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Mount Teide Tenerife 

From explosive melting rocks, with hot gas and burning ashes, to the apparent tranquility  

of oceanic islands, how do plants make their way and thrive on such isolated volcanoes? 
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ABSTRACT 

 

Oceanic islands are recognized for their unique biota, which include remarkable examples of trait 

evolution. This makes them excellent model systems for testing biogeographical and evolutionary 

hypotheses, as well as for linking geodiversity to plant diversity patterns. Functional island 

biogeography is an emerging research field, which based on trait-based approaches can provide 

deeper insights about dynamics and patterns of insular plant diversity. Yet empirical measurements 

of plant functional traits are scarce for oceanic islands. Consequently, our knowledge about functional 

diversity of insular environments and island trait syndromes remains limited. To fill this research gap, 

I selected Tenerife (Spain, Canary Islands) as a model system, an oceanic island with high 

environmental heterogeneity and well-described flora, and systematically sampled eight plant traits 

for nearly all Tenerife native seed plants (80%). I investigated how biogeography, evolution, and the 

environment shape the assembly of Tenerife flora by applying a functional trait-based approach. I then 

explored plant trait syndromes of the oceanic island and compared them to global plant trait 

syndromes. Furthermore, I investigated the scale dependence of functional diversity of Tenerife to 

understand the ecological processes shaping plant diversity patterns across space, from regional to 

local scales. Additionally, I investigated how the complexity and temporal dynamics of insular 

environmental heterogeneity affect plant diversity on oceanic islands globally. My results expand the 

understanding about the importance of biogeography (via dispersal), evolution (via speciation), and 

the environment in determining the functional diversity of island flora. Dispersal, both long distance 

and among islands, increases functional diversity, while speciation limits it. Importantly, the arid 

environmental conditions of Tenerife, which has a predominantly Mediterranean climate, have 

resulted in plant species converging to a shrubby growth form. I further show the scale dependency 

of functional diversity. Regional patterns of functional diversity percolate down to local scales, but the 

processes that determine the emerging patterns of functional diversity differ among local grains. 

While at large spatial grains climate and topography affect plant functional diversity, at fine local 

grains species interactions affect it. Finally, I show that the environmental heterogeneity of oceanic 

islands is highly dynamic over geological time. Environmental heterogeneity reaches its maximum 

levels faster than previously thought, i.e., upon the emergence of an island from the ocean, and 

progressively decreases with time. This dynamic strongly influences insular plant diversity and 

endemism levels. The results of this PhD work evidence that trait-based approaches in island 

biogeography research provide key insights into the spatio-temporal patterns of insular floras. Such 

approaches also allow us to unravel and understand the importance of biogeography, evolution and 

ecology in determining how insular plants assemble. Assessing the patterns of functional and 
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taxonomic diversity at different spatial scales, allow us to understand which factors govern plant 

diversity across space. Finally, to better understand species richness and endemism of oceanic islands, 

it is key to assess the temporal dynamic and the effect of insular environmental heterogeneity, 

because ecological opportunities and island carrying capacity are linked to heterogeneity levels of an 

environment.  
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ZUSAMMENFASSUNG 

 

Ozeanische Inseln sind bekannt für ihre einzigartige Biota, die bemerkenswerten Beispiele der 

Merkmalsentwicklung enthält. Dies macht sie zu ausgezeichneten Modellsystemen für das Testen 

biogeographischer und evolutionärer Hypothesen sowie für die Verknüpfung von Geodiversität mit 

Mustern der Pflanzendiversität. Die funktionale Inselbiogeographie ist ein aufstrebendes 

Forschungsfeld, das auf der Grundlage von merkmalsbasierten Ansätzen tiefere Einblicke in die 

Dynamik und Muster der insularen Pflanzendiversität liefern kann. Empirische Messungen von 

funktionalen Pflanzenmerkmalen sind für ozeanische Inseln jedoch rar. Folglich bleibt unser Wissen 

über die funktionelle Diversität insularer Umgebungen und Inselmerkmalssyndrome begrenzt. Um 

diese Forschungslücke zu schließen, habe ich Teneriffa (Spanien, Kanarische Inseln) als Modellsystem 

gewählt, eine ozeanische Insel mit hoher Umweltheterogenität und gut beschriebener Flora, und 

systematisch acht Pflanzenmerkmale für fast alle auf Teneriffa heimischen Samenpflanzen (80%) 

erfasst. Anschließend untersuchte ich, wie Biogeographie, Evolution und die Umwelt den Aufbau der 

Flora Teneriffas formen, indem ich einen auf funktionalen Merkmalen basierenden Ansatz 

angewendet habe. Anschließend untersuchte ich Pflanzenmerkmals-Syndrome der ozeanischen Insel 

und verglich sie mit globalen Pflanzenmerkmals-Syndromen. Darüber hinaus untersuchte ich die 

Skalenabhängigkeit der funktionellen Diversität auf Teneriffa, um die ökologischen Prozesse zu 

verstehen, die die Muster der Pflanzendiversität über den Raum hinweg formen, von regionalen bis 

zu lokalen Skalen. Zusätzlich untersuchte ich, wie die Komplexität und zeitliche Dynamik der insularen 

Umweltheterogenität die Pflanzenvielfalt auf ozeanischen Inseln global beeinflusst. Meine Ergebnisse 

erweitern das Verständnis über die Bedeutung der Biogeographie (durch Ausbreitung), der Evolution 

(durch Artbildung) und der Umwelt bei der Bestimmung der funktionellen Vielfalt der Inselflora. Die 

Ausbreitung, sowohl über große Entfernungen als auch zwischen Inseln, erhöht die funktionelle 

Vielfalt, während die Speziation sie begrenzt. Wichtig ist, dass die trockenen Umweltbedingungen auf 

Teneriffa, das ein überwiegend mediterranes Klima hat, dazu geführt haben, dass Pflanzenarten zu 

einer strauchartigen Wuchsform konvergieren. Ich zeige außerdem die Skalenabhängigkeit der 

funktionellen Diversität. Regionale Muster der funktionalen Diversität sickern bis zu lokalen Skalen 

hinunter, aber die Prozesse, die die entstehenden Muster der funktionalen Diversität bestimmen, 

unterscheiden sich zwischen den lokalen Körnern. Während auf großen räumlichen Körnern Klima und 

Topographie die funktionelle Diversität von Pflanzen beeinflussen, sind es auf feinen lokalen Körnern 

Arteninteraktionen. Schließlich zeige ich, dass die Umweltheterogenität ozeanischer Inseln im Laufe 

der geologischen Zeit sehr dynamisch ist. Die Umweltheterogenität erreicht ihr Maximum schneller 

als bisher angenommen, d.h. bei der Entstehung einer Insel aus dem Ozean, und nimmt mit der Zeit 
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immer mehr ab. Diese Dynamik beeinflusst stark die insulare Pflanzenvielfalt und den Grad des 

Endemismus. Die Ergebnisse dieser Doktorarbeit zeigen, dass eigenschaftsbasierte Ansätze in der 

Inselbiogeographie-Forschung wichtige Einblicke in die räumlich-zeitlichen Muster der Inselflora 

liefern. Solche Ansätze erlauben es uns auch, die Bedeutung von Biogeographie, Evolution und 

Ökologie bei der Bestimmung des Aufbaus insularer Pflanzen zu entschlüsseln und zu verstehen. Die 

Bewertung der Muster der funktionalen und taxonomischen Vielfalt auf verschiedenen räumlichen 

Skalen ermöglicht es uns zu verstehen, welche Faktoren die Pflanzenvielfalt im Raum bestimmen. Um 

schließlich den Artenreichtum und Endemismus ozeanischer Inseln besser zu verstehen, ist es von 

entscheidender Bedeutung, die zeitliche Dynamik und die Auswirkungen der Heterogenität der 

Inselumwelt zu bewerten, da die ökologischen Möglichkeiten und die Tragfähigkeit der Insel mit dem 

Heterogenitätsgrad der Umwelt verbunden sind.  
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CHAPTER I INTRODUCTION 
 

Oceanic islands  
 

Oceanic islands are ideal model systems for testing ecological and evolutionary hypotheses 

(Wardle 2002; Gillespie 2007). Over centuries, oceanic islands have inspired western scientists to 

formulate central concepts about evolution and ecology (Darwin 1859; MacArthur & Wilson 

1967). The effect of the geographical context of an insular system, in terms of its area and 

isolation, governing species diversity (MacArthur & Wilson 1967) exemplify this. Since then and 

despite certain critics (Meiri 2017), oceanic islands have continuously provided key insights into 

the intricate relationship between biota and the environment (MacArthur & Wilson 1967; 

Whittaker & Fernández-Palacios 2007; Weigelt et al., 2015; Triantis et al., 2016; Craven et al., 

2019).  

 

Originating through volcanic activity and being small landmasses, oceanic islands have particular 

characteristics that make them excellent natural laboratories (Whittaker et al., 2017). They 

emerge devoid of life, have an unusual geographical isolation and simpler biota compared to the 

mainland ones (Vitousek & Benning 1995; Gillespie 2007; Whittaker et al., 2017). Furthermore, 

their geological origin and global distribution make oceanic islands spatially independent and 

replicated systems, with various sizes, geological ages and distinct environmental conditions 

(Wardle 2002). Examples of this are the Canary Islands, in the Atlantic Ocean, and Hawaiian Islands 

in the Pacific Ocean. Both archipelagos are composed of young islands, i.e., 0.53 Ma (Ma: million 

years) to 20 Ma old islands and of small to large islands, i.e., from 100 to 10.000 km². Such 

characteristics allow comparisons of biota at local, regional and global scale and how biota change 

over time (Wardle 2002). In fact, through macroecological and biogeographical studies, oceanic 

islands have improved the understanding about how environmental conditions and evolutionary 

processes shape assemblies of floras (Kreft et al., 2008; Weigelt et al., 2015). The study of oceanic 

island biota has been mainly focused on two main biodiversity facets, taxonomic and phylogenetic 

diversity. Although studies investigating functional diversity (Tillman 2001), i.e., the component of 

biodiversity that influences organisms, species and ecosystem functions, are rapidly increasing 

(Westerband et al., 2021; Kühn et al., 2021; Taylor et al., 2021). This is important, because 

functional diversity allows us to quantify the ecological strategies performed by species in an 
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assembly, communities and ecosystem (Díaz & Cabido 2001), which will improve the general 

understanding about evolution and ecology of insular systems (Ottaviani et al., 2020).  

Besides being excellent model systems, oceanic islands and other island systems are biodiversity 

hotspots (Myers et al., 2000). At a global scale, islands harbour a large proportion of endemic 

species, one quarter of known extant vascular plants are endemic to islands (Kier et al., 2009). The 

high endemism level of islands combined with the intensification of human activities make their 

biota vulnerable ( Graham et al., 2017). Island biota are undergoing severe habitat loss and 

biological invasions (Whittaker et al., 2017), which is a significant detriment for biodiversity in 

general. Thus, island research will not only deepen and aid understanding how evolution and 

ecology act on species diversity but it will allow us to preserve their outstanding biodiversity levels.  

 

Plant diversity patterns of oceanic islands 

 

Central to the understanding of plant diversity patterns of insular environments is The Theory of 

Island Biogeography (MacArthur & Wilson 1963; MacArthur & Wilson 1967), which explains how 

key evolutionary and biogeographical processes affect species distribution and assembly 

processes. The theory states that species colonization, speciation and extinction rates determine 

the number of species existing on an island. Colonization and extinction reach a dynamic 

equilibrium, in which the number of species remains constant while species identities are replaced 

over time. In the Theory of Island Biogeography, both island size and distance to the colonist’s 

source affect species replacement. Thus, larger islands host more species, while isolated islands 

receive less colonists. However, the concept of island biota reaching a dynamic equilibrium is not 

plausible, because island size (area) is dynamic over time (Whittaker et al., 2007; Whittaker et al., 

2008). Along the geological life-span an oceanic island changes from a high and smooth, to a highly 

rugged volcano marked by erosion, to a flat small island remnant (Paulay 1994; Price & Clague, 

2002). During island life-span, also termed as ‘island ontogeny’ (Heaney 2007; Whittaker et al., 

2007; Whittaker  et al., 2008), very young islands have relatively low environmental diversity, 

which reaches its maximum at about mid-age. Over time old islands become eroded, flat and 

small, with a homogeneous environment (Whittaker et al., 2008). This dynamic influence island 

carrying capacity and species richness, which rates are expected to be humped-shaped over time 

(Whittaker et al., 2008). These dynamics affecting island biota have been synthesized in the 

Dynamic theory of oceanic island biogeography (Whittaker et al., 2008), which together with The 

Theory of Island Biogeography are pillars for understanding how island floras assemble. 
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Nevertheless, both theories assume that plants have equal probabilities to colonize and establish 

an oceanic island, which implies that species are functionally equivalent. Yet in reality, species 

have different morphological, chemical, physiological characteristics (i.e., functional traits sensu 

Lavorel & Garnier 2002 & Violle et al., 2007) that play key roles in plant colonization, 

establishment, speciation and extinction on islands (Jacquet et al., 2016). A holistic understanding 

of the ecology and evolution of island biota should therefore include species identities, i.e., 

taxonomic diversity, species evolutionary relationships, i.e., phylogenetic diversity and also 

species ecological performance, i.e., functional diversity (Patiño et al., 2017).  

 

Functional diversity broadens the understanding about insular plant assembly  

 

Plant functional traits are distinct morphological and physiological characteristics that can be 

measured from individuals, communities to ecosystems (Violle et al., 2007). Functional traits are 

the means to understand plant ecological strategies, which impact growth, reproduction and 

survival of individuals (Violle et al., 2007), affect organism responses to the environment (Lavorel 

& Garnier 2002) and influence community assembly (Kraft & Ackerly 2014).  

 

Functional traits mediate biogeographical (e.g., dispersal) and evolutionary (e.g., speciation) 

processes (Emerson & Guillespie 2008; Kraft & Ackerly 2014), as well as environmental filters 

(Carvajal‐Endara et al., 2017), which are responsible for the variation and compositions of island 

floras (Mouchet et al., 2010; Spasojevick et al., 2012; Weigelt & Kreft 2013). Plants are constantly 

dispersing and colonizing new environments. On oceanic islands, colonization rates are regulated 

by both long and inter-island dispersal (Weigelt & Kreft 2013), which naturally occur through 

water currents, wind or animal aid (Whittaker & Fernández-Palacios 2007). Yet plants depend on 

their traits combinations to disperse and establish in such far away environments (Weigelt et al., 

2015; Taylor et al., 2019). For instance, palms with large seeds dispersed by animals, undergo 

negative dispersal filters, as a consequence such plants are absent on oceanic islands (Weigelt et 

al., 2015). New island environments constitute strong abiotic filters for plants. Thus, plants require 

functional traits combinations that allow them to cope with the new environment and guarantee 

their survival (Weigelt et al., 2015; Patiño et al., 2017). For instance, the arid conditions of the 

Canary Islands, a volcanic archipelago characterized by a Mediterranean climate, have filtered 

functional traits combination of plants that survive drought, such as high leaf thickness related to 
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succulence (Shmida & Werger 1992) and high stem density related to woodiness (Lens et al., 

2013). Once established on an oceanic island, speciation can initiate by fragmentation of 

populations (i.e., through geographic isolation), which leads to allopatric speciation without 

emergence of new trait combinations (Stuessy et al., 2006); or by divergent selection with 

individuals exploiting alternative island niches (Chase & Leibold 2009), which can lead to new trait 

combinations (Givnish et al., 2009). The latter process is termed adaptive radiation, in which 

species modify their traits to adapt to a different ecological and environmental condition (Givnish 

et al., 2009). Therefore, along the geological, evolutionary and ecological history of oceanic 

islands, plant functional traits and ecological strategies play a key role in determining the identity, 

abundance and distributional patterns of plants that occur on them (Carlquist 1974; König et al., 

2021).  

 

Using functional traits, it is possible to quantify ecological differences among species (Dıáz & 

Cabido 2001; Cadotte et al., 2013). Such differences determine the species role in a community 

and how they respond to the environment (Mason et al., 2005; Spasojevic & Sundig 2012; Reich 

2014). A straightforward example of two ecologically distinct species are herbaceous plants versus 

trees. Both plant types have disparate functional traits combinations related to their size that 

evolved to optimize growth, survival and reproduction (Lande 1982; Wright et al., 2004). 

Furthermore, functional traits relate to the way plants acquire and use resources (Westoby et al., 

2002; Wright et al., 2004, Reich 2014) also referred to as the fast–slow continuum. It relates to 

the life history variation of plants, where on one side are plants with fast development rates, high 

mortality and high fecundity rates, and generally short life cycles, and on the other side are plants 

with slow growth rates, low mortality and low fecundity rates and long-life cycles are (Franco & 

Silvertown 1996). The fast–slow continuum encompasses the distinct ecological strategies 

responsible for the diverse life histories found in plants, in which contrasting strategies have 

proven throughout evolution to be equally successful (Moles 2018).  

 

A functionally diverse community is composed of functionally distinct plants with contrasting trait 

combinations (Mouchet et al., 2010). Functional diversity can be quantified using complementary 

indices (Villéger et al., 2008; Mouchet et al., 2010): functional, richness, dispersion and evenness. 

Functional diversity indices can detect processes involved in assembly rules, such as habitat 

filtering and biotic interactions (Götzenberger et al., 2012). For instance, a low functional richness 

value links to strong habitat filtering, such as high aridity or too high competition (Spasojevic & 
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Suding 2012). Contrarily, high functional richness values link to species coexistence and high 

habitat diversity (Mouchet et al., 2010). To date, there are two approaches currently used to 

quantify functional diversity. Firstly, the trait‐value‐based approach, which considers the position 

and extent of species within a multidimensional functional space and calculates the volume 

occupied by species to estimate functional diversity. Most prominent approaches within the trait‐

value‐based approach are convex hulls (Cornwell et al., 2006) and probabilistic hypervolumes 

(Blonder et al., 2018). The latter has overcome limitations of the convex hull because 

multidimensional trait spaces have empty areas caused by extreme trait values or dominance of 

a particular trait combination (Blonder 2016). Secondly, the distance‐based approach, which uses 

a set of functional traits to calculate a functional pairwise distance matrix in order to estimate 

functional diversity (Villéger et al., 2008; Chao et al., 2019). Most recent distance‐based 

approaches are very sensitive to species abundances and to species‐pairwise distances, and 

therefore generate more accurate functional diversity estimates (Chao et al., 2019).  

 

The environment of oceanic islands: how does it affect plant diversity 

 

Climate and elevation are the main drivers of plant diversity (Rahbek 1995; Kreft & Jetz 2007). For 

plants, climatic conditions, in terms of precipitation and temperature, influence water and energy 

availability (Clarke & Gaston 2006) and are responsible for the observed plant diversity gradients 

at regional and global scales (Kreft & Jetz 2007). The geological history and landscape 

configuration of oceanic islands determine the range and complexity of climate and topography 

(Barajas-Barbosa et al., 2020). This translates into levels of habitat and environmental 

heterogeneity found on islands, which tightly relates to island carrying capacity, species richness 

and endemism levels (Whittaker et al., 2008; Irl et al., 2015; Borregaard et al., 2017).  

 

Environmental heterogeneity is a main factor governing plant diversity (Stein et al., 2014; Keppel 

et al., 2016) and encompasses spatial variation of abiotic and biotic factors, such as climate and 

topography, as well as land cover, soil and vegetation (Stein & Kreft 2015). Environmental 

heterogeneity positively influences plant diversity (Stein et al., 2014), because heterogeneous 

environments have different habitat types where large numbers of species can coexist, provide 

refugia during adverse climatic fluctuations where species can persist (Keppel et al., 2015) and 

promote diversification as certain species will adapt to contrasting environmental conditions 
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(Rosenzweig 1995; Hortal et al., 2013). The different levels of environmental heterogeneity on 

oceanic islands are defined by its climatic ranges and topographic complexity (Barajas-Barbosa et 

al., 2020). For instance, high climatic ranges intrinsic of high elevation islands (e.g., the highest 

points of Hawai’i and Tenerife are 4,207 and 3,718 m a.s.l, respectively) create step and variable 

temperature and rain gradients, which in turn increases environmental heterogeneity. In parallel, 

topographic complexity, (i.e., island ridges and valleys) produces local changes in temperature and 

rain. This increases habitat diversity and available niches for species to coexist and speciate (Hortal 

et al., 2009; Irl et al., 2015). Yet, the effect of environmental heterogeneity on plant diversity is 

not always simple to detect. First because environmental heterogeneity is tightly related to the 

island area (Triantis et al., 2003), that is, on large islands environmental heterogeneity is higher 

than on small islands, simply because large areas have a higher amount of resources and energy 

available (Hortal et al., 2013). Island area has always emerged among the strongest predictors of 

insular diversity (MacArthur & Wilson 1967; Rosenzweig 1995; Kreft et al., 2008); whereby the 

relation between area and species numbers is one of the few laws in ecology (Arrhenius 1921; 

Lomolino 2000), which states that the number of species increases with area and conceptualized 

as the ‘species-area relationship’ (Triantis et al., 2012). Importantly, area and environmental 

heterogeneity are not mutually exclusive but mutually supplementary because both influence 

species diversity (Triantis et al., 2003). 

  

Insular plant diversity is scale-dependent  

 

Generally, biodiversity changes across space and time (Chase & Leibold 2002; Chase et al., 2018). 

It is expected that the different facets of insular plant diversity, i.e., taxonomic, phylogenetic and 

functional diversity, are scale-dependent too. Concretely, the scale dependency of diversity refers 

to the number of species and functionally distinct species increasing nonlinearly with space; that 

is with spatial grain (i.e., size of sampling unit) and extent (i.e., total area sampled of a study) 

(Scheiner et al., 2011; Viana & Chase 2018). Scale-dependent patterns emerge because the 

mechanisms shaping plant diversity act differently from regional to local scales (Zobel 1997; Chase 

& Leibold 2002). At regional scales, processes such as dispersal and environmental filters influence 

species numbers and functional groups of communities and ecosystems (Zobel 1997). At local 

scales, species interactions, such as competition and adaptation, determine species numbers and 

functional groups of communities (Ricklefs 1997). Both regional and local processes are in a 
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constant interplay, determining the patterns of plant diversity that emerge from different scales 

(Ricklefs 1997).  

