashion. 

(A) Immunofluorescence micrographs showing the quantity and distribution of PAX6 and 

TBR2 at E18.5 in control and BAF155cKO cortices, with or without two regimens of HDACi 

treatment. (B) Statistical analysis for dorsal cortical area revealed that more PAX6+ BPs 
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and TBR2+ BPs were found in E18.5 cortex treated with TSA for E13.5-E17.5 than those 

in those injected with TSA for E13.5-E15.5. Notably, the TSA treatment also led to 

increased number of PAX6+vRGs at E18.5. (C) Proportions of cortical progenitors 

expressing PAX6 and/or TBR2 in VZ, SVZ, and IZ from dorsal area of WT+ Veh, WT+ TSA 

and BAF155cKO+ TSA cortex at E16.5. Values are presented as mean ± SEM (*P <0.05, 

***P <0.01, ***P <0.005). Abbreviations: BPs, Basal progenitors; vRGs, ventricular radial 

glial progenitors; IPs, intermediate progenitors; VZ, ventricular zone; SVZ, subventricular 

zone; IZ, intermediate zone; CP, cortical plate. Scale bars = 50 Pm. 
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Fig. S5. Increased level of H3ac promotes genesis and proliferation of BPs in developing 

mouse cortex. 

(F, G) Increasing H3 acetylation by other HDAC inhibitors such as VPA (E) and SAHA (F) 

also increased the number of TBR2+, PAX6+ BPs in both WT and BAF155cKO developing 

cortex. Values are presented as mean ± SEM (*P <0.05, ***P <0.01, ***P <0.005). 

Abbreviations: BPs, Basal progenitors; vRGs, ventricular radial glial progenitors; IPs, 

intermediate progenitors; VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate 

zone; CP, cortical plate. Scale bars = 50 Pm. 
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Fig. S6. H3 acetylation specifically promotes proliferation of basal progenitors 

(A) IHC images for KI67/PAX6 or KI67/TBR2 staining of Veh-treated WT and TSA-treated 

BAF155cKO cortex at E16.5. Right panels show higher magnifications of the areas 

indicated by the white box. (B) Quantified distribution of proliferating KI67+/PAX6+ 

APs/BPs and KI67+/TBR2+ BPs from the apical surface to the pia in vehicle-treated WT 

cortex and the corresponding region of the TSA-treated BAF155cKO cortex shown in A. 

(C, D) 4 hours- IdU pulse-labeling is to trace for the progression of cortical progenitors 

within the S-M phases. (C) Double IHC analysis with antibodies against IdU and pHH3 

(markers for cells in the late G2-M phases) to label APs (apical surface- located 

IdU+/pHH3+) and BPs (basally located IdU+/pHH3+, filled arrows), which already passed 

through S- phase and entered into late G+M- phases. (D) Proportion of BPs entered into 

the late G2-M phases in TSA- treated cortices is smaller compared to that in Veh-treated 

cortices. Values are presented as mean ± SEM (*P <0.05, ***P <0.01, ***P <0.005). 

Abbreviations: VZ, ventricular zone; SVZ, subventricular zone; IZ, intermediate zone; CP, 

cortical plate. Scale bars = 50 Pm. 
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Fig. S7. HDAC inhibition causes H3K9ac-linked upregulation of gene expression in 

BAF155cKO developing cortex, TBR2+ BPs and TBR2- cells.  

(A, B, G, H) Volcano plots showing statistically significant changes (Paired Student’s t-

test < 0.01, FC > 1.2) visualized by our RNA-Seq (A, G) and H3K9ac ChIP-Seq (B, H) 

analyses of E16.5 BAF155cKO cortex (A, B) and TBR2- cells (G, H) in TSA vs. Vehicle 
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experiments (see also Fig. 2D/E for TBR2+ BPs). (C, D) H3K9ac is increased at loci of 

upregulated genes (C), but not at those of downregulated genes (D) in TSA treated 

BAF155cKO cortex. (E, F) Graphs of qPCR to examine gene expression (E) and ChIP-qPCR 

to quantify H3K9ac level (F). TSA treatment leads to increase in H3K9ac levels at 

promoters of neurogenesis-related genes (F) and their expression (E) both in WT and in 

BAF155cKO. ChIP-qPCR and qPCR results for a selection of genes are shown (WT_Veh: 

n = 3, WT_TSA: n = 4, BAF155 cKO_Veh: n = 4, BAF155 cKO_TSA: n = 4; general TSA effect: 

mixed linear model p-value < 0.001; general effect of BAF155 knockdown: Two-way 

ANOVA WT_Veh vs BAF155 cKO_Veh p < 0.01). (G, H) Overlap between the upregulated 

genes in TSA-treated TBR2+ BP genes and BP/IP genes, which were recently identified 

specifically for macaque (G), and human (H) (Pollen, Bhaduri et al. 2019). Notably, the 

TSA treatment provoked expression of a large set of macaque BP genes and in less 

extend, human BP genes in TBR2+ BPs in the developing mouse cortex. (I) Overlap 

between up-regulated genes in RNA-seq and genes with increased H3K9ac in ChIP-seq 

studies of TBR2+ BPs upon the TSA treatment.  

(J) Genome browser views of the distribution of H3K9ac along representative BP-

enriched genes in BAF155cKO cortex, TBR2+ BPs, TBR2- cells, which were treated with 

either TSA and or vehicle as control. It should be noted that the bulk level of H3K9ac at 

their loci was unaltered in TBR2+ BPs and TBR2- cells in response to TSA treatment. In 

BAF155cKO cortex, the increased level of H3K9ac at these loci is due to expanded pool 

of BPs upon the treatment of TSA. (K) The increased level of H3K9ac at gene loci of 

ADRB1, TRNP1, PCDH1 in ChIP-seq upon TSA treatment were validated in ChIP-qPCR. 
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Fig. S8. HDAC inhibition causes upregulation of bRG-enriched genes in developing 

mouse cortex.  

(A) qPCR analysis was used to confirm the upregulated expression of human- enriched 

bRG markers in TSA-treated cortex as compared to vehicle-treated control. (B-E) Among 

bRG-enriched genes, expression of TNC and PTPRZ1 have been well characterized in the 

developing cortex of both human and mouse (Pollen, Nowakowski et al. 2015). TNC and 

PTPRZ1 antibodies labeled subsets of APs and BPs/bRGs in the entire human cortex, 
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whereas in mouse their expression was detected only in a sub-population of PAX6+ APs 

in the lateral cortex (lCx, B) (Pollen, Nowakowski et al. 2015). The increased expression 

of TNC (B/C) and PTPRZ1 (D) in TSA-treated WT and BAF155cKO cortex at E16.5 and 

E18.5 was revealed by immunolabeling (B-D) and quantification (E). Notably, the 

expression of these human bRG markers PTPRZ1 and TNC was found in PAX6+ APs in 

VZ of dorsal cortex (dCX, white filled arrows in B) and PAX6+ bRGs (white filled arrows in 

C, D) in TSA-treated cortex. Uppers images show the expression in arrow-pointed cells in 

lower pictures at higher magnification. Values are presented as mean ± SEM (*P <0.05, 

***P <0.01, ***P <0.005). Abbreviations: l/d/mCx, lateral/dorsal/medial cortex. Scale bars 

= 100 Pm. 
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Fig. S9. In vitro testing of TRNP1 gRNAs. 

(A/B) TBR2- cells have higher basal levels of H3K9ac at TRNP1 promoter (A) and higher 

basal expression (B) of this gene compared to TBR2+ BPs. (C) DNA sequence alignment 

for two ortholog regions of mouse (m) and human (h) TRNP1 promoter and primers, 

which were used in CHIP/qPCR experiment (see also Fig. 6C). Note that mhPrimer_1 set 

was used to amplify the region 1 of both mouse and human TRNP1 promoter. The 

mPrimer_2 and hPrimer_2 sets, which have similar sequence, were used to amplify the 

region 2. (D/E) TSA treatment significantly increases H3K9ac levels at TRNP1 promoter 
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(D) and upregulates its expression (E) specifically in TBR2+ BPs but not in TBR2- cells. 

(F/G) Analysis of the Cas9 cutting efficiency guided by various gRNAs targeting the 

TRNP1 promoter. (F) Depiction of different gRNAs targeting various regions in TRNP1 

promoter that were used for testing. (G) Agarose gel showing the cutting efficiency of 

each tested gRNA-Cas9 complex on a 1016-bp-long PCR product of TRNP1 promoter 

region. (H/I) ChIP/qPCR (H) and qPCR (I) analyses indicate that transfection of Neuro2A 

cells with gTRNP1#2 and #4 increases H3K9ac level at TRNP1 promoter (H) and 

upregulates its expression (I). Values are presented as means ± SEMs (*P <0.05, ***P 

<0.01, ***P <0.005). 
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Fig. S10. Augmented level of H3K9ac by HDAC inhibition and overexpression of KAT2A 

increase basal progenitor proliferation and can induce cortical folding. (A) Staining of 

RG fibers (NESTIN and RC2) in Veh-treated control, TSA-treated-control and TSA-treated 

BAF155cKO cortex revealed an increase and divergence of radial fibers at basal sides 

upon TSA treatment (radial processes indicated by white-dashed lines on confocal 

images). (B) Cortical tissue was processed for TBR1 immunostaining. Examples with 

different forms of cortical folding were shown from rostral cortex to caudal cortex at 

E17.5. The mildly-folded and intensively-folded cortices were usually found in TSA - 

treated WT embryos and TSA - treated BAF155cKO embryos, respectively. (C) The folding 

in length was measured from the pial surface to the end of the innervated point outlined 
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by white lines. Cortical folding phenotypes were scored as a mild folding being shorter 

than 200µm in length (leftmost image in B) and intensive folding with a gyrus deeper than 

200µm from the surface or with more than two gyri (right images). (D) Overview of 

cortical phenotypes observed after TSA or Veh-treatment. In total, nine Veh-treated 

control, nine TSA-treated control and nine TSA-treated BAF155cKO brains at E17.5, six 

brains at E16.5 and six brains at E18.5/P0 of TSA-treated BAF155cKO mutants were used 

to examine folding phenotypes. Six coronal sections per brain covering the rostral, 

middle-level and caudal cortex were processed for TBR1 IHC. Cortex was scored as “mild 

folding” or “intensive folding”, if at least two sections met the above criteria. (E-F) E13.5 

cortices of WT or BAF155cKO embryos were electroporated with eGFP or KAT2A-ires-

eGFP, followed by quantification of TBR2+/KI67+ proliferating BPs/IPs (E) and 

PAX6+/KI67+ proliferating BPs/bRGs (F) at E15.5. Statistical analyses revealed that the 

overexpression of KAT2A led to increase the proliferation of BPs. Scale bars = 100 Pm. 
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ABSTRACT 
Histone-3-lysine-4-methylation (H3K4me) is mediated by six different lysine 

methyltransferases (KMTs). Amongst these enzymes SET domain containing 1b 

(SETD1B) has been linked to intellectual disability but its role in the adult brain has not 

been studied yet. Here we show that mice lacking Setd1b from excitatory neurons of the 

adult forebrain exhibit severe memory impairment. By combining neuron-specific ChIP-

seq, RNA-seq and single cell RNA-seq approaches we show that Setd1b controls the 

expression of neuronal-identity genes with a broad H3K4me3 peak linked to learning and 

memory processes. Our data furthermore suggest that basal neuronal gene-expression 

is ensured by other H3K4 KMTs such as Kmt2a and Kmt2b while the additional presence 

of Setd1b at the single cell level provides transcriptional consistency to the expression of 

genes important for learning & memory.  

 

One Sentence Summary: Forebrain excitatory neuron specific Setd1B knockout leads to 

memory impairment due to its regulatory role of controlling important neuron related 

genes through histone methylation. 
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INTRODUCTION 
Cognitive diseases are a heterogeneous group of disorders that depend on complex 

interactions of genetic and environmental factors that activate epigenetic 

processes(Fischer 2014). In addition, mutations in genes that control epigenetic gene-

regulation are over-represented in cognitive diseases (Kleefstra, Schenck et al. 2014). 

Therefore, targeting the epigenome has emerged as a promising therapeutic avenue to 

treat neurodegenerative and neuropsychiatric diseases (Nestler, Peña et al. 2015) 

(Fischer 2014). To understand the regulation of epigenetic gene-expression in the adult 

brain is thus of utmost importance. Histone 3 lysine 4 methylation (H3K4) is enriched 

around transcription start site (TSS) regions of actively transcribed genes when 

trimethylated (H3K4me3) (Guenther, Jenner et al. 2006). In the human brain reduced 

H3K4me3 has been observed in cognitive diseases such as autism spectrum disorder 

(Shulha, Cheung et al. 2012)or Alzheimer’s disease (Gjoneska, Pfenning et al. 2015) 

(Kerimoglu, Sakib et al. 2017). In mammals, H3K4 methylation is mediated by six different 

lysine-methlytransferases (KMT’s), namely KMT2A (Mll1), KMT2B (Mll2), KMT2C (Mll3), 

KMT2D (Mll4), SETD1A, and SETD1B that catalyze mono-, di- and trimethylation 

(Shilatifard 2012). The role of these enzymes in the adult brain is only beginning to 

emerge. Recent reports showed that Kmt2a and Kmt2b are required for hippocampus-

dependent memory formation (Gupta, Kim et al. 2010) (Kerimoglu, Agis-Balboa et al. 

2013) (Kerimoglu, Sakib et al. 2017), while Setd1a has been linked to schizophrenia (Singh 

T, Chheda H et al. 2016, Takata, Ionita-Laza et al. 2016, Mukai, Cannavò et al. 2019). 

Setd1b has been studied during development (Brici, Zhang et al. 2017, Schmidt, Zhang et 

al. 2018). Virtually nothing is known about the function of Setd1b in the adult brain, 

although mutations in Setdb1 have been linked to intellectual disability (Labonne, Lee et 

al. 2016, Hiraide, Nakashima et al. 2018). To elucidate the role of Setd1b in the brain we 

generated mice that lack Setd1b from excitatory neurons of the adult forebrain. Our data 

reveal that Sed1b is essential for memory formation. Moreover, we provide evidence that 

Setd1b controls the expression of neuronal-identity genes that are characterized by a 

broad H3K4 trimethylation peak at the TSS, high expression levels and are intimately 

linked to learning and memory processes. Comparison of our data to those from other 

H3K4 KMTs suggest that this role is specific to Setd1b which provides to neurons 

transcriptional consistency to the expression of learning and memory genes.  
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RESULTS 
Loss of Setd1b in adult forebrain neurons impairs hippocampus-
dependent memory formation. 
 

 
Figure 1: Setd1b is required for hippocampus-dependent memory. A. qPCR analysis 
shows loss of Setd1b in forebrain regions while levels in the cerebellum are not affected 
(CA: Control, n = 6; cKO, n = 6. DG: Control, n = 6; cKO, n = 6. Cortex: Control, n = 7; cKO, n 
= 7. Cerebellum: Control, n = 4; cKO, n = 4). * p-value < 0.05 (Student t-test). B. Immunoblot 
analysis shows loss of SETD1B in the hippocampus of Setd1b cKO mice (Control, n = 4; 
cKO, n = 4). ** p-value < 0.01 (Student t-test). C. Immunohistochemical staining (upper 
level) for marker proteins of neuronal integrity and quantification (lower panel) shows no 
difference in control and Setd1b cKO mice (NeuN: Control, n = 6; cKO, n = 6; Student t-test 
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p-value = 0.57. MAP2: Control, n = 4; cKO, n = 4; Student t-test p-value = 0.72. Iba1: Control, 
n = 5; cKO, n = 5; Student t-test p-value = 0.8. Gfap: Control, n = 5; cKO, n = 5; Student t-
test p-value = 0.09.). Scale bar: 100 µm. D. Average speed (left panel) and time spent in 
the center (right) panel during exposure to the open field test was similar in control and 
Setd1b cKO mice (Average speed: Control, n = 15; cKO, n = 15; Student t-test p-value = 
0.075. Time spent in center: Control, n = 15; cKO, n = 15; Student t-test p-value = 0.96). E. 
Short term memory was not affected in control and Setd1b cKO mice as indicated by 
similar percent of alternations in the Y-maze test (Control, n = 15; cKO, n = 15; Student t-
test p-value = 0.3). F. Escape latency during water maze training indicated severe learning 
impairment in Setd1b cKO mice (Control: n = 15, cKO: n = 15. Repeated measures ANOVA, 
genotype effect: F (1,28) = 82.34, **** p-value < 0.0001). G. Plots showing the specific 
search strategies during water maze training. Note the failure of Setd1b cKO mice to 
adapt hippocampus-dependent search strategies. H. The cognitive score calculated on 
the basis of the hippocampal search strategies is severely impaired in Setd1b cKO mice 
(Student t-test: *** p-value < 0.001). I. Time spent in the target quadrant during the probe 
test is impaired in Setd1b cKO mice (Control: n = 15, cKO: n = 15. **** Student t-test < 
0.0001). Error bars indicate SEM. 