 

In ecology, plant assemblies and communities are commonly studied from a single spatial scale 

and with single facets of biodiversity, e.g., species richness, mainly due to logistics constraints or 

limited data availability (Chase et al., 2018). However, plant diversity needs to be assessed 

including multiple biodiversity facets and at different spatial scales to answer fundamental 

ecological questions, such as at which spatial scale the processes balancing coexistence have a 

clear effect on species number and functional diversity and plant strategies? Or at which spatial 

scale environmental conditions have a clear effect on species functional diversity? Certainly, in 

small areas, species coexistence becomes restricted due to limited habitat diversity and resource 

availability (Chase 2014; Schrader et al., 2019) and in large areas habitat diversity may boost 

functional diversity at regional scales (Bond & Chase 2002; Spasojevic et al., 2012). There are 

suitable methods to study the scale dependency of diversity. A commonly used method is 

rarefaction curves (Scheiner et al., 2011), which informs about how diversity varies with increasing 

spatial grain or sampling effort (Gotelli & Colwell 2001; Chase & Knight 2013). Among rarefaction 

curves, sample-based rarefaction allows identifying how plant diversity varies with increasing area 

(Gotelli & Colwell 2001). Furthermore, plant diversity can be examined in a spatially explicit 

context by partitioning it into local (alpha-diversity) and regional (gamma-diversity) diversity. The 

scaling factor between the local and regional, that is beta-diversity can be additionally calculated 

to infer diversity variation (turnover) over space (Chase & Knight 2013).  

 

PhD in a nutshell 

 

Given the importance of including functional diversity in island biogeography research (Whittaker 

et al., 2014; Ottaviani et al., 2019) and the current lack of quantification of key plant functional 

traits for island floras (but see Schrader et al., 2020; Westerband et al., 2021; Kühn et al., 2021), I 

used a trait-based approach and Tenerife island (Spain - Canary Islands, which belong to 

Macaronesia biogeographical region) as model system (Figure I-1) in my PhD work to improve the 

understanding about how plants assemble (Chapter II) and which processes govern plant 

functional diversity patterns across space (Chapter III). To this end, I collected and measured eight 

fundamental functional plant traits (Díaz et al., 2016) for 80% of Tenerife native seed plants. 
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Furthermore, given that the complexity and temporal dynamic of island environments strongly 

affect plant diversity, and the fact that there was not a comprehensive quantification of 

environmental heterogeneity of oceanic islands (but see Keppel et al., 2016), in my PhD work, I 

the assessed the environmental heterogeneity of oceanic island at a global scale, their temporal 

dynamic over time and how this dynamic affect insular plant diversity and endemism (Chapter IV). 

 

 

Figure I-1 Map of the Macaronesia region, Canary Islands and Tenerife. Tenerife is the largest island of the Canary 

archipelago and Macaronesia.  Tenerife highest point is Mount Teide and it is the second largest volcanic island in the 

world.  

In Chapter II I aimed to understand how biogeography, evolution and island environment 

shape Tenerife’s plant functional diversity. To this end, I first assessed the functional diversity of 

different species groups related to species biogeographical ranges (e.g., single island endemics, 

canary endemics and native non-endemics) and speciation processes (i.e., cladogenetic species). 

Second, I explored matches and mismatches between island and global plant trait syndromes.  

In Chapter III I studied the variation of plant diversity in space and how it relates to the 

abiotic conditions of Tenerife. For this, I tested the spatial scale dependency of functional and 

taxonomic diversity from regional to local scale and across local grains and related the 

environmental conditions of Tenerife to two local spatial grains.  

In Chapter IV I assessed the complexity and temporal dynamic of the environmental 

heterogeneity, in terms of climate and topography, for 41 archipelagos, composed by 135 oceanic 

islands, distributed across the globe. I related the dynamics of environmental heterogeneity along 

the oceanic island’s life-span to plant diversity. For the analysis, I integrated information from the 

Global Inventory of Floras and Traits (GIFT) database (Weigelt et al., 2019) and Climatologies at 

high resolution for the earth’s land surface areas i.e., CHELSA (Karger et al., 2017). 

Concretely, in my PhD I addressed the following research questions: 
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Chapter II: are the trait syndromes of an oceanic island flora similar to those previously 

documented for the globe? And how biogeography, macroevolution and the environment shape 

functional diversity of an oceanic island native flora?  

Chapter III: are Tenerife functional diversity patterns scale-dependent and do functional 

diversity patterns percolate down from regional to local scales, i.e., from vegetation types 

(regional scale) down to two local spatial grains (1 m² and 1 km²)? And how do climate and 

topography impact local scale functional diversity, and are these impacts consistent across local 

spatial grains?  

Chapter IV: does environmental heterogeneity exhibit a hump‐shaped relationship with 

island age? And what is the effect of environmental heterogeneity on plant diversity of oceanic 

islands? 

Lastly, In Chapter V I present the abstracts of the collaborations I did during my PhD with 

two PhD students Dagmar Hanz from the Goethe University Frankfurt and Vanessa Cutts from 

University of Nottingham. The collaborations lead to my co-authorship of two projects related to 

plant functional diversity on the Canary Islands. 
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ABSTRACT 

 

Oceanic island floras are well-known for their morphological oddities and exhibit striking examples 

of trait evolution (Carlquist, 1966; Darwin, 1859). These morphological shifts are related to 

insularity, whose peculiar biogeographical and evolutionary history have shaped island biota 

(Carlquist, 1966; Burns 2019). However, the pathways in which evolution and biogeography had 

shaped island plant traits remain unclear. Here, we describe the functional trait space of an entire 

oceanic island flora and relate it to plant trade-offs previously documented for the globe (Díaz et 

al., 2016). We find the island trait space concentrated in a functional hotspot dominated by 

shrubby plants. By dissecting the island flora into species with different isolation levels, 

colonization and speciation events our results reveal that dispersal and speciation jointly shape 

the functional diversity of an entire island flora. Biogeography via long-distance dispersal and 

inter-island dispersal drive functional divergence and consequently expands the island trait space. 

Contrarily, evolution via species splitting and in-situ speciation drive a strong functional 

convergence, which highly packs the island trait space.   

Monanthes pallens 
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MAIN 

 

Oceanic islands have served as natural laboratories in biogeography (Patiño et al., 2017; Whittaker 

et al., 2017) to study the drivers of the assembly of floras and faunas (Losos & Ricklefs 2009; 

Craven et al., 2019). A long-standing paradigm in island biogeography centers on the notion that 

island isolation and the geoenvironmental processes linked to island ontogeny led to 

evolutionarily unique (Gillespie & Baldwin 2010; Weigelt et al., 2015) and functionally distinct 

biota (Loiseau et al., 2020). However, empirical tests of fundamental concepts in evolution and 

ecology use islands as model systems (Darwin 1859; MacArthur & Wilson 1967) under the 

assumption that results can be generalizable to non-island contexts.  

 

In contrast to neutral theories, such as the theory of island biogeography (MacArthur & Wilson 

1967) or the general dynamic model of oceanic island biogeography (Whittaker et al., 2008), 

where all arriving species have the same chances to occur on an island irrespective of their traits; 

a trait-based perspective considers functional differences among species to disentangle processes 

and identify mechanisms that have shaped island biota (Jacquet et al., 2016; Ottaviani et al., 2020). 

In a trait-based framework, differences among species are quantified using functional traits, i.e., 

morphological and physiological characteristics that impact how plants respond to environmental 

factors, affect other trophic levels and influence ecosystem properties (Lavorel & Garnier 2002, 

Violle et al., 2007). Trade-offs among traits elucidate fundamental ecological strategies that 

structure plant life from individuals to communities. Prominent among these are the fast-slow 

continuum, which describes a trade-off in how species acquire and conserve resources for growth 

(Wright et al., 2004; Reich 2014), and the size-recruitment trade-off, which differentiates between 

plants with large stature that grow slow and live long and those that are short-statured, live short 

time and produce many offspring (Grime 1979). For quantifying the diversity and distribution of 

ecological strategies in an assemblage, functional diversity (Díaz & Cabido 2000; Mason et al., 

2005; Mouchet et al., 2010) can be used to identify factors that shape communities, such as abiotic 

conditions (Wieczynski et al., 2018, Bruelheide et al., 2018) and dispersal filters (Weigelt et al., 

2015), which may expand or restrict an island trait space and drive functional divergence or 

convergence (Mason et al., 2005). However, shortfalls in trait and distribution data (Konig et al., 

2019, Cornwell et al., 2019) usually restrict the geographic extent, spatial grain, and taxonomic 

coverage of such studies, leading to an incomplete knowledge of the factors that underpin a 

complete plant assemblage, such a complete island flora. 
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Crossing large expanses of ocean and adapting to island environments are considerable challenges 

that likely filter trait values that enhance dispersal and establishment (Weigelt et al., 2015). Thus, 

biogeographical factors are expected to cluster island trait space, potentially leading to functional 

convergence (Figure II-1 Hypothetical depiction of biogeography via dispersal and 

environmental filters and evolution via speciation shaping an oceanic island plant trait space.). 

In contrast, evolutionary events, such as speciation via splitting of species (cladogenesis) (Stuessy 

1990), are expected to expand trait space (Cornwell & Ackerly 2009; Emerson & Gillespie 2008), 

due to novel shifts of trait combinations that facilitate the occupation of vacant island trait space. 

The Hawaiian silverswords and Canary Echium adaptive radiations exemplify this (Böhle et al., 

1996; Givnish et al., 2009). However, the relative importance of biogeographical and evolutionary 

processes in shaping trait diversity and ecological strategies on oceanic islands remains elusive 

(Ricklefs & Jenkins 2011). 

 

 

Figure II-1 Hypothetical depiction of biogeography via dispersal and environmental filters and evolution via speciation 
shaping an oceanic island plant trait space.  Both biogeographical and evolutionary processes determine levels of island 
functional diversity. While dispersal and environmental filters drive functional convergence as they constrain island 
traits space, speciation via adaptive radiation expands island trait space via occupation of vacant island trait space and 
causes functional divergence.  

 

Here, using a quantitative trait-based approach we explore matches and mismatches in trait 

syndromes between a complete native flora of an oceanic island and the global spectrum in plant 

form and function (Díaz et al., 2016). We use Tenerife (Canary Islands, Spain) as a model system, 

an oceanic island located in Macaronesia with stunning ranges of environmental conditions, from 

arid coastal succulent scrub vegetation, to humid Laurel forests, to arid alpine vegetation 

(Fernández-Palacios, 1992). Tenerife well-described flora comprises 436 native seed plants 
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(Acebes Ginovés et al., 2010), for which we collected and measured 80% of eight plant functional 

traits (Figure II-3a). This includes species with different biogeographic ranges, e.g., endemic to 

Tenerife, and distinct evolutionary histories, e.g., adaptive radiations with iconic examples of 

island syndromes. This allowed us to understand imprints of biogeographical and evolutionary 

processes on the functional diversity of the island flora.  

 

Figure II-2 Trait syndromes of the complete native flora of Tenerife are subjected to the same constraints as in the global 
spectrum of plant form and function, but are biased towards medium-statured species with intermediate seed size. (a)  
Trait space of the native flora of the oceanic island of Tenerife (i.e., 436 native species of Tenerife, green dots) in relation 
to the global plant trait space (2199 species, gray dots, from Díaz et al., 2016). Projections of the two first dimensions 
of variation from the principal component analysis (PCA) of six plant functional traits: leaf area (mm²), leaf mass per 
area (LMA, g m-²), leaf Nitrogen content (Leaf N, mg g-1), maximum plant height (Height, m), stem specific density (Stem 
density, mg mm-³) and seed mass (mg). Density distributions of the first (b) and second (c) dimensions of island and 
global trait spaces.  

 

An oceanic island flora faces similar functional constraints as other plants on Earth 

We compared Tenerife with the global spectrum of plant form and function (Díaz et al., 2016) 

(Figure II-2) and found a considerable overlap between the island and the worldwide trait space 

(Jaccard similarity coefficient = 0.52, based on hypervolume overlap-statistics for both trait spaces 

see Methods). This indicates that on an oceanic island, i.e., Tenerife, plants largely experience 

similar ecological, environmental and evolutionary constraints as plants reported for the globe. 

However, the density distribution of species of Tenerife trait space strikingly deviated along the 

first dimension of variation (Figure II-2b). The majority of island species are located between the 

two global hotspots (Figure II-2a): small statured, light-seeded plants and tall, heavy-seeded trees. 

This embedded position of Tenerife plants in the center of the global trait space evidences the 
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underrepresentation of herbs and trees and the dominance of shrubs, i.e., plants with 

intermediate stature (maximum plant height = 1 - 3 m), moderate to high wood density (0.3 - 0.6 

mg m-3), light seeds (seed mass = 0.5 - 8 mg), and leaves with intermediate sizes, leaf mass per 

area (LMA) and nitrogen content (leaf area = 300 - 2000, mm², LMA = 60 - 100 g m-² and Leaf 

Nitrogen = 15 - 20 mg g-1, respectively) (Supplementary Figure 1 and 2). The shrub dominance 

highlights the functional convergence of Tenerife flora towards the shrub growth form (Figure II-

2 and II-3a). Arguably, Tenerife’s Mediterranean climate marked by drought seasons and aridity 

at high elevations favours shrubs (Carlquist 1974; Van Huysduynen et al., 2020), for both colonists 

and endemic plants. In arid environments shrubby stems are more resistant than their herbaceous 

counterparts. Such stem trait prevents plants from hydraulic failure and drought-induced 

mortality (Dória et al., 2018). In fact, the origin of several shrubby plants on the Canary Islands 

(i.e., 80 % of insular woody lineages) coincides with the onset of major aridification events 7 

million year ago on these islands (Dória et al., 2018; Lens et al., 2013). Further, the taller stature 

of shrubs compared to herbaceous plants make them stronger competitors on an island (Darwin 

1859; Givnish 1995). While there are alternative hypotheses for insular shrubbiness, e.g., 

increased competition, reduced herbivory (Whittaker & Fernández-Palacios, 2007), which we did 

not test for specifically, our results provide strong empirical support for shrubbiness as an island 

syndrome. 

 

Figure II-3 Functional trait space of (a) the Tenerife oceanic island flora (436 native species) based on eight functional 
traits. Biogeographical groups representing dispersal and environmental filters in green (c-f) where ‘n’ is the number of 

species contained in each group and ‘’ is the estimated mean hypervolume divided by the number of species of each 
group. Evolutionary groups representing speciation processes in purple (g-h) cladogenetic species and non-clado are 
non-cladogenetic species. Contours are built using 2D kernel density estimation. Gradient legends (bottom-left side) 
correspond to the proportion of data contained in a contour break. Comparison of the two first dimensions of variation 
from a principal component analysis (b), identical letters indicate no significant difference (Kruskal-Wallis text, P>0.05). 
NNE stands for native non-endemics, MAC is Macaronesian-endemics, CE is Canary-endemics and TE is Tenerife-
endemics. Contribution of different biogeographical groups to the functional diversity of Tenerife island (i-k). Functional 
richness (i), functional dispersion (j) and functional evenness (k) were calculated based on n-dimensional hypervolumes 
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(see Methods). Dots and error bars correspond to the mean values and 95% confidence intervals, based on species-
richness based rarefaction values. See observed and standardized values in Extended Figure 3. 

 

The dominance of shrubs combined with lack of trees on Tenerife is generally consistent with the 

island rule (Foster 1967; Biddick et al., 2019), which predicts that small herbaceous (colonizer) 

species evolve into taller species and increase stem density to avoid competition with other 

species. These colonizing species likely filled un-occupied trait spaces on the island, which on 

mainland would have been already occupied by trees. The island rule also predicts that tall 

individuals tend to become smaller. Indeed, large trees are underrepresented on Tenerife, its 

tallest trees (Laurus novocanariensis and Pinus canariensis) reach about 30 to 50 meters. However, 

the lack of tall trees on Tenerife is best explained by dispersal filters and reduced environmentally 

suited areas (e.g., Tenerife’s humid area, where Laurel forest occurs, covers 16% of the island) to 

sustain viable tree populations. Lastly, beyond the six traits used to compare Tenerife and the 

global spectrum, we included two additional traits: leaf thickness (Lth) signaling succulence, a 

successful plant adaptation to the Canary Islands arid conditions (Shmida & Werger 1992; 

Landrum 2002) and lead dry matter content (LDMC) signaling plant strategies.  

 

Biogeography and evolution have shaped the island plant trait space 

To disentangle how biogeographical and evolutionary processes have shaped the assembly of 

functional diversity of Tenerife, we analyzed the relationship of the eight plant functional traits 

(Figure II-3a) for four groups of species according to their endemism levels: endemics to Tenerife, 

Canary Islands, Macaronesia and Native non-endemics, hereafter ‘biogeographical groups’ (Figure 

II-3c-f). These four groups reflect different colonization and speciation pathways. Within the 

endemics we defined two groups of species related to diversification processes, hereafter 

‘evolutionary groups. One group comprises cladogenetic species, i.e., diversified immigrant 

lineages resulting in several distinct species sometimes with distinct traits (Stuessy et al., 1990). 

The other group comprises all other endemic species (i.e., non-cladogenetic endemics) (Figure II-

3g-h). 

 

Trait spaces of almost all biogeographical groups showed broadly similar patterns and were highly 

aggregated in the center of island trait space (Figure II-3c, d, l). The trait space of native non-

endemic species, which represent species that colonized Macaronesia without undergoing 

subsequent speciation (Price et al., 2018), encompasses a large range of trait combinations from 
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light seeded and short plants to tall plants with heavy seeds (on average 0.01g - 5 g heavy seeds 

and 0.1 - 30 m tall plants). The trait space of Canary endemic species is dominated by shrubs and 

extends towards species with high leaf thickness (succulents) and leaf nitrogen content (on 

average 8 mm thick leaves and 45 mg g-1 N), as well as toward species with opposite trait 

combination, i.e., low leaf thickness and leaf nitrogen content (on average 0.05 mm thick leaves 

and 7 mg g-1 N). The trait space of Tenerife endemic species is highly dominated by shrubs and 

succulent species. In contrast, the Macaronesian endemics trait space has a bimodal distribution 

(Figure II-3e) associated with the presence of herbs/shrubs and trees. Trait combinations of tree 

species within the Macaronesian endemics, e.g., Laurus novocanariensis with large stature and 

seed mass (i.e., on average 25 m and 5 g), have not emerged from in-situ speciation but from 

‘relictualization’ (De Nascimento et al., 2009); a process that results from survival of species on 

islands after their extinction elsewhere. The trait spaces of both cladogenetic species and non-

cladogenetic species are also centered in the island trait space (Figure II-3g-h). In particular, 

cladogenetic species have a high aggregation of species (Figure II-3g) with small stature, light 

seeds, low leaf dry matter content and thick leaves, similar to the Tenerife endemics. This result 

is expected because most Tenerife endemics emerged via cladogenesis. The group of non-

cladogenetic endemics (Figure II-3h) consists of species with distinct evolutionary and 

biogeographical histories, for instance species resulting from anagenesis or relictualization. 

Consequently, this trait space includes trait combinations of species that expand the trait space 

towards large relictual trees, as the Macaronesian endemics trait space, as well as species located 

in the core of the island trait space. 

 

Imprints of biogeography and evolution on the island functional diversity 

We calculated three major independent components of functional diversity corrected for species 

richness: functional richness, evenness and dispersion (Mason et al., 2005; Mammola & Cardoso 

2020), which capture different aspects of trait distributions among biogeographical and 

evolutionary groups. Further, we tested the contribution (if a group increases island trait space or 

not) and unique position of each group within the island trait space (if a group has a unique 

‘position’ it has unique trait combinations relative to the island) by calculating functional 

contribution and originality (Mammola & Cardoso 2020). 
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We found functional richness (Figure II-3i), i.e., the total amount of trait space covered (Mouchet 

et al., 2010), significantly varying among biogeographical groups and was highest for Canary 

endemics. This result is consistent with the idea that species evolved to take advantage of new-

unfilled island habitats, thereby avoiding direct competition (Givnish et al., 2009). Functional 

dispersion (Figure II-3j), which quantifies the sparseness or density of species in trait space, and 

thus, identifies functional divergence or convergence, exhibited a similar pattern as functional 

richness among groups. The high functional richness and dispersion, and the significant functional 

contribution and originality of the Canary endemics (Figure II-4a-iii) indicates the group has unique 

trait combinations and increases island trait space (i.e., species located at the margins of the 

Tenerife trait space, such as Spartocytisus supranubius a 4 meter shrub with very dense stems 0.7 

mg mm-³, and Dracunculus canariensis a 1.5 meter herb with thin leaves with high Nitrogen 

content, 28 mg g-1). In contrast, we found Tenerife endemic species having the lowest values for 

functional richness and dispersion (Figure II-3i, j). These results indicate that newly evolved species 

occurring on the Canary Islands have different trait combinations (e.g., from tiny herbs to tall 

shrubs), while Tenerife species share similar traits (e.g., small succulents and shrubs). The high 

habitat diversity plus the influence of inter-island dispersal across Canary Islands drive the high 

levels of functional diversity of the Canary endemics. Contrarily, the low functional diversity of 

Tenerife endemics suggests these species have a low degree of niche differentiation, whereby 

most species occupy restricted island habitats, e.g., coast and summit scrub. Functional evenness 

(Figure II-3k), i.e., the regularity of distribution of the species across the trait space, related to 

dominance of certain trait combinations, was the highest for Macaronesian endemics. This even 

distribution suggests that the number of herbs/shrubs and trees present in the Macaronesian 

endemics are equally represented, i.e., no dominance of a functional strategy in the group. 

Further, the significant functional originality values of Macaronesian endemics (Figure II-4a-vi) 

indicate the unique trait combinations in the group with respect to the island. Such traits 

combinations are from the relictual trees present in Macaronesia. Overall, our analysis of the four 

biogeographical groups indicates that while inter-island and long-distance dispersal (represented 

by Canary and native non-endemic species) expanded trait space on Tenerife, in-situ speciation 

(represented by Tenerife endemics) notably did not.  
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Figure II-4  Functional contribution and originality for a) biogeographical and b) evolutionary groups. Group 
abbreviations followed Figure II-2. “All” indicates all species except for species contained in the group of comparison. 
Dots and error bars correspond to the mean values and 95% confidence intervals. Asterisk “*” indicate that groups have 
significantly contributed or have original values to the island trait space, using Kruskal-Wallis, with alpha level 0.05. 
Functional contribution and originality are based on hypervolumes calculation, which were estimated using eight plant 
functional traits sampled for 436 native species of Tenerife. 

 

Counter to our expectation that species splitting (via cladogenesis) would expand island trait space 

by filling empty island habitats, we found that cladogenetic species did not expand Tenerife trait 

space (Figure II-3i, j). This result relates to the limited trait combinations of cladogenetic species. 

First, most lineages present in the Tenerife are composed by few species (most lineages comprise 

3-4 species and only four lineages comprise more than 10 species, e.g., Echium and Aeonium 

lineages comprise 11 and 31 species, respectively). Second, non-adaptive radiation (i.e., allopatric 

speciation via isolation of populations) occurs more often than adaptive radiation (Rundell & Price 

2009) and leads to functionally similar species. As non-adaptive radiation is not driven by 

ecological speciation (Rundell & Price 2009), plant traits do not necessarily shift as species may be 

coping with similar environmental conditions. Contrarily, in adaptive radiation species traits 

commonly adapt to cope with a changing environment (Givnish et al., 2009). Third, the highly 

uneven trait space of cladogenetic species (Figure II-3j) is consistent with the idea that strong 

environmental filters resulted in species converging around similar trait combinations. We 

attribute the dominance of arid conditions of Tenerife to be driving the functional convergence of 

cladogenetic species, and also the general functional convergence observed for the island. Lastly, 

we found non-cladogenetic species having relatively high values of richness and intermediate 

values for evenness and dispersion, and also high functional originality (Figure II-4b-iii) (mainly 

driven by the relictual trees shared with the Macaronesian endemics).  
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How radiated lineages contribute to the island functional trait space 

To understand how speciation, in relation to adaptive radiation processes, has shaped the 

functional trait space of Tenerife island, we quantified the functional contribution and originality 

of 21 major radiated lineages present in Tenerife (Supplementary Figure 4 and 5). We observed 

that, with the exception of the Aeonium lineage, most lineages did not significantly contribute to 

the expansion of island trait space (Supplementary Table 3). This result relates to both non-

adaptive radiation being the speciation event more frequently occurring and the low number of 

species comprising each single lineage.  