 

To study the role of Setd1b in the adult brain, we crossed mice in which exon 5 of the 

Setd1b gene is flanked by loxP sites to mice that express CRE-recombinase under control 

of the CamKII promoter. This approach ensures deletion of Setd1b from excitatory 

forebrain neurons of the adult brain (cKO mice). Quantitative PCR (qPCR) analysis 

confirmed decreased expression of Setd1b from the hippocampal Cornu Ammonis (CA) 

area, the dentate gyrus (DG) and the cortex when compared to corresponding control 

littermates that carry loxP sites but do not express CRE recombinase (control group). 

Expression in the cerebellum was not affected confirming the specificity of the approach 

(Fig 1A). Residual expression of Setd1b is most likely due to the fact that deletion is 

restricted to excitatory neurons while other cell types are unaffected. In line with the qPCR 

data, SETD1B protein levels were reduced in the hippocampal CA region of Setd1b cKO 

mice (Fig 1B). Setd1b cKO mice did not show any gross abnormalities in brain anatomy 

as evidenced by immunohistological analysis of DAPI staining, staining of marker-

proteins for neuronal integrity Neuronal N (NEUN), microtubule-associated protein 2 

(MAP2) as well as ionized calcium-binding adapter molecule 1 (IBA1) as a marker for 

microglia and glial fibrillary acidic protein (GFAP) as a marker for astrocytes (Fig. 1C). 

Next, we subjected Setd1b cKO and control mice to behavior testing. Notably, it was 

previously shown that heterozygous mice expressing CRE under control of the CamKII 
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promoter do not differ from wild type littermates (Kuczera, Stilling et al. 2010) (Stilling, 

Rönicke et al. 2014) and we have confirmed this in the context of the present study also 

for behavior testing (Fig. S1). There was no difference amongst groups in the open field 

test, suggesting that explorative behavior is normal in Setd1b cKO mice (Fig 1D). Short 

term memory was assayed via the T-maze and was also similar amongst groups (Fig 1E). 

Next, we subjected mice to the Morris Water Maze test to study hippocampus-dependent 

spatial memory. While control mice were able to learn the task as indicated by a reduced 

escape latency throughout the 10 days of training, Setd1b cKO mice were severely 

impaired (Fig 1F). We also performed a more sensitive analysis using a modified version 

of the MUST-C algorithm to measure the different spatial strategies that represent either 

hippocampus-dependent or independent abilities (Illouz, Madar et al. 2016). Our results 

indicate that Setd1b cKO mice fail to adapt hippocampus-dependent search strategies 

such as “direct”, “corrected” and “short-chaining” (Fig 1G). Consistently, the cumulative 

learning score calculated on the basis of these search strategies was severely impaired 

in Setd1b cKO mice (Fig 1H). To assess memory retrieval, a probe test was performed. 

Set1b cKO mice were severely impaired during the probe test performed at the end of the 

training (Fig 1I). These data show that deletion of Setd1b from excitatory neurons of the 

adult forebrain leads to severe impairment of hippocampus-dependent learning and 

memory abilities. 
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Setd1d controls neuronal H3K4 methylation 
To elucidate the molecular mechanisms by which Setd1b contributes to memory 

formation we decided to test its impact on epigenetic gene-expression in hippocampal 

neurons. To this end we isolated the hippocampal CA region from Setd1b cKO and control 

mice and prepared nuclei using modified fixation protocols that allowed us to perform 

neuron-specific chromatin-immunoprecipitation (ChIP) to study histone-modifications 

and RNA-sequencing to assay gene-expression from the same samples (Fig 2A, Fig S2). 

Since SETD1B is a histone 3 lysine 4 (H3K4) methyltransferase we decided to analyze tri-

methylation (H3K4me3) of histone 3 lysine 4 that is enriched at the transcription start site 

(TSS) of active genes and is associated with euchromatin and active gene-expression. 

H3K4 methylation is believed to be a stepwise process and recent data suggest that the 

different methylation states (from mono- to tri-methylation) at the TSS of a gene form a 

gradient reflecting its specific transcriptional state (Soares, He et al. 2017, Choudhury, 

Singh et al. 2019). Thus, we also analyzed mono-methylation of histone 3 at lysine 4 

(H3K4me1). In addition, we analyzed histone 3 lysine 9 acetylation (H3K9ac), an eu-

chromatin mark that was shown to partially depend on H3K4 methylation (Kerimoglu, 

Agis-Balboa et al. 2013, Kerimoglu, Sakib et al. 2017). Finally, we also performed Chip-

seq for histone 3 lysine 27 acetylation (H3K27ac), another euchromatin mark that is 

linked to active gene-expression and marks promoter elements around the TSS but also 

enhancer regions and has not be directly linked to H3K4me3 in brain tissue. We observed 

that loss of Setd1b leads to a substantial decrease in neuronal H3K4me3 across the 

genome while the majority of significant changes are localized to regions in close 

proximity to the transcriptional start site (TSS) (Fig 2B, C).  
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Figure 2: Setd1b controls histone-methylation and H3K4me3 peak width. A. Experimental 
scheme showing our approach to perform cell-type specific ChIP-seq and RNA-seq. For 
Chip-Seq we employed n = 4 for control and n = 4 form Setd1b cKO. B. Left panel: Heat 
map showing genes with significantly differing H3K4me3 sites at the TSS (+/-2kb) in 
Setd1b cKO mice and the overall genomic locations of altered H3K4me3 levels. Right 
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panel shows the same analysis for H3K4me1 (FDR < 0.05 & |fold change| > 1.5). C. Bar 
plot showing the number of genes with decreased and increased H3K4me3 and 
H3K4me1 at the TSS region in Setd1b cKO mice (FDR < 0.05 & |fold change| > 1.5). D. 
NGS plot showing H3K4me3 across all genes with significantly reduced H3K4me3 in 
Setd1b cKO mice. Left panel shows a bar chart indicating that reduced H3K4me3 in 
Setd1b cKO mice is mainly occurring downstream of the TSS (*** Student t-test p-value 
< 0.001). E. NGS plots showing the distribution of H3K4me3 and H3K4me1 at the close 
vicinity of TSS of genes that show significantly reduced H3K4me3 and increased 
H3K4me1 in Setd1b cKO mice. Bar graphs on the left show corresponding quantification 
(Student t-test: ** p-value < 0.01, **** p-value < 0.0001). F. NGS plot showing the 
distribution of H3K4me3 and H3K4me1 at the TSS of genes that show both reduced 
H3K4me3 and H3K4me1 in Setd1b cKO mice. Bar graphs on the left show corresponding 
quantification (Student t-test: * p-value < 0.05, **** p-value < 0.0001). G. Heatmap (left 
panel) showing basal state H3K4me3 peak width for genes characterized by decreased 
H3K4me3 in combination with either increased or decreased H3K4me1 in Setd1b cKO 
mice. Right panel: Quantification of the peak width in genes with decreased H3K4me3 in 
combination with either increased, decreased or not altered H3K4me1 in Setd1b cKO 
mice (One-way ANOVA: p-value < 0.0001. Post-hoc multiple comparisons, Tukey’s test: 
increased H3K4me1 vs no change H3K4me1, **** p-value < 0.0001; increased H3K4me1 
vs decreased H3K4me1, **** p-value < 0.0001; no change H3K4me1 vs decreased 
H3K4me1,  §§§§ p-value < 0.0001). H. Bar graph showing the basal wild type expression 
level for the 3 categories of genes that display altered H3K4me3 in Setd1b cKO mice. 
Please note that basal expression level is highest for genes with decreased H3K4me3 in 
combination with increased H3K4me1 that are characterized by broad H3K4me3 peaks 
(One-way ANOVA: p-value < 0.0001. Post-hoc multiple comparisons, Tukey’s test: 
increased H3K4me1 vs no change H3K4me1, **** p-value < 0.0001; increased H3K4me1 
vs decreased H3K4me1, **** p-value < 0.0001; no change H3K4me1 vs decreased 
H3K4me1, p-value = 0.6967). I. Heat map showing functional pathways for the 3 
categories of genes affected by reduced H3K4me3 in Setd1b cKO mice. Error bars 
indicate SEM. 

Similar changes were observed for neuronal H3K9ac and H3K27ac, although less regions 

were affected when compared to H3K4me3 (Fig. S3). We also observed significantly 

altered H3K4me1 in neurons of Setd1b cKO mice (Fig 2B). These changes were also 

almost exclusively detected in vicinity to the TSS (Fig 2B) but in contrast to the other 

investigated histone-modifications, many of the significantly altered genomic regions 

exhibited increased H3K4me1 levels in Setd1b cKO mice (Fig. 2B, C). To further analyze 

these data, we first asked if the observed changes in histone-modifications occur within 

the same genomic regions. As expected the number of genes showing reduced H3K4me3 

exceeded by far the number of genes showing reduced levels of H3K9ac, H3K27ac or 
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altered H3K4me1 (Fig S3). Nevertheless, almost all regions exhibiting decreased H3K9ac 

where also marked by decreased H3K4me3, while the regions showing decreased 

H3K27ac were mainly localized to different genes (Fig. S3). These data support previous 

findings, showing that H3K4me3 is functionally linked to H3K9ac (Kerimoglu, Agis-Balboa 

et al. 2013, Kerimoglu, Sakib et al. 2017)and suggest that the observed changes in 

H3K27ac are mainly due to secondary effects. Interestingly, decreased H3K4me3 in 

Setd1b cKO manifested exclusively downstream of the TSS, indicating that loss of Sedt1b 

may affect peak width (Fig 2D). We decided to further explore this observation and 

noticed that there was an obvious difference amongst the genes that exhibit decreased 

H3K4me3 and increased H3K4me1 (Fig. 2E) when compared to genes that show 

exclusively decreased H3K4 methylation around the TSS (Fig 2F). Namely, the change in 

H3K4me3 was most significant in genes with decreased H3K4me3 and increased 

H3K4me1 and was characterized by a substantially reduced H3K4me3 peak width (Fig 

2E), when compared to genes with decreased H3K4me3 and H3K4me1 (Fig 2F). Findings 

from other cell types suggest a gradient of H3K4 methylation states in which the 

proximity of the mark to the TSS is correlated to the level of gene-expression. Thus, genes 

with broader H3K4me3 peaks at the TSS exhibit the highest and most consistent 

expression levels and represent genes of particular importance for cellular identity 

(Benayoun, Pollina et al. 2015, Soares, He et al. 2017). Indeed, our data revealed that the 

genes which are characterized by decreased H3K4me3 and increased H3K4me1 in 

Setd1b cKO mice, already exhibit significantly broader H3K4me3 peaks under basal 

conditions, when compared to genes characterized by decreased H3K4me3 but either 

decreased or unchanged H3K4me1 levels (Fig 2 G). Interestingly, these genes were also 

expressed at significantly higher levels under baseline conditions (Fig 2 H). Taken 

together, our findings suggest that Setd1b may be of particular importance for the 

expression of genes linked to the specific function of hippocampal neurons. In line with 

this, functional pathway analysis revealed that the genes with decreased H3K4me3 and 

increased H3K4me1 and thus having the broadest H3K4me3 peak under basal 

conditions, represent pathways intimately linked to the function of excitatory 

hippocampal neurons (Fig 2I). Most importantly, this was not the case for the genes of 

the other two categories (Fig 2I). In summary, our data show that loss of Setd1b from 

hippocampal neurons leads to distinct changes in neuronal histone-methylation and 
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point to a specific role of Setd1b in the expression of genes essential for neuronal identity 

and cognitive function. 

 

 

 

 

 

 

Setd1b controls the levels of highly expressed neuronal genes 
characterized by a broad H3K4me3 peak at the TSS 
To test the impact of Setd1b on gene-expression directly, we analyzed the RNA-

sequencing data obtained from neuronal nuclei of the same hippocampi used to generate 

ChIP-seq data (See Fig 2A, Fig S2). In line with the established role of H3K4me3 in active 

gene-expression, we mainly detected down-regulated genes when comparing control to 

Setd1b cKO mice (Fig 3A). 

(Continued to next page) 
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Figure 3: Hippocampal Setd1b controls highly expressed learning and memory genes 
characterized by a broad H3K4me3 peak. A. Volcano plot showing genes differentially 
expressed in hippocampal neurons of Setd1b cKO mice. n = 3/group. B. NGS plots 
showing H3K4me3 and H3K4me1 at the TSS of genes down-regulated in Setd1b cKO 
mice. Bar plots (right panel) show quantification. C. Arpp21 (CAMP Regulated 
Phosphoprotein 21) was selected as a representative gene down-regulated in 
hippocampal neurons of Setd1b cKO mice to illustrate changes of the analyzed histone-
modifications. Please note that the H3K4me3 peak-width is substantially shrinking in 
Setd1b cKO mice. At the same time there is an obvious increase of H3K4me1 at the TSS 
of Arpp21 in Setd1b cKO mice. D. NGS plots showing H3K4me3 and H3K4me1 at the TSS 
of a random set of genes that were not altered in Setd1b cKO mice. Bar plot (right panel) 
show quantification. E. Left panel: H3K4me3 peaks are significantly broader in genes that 
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are down-regulated in Setd1b cKO mice, when compared to a random set of genes that 
were unaffected. Right panel: Genes down-regulated in Setd1b cKO mice are 
characterized by higher baseline expression when compared to a random set of genes 
that were unaffected. F. Heat map showing functional pathways affected by genes down-
regulated in Sed1b cKO mice. Error bars indicate SEM. Student t-test: * p-value < 0.05, 
**** p-value < 0.0001 

 

In fact, the comparatively few up-regulated genes were all lowly expressed at baseline 

conditions suggesting rather unspecific effects (RPKM down-regulated genes =18.77 +/-

1.45 vs. up-regulated genes RPKM = 3.08 +/- 0.26; P < 0.0001). Further analysis revealed 

that the TSS of genes down-regulated in Setd1b cKO mice is characterized by significantly 

reduced H3K4me3 peak-width and increased H3K4me1 (Fig 3B, C). This observation was 

specific to the genes down-regulated in Setd1b cKO mice, since random sets of genes 

that were not de-regulated in Setd1b cKO mice show normal H3K4me3 and H3K4me1 

levels at the TSS (Fig 3D). We also observed that the genes down-regulated as a result of 

Setd1b deletion were characterized by a significantly broader H3K4me3 peak and higher 

expression under basal conditions (Fig 3C, E). A functional pathway analysis revealed 

that the genes down-regulated in Setd1b cKO mice are intimately linked to synaptic 

plasticity and learning and memory related processes (Fig 3F). Taken together, these 

data further suggest that Setd1b controls a specific set of genes that are characterized 

by a broad H3K4me3 peak at the TSS, are highly expressed in hippocampal neurons under 

basal conditions and play a specific role in neuronal plasticity and identity.  
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The regulation of highly expressed neuronal identity genes with 
broad H3K4me3 peaks is a specific feature of Setd1b. 
To provide further evidence for the specific role of Setd1b in the regulation of neuronal 

plasticity and neuronal identity genes we decided to compare Setd1b to other mammalian 

H3K4 KTMs. We have previously generated comparable H3K4me3 and H3K4me1 ChiP-

seq data from neuronal nuclei obtained from the hippocampal CA region of mutant mice 

that lack either Kmt2a or Kmt2b from excitatory forebrain neurons (Kerimoglu, Sakib et 

al. 2017). To ensure reliable comparison we reanalyzed in parallel the H3K4me3 and 

H3K4me1 Chip-seq datasets obtained from hippocampal neuronal nuclei of Kmt2a, 

Kmt2b and Set1b cKO mice.  In line with the previous findings, all 3 Kmt mutant mice 

exhibit a substantial amount of TSS regions with deceased H3K4me3 (Fig 4A). 