 

Our results provide evidence that plant form and function of an oceanic island are shaped by the 

same constraints as plants in general. Yet there is a clear mismatch between the Tenerife island 

and global trait space in terms of predominance of shrubby growth forms, which is driven by the 

arid Mediterranean environment of the island. We conclude that at the Canary Islands archipelago 

level evolution via speciation followed by biogeographical process via inter-island dispersal are 

expanding Tenerife trait space and therefore increasing the plant functional diversity of the island. 

On the other hand, evolution via lineage splitting (cladogenesis) and in-situ speciation within 

Tenerife are leading to a high packing of species in the core of the island trait space, with a modest 

extension towards succulent plants. These conserved trait combinations signal the strong 

environmental filter on Tenerife trait space, as plants have to cope with the arid conditions of the 

island. Overall, our results show how trait diversity and functional diversity levels of an oceanic 

island emerged due to larger scale biogeographical and evolutionary processes. Our approach 

offers a first step towards understanding, from a trait-based perspective, how dispersal and 

speciation jointly shaped an entire native flora.  

 

MATERIALS AND METHODS 

 

Tenerife as a model system 

Tenerife (2058 km²) is the largest of the Canary Islands, which belongs to the Macaronesian 

floristic province off the coast of Northern Africa. The island is of volcanic origin, its oldest 

substrate is about 8 million years old (Troll & Carracedo 2016). Tenerife is the second highest 

volcanic structure on the planet (after the island of Hawai’i). Its impressive topography and 
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dynamic geological history (Troll & Carracedo 2016) and interaction with the northeastern trade 

wind systems creates a great climatically and environmental heterogeneity (Barajas-Barbosa et 

al., 2020) with a wide range of different habitats (Fernández-Palacios & Nicolás, 1995). 

 

Plant species data and their biogeographical and evolutionary status 

Tenerife has a well-known flora. We analyzed all native seed plant species of Tenerife, which are 

listed in the latest version of the vascular plant species checklist of the Canary Islands (Acebes 

Ginovés et al., 2010). Since the native status of several Canary Islands species remain unresolved 

(Price et al., 2018), we included species that are exclusively categorized as native, yielding a total 

of 436 species (Acebes Ginovés et al., 2010). We classified the species into the four 

biogeographical groups following the species the endemism status from the checklist (Acebes 

Ginovés et al., 2010) at the levels of Canary Islands and Macaronesia archipelago: native non-

endemic (78 spp.), Macaronesian endemic (45 spp.), Canary Islands endemic (186 spp.) and single-

island endemic to Tenerife (127 species). We classified the species into two evolutionary groups, 

the first being cladogenetic species (264 spp.), containing 21 major lineages (with more than 3 

species) that have radiated across the Canary Islands and Macaronesian (Price et al., 2018). The 

remaining endemic species (95 spp.) were categorized as anagenetic-neoendemics and 

palaeoendemics together, due the lack of fossil records.  

 

Trait sampling and measurement 

We collected and measured fundamental leaf and stems traits (Wright et al., 2004; Diaz et al., 

2016) for 82% of the entire Tenerife native seed plants (361 species): leaf area (LA mm²) as the 

one-side surface area of individual lamina, leaf dry matter content (LDMC mg g-1) as the leaf dry 

mass per unit of water-saturated fresh mass, leaf mass per area (LMA g m-²) as the leaf dry mass 

per unit of lamina surface area, leaf Nitrogen content (Nmass mg g-1) as the nitrogen content per 

unit of lamina dry mass, leaf thickness (Lth mm), stem specific density (SSD mg mm-³) as dry mass 

per unit of fresh stem volume. We collected the plants across the entire island in more than 500 

different sites (Supplementary Figure 6), covering the full elevational gradient of Tenerife from 

sea level to 2700 m a.s.l. To include as much abiotic variability as possible, we sampled species 

with large distributions on multiple sites. We sampled rare species (when possible) in only one 

site and certain species (when possible) in botanical gardens (Jardín de aclimatación de La Orotava 

in Tenerife and Jardín Botánico Canario Viera y Clavijo in Gran Canaria). We confirmed species 
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identity with a botanical expert. We collected three replicates (individual per species) for 60% of 

all 361 sampled species, one to two replicates for 16%, and four to five replicates for 6% of all 

sampled species.  

 

Measurement and quantification of trait values for leaves, stems and seeds were done following 

standardised protocols (Pérez-Harguindeguy et al., 2013). We collected healthy, adult and fully 

expanded sunny leaves from individual plants. Depending on leaf size, we collected between 10 

(for > 1 cm² leaves) to 100 (for < 1 cm² leaves) leaves per individual. To measure stem traits and 

ensure that plants were not damaged, we collected for > 90% the first adjacent branch of the main 

plant stem. We stored the fresh plant material in coolers to prevent dehydration and measured 

fresh leaf mass using an analytical balance (0.01mg precision from PCB 2500-2 Kern & Sohn) within 

24 hours after collection. Leaf thickness and leaf area (leaves smaller than 1 cm² were scanned at 

300 and larger than 1 cm² leaves at 600 dpi) were also measured within the 24 hours after 

collection. Leaf area was calculated using WinFOLIA software. To measure the volume of fresh 

stems, we first measured its length and diameter with a digital caliper. As stems are not perfect 

cylinders, we measured diameter in three different stem sections and used mean value per single 

stem. We computed fresh stem volume using the following formula for cylinders: V= Πr²h, where 

Π is Pi, r is radio, h is height. We oven dried leaves and stems for 48 hours, or until a stable weight 

was reached, at 80°C, and then measured leaf and stem dry mass using the same analytical 

balance. Nitrogen content of the dry leaves was determined by a C/N elemental analyser (Vario 

EL III, elementar, Hanau, Germany) (Hertel 2011). 

 

We sampled and measured seed mass (SM mg) for 74% of all native seed plants of Tenerife, as 

mass of an individual seed or spore at the seed bank from the Jardín Botánico Canario "Viera y 

Clavijo" in Gran Canaria. We counted between 5 to 200 seeds per species and weighed them using 

an analytical balance (0.001mg precision). We obtained individual seed mass by dividing the total 

mass of the weighted seeds by the number of seeds. For very small seeds (< 0.1 mm), we 

calculated seed mass using a test tube containing a volume of seeds for which the seed count was 

known. We obtained maximum plant height (H m), which is the upper boundary of the main 

photosynthetic tissue at maturity in meters, for 90% of all native species of Tenerife (Muer et al., 

2016).  

 



ASSEMBLY OF FUNCTIONAL DIVERSITY OF AN OCEANIC ISLAND FLORA 

23 

In total we collected and gathered for all Tenerife native flora (i.e., 436 species) 80% of all eight 

traits values. Previous to the analysis, we checked the density distribution of single traits and 

correlation among traits (Supplementary Figure 2). To handle missing values, we used trait 

imputation. In total, we imputed trait values for 20% of leaf trait values, 24% of stem density, 26% 

of seed mass and 3% of maximum plant height. We used the phylogenetic imputation by Penone 

et al., (2014). To this end, we first constructed the phylogeny using the mega-phylogeny of Smith 

and Brown (2018) and conservatively bound species onto the backbone using dating information 

from congeners in the tree with the 'congeneric.merge' function in the R package 'pez' (Pearse et 

al., 2015). We then used the ´missForest` function from the R package (Stekhoven & Buehlmann 

2012) to predict missing trait values (see density distribution of original and imputed trait values 

in Supplementary Figure 2). We tested the prediction performance of the random forest algorithm 

that included phylogenetic relationship among species against a naïve prediction (i.e.,with no 

phylogenetic information). We found that phylogenetically informed imputation was superior to 

that of the naive imputation, as measured by out-of-bag error rates (Supplementary Table 1).  

 

The global trait data 

We used the global trait data via from Díaz et al., 2016, which has complete information for six 

plant traits (Leaf traits: LA mm², LMA g m-², Nmass mg g-1; Stem trait: SSD mg mm-³; Seed trait: SM 

mg; whole plant trait: H m) for 2214 plant species. Before comparison among Tenerife and global 

trait space, we removed all species from the global trait data that belonged to Tenerife flora. That 

is, we compared 2199 species from the global trait data with 436 Tenerife species.  

 

Functional trait space 

We performed a principal component analysis (PCA) on the log and z-transformed (centered and 

rescaled to unit variance) mean trait values. For the comparison of Tenerife versus global trait 

space of plant forms and function (Figure II-1), we used six plant functional traits, LA, LMA, H, 

Nmass, SM and SSD. For the trait space analysis of Tenerife island with its biogeographical and 

evolutionary groups (Figure II-2), we used eight plant functional traits LA, LMA, LDMC and Lth, H, 

Nmass, SM and SSD. We visualized the trait space of each biogeographical and evolutionary origin 

group. 
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Functional diversity 

We calculated the three components of functional diversity (Figure II-3) using functional 

hypervolumes, which quantify a trait space as the n-dimensional Hutchinsonian niche (Blonder et 

al., 2018). This approach to functional diversity is thought to be more accurate than traditional 

approaches (e.g., functional richness; Laliberté & Legendre 2010) because it accounts for holes in 

trait space and, in doing so, avoids overestimation of functional diversity. To compute the 

hypervolumes, we used a fixed kernel bandwidth for all groups using the ‘estimate_bandwidth’ 

function in the R package Hypervolume (Blonder 2019). We used the gaussian method to build 

the hypervolumes, as it is the least sensitive method to variation in bandwidth and fits the data 

loosely, which is suitable for functional diversity and fundamental niche modelling applications 

(Blonder et al., 2018). We calculated hypervolume-based functional richness, evenness and 

dispersion using the function ‘kernel.alpha’, ‘kernel.evenness’ and ‘kernel.dispersion’ in the R 

package ‘BAT’ (Mammola & Cardoso 2020). Functional richness is the total volume of a trait space. 

Functional dispersion quantifies how spread or dense a given trait space is, by calculating the 

average difference between the trait space centroid and random points within the boundaries of 

the hypervolume (Mamola & Cardoso 2020). Functional evenness quantifies how regular a given 

trait space is, by calculating the overlap between the observed hypervolume and a theoretical, 

perfectly even hypervolume (Mamola & Cardoso 2020). We computed the Jaccard similarity 

coefficient for comparing the global and island trait space in Figure II-1 (Supplementary Table 2) 

by first building gaussian hypervolumes with a fixed bandwidth, for both global and island data 

and second, we computed hypervolume overlap statistics, using the R package Hypervolume 

(Blonder et al., 2018). We calculated functional contribution and originally, as the net contribution 

of each single species to the total island hypervolume and as the average dissimilarity difference 

between a given species and a sample of random points (10% of the total random points) within 

the boundaries of the island hypervolume (Mamola & Cardoso 2020).  

 

Data analysis 

We used Kruskal-Wallis-test to assess differences among the first and second principal 

components of the biogeographical and evolutionary group trait spaces (Figure II-2), as well as for 

assessing the statistical significance of functional contribution and originality to the island trait 

space of the groups and 21 radiated lineages (Figure II-4). Because the number of species 

commonly affects functional diversity metrics, we performed species-richness based rarefaction 

to ensure that values were comparable across biogeographical and evolutionary groups, which 
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varied markedly in species richness. To this end, we fixed a minimum number of species (n= 30), 

which we randomly sampled 99 times, and calculated the functional diversity metrics each time 

per group. We computed mean values and 95% confidence intervals from all samples.  
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ABSTRACT 

 

Functional diversity is a major component of biodiversity that reveals how the variation of traits 

in communities relate to ecosystems functions. As other biodiversity components, functional 

diversity is expected to be scale dependent, but our knowledge about how the two components 

of scale, i.e.,spatial grain and extent, affect functional diversity is limited. In this study, we assessed 

how functional diversity of an insular flora varies across spatial grains (100 m² vs 1 km²) and 

extents (local and regional). Our functional diversity estimates are based on plant functional traits 

we measured for nearly a complete oceanic island flora. We found that functional diversity is scale 

dependent and that the spatial dependence of functional diversity patterns is determined by 

environmental filters at larger grains, and by biotic factors at smaller spatial grains. Climate and 

elevation had a strong effect on the functional diversity of the island at the larger spatial grain, 

but these effects vanished at the smaller spatial grain of community. Our study improves our 

understanding about functional diversity changes with spatial grain and scale and as the 

taxonomic diversity is not a surrogate of functional diversity, studying both biodiversity facts is 

important.  

Phoenix canariensis 



28 

INTRODUCTION  

 

Functional diversity, a major component of biodiversity, provides insights into how species traits 

mediate ecological strategies, respond to the environment and influence ecosystem processes 

(Díaz & Cabido 2001; Kattge et al., 2011). Species identities and functional traits, in particular, 

influence ecosystem processes because traits determine how species compete, modify and adapt 

to the biotic and abiotic environment (Díaz & Cabido 2001; Cadotte et al., 2011). For instance, 

drought resistance of ecosystems is modulated by plant traits, such as high leaf thickness and 

wood density, which allow plants to cope with water scarcity (Díaz & Cabido 2001; Lens et al., 

2013). Primary productivity, nutrient and water cycling are also mediated by plant functional traits 

(Díaz & Cabido 2001). Such processes regulate the provision of ecosystem services, which are key 

for the human well-being and can be studied through functional diversity frameworks (Díaz et al., 

2007; Díaz et al., 2019).  

 

Biodiversity is scale dependent (Chase & Knight 2013; Chase et al., 2018) because ecological 

processes shaping it act at different spatial scales and are interconnected, as local communities 

are contained within regional biota (Leibold et al., 2004). Commonly used metrics that quantify 

species diversity, such as species richness or dissimilarity (i.e., alpha and beta diversity), are highly 

influenced by two main components of scale, spatial grain (i.e., size of sampling unit) and extent 

(i.e., total area sampled of a study) (Scheiner et al., 2011; Viana & Chase 2018). There is a (relative) 

good understanding about the interconnections and factors governing patterns of diversity across 

spatial scales, yet the focus has been mainly on taxonomic diversity (Willis & Whittaker 2002; 

Chase et al., 2018; Chase et al., 2019). As a consequence, our knowledge on the effects of spatial 

scale and interactions between regional and local diversity for functional diversity is limited (but 

see Smith et al., 2013; Whittaker et al., 2014; Karadimou et al., 2016). An adequate estimation of 

functional diversity should consider both components of scale to understand patterns that emerge 

from local and regional processes (Levin 2000). Species accumulation curves (Scheiner et al., 2011) 

help detecting diversity changes from regional to local scale and can reveal the factors that 

determine processes occurring at different scales, e.g., environmental filters (regional processes) 

or species coexistence (local processes) (Chase & Knight 2013). Additionally, partitioning of 

diversity into local (alpha diversity), among local (beta diversity) and regional scale (gamma 

diversity) (Whittaker 1972; Jost 2007), it is possible to estimate functional diversity variation 

across space. In doing so, we can analyze the effects of spatial scale on functional diversity and 



PLANT FUNCTIONAL DIVERSITY ON AN OCEANIC ISLAND VARIES ACROSS SPATIAL SCALES 

29 

identify the factors shaping regional and local patterns of functional diversity. Here, we use the 

definition of regional scale as a scale shaped by a regional species pool composed of a set of 

species that grow under similar environmental conditions (Pärtel et al., 1996).  

 

Functional diversity is affected by different extrinsic factors that act differently across space (Díaz 

& Cabido 2001; Qiu & Cardinale 2020). Environmental conditions that cause abiotic stress, such as 

drought or cold temperatures, filter the number of viable traits and thereby tend to homogenize 

the functional trait combinations in a community (Spasojevic & Suding 2012). For instance, species 

tend to converge upon similar trait combinations, such as high leaf thickness and stem density to 

tolerate hydric stress (van Huysduynen et al., 2020). Biotic interactions and interspecific 

competition may increase viable trait combinations, as interacting species are forced to use 

resources differently, for which different trait combinations are required (Spasojevic & Suding 

2012). Thus, environmental filters should reduce functional diversity whereas species interactions 

should increase it (Cavender-Bares et al., 2004), whereby the effect of each factor is expected to 

affect functional diversity differently depending on the spatial scale. At regional scales, 

environmental conditions, such as temperature, precipitation, and elevation may prevail in 

affecting functional diversity more strongly by limiting traits of a regional species pool. At local 

scale, species interactions, such as competition, may shape more strongly functional diversity, 

leading to divergent trait combinations and hence higher functional diversity (Kraft et al., 2008; 

kraft et al., 2015). Thus, examining functional diversity at different spatial scales, from regional to 

local scale can reveal which processes are influencing local communities and regional species 

pools (Ackerly & Cornwell 2007). 

 

Here, we investigate the effect of spatial grain and extent on the plant functional diversity of an 

oceanic island, Tenerife. We quantified functional diversity using eight plant traits that we 

collected for nearly all Tenerife native seed plants (80%). We defined the regional scale as the 

Tenerife vegetation types, which are six climatically distinct areas corresponding to the altitudinal 

vegetation belts of the island (Humboldt & Bonplandt in 1814). The vegetation types range from 

arid to semi-arid areas in the lowlands, humid at mid-elevations, to cold and arid in the highlands 

(Figure III-1 and Supplementary Figure 1) (Fernández-Palacios & de Nicolás 1995). We assessed 

functional diversity at the local and regional scales integrating vegetation relevés, gridded floristic 

data and regional species inventories with detailed trait measurements of 434 seed native plant 

species. We then assessed how climatic and topographic conditions impact Tenerife’s functional 
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diversity at two local grains (100 m² vs 1 km²). We addressed two main questions: (1) Are 

functional diversity patterns scale dependent and do the functional diversity patterns percolate 

down from regional to local scales, i.e., from vegetation types down to the two local spatial grains? 

(2) How do climate and topography impact local scale functional diversity, and are these impacts 

consistent across spatial grains? We expect functional diversity to be scale dependent and have a 

nonlinear relation with space. At regional spatial scale we expect environmental filters to 

determine functional diversity and at local scale species interactions should shape functional 

diversity. Further, we expect functional diversity to differ across Tenerife vegetation types due to 

differences in the environmental conditions (Cavender-Bares et al., 2004; Spasojevic & Suding 

2012). Where resource-rich areas (i.e., vegetation types with high water supply, such as laurel 

forest) have higher functional diversity than resource-limited areas (e.g., arid or alpine such as 

summit scrub) because unfavourable conditions restrict the amount of functionally distinct 

species that can exist (Smith et al., 2013). Lastly, as vegetation types are broadly defined by the 

island elevational gradient, we expect elevation to have a clear imprint on local-scale functional 

diversity (Sanders & Rahbek 2012). 

 

Figure III-1 Conceptual diagram of study, illustrating the spatial scales and grains at which we examine patterns and 
drivers of plant functional diversity on Tenerife.  At the regional (gamma) scale, we compare functional diversity across 
vegetation types, while at the local (alpha) scale we compare functional diversity across two spatial grains, plot (100 
m2) and cell (1 km2) and vegetation types. Within vegetation types, we also evaluate spatial heterogeneity in functional 
diversity, i.e.,beta diversity, across spatial grains and vegetation types. 
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MATERIALS AND METHODS 

 

Tenerife and its main vegetation types  

Our study was conducted on Tenerife, a volcanic island with an area size of 2058 km² and a 

maximum elevation of 3700 m a.s.l. that belongs to the Canary Islands archipelago. Tenerife has 

a highly heterogeneous environment marked by a Mediterranean climate and (Sperling et al., 

2004; Whittaker & Fernández‐Palacios, 2007) and steep topography and climatic conditions. 

Usually, six major vegetation types are considered (del Arco Aguilar et al., 2006 

http://www.idecanarias.es/resources/Vegetacion/Memoria_MapaVegetacion.pdf) (Figure III-1): 

coastal scrub (618 km², > 19°C, 50-300 mm annual rainfall), thermophilous woodland (335 km², 

15-19°C, < 250-300 mm/a), laurel forest (327 km², 13–16°C, c. 1000 mm/a), pine forest (519 km², 

10–15°C, 400–1000 mm/a), summit scrub (159 km², 5–10°C, c. 400 mm/a), and plant 

assemblages associated with rocky outcrops (81 km²) (here after ‘rocks’) (Fernández‐Palacios, 

1992; Fernández‐Palacios & de Nicolás 1995).  

 

Plant traits 

We measured eight plant traits of native seed plant species of Tenerife (Acebes Ginovés et al., 

2010), for 361 of the 436 native species (approximately 83%): leaf area (LA mm²) as the one-side 

surface area of individual lamina, leaf dry matter content (LDMC mg g-1) as the leaf dry mass per 

unit of water-saturated fresh mass, leaf mass per area (LMA g m-²) as the leaf dry mass per unit of 

lamina surface area, leaf nitrogen content (Nmass mg g-1) as the nitrogen content per unit of lamina 

dry mass, leaf thickness (Lth mm), stem specific density (SSD mg mm-³) as dry mass per unit of fresh 

stem volume. These eight traits relate to species resource acquisition for growth along the fast-

slow continuum (Wright et al., 2004; Reich 2014), and to the size-recruitment trade-off that 

differentiates between plants that live long from plants that live short times (Grime 1979). We 

collected samples across the entire island at more than 500 different sites (Figure III-1 and 

Supplementary Figure 1), covering the full elevational gradient of Tenerife from sea level to 2700 

m a.s.l. We sampled species with large distributions on multiple sites to capture intraspecific 

variability. We sampled rare species at only one site and 10 species in botanical gardens (Jardín 

de aclimatación de La Orotava in Tenerife and Jardín Botánico Canario Viera y Clavijo in Gran 

Canaria). We collected three individuals for 60% of all 361 sampled species, one to two replicates 

for 16%, and four to five replicates for 6% of all sampled species.  

http://www.idecanarias.es/resources/Vegetacion/Memoria_MapaVegetacion.pdf
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We measured leaf, stem, and seed trait following standardized protocols (Pérez-Harguindeguy et 

al., 2013). We collected healthy, adult and fully expanded sun leaves from individual plants. 

Depending on leaf size, we collected between 10 (for > 1 cm² leaves) to 100 (for < 1 cm² leaves) 

leaves per individual. To ensure that plants were not damaged, we measured stem traits for the 

first adjacent branch of the main plant stem. We stored the fresh plant material in coolers to 

prevent dehydration and measured fresh leaf mass using an analytical balance (0.01 mg precision 

from PCB 2500-2 Kern & Sohn) within 24 hours after collection. Leaf thickness and leaf area were 

also measured within the 24 hours after collection. Leaves smaller than 1 cm² were scanned at 

300 and larger than 1 cm² leaves at 600 dpi. We calculated leaf area using the WinFOLIA™ software 

(Regent Instruments Canada Inc). To measure the volume of fresh stems, we first measured its 

length and diameter with a digital caliper. Because stems are not perfect cylinders, we measured 

the diameter at three different locations and used the mean value per single stem. We computed 

fresh stem volume using the following formula for cylinders: V= Πr²h, where Π is Pi, r is radius, and 

h is height. We oven-dried leaves and stems at 80° C for 48 hours, or until a stable weight was 

reached and then measured leaf and stem dry mass using the same analytical balance. Nitrogen 

content of the dry leaves was determined with a C/N elemental analyser (Vario EL III, elementar, 

Hanau, Germany) (Hertel 2011). We sampled and measured seed mass (in mg, i.e., mass of 

individual seeds) for 75% of all native seed plants of Tenerife at the seed bank from the Jardín 

Botánico Canario "Viera y Clavijo" in Gran Canaria. We measured between 5 to 200 seeds per 

species and weighed the oven dried seeds (following the leaf drying procedure) using an analytical 

balance (0.001mg precision). We obtained individual seed mass by dividing the total mass of the 

weighted seeds by the number of seeds. For very small seeds (< 0.1 mm), we calculated seed mass 

using a test tube containing a volume of seeds for which the seed count was known. Lastly, we 

obtained maximum plant height (H in meters, i.e., the upper boundary of the main photosynthetic 

tissue at maturity) for 90% of all native species of Tenerife from the literature (Muer et al., 2016). 

As our dataset contains missing trait values, we used phylogenetic imputation by Penone et al., 

(2014) and imputed 20% of leaf trait values, 24% of stem density, 26% of seed mass and 3% of 

maximum plant height. To this end, we first constructed a phylogeny using the mega-phylogeny 

of Smith and Brown (2018) and conservatively bound species onto the backbone using dating 

information from congeners in the tree with the 'congeneric.merge' function in the R package 

'pez' (Pearse 2013). We then used the ´missForest` function from the R package (Stekhoven & 

Buehlmann 2012) to predict the missing trait values (see density distribution of original and 

imputed trait values in Supplementary Figure 2). We tested the prediction performance of the 

random forest algorithm that included phylogenetic relationship among species against a naïve 
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prediction (i.e., with no phylogenetic information). We found that phylogenetically informed 

imputation was superior to that of the non-phylogenetically informed imputation, as measured 

by out-of-bag error rates (Supplementary Table 1).  

 

Plant distributions 

We obtained species occurrence information of native seed plants at two local spatial grains, 100 

m2 and 1 km2. (1) Data from the smaller spatial grain are from a network of 199 10 x 10 meters 

plots (hereafter ‘plots’) placed across Tenerife (Figure III-1) (Fernández-Palacios 1992). We 

compiled species composition for each plot; a total of 146 species, or 33% of the plant species of 

Tenerife, were found across all plots. (2) Data for the larger spatial grain are ‘Banco de Datos de 

Biodiversidad’ (Atlantis 3.1 at www.biodiversidadcanarias.es), in which species composition for 

500 × 500 m cells was obtained and includes 99% of native seed plant species of Tenerife (434 

species). Species composition is based on all known distribution records of species on the Canary 

Islands. We used cells with the highest occurrence precision, i.e., levels 1 and 2, in which species 

were identified and recorded within the cell. We aggregated cells at 1 km² and removed 535 cells 

(out of a total of 2043 island cells) located in urban areas (Supplementary Figure 3). We note that 

the Banco de Datos de Biodiversidad data may have sampling issues related to sampling effort, as 

certain cells may be oversampled due to accessibility or the presence of endemic species 

(Steinbauer et al., 2016). To overcome these reasons, we aggregated cells at a larger grain (1 km²). 

We assigned each plot and cell to the vegetation type where they were located based on the 

vegetation map for the Canary Islands (Del Arco Aguilar 2006) 

(http://www.idecanarias.es/resources/Vegetacion/Memoria_MapaVegetacion.pdf), and we 

checked the mount of shared species across vegetation types (Figure III-3 f and Supplementary 

Figure 6). 

 

Estimating functional diversity  

To investigate patterns of functional diversity across and within local and regional scales, we used 

the distance-based approach by Chao et al., (2019) to measure functional diversity and 

dissimilarity. Conventional distance‐based approaches, such as functional richness, evenness, and 

dispersion (Laliberté & Legendre 2010), are not very sensitive to species pairwise distances 

(Villéger et al., 2008) potentially leading to similar functional diversity values for assemblages with 

http://www.biodiversidadcanarias.es/
http://www.idecanarias.es/resources/Vegetacion/Memoria_MapaVegetacion.pdf
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high functionally distinct species (Chao et al., 2019). Here, we used an approach that is more 

sensitive to species‐pairwise distances (Chao et al., 2019), which implements the parameter tau. 

Tau specifies the level of threshold distinctiveness between any two species and is interpreted as: 

at a given threshold level of tau, when the distance of two species is less than tau, we assume that 

species are functionally equally distinct from the other species. We used the suggested tau = Dmean 

(Chao et al., 2019), which is the mean distance of any two randomly chosen individuals based on 

the distance matrix (in contrast to the conventional approach which uses the maximum value of 

the distance matrix). To produce a distance matrix that reflects functional dissimilarity between 

species, we assessed the number of dimensions that maximizes the quality of the matrix (Maire 

et al., 2015); based on the eight plant functional traits, we determined that five dimensions 

maximized the quality of the resulting functional space (Supplementary Figure 4).  

 

Effect of spatial scale on functional diversity  

To assess the effect of spatial scale on functional diversity we constructed functional diversity 

accumulation curves for the whole island and for the six vegetation types using sample-based 

rarefaction (Gotelli & Colwell 2001; Chiarucci et al., 2008) for both local spatial grains. The 

rarefaction curves resemble the species-area relationship (Rosenzweig 1995) and are built by 

successively selecting sample units and calculating the average functional diversity when 1, 2,…,N 

(N = all sample units) are combined together (Gotelli & Colwell 2001). For each number of selected 

sample units, we repeated this process 999 times. We calculated functional diversity using the 

‘FunD’ function implemented (Chao et al., 2019; 

https://github.com/AnneChao/FunD/blob/master/FunD_Rcode.txt). To evaluate if functional 

diversity patterns at the regional scale percolate down to the local scale, we calculated functional 

diversity within plot and cells (alpha functional diversity), as well as among plots and cells (beta 

functional diversity) per vegetation type. To have comparable values of alpha and beta functional 

diversity across vegetation types, as each vegetation type covers a different area on the island 

(Figure III-1), we standardized alpha and beta functional diversity to a common number of 

sampling units (Gotelli & Colwell 2001). To this end, we standardized functional diversity to eight 

sampling units (the vegetation type with the minimum number of plots comprised 10, thus 8 plots 

were selected for the rarefaction) for each spatial grain, which were randomly selected 999 times 

for each vegetation type and then calculated functional diversity based on the sub-sample. 

Standardized alpha and beta produced unbiased values of the differences among vegetation types 

within spatial grains. We used the ‘FunD’ and ‘Multi.Beta’ functions (Chao et al., 2019) to compute 

https://github.com/AnneChao/FunD/blob/master/FunD_Rcode.txt
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alpha and beta functional diversity respectively. Beta functional diversity calculated here is based 

on functional dissimilarity, i.e., Sørensen functional non‐overlap measure (Chao et al., 2019), 

which quantifies the effective average proportion of non‐shared species across sample units. We 

defined gamma diversity as the total functional diversity of a vegetation type at both spatial grains. 

We calculated gamma functional diversity by selecting all species occurring within a vegetation 

type and then computing functional diversity with ‘FunD’ function. As our analysis was based on 

incidence data, we used Hill number q = 0 that counts species equally without accounting for their 

relative abundances. Finally, for comparison purposes, we built species richness accumulation 

curves and calculated alpha, beta, and gamma taxonomic diversity, for both spatial grains per 

vegetation type. For this, we used the ‘FunD’ function and set the tau value to minimum, i.e., 

where the minimum distance (based on the traits-based distance matrix) between any two species 

defined them as functionally distinct, which reduces the metric to taxonomic diversity (Chao et 

al., 2019).  

 

Climate and topography 

We investigated the effect of climate on functional diversity using mean annual precipitation 

(PREC; mm/year) and mean annual temperature (TEMP; °C) using the Climatologies at High 

resolution for the Earth's Land Surface Areas (CHELSA) dataset at a spatial grain of c. 1 km² (Karger 

et al., 2017). In terms of topography, we used elevation (ELEV; m a.s.l.) and roughness (derived 

from elevation) from the Shuttle Radar Topography Mission at spatial grain 250 m (SRTM) dataset. 

We computed terrain roughness (i.e., the largest inter‐cell difference of a focal cell and its 

surrounding cells) (Amatulli et al., 2018) within a 9 km² area on the elevation data, which 

comprised 12 × 12 pixels for the SRTM data.  

 

Assessing drivers of plant functional diversity at the local scale 

To assess the effects of climate and topography on functional diversity, and if their effects vary 

across local grains, we assessed functional diversity at the two spatial grains with two main abiotic 

drivers of diversity, climate and topography. Because species richness was highly correlated with 

functional diversity (Spearman’s correlation coefficient > 0.7, see Supplementary Figure 5), we 

controlled for species richness by standardizing functional diversity to a common minimum 

number of species, i.e., five species. We tested the effect of standardizing functional diversity for 

two additional minimum numbers of species, three and eight species. We note that standardizing 
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functional diversity using larger species (e.g., ≥ 8) led to critical low numbers of plots available, 

which could complicate the linear regression analysis. Thus, we found the optimal trade-off to 

standardizing to five species (see Supplementary Figure 5). We then calculated the mean 

functional diversity value per sample unit for both spatial grains by randomly selecting five species 

per sample unit and calculating functional diversity with the ‘FunD’ function with tau = Dmean 

(Chao et al., 2019) 999 times, after which we calculated mean functional diversity for each sample 

unit. Lastly, we used a generalized linear model (GLMs) with the gamma family and log link 

function, as functional diversity (the response variable) was skewed and always positive, to 

examine variation in functional diversity in response to mean annual precipitation, mean annual 

temperature, elevation, and roughness. To compare predictor variables with disparate 

distributions, we standardized them by z-transforming them, i.e., first log transforming variables 

that were not normally distributed (Supplementary Figure 9). We then fitted two separate models 

for each spatial grain (Supplementary Figure 10). We assessed GLMs quality by checking residual 

diagnostics for GLM regression models using DHARMa package R (Hartig 2019) (Supplementary 

Figure 11). 

 

RESULTS 

 

We found that functional diversity increased with the number of sampling units for each spatial 

grain and was higher at the larger spatial grain (1 km²) than at the smaller spatial grain (100 m²; 

Figure III 2a). Functional diversity for all vegetation types at both spatial grains increased with area 

sampled (Figure III-2b and c). We found differences in the functional diversity accumulation curves 

for both spatial grains. At the smaller spatial grain, functional diversity continued to increase, 

whereas at the larger spatial grain functional diversity saturated rapidly, with the exception of 

pine forest (Figure III-2 c).  
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Figure III-2 Functional diversity accumulation curves of native plant communities on Tenerife at two spatial grains , plots 
(100 m²) and cells (1 km²), across the entire island (a) and per vegetation type at each grain (b and c). Dotted vertical 
lines illustrate the largest amount of accumulated sampled plots or cells defined given the smallest number of plots and 
cells contained in the rocks vegetation types.  

 

Functional diversity varied across the six vegetation types and spatial grains (Figure III-2 b and c). 

At the smaller spatial grain, coastal scrub and thermophilous woodland had the highest functional 

diversity, laurel and pine forest had intermediate functional diversity, and the summit scrub had 

the lowest functional diversity. We also observed differences in the shape of the relationships for 

some vegetation types, particularly among the slopes near the base of the accumulation curves. 

For example, summit scrub had a shallow slope relative to all other vegetation types (Figure III-2 

b), indicating the prevalence of a few common, functionally equivalent species. In contrast, rock 

vegetation had the steepest slope at its base (Figure III-2 b), which indicates the presence of a 

large number of functionally distinct species. At the larger spatial grain, laurel forest and 

thermophilous woodland had functional diversity, while summit scrub had the lowest functional 

diversity (Figure III-2 c). At larger spatial grain, the slopes near the base of the accumulation curves 

across vegetation types well similarly steep, yet initial values of functional diversity differed 

(Figure III-2 c). 

 

We found that functional diversity patterns across vegetation types at the regional (i.e., gamma) 

scale percolated down to local scale (see functional diversity hierarchy and trend across 

vegetation types from alpha to gamma scale Figure III-3 a-b and e-f). Consistently across scales, 

when using the finest local grain functional diversity was highest in the coastal scrub while using 

the coarse local grain functional diversity was highest in the laurel forest. In general, beta 

functional diversity trends mirrored alpha functional diversity patterns for both local grains, i.e., 

both 100 m² and 1 km² (Figure III-3 c, d). But, we found that the beta functional diversity ranking 

for rocks vegetation type was higher than summit scrub in comparison to alpha functional 



38 

diversity, where rock vegetation types had the lowest values. Lastly, we found similar patterns 

across vegetation types for beta functional diversity with respect to alpha patterns. 

 

 

Figure III-3 Functional diversity patterns of Tenerife vegetation types from within local (alpha) and regional (gamma) 
spatial scales (a, b, c, e) and across local spatial scales (beta) (c, d) for two spatial grains, 100 m² and 1 km². Vegetation 
types are arranged by Tenerife elevational gradient, from coastal scrub in the lowlands to the summit scrub at the high 
elevations. Note, rock vegetation type covers (as patches) from low to mid elevation of the island. Abbreviations stand 
for: CO coastal scrub, TH thermophilous woodland, LA and PI laurel and pine forest, SU summit scrub and RO rocks 
vegetation type. 

 

Drivers of plant functional diversity at the local scale 

We found that climate and topography differentially affected alpha functional diversity across 

spatial grains (Figure III-4). At the smaller spatial grain, neither climate or topography had 

detectable effects on functional diversity. At the larger spatial grain, however, functional diversity 

decreased with increasing elevation and temperature and increased with increasing precipitation. 

From the GLMs residual diagnostics we found regression residuals deviation for models where 

functional diversity was estimated at 1 km² (Supplementary Figure 11). Finally, we found that 
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functional diversity accumulated faster with increasing area than species diversity, a pattern that 

was consistent across vegetation types (Supplementary Figure 7 and 8).  

 

 

Figure III-4 Scale-dependent environmental effects on functional diversity computed at plot grain (a) and at cell grain 
(b). We fitted a generalized linear model with the gamma family and log link function after standardizing covariates 
using z- and log transformation. 

      

DISCUSSION  

 

In our study we found that functional diversity is scale dependent, it increased nonlinearly with 

spatial grain and patterns of functional diversity differ depending on spatial grain used to calculate 

it. We further found that regional patterns of functional diversity percolated to local scales and 

the processes driving functional diversity act differently depending on the spatial grain. At small 

grains (100 m²) species interaction may be affecting functional diversity whereas at larger local 

grains (1 km²) the environment has a significant effect on functional diversity. Lastly, we found 

that the functional diversity trend across space differs from the taxonomic diversity trend. While 

functional diversity stagnated with increasing spatial grain, taxonomic diversity continued 

increasing.  

 

Functional diversity is scale dependent  

As expected, our results provide evidence for the scale dependency of functional diversity, 

increasing with spatial grain and extent (Figure III-2). Generally, the increase of functional diversity 

with increasing area relates first to the higher probability of species adding distinct combinations 

of functional traits, as larger areas contain more species (Rosenzweig 1995). Also, larger areas 

usually have higher levels of environmental heterogeneity and diversity of habitats (Kallimanis et 
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al., 2008; Hortal et al., 2013), which allow species to occupy different niches and enhance the co-

occurrence of distinct functional groups (Scheiner 2003; Loreau et al., 2003). Differences in the 

shape of the accumulation curves among the two spatial grains captures differences in the number 

of functional types sampled per area, which is expected as one plot is 10,000 times smaller than a 

grid cell.  

 

Functional diversity at regional scales 

The climatic and elevational gradients on Tenerife have shaped the functional diversity of the 

island at the regional scales (Figure III-1 and Supplementary Figure 1). In the arid to semi-arid 

zones of the island, i.e., coastal scrub, thermophilous woodland and summit scrub, hydric and 

thermal stress as well as poor soils (Fernández-Palacios & de Nicolás 1995; Otto et al., 2006) 

constrain trait combinations that are viable under such harsh conditions. For instance, high leaf 

thickness and intermediate stature of stem succulent plants (e.g., Euphorbia canariensis and 

Euphorbia balsamifera) allow plants to cope with the prolonged dry season in the lowlands (Otto 

et al., 2001). In the thermophilous woodland tough leaves and high values of leaf dry matter 

content prevent water loss for plants (Otto et al., 2001). In the arid and high elevation zones, i.e., 

summit scrub, plants have reduced stature and relatively high stem densities that allow them to 

survive the lack of water, low temperatures, high solar radiation and poor soil conditions. In the 

humid zones at the island mid-elevations laurel forest (located 600 - 1200 m a.s.l., at the sea of 

clouds level) is dominated by trees (e.g., Laurus novocanariensis and Persea indica) (De 

Nascimento et al., 2009) with tall stature and large seeds. The canopy of the pine forest is 

dominated by a single tree species the Canarian pine (Pinus canariensis), a tall and large seeded 

plant with adaptations to a more arid environment (De Nascimento et al., 2009). In both Laurel 

and Pine forest shrub and herbs species are present in the understory. Such plants have different 

trait combinations that increase the functional diversity.  

 

The differences of functional diversity across regional scales, relate to the difference in their 

environmental conditions. The abiotic stress caused by lack of water of the summit scrub tends to 

homogenize trait combinations among species (Spasojevic & Suding 2012). Further, the high 

isolation level of summit scrub, which is climatically isolated from its surrounding similar 

ecosystems, may also be driving the lower functional diversity (Fernández-Palacios et al., 2014; 

Ah-Peng et al., 2014). Such conditions constrain plant growth and the distribution of trait 



PLANT FUNCTIONAL DIVERSITY ON AN OCEANIC ISLAND VARIES ACROSS SPATIAL SCALES 

41 

combinations, resulting in co-occurring species that share similar trait combinations to cope with 

the harshness of the environmental conditions (Spasojevic & Suding 2012). In contrast, resource-

rich areas such as the laurel forest have higher functional diversity (Spasojevic & Suding 2012). 

The high functional diversity of coastal scrub and thermophilous woodland is driven by the 

presence of various functionally distinct species, i.e., herbaceous, shrubs and tall woody plants. 

The high functional diversity of laurel forest, at the large local grain (1 km²) is linked to the high 

resource availability of this vegetation type driven by the high humidity. Precipitation supports 

high plant productivity as well as species diversity (Kreft et al., 2007; Knapp et al., 2017). The 

intermediate functional diversity of pine forest compared to other vegetation types relate to the 

strong prevalence of one species, i.e., the Canarian pine. Lastly, the low functional diversity of 

rocks vegetation type relates to its small fragmented area and to the reduced number of species 

that belong to it. Lastly, generally the low functional diversity of both summit scrub and rocks 

suggests that certain trait combinations are absent, such as tall plants like trees.  

 

Functional diversity from regional to local scales  

Our results showed that functional diversity patterns percolate down from regional to local scale, 

as functional diversity patterns of alpha, beta and gamma functional diversity were similar. This 

indicates that the community composition at the local scale and the smaller spatial grain has been 

shaped by similar abiotic and biotic filters as at the regional scale (Zobel 2016). Further, the similar 

patterns we found across vegetation types for alpha and beta functional diversity indicate that 

within each vegetation type, spatial variation in functional diversity is low, which also suggests 

that ranges and trait syndromes of each vegetation type are limited and similar.  

 

Functional diversity across the elevational gradient of an oceanic island 

Our results provide evidence that functional diversity changes across the elevational gradient 

(Figure III-3). Functional diversity decreases with increasing elevation, which relates to multiple 

factors (Rahbek et al., 2019). At high elevations, climatic conditions constrain plant growth and 

distribution, i.e., low temperature and precipitation filters for species with traits adapted to such 

conditions, as well as species that can tolerate high solar radiation and poor soil conditions (Girma 

et al., 2018). With increasing elevation vegetation becomes more isolated, this may also impose a 

dispersal barrier for plants (Fernández-Palacios et al., 2014). The peak of functional diversity of 

laurel forest is also related to the species accumulation at the mid-elevations, because it is possible 
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for species to immigrate from low to high areas of the islands (Steinbauer et al., 2018). Identifying 

functional diversity patterns along elevational gradients is key to understanding potential 

biodiversity changes, such as shifts of functional groups across geographic ranges (upwards) as a 

response to increasing temperatures (Colwell et al., 2008). With imminent global warming 

lowland extinctions and, thus, functional diversity of arid vegetation types, such as coastal scrub 

and thermophilous woodland, may face a big threat (Steinbauer et al., 2018; Nowak et al., 2019).  

 

Our results provide evidence that environmental conditions, i.e., temperature, elevation and 

precipitation affect functional diversity at the larger (1 km²), but not at the smaller spatial grain 

(100 m²). The negative effect of both elevation and temperature on functional diversity (see 

models for 1 km² spatial grain in Figure III-4) is consistent with the low functional diversity values 

we found at the regional scale for summit scrub. The positive effect of precipitation on functional 

diversity we found (see cell models in Figure III-4) relates to the high functional diversity of the 

humid zones of the island, i.e., laurel forest. Our results are also consistent with several plant 

diversity studies, where precipitation is generally positively related to functional group and 

species richness (Otto et al., 2001; Kreft & Jetz 2007). At the smaller spatial grain however, 

environmental and topographic conditions did not impact variation in functional diversity, 

suggesting that biotic interactions, for instance competition, may be shaping functional diversity 

(de Bello et al., 2012).  

 

Functional diversity complements taxonomy diversity  

In our study, we show that taxonomic measures of biodiversity, such as species richness 

(Supplementary Figure 7 and 8), are not a surrogate of functional diversity (Díaz & Cabido 2001). 

Although high species richness leads to higher functional richness, our results showed that both 

diversity estimations accumulate differently on space. While functional diversity reached an 

asymptote with increasing grain size (Figure III-2), taxonomic diversity did not (Supplementary 

Figure 7 and 8). This suggests that species richness overestimates functional richness and that 

changes in species identities impoverishment may lead to drastic changes in functional diversity 

(Díaz & Cabido 2001). Studying how species traits affect functional aspects of biodiversity is a step 

forward to understand diversity emerge at local and regional scales (Bender et al., 2019). Lastly, 

we are aware that in our study we considered species being functionally uniform, yet species traits 
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greatly vary among individuals. Such variation may be systematic (e.g. life stage, environment) 

and it can also affect the functional diversity.  