Interestingly, we also detected TSS regions with decreased H3K4me1 in all mutant mice, 

but only in Setd1b cKO mice a substantial number of TSS regions exhibited increased 

H3K4me1 (Fig 4B). 
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Figure 4: Comparative analysis of the hippocampal transcriptome in Setd1b, Kmt2a and 
Kmt2b cKO mice. A. Bar chart showing the number of genes that exhibit significantly 
altered H3K4me3 at the TSS (Kmt2a: control, n = 5; cKO, n = 3. Kmt2b: control, n = 6; cKO, 
n = 5. Setd1b: control, n = 4; cKO, n = 4). B. Bar chart showing the number of genes that 
exhibit significantly altered H3K4me1 at the TSS. C. Venn diagram comparing the genes 
with significantly decreased H3K4me3 at the TSS amongst in the 3 respective cKO mice. 
D. Bar chart showing the number of differentially expressed genes from bulk RNA-seq in 
each of the 3 KMT cKO mice. Kmt2a: control, n = 5; cKO, n = 6. Kmt2b: control, n = 8; cKO, 
n = 11. Setd1b: control, n = 6; cKO, n = 6) E. Venn diagram comparing the significantly 
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down-regulated genes H3K4me3 amongst the 3 respective cKO mice. F. Donw-regualted 
genes with decreased H3K4me3 in each of the 3 KMT cKO mice were tested for the 
overlap to the 836 neuronal identity genes we had defined for the hippocampal CA region 
(See Fig S2). Only for Setd1b cKO mice a highly significant odds ratio (Fisher’s exact test) 
was observed, while there was no significant association amongst neuronal identity 
genes and the genes affected in Kmt2a and Kmt2b cKO mice. G. Left panel: Bar graphs 
showing H3K4me3 binding around the TSS of downregulated genes exhibiting 
significantly decreased H3K4me3 in either of the 3 KMT cKO mice (Two-way ANOVA: * p-
value < 0.05, *** p-value < 0.001). Right panel depicts H3K4me1 for the same TSS regions 
(Two-way ANOVA **** p-value < 0.0001). Note that only in Setd1b cKO mice decreased 
H3K4me3 is accompanied by significantly increased H3K4me1. H. Genes exhibiting 
decreased H3K4me3 and reduced expression in Kmt2a, Kmt2b or Setd1b cKO mice were 
analyzed for H3K4me3 peak-width at the TSS under basal conditions. Genes affected in 
Setd1b cKO mice displayed significantly broader H3K4me3 peak-width when compared 
to genes down-regulated in Kmt2a or Kmt2b cKO mice. H3K4me3 peak-width at 
unchanged genes are shown for comparison. I. Bar graphs showing average basal 
expression of genes down-regulated with decreased H3K4me3 levels at the TSS in 
Kmt2a, Kmt2b or Setd1b cKO mice. Genes affected in Setd1cKO mice are expressed at 
significantly higher levels und basal conditions when compared to genes affected in 
Kmt2a or Kmt2b cKO mice. J. Heat map showing functional pathways of genes affected 
in Kmt2a, Kmt2b or Setd1b cKO mice. Note that genes affected by loss of Setd1b 
specifically represent pathways linked to neuronal function. Error bars indicate SEM. 

 

In addition, there was little overlap amongst the TSS regions with decreased H3K4me3 in 

Kmt2a, Kmt2b and Setd1b mutant mice, providing further evidence that Setd1b controls a 

unique gene-expression program in neuronal cells (Fig 4C). To test this hypothesis 

directly, we decided to compare the corresponding gene-expression changes in the 

hippocampal CA1 region of the 3 KMT mutant mice. While the ChIP-seq data available 

for Kmt2a and Kmt2b mutant mice had been generated from neuronal nuclei, the 

corresponding gene-expression analysis represents RNA-seq data obtained from bulk 

tissue of the hippocampal CA1 region (Kerimoglu, Sakib et al. 2017). To allow optimal 

comparison of these RNA-seq data to the gene-expression changes in Setd1b mutant 

mice, we also performed bulk RNA-seq from the hippocampal CA1 region of Setd1b cKO 

mice and control littermates. We observed 485 genes that were significantly down-

regulated when comparing control to Setd1b cKO mice (Fig 4D). These genes largely 

overlapped with the down-regulated genes detected via neuronal specific RNA-seq in 

Setd1b cKO mice (Fig S4). While the total number of genes differentially expressed in the 

hippocampal CA1 region of Kmt2a, Kmt2b and Setd1b cKO mice was comparable, there 
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was little overlap amongst them (Fig 4E). Recently, RNA-sequencing data was reported 

for mice that were heterozygous for Setd1a. Although these mutants were heterozygous 

constitutive knock out mice and furthermore cortical tissue was analyzed instead of the 

hippocampus (Mukai, Cannavò et al. 2019), it is interesting to note that there was virtually 

no overlap regarding the genes down-regulated in Setd1a knock out mice, when 

compared to the data obtained from our Setd1b cKO mice (Fig. S5). Further support for 

a specific role of Setd1b in neuronal genes expression was revealed by the finding that 

the genes down-regulated in Setd1b cKO mice exhibited a significant enrichment for 

neuronal identity genes, while this was not the case for genes down-regulated in Kmt2a 

or Kmt2b cKO mice (Fig 4F). In line with these data we observed that genes down-

regulated in Kmt2a or Kmt2B cKO mice display decreased H3K4me3 at the TSS, while the 

levels of H3K4me1 were unaffected (Fig 4G). In striking contrast, only the genes down-

regulated in Setd1b cKO mice were characterized by reduced H3K4me3 and also 

increased H3K4me1 (Fig 4G). Consequently, the genes that exhibit decreased H3K4me3 

levels and were down-regulated in Setd1b cKO mice displayed significantly broader 

H3K4me3 peak at the TSS (Fig 4H) and were expressed a higher level under basal 

conditions when compared the genes controlled by KMT2A or KMT2B (Fig 4I). Functional 

pathway analysis showed that genes affected in the 3 KMT mutant mice represent 

different functional pathways. Interestingly, when compared to the gene-expression data 

obtained from Kmt2a or Kmt2b cKO mice, genes down-regulated in Setd1b cKO mice 

represent pathways intimately linked to learning and memory and the function of 

hippocampal neurons (Fig 4J). Further analysis revealed that the genes affected in Kmt2a 

cKO mice are enriched for more general cellular processes, for processes related to gene-

expression control and also neuronal plasticity related functions (Fig S6A) while the 

genes decreased in Kmt2b cKO mice represent almost exclusively pathways important 

for basal cellular function but not specifically important for neurons (Fig S6B). In sum, 

these data support the view that Setd1b is of particular importance for the expression of 

genes essential for the identity of hippocampal neurons and synaptic plasticity. This view 

is further supported by the direct comparison of hippocampus-dependent memory 

function in Setd1b, Kmt2a and Kmt2b cKO mice. While loss of any of the 3 KMT’s leads 

to impaired spatial reference memory in the Morris water maze task (Kerimoglu, Agis-

Balboa et al. 2013, Kerimoglu, Sakib et al. 2017) (see Fig 1), memory impairment is more 

pronounced in Setd1b cKO (Fig S7).  
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Single cell expression pattern likely contributes to the distinct 
role of Setd1b on neuronal gene-expression. 
In our effort to further elucidate the specific role of Setd1b on neuronal gene-expression 

and memory function we noticed that the levels of the H3K4 methyltransferases differ 

substantially in hippocampal neurons of the adult mouse brain. Surprisingly, our RNA-seq 

data from neuronal nuclei revealed Setd1b as the least expressed H3K4 

methyltransferases when compared to Kmt2a or Kmt2b (Fig 5A). These data might 

indicate that Sedt1b is generally expressed at very low levels or that alternatively only few 

cells may express Setd1b, a question that cannot be addressed on the basis our neuron-

specific bulk RNA-seq. Thus, we decided to perform single nuclei sequencing. 
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Figure 5: Kmt2, Kmt2b and Setd1b expression at the single cell level reveals a specific 
role for Setd1b. A. Bar graph showing the expression of Kmt2, Kmt2b and Setd1b 
expression in neuronal nuclei form the hippocampal CA region n = 3798. B. Experimental 
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scheme for the single nuclei RNAseq experiment. C. UMAP plot showing the data from 
3798 neuronal nuclei. D. UMAP plot showing the clustering of 2619 nuclei from 
hippocampal excitatory CA neurons indicating the normalized expression of Setd1b (left 
panel), Kmt2a (middle panel) and Kmt2b (right panel).  E. Bar graph showing the 
normalized expression of Kmt2, Kmt2b and Setd1b in the respective positive cells. Note 
that the absolute expression amongst the 3 KTMs in the respective positive cells is not 
different. F. Number of nuclei positive for of the Kmt2a, Kmt2b or Setd1b in our dataset. 
G. We performed a differential expression analysis for Kmt2a, Kmt2b and Setd1b positive 
nuclei vs. the nuclei that did not express the corresponding KMT. Left panel: The bar 
graph shows the fold change of genes significantly increased in either Kmt2a, Kmt2b or 
Setd1b positive nuclei. The number in the bars refer to the number of differentially 
expressed genes. Please note that the majority of the genes significantly enriched in 
Kmt2a (+) cells exhibit a rather low fold change, while this is the opposite for Setd1b (+) 
cells. White number within the individual plotted genes indicate the percentage of genes 
that are significantly increased in Kmt2a, Kmt2b or Setd1b positive nuclei by a fold 
change greater than 1.5. Right panel: Venn diagram comparing the genes significantly 
increased in Kmt2a, Kmt2b or Setd1b positive nuclei with a fold change above 1.5 (upper 
diagram) or below a fold change of 1.5 (lower diagram). H. Top GO and Kegg pathways 
representing the genes increased in Setd1b positive nuclei. For comparison the 
enrichment of the same GO-terms/pathways is shown for genes enriched in Kmt2a or 
Kmt2b positive nuclei. I.  Violin plot showing the eigen-value of the gene significantly 
altered when comparing Setd1b (+) to Setd1b (-) cells in Setd1b (+), Setd1b (-), Kmt2a (+) 
and Kmt2b (+) cells. Please note that this Setd1b specific gene-set is also significantly 
higher expressed when compared to Kmt2a or Kmt2b positive cells (One-way ANOVA P 
< 0.0001; F = 61.62; asterisks indicate unpaired t-Test; ***P < 0.001) 

 

We isolated the hippocampus from 3-month old wild type mice and sorted NeuN + nuclei 

using our established protocol (Fig 5B). These nuclei were then subjected to sequencing. 

As expected, we detected excitatory neurons of the cornu ammonis (CA) and dentate 

gyrus region as well as inhibitory neurons (Fig 5C). Since our analysis so far was focused 

on the hippocampal CA region of mice that lack Setd1b from excitatory neurons, we 

selected the CA excitatory neurons and plotted the expression of Kmt2a, Kmt2b and 

Setd1b. In line with the data obtained from bulk sequencing of hippocampal neuronal 

nuclei, we observed that Kmt2a expression was most prominent when compared to 

Kmt2b or Setd1b (Fig 5D). However, this difference was not due to the absolute 

expression value per cell, which was comparable for all 3 KMT’s (Fig 5E).  Rather, we 

observed that Kmt2a was expressed in the majority of the analyzed CA excitatory 

neurons, while Kmt2b and Setd1b were expressed in a comparatively small subset of cells 
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(Fig 5F). Next, we compared the gene-expression in neurons that either express Kmt2a, 

Kmt2b or Setd1b to cells that do not express the corresponding gene (Fig 5E).  A 

comparison of Kmt2a (+) vs Kmt2a (-) cells revealed that 897 genes were significantly 

increased in Kmt2a (+) cells, while 432 genes were expressed at higher levels in Kmt2b 

(+) and 214 genes in Setd1b (+) cells (Fig 5G). Although the presence of Kmt2a affected 

more genes when compared to Kmt2b and Setd1b, the impact on gene-expression was 

comparatively small, which is indicated by the corresponding fold change of significantly 

differentially expressed genes. In fact, although the presence of Setd1b affected the least 

genes, the observed fold change of these genes was significantly greater when compared 

to Kmt2 and Kmt2b (Fig 5G). Only 7% of the genes significantly increased in Kmt2a (+) vs 

Kmt2a (-) cells showed a fold change greater than 1.5 (Fig 5G). In case of Kmt2b (+) cells 

41% of the regulated genes showed a fold change greater than 1.5 and for Setd1b this 

was true for 66 % of the regulated genes (Fig 5G). These data suggest that the presence 

of Kmt2a contributes to the expression of many genes while its impact seems to be 

limited, when compared for example to the impact that the presence of Setd1b has on 

gene-expression. Hence, Setd1b affects comparatively less genes but with greater 

impact. When we subjected the genes specifically enriched in Kmt2a (+), Kmt2b (+) or 

Setd1b (+) cells to gene ontology and pathways analysis we observed that genes 

increased in the presence of Setd1b at the single cell level represent pathways linked to 

hippocampal function and interestingly also histone-acetylation (Fig 5H), while these 

pathways were much less affected in Kmt2a (+) and Kmt2b (+) cells (Fig. 5H). This is line 

with the finding that also at the single cell level, there is little overlap between the genes 

specifically enriched in either Kmt2a (+), Kmt2b (+) or Setd1b (+) cells (Fig 5G.). We also 

calculated the eigen-value of the genes increased in Setd1b (+) cells and analyzed its 

expression Setd1b (+) and (-) cells as well as in cells positive for Kmt2a or Kmt2b (Fig 5I). 

In line with our data, the eigen-value of Setd1b-specific genes was significantly increased 

in Set1b (+) cells compared to Setd1b (-) cells but also in cells positive for Kmt2a or Kmt2b 

(Fig5I). In summary, these data further support a specific role of Setd1b in neuronal 

function and suggest that hippocampal neurons expressing Setd1b in addition to other 

H3K4 KMTs may have a “plasticity benefit”. 
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DISCUSSION 
We show that loss of Setd1b from excitatory forebrain neurons impairs learning and 

memory in mice. These data are in line with previous findings showing that hippocampal 

H3K4me3 increases in response to memory training in rodents (Gupta, Kim et al. 2010), 

while its levels are reduced in the hippocampus of a mouse for AD-like neurodegeneration 

(Gjoneska, Pfenning et al. 2015)and in postmortem human brain samples of patients 

suffering from cognitive diseases (Shulha, Cheung et al. 2012). Our data furthermore 

support previous genetic studies linking mutations in Setd1b to intellectual disability 

(Hiraide, Nakashima et al. 2018) (Labonne, Lee et al. 2016). Since in our work Setd1b is 

not deleted during brain development but only in the postnatal brain, the presented 

findings suggest that reduced Setd1b expression can lead to cognitive dysfunction 

independent of developmental alterations. Impaired hippocampus-dependent memory 

has been also observed in mice that lack Kmt2a (Gupta, Kim et al. 2010, Kerimoglu, Sakib 

et al. 2017) or Kmt2b (Kerimoglu, Agis-Balboa et al. 2013)from excitatory neurons of the 

adult forebrain. Interestingly, mice heterozygous for Setd1a, the close homologue to 

Setd1b that is genetically linked to schizophrenia, show no impairment in the water maze 

task but rather exhibit impaired working memory and schizophrenia-like phenotypes 

(Mukai, Cannavò et al. 2019). These data suggest that the different H3K4 KMT’s, at least 

Kmt2a, Kmt2b, Setd1a and Setd1b, serve distinct functions in the adult brain. The 

molecular characterization of Setd1b cKO further confirms this view. In line with the role 

of Setd1b in regulating H3K4me4, we observed a substantial decrease of neuronal 

H3K4me3 and the vast majority of these changes were observed at the TSS region of 

genes. Our data furthermore revealed that many genes with decreased H3K4me3 also 

exhibited reduced H3K9ac, which is in line with previous data showing that H3K4me3 

appears to be a pre-requisite for H3K9ac, most likely since H3K4 KMT’s interact with 

histone-acetyltransferases (Wang, Zang et al. 2009, Kerimoglu, Agis-Balboa et al. 2013). 