 

CONCLUSIONS 

 

Functional diversity is influenced by two components of spatial scale, extent and grain. We found 

abiotic conditions playing a major role defining the functional diversity of the island, where large 

and habitat diverse areas, such as the arid and semiarid vegetation types showed high functional 

diversity. In mesic suitable conditions areas of the island, such as laurel forest functional diversity 

is positively affected. The steep elevational gradient of Tenerife shaped the island's temperature 

and humidity gradient and with it the functional diversity. The trend of functional diversity along 

Tenerife elevational gradient was however different depending on the local grain. Further, we 

show that taxonomic diversity is not a direct surrogate of functional diversity. Thus, studying both 

biodiversity facets is key to understanding plant diversity patterns and dynamics. Our study 

broadens our understanding on the relationship between local estimations of functional diversity 

and their relation to regional diversity dynamics, which is relevant to identify the processes 

maintaining biodiversity.  
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ABSTRACT 

 

Aim: The General Dynamic Model (GDM) links island biogeographical processes to island 

geological history. A key premise of the GDM implies that environmental factors shaping the 

ecology and evolution of biota on oceanic islands follow a hump-shaped trend over the island’s 

life span and drive dynamics in carrying capacity, species diversity and endemism. An important 

component of the GDM is environmental heterogeneity (EH), but its effects on insular diversity 

remain poorly understood. Here, we first quantified EH, tested whether EH follows the expected 

hump-shaped trend along island ontogeny and evaluated how EH relates to plant diversity.  

Location: 135 oceanic islands of volcanic origin. 

Taxon: Vascular plants. 
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Methods: We calculated 20 EH metrics focusing on topographic and climatic components of EH, 

and comparing whole-island metrics (e.g., range) and moving-window metrics (e.g., roughness). 

Using linear mixed-effects models, we evaluated the trends of EH with island age and the EH-plant 

diversity relationship expected based on the GDM.  

Results: Our analysis revealed some EH components to be collinear, e.g., elevation and 

temperature heterogeneity, but also that EH metrics capture different aspects of EH, e.g., climatic 

gradients vs. climatic complexity. EH generally followed a hump-shaped trend with island age, 

peaking early during island ontogeny. Among the EH components, climatic heterogeneity had the 

strongest effect on plant species richness and elevation heterogeneity on endemism. Lastly, 

including EH metrics in GDMs (traditionally, only island age and area were included) improved 

their predictive power.  

Main conclusions: The EH metrics compared here captured various attributes of the environment 

that influence insular plant diversity. In line with the GDM, our results strongly support a hump-

shaped relationship between EH and island age, suggesting that islands become highly 

heterogeneous early in their ontogeny. Finally, the contribution of EH to GDM-based models of 

species richness and endemism suggests that EH is a main driver of the diversity of oceanic island 

biotas.  
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INTRODUCTION 

 

Environmental heterogeneity (EH) encompasses the spatial variation of key components of the 

abiotic and biotic environment, such as climate, topography, land cover and vegetation (hereafter 

´EH components´), and is a main driver of species richness (Stein et al., 2014; Keppel et al., 2016). 

Environments with high levels of heterogeneity, such as mountain ranges, usually host larger 

numbers of species (Barthlott et al., 2005; Dufour et al., 2006) than homogeneous ones. EH affects 

species richness via three mechanisms (Stein & Kreft, 2015). First, greater EH allows more species 

to coexist by increasing the length of environmental gradients and habitat diversity, which also 

facilitates the chance of establishment for immigrant species (MacArthur & MacArthur, 1961; 

Hoorn et al., 2013; Antonelli et al., 2018). Second, EH enhances species diversification resulting 

from isolation and adaptation of species to spatially variable conditions (Hortal et al., 2013; 

Molina-Venegas et al., 2017). Third, EH facilitates species persistence by providing shelter and 

refugia from adverse environmental conditions, e.g., during glacial cycles or periods of prolonged 

drought (Svenning & Skov, 2007; Keppel et al., 2015).  

 

Oceanic islands are highly dynamic systems with heterogeneous environments, unique biota and 

outstanding levels of endemism (Kier et al., 2009; Weigelt et al., 2013). Oceanic islands are 

typically characterized by a rapid volcanic growth and a relatively short life span, which can range 

from days (Sabrina, Azores in 1811) to tens of millions of years (Fuerteventura 20 Ma) (Fernández-

Palacios et al., 2014). Some oceanic islands reach remarkable elevations, such as the Mauna Kea 

(4207 m a.s.l.) on the Island of Hawai’i or Mount Teide (3718 m a.s.l.) on Tenerife, and these 

impressive elevational gradients cause marked differences in temperature, orographic 

precipitation regimes and rain shadow effects over short geographical distances. Over geological 

time scales, island surfaces change from high and smooth volcanos, through highly rugged terrain 

when erosion shapes mountain ridges, to flat island remnants (Paulay, 1994; Price & Clague, 

2002). Such changes are caused by the interplay between volcanic activity, erosion, landslides and 

subsidence (Carracedo et al., 2011; Badgley et al., 2017). Certain oceanic islands have a complex 

geological history with repeated episodes of volcanism and mega-landslides (Neall & Trewick, 

2008; Gillespie & Roderick, 2014). Hence, oceanic islands may exhibit high EH in terms of 

topography, climate (e.g., orographic precipitation regimes) and soil conditions (Whittaker et al., 

2007; Seijmonsbergen et al., 2018). However, little is known about how ecologically relevant 
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components of EH change over the life span of oceanic islands and how these changes affect the 

biogeographical processes generating and maintaining insular diversity. 

 

Investigating how the dynamic nature of EH through the ontogeny of islands (i.e., island 

development through its geological life span from island emergence, island building, advanced 

island age to island submergence) affects colonization, speciation and extinction rates and 

emergent patterns of insular species diversity is at the forefront of modern island biogeography 

(Borregaard et al., 2017; Whittaker et al., 2017). The General Dynamic Model (GDM) links the 

geological dynamics of oceanic islands to biogeographical rates and diversity patterns (Whittaker 

et al., 2008). One of the three premises of the GDM states that island elevational range, 

topographic complexity (both belonging to the topographic component of EH) and island area 

change in a predictable manner over time and peak at intermediate island age, causing a hump-

shaped pattern in island carrying capacity and species richness (Whittaker et al., 2008; Valente et 

al., 2014; Lim & Marshall, 2017). The peaks in carrying capacity and species richness are assumed 

to occur between the time when an island first reaches its maximum elevation with steep climatic 

gradients, and the times when it reaches maximum topographic complexity after having 

experienced erosion, i.e., a rugged and dissected landscape with a large number of different 

habitats. The hump-shaped relationship between species diversity, island area and age has been 

summarised in the GDM and was originally mathematically expressed as: Biodiversity ~ ln(Area) + 

Time + Time², called the ‘ATT² model’ (Whittaker et al., 2008).  

 

Despite these clear theoretical underpinnings, the complex geological histories and often 

idiosyncratic trajectories of individual oceanic islands (Ali, 2017) may limit the applicability of the 

GDM (Keppel et al., 2016; Borregaard et al., 2017). Most empirical tests of the GDM have focused 

on the relationship of island area and age with species richness (Steinbauer et al., 2013; 

Borregaard et al., 2017; Lenzner et al., 2017). The few studies that included EH found species 

diversity best explained when both area and EH were included in the models (Keppel et al., 2016). 

However, the validity of the assumption of a hump-shaped relationship between EH and island 

age - to the best of our knowledge - has never been tested before. Also, the effect of EH on insular 

plant diversity (i.e., inclusion of EH in the ATT² model) and species diversity remains poorly 

understood (but see e.g. Triantis et al., 2003; Hortal et al., 2009). The apparent research gap on 

EH research on islands is partly due to EH being a multifaceted concept and difficult to quantify in 
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an ecological meaningful way, i.e., to capture all attributes of heterogeneity in an environment 

that may drive species diversity. 

 

The quantification of EH is complicated by at least two main challenges. First, EH comprises a 

potentially large number of different components (e.g., related to precipitation, topography and 

soil types). Second, different quantification methods may capture different aspects of EH (Stein & 

Kreft, 2015). In addition, the spatial scale at which EH is calculated may affect the results of EH 

quantification (Jackson & Fahrig, 2015) and interactions with island area can potentially modify 

the effect of EH on diversity (Allouche et al., 2012; Hortal et al., 2013). For instance, the area-

heterogeneity trade-off hypothesis predicts species diversity to decrease at high levels of EH, 

because the effective area of individual habitats is reduced (Allouche et al., 2012). While 

theoretical arguments opposing the area-heterogeneity trade-off hypothesis have been raised 

(Hortal et al., 2013), it remains largely unknown if there is an interactive (positive or negative) 

effect of island area and EH on diversity on islands (but see Hortal et al., 2009) and how this relates 

to the GDM.  

 

Therefore, we set three aims for the present study. First, we aim to calculate and compare various 

alternative, ecologically meaningful EH metrics across a large number of oceanic islands 

worldwide by focusing on two main abiotic EH components, namely climatic and topographic 

heterogeneity. Second, we test the GDM premise that EH exhibits a hump-shaped relationship 

with island age. Finally, we evaluate the effect of EH on plant diversity of oceanic islands and 

examine the EH effect on predictor variables of the GDM (island area and time) and the potential 

interaction between EH and island area on diversity, by including different variants of EH in the 

ATT² model.  

 

MATERIALS AND METHODS 
 

We studied the spatial environmental heterogeneity (EH), its relationship with island age and its 

effect on species diversity of vascular plants for 135 oceanic islands of volcanic origin (Figure IV-

1), which belong to 41 archipelagos worldwide (Figure S2.1). We restricted the analysis to islands 

> 2 km², as EH could not be calculated in a meaningful way for smaller islands, given the spatial 

grain of the climatic variables (1 km). We worked with two aspects of plant diversity, (i) species 
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richness of native species and (ii) single-island endemics. The latter reflects evolutionary processes 

on islands, such as in situ speciation (Weigelt et al., 2016). We obtained the information about 

plant diversity, as well as island characteristics (island age and area), from the Global Inventory of 

Floras and Traits (GIFT). The GIFT database provides information on distributions and floristic 

status (native, endemic, alien) of plant species based on a wide range of regional floristic 

databases, floras and checklists (Weigelt et al., 2020). The full list of original literature resources 

used to obtain species diversity information is available in Supplementary S1. 

 

 

Figure IV-1 Workflow of quantifying environmental heterogeneity (EH) for 135 oceanic islands worldwide , displayed as 
black dots in the world map. A total of 20 EH metrics were calculated for each island to capture four EH components: 
elevation (ELEV; m a.s.l.), mean annual precipitation (PREC; mm/year) and mean annual temperature (TEMP; °C), and 
one derived variable from ELEV, heat load index (HLI). Two types of metrics were investigated (i) whole-island metrics 
that summarized EH per island by its range (rg) or standard deviation (sd) on the four EH components and (ii) moving-
window metrics that first calculated statistics for a focal cell within the specified window size (9 km²), resulting into 
heterogeneity rasters for each EH component, and then summarized EH for each island using the mean value of the 
heterogeneity rasters, i.e., mean of dissection (dis), standard deviation (msd) and roughness (rou). Tenerife island (2034 
km²) is shown as an example displaying the different EH components, heterogeneity rasters and the 9 km2 window size.  

 

Environmental heterogeneity components 

To assess the climatic component of EH, we used mean annual precipitation (PREC; mm/year) and 

mean annual temperature (TEMP; °C). Both variables influence the water and energy available to 

plants and are strong determinants of plant diversity (Kreft & Jetz, 2007). The information of PREC 

and TEMP were derived from the Climatologies at High resolution for the Earth’s Land Surface 

Areas (CHELSA) dataset at a spatial grain of c. 1 km (Karger et al., 2017). To evaluate the 

topographic component of EH, we used elevation (ELEV; m a.s.l.) from the Shuttle Radar 

Topography Mission (SRTM) dataset, at a spatial grain of 250 m (Jarvis et al., 2008). From the ELEV 

data, we derived the heat load index (HLI), using the formula: HLI = -1.467 + 1.582 * cos(L) * cos(S) 

- 1.5 * cos(Fa) * sin(S) * sin(L) -0.262 * sin(L) * sin(S) + 0.607 * sin(Fa) * sin(S), where L = latitude, 
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S = slope and Fa = folded aspect (see Equation 1 in McCune & Keon, 2002 and McCune, 2007). HLI 

assesses topography-associated thermal gradients by including the slope aspect. Slope aspect 

strongly influences local temperature, i.e., equatorial facing slopes are warmer than polar facing 

slopes. Thus, slope aspect influences the thermal condition in a habitat (McCune, 2007). HLI has 

already been related to distribution patterns of plant diversity (He et al., 2017).  

 

Quantification of EH across oceanic islands 

To quantify the two main EH components, climatic and topographic heterogeneity, we calculated 

two types of metrics (Figure IV-1). First, we used whole-island metrics describing the range and 

the spatial variability of the EH components over the whole island. These metrics can describe 

island carrying capacity of an entire oceanic island (Stein et al., 2015). To this end, we summarized 

EH per island by the range (rg) and the standard deviation (sd) of the environmental variables 

ELEV, HLI, PREC and TEMP. Second, we used moving-window metrics to calculate the local 

environmental turnover of either climate or topography within a defined area (Amatulli et al., 

2018). This group of EH metrics can provide information about climatic and topographic 

complexity, and potential topography-associated dispersal barriers within islands. 

 

We applied a moving window approach (Hagen-Zanker, 2016) that calculates statistics for a focal 

cell within a specified window size (here 9 km² comprised 3x3 and 12x12 pixels for CHELSA and 

SRTM data, respectively). Within the 9 km² window, we calculated three statistics (1) dissection = 

(z – zmin) / (zmax – zmin), where zmax = maximum, zmin = minimum and z = focal cell value within the 

window, (2) standard deviation and (3) roughness (i.e., the largest inter-cell difference of a focal 

cell and its surrounding cells) (Riley et al., 1999; Amatulli et al., 2018). This produced three new 

raster layers for each EH component (hereafter ‘heterogeneity rasters’) with identical spatial 

extent and grain as the input and each new cell describing the heterogeneity within the window. 

We then summarized EH for each island by calculating the mean value of the heterogeneity rasters 

and termed them ‘dis’, ‘msd’ and ‘rou’, respectively (Figure IV-1). We named the EH metrics by 

referring first to the environmental variable abbreviation in uppercase, followed by the calculation 

metric abbreviation in lower case, e.g., ELEVrou for the mean roughness in elevation per island 

and PRECrg for the range in precipitation per island.  
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Window size and spatial grain can influence EH quantification. We therefore tested three 

alternative window sizes (3, 25 and 49 km²) on three different spatial grains (250 m, 500 m and 1 

km, the last two grains were aggregated from initial ELEV at 250 m) using the ELEV data only 

(Supplementary Figure S3.6). Following the same procedure as described above for moving-

window metrics, we obtained EH values per island and compared values across islands using 

correlation analysis. We calculated the EH metrics using R version 3.5.2 (R Development Core 

Team, 2018) using the extract function from the package raster (Hijmans et al., 2018). For 

computing the HLI and the heterogeneity rasters dissection, roughness and standard deviation, 

we used the Spatial Analyst extension and the Geomorphometry & Gradient Metrics toolbox 

(Evans et al., 2014) in ESRI ArcGIS version 10.4.  

 

Statistical analysis  

We used Pearson’s correlation coefficients to relate EH metrics to each other, and to assess 

similarities among EH components and the two types of metrics. To test the GDM premise of a 

hump-shaped trend in EH over island age (see relationships between island age and individual EH 

metrics in Supplementary Figure S4.7), we replaced ‘Biodiversity’ with a respective EH metric as a 

response variable in a modified GDM formula that uses a log-transformation of Time (Steinbauer 

et al., . 2013): ln(EH metric) ~ ln(Area) + ln(Time) + ln(Time²) + (1|Archipelago), where ‘ln’ is the 

natural logarithm (hereafter ‘EH ~ ATT²’ model). We fitted the EH ~ ATT² formula using linear 

mixed effect models (LMM) that account for the variation across archipelagos as random 

intercept, because EH and species diversity of individual islands depend on archipelago 

characteristics (Bunnefeld & Phillimore, 2012; Borregaard et al., 2016). All EH metrics were scaled 

to zero mean and unit variance to facilitate comparisons among different EH measures. We then 

produced model predictions to assess the trend of EH with island age, by keeping island area and 

archipelago constant (median island area and one selected archipelago, Hawaii). We verified if the 

log-transformation of island age produced statistically more robust models by fitting the EH ~ ATT² 

formula without log-transforming island age and using Akaike's Information Criterion (AIC), and 

how island area influenced the EH metrics, as area may interfere with the identification of EH per 

se (Stein et al., 2014), by plotting coefficient estimates for the EH ~ ATT² models.  

 

We evaluated the effect of EH on the diversity of vascular plants, by including each EH metric 

separately as a predictor variable in the modified GDM formula (Steinbauer et al., 2013): 

Biodiversity ~ ln(EH metric) + ln(Area) + ln(Time) + ln(Time²) + (1|Archipelago) + (1|Observation) 
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(hereafter ‘EHATT²’ model), where we replaced Biodiversity by (i) number of native species and 

(ii) number of single-island endemic species of vascular plants. We fitted the EHATT² models and 

for comparison also the ATT², which did not include EH, using generalized linear mixed-effect 

models (GLMM, with Poisson distribution error). To identify the differential effect of the 

investigated predictor variables, i.e., Area, Time, and each EH metric (we verified the effect of log-

transforming the metrics, see Table 4.2,  Supplementary Figure S3.2 and Figure S4.9), we 

compared the model coefficient estimates (Supplementary Figure S4.8). To determine if EH in 

addition to Area and Time improved model support, we used AIC values. Additionally, to test if 

island area affected the effect of EH on plant diversity, we ran the ATT² and EHATT² models 

including the interaction term ln(EH metric) * ln(Area). Lastly, based on model predictions, we 

evaluated the trend of plant diversity over island age, and tested the effect of excluding the 

quadratic term of age (Time²) from all EHATT² and ATT² models to identify the importance of this 

term, based on AIC values. For a complete model assessment, we first evaluated absolute model 

fit by computing marginal (fixed effects) and conditional (random effects) R2 values (Nakagawa & 

Schielzeth, 2013) for EH ~ ATT², as well as for EHATT² and ATT² models (Table S4.1 and Table S4.3). 

Second, using model diagnostics (QQ plot and residual vs. predicted values), we determined 

whether there were significant degrees of overdispersion for GLMM (i.e., EHATT² and ATT²). 

Overdispersion is common in models for count data and can be caused by aggregation among 

observations (Harrison et al., 2018), i.e., islands. It may cause Type I errors (false positives), as 

standard errors are underestimated. To fix this, we used the observation-level random effect 

approach (i.e., the identity of islands was set as random intercept), which gives more accurate 

estimates of standard errors (Harrison, 2014, 2015). R² values and overdispersion tests were 

computed in MuMIn (Bartoń, 2018) and DHARMa (Hartig, 2019), respectively. All statistical 

analysis were done using R 3.5.2 (R Development Core Team, 2018). The LMM and GLMM were 

fitted using the package lme4, and model coefficient estimates plots were produced using the 

package dotwhisker (Solt & Hu, 2015). 

 

RESULTS  

 

Assessment of EH metrics  

Our comparison of different EH metrics revealed strong similarities among topographic and 

climatic heterogeneity, namely between ELEV and TEMP heterogeneity (Pearson's correlation 

coefficients between 0.5 – 1 and average 0.72, see Supplementary Figure S3.3). PREC 
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heterogeneity, on the other hand, was only relatively weakly correlated with the other EH 

components (Pearson's correlation coefficients between 0.1 – 0.7 and average 0.29). Within the 

whole-island metrics, i.e., range (rg) and standard deviation (sd), we found a strong and positive 

correlation (Pearson's correlation coefficients between 0.5 – 0.9 and average 0.61) and within two 

moving-window metrics roughness (rou) and standard deviation (msd) the correlation was also 

positive (Pearson's correlation coefficients between 0.6 – 0.8 and average 0.57). Across whole-

island metrics and moving-window metrics the correlation was somewhat weaker (Pearson's 

correlation coefficients between 0.1 – 0.9 and average 0.49). In contrast, the moving-window 

metric using dissection weakly to negatively correlated with the other EH metrics (Pearson's 

correlation coefficients commonly < 0.4 and average 0.08). Our test using different window sizes 

and spatial grains showed high correlations across small and intermediate windows (3, 9, 25 km² 

calculated with 250 m, 500 m and 1 km spatial grain), yielding almost identical EH values per island 

(correlation coefficients > 0.88, Supplementary Figure S3.6), whereas the larger window 49 km² 

showed a slight difference in EH values (Supplementary Figure S3.6). In addition, we found that 

the heterogeneity rasters based on 9 km² window size clearly identified landscape features, such 

as ravines and mountainous areas, while the 49 km² window generally led to more diffuse patterns 

(see example in Supplementary Figure S3.4).  

 

Trends of EH over island age 

We found hump-shaped relationships between EH and island age for 16 out of the 20 EH metrics 

(Figure IV-2). Those 16 EH metrics showed a similar pattern over time, i.e., EH rapidly increased 

and peaked early, followed by a slow decrease over time. The remaining four EH metrics (moving-

window metrics using dissection, see yellow lines in Figure IV-2) showed an asymptotically or 

exponentially decreasing trend over time. The model comparison revealed that the log-

transformation of island age in the EH ~ ATT² formula was always stronger supported than models 

with untransformed data (Table S4.1). 
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Figure IV-2 Temporal trends of environmental heterogeneity (EH) over island age (in millions of years i.e., Ma) based on 

data for 135 oceanic islands. Predictions from EH ~ ATT² models where island area and archipelago were kept constant 

(median island area and one selected archipelago, i.e., Hawaii). The EH components are displayed separately, (a) mean 

annual precipitation (PREC), (b) mean annual temperature (TEMP), (c) elevation (ELEV) and (d) heat load index (HLI). 

Colored lines correspond to the type of metrics used, whole-island metrics are displayed in blue = range (rg) and green 

= standard deviation (sd), and moving-window metrics in yellow = dissection (dis), red = standard deviation (msd) and 

black = roughness (rou). EH metrics were scaled (zero mean, unit variance) to facilitate comparisons among different 

EH measures. 