For example, both Setd1b and the histone-acetlytransferase Kat2a where shown to 

interact with WDR5 (Lin, Min et al. 2016, Ma, Zhang et al. 2018), which is interesting since 

loss of Kat2a from excitatory forebrain neurons also leads to severely impairment of 

spatial reference memory (Stilling, Rönicke et al. 2014). Somewhat unexpected was the 

observation that H3K4me1 levels were increased at a substantial number of TSS regions 

that exhibited decreased H3K4me3. A similar observation has however been made in 

yeast that expresses only one H3K4 KMTs, namely Set1 (Soares, He et al. 2017). The 
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authors show that highly expressed genes have the broadest H3K4me3 peak at the TSS, 

while moderate to low expressed genes are characterized by a narrow H3K4me3 peak 

and comparatively higher H3K4me1 levels. This H3K4me-dependent pattern of gene-

expression was directly correlated to degree of SET1 activity at the TSS. In agreement 

with these data we observed that the genes with decreased H3K4me3 and increased 

H3K4me1 in Setd1b cKO mice are indeed characterized by a broad H3K4me3 peak at the 

TSS and high expression levels at the basal state. It is in this context interesting to note 

that Setd1b is the closest mammalian orthologue of the yeast SET1 protein, from which 

the other H3K4 methyltransferases have evolved (Shilatifard 2012). Importantly, when we 

analyzed gene-expression in Setd1b cKO mice we observed that not all genes that exhibit 

reduced H3K4me3 display reduced mRNA expression. Rather, we found that specifically 

genes with decreased H3K4me3 and increased H3K4me1, hence only the genes with the 

broadest H3K4me3 distribution at the TSS were significantly down-regulated in Setd1b 

cKO mice. These genes represent key pathways linked to memory formation and the 

identity of hippocampal neurons, which is also in line with a recent study reporting that 

memory training specifically activates hippocampal genes with broad H3K4me3 peaks 

at the TSS (Collins, Sweatt et al. 2019). In sum, these data suggest that Setd1b is 

important for the expression of neuronal identity genes in the hippocampus, that are 

linked to learning and memory processes, a function that might be specifically associated 

with Setd1b. Thus, when we directly compared genes down-regulated in Setd1b, Kmt2a 

or Kmt2b cKO mice, the genes down-regulated in Setd1b cKO mice were characterized by 

significantly broader H3K4me3 peaks at the TSS, significantly higher baseline expression 

and they were enriched for neuronal identity genes and pathways specifically important 

for learning-related processes. A significant gradient Setd1b > Kmt2a > Kmt2b was 

observed for all of these comparisons. In line with these data, also the memory 

performance in the water maze training was more severely affected in Setd1b cKO mice 

followed by mice lacking Kmt2a or Kmt2b. These data may suggest that H3K4 KTM’s 

other than Setd1b are essential to ensure the sufficient expression of genes important 

for basal cellular processes in neurons, while Setd1 enables to preeminent expression of 

neuronal identity genes.  This view is in line with a recent study in mouse embryonic stem 

cells in which Setd1b was associated with the expression of highly expressed genes that 

exhibit a broad H3K4me3 peak, while Kmt2b was linked to the expression of genes with 

narrow H3K4me3 peaks (Sze, Ozakr et al. 2020). Interestingly, this study suggested a 
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functional redundancy of Setd1b and Setd1a. It is likely that this is true for gene-

expression programs related to more general cellular processes. However, the situation 

might be different for genes specifically important in post-mitotic neurons. Moreover, 

mutations in either Setd1a or Setd1b lead to distinct neuropsychiatric diseases and unlike 

Setd1b cKO mice, Setd1a heterozygous mutant mice do not exhibit impairment of long-

term memory consolidation (Mukai, Cannavò et al. 2019). At present we cannot 

conclusively answer the question how Setd1b affects the expression of specifically 

neuronal identity genes. Previous data suggest that H3K4 KMT’s associate with different 

co-activators (Lee, Lee et al. 2006), (Dreijerink, Mulder et al. 2006, Shilatifard 2012) 

(Hughes, Rozenblatt-Rosenm O et al. 2004, Yokoyama, Wang et al. 2004) (Scacheri, Davis 

et al. 2006) which could explain the regulation of specific gene-expression programs. Our 

data provides a complimentary explanation that should be considered in addition. Using 

single-nucleus-sequencing we observed that Setd1b is expressed in a comparatively 

small number of hippocampal neurons, when compared for example to Kmt2a. Yet, the 

impact on memory function is most significant when hippocampal neurons lack Setd1b, 

as for example compared to the more abundantly expressed Kmt2a or Kmt2b. The 

comparison of Setd1b expressing hippocampal neurons to cells that do not express 

Setd1b confirmed a specific role for Setd1b in the expression of genes intimately linked 

to neuronal function and memory processes. This was different for Kmt2a and Kmt2b 

expressing neurons suggesting that the presence of Setd1b at the single cell level enables 

particularly efficient expression of genes important for the function of hippocampal 

neurons and memory consolidation. It has to be re-iterated that these genes are also 

detectable in neurons that lack Setd1b and express Kmt2a or Kmt2b, but to a lesser extent 

(See Fig 5I). This allows for some interesting hypotheses. For example, a number of 

studies demonstrated that upon learning a specific set of neurons – in most cases 

neurons that initiate a cFos-dependent gene-expression program – become part of a 

neuronal circuitry important for memory encoding. Particularly important are those 

neurons that are later reactivated during memory retrieval (Reijmers, Perkins et al. 2007, 

Tonegawa, Morrissey et al. 2018) (Josselyn SA 2019). All of these studies found that only 

a small fraction of the originally activated cells became reactivated during memory 

retrieval. It is thus tempting to speculate that the activity of genes such as Setd1b might 

help to shape the neuronal ensemble that will indeed be reactivated during memory 

retrieval, a hypothesis that would need to be tested in further studies. Taking into account 
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that decreased neuronal H3K4me3 levels have been observed in cognitive and 

neurodegenerative diseases therapeutic strategies that reinstate specifically the 

expression of neuronal plasticity genes controlled by Setd1b might be particularly helpful. 

We suggest that the various epigenetic drugs currently tested in pre-clinical and clinical 

settings for cognitive diseases should especially be analyzed for their potential to 

reinstate the H3K4me3 peak width at neuronal identity genes. 

In conclusion, we show that Setd1b is essential for memory consolidation and ensures 

the proper expression of neuronal identity genes. Since Setd1b is expressed only in a 

subset of hippocampal neurons it may provide a plasticity benefit to those cells thereby 

regulating memory formation at the molecular level. In turn, Setd1b-related gene-

expression programs could be a suitable therapeutic target to treat cognitive diseases 

and help patients suffering from intellectual disability. 

 

MATERIALS AND METHODS 
 

Animals 

All animals used in this study were C57BL/6J mice and of 3-6 months of age. The 

experimental groups were age and sex matched. Mice were kept in standard home cages 

with food and water provided ad libitum. All experiments were performed according to 

the animal protection law of the state of Lower Saxony. 

 

Behavior experiments 

The behavioral experiments were performed as described previously(Kerimoglu, Sakib et 

al. 2017). For in depth feature analysis from water maze data, a modified version of 

MUST-C algorithm was used (Illouz, Madar et al. 2016).  

 

Tissue isolation and processing  

Hippocampal CA tissues were dissected from WT and Setd1b cKO mice, flash frozen in 

liquid nitrogen and stored at -80°C until further processing.  

 

Cell-type specific nuclear RNA isolation and sequencing 

Frozen CA tissues from left and right hemisphere of two mice were pooled together and 

processed on ice to maintain high RNA integrity. Tissue was homogenized using a plastic 



Manuscript 2 

 107 

pestle in a 1.5mL Eppendorf tube containing 500 uL EZ prep lysis buffer (Sigma, NUC101-

1KT) with 30 strokes. The homogenate was transferred into 2 mL microfuge tubes, lysis 

buffer was added up to 2 mL and incubated on ice for 7 minutes. After centrifuging for 5 

minutes at 500g supernatant was removed and the nuclear pellet was resuspended into 

2 mL lysis buffer and incubated again on ice (7 minutes). After centrifuging for 5 minutes 

at 500g, the supernatant was removed and the nuclei pellet was resuspended into 500ul 

nuclei storage buffer (NSB: 1x PBS; Invitrogen, 0.5% RNase free BSA;Serva, 1:200 

RNaseIN plus inhibitor; Promega, 1x EDTA-free protease inhibitor; Roche) and filtered 

through 40 µm filter (BD falcon) with additional 100 µL NSB to collect residual nuclei from 

the filter. Nuclei were stained with anti-NeuN-Alexa488 conjugated antibody (1:1000) for 

45 minutes and washed once with NSB. Stained nuclei were then FACS-sorted with 

FACSaria III using 85 µm nozzle. Nuclei were gated by their size, excluding doublets and 

neuronal nuclei were separated from non-neuronal nuclei by their NeuN-Alexa488 

fluorescence signal. Sorted nuclei were collected into a 15 mL falcon tube precoated with 

NSB, spun down and RNA was isolated using Trizol LS. After addition of chloroform 

according to the Trizol LS protocol, aqueous phase was collected and RNA was isolated 

by using Zymo RNA clean & concentrator-5 kit with DNAse treatment. Resulting RNA 

concentration were measured in Qubit and RNA-seq was performed using 100ng of 

neuronal RNA with illumina TruSeq RNA Library Prep Kit. Since glial nuclei are smaller 

and contains very little amount of RNA, neuronal nuclear RNA was scaled down and 1ng 

from both neuronal and glial nuclear RNA was used to make RNA-seq libraries using 

Takara SMART-Seq v4 Ultra Low Input RNA Kit. Libraries were sequenced using single-

end 75 bp in Nextseq 550 or single-end 50 bp in HiSeq 2000, respectively.  

 

Cell-type specific chromatin isolation and ChIP sequencing 

Frozen tissues were homogenized, formaldehyde (1%) fixed for 10 minutes and quenched 

with 125mM glycine for 5 minutes. Debris was removed by sucrose gradient 

centrifugation. The resulting nuclear pellet was stained with anti-NeuN-Alexa488 

conjugated antibody (1:1000) for 25 minutes and washed 3 times with PBS. Stained 

nuclei were then FACS sorted with FACSaria III using 85 µm nozzle. Nuclei were gated 

similarly as described previously(Halder, Hennion et al. 2016). Sorted nuclei were 

collected into a 15mL falcon tube and transferred into 1.5mL tubes. The nuclear pellet 

was flash frozen in liquid nitrogen and saved at -80°C for further processing. For 
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chromatin shearing, the pellet was resuspended into 100uL RIPA buffer (containing 1% 

SDS) and sonicated for 25 cycles in Diagenode bioruptor plus with high power and 30 

cycles on/ 30 cycles off. Chromatin shearing was checked by taking a small aliquot and 

decrosslinking the DNA by 30 minutes RNAse and 2 hours of proteinase K treatment. DNA 

was isolated using SureClean Plus protocol. Sheared chromatin size was determined 

using Bioanalyzer 2100(DNA high sensitivity kit) and the concentration was measured 

using Qubit 2.0 fluorometer (DNA high sensitivity kit). 0.3µg chromatin was used along 

with 1 µg of antibody to do ChIP for H3K4me3 (Abcam ab8580), H3K4me1 (Abcam 

ab8895), H3K27ac (Abcam ab4729) and H3K9ac (Millipore 07-352). ChIP was performed 

as previously described(Halder, Hennion et al. 2016). The resulting ChIP DNA was 

subjected to library preparation using NEBNext Ultra II DNA library preparation kit and 

sequenced for single end 50bp at illumina HiSeq 2000.  

ChIP-Seq Analysis 

Base calling and fastq conversion were performed using Illumina pipeline. Quality control 

was performed using fastqc (www.bioinformatics.babraham.ac.uk/projects/fastqc). 

Reads were mapped to mm10 mouse reference genome with STAR aligner v2.3.0.w. PCR 

duplicates were removed by rmdup -s function of samtools. BAM files with unique reads 

belonging to the same group were merged into a single BAM file with the merge function 

of samtools. Profile plots were created from these merged BAM files with NGSPlot. Peak 

calling was performed using MACS2 against the input corresponding to the particular 

group (i.e., control or cKO) using q < 0.1. Consensus peaksets were generated for each 

histone modification individually using the Diffbind package of Bioconductor with the 

command dba.count and the parameter minOverlap=1. Then, these consensus peaksets 

were intersected with each other using the intersect function of bedtools with default 

parameters.. The differential binding analysis for each histone mark between control and 

Setd1b cKO was then performed using Diffbind with this common peakset as input. For 

the comparison of H3K4me3 and H3K4me1 changes in Kmt2a cKO, Kmt2b cKO and 

Setd1b cKO common peaksets for each individual histone mark from three separate 

ChIP-Seq experiments were extracted. In this case, first, consensus peaksets for a 

histone mark from each individual ChIP-Seq experiment (i.e., “Control vs Kmt2a cKO”, 

“Control vs Kmt2b cKO” and “Control vs Setd1b cKO”) were determined using Diffbind. 

For the purpose of comparing the effects of the three KMT knockdowns on H3K4me3 or 

H3K4me1 the differential binding analyses for each individual ChIP-Seq experiment were 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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performed always utilizing these common consensus peaksets. Diffbind package was 

used for differential binding analysis with in-built DESEQ2 option for differential analysis. 

The annotation of the genomic regions was performed with HOMER.  

 

 

 

RNA-Seq Analysis 

Base calling, fastq conversion, quality control, mapping of reads to mouse reference 

genome (mm10) were performed as described before (Kerimoglu, Sakib et al. 2017)Seq. 

Reads were counted using FeaturesCount (http://bioinf.wehi.edu.au/featureCounts/). 

Differential expression was analyzed with DESeq2 package of Bioconductor  RPKM 

values were calculated using edgeR package of Bioconductor. 

 

Single-nucleus RNA-Seq  

Unfixed NeuN+ neuronal nuclei were isolated as mentioned above (section: Cell-type 

specific nuclear RNA isolation and sequencing). Sorted neuronal nuclei were counted in 

a Neubauer chamber with 10% trypan blue (in PBS) and nuclei concentration were 

adjusted to 1000 nuclei/µL. The nuclei were further diluted to capture and barcode 4000 

nuclei according to Chromium single cell 3ʹ reagent kit v3 (10X genomics). Single nuclei 

barcoding, GEM formation, reverse transcription, cDNA synthesis and library preparation 

were performed according to 10X genomics guidelines. Finally, the library was sequenced 

in Illumina NextSeq 550 according to manufacturer’s protocol. Gene counts were 

obtained by aligning reads to the mm10 genome (GRCm38.p4)(NCBI:GCA_000001635.6) 

using CellRanger software (v.3.0.2) (10XGenomics). The CellRanger count pipeline was 

used to generate a gene-count matrix by mapping reads to the pre-mRNA as reference to 

account for unspliced nuclear transcripts. The dataset contained 3841 cells with a mean 

of 31.053 total read counts over protein-coding genes. 

The SCANPY package was used for pre-filtering, normalization and clustering (Wolf, 

Angerer et al. 2018) Initially, cells that reflected low-quality cells (either too many or too 

few reads, cells isolated almost exclusively, cells expressing less than 10% of house-

keeping genes (Eisenberg and Levanon 2013) were excluded remaining in 3801 cells. 