 

EH as a predictor of plant diversity in the ATT2 model  

The majority of EH metrics had a positive effect on insular plant diversity (Figure IV-3), and they 

had an even stronger effect on single-island endemic species (compare x-axis in Figure IV-3). For 

the number of native species, PREC and TEMP heterogeneity had the strongest effect (Figure IV-

3a), particularly precipitation and temperature range (i.e., whole-island metrics PRECrg and 

TEMPrg). It was followed by the positive effect of climatic complexity in terms of precipitation 

(i.e., moving-window metrics PRECmsd and PRECrou) (Figure IV-3a). The number of single-island 

endemics species was most strongly affected by TEMP and ELEV heterogeneity (Figure IV-3b), 

specifically the range in temperature and elevation (TEMPrg and ELEVrg). Climatic (in terms of 

temperature) and topographic complexity (i.e., moving-window metrics TEMProu, ELEVmsd, 

HLImsd) also had a positive effect on single-island endemic species but PREC heterogeneity did 

not affect single-island endemics (Figure IV-3b). Moving-window metrics that used dissection 

neither affected native nor single-island endemic species (Figure IV-3).  
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Figure IV-3 Effects of environmental heterogeneity (EH) components and metrics, island area and age on species 

richness and endemism of vascular plants , in the framework of the general dynamic model (GDM). Coefficient estimates 

(dots) and 95% confidence intervals (bars) for (a) number of native species and (b) number of single-island endemic 

species, from models fitted with EHATT² and ATT² to compare the effect of including EH. The colored dots and bars 

correspond to a particular model depending on the EH metric included. Coefficients and error bars of the ATT² models 

are highlighted in black. Vertical dashed lines mark zero effects and covariates are not considered significant if the error 

bar intersects with the zero. Coefficient estimates were automatically scaled for direct comparison by 2 times their 

standard deviation. 

 

In all EHATT² and ATT² models, island area had the strongest effect (Figure IV-3), but its effect 

particularly decreased when whole-island metrics that measured ranges (TEMPrg, ELEVrg and 

PRECrg) were included in the models (see models coefficients and error bars of the ATT² model 

highlighted in black in Figure IV-3). Island age had a weak effect in all EHATT² and ATT² models 

(see Time and Time² coefficients estimates and error bars in Figure IV-3). However, the effect of 

both terms for age changed after including whole-island metrics measuring ranges (again TEMPrg, 

ELEVrg, PRECrg), i.e., the effect of the linear term (Time) increased and the quadratic term (Time²) 

decreased. The decrease of the effect of the quadratic term caused an asymptotic relationship of 

species richness and endemism with time (Supplementary Figure S5.10). Furthermore, models 

without the quadratic term of age (i.e., EHAT models) had lower AIC values than the EHATT² 

models (Table S5.4) and therefore a stronger support. Also, the majority of the EHATT² models 

received stronger statistical support than the ATT² model (Table S4.3), namely 15 out of 20 EHATT² 

models for predicting number of native species and 11 out of 20 EHATT² models for predicting 

number of single-island endemics (Table S4.3).  
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Finally, there was only limited support for an interaction between island area and EH 

(Supplementary Figure S5.11). For models predicting the number of native species, the positive 

interactions for one whole-island metric (PRECrg) and two moving-window metrics (PRECmsd and 

PRECrou) with island area (Supplementary Figure S5.11a) received statistical support. For models 

predicting the number single-island endemic species, nearly all moving-window metrics capturing 

precipitation and temperature heterogeneity (PRECdis, PRECmsd, PRECrou, TEMPmsd, TEMProu) 

had a significant and positive interaction with island area (Supplementary Figure S5.11b). None of 

the EH metrics for elevation and HLI significantly interacted with island area.  

 

DISCUSSION 

 

Our study aimed to identify ecologically meaningful measures of environmental heterogeneity 

(EH) on oceanic islands by assessing climatic and topographic components of heterogeneity 

related to precipitation (PREC), temperature (TEMP), elevation (ELEV) and heat load (HLI), and to 

evaluate the performance of whole-island as well as of moving-window metrics (Figure IV-1). We 

then tested a key premise of the general dynamic model of island biogeography (GDM; Whittaker 

et al., 2008) and showed that EH indeed follows the expected hump-shaped relationship with 

island age (Figure IV-2). We found strong evidence for an important role of EH as a driver of plant 

species richness and endemism of oceanic islands (Table S4.3). Metrics reflecting climatic 

heterogeneity (i.e., PREC and TEMP heterogeneity) are particularly relevant for species richness 

and temperature and topographic complexity (i.e., ELEV and TEMP and HLI heterogeneity) are 

particularly relevant for endemic species (Figure IV-3). Together, our results contribute to a better 

understanding of the role of EH for insular diversity patterns. 

 

Capturing the heterogeneity of insular environments 

Our assessment of different alternative ways to quantify EH of oceanic islands revealed that 

certain environmental components strongly co-vary, as seen in the strong positive correlation of 

elevation and temperature related heterogeneity metrics. This is due to the strong dependency 

of temperature gradients on the topography (Dobrowski et al., 2009). In contrast, precipitation 

heterogeneity was less strongly associated with metrics of other EH components (Supplementary 

Figure S3.3), indicating that EH metrics capture different aspects of the spatial variability in island 
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environments. This is further supported by the low to intermediate correlations among different 

types of metrics (whole-island metrics vs. moving-window metrics). 

 

The Island of Hawai’i nicely illustrates the contrast between whole-island and moving-window 

metrics (see Hawaiian archipelago EH-map in Supplementary Figure S3.5), as it had the largest 

observed values for climatic and topographic ranges (PRECrg, TEMPrg, ELEVrg metrics), but 

comparatively low climatic and topographic complexity (PRECrou, TEMProu, ELEVrou metrics). 

The large values for range metrics are explained by the fact that the Island of Hawai’i is the highest 

oceanic island worldwide. This produces steep and long gradients in temperature, as well as 

dramatic precipitation gradients created by the high elevation of the island and the trade winds 

(Giambelluca et al., 2013). Likewise, the Island of Hawai’i is characterized by a comparatively low 

climatic and topographic complexity, because the surface of this young island is relatively smooth 

compared to older, more eroded islands. These results indicate that whole-island metrics 

successfully describe total energy (TEMPrg, HLIrg), water supply (PRECrg) and available space for 

species (ELEVrg), all major elements of island carrying capacity (Hui, 2006). Moving window 

metrics, in contrast, are more suitable for describing the climatic and topographic complexity of 

islands (Cramer & Verboom, 2017), when using roughness or standard deviation, because they 

capture local changes in temperature and precipitation regimes and the terrain complexity, e.g., 

ridges and valleys (Bonetti et al., 2020), found in landscapes such as the Anaga mountains on 

Tenerife (Figure IV-1), Moka in Mauritius and Koke'e in Kauai (see island maps in Supplementary 

Figure S3.4).  

 

Moving-window metrics of dissection computed here as the mean value of the heterogeneity 

rasters of dissection per island, did not always reliably inform about how dissected an island 

landscape is. Our results showed that (mean) dissection values varied independently of island age 

(Supplementary Figure S4.7). For instance, Christmas Island (20 Ma) and Genovesa Island (0.3 Ma) 

had the highest (mean) dissection values for elevation among all islands studied. The first is an 

old, highly eroded island with steep escarpments around its boundaries, the second is a young 

volcano. Both island landscapes are mostly smooth with little topographic complexity (i.e., no 

valleys and ridges), but rather have a continuously descending landform (e.g., cone-shape). In both 

cases, the dissection formula led to high values for landscape incisions (i.e., descending areas 

within the 9 km² window size) or its analogue for climate (see Tenerife heterogeneity rasters in 

Figure IV-1). Thus, islands with a relatively flat or cone-shaped landscapes can have high average 
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dissection values despite having limited EH. The spatial grains used here (250 m for ELEV and HLI 

and 1 km for TEMP and PREC) produced comparable estimates of EH. Our test using different 

window sizes confirmed that within-island EH, caused by island ravines, ridges and valleys, is 

captured well at an intermediate scale (i.e., 9 km²) (Supplementary Figure S3.4.). At a larger scale 

(i.e., 49 km²) such landscape features were averaged out and disappeared, potentially leading to 

an underestimation of EH (see 9 km² vs. 49 km² window sizes in Supplementary Figure S3.6.). This 

is relevant for plant diversity because at intermediate scales geology and soil conditions, in 

addition to topography and climate, create a matrix of habitats that can host distinct plant 

communities (Crawley, 2001; Miguet et al., 2016).  

 

The trajectory of environmental heterogeneity (EH) over oceanic island ontogeny  

With few exceptions, the EH metrics investigated here showed a hump-shaped relationship with 

island age (Figure IV-2), with peaks early in the island ontogeny (higher model support with log-

transformed island age see Table S4.1). This result lends strong support to one of the fundamental 

premises of the GDM (Whittaker et al., 2008), i.e., island elevational range and topographic 

complexity have a hump-shaped pattern over time. In contrast to the graphical model 

representation in Whittaker et al., . (2008), we found that EH peaks before the ‘middle-age’ of an 

island, because most of the volume and elevation of volcanic hotspot islands usually forms within 

the first million years (Troll & Carracedo, 2016). Shortly after island emergence, the onset of 

erosion, occurrence of mega-landslides and collapses of calderas contribute to a complex island 

topography (Carracedo, 1994). With the peak in elevation, maximum climatic ranges are also 

reached and within-island climatic complexity increases. Two young islands from our analysis 

exemplify this: La Palma (2380 m a.s.l. and ca. 1.7 Ma) and Tahiti (1670 m a.s.l. and ca. 1.3 Ma) 

have large climatic and elevation gradients and a complex climate and topography (e.g., both 

received high values for moving-window metrics of roughness), as they had already undergone 

geomorphological processes that considerably modified their surface configuration (Ferrier et al., 

2013).  

 

The slow decline of EH over time (Figure IV-2) indicates that it may take several million years for 

an island to be eroded. For instance, the island of Lanzarote is 16 Ma old, its highest point is 650 

m a.s.l., and it still holds considerable EH. The main factors responsible for the decline of island’s 

EH are long-term erosion through rainfall (Ferrier et al., 2011), subsidence in certain archipelagos, 
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e.g., Galapagos Islands (Ali & Aitchison, 2014) and coastal erosion (Ramalho et al., 2013). Also, the 

trade-off between losing elevational range (Price & Clague, 2002) and increasing topographic 

complexity slows the decline of island EH. The slow decline in EH has relevant biogeographical 

implications. Extinction rates should rise only slowly while speciation rates might be maintained 

at higher levels, which would lead to a slower decline in species richness than previously thought 

(Whittaker et al., 2008). This has been shown for birds, insects and plants in the Hawaiian islands, 

where evolutionary decline is much slower compared to evolutionary radiation at the beginning 

of island building (Lim & Marshall, 2017). The few exceptional cases where EH metrics (i.e., 

dissection metrics in Figure IV-2) did not show a humped-shaped trend over time, were caused by 

the unclear relationship between the metrics and island age (i.e., both young and old islands had 

intermediate to high dissection values, see Supplementary Figure S4.7). Lastly, we note that 

although island EH is generally related to island area and certain EH metrics are more affected by 

area per se (Supplementary Figure S4.8), the EH trends we find here are not due to the variation 

of island area, as area entered the analysis as a covariate.  

 

 Environmental heterogeneity (EH) as a determinant of insular species richness and endemism 

Insular vascular plant diversity was strongly affected by EH, and most notably, native and endemic 

species richness were differentially affected by EH. Specifically, we found that climatic 

heterogeneity (PREC and TEMP heterogeneity) was the most important predictor of native species 

richness (Figure IV-3a), whereas temperature and elevation heterogeneity were most important 

for the number of single-island endemic species (Figure IV-3b). Climatic heterogeneity influences 

species richness on oceanic islands by increasing the number of climatic niches, where plant 

colonizers can establish and a large number of species can coexist (Stein et al., 2014) and persist 

if climatic fluctuations occur (Keppel et al., 2018). Elevation heterogeneity, on the other hand, is 

known for its key role in promoting species diversification (Rahbek et al., 2019). Steep elevation 

gradients, which directly relate to changes in temperature, create selection pressures that can 

lead to new species adaptations (Badgley et al., 2017). Furthermore, a complex topography 

implies geographic barriers that isolate species populations (Irl et al., 2015), disrupt their gene 

flow and eventually lead to within-island diversification (Kisel & Barraclough, 2010). Overall, this 

result is consistent with previous (meta-)studies (e.g., Kreft et al., 2008; Stein et al., 2014) and 

emphasizes how EH, which is characteristically high on oceanic islands (Fernández-Palacios, 1992; 

Mueller-Dombois & Fosberg, 1998), is a key determinant of insular plant diversity.  
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Effect of including EH in the ATT2 model 

Including EH in the ATT2 model improved the statistical power and also modified the effect of 

island area and age on species richness and endemism of vascular plants. The decreased effect of 

island area after including EH, particularly with whole-island metrics (i.e., PRECrg, TEMPrg and 

ELEVsd), provides evidence that both, island area per se and EH, need to be considered in models 

of species richness and endemism (Triantis et al., 2012). Including EH had opposite effects on the 

two terms for island age. It increased effect of the linear term (Time in Figure IV-3) and decreased 

the effect of the quadratic term (Time2 in Figure IV-3), leading to an overall asymptotically 

increasing relationship between species richness and endemism with time (Supplementary Figure 

S5.10) and not to the hump-shaped relationship predicted by the GDM (Whittaker et al., 2008). 

This change highlights three key phenomena occurring during island ontogeny. Firstly, more and 

more species colonize and eventually diversify with time (Heaney, 2000). Secondly, colonization 

and speciation slow down when many species are already present (Borregaard et al., 2017). 

Thirdly, and importantly, the negative effect of time on island carrying capacity, and hence island 

diversity, can be captured directly by the effects of decreasing island area and EH. 

 

The lack of significant interactions for most models suggests that overall island area and EH affect 

species richness and endemism largely additively. However, the positive and significant 

interactions (Supplementary Figure S5.11) we found between island area and EH (only for climatic 

heterogeneity) indicate that the effect of EH depends on island size and lend limited support to 

the area-heterogeneity trade-off hypothesis (Allouche et al., 2012). Our finding shows that on 

large islands climatic heterogeneity has a positive and strong effect on species diversity, while on 

small islands climatic heterogeneity has a weaker to even negative effect on species diversity. 

Therefore, small islands even if exhibiting high levels of climatic heterogeneity, will not have large 

numbers of species, particularly not endemic ones (compare x-axis Supplementary Figure S5.11), 

because the effective area per habitat required for species to persist or even speciate is limited.  

 

There are several limitations of our study. First, using a space-for-time substitution for 

understanding biodiversity patterns that change over time only allows for limited inference 

(Pickett, 1989). Second, the challenges imposed by the complexity and often idiosyncratic 

development of volcanic island ontogenies hamper the search for generality (Ali, 2017; Borregaard 
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et al., 2017). Finally, there are further potential EH components crucial for plant diversity, such as 

heterogeneity in soil conditions (Crews et al., 1995) or heterogeneity in biological interactions, 

which currently are not possible to evaluate at the geographical extent of our study. 

We conclude that our EH quantification across a large number of oceanic islands worldwide 

underlines that investigating a suite of alternative environmental heterogeneity metrics, 

calculated with different methods (i.e., whole-island and moving-window metrics) and using an 

intermediate spatial scale (9 km²) contributes to an improved understanding of the importance of 

island environmental heterogeneity as a driver of diversity patterns. Our results lend strong 

support to one of the central premises of the GDM, namely that EH follows a hump-shaped 

relationship with island age. One important finding in this context was that EH peaked early in 

island ontogeny and declined more slowly over time than reflected in most models. This suggests 

that island maximum carrying capacity can be reached relatively fast and that it is maintained for 

a comparatively long time during island geological progression. This has strong implications for 

understanding insular species richness and endemism, as ecological opportunities and vacant 

niche space may remain available for several millions of years. Hence, EH plays an important role 

in determining the diversity of vascular plants on oceanic islands and including EH in the ATT² 

model strongly affects its characteristics. Together, these results increase our understanding of 

how area, EH and time shape plant diversity and endemism on oceanic islands.  

 

Authors contributions 

MPBB, HK and PW conceived the idea. MPBB performed the analysis and PW supported the 

analysis. All co-authors contributed to the interpretation of the results and writing of the 

manuscript. 

Data availability  

Data analysed and produced in this study, i.e.,number of native and single-island endemic species, 

island age, area, archipelago information and EH metrics, as well as environmental components 

(elevation, precipitation, temperature and heat load index), heterogeneity rasters and the code 

for analyses in R can be download from Dryad repository URL: 

https://datadryad.org/stash/share/xoxOp2qIVOub-qHcQaGK5R_fgyl0ISKId55IalprQsA. Dataset 

doi:10.5061/dryad.6hdr7sqx4.  

Acknowledgements 

https://datadryad.org/stash/share/xoxOp2qIVOub-qHcQaGK5R_fgyl0ISKId55IalprQsA


ENVIRONMENTAL HETEROGENIETY DYNAMICS DRIVE PLANT DIVERSITY ON OCEANIC ISLANDS 

63 

MPBB and HK acknowledge funding by the German Research Foundation (DFG) Research Training 

Group 1644 ‘Scaling Problems in Statistics’, grant no. 152112243. MKB acknowledges grant 

DNRF96 for support of the Center for Macroecology, Evolution and Climate and Carlsberg 

Foundation: CF19‐0695. GK was partially supported by an Alexander von Humboldt Foundation 

Fellowship for Experienced Researchers. 



64 

  



COLLABORATIVE PUBLICATIONS 

65 

CHAPTER V COLLABORATIVE PUBLICATIONS 

 

In my PhD I collaborated with two PhD Students, who’s works also focused on using a trait-based 

approach for investigating the diversity of Canary Island’s plants. The first collaboration focused 

on evaluating the source of traits information, e.g., from scientific floras versus trait collected in 

the field. The second collaboration focused on understanding functional diversity patterns of 

different plant species groups of the Canary Islands (e.g., exotics and endemics) and relate the 

pattern to the climatic conditions of the islands.  

 

Scientific floras can be reliable sources for some trait data in a system with poor 

coverage in global trait databases 

 

Vanessa Cutts1, Dagmar M. Hanz2, Martha Paola Barajas-Barbosa3, Adam C. Algar1,4, Manuel J. 

Steinbauer5,6, Severin D. H. Irl2, Holger Kreft3, Patrick Weigelt3, Jose María Fernandez Palacios7, 

Richard Field1 

My contribution: I provided the leaf trait data I collected in the field for 360 plant species. I 

supported the defining the trait data comparison from the field versus trait data from the 

literature. I supported the review and editing of different versions of the document.  

Status: the paper has been accepted in the Journal of Vegetation Science and is going through 

the last proofreading process.  

 

Abstract  

Trait-based approaches are increasingly important in ecology and biogeography, but progress is 

often hampered by the availability of high-quality quantitative trait data collected in the field. 

Alternative sources of trait information include scientific floras and taxonomic monographs. Here 

we test the reliability and usefulness of trait data acquired from scientific floras against trait values 

measured in the field, and those in TRY, the most comprehensive global plant trait database. Study 

location was in Tenerife and La Palma, Canary Islands, Spain. We measured leaf area and specific 

leaf area (SLA) in the field for 451 native vascular plant species and compared them with 

equivalent trait data digitized from the most recent and comprehensive guide of the Canarian 
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flora, and data sourced from TRY. We regressed the field-measured traits against their equivalents 

estimated from the literature and used the regression models from one island to predict the trait 

values on the other island. For leaf area, linear models showed good agreement between values 

from the scientific flora and those measured in the field (r2=0.86). These models were spatially 

transferable across islands. In contrast, for specific leaf area we found a weak relationship 

between field-measured values and the best estimates from the scientific flora (r2 = 0.11). 

Insufficient data were available in the TRY database for our study area to calculate trait 

correlations with other data sources. Scientific floras can act as useful data sources for 

quantitative plant trait data for some traits but not others, whilst the TRY database contains many 

traits, but is incomplete in species coverage for our study region, and oceanic islands in general.  
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Climatic and biogeographic drivers of functional diversity in the flora of the 

Canary Islands 

 

Dagmar M. Hanz1, Vanessa Cutts2, Martha Paola Barajas-Barbosa³, Adam C. Algar², Carl 

Beierkuhnlein4,5,6, José-María Fernández-Palacios7, Richard Field2, Holger Kreft³, Manuel J. 

Steinbauer8,9, Patrick Weigelt³ & Severin D. H. Irl1,5 

My contribution: I supported the methodological part of the paper, i.e., implementation and 

interpretation of the functional diversity metrics used for the analysis. With the first and second 

Authors we conducted several discussions about the interpretation of the results. I supported the 

review and editing of different version of the document.  

Status: the paper is in preparation. Target journal Global Ecology and Biogeography. 

 

Abstract  

Functional traits can help elucidate biogeographical and ecological processes driving community 

and assemblage structure. We analyzed the functional diversity of plant species of different 

evolutionary origins across an entire archipelago comparing them to each other along 

environmental gradients and across different phases of island ontogeny. The study area of this 

study is Canary Islands, Spain. We collected data for four traits (plant height, leaf length, flower 

length and fruit length) associated with resource allocation, reproduction and dispersal ability of 

893 endemic, non-endemic native and alien plant species (~43 % of the Canary Island flora) from 

the literature. Linking these traits to species’ occurrences across a 500 m x 500 m grid, we 

calculated functional diversity for endemic, non-endemic native and alien assemblages using 

multi-dimensional functional hypervolumes, and related the resulting patterns to climatic 

(humidity) and island biogeographic (geographical isolation, topographic complexity, geological 

age) gradients. Trait space of endemic and non-endemic native species overlapped considerably, 

while alien species added novel trait combinations, expanding the overall hypervolume of the 

Canary Islands. On a grid cell scale, we found that functional diversity of endemic plant 

assemblages was highest in humid ecosystems at intermediate elevation, while functional 

diversity of non-endemic native assemblages was highest under humid conditions at mid- to high 

elevation sites. In contrast, functional diversity of alien assemblages was highest in arid coastal 

ecosystems. Topographic complexity and geological age only had a subordinate effect on 
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functional diversity across all floristic groups. We found that endemic and non-endemic native 

island species possess similar traits, while alien species tend to fill open niches in ecosystems 

where they have been introduced. The spatial distribution of the floristic groups’ functional 

diversity is very distinct across environmental gradients, indicating that species assemblages of 

different evolutionary origins functionally thrive in dissimilar habitats. 
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CHAPTER VI SYNTHESIS 

 

The results of my PhD work evidence the relevance of oceanic islands as model systems to study 

patterns and drivers of functional diversity, as well as to study the complexity and heterogeneity 

of the environment shaping plant diversity. Concretely, the results of my PhD work (Chapter II) 

evidence how biogeography and evolution, and the environment determine the functional trait 

space and diversity of oceanic island plants. I found (Chapter II) that plants of an oceanic island 

experience the same ecological constraints as other plants on Earth. In particular, my results 

strongly suggest that Tenerife’s arid and semi-arid environment causes functional convergence 

towards a trait syndrome, where plants coincide in the shrubby growth form. This convergence of 

traits placed Tenerife plants in between the two global functional hotspots (Díaz et al., 2016), that 

is, between small herbaceous and tall woody plants. Second, I evidence (Chapter III) that 

functional diversity is scale dependent and the trend across space between taxonomic diversity 

and functional diversity differ. The results from Chapter III further suggest that patterns of regional 

functional diversity scale-down to local scale and the processes driving functional diversity act 

differently depending on the spatial grain at which functional diversity is quantified. At small local 

grains (100 m²) species interactions may be affecting functional diversity, whereas at larger local 

grains (1 km²) the environment affects functional diversity. Third, I reveal (Chapter IV) how the 

environmental heterogeneity of oceanic islands, in terms of climate and topography vary along 

island ontogeny, where it follows a humped shape over time. This result indicates that island 

environments are highly dynamic and also that their environments rapidly become highly 

heterogeneous over time. This temporal dynamic of insular environmental heterogeneity affects 

plant diversity and endemism levels. To this end, I discuss and synthesize the contribution of my 

PhD work and how it improves the understanding of insular plant diversity in the following part of 

this synthesis. 

 

The assembly of an oceanic island flora from a functional diversity perspective 

 

Influential theories and concepts explaining how insular plant diversity assemble in space and 

time, i.e., Theory of Island Biogeography (MacArthur & Wilson 1967) and the General Dynamic 

Model of Oceanic Island Biogeography (Whittaker et al., 2008) have assumed that species have 

the same probabilities to arrive and establish on an island. Yet, ecologists and island 
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biogeographers have started thinking about species not only in terms of their identities but also 

in their functional traits (Díaz & Cabido 2001; Westoby & Wright 2006; Whittaker et al., 2017). 

This is relevant because the processes defining diversity are likely acting on species traits rather 

than one species per se (Weiher & Keddy 1995; Kraft & Ackerly 2014), thus, applying trait-based 

approaches are key to understanding insular diversity (Whittaker et al., 2017; Ottaviani et al., 

2019). The results of Chapter II, where I describe for the first time (to my knowledge based on 

English and Spanish literature research) the plant functional trait space of a complete native flora, 

evidence how useful a trait-based approach is in island biogeography research. Namely to 

understand how biogeography, evolution and ecology determine species ecological strategies of 

insular environments.  

 

The high convergence of a trait syndrome I found on Tenerife is responsible for the 

overrepresentation of shrubby plants on the island (Chapter II) and further evidences that 

ecological processes are the main drivers of the island's functional diversity, as shrubs adapt well 

to Mediterranean conditions. This result is consistent with seminal functional ecology studies that 

found habitat filtering and abiotic conditions limiting trait ranges and syndromes on mainland 

(kraft et al., 2007; Spasojevic & Suding 2012; Kraft & Ackerly 2014) and island systems (Carvajal‐

Endara et al., 2017). Furthermore, I found both biogeography (via dispersal) and evolution (via 

speciation) differently shaping island plant functional diversity (Chapter II). On one hand, I found 

that both long-distance dispersal, i.e., the mechanism that populates island biota (Carlquist 1966; 

Carlquist 1981) and inter-island dispersal, i.e., species movements within an archipelago 

(Whittaker & Fernández-Palacios 2007), are the mechanisms increasing Tenerife functional 

diversity. Concretely, they increase the overdispersion of trait combinations. On the other hand, I 

found that evolution via speciation has an opposite effect and drives underdispersion of the 

insular plant trait syndromes (Chapter II). The result contrasts previous hypotheses and 

expectations in island biogeography research (Patiño et al., 2017). Speciation, either via 

cladogenesis or anagenesis, (where an immigrant lineage splits into distinct species or it gradually 

changes into another species), increases species numbers (MacArthur & Wilson 1967; Stuessy 

1990). Particularly, in adaptive radiation where lineages rapidly multiply as species occupy new 

island niches (Schluter 2000; Gavrilets & Losos 2009; Kavanagh & Burns 2014), functional diversity 

should increase because species evolve new trait combinations to cope with new island 

environments (Carlquist, 1966; Givnish et al., 2009). Therefore, it is expected that through 

speciation, functional diversity increases. However, my results (Chapter II) suggest that on 

Tenerife speciation is not increasing island functional diversity. To understand this result, Tenerife 
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environmental conditions have to be considered. The island's predominant Mediterranean 

climate is marked by drought seasons in the lowlands and aridity at high elevations (Fernandez-

Palacios 1992). Such conditions favour speciation of shrubs, but also colonization, establishment 

of this type of plants (Carlquist 1974; Lens et al., 2013). Recent research on the Canary Islands 

found that the increase of woodiness (typical of shrubs) have allowed plants to cope better with 

the lack of water common of the canary ecosystems (Dória et al., 2018; Van Huysduynen et al., 

2020). Traits converge as a water economy response of plants, where wood density (in this case 

relatively high for shrubs) positively relates to water transport efficiency, regulation of leaf water 

balance, and avoidance of turgor loss (Meinzer 2003). Lastly, these results are also in line with 

long-standing concepts of island research, stating that shrubs are better competitors in terms of 

resources than their herbaceous counterparts on islands (Darwin 1859).  

 

The results of Chapter II suggest that oceanic island plants experience the same ecological, 

evolutionary and environmental constraints as other plants, as shown in the comparison of 

Tenerife with the global trait space of plant form and function (Díaz et al., 2016). Yet, the strong 

convergence of island plants towards shrubs is responsible for the clear mismatch I found between 

island and the global spectrum of plant forms and function. Tenerife flora is highly packed in 

between the two globally most dominant trait syndromes, i.e., plants with large seed and stature 

that grow slowly and live long, and plants that are short-statured with small seeds and do not live 

long (Díaz et al., 2016). This mismatch caused by the shrubby growth form is the response of plants 

adaptation to arid conditions. Therefore, the shrub growth form is advantageous on an oceanic 

island where an arid environment dominates.  

 

Functional diversity of an oceanic island across different spatial scales 

 

Biodiversity is scale dependent (Chase et al., 2018) and ecological and evolutionary processes 

determining it act differently across space (Leibold et al., 2004). Ecology studies have 

predominantly focused on the scale-dependency of taxonomic diversity (Crawley & Harral 2001; 

Adler and Lauenroth 2003; Scheiner 2003; Chase & Knight 2013; Chase et al., 2018) but few have 

focused on functional diversity (De Bello et al 2009; Whittaker et al., 2014; White et al., 2018), 

which limits the understanding about spatial patterns of functional diversity. The results of 

Chapter III expand the understanding about the variation of functional diversity across space and 
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the factors governing functional diversity from regional to local scale on an oceanic island. As 

previously reported for taxonomic, phylogenetic and functional diversity (Morlon et al., 2011; 

Whittaker et al., 2014; Chase et al., 2018), the results of Chapter III also show that functional 

diversity is scale-dependent, whereby it increases with spatial grain. The results in Chapter III 

additionally show that functional diversity patterns across Tenerife vegetation types (areas 

defined by their climatic and altitudinal conditions) mirrored from local, within local and regional 

scale (alpha, beta and gamma functional diversity). This result demonstrates how regional 

ecological processes, such as the environmental filter imposed by each vegetation type, percolate 

down to determine local functional diversity. Furthermore, in Chapter III I found a large variation 

of functional diversity across Tenerife’s vegetation types, which evidences how resource 

availability and climatic conditions of each type (Otto et al., 2007; Fernández-Palacios et al., 2014; 

Fernández-Palacios et al., 2017) drive the functional diversity of the island. The contrasting 

functional diversity values I found for laurel forest and summit scrub exemplify this (see details in 

the results Chapter III). While laurel forest, a resource rich area due to its large amount of rainfall 

and mild temperatures, has high functional diversity (Fernández-Palacios et al., 2017), summit 

scrub, a dry area with low temperatures, has low functional diversity.  

 

The results of Chapter III, further revealed that the environment has a different effect on 

functional diversity across local grains. At a coarse local grain (1 km²) the environment (mainly 

temperature) significantly influenced functional diversity, whereas at a fine local grain (100 m²) 

the environment does not significantly affect functional diversity. This result suggests that while 

at coarse local grain ecological factors, such as environmental filtering shape functional diversity, 

at finer local grain species interactions, such as competition, may be playing a more important 

role (Cornwell & Ackerly 2009). In addition, the variation of functional diversity across Tenerife’s 

vegetation types evidence that high resource availability, in terms of energy and water availability, 

increases functional diversity (Spasojevic & Suding 2012). Chapter III findings are also consistent 

with the hypothesis that habitat filter drives functional diversity (Cornwell et al., 2006; Mason et 

al., 2007; De Bello et al 2009); as well as with recently studies that found a strong coupling 

between climate, plant functional traits and life forms in the Canary Islands, where shrub (i.e., 

chamaephytes) showed a positive relationship with island temperature and trees a positive 

relationship with precipitation (Irl et al., 2020). Overall, the results I present in Chapter II and III 

are tightly related, as the environmental conditions of Tenerife drive the convergence of plant 

trait syndromes of Tenerife and the functional diversity differences across Tenerife vegetation 

types.  



SYNTHESIS 

73 

Lastly, the work I performed for Chapter III where I transferred classical ecological analysis, i.e., 

species accumulation curve (Scheiner et al., 2011) to a functional diversity framework together 

with functional diversity partitioning, i.e., alpha, beta and gamma diversity (Whittaker 1972), 

prove that taxonomic diversity is not a surrogate for functional diversity. Both diversity facets are 

scale dependent but their trends across space differ. Functional diversity accumulates faster with 

increasing area than species diversity (Chapter III). Such a difference means that changes in species 

richness, for instance species impoverishment, can lead to drastic changes in functional diversity, 

i.e., loss of key functional groups and ecosystems functioning (Díaz & Cabido 2001; Gonzalez et 

al., 2020). 

 

Temporal dynamic of environmental heterogeneity on oceanic islands and its 

effect on plant diversity  

 

In Chapter IV, I studied the dynamics of environmental heterogeneity during the ontogeny of 

oceanic islands (i.e., island development through its geological life span from emergence, building, 

advanced age to island submergence) and how these dynamics affect insular plant diversity. I used 

the General Dynamic Model (Whittaker et al., 2008), which links island geological ontogeny to 

ecological processes driving insular diversity. Both area and environmental heterogeneity are 

expected to have a hump-shaped relationship with time, where mid-aged islands reach the 

highest environmental heterogeneity level (Whittaker et al., 2008). The dynamic of island area 

over island life-span had been previously assessed (Steinbauer et al., 2013; Borregaard et al., 

2017). However, previous to my PhD work, the temporal dynamics and effects of environmental 

heterogeneity on insular diversity remained unresolved. Correct estimations of environmental 

heterogeneity are not trivial (Barajas-Barbosa et al., 2020); capturing the variability of the 

environment that affects plant diversity poses challenges, such as controlling the effect of area on 

environmental heterogeneity. I tackled these challenges by calculating 20 ecologically meaningful 

metrics (termed as ‘EH-metrics’) that estimated environmental heterogeneity, in terms of climate 

and topography, for 135 oceanic islands distributed across the globe. I identified spatially suitable 

EH-metrics for oceanic island sizes, as oceanic islands are generally small landmasses, and I 

considered the dependency of environmental heterogeneity on area (Jackson & Fahrig 2015). As 

environmental heterogeneity encompasses different aspects (Stein et al., 2015), I included climate 

and topography in the assessment. The resulting EH-metrics captured different aspects of 

environmental heterogeneity, such as climatic and topographic ranges versus climatic and 
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topographic complexity. The EH-metrics calculation allowed me to test the dynamic of 

environmental heterogeneity in the context of the General Dynamic Model (Whittaker et 2008). 

In the results of Chapter IV, I identified that oceanic island environments rapidly become highly 

heterogeneous (in their first Million years). In fact, much faster than previously depicted by the 

General Dynamic Model, which had predicted intermediate age islands (between 4 to 10 Million 

years) to have the highest environmental heterogeneity values. This temporal dynamic of 

environmental heterogeneity has direct implications on the levels of plant diversity of oceanic 

islands, as environmental heterogeneity can be understood as island carrying capacity (Whittaker 

et al., 2007; Borregaard et al., 2017).  

 

Heterogeneous environments have different climatic niches where new plants can establish, large 

numbers of species can coexist and persist and species can diversify (Hortal et al., 2013; Stein et 

al., 2014). The positive effect I found between EH-metrics and plant diversity (after controlling for 

the effect of island area, see results Chapter IV) also suggest that plant diversity levels of an 

oceanic island rapidly increase during island ontogeny (Barajas-Barbosa et al., 2020). The results 

of Chapter IV, are consistent with previous studies that have found plant diversity being high at 

early stages of island ontogeny (Steinbauer et al., 2013; Lenzner et al., 2017). Further, these results 

also indicate that island maximum environmental heterogeneity, in other words island carrying 

capacity, is rapidly reached and maintains high levels for a long period of the island's life-span. 

This influences the ecological opportunities and vacant niche space, which remain available for 

several millions of years.  

 

The importance trait-based approaches and future perspectives  

 

Trait-based approaches are gaining importance and major advances in functional ecology research 

have been achieved (Wright et al., 2004; Moles et al., 2009; Bjorkman et al., 2018). The global-

spectrum of plant form and function (Díaz et al., 2016) and trait-environment relationships 

(Bruelheide et al., 2018) are great examples of this progress. Such studies have mainly used trait 

data gathered in databases (e.g., TRY Kattge et al., 2020), which have been collected with different 

purposes in mind. The trait data has been then used for synthesis analyses, which have mostly 

focused on mainland systems. Functional island biogeography, on the other hand, is still an 

emerging research field (Whittaker et al., 2014; Ottaviani et al., 2020) but we still lack empirical 
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measurements of functional traits of island biota (although see Schrader et al., 2020; Kühn et al., 

2021; Westerband et al., 2021). The scarcity of systematically collected functional traits on oceanic 

islands was the principal motivation for the unique and nearly complete sampling of plant 

functional traits I performed on Tenerife. The plant data I collected was not only used for the 

development of the main objectives of my PhD work (i.e., Chapter II and III) but was also key for 

the collaborations during my PhD (Chapter V). It allowed us to test the usefulness of alternative 

sources for plant trait information, such as scientific floras and taxonomic monographs; when in-

situ trait sampling is not possible to conduct. The Tenerife trait data can continue being used for 

future collaborations and to address research questions in the fields of functional island 

biogeography and functional ecology. Potential research questions that can be addressed are: in 

which direction is evolution (via adaptive radiation) driving plant diversity of oceanic islands? This 

question can be addressed by reconstructing ancestral traits of the radiated lineages present on 

Tenerife and comparing them with the traits I collected for these species of the lineages. Can 

contemporary insular plant communities and ecosystems adapt to arid environments cope with 

global warming? This can be addressed by focusing on the functional diversity of the coastal scrub 

and thermophilous woodland vegetation type of Tenerife and relating it to climate change trends. 

Furthermore, because mountain systems contain very high species diversity (Rahbek et al., 2019) 

and Tenerife has a steep and large elevation range, research questions in this topic can also be 

addressed; for instance, how functional diversity relates to an oceanic island elevational gradient 

and does elevation affect functional and taxonomic diversity equality? This last research question 

is also an opportunity to investigate functional diversity in relation to island geodiversity.  

 

Conclusion 

 

I summarized the key take-home messages from my PhD work hereafter. Biogeography (via 

dispersal), evolution (via speciation) and ecology (via environmental filtering) are key processes 

driving the functional diversity of an oceanic island native flora. Yet, these processes differently 

affect functional diversity, namely functional diversity increases through dispersal events, 

decreases due to environmental filters and does not necessarily increase with speciation process. 

Plant trait syndromes of an oceanic island flora are similar to the previously documented 

syndromes for the globe, but environmental filters can drive a strong convergence of a plant trait 

syndrome (e.g., overrepresentation of shrubs in Tenerife). Plant functional diversity patterns of 

oceanic island are scale-dependent and these patterns percolate from regional to local scales. The 
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environmental conditions (mainly Tenerife temperature) impact local functional diversity, but the 

impacts are not always consistent across local grains. Importantly, functional and taxonomic 

diversity increase differently across space. Therefore, taxonomic diversity is not a complete 

surrogate for functional diversity. Lastly, environmental heterogeneity, a key factor determining 

species diversity, exhibits a hump‐shaped relationship with island age; however earlier than 

previous research had hypothesized. Overall, my PhD work demonstrates the relevance of 

studying different biodiversity facets. Taxonomic and functional diversity are tightly related to 

ecosystem functioning and services and their spatial dynamics allows us to understand how 

ecosystems and biodiversity respond to environmental change. My work further reveals that 

unifying theories of island biogeography and classical concepts and methods of ecology allow us 

to improve our understanding about the diversity of the insular plants.  
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APPENDIX 
 

Supplementary material Chapter II 
 

Extended figures: Assembly of functional diversity of an oceanic island flora 

 

 

 

Extended Figure 2. Principal component analysis (PCA) for Tenerife native seed plants based on 
eight plant functional traits. Left-hand side plot shows the degree contribution per trait to the 
PCA. Right-hand side shows explained variances and percentage of contributions of each trait to 
the PCA. Traits values were z- and log-transformed.  

 

 

 

Extended Figure 3. Contribution of different biogeographical groups to the functional diversity of 
Tenerife. Functional richness (a), functional dispersion (b) and functional evenness (c) were 
calculated based on n-dimensional hypervolumes estimations (see Methods). Observed values are 
displayed in grey color and sampled-based rarefied values in green (biogeographical groups) and 
purple (evolutionary groups). Dots and error bars correspond to the mean values and 95% 
confidence intervals after standardization. Biogeographical groups are., native non-endemics 
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(NNE), Macaronesian-endemics (MAC), Canary-endemics (CE) and Tenerife-endemics (TE). 
Evolutionary groups are in purple, cladogenetic species (Clado) and non-cladogenetic endemics.  

Supplementary: Assembly of functional diversity of an oceanic island flora  

 

The following analysis is performed for the native plants of Tenerife, i.e., 436 species. We used 
eight plant functional traits collected for 80% of Tenerife native plants: Leaf area (LA mm²), leaf 
dry matter content (LDMC mg g-1), leaf mass per area (LMA g m-²), leaf Nitrogen content (Nmass mg 
g-1), leaf thickness (Lth mm), stem specific density (SSD mg mm-³), seed mass (SM mg) and 
maximum plant height (H m). 

 

Section I: Trait data  

 

1. Univariate analysis of Tenerife plant traits. 

 

Figure 1. Density distribution per trait and defined group in colors. In the background in grey color, 
total density distribution of all island species (436 species) Left-hand side plots: density 
distribution per biogeographical endemism status: AE (canary endemics), MAC (Macaronesian 
endemics), NS (native non-endemics), SIE (Tenerife single-island endemics). Right-hand side plots: 
density distribution per Speciation-process status. The x axes are log10 scaled. Here, we included 
the all ten plant traits measured in Tenerife.  

 

2. Bivariate analysis among Tenerife plant traits.  
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Figure 2. Pearson correlation coefficients among eight plant traits and density distribution for all 
native species Tenerife seed plants. Trait values are z- and log-transformed.  

 

3. We used Random Forest method/algorithm to deal with missing trait values. The initial data 
set that includes 436 species and three subspecies missed 20% of the trait values.  

 

Table 1. Validation of trait value imputation. Out of Bag (OOB) scores indicated, the lower the 
value the better the random forest algorithm performed. Note: phylogenetically informed trait 
values had always lower OOB scores, except for SLA predicted values.  

 

Imputed trait OOB error from 
phylogenetically informed 

traits 

OOB error from non-
phylogenetically informed 

(naive) traits 

Difference 

LA 58692693.97 62477812.18 -3785118.2 

LDMC 977.16 1135.34 -158.18 

SLA 242.65 171.52 71.13 

LMA 1107.54 1164.09 -56.55 

Lth 0.48 0.58 -0.1 

Nmass 31.61 40.68 -9.08 

SM 2334.71 2443.22 -108.51 

SSD 0.02 0.02 0 

H 4.84 6.93 -2.09 
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Figure 3. Density distribution of the original true and imputed trait values for each trait. The 
percentages values correspond to the amount of trait imputed of the total of 436 native plant 
species.  

 

Section II: Quantification of functional diversity.  

 

Table 2. Calculated overlap metrics for the island and global hypervolumes.  

metric value description 

Jaccard 0.5197 Jaccard similarity (volume of intersection of island trait space and global trait 
space divided by volume of union of island trait space and global trait space) 

Soerensen 0.6839 Sorensen similarity (twice the volume of intersection of island trait space and 
global trait space divided by volume of island trait space plus volume of global 
trait space) 

 

Section III: Radiated lineages 

 

Table 3. Contribution of each lineage to the total island trait space evaluated using Kruskal-Wallis 
test. Significant codes, marked by the different letters “a” and “b”, indicate from the pairwise 
comparisons that both groups had significantly different functional contribution or originality 
values, alpha level 0.05. Identical letters, e.g., “a” and “a” indicate no significant difference. 

 

Lineage Contribution Kruskal W 
test 

Originality Kruskal W 
test 

non-Aeonium 250.71 a 392.65 a 

Aeonium 216.03 a 205.17 b 

non-Argyranthemum 218.54 a 220.95 a 

Argyranthemum 216.67 a 102.33 b 

non-Aspagus1 271.75 a 286.00 a 

Aspagus1 218.01 a 217.88 a 
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non-Bystropogon 218.67 a 219.65 a 

Bystropogon 200.00 a 94.50 b 

non-Cheirolophus 229.50 a 220.05 a 

Cheirolophus 218.35 a 107.17 b 

non-Convolvulus1 246.25 a 219.41 a 

Convolvulus1 218.24 a 120.75 a 

non-Crambe 235.75 a 219.37 a 

Crambe 218.34 a 124.25 a 

non-Descurainia 218.64 a 218.79 a 

Descurainia 203.25 a 187.50 a 

non-Echium 219.86 a 219.97 a 

Echium 165.91 a 161.64 a 

non-Euphorbia1 294.75 a 219.00 a 

Euphorbia1 217.79 a 164.75 a 

non-Helianthemum1 218.67 a 219.69 a 

Helianthemum1 200.50 a 89.50 b 

non-Lolium1 249.33 a 219.41 a 

Lolium1 218.29 a 87.67 a 

non-Lotus1 219.07 a 219.82 a 

Lotus1 188.25 a 147.75 a 

non-Micromeria 219.09 a 242.38 a 

Micromeria 186.88 a 218.05 a 

non-Pericallis 220.17 a 244.00 a 

Pericallis 218.48 a 218.14 a 

non-Pimpinella 218.80 a 218.89 a 

Pimpinella 186.50 a 176.50 a 

non-Polycarpaea1 307.29 a 340.43 a 

Polycarpaea1 217.05 a 216.51 b 

non-Sideritis 220.79 a 223.10 a 

Sideritis 154.20 b 89.47 b 

non-Sonchus 219.68 a 220.15 a 

Sonchus 180.23 a 164.77 a 

non-Teline1 218.51 a 258.75 a 

Teline1 217.50 a 218.13 a 

non-Tolpis 225.20 a 219.32 a 

Tolpis 218.42 a 147.40 a 
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Figure 4. Functional trait spaces for 21 major radiated lineages in Tenerife, based on  eight plant 
functional traits: Leaf area (LA mm²), leaf dry matter content (LDMC mg g-1), leaf mass per area 
(LMA g m-²), leaf Nitrogen content (Nmass mg g-1), leaf thickness (Lth mm), maximum plant height 
(H m), stem specific density (SSD mg mm-³) and seed mass (SM mg). 