Next, counts were scaled by the total library size multiplied by 10.000, and transformed 

to log space. A total of 3066 highly variable genes were identified based on dispersion 

http://bioinf.wehi.edu.au/featureCounts/
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and mean, the technical influence of the total number of counts was regressed out, and 

the values were rescaled. Principal component analysis (PCA) was performed on the 

variable genes, and UMAP was run on the top 50 principal components (PCs) (Becht, 

McInnes et al. 2018), The top 50 PCs were used to build a k-nearest-neighbours cell–cell 

graph with k= 200 neighbours. Subsequently, spectral decomposition over the graph was 

performed with 50 components, and the Louvain graph-clustering algorithm was applied 

to identify cell clusters. We confirmed that the number of PCs captures almost all the 

variance of the data. For each cluster, we assigned a cell-type label using manual 

evaluation of gene expression for sets of known marker genes. Two cell-type clusters 

identified as neurons from dentate gyrus and inhibitory neurons were excluded. 

Remaining excitatory neuronal cells from CA region were re-clustered using the same 

settings as described above. For each cluster, differentially expressed genes were 

detected using the Wilcoxon rank-sum test as implemented in the function 

rank_genes_groups in SCANPY.  

 

Data availability 

All RNA and ChIP-seq datasets will be made available via GEO database 
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SUPPLEMENTAL DATA 
 
Supplemental Fig. S1. 

 
 

Supplemental Fig S1. Behavioral analysis of mice expressing CamKII-driven Cre 
recombinase.  A. Transgenic mice expressing CRE under control of the CamKII promoter 
were subjected to behavior testing (n=8, Cre +) comparing them to wild type mice from 
the same breeding colony that did not express CRE (n=8; Cre -). No difference was 
observed in body weight. B. The distance traveled in the open filed test and (C) the time 
spent in the center of the arena was similar amongst groups. D. No difference in the 
swimming speed was observed amongst groups when subjected to the water maze test. 
E. Escape latency during water maze training was similar in CRE - and CRE + mice.  F. 
During the probe test performed after 10 trainings days, CRE - and CRE + mice showed 
similar performance then time spent in the target quadrant and (G) the number of 
platform crossings were analyzed. Error bars indicate SEM. 
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Supplemental Fig S2. 

 
Supplemental Fig S2: Sorting neuronal and non-neuronal nuclei for RNA-analysis. 
Nuclei from the hippocampal CA region were subjected to FACS as depicted in Fig 2A. A. 
Representative images showing nuclei that were sorted using the neuronal marker NeuN. 
Note that no NeuN positive nuclei are detected in the NeuN (-) fraction confirming the 
puirity of the approach.   Scale bar: 50μm C. Gating strategy for NeuN (+) and NeuN (-) 
nuclei sorting. C. RNA-sequencing (n=2/group) was performed from NeuN (+) and NeuN 
(-) nuclei and a differential expression analysis was performed. Heat map shows 836 
genes specifically enriched in NeuN (+) nuclei when compared to NeuN (-) nuclei. The 
criteria to select those genes were: adjusted p value <0.01, basemean >150, fold change 
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> 5. D. GO-term analysis showing that the top 10 enriched biological processes and 
molecular functions for the 836 genes enriched in NeuN (+) nuclei all represent specific 
neuronal processes. E. Normalized expression values obtained from the RNA-seq 
experiment showing the expression of selected genes known to be enriched in neurons. 
F. Normalized expression values of genes that are known to be enriched in non-neuronal 
cells including glia cells. Error bars indicate SEM. 
 
 
 Supplemental Fig. S3. 

 
Supplemental Fig. S3. Decreased H3K9ac and H3K27ac in Setd1b cKO mice. A. Left 
panel: Heat map showing genes with differential H3K9ac sites at the TSS in neuronal 
nuclei from Setd1b cKO mice and their genomic location. Right panel shows the same 
analysis for H3K27ac. B. Bar chart showing the number of genes with decreased and 
increased H3K9ac and H3K27ac marks at the TSS region. Data for H3K4me3 and 
H3K4me1 are shown for comparison. As expected, the most affected histone-mark is 
H3K4me3. C. Venn diagram showing that most of the sites exhibiting decreased H3K9ac 
at the TSS also exhibit reduced H3K4me3, while this was not the case for H3K27ac. TSS, 
transcription start site.     



Manuscript 2 

 114 

Supplemental Fig. S4. 
 

 
 
Supplemental Fig S4. Comparison of gene-expression changes in Setd1b cKO mice 
detected from cell-type specific and bulk tissue RNA-seq. Venn diagram showing the 
overlap of genes down-regulated in Setd1b cKO mice detected via RNA-seq from neuronal 
nuclei or bulk hippocampal CA tissue. Please note that more genes are detected when 
neuronal nuclei are analyzed suggesting that some of the difference are masked by cell 
type heterogeneity when bulk tissue is analyzed. 
 
 
Supplemental Fig. S5 

 
Supplemental Fig. S5. Comparison of the genes down-regulated in Setd1A and Setd1b 
mutant mice. Venn diagram showing genes down-regulated in Setd1A vs Setd1b cKO 
mice. Please note that genes affected in the different mutant mice are very different. Of 
course, care has to be taken since the data from Setd1A mutant mice stems from a recent 
publication by Mukai et al., 2019 (PMID:31606247). In this study cortical tissue from 
heterozygous mice constitutively lacking Setd1A were analyzed, while our data stems 
from the hippocampus of conditional knock out mice.  
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Supplemental Fig S6. 

 
Supplemental Fig.S6. Functional pathways affected in Kmt2a and Kmt2b cKO mice. A. 
Heat map showing functional pathways analysis for genes down-regulated in Kmt2a cKO 
mice. Enrichment of the same pathways is also shown for Kmt2b and Setd1b cKO mice.  
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B. Heat map showing functional pathways analysis for genes down-regulated in Kmt2b 
cKO mice. Enrichment of the same pathways is also show for Kmt2a and Setd1b cKO 
mice. Please note that the pathways affected in Kmt2a or Kmt2b cKO mice differ 
substantially from those affected in Setd1b cKO mice. All data is based on comparable 
RNA-seq data generated from bulk hippocampal CA1 region. 
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Supplemental Fig S7. 
 
 

 
 

Supplemental Fig. S7. Spatial reference learning in Kmt2a, Kmt2b and Setd1b cKO mice. 
To compare spatial reference learning in the 3 different mutant mice, we normalized the 
data to the corresponding control group. This is important, since the experiments were 
performed at different time points. The data on Kmt2a and Kmt2b cKO mice was 
generated in our laboratory and is already published (Kerimoglu, Agis-Balboa et al. 2013) 
(Kerimoglu, Sakib et al. 2017). The data on Setd1b cKO mice were generated as part of 
this project using the same protocol.  In this plot an increase in the normalized escape 
latency shows the difference to the corresponding control group. Hence  a higher 
normalized escape latency indicates a greater difference to the corresponding control 
and this more severe learning impairment. This difference in normalized escape latency 
is significantly greater in Setd1b cKO mice when compared to Kmt2a or Kmt2b cKO mice. 
It is interesting to note that the degree of memory impairment seems to parallel the gene-
expression data, hence Setd1 appears to be most important for the expression of 
neuronal identity genes linked to learning and memory Setd1b cKO mice are also most 
affected in spatial memory formation. Loss of Kmt2a affects some pathways specific to 
neuronal function but also more general cellular processes while loss of Kmt2b seem to 
affect genes that are not specific to neuronal function. In line with this, loss of Kmt2b has 
the least effect on spatial memory and in fact memory defects in Kmt2b cKO mice only 
become obvious during prolonged training and the probe test23. Setd1b cKO (n = 14) vs 
Kmt2a cKO (n = 13): Repeated measures ANOVA, genotype effect: F (1,25) = 16.83, *** p-
value < 0.001.  Setd1b cKO (n = 14) vs Kmt2b cKO (n = 22): Repeated measures ANOVA, 
genotype effect: F (1,34) = 70.66, **** p-value < 0.0001.    
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ABSTRACT 
 

Age induced cognitive decline is one of the major etiological factors for 

neurodegenerative diseases. It is therefore of paramount importance to find out 

molecular mechanisms towards cognitive dysfunction at middle age, which lead towards 

further deterioration. Epigenetic mechanism deregulated in aging, such as histone 

modifications can act as a molecular imprint of aging in a cell, which can potentially be 

reversed, thereby undoing the effects of aging. As hippocampus is subjected to aging 

induced cognitive dysfunctions, in order to better understand the gene regulation, we 

sought to characterize promoter epigenetic marks, i.e. H3K4me3 and H3K27me3, along 

with gene expression, in a neuronal and non-neuronal cell type specific manner in 16 

months old mouse hippocampal CA1 region. Along with the cell type specific 

characterization of epigenome and transcriptome, which will act as a valuable resource 

for the whole community, we found aging to affect non-neuronal cells dramatically at 

both epigenetic and transcriptomic levels, while neurons were less affected. Our study 

provides crucial evidences and important pathways showing neuronal support function, 

governed by non-neuronal cells were being downregulated via epigenetic and 

transcriptomic regulation, which can be used as a starting point of designing therapeutic 

interventions against dementia. 

 

One Sentence Summary: Aging leads to non-neuronal epigenetic and transcriptomic 

dysfunctions related to neuronal support function, while neurons lose their inhibitory 

histone marks, thereby being vulnerable to degeneration in later life and cognitive decline 

in mice. 
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INTRODUCTION 
 
Age induced cognitive decline is one of the major public health burden and primary risk 

factor for neurodegenerative disease across the entire world population(Yankner, Lu et 

al. 2008). Although severe manifestation of age-related cognitive disorders appears 

prominently at the end stage of life, it is a gradual process(Murman 2015). At the 

molecular level, aging brain across species has been shown to bear inflammatory 

signaling, oxidative stress, deregulated calcium signaling, mitochondrial malfunction, 

alternative splicing (Prolla 2002, Blalock, Chen et al. 2003, Simen, Bordner et al. 2011, 

Ianov, Rani et al. 2016, Ianov, De Both et al. 2017, Kerimoglu, Sakib et al. 2017). While 

numerous studies have showed altered epigenetic marks such as histone modifications 

due to aging in other cell or tissue types(O'Sullivan, Kubicek et al. 2010, Cruickshanks, 

McBryan et al. 2013, Shah, Donahue et al. 2013), chromatin-immunoprecipitation and 

sequencing (ChIP-seq) based histone modification studies on brain aging or age related 

neurodegenerative diseases have just started to emerge (Nativio, Donahue et al. 2018, 

Nativio, Lan et al. 2020). However, these studies lack the brain cell type specific analysis 

of histone modification which is crucial to uncover specific mechanisms in aspect of 

neurons or non-neuronal cells of the brain. 

 

In previous attempts to screen global histone modification changes by western blot in 

brain aging, authors have shown that histone methylation marks, including H3K27me3 

tend to decreased with age in 22 months of mouse brain(Gong, Qian et al. 2015). Genome 

wide ChIP-seq for promoter mark (H3K4me3), enhancer mark(H3K27mac) and gene 

expression revealed inflammatory signals across different tissues, including brain 

cerebellar regions(Benayoun, Pollina et al. 2019). Previous studies have mostly used 

whole brain tissue samples containing mixture of cells, even though it is known that gene 

expression or epigenetic marks vary greatly in different cell types of the brain(Kozlenkov, 

Roussos et al. 2014, Lake, Ai et al. 2016, Ecker, Geschwind et al. 2017). Among all other 

epigenetic marks, activatory H3K4me3 and inhibitory H3K27me3 marks are the most 

prominent marks at the promoter region, that correlate well with gene expression and 

associate with RNA polymerase II(Akkers, van Heeringen et al. 2009). Until now, genome 

wide studies on promoter epigenetic marks and gene expression in aging hippocampus 

in a cell type specific manner is still missing, which will be crucial to uncover 
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epigenomic/transcriptomic mechanisms in aging hippocampus and to find potential cure 

against age associated cognitive decline.  

 

In this study, first, we utilized two different nuclei isolation methods for sorting chromatin 

and RNA from NeuN+ (neuronal) and NeuN- (non-neuronal) cell nuclei from the mouse 

brain tissues and combined basal epigenetic and transcriptomic data to corroborate 

activatory H3K4me3 and inhibitory H3K27me3 histone modifications with gene 

expression data. Applying these cell type specific genome wide techniques to young vs 

aged mouse hippocampal CA1 tissues led us find massive epigenetic and moderate 

transcriptomic deregulation at the non-neuronal cells, in contrast to neurons which were 

mildly affected. We further provide correlation between deregulated epigenome and gene 

expression of the aged non-neuronal cells to find specific pathways that potentially 

mediates age induced cognitive decline.  
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RESULTS 
Cell type specific nuclei sorting reveals neuronal and non-neuron 
specific coding and non-coding RNAs 

 
 

Figure 1: Cell type specific transcriptome and epigenome from mouse hippocampal CA1. 
(A)Experimental scheme to generate both NeuN+ and NeuN- transcriptome and 
epigenome data using two different methods from mouse hippocampal CA1 region. (B) 
Percentages of NeuN+ (n=6) and NeuN- (n=6) nuclei in CA1 region. (C) Among the 
expressed genes in both types of nuclei, the biotypes of detected transcripts. (D) 
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Differential expression between NeuN+ and NeuN- nuclei at FDR 0.05 and fold change 
more or less than 5. (E) Biotypes of highly enriched RNAs in NeuN+ and NeuN- nuclei; 
TEC: Poly-A transcripts, to be experimentally validated (F) Normalized expression values 
of selected marker genes in NeuN+ and NeuN- nuclei RNA seq data. All differences were 
significantly different (Student’s t-test). Error bars indicate mean ± SEM. 

For unbiased transcriptome and epigenome characterization of neuronal and non-

neuronal cells from the young hippocampal CA1, we utilized two different nuclei isolation 

methods to sort NeuN+ and NeuN- nuclei for Chromatin and RNA (Figure 1A). Using NeuN 

antibody as pan-neuronal marker, we stained neuronal nuclei and separated them from 

non-neuronal nuclei containing astrocytes, oligodendrocytes, microglia, endothelial cells 

etc. FACS sorting NeuN+/NeuN- nuclei showed that mouse hippocampal CA1 contains 

70% neuronal and 30% non-neuronal cells (Figure 1B). Due to differences in sizes and 

amounts between neuronal and non-neuronal nuclei, RNA concentrations were 

significantly different as well (Supplementary figure 1). Therefore, we normalized the RNA 

amounts from those different cell types and performed total RNA sequencing to obtain 

complete transcriptome including coding and non-coding genes from neuronal and non-

neuronal nuclei. Although it was nuclear RNA sequencing, majority of the expressed 

genes between NeuN+ and NeuN- were protein coding (Figure 1C). PCA plot and 

heatmaps showed clear and strong separation between those sample groups 

(Supplementary figure 2A, B). Using stringent cutoffs (FDR 0.05, fold change 5), we found 

2391 and 2400 genes specific for NeuN+ and NeuN- (Figure 1D). Gene ontology and 

KEGG pathway analysis showed typical neuronal and non-neuronal pathways enriched in 

NeuN+ and NeuN- genes, respectively (Supplementary figure 2C). RNA biotypes among 

NeuN+ and NeuN- showed NeuN+ having more of all classes of RNA, except NeuN- 

having more protein coding genes (Figure 1E). Interestingly, 9 scaRNA (Small Cajal body-

specific RNAs) are found to be exclusively NeuN+ enriched. scRNA are generally involved 

in performing modifications (e.g. methylation) for other RNA types (Cao, Rajasingh et al. 

2018). Our method of generating neuronal and non-neuronal transcriptome data is highly 

specific as it showed different excitatory, inhibitory neuronal marker genes to be highly 

enriched in NeuN+ and other glial marker to be exclusively enriched in NeuN- nuclei as 

well (Figure 1F). 
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Cell type specific activatory H3K4me3 and inhibitory H3K27me3 
histone marks explain neuronal and non-neuronal gene promoter 
expression 
 

 
 

Figure 2: H3K4me3 and H3K27me3 marks activatory, inhibitory and bivalent promoters 
of NeuN+/NeuN- nuclei in the brain. (A) Total number of bivalent, H3K4me3 only and 
H3K27me3 only peaks detected in 3 months old NeuN+ and NeuN- samples. (B) Peaks 
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are annotated to find out their genomic locations in different elements such as 
promoters, exons etc. Despite NeuN+ having higher number of peaks, majority of them 
falls into distal intergenic regions. (C, E) ChIP-seq heatmap of H3K27me3 and H3K4me3 
at transcription start sites, ranked by ascending level of corresponding gene expression 
levels for (C)NeuN+ and (E) NeuN-. (D, F) Genes either bearing H3K4me3, H3K27me3 or 
bivalent regions at their promoters (Venn diagram) and log2(RPKM + 1) expression 
pattern (box plot) are similar in both NeuN+ and NeuN- (D, F, respectively). 

Since H3K4me3 and H3K27me3 are archetypical activatory and inhibitory epigenetic 

marks, respectively, we did genome wide ChIPseq for those two marks in NeuN+ and 

NeuN- cells to understand gene expression regulation of corresponding cells in the adult 

hippocampus. After peak calling for H3K4me3 and H3K27me3 in each cell types, peaks 

were sub-grouped into three classes of histone marks, (i) H3K4me3 only, (ii) H3K27me3 

only, and (iii)bivalent region, which contains both H3K4me3 and H4K27me3 marks. 

H3K4me3 peaks were typically higher in number than H3K27me3 in both cell types and 

interestingly, NeuN+ had the highest amounts of peaks among all three classes, 

compared to NeuN- (Figure 2A). Despite having higher amounts of peaks in general, 

majority of NeuN+ peaks were at the distal intergenic regions, compared to NeuN- (Figure 

2B, upper). Since NeuN- had lower peak number compared to NeuN-, majority of it were 

annotated around promoter (TSS) regions (Figure 2B, lower). But peaks associated 

around TSS (+/- 2000 bp) were similar in number (14679 for NeuN+ and 13789 for NeuN-

, respectively). When ranked according to gene expression levels, both H3K4me3 and 

H3K27me3 marks showed oppositely positioned patterns in both NeuN+ and NeuN- cell 

types around TSS regions (Figure 2C,E). Genes bearing all three classes of histone marks 

around their TSS regions were also found to be similar for both NeuN+ and NeuN- cells 

(Figure 2D,F; Venn diagrams). H3K4me3 mark bearing genes were expressed at the 

highest RPKM levels, in contrast to H3K27me3 mark bearing genes being not expressed, 

while bivalent mark bearing genes were being expressed at either very low levels or did 

not express at all (Figure 2D,F; box plots). In terms of peak height and width, NeuN+ peaks 

were significantly higher than NeuN- in all epigenetic marks, except for bivalent H3K4me3 

peaks, which were similar in sizes between NeuN+ and NeuN- (Supplementary figure 3). 

Gene ontology analysis (Supplementary figure 4) for unique genes bearing H3K4me3, 

H3K27me3 or bivalent marks at their promoter suggests H3K4me3 is related to active 

NeuN+ or NeuN- related functional pathways, while inhibitory H3K27me3 marks genes to 

repress pathways that are not usually expressed in neuronal or non-neuronal cells. 
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Bivalent marks are in similar development related pathways for both NeuN+ or NeuN-, 

which are also not regularly expressed in healthy situation. 

Genome browser view (Figure 2G) of those three classes of histone marks showed 

Neuron specific gene, Grin2b, has sharp activatory H3K4me3 peak at TSS, with no 

H3K27me3 peaks, and therefore, high expression levels in NeuN+ nuclei. But in NeuN-, it 

is not expressed at all as it contained higher level of inhibitory H3K27me3 levels that 

repressed the expression and no H3K4me3 peaks. Similar pattern was observed for non-

neuronal, specifically oligodendrocyte related gene, Mag, which had higher activatory 

H3K4me3 peak at TSS with no H3K27me3 enrichment in NeuN-, which resulted into high 

level of expression only in NeuN- nuclei. NeuN+ did not express this gene as it had high 

enrichment of H3K27me3 and no H3K4me3 that resulted into suppressed gene 

expression. As an example of bivalent regions, Hox gene cluster were visualized and 

found both NeuN+ and NeuN- bears high levels of H3K4me3 and H3K27me3 marks that 

resulted into no gene expression in both cell types.  

  



Manuscript 3 

 134 

Aging related cognitive decline corresponds to massive 
epigenome changes at the promoter of both neuronal and non-
neuronal cells in hippocampal CA1 

 
Figure 3: Cell-type specific epigenome and transcriptome analysis in 16 months aged 
mouse hippocampal CA1. (A) Experimental scheme for characterizing both epigenome 
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and transcriptome in 3 vs 16 months old mice hippocampal CA1 (see methods for 
replicate numbers). (B) Number of significantly increased or decreased histone marks in 
NeuN+ and NeuN- at FDR < 0.05 (C) NeuN+ deregulated histone modification peaks are 
distributed all over different genomic elements. (D) NeuN- deregulated histone 
modification peaks are distributed mostly at the promoter regions, with exception to 
H3K27me3 only.  (E) H3K27me3-only peaks at the promoters of NeuN+ cells were found 
to be decreased due to aging. (F) All analyzed histone modifications at around TSS of 
NeuN- were decreased due to aging. (G) Gene ontology: biological processes for age-
related H3K27me3 only decrease at the gene promoters of NeuN+. (H)Odds ratio analysis 
to find out which non-neuronal cell types are affected in aspect of possible gene up or 
downregulation according to deregulated histone code in aged hippocampal CA1 NeuN- 
cells; N.S. : not significant, adjusted p values for overlap are in each box. 

In order to characterize cell type specific epigenome and transcriptome changes due to 

aging associated cognitive decline, NeuN+ and NeuN- nuclei were sorted from 3 and 16 

months old mouse hippocampal CA1 tissues for ChIP-seq of H3K4me3 and H3K27me3 

marks, in parallel with total RNA-seq for measuring coding and non-coding RNAs (Figure 

3A). Along with H3K4me3 and H3K27me3 regions of the genome, bivalent promoter 

regions were also analyzed with its H3K4me3 or H3K27me3 contents separately. Among 

these four groups of histone marks, differential binding between old vs young revealed 

higher degree of changes in NeuN-, compared to NeuN+ samples, with overall decrease 

of histone marks, except increase in bivalent H3K27me3 marks of NeuN+ (Figure 3B). 

Since H3K4me3 and H3K27me3 are opposing histone marks in terms of their regulatory 

functions, their decrease would possibly exert both up and down regulatory gene 

expression effects in NeuN+ and NeuN- cells. Annotation of deregulated peaks showed 

NeuN- cells promoters to be highly affected due to aging, compared to NeuN+ (Figure 3C, 

D). To visualize the magnitude of changes at the transcription start sites, ChIP-seq data 

of deregulated genes were plotted. H3K27me3-only peaks at the promoter of aged 

NeuN+ was decreased, while other marks did not show significant changes (Figure 3E). 

On the contrary, all marks showed decreased enrichment at the TSS regions of aged 

NeuN- (Figure 3F). Decreased H3K27me3-only genes in aged NeuN+ were all related to 

cell fate commitment, differentiation or cell development related genes, which are usually 

suppressed in mature neurons (Figure 3G). Recent study has implicated that removing 

inhibitory H3K27me3 mark from neurons by knocking out PRC2, it’s methyltransferase 

enzyme, resulted in gene de-repression and aberrant expression of non-neuron or 

development related genes that led to neurodegeneration at later months (von 
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Schimmelmann, Feinberg et al. 2016). This implies, 16 months old neurons lost their 

insulating H3K27me3 from promoter, which would make them vulnerable to age related 

neuronal dysfunctions by probable aberrant non-neuron related gene expression later in 

life, leading to cognitive defect. 

 
As for NeuN-, since all epigenetic marks decreased at the TSS region (Figure 3F), to 

understand it’s probable gene regulation, we grouped these changes into two categories 

according to canonical histone codes, for decreased H3K27me3-only and bivalent-

H3K27me3: gene upregulation and for decreased H3K4me3-only and bivalent-H3K4me3: 

gene downregulation. Since NeuN- is combination of different glial cells, we wanted to 

find which glial type is mostly affected. From a recent mouse brain single cell RNA 

sequencing dataset focusing mostly on major brain glial cell types as well as brain 

vasculature cells including pericytes, fibroblast like cells, smooth muscle cells etc 

(Vanlandewijck, He et al. 2018), we obtained top 500 genes expressed into those cell 

clusters, and took the unique genes in each of those cell types. Odds ratio gene overlap 

analysis between our age deregulated genes due to decreased NeuN- epigenome and 

glial cell types was done to find out genes of which glial types are up- or down- regulated. 

This analysis showed pericytes, astrocytes, smooth muscle cells and blood vessel 

endothelial cell related genes lost the activatory H3K4me3 marks, which might lead to 

loss of function for these important glial types, that gives support to the blood brain 

barrier (Figure 3H). Microglia related genes also lost activatory marks, which were 

lysosome related genes (Supplementary figure 5). This might pave the way for lysosomal 

dysfunction in later aging in microglia. Microglia typically has deteriorated functions, 

including hypo-motility, burdened lysosomes, in aging and neurodegeneration, leading to 

cognitive decline (Pluvinage, Haney et al. 2019). For epigenetic changes leading to 

possible gene upregulation, it was Fibroblast like cells, smooth muscle cells and 

astrocyte related genes (Figure 3F). Microglial gene upregulation due to aging or 

inflammation is regulated by enhancer activation (Wendeln, Degenhardt et al. 2018), 

therefore it was expected that we do not see our promoter-epigenome regulated gene 

upregulation do not overlap with microglia. To conclude, our data shows evidence of both 

H3K4me3 and H3K27me3 epigenetic deregulation specifically in non-neuronal cells, 

while only inhibitory H3K27me3 mark was deregulated in neurons. 
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Transcriptional changes in neurons and non-neuronal cells in 16 
months old mouse hippocampal CA1 region 

 

Figure 4: Gene expression changes in aging neurons and non-neuronal cells (A) Volcano 
plot for old vs young NeuN+ nuclei show mostly upregulated genes. Significance cutoff: 
FDR <0.1, fold change 1.2. (B) Volcano plot for old vs young NeuN- nuclei showing 
bidirectional gene expression changes. Significance cutoff: FDR <0.1, fold change 1.2 (C) 
RNA biotypes for up and downregulated NeuN+ genes in aging. (D) RNA biotypes for up 
and downregulated NeuN- genes in aging. (E) GO: molecular function analysis for up (top) 
and down(bottom) regulated genes in aged NeuN+ nuclei. (F) Odds ratio analysis to find 
out which non-neuronal cell types are affected due to gene expression changes in aging 
NeuN- nuclei; N.S.: not significant, adjusted p values for overlap are in each box. 
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Since we observed massive epigenome changes in thousands of H3K4me3 and 

H3K27me3 peaks at 16 months of age in the hippocampal CA1, we were wondering 

whether these epigenome changes conferred to gene expression changes as well. 

Therefore, we also generated NeuN+/NeuN- nuclei specific nuclear RNAseq data. 

Differential expression analysis between old vs young NeuN+ nuclei showed 137 genes 

was upregulated and 26 genes was downregulated ( 

Figure 4A). But only few of them were protein coding genes (37 up, 23 down), while 

majority of them were found to be termed as TEC (To be Experimentally Confirmed), 

according to Ensembl annotation ( 

Figure 4C). These transcripts are expressed sequence tags (EST) having poly A features 

that putatively code for protein, but have not been studied yet or assigned with any 

specific gene names. Gene ontology analysis in aged deregulated NeuN+ genes showed 

that the upregulated protein coding genes are related to calcium ion signaling and Poly 

(ADP-ribose) polymerase (PARP) activity ( 

Figure 4E, top), both of which have been implicated to drive age related neuronal 

dysfunctions via NAD+ overuse and depletion (Thibault, Gant et al. 2007, Salech, Ponce 

et al. 2020). Downregulated protein coding genes were related to anion/chloride channel 

activity ( 

Figure 4E, bottom), associated with downregulation of gamma-aminobutyric acid type A 

receptor subunit gamma1 (Gabrg1) and glycine receptor alpha 2 (Glra2). In contrast to 

NeuN+, NeuN- nuclei were affected more with higher number of significantly deregulated 

genes ( 

Figure 4B), as we have seen before in terms of epigenome changes (Figure 3). Majority 

of those deregulated genes were protein coding genes, with more than twice the number 

of genes significantly downregulated (320 genes), than upregulated (134 genes). Similar 

to Figure 3H, we wanted to know which glia types were functionally most affected due to 

up or downregulated genes. For upregulated genes, microglia and fibroblast like cell 

related genes were significantly overlapped. But for downregulated genes, the highest 

significant overlap was for Astrocytes and pericytes, important regulator of neuronal 

support function in the brain. Mechanistically, along with inflammatory cell related genes 

going up, supporting non-neuronal cell related genes are going down in mouse 

hippocampal CA1 aging, while neuronal genes related to calcium signaling and PARP 

activity. 
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Decreased H3K4me3 and gene expression changes in aging 
leads to decreased glial support functions through extra-cellular 
matrix related pathways. 

 
Figure 5: Decreased H3K4me3 epigenome and downregulated transcriptome correlation 
in aged NeuN-. (A) Pearson correlation for genes with log2 fold changes of H3K4me3 
and RNAseq in aged NeuN- nuclei. Only FDR < 0.1 were takes for correlation in both 
datasets. Correlation coefficient and p value are given inside the figure. (B)GO biological 
processes and Reactome pathways for genes with decreased expression and decreased 
H3K4me3 mark. 

As both epigenome and transcriptome of aged NeuN- showed high level of changes 

(mostly downregulation), we wanted to correlate them to understand whether epigenome 

changes were instructive of the transcriptome changes, leading to cellular dysfunctions. 

As decreased H3K4me3-only and H3K27me3-only class of epigenetic marks were the 

highest changes in magnitude (Figure 3B), we asked whether there was any positive 

correlation between the degree of log2 fold changes of histone marks with RNA 

expression changes in aged NeuN-. Although only 61 genes were common between 

changes in H3K27me3 and RNA expression, we found 260 genes with both H3K4me3 

and RNA expression changes, out of 593 genes having deregulated RNA expression in 

aged NeuN- (Supplementary figure 6). Pearson correlation shows significant positive 

correlation (R= 0.53, p = 2.2 x 10-16) meaning, majority of the downregulated RNAs in aged 
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NeuN- had decreased H3K4me3 mark (Figure 5A). Gene ontology of those decreased 

RNA and H3K4me3 genes in aged NeuN- showed neuron related pathways to be 

significant, although these genes were deregulated in NeuN- nuclei (Figure 5B, top). This 

would indicate, aged NeuN- have decreased gene expression and epigenome which leads 

to loss of important support function towards neurons. Pathway analysis showed these 

genes are related to critical glia-related metabolic processes, like glycosylation, 

chondroitine sulfate and cholesterol biosynthesis, that would affect the extra cellular 

matrix (Figure 5B, bottom), thereby leading to dysfunctional cellular environment and 

cognitive dysfunction. In summary, our data supports that age related H3K4me3 changes 

at TSS region lead to RNA expression changes in aged non-neuronal cells, without any 

H3K4me3 changes in neuronal cells, which might be a key mechanism for age related 

cognitive decline in mice aging. 
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DISCUSSION 
Aging of the brain is a complex, unavoidable process that can lead to memory decline 

and eventually dementia. Until now, several studies have taken place to understand the 

overall gene expression changes in brain via the analysis of the aging 

hippocampus(Stilling, Benito et al. 2014) via RNA-seq or whole brain analysis using single 

cell RNA sequencing(Ximerakis, Lipnick et al. 2019). However, both of those studies have 

focused mostly on young vs. very old aged brains. It is already known that age-induced 

cognitive decline manifest already in middle-aged individuals(Schneider, Mangialasche 

et al. 2014) and in terms of mouse, they lose their hippocampus dependent spatial 

memory starting only at 16 months of age with very few gene expression changes 

detected via bulk tissue RNA sequencing(Peleg, Sananbenesi et al. 2010) .In order to 

better understand cell type specific transcriptome and epigenome changes in the 

hippocampal CA1 at the onset of age-associated memory decline, we have utilized nuclei 

FACS sorting methods to analyze hippocampal neuronal (NeuN+) and non-neuronal 

(NeuN-) epigenome and transcriptome of 16 months old mice. 