 

Figure 5. Functional contribution and originality for 21 major radiated plant lineages present in 
Tenerife (lineages containing more than three species). Asterisk “*” in panels indicate that groups 
have significantly contributed or have original values to the island trait space. Significance tests 
were done using Kruskal-Wallis, with alpha level 0.05.  
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Section IV. Trait data collection 

 

Figure 6. Tenerife map displaying about 500 different sites visited during the fieldwork campaign 
in 2017 and 2018 where plant material to quantify the eighth plant functional traits were 
collected.  
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Supplementary material Chapter III 
 

Patterns and drivers of plant functional diversity across spatial scales on an oceanic island 

 

Appendix S1. Fieldwork-related information 

 

 

 

Figure 1. Tenerife elevation map with the sites visited to collect plant functional traits were 
collected on Tenerife (green dots) on the left side. More than 500 different sites were visited, 
covering all vegetation types and nearly all Tenerife’s elevational gradient from sea level to 2700 
m a.s.l Tenerife Vegetation types on the right site.   Cartoons course 
https://www3.gobiernodecanarias.org/medusa/ecoescuela/recursosdigitales/files/formidable/P
isos-Tenerife.pdf 

  

https://www3.gobiernodecanarias.org/medusa/ecoescuela/recursosdigitales/files/formidable/Pisos-Tenerife.pdf
https://www3.gobiernodecanarias.org/medusa/ecoescuela/recursosdigitales/files/formidable/Pisos-Tenerife.pdf
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Appendix S2. Trait data and species occurrence data 

 

Table 1. Validation of trait value imputation. Out of Bag (OOB) scores indicated, the lower the 
value the better the random forest algorithm performed. Note: phylogenetically informed trait 
values had always lower OOB scores, except for SLA predicted values.  

Imputed 
trait 

OOB error from phylogenetically 
informed traits 

OOB error from non-phylogenetically 
informed (naive) traits 

Difference 

LA 58692693.97 62477812.18 -3785118.2 

LDMC 977.16 1135.34 -158.18 

SLA 242.65 171.52 71.13 

LMA 1107.54 1164.09 -56.55 

Lth 0.48 0.58 -0.1 

Nmass 31.61 40.68 -9.08 

Cmass 1252.81 1451.73 -198.91 

SM 2334.71 2443.22 -108.51 

SSD 0.02 0.02 0 

H 4.84 6.93 -2.09 

 

 

Figure 2. Density distribution of the original true and imputed trait values for each trait. The 
percentages values correspond to the amount of trait imputed of the total of 436 native plant 
species.  
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Figure 3. We removed 535 cells from 1 km² grain size data (blue squares). These cells were located 
in urban places, either cities and industrial areas This information is from Banco de Datos de 
Biodiversidad Atlantis 3.1 at www.biodiversidadcanarias.es and the urban cell information from 
Corine land cover legend (2018), where urban cells in the legend are 1. 

 

 

Figure 4. Assessment of the number of dimensions required to build the distance matrix that 
reflects functional dissimilarity between the species. The assessment included 434 native seed 
plant species and eight plant functional (see methods). For both sets of data, i.e., (a) plots and (b) 
cells five dimensions were required to build the distance matrix. Note that from the 6th dimension 
Mean Squared-Deviation is very low. This assessment is based on the Maire et al 2015 approach.  

 

 

 

 

 

http://www.biodiversidadcanarias.es/
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Figure 5. Density distribution and correlation analysis between species richness and functional 
diversity metrics. Observed functional diversity values (FunD) and three different functional 
diversity estimations were rarefied to control for species richness, using three different minimum 
numbers of species, i.e., three, five and eight species: FunD 3, FunD 5, and FunD 8, respectively. 
Spearman’s correlation coefficients for (a) plot data 100 m² and for (b) cell data 1 km².  

 

 

Figure 6. Number of species shared across vegetation types for local spatial grain 1 km². 
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Appendix S3. Taxonomic diversity and statistical analysis  

 

 

Figure 7. Taxonomic diversity accumulation curves of native plant communities on Tenerife at two 
spatial grains, plots (100 m²) and cells (1 km²), across the entire island (a) and per vegetation type 
at each grain (b and c). Dotted vertical lines illustrate the largest amount of accumulated sampled 
plots or cells defined given the smallest number of plots and cells contained in the rocks vegetation 
types.  

 

 

Figure 8. Taxonomic diversity patterns of Tenerife vegetation types from within local (alpha) and 
regional (gamma) spatial scales (a, b, c, e) and across local spatial scales (beta) (c, d) for two spatial 
grains, 100 m² and 1 km². Vegetation types are arranged by Tenerife elevational gradient, 
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Figure 9. Density distribution and correlation analysis between the predictor variables used in the 
analysis. Spearman’s correlation coefficients for (a) plot data 100 m² and for (b) cell data 1 km².  

 

 

Figure 10. Evaluation functional diversity standardization at plot 100 m² and cell grain 1 km², using 
different number to control for species richness. Where, observed functional diversity values is 
FunD. The three different standardizations used three, five and eight species: FunD rar 3 spp, FunD 
rar 5 spp, and FunD rar 8 spp, respectively. 

 

 

 

 

 

 



APPENDIX 

109 

 

Figure 11. Residuals diagnostics for the generalized linear mixed models fitted using the gamma 
family and log link function. Functional diversity (the response variable) in response to mean 
annual precipitation, mean annual temperature, elevation, and roughness.  On the left residual 
diagnostics for models where functional diversity estimates were at 100 m². On the right residual 
diagnostics for models where functional diversity estimates at 1 km².  
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Supplementary material Chapter IV 
 

Environmental heterogeneity dynamics drive plant diversity on oceanic islands 

 

Appendix section 2: Archipelagos included in the analysis 

 

 

Figure S2.1. Map displaying the 41 archipelagos analyzed in this study.  

 

Appendix section 3: Assessment of the environmental heterogeneity (EH) quantification for 135 
oceanic islands and analysis of the effect of the spatial scale on EH. 

 

 

Figure S3.2. Density distribution for the 20 EH metrics calculated. The majority of EH metrics 
showed a skewed distribution. Thus, all EH metrics were log-transformed using natural logarithm 
function (here `log’ refers to natural logarithm) to achieve normality for analysis.  
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Figure S3.3. Pairwise correlations among the 20 EH metrics calculated for the 135 oceanic islands 
investigated in this study. Colors (red - positive, blue - negative) and circles size indicate the 
magnitude and direction of Pearson´s correlation coefficients. The EH metrics were named by 
referring first to the EH component abbreviation in uppercase, followed by the calculation method 
abbreviation in lower case, e.g. ELEVrou and PRECrg (see Figure 1 in main text for clarification). 
Strong correlations were observed among whole-island metrics and moving-window metrics 
(roughness and standard deviation), as well as among temperature (TEMP) and elevation (ELEV) 
heterogeneity. Correlation analysis was done with EH metrics log-transformed. 

 

 

Figure S3.4. Exemplification of EH captured using an intermediate window size (9 km2) and larger 
window size (49 km2) for three oceanic islands: Kaua´i, Mauritius, and Tenerife and their respective 
mountain ranges, Koke’é, Moka, Anaga and Teno. The maps display elevation in m a.s.l. (i.e., ELEV 
at 250 m) on the left side, and two heterogeneity rasters produced using neighborhood analysis 
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computed using standard deviation within the moving-windows. Note, 9 km2 window size 
attributed large standard deviation values to landscape features, where mountain ranges and 
island ravines are located, while the 49 km2 window size tended to diffuse such features.  

 

                

Figure S3.5. Exemplification of how EH metrics captured different aspects of EH using the Hawaiian 
archipelago. Whole-island metrics that used range (rg) are displayed on the left side and moving-
window metric that used roughness (rou) on the right side. Different colors circles indicate the 
level of EH. Note that the islands received different values depending on the types of EH metric 
used.  

Lo

w 

Hig

h H 
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Figure S3.6. Effects of using different moving window sizes and spatial grains on the EH 
quantification. Four different window sizes (3, 9, 25, 49 km2) and three different spatial grains 
(250, 500 and 1000 m) were compared based on elevation (ELEV; m a.s.l. at 250 m spatial grain). 
The spatial grains 500 and 1000 m were aggregated from ELEV, using raster resampling technique. 
The analysis is based on Pearson’s correlation values.  
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Appendix section 4: EH ~ ATT2, EHATT2 and ATT2 models evaluation 

 

Table S4.1. Effect of log-transforming island age in the EH ~ ATT2 models to evaluate the 
environmental heterogeneity (EH) trend over time (see methods for more detail on the model 
formula). The EH ~ ATT² models were fitted using LMM and evaluated using Akaike´s information 
criterion (AIC), where lower AIC values (ΔAIC > 2) indicate higher statistical support for a given 
model. Marginal (i.e., fixed effects) and conditional (i.e., fixed plus random effects) R2 values are 
reported for each model. In the formulas ‘ln’ refers to natural logarithm, ‘EH’ to a EH metric (log-
transformed) and ‘A’ and ‘T’ to island area and age, respectively. Model comparison is done by 
pairs (grey, white) and the majority of the models produced lower AIC values when the island age 
terms (i.e., T and T2) were log-transformed. 

Model AIC R2 
marginal 

R2 
conditional 

ELEVdis ~ lnA lnT lnT2 394.88 0.065 0.236 

ELEVdis ~ lnA T T2 402.43 0.058 0.231 

ELEVmsd ~ lnA lnT lnT2 350.56 0.150 0.568 

ELEVmsd ~ lnA T T2 358.88 0.139 0.544 

 ELEVrg ~ lnA lnT lnT2 269.67 0.523 0.769 

ELEVrg ~ lnA T T2 280.37 0.516 0.751 

ELEVrou ~ lnA lnT lnT2 347.21 0.161 0.579 

ELEVrou ~ lnA T T2 355.58 0.150 0.556 

ELEVsd ~ lnA lnT lnT2 305.81 0.403 0.692 

ELEVsd ~ lnA T T2 314.74 0.396 0.671 

HLIdis ~ lnA lnT lnT2 299.81 0.012 0.741 

HLIdis ~ lnA T T2 306.49 0.010 0.743 

HLImsd ~ lnA lnT lnT2 321.42 0.046 0.619 

HLImsd ~ lnA T T2 323.42 0.066 0.634 

HLIrg ~ lnA lnT lnT2 280.12 0.181 0.753 

HLIrg ~ lnA T T2 286.90 0.178 0.750 

HLIrou ~ lnA lnT lnT2 317.48 0.025 0.636 

HLIrou ~ lnA T T2 320.54 0.039 0.645 

HLIsd ~ lnA lnT lnT2 315.55 0.046 0.662 

HLIsd ~ lnA T T2 320.66 0.050 0.662 

PRECdis ~ lnA lnT lnT2 397.36 0.095 0.103 

PRECdis ~ lnA T T2 403.03 0.100 0.108 

PRECmsd ~ lnA lnT lnT2 299.24 0.051 0.757 

PRECmsd ~ lnA T T2 317.76 0.021 0.732 

PRECrg ~ lnA lnT lnT2 279.55 0.303 0.804 

PRECrg ~ lnA T T2 302.82 0.264 0.775 

PRECrou ~ lnA lnT lnT2 297.95 0.053 0.762 

PRECrou ~ lnA T T2 316.28 0.024 0.738 

PRECsd ~lnA lnT lnT2 283.55 0.238 0.797 

PRECsd ~ lnA T T2 306.82 0.198 0.765 

TEMPdis ~ lnA lnT lnT2 392.77 0.131 0.184 

TEMPdis ~ lnA T T2  408.94 0.062 0.079 

TEMPmsd ~ lnA lnT lnT2 352.33 0.122 0.580 

TEMPmsd ~ lnA T T2  370.51 0.068 0.530 

TEMPrg ~ lnA lnT lnT2 243.91 0.588 0.830 
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TEMPrg ~ lnA T T2 264.99 0.562 0.802 

TEMProu ~ lnA lnT lnT2 348.88 0.137 0.608 

TEMProu ~ lnA T T2 366.72 0.086 0.561 

TEMPsd ~ lnA lnT lnT2 292.64 0.467 0.730 

TEMPsd ~ lnA T T2 308.46 0.441 0.699 

 

Table S4.2. Effect of log-transforming EH metrics in the EHATT2 to predict number of native and 
single-island endemics species of vascular plants. Models were fitted using GLMM with Poisson 
distribution error and evaluated based on Akaike´s information criterion (AIC), where ΔAIC > 2 
indicates higher statistical support. The majority of the models produced lower AIC values when 
the EH metric was log-transformed. ‘ln’ refers to the natural logarithm.  

Log-transformation 
comparison of EH metric in 
the ATT² model to predict 
number of native species  

Statistical 
support 
AIC value 

Log-transformation 
comparison of EH metric in 
the ATT² models to predict 
number of single-island 
endemics 

Statistical 
support 
AIC value 

ELEVdis  1571.8 ELEVdis  666.2 

lnELEVdis  1571.8 lnELEVdis  666.3 

ELEVmsd  1565.7 ELEVmsd  657.4 

lnELEVmsd  1562.2 lnELEVmsd  655.0 

ELEVrg  1571.2 ELEVrg  665.8 

lnELEVrg  1562.7 lnELEVrg  658.8 

ELEVrou  1569.7 ELEVrou  662.7 

lnELEVrou  1563.1 lnELEVrou  656.7 

ELEVsd  1571.3 ELEVsd  665.4 

lnELEVsd  1564.9 lnELEVsd  657.6 

HLIdis  1567.8 HLIdis  666.1 

lnHLIdis  1565.2 lnHLIdis  665.8 

HLImsd  1568.9 HLImsd  660.3 

lnHLImsd  1566.5 lnHLImsd  657.1 

HLIrg  1571.5 HLIrg  663.6 

lnHLIrg  1570.3 lnHLIrg  664.1 

HLIrou  1570.4 HLIrou  663.3 

lnHLIrou  1567.8 lnHLIrou  659.3 

HLIsd  1571.1 HLIsd  661.6 

lnHLIsd  1569.1 lnHLIsd  660.5 

PRECdis  1571.0 PRECdis  666.3 

lnPRECdis  1570.9 lnPRECdis  666.0 

PRECmsd  1557.4 PRECmsd  663.8 

lnPRECmsd  1560.6 lnPRECmsd  663.2 

PRECrg  1561.7 PRECrg  665.3 

lnPRECrg  1558.8 lnPRECrg  663.8 

PRECrou  1563.7 PRECrou  664.1 

lnPRECrou  1561.1 lnPRECrou  663.0 

PRECsd  1564.0 PRECsd  666.1 

lnPRECsd  1560.7 lnPRECsd  664.1 

TEMPdis  1571.1 TEMPdis  665.7 

lnTEMPdis  1571.1 lnTEMPdis  665.7 

TEMPmsd  1561.1 TEMPmsd  660.2 
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lnTEMPmsd  1560.2 lnTEMPmsd  657.7 

TEMPrg  1568.7 TEMPrg  664.6 

lnTEMPrg  1559.8 lnTEMPrg  657.2 

TEMProu  1564.9 TEMProu  664.0 

lnTEMProu  1561.3 lnTEMProu  655.5 

TEMPsd  1566.0 TEMPsd  664.4 

lnTEMPsd  1561.5 lnTEMPsd  660.0 

 

Table S4.3. Statistical support for including environmental heterogeneity (EH) in the ATT² model 
in the framework of the General Dynamic Model (GDM) and absolute model fit assessment (R² 
values). The ATT² and EHATT² models were fitted using GLMMs with Poisson error, including each 
EH metric separately. Model comparison was based on Akaike’s information criterion (AIC), where 
ΔAIC > 2 indicates higher statistical support. The ATT² model without an environmental variable is 
used as reference (ΔAIC = 0). The AIC values of ATT² models for native species and single-island 
endemics were 1569.7 and 664.6, respectively. In all models, island area (A) and age (T) as well as 
the EH metrics were log-transformed. R2m and R2c correspond to marginal (fixed effects) and 
conditional (random effects) effects, respectively.  

EH metric 
included 
in the 
ATT² 
model to 
predict 
number 
of native 
species 

Statistical 
support: 
ΔAIC 

R2m R2c EH metric 
included 
in the 
ATT² 
model to 
number 
of single-
island  
endemics  

Statistical 
support: 
ΔAIC 

R2m R2c 

PRECrg  10.93 28.53 99.70 ELEVmsd  9.61 31.52 99.97 

TEMPrg  9.95 27.51 99.71 TEMProu  9.07 33.76 99.97 

TEMPmsd  9.55 27.67 99.70 ELEVrou  7.95 31.38 99.97 

PRECmsd  9.17 29.27 99.69 HLImsd  7.49 29.85 99.97 

PRECsd  9.05 28.24 99.70 TEMPrg  7.39 31.89 99.97 

PRECrou  8.67 29.20 99.69 ELEVsd  7.03 30.73 99.97 

TEMProu  8.49 27.68 99.70 TEMPmsd  6.93 32.95 99.97 

TEMPsd  8.29 27.51 99.71 ELEVrg  5.81 30.51 99.97 

ELEVmsd  7.58 27.70 99.70 HLIrou  5.34 29.87 99.97 

ELEVrg  7.06 27.68 99.70 TEMPsd  4.60 30.77 99.97 

ELEVrou  6.66 27.63 99.70 HLIsd  4.12 29.66 99.97 

ELEVsd  4.84 27.48 99.70 PRECrou  1.64 31.89 99.97 

HLIdis  4.55 27.28 99.71 PRECmsd  1.40 31.66 99.97 

HLImsd  3.23 27.51 99.70 PRECrg  0.80 31.50 99.97 

HLIrou  1.96 27.44 99.70 PRECsd  0.53 31.39 99.97 

HLIsd  0.66 27.18 99.70 HLIrg  0.49 29.96 99.97 

ATT² 0.00 27.30 99.69 ATT² 0.00 29.62 99.97 

HLIrg  -0.51 27.17 99.70 TEMPdis  -1.13 29.71 99.97 

PRECdis  -1.14 27.28 99.69 HLIdis  -1.18 28.93 99.97 

TEMPdis  -1.33 27.29 99.69 PRECdis  -1.43 30.60 99.97 

ELEVdis  -2.00 27.30 99.69 ELEVdis  -1.71 29.90 99.97 
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Figure S4.7. Univariate relationships between island age and EH metrics. Original values of Island 
age and EH metrics are displayed. This data was used to fit EH ~ ATT² models, as well as EHATT² 
and ATT² models.  

 

 

Figure S4.8. Effects of island area and age on environmental heterogeneity (EH). Coefficient 
estimates (dots) and confidence intervals spanning 95% (bars) obtained after fitting LMM using 
the formula: EH metric ~ ATT². The colors correspond to a different EH metric set as response 
variable. The dashed line marks zero effect of a model coefficient on the response variable. 
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Coefficient estimates were automatically scaled by 2 times their standard deviation for direct 
comparison. 

 

 

 

Figure S4.9. Effects of including EH metrics without log-transformation in the models to predict 
(a) number of native and (b) number of single-island endemic species of vascular plants. 
Coefficient estimates (dots) and 95% confidence intervals (bars) from models fitted using 
generalized linear mixed-effects models (with Poisson distribution error) with ATT² and EHATT². 
The colored dots and bars correspond to a particular model depending on the EH metric included. 
Note that without the log-transformation the majority of the EH metrics showed non-significant 
to zero effect on the response variables.  
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Appendix section 5: Temporal trends of vascular plant diversity over island age. 

 

Table S5.4. Effect of excluding T² from the EHATT2 and ATT2 models that predict number of native 
and single-island endemic species of vascular plants. The ATT² and EHATT² models were fitted 
using GLMM with Poisson error, including each EH metric separately. Evaluation of the T² term 
exclusion is based on Akaike´s information criterion (AIC), where ΔAIC > 2 indicate higher statistical 
support. Note that, the majority of the models produced lower AIC values when the T² term was 
removed. 

EH metric 
included in 
models for 
Native 
species 

AIC for model 
EHAT 

AIC for model  
EHATT² 

EH metric 
included 
in models 
for single-
island 
species 

AIC for model 
EHAT 

AIC for model  
EHATT² 

 
1573.31 1569.76   665.27 664.61 

 ELEVdis  1575.25 1571.76  ELEVdis  666.62 666.32 

 ELEVmsd  1561.03 1562.19  ELEVmsd  653.09 655.00 

 ELEVrg  1561.53 1562.70  ELEVrg  657.07 658.80 

 ELEVrou  1562.24 1563.11  ELEVrou  654.92 656.66 

 ELEVsd  1564.13 1564.93  ELEVsd  655.82 657.58 

 HLIdis  1569.09 1565.21  HLIdis  666.15 665.79 

 HLImsd  1568.58 1566.53  HLImsd  656.45 657.12 

 HLIrg  1572.94 1570.27  HLIrg  664.08 664.12 

 HLIrou  1570.07 1567.80  HLIrou  658.77 659.27 

 HLIsd  1570.69 1569.11  HLIsd  659.72 660.49 

 PRECdis  1574.52 1570.90  PRECdis  666.03 666.04 

 PRECmsd  1559.73 1560.60  PRECmsd  661.38 663.21 

 PRECrg  1557.50 1558.84  PRECrg  662.06 663.81 

 PRECrou  1560.33 1561.09  PRECrou  661.12 662.97 

 PRECsd  1559.40 1560.71  PRECsd  662.40 664.08 

 TEMPdis  1573.90 1571.09  TEMPdis  667.17 665.74 

 TEMPmsd  1558.68 1560.21  TEMPmsd  655.79 657.68 

 TEMPrg  1557.89 1559.81  TEMPrg  655.26 657.22 

 TEMProu  1559.71 1561.28  TEMProu  653.58 655.53 

 TEMPsd  1559.78 1561.47  TEMPsd  658.25 660.00 
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Figure S5.10. Temporal trends of species richness and endemism of insular vascular plants. The 
trends correspond to model predictions based on 135 oceanic islands. The ATT² and EHATT² 
models were fitted using GLMM with Poisson error, including each EH metric separately. Temporal 
trends of number of native (a: ATT² and b-e: EHATT² models) and single-island endemics species 
(f: ATT² and g-j: EHATT² models) are arranged per EH component. The different color lines 
correspond to the method used to calculate EH. 

 

 

Figure S5.11. Effects of the interaction between island area and EH in the EHATT² model predicting 
(a) number of native and (b) number of single-island endemic species of vascular plants. 
Coefficient estimates (dots) and 95% confidence intervals (bars) from models were fitted using 
generalized linear mixed-effects models with Poisson distribution error. The colored dots and bars 
correspond to a particular model depending on the EH metric included. Significant interactions 
are highlighted with black coefficient dots.  
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