A recent study form our lab employed the nuclei FACS sorting method to study NeuN+ 

and NeuN- DNA methylation and histone modifications during memory formation in 

young mice, more specifically, the authors asked how contextual fear conditioning 

changed the epigenome and transcriptome of plasticity related genes in the 

hippocampus and cortex(Halder, Hennion et al. 2016). However, this study lacked NeuN+ 

and NeuN- nuclear RNAseq data making it difficult to correlate gene-expression with 

epigenomic data. After testing several different nuclei isolation and sorting protocol, we 

have optimized the nuclei isolation and sorting protocol for this study to yield high quality 

NeuN+ and NeuN- nuclei for RNA sequencing. At first, we characterized the NeuN+ and 

NeuN- epigenetic marks by total RNA sequencing and also ChIP sequencing for 

H3K4me3 and H3K27me3 mark from neuronal and non-neuronal cell types. Comparison 

of the NeuN+ and NeuN- transcriptome revealed similar number of neuronal and non-

neuronal genes (both protein coding and non-coding). Key marker genes for different 

neuronal and non-neuronal cells showed clear separation indicating our nuclear RNA 

sequencing data to be highly specific for those individual cell types. This gene list 

containing coding and non-coding RNAs can serve as a reference data set to identify 

neuronal and non-neuronal genes from bulk tissue RNAseq of the brain for future studies. 

The activatory H3K4me3 and inhibitory H3K27me3 data allowed us to study the 
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epigenome, along with bivalent chromatin regions of NeuN+ and NeuN- individually, 

which correlated with gene expression (see Figure 2). These epigenetic marks were 

occupied at the promoters of important pathways necessary (by activatory H3K4me3) or 

detrimental if expressed (repressed by H3K27me3) for both neuronal or non-neuronal 

cells. One crucial aspect was that NeuN+ overall had higher number of histone 

modifications compared to NeuN-, but the promoter occupancy was similar in number 

for both cell types. Further studies are required to investigate the function of these 

additional histone modifications in the NeuN+ nuclei specifically.  

So far, many studies have been published looking at aging brain over all, but the specific 

transcriptional and epigenetic alteration on the verge of cognitive decline at 16 months 

of age in mice has not been studies. To find cure against age induced cognitive decline 

and age-related neurodegenerative diseases, it is of paramount importance to elucidate 

the underlying molecular mechanism. Therefore, with our cell type specific methods 

established, we investigated epigenome and transcriptome changes in 16 months mouse 

hippocampal CA1, compared to 3 months. Although 16 months NeuN+ neuronal cells 

showed modest changes in H3K27me3 both at its individual and bivalent marks, without 

any effect on H3K4me3, NeuN- non-neuronal nuclei showed drastic decrease in terms of 

both H3K4m3 and H3K27me3 marks. ChIP-seq profile plot at the TSS regions showed 

only H3k27me3 was decreased for NeuN+, where all the NeuN- marks were decreased. 

These data indicate, that in the aging brain neuronal and non-neuronal cells are 

differentially affected at the epigenome level. For decrease of H3K27me3 in NeuN+ at 

genes involved in cell fate commitment and developmental related genes, it indicates that 

neurons were losing their inhibitory epigenetic mark that would potentially de-repress 

non-neuronal genes and can further lead to neurodegeneration, similar phenomenon also 

being observed using PRC2 (Polycomb repressive complex 2, methyltransferase for 

H3K27me3) conditional neuron specific knockout mouse model in the brain(von 

Schimmelmann, Feinberg et al. 2016). As for NeuN- non-neuronal cells, since both the 

H3K4me3 and H3K27me3 marks decreased, we wanted to find out how this decrease in 

epigenetic code could potentially affect which glial cell types by turning on or off their 

genes (See Figure 3). By using a public data set of single cell sequencing of brain 

vasculature and other major glia types(Vanlandewijck, He et al. 2018), we found 

astrocytes and pericytes were the most significantly affected glial types to be losing their 

activatory histone marks, thereby potentially decrease in gene expression in later life.  
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In parallel, we also performed NeuN+ and NeuN- nuclear total RNA sequencing and it 

revealed very minor protein coding gene expression changes in NeuN+. Most of the genes 

deregulated in NeuN+ were unknown transcripts (TEC, see Figure 4) of which no function 

is known yet. It is tempting to speculate that these unknown transcripts are a result of to 

age induced somatic recombination(Verheijen, Vermulst et al. 2018) or increased 

transposon activity(Li, Prazak et al. 2013) that have been observed in the aging brain. 

Further studies will be required to test this hypothesis. In contrast to NeuN+, NeuN- had 

454 deregulated protein coding genes and few non coding genes. For NeuN-, since 

majority of deregulated genes were protein coding, like our previous approach for ChIP-

seq data, we wanted to find out which glial cell types were mostly affected. We found, in 

line with epigenetic data, that astrocytes and pericytes related genes were significantly 

downregulated, which are important cells related to neuronal support function. Microglia 

related genes were the most significantly upregulated, which have already been shown 

to mediate inflammatory signaling in the aging brain(von Bernhardi, Eugenin-von 

Bernhardi et al. 2015). Interestingly, we found several upregulated genes in 16 months 

NeuN- such as CD22, Neat1, which have been also been shown to be still upregulated at 

later time points, 20(Pluvinage, Haney et al. 2019) and 24(Butler, Johnston et al. 2019) 

months respectively. Knockdown approach for both of those genes have shown to 

reverse age-related cognitive decline. Interestingly, we found Neat1 to be upregulated 

only in NeuN- cells, not in neurons although the authors of the previous study suggested 

that the Neat1 aging related affects exclusively for neurons(Butler, Johnston et al. 2019). 

It will be very important to further characterize the source of this gene and potential non-

neuronal cell related mechanisms in aspect of aging. 

Finally, we correlated our epigenome and transcriptome datasets of aging brain and 

found age related H3K4me3 changes were significantly correlated with gene expression 

changes in NeuN- nuclei. This epigenome led transcriptome changes were mostly related 

to neuronal support function and extra cellular matrix related pathways. Therefore, we 

have discovered for the first time, age induced epigenetic changes leading to non-

neuronal cell related dysfunctions, while neurons are moderately unchanged in terms of 

both histone modifications and transcriptome in 16 months mouse hippocampal CA1. 

This study paves the way to further study the cell-type specific data and provides a useful 

tool and valuable resource in terms of finding an effective cure against aging related 

cognitive dysfunction. 
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MATERIALS AND METHODS 
 
Animals 

C57BL/6J mice from Janvier were used for this study, according to their age group (3 or 

16 months). The mice were ordered 2 weeks before reaching their target age and kept in 

standard home cages with food and water provided ad libitum. Mice were sacrificed by 

cervical dislocation, hippocampal CA1 tissue were dissected under microscope in ice 

cold PBS, flash frozen immediately in liquid nitrogen and stored at -80 °C until further 

processing. This was done due to avoiding any aberrant transcriptional changes 

happening due to sample processing. All experiments were performed according to the 

animal protection law of the state of Lower Saxony. 

 
NeuN+/NeuN- nuclei specific RNA isolation 

Frozen CA1 tissues from left hemispheres of each mouse were used for each biological 

replicate (n = 6 per age group) and processed on ice to maintain high RNA integrity. 

Frozen tissue was homogenized in 500 uL EZ prep lysis buffer (part of Sigma NUC101-

1KT kit) using a plastic pestle in a 1.5mL Eppendorf tube with 45 strokes. Lysates were 

transferred into 2 mL DNA low binding tubes (Eppendorf), EZ prep lysis buffer was added 

up to 2 mL and incubated on ice for 7 minutes. It was then centrifuged for 5 minutes at 

500xg, supernatant was removed and crude nuclear pellet was resuspended again into 2 

mL lysis buffer and incubated on ice for 7 minutes. After centrifuging for 5 minutes at 

500xg, supernatant was removed and nuclei pellet was resuspended into 1800ul nuclei 

storage buffer (NSB: RNAse-free PBS; Invitrogen, 0.5% RNase free BSA; Serva, 1:200 

RNaseIN plus inhibitor; Promega, 1x EDTA-free protease inhibitor; Roche) and centrifuged 

again. Then the nuclear pellet was resuspended into 500µl NSB and filtered through 40 

µm filter (BD falcon) with additional 100 µL NSB to collect residual nuclei from the filter. 

Nuclei were stained with anti-NeuN-Alexa488 conjugated antibody (1:1000) for 45 

minutes at 4°C in dark and washed once with 1000µl NSB by centrifugation. Finally, the 

nuclei pellet was resuspended into 500µl NSB and FACS-sorted with FACSaria III using 

85 µm nozzle. Nuclei were gated by their size, excluding doublets and neuronal nuclei 

were separated from non-neuronal nuclei by their NeuN-Alexa488 fluorescence signal. 

Sorted nuclei were collected into a 15 mL falcon tube precoated with 1mL NSB, spun 

down and RNA was isolated using Trizol LS. After addition of chloroform according to the 
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Trizol LS protocol, aqueous phase was collected and RNA was isolated by using Zymo 

RNA clean & concentrator-5 kit with DNAse treatment. 

Total RNA sequencing 

Since RNA amounts in NeuN- was very low, RNA 6000 Pico chip (Agilent) was used to 

measure concentrations of both NeuN+ and NeuN- nuclear RNA. 3ng RNA was used to 

prepare total RNAseq libraries using SMARTer® Stranded Total RNA-Seq Kit v2 -Pico 

Input kit (Takara), which incorporates ribosomal cDNA removal and illumina ready 

sequencing libraries. Libraries were sequenced using single-end 50 bp in HiSeq 2000. 

NeuN+/NeuN- nuclei specific chromatin isolation 

Frozen CA1 tissues from right hemispheres of three mice were used for each biological 

replicate (n = 4). Tissues were homogenized in low sucrose buffer (320mM Sucrose, 

5mM CaCl2, 5mM MgAc2, 0.1mM EDTA, 10mM HEPES, 0.1% Triton X-100, 1mM DTT and 

ROche protease inhibitor) with plastic pestles, formaldehyde (1%) fixed for 10 minutes 

and quenched with 125mM glycine for 5 minutes. Lysates were further homogenized 

using T 10 basic ULTRA-TURRAX (with S10N-5G Dispersing tool). Debris were removed 

by sucrose gradient centrifugation for 3200xg for 10 minutes using high sucrose buffer 

(1000mM Sucrose, 3mM MgAc2, 10mM HEPES, 1mM DTT and Roche protease inhibitor). 

The resulting nuclear pellet was resuspended into PBTB (PBS+Tween20+BSA; 1% BSA, 

0.2% Tween-20, protease inhibitor, in PBS buffer) and stained with anti-NeuN-Alexa488 

conjugated antibody (1:1000) for 25 minutes and washed 3 times with PBS. Stained 

nuclei were then FACS sorted with FACSaria III using 85 µm nozzle. Nuclei were gated 

similarly as described previously(Halder, Hennion et al. 2016). Sorted nuclei were 

collected into a 15mL falcon tube and transferred into 1.5mL tubes. The nuclear pellet 

was flash frozen in liquid nitrogen and saved at -80°C for further processing. 

Chromatin immunoprecipitation (ChIP) 

For chromatin shearing, the pellet was resuspended into 100uL RIPA buffer (140mM 

NaCl, 1mM EDTA, 0.1% Sodium Deoxycholate, 1% Triton X-100, 10mM Tris pH 8, 1% SDS, 

protease inhibitor) and sonicated for 25 cycles in Diagenode bioruptor plus with high 

power (30 cycles on/ 30 cycles off). Chromatin shearing was checked by taking a small 

aliquot and decrosslinking the DNA by a speed decrosslinking method. In a single 1.5 mL 

tube, 2 ul chromatin, 93 ul water, 4 ul NaCl (5M), 8 ul, Proteinase K (20 mg/ml), 4 ul RNase 

(1 mg/ml) was taken and incubated at 65°C for 1 hour. DNA was isolated using Zymo 

ChIP DNA Clean & Concentrator kit. To make sure the Sheared chromatin size was 
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between 100-300bp, Agilent DNA high sensitivity kit was used in Bioanalyzer 2100 

machine. Chromatin amount was measured with Qubit 2.0 fluorometer (DNA high 

sensitivity kit). 0.2µg chromatin with 1 µg of H3K4me3 antibody (Abcam ab8580) and 

0.3ng chromatin with 2 µg H3K27me3 antibody (Millipore 17-622 ) were used to perform 

ChIP as previously described(Halder, Hennion et al. 2016). 2% input chromatin for ChIP 

without antibody was used as background control alongside the experiment.  

 

Of note, to account for global chromatin mark changes, exogenous drosophila chromatin 

and drosophila specific antibody used in the samples as spike in controls (ChIP-seq spike 

in normalization kit, Active Motif). Since drosophila spike in reads obtained were lower 

than required, it was disregarded, however, the sequencing raw data will contain them. In 

downstream processing, those reads were disregarded.  

 

ChIP-seq library preperation 

The resulting ChIP DNA was subjected to library preparation using NEBNext Ultra II DNA 

library preparation kit. After end repair and adaptor ligation, an aliquot of libraries was 

used to perform test qPCR to determine optimal PCR cycles needed to avoid over 

amplification. Libraries were sequenced for single end 50 base pair reads into illumina 

HiSeq 2000 machine. 

 
RNA-Seq Analysis 

Base calling, fastq conversion, quality control, mapping of reads to mouse reference 

genome (mm10) were performed as described before (Kerimoglu, Sakib et al. 2017). 

Sequencing reads were counted using FeaturesCount 

(http://bioinf.wehi.edu.au/featureCounts/). Differential expression was analyzed with 

DESeq2 package of Bioconductor. Only genes that are expressed above basemean cutoff 

5 and expressed in 50% of the samples between compared groups are kept for 

downstream analysis. RUVSeq package was used to remove unwanted variations from 

the datasets. FDR < 0.1 and fold change more or less than 20% were used for significantly 

differential genes. BiomartR package was used for finding out RNA biotypes from 

Ensembl annotation database. ToppFun (https://toppgene.cchmc.org/enrichment.jsp) 

was used for gene ontology and pathway analysis.  

Calculating RPKM values for young samples: 

http://bioinf.wehi.edu.au/featureCounts/
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For either NeuN+ or NeuN- raw RNAseq counts from young groups, it was converted to 

RPKM (Reads per kilo base per million mapped reads) counts which takes into account 

the gene lengths and library sizes (total number of raw reads), using following equation: 

 

𝑅𝑃𝐾𝑀 =
𝑅𝑎𝑤 𝑐𝑜𝑢𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑤 𝑟𝑒𝑎𝑑𝑠 ×  𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
× 106 

 

Pseudo count of 1 was added to all RPKM counts to avoid conflicts with log2 

transformation. This was used for subsequent ranking and characterization of promoter 

peaks in young NeuN+/NeuN- samples. 

 
ChIP-Seq Analysis 

Base calling and fastq conversion were performed using Illumina pipeline. Quality control 

was performed using fastqc. Reads were mapped to mm10 mouse reference genome 

with bowtie2. PCR duplicates were removed by “samtools rmdup -s” function.  

Peak calling:  

Peak calling was performed using MACS2. For a particular group, all the samples were 

pooled and peaks were called against corresponding input control, using q value < 0.1. 

For H3K4me3, narrow peaks and for H3K27me3, broad peaks were called. 

Combining peaks associated with gene expression in young samples: 

For both NeuN+ and NeuN- H3K4me3 and H3K27me3 ChIPseq pooled peak sets, they 

were individually annotated to find out nearby genes using “annotatePeaks.pl” function 

from HOMER tools. Genes within TSS +/- 2000bp of either H3K4me3 or H3K27me3 peaks 

were taken and overlapped with their corresponding cell-type specific genes with RPKM 

expression values. This gave 4 sets of genes: (A) genes with H3K4me3, (B) genes with 

H3K27me3, (C) genes with both H3K4me3 and H3K27me3, (D) genes with no marks. 

RPKM values for these four groups are plotted as box plots to find out gene expression 

distributions. 

Determining H3K4me3 only, H3K27me3 only and Bivalent peaks for differential binding 

analysis:  

Using the pooled peaksets from H3K4me3 and H3K27me3, “bedtools subtract -A “ 

command was used to find unique peaks for H3K4me3 and H3K27me3, which is termed 

as “H3K4me3 only” or “H3K27me3 only” peaks. For getting bivalent regions, “bedtools 

intersect” command was used between H3K4m3 and H3K27me3 peaks for each 
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individual groups in young or old samples, (NeuN+ or NeuN- individually). These peaksets 

were used for differential binding analysis using “DiffBind” package, between young and 

old samples in four different groups in both NeuN+ and NeuN- samples seperately: 

• H3K4me3 only Old vs. Young 

• H3K27me3 only Old vs. Young 

• Bivalent H3K4me3 Old vs Young 

• Bivalent H3K27me3 Old vs Young 

Differential peaks were annotated using HOMER package. A peak within TSS +/- 2500bp 

of a gene was associated being promoter peak. IGV was used to create genome 

browser plots for both ChIPseq and RNAseq. “ngsplot” was used to create ChIP seq 

profile plot and heatmap around TSS regions.  

 

Statistical tests 

All statistical tests were performed using either Graphpad prism 8 or in R.  

 

Data availability 

All RNA and ChIP-seq datasets will be made available via GEO database. 
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SUPPLEMENTAL DATA 
 
 
 
 

 
Supplementary figure 1: FACS sorted NeuN+ and NeuN- RNA concentrations. Student’s 
t test, p value <0.0001. 
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Supplementary figure 2: (A) PCA plot for NeuN+ an NeuN- RNAseq data. (B) heatmap of 
significant differentially expressed genes between NeuN+ and NeuN- (FDR<0.05, fold 
change 5). (C) Gene ontology and KEGG pathway analysis for NeuN+ and NeuN- enriched 
genes (FDR<0.05, fold change 5). 
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Supplementary figure 3: Peak height and width differences between NeuN+ and NeuN- 
epigenetic marks. Left panel shows the differences between width and right panel shows 
the differences between height of peaks between NeuN+ and NeuN-. For H3K4me3 or 
H3K27me3, peaks were subdivided into occupancy for only that mark or in bivalent 
regions. All p values were obtained by student’s t test, significance threshold p < 0.05. 
Only H3K4me3 peaks in bivalent regions showed no difference between NeuN+ and 
NeuN-.  
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Supplementary figure 4:Gene ontology analysis for genes bearing unique H3K4me3, 
unique H3K27me3 or unique bivalent regions in NeuN+ and NeuN- nuclei. 
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Supplementary figure 5: GO: cellular components analysis for microglia related genes 
with decreased H3K4me3 marks  

 
 
 
 
 
 

 
Supplementary figure 6:Venn diagram overlap for decreased NeuN- H3K4me3 and 
H3K27me3 and decreased NeuN- RNA expression in aging. 
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6. General Discussion  
 

Why did I perform nuclei based genomic analysis from 
the brain? 
The brain is one of the most complex organs, composed of distinct cell types that are 

functionally different based on their specific patterns of gene expression or epigenomic 

signature(Graff, Kim et al. 2011). Capturing transcriptome or epigenome from brain 

tissues is becoming common practice to discover the molecular underpinning of gene 

regulatory networks in brain development and diseases, but this comes with a caveat. 

Given that not all cell types response equally in healthy or in a diseased situation, changes 

in epigenetic marks or gene expression in a small subset or rare cell types might be 

undetected as it contributes to a small fraction of the whole tissue. Moreover, if a given 

gene is regulated in opposing direction in different cells, the cumulative expression 

pattern might appear static in whole brain tissue RNA sequencing. Therefore, direct 

measurement and analysis of epigenome or transcriptome form particular cell types of 

the brain are critical to obtain thorough insights about the systems biology of a disease 

or homeostasis. While several methods exist for cell type specific genome wide analysis 

from the brain(Kim, Lim et al. 2015), i.e. Laser Capture Microdissection (LCM) or more of 

a transgene approach such as Translating Ribosome Affinity Purification (TRAP also 

known as RiboTag), these have several limitations. As for LCM, it is a low throughput 

method, and only selected cells of interest can be harvested. As for the TRAP method, it 

involves raising mice lines with particular genotypes and later, purifying RNA by an 

affinity-based approach that only captures a certain species of RNA molecules being 

translated. For brain tissue, it is very difficult to isolate whole cells given the intricate 

nature of neurons, its dendrites and axons. Although proteolytic dispersion and FACS 

based cell sorting has been utilized to generate cell type specific data from the brain 

(Darmanis, Sloan et al. 2015, Zeisel, Munoz-Manchado et al. 2015), this method has been 

shown to put cells under stress, leading to altered gene expression (Huang, Hsing et al. 

2010, Lacar, Linker et al. 2016). Moreover, it is impossible to perform cell dissociation 

from archived frozen brain tissues from the patients which limits the possibility of 

generating an enormous amount of disease associated cell type specific epigenomic or 

transcriptomic data. To avoid harsh treatments of cell preparation from the brain tissue 

and for utilizing frozen brain tissues for genome wide epigenomic and transcriptomic 
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analysis, nuclei isolation methods are becoming the norm for cell type specific analysis 

of the brain (Habib, Li et al. 2016, Habib, Avraham-Davidi et al. 2017, Bakken, Hodge et al. 

2018, Del-Aguila, Li et al. 2019, Hodge, Bakken et al. 2019). 

In this thesis, I have further developed and utilized brain nuclei isolation for subsequent 

staining methods for high throughput brain cell type isolation via FACS and next 

generation sequencing from ultra-low input RNA or chromatin materials. While chromatin 

modifications have been shown to be crucial for neurodevelopment(D'Mello 2019, 

Salinas, Connolly et al. 2020), learning-memory formation(Graff and Tsai 2013, Sweatt 

2013, Halder, Hennion et al. 2016), and diseased brain(Coneys and Wood 2020, Lee, Lee 

et al. 2020, Myrum, Kittleson et al. 2020, Nativio, Lan et al. 2020, Zhang, Qu et al. 2020), 

cell type specific genomic analysis is undoubtedly important to deepen our 

understanding and discover novel mechanisms. Developing this nuclei based technique 

has enabled me to study diverse topics in the field of neuroepigenetics, starting from 

finding the epigenetic basic of human brain folding, to discover mechanistic details via 

profiling transcriptome and epigenome of a neuron specific knockout mice as a model 

for memory impairments, and finally to describe cell type specific epigenetic and 

transcriptomic deregulation of aging brain which could potentially be useful to design 

novel therapy against dementia.  

 

Epigenetic mechanism of brain folding 
The unique cognitive and behavioral abilities of mammals is governed by having 6 layered 

neocortex, which is most of the cerebral cortex of the brain (Geschwind and Rakic 2013, 

Kaas 2013). While many rodents contain lissencephalic brains with no gyration, the 

human brain is gyrated which occurred from an incredible number of neuronal 

populations arising from neural stem cells (NSC) and neural progenitor cells (NPC) during 

embryogenesis(Lui, Hansen et al. 2011, Sun and Hevner 2014). Among the two main 

types of NPCs (the apical or basal progenitors), the basal progenitor cells (BP) derives 

the basal intermediate progenitors (bIPs) that ultimately leads to cortical neuron 

formation. Apart from this indirect pathway, cortical neurons are produced directly via 

apical progenitor cells (Radial glia cells) as well (Lui, Hansen et al. 2011, Borrell and Gotz 

2014, Taverna, Gotz et al. 2014).  
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In the first study, by utilizing BP specific antibody (Tbr2), we determined that human BPs 

have a higher amount of histone acetylation, compared to mouse BPs. Now, what cellular 

and molecular changes would occur if the acetylation levels were increased in mouse 

brain? To test the hypothesis, E12.5 mice were injected TSA (HDAC inhibitor) to promote 

histone acetylation and their brain tested after 4-6 days. Since BAF155 cKO mice were 

shown to have a higher number of BP(Narayanan, Pham et al. 2018), the effect of TSA 

was also tested alongside WT mice. Firstly, immunohistochemistry experiments from the 

HDAC inhibitor treated mice brain showed that BPs were increasing in numbers 

(manuscript 1, Figure 4) and mouse brain started to have cortical folding (manuscript 1, 

Figure 6). To find out the exact molecular mechanism, I performed FACS sorting of Tbr2+ 

and Tbr2- BP nuclei from control and HDAC inhibitor treated mice and did RNAseq and 

ChIPseq of H3K9ac. Data analysis revealed that this increased H3 acetylation was 

causative for upregulation of key transcription factor gene, Trnp1,  which is regulating BP 

proliferation (Stahl, Walcher et al. 2013, Martinez-Martinez, De Juan Romero et al. 2016). 

In contrast, this was not observed for Tbr2- nuclei. As a validation experiment, epigenome 

editing by increasing acetylation using inactivated Cas9, fused with a histone 

acetyltransferase (Kat2a) led to specific increase in acetylation at Trnp1 promoter, 

thereby increasing it’s gene expression has also shown similar increase in BPs. 

Therefore, our cell type specific analysis of the BPs from HDAC inhibitor treated 

embryonic mouse brain has identified the exact epigenetic and transcriptomic 

mechanism of how increasing histone acetylation in BPs led to up regulation of key 

transcription factor responsible for gyrification in lissencephalic rodent brain.  

 

 

Setd1B regulates neuronal gene transcription, thereby 
memory formation 
While in the previous study, I focused on studying cell type specific histone acetylation, 

in the second manuscript, I investigated histone methylation and its role in memory 

formation. As introduced before, histone 3 lysine 4 trimethylation (H3K4me3) is 

generated by SET-domain containing lysine methyltransferases and Setd1B is one of 

them. In humans, mutations or loss of function has been linked with intellectual disability, 

and autism (Shulha, Cheung et al. 2012, Labonne, Lee et al. 2016, Hiraide, Nakashima et 

al. 2018). While those might indicate developmental related roles of Setd1B, in this 
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present study, we used conditional knockout model mice where Setd1B was removed 

only from mature excitatory neurons at the forebrain, including hippocampus. As 

expected, loss of Setd1B from the neurons led to hippocampus dependent spatial 

memory of those transgenic mice. Since it was neuron specific knockout, I isolated 

neuron specific nuclei and investigated four epigenetic marks including H3K4me3 and 

transcriptome between WT and cKO mice. Moreover, I performed single nuclei RNA 

sequencing from WT mouse brain to measure the expression patterns of Setd1B, along 

with other histone methyltransferases in WT situation and implicated its controlling 

neuron specific gene expression.  

 

While Setd1B cKO neurons showed significantly decreased H3K4me3 at TSS 

(transcription start sites), surprisingly, we observed these deregulated peaks were unique 

in comparison to other two histone methyltransferases cKO (Kmt2a and Kmt2b) studied 

by our group. Interestingly, Setd1B regulated H3K4me3 peaks were the broadest peaks 

and genes related to those peaks are related to memory formation and neuronal 

functions, compared to Kmt2a and Kmt2b cKO mice. This is in line with the recent 

publication stating that learning and memory formation induces hippocampal genes with 

broadest H3K4me3 peaks(Collins, Sweatt et al. 2019). Our findings also corroborated 

with the water maze performance among Setd1B, Kmt2a and Kmt2b mice, where Setd1B 

showed the most drastic changes. I then performed single nuclei RNA sequencing of 

sorted neurons from hippocampal CA region in wildtype mice to characterize basal 

expression of Setd1b, Kmt2a and Kmt2b in neurons. Overall comparison stated that even 

though Setd1b is expressed among a subset of neurons, it mostly harbored neuronal 

functions and memory process related gene expression programs, compared to neurons 

expressing the other two histone methyltransferases. All together, we propose that 

Setd1b regulates key neuronal networks specific for learning and memory formation by 

controlling H3K4me3 peak width at key neuronal genes and their expression.  
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Aging leads to massive deregulation of histone 
methylation and concomitant glial dysfunction higher 
than neurons 
While in the previous study I investigated the role of a histone methyltransferase in 

learning and memory, in the 3rd manuscript, I explored histone methylation in detail in 

aspect of age associated cognitive decline and corresponding gene expression. While 

previous attempts to map the epigenome and transcriptome of aging mouse brain has 

been taken(Stefanelli, Azam et al. 2018, Benayoun, Pollina et al. 2019), it has to be noted 

that none of the studies takes into consideration of either cell-type or hippocampal 

subregion specificity. Moreover, they profiled combination of different epigenetic marks 

than the histone marks studied in this manuscript. As discussed in manuscript 3, age 

related cognitive decline in mice starts around 16 months of age, with little gene 

expression changes seen before(Peleg, Sananbenesi et al. 2010). In an attempt to 

specifically decipher the promoter epigenome and transcriptomic dysfunction of aging 

brain related cognitive decline in a cell type specific manner, I characterized activatory 

H3K4me3 mark, inhibitory H3K27me3 mark and gene expression profiles in neuronal and 

non-neuronal nuclei in 16-month-old mice hippocampal CA1, compared to 3-month-old 

mice.  

 

In this study, I first characterized neuronal and non-neuronal RNA species and provide 

important genes specifically expressed in those cell types. This will serve as a very 

important resource to further characterize all these coding and non-coding genes 

enriched in neurons or non-neuronal cells. As neuronal and non-neuronal gene promoter 

epigenomic mark and their corresponding gene expression has not been correlated yet, I 

performed this in young samples first and showed in both cell types, genes bearing 

activatory H3K4me3, bivalent region consisting both marks and inhibitory H3K27me3 

showed stepwise increasing expression levels, with H3K4me3 to be the highest and 

H3K27me3 to be the lowest. It is also crucial to note that bivalent or H3K27me3 marks 

were enriched in pathways that are repressed in both cell types, in agreement with the 

previous publication stating H3K27me3 insulates unnecessary gene transcription 

programs to maintain normal function of a given cell(von Schimmelmann, Feinberg et al. 

2016). 
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In 16 months old hippocampal CA1, we observed massive decrease in both H3K4me3 

and H3K27me3 marks at the promoters of genes related to diverse glial types. As for 

neurons, only H3K27me3 was observed to be downregulated at the promoters. These cell 

type specific changes corroborated previous findings where authors profiled DNA 

methylation in neuronal and non-neuronal cells upon aging and Alzheimer’s disease of 

the human brain (Gasparoni, Bultmann et al. 2018). Depletion of activatory H3K4me3 

mark in non-neuronal cells overlapped significantly with Astrocytes and pericytes, two of 

the main cell types important for neuronal support function, while neuronal inhibitory 

H3K27me3 depletion showed pathways related to neuronal cell fate and differentiation, 

which shows some agreement with the previous studies showing neuronal aneuploidy in 

aging and age related diseases (Rosenkrantz and Carbone 2017, Caneus, Granic et al. 

2018, Shepherd, Yang et al. 2018, Yurov, Vorsanova et al. 2018, Potter, Chial et al. 2019), 

that in turn leads to neurodegeneration. Transcriptomic analysis of neuronal and non-

neuronal nuclei shows non-neuronal cells to be more affected in expressing protein 

coding genes, compared to neurons. This detection was only possible as we profiled 

neuronal and non-neuronal nuclei specifically from aging hippocampal CA1. Altogether, 

this data set provides novel gene expression and epigenetic changes in aging 

hippocampus, that can be utilized to find novel drug against dementia 

 

 

.  
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7. Appendix 
 

A password protected folder containing all the supplementary files 

for the three manuscripts in this thesis is accessible at the 

following link: 

 

Password: sakibphdthesis2020 

 

 

Click here to visit the folder online 

 

Alternatively, please scan the QR code below to access the folder 

as well. 

 
 
 
 

https://studunigoettingende-my.sharepoint.com/:f:/g/personal/msadman_sakib_stud_uni-goettingen_de/Elb8XY2fqtRFlwkGZjGgHu8BQZvJJVycfVE_3qkdQKKqsw?e=GNBUmc
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