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ABSTRACT OF THE DISSERTATION

Therapeutic Modalities Targeting Neuroinflammation After Neonatal Hypoxia-Ischemia

by

Nancy Fathali

Doctor of Philosophy, Graduate Program in Anatomy
Loma Linda University, June 2010
Dr. John H. Zhang, Chairperson

Hypoxia-ischemia (HI) occurs in 1-6/1000 live full-term births (Shankaran,

2009). Of those affected, 15-20% will die in the postnatal period, and 25% of survivors

will be left with long-term neurological disabilities (Gunn, 2000; Vannucci, 1997;

Fatemi, 2009). It has become increasingly clear that peripheral immune cells infiltrate the

brain parenchyma as part of the physiological response to tissue damage after HI injury.

The interplay between infiltrating immune cells and brain resident cells during the

inflammatory response is however dynamic and complex; in that neuro-immune

crosstalk, by way of specific molecular mediators, is responsible for both

neurodestructive as well as neuroprotective outcomes. Herein, we tested the hypothesis

that COX-2 mediates mechanisms of brain injury and that G-CSF exerts structural and

functional protection after neonatal HI.

To mimic the clinical features of HI brain injury, neonatal rat pups were subjected

to unilateral carotid artery ligation followed by 2 hours of hypoxia (8% O2 at 37°C). We

used a gain and loss of function approach (pharmacological activation or inhibition,

respectively) for COX-2, a neutralizing antibody for lL-15, and a gene silencer for

natural killer cells in both splenectomized and non-splenectomized rats to verify the role

of COX-2 in splenic immune cell responses following HI. We found that elevations in

Xlll



COX-2 expression by immune cells promoted IL-15 expression in astrocytes and

infiltration of infiammatory cells; additionally, down-regulated the pro-survival protein,

PI3K, resulting in caspase-3 mediated neuronal death. Additionally, we investigated the

efficacy of G-CSF on long-term Hl-induced morphological and functional outcomes

using two different dosing regimens; and found the neurotrophic factor to significantly

improve behavioral and neuropathological recovery.

These results provide insight into the mechanistic basis of mflammation and

indentify key components of the neuroinflammatory response after HI. Thus, we propose

that COX-2 inhibition or G-CSF administration during the acute phase of injury are novel

therapeutic modalities that target detrimental and beneficial mechanisms of

neuroinflammation, respectively, and may offer a safe and effective option with long-

term benefits for the Hl-injured infant.
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CHAPTER ONE

THE EVOLVING LANDSCAPE OF NEUROINFLAMMATION AFTER NEONATAL

HYPOXIA-ISCHEMIA

Nancy Fathali^ Nikan H. Khatibi^, Robert P. Ostrowski^, and John H. Zhang^'^'"^

Departments of 'Pathology and Human Anatomy, ̂Anesthesiology, ̂Physiology, and
''Neurosurgery, Loma Linda University, Loma Linda, CA, USA

Published: Acta Neurochirurgica Supplement, In Press



Abstract

Hypoxic-ischemic brain injury remains a leading cause of mortality and morbidity

in neonates. The inflammatory response, which is characterized, in part, by activation of

local immune cells, has been implicated as a core component for the progression of

damage to the immature brain following hypoxia-ischemia (HI). However, moxmting

evidence implicates circulating immxme cells recruited to the site of damage, as

orchestrators of neuron-glial interactions and perpetuators of secondary brain injury. This

suggests that re-directing our attention from the local inflammatory response toward the

molecular mediators believed to link brain-immune cell interactions may be a more

effective approach to mitigating the inflammatory sequelae of perinatal HI. In this

review, we focus our attention on cyclooxygenase-2 (COX-2), a mediator by which

peripheral immune cells may modulate signaling pathways in the brain that lead to a

worsened outcome. Additionally, we present an overview of emerging therapeutic

modalities that target mechanisms of neuroinflammation in the hypoxic-ischemic

neonate.



Introduction

Hypoxia-ischemia (HI) occurs in one to six per 1000 live full-term births (63). Of

those affected, 15-20% will die in the postnatal period, and 25% of survivors will be left

with long-term neurological disabilities (24,32,70). Intrauterine asphyxia is the

underlying mechanism of hypoxic injury and is a consequence of circulatory problems

including clotting of placental arteries and placental abruption (50). HI in the neonate is a

manifestation of systemic hypoxia combined with reduced cardiac output (48).

Studies have shown that the pathophysiology of brain injury secondary to HI

consists of a biphasic profile (Figure 1). The initial phase of HI is characterized by brain

acidosis and the depletion of high-energy phosphorylated compounds, such as adenosine

triphosphate and phosphocreatine (12,33,63). This primary energy failure leads to the loss

of membrane ionic homeostasis, depolarization of the cell, osmotic dysregulation, and

inhibition of protein synthesis, fiorther leading to necrosis (39,44). The secondary

processes evolve over days after the brain insult, and are also characterized by a depletion

of high-energy phosphorylated compounds however without tissue acidosis. Although the

pathogenesis of secondary brain injury involves multiple pathophysiologic processes,

accumulating evidence implicates the inflammatory response as a core component of

damage (3,25,26).

Neuroinflammation includes initial release of pro-inflammatory mediators by

injured or dying cells, activation of microglia and astrocytes, and leukocyte infiltration. It

is the synergistic actions of these events that potentiate brain damage and lead to

neurological dysfunction (56). However, experimental studies thus far have focused

mainly on selectively targeting these mechanisms, which may explain why there are no
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Figure 1. Pathophysiology of a Hypoxic-Ischemic Event. Decrease in cerebral blood
flow results in a decrease of high-energy phosphate reserves (i.e., adenosine triphosphate;
phosphocreatine) and a huild-up of lactic acid. Loss of memhrane ionic homeostasis leads
to intracellular accumulation of sodixim (Na"^), calcium (Ca^"^, and water (edema);
thereby depolarizing the cell and releasing glutamate (triangle) and potassium (K^) into
the extracellular space. Intracellular calcium ion accumulation leads to enzyme induction
(i.e., Upases; proteases; endonueleases) and free fatty acid elevation, which undergo
peroxidation. The result is the accumulation and/or release of inflammatory mediators
(i.e., cyclooxygenase-2) \yhich can lead to apoptosis, glial activation, and peripheral
immune cell infiltration.



pharaiacotherapies proven clinically viable for the treatment of HI brain damage. In fact,

increasing evidence suggests identifying molecular mediators responsible for

orchestrating brain-immune cell interactions as a more promising approach (18,20,49).

This review will provide a brief overview of the current understanding of the local

and peripheral inflammatory response involved in neonatal HI, and the role of

cyclooxygenase-2 (COX-2) in brain-immune cell interactions and the progression of

neuroinflammation.

Changing Landscape of Neuroinflammation

The immune response in the brain is highly complex and involves the

participation of several different resident cells (Figure 2). Microglia, astrocytes, and

neurons directly react and contribute to neuroinflammation in the Hl-injured neonate. The

role of each of these cell types in propagating the local inflammatory response is

important in understanding the dynamic microenvironment.

Microglia

Microglia cells serve as specialized sensors for brain tissue damage. In response

to ischemia, microglia morphologically change from a resting ramified phenotype to a

motile activated amoeboid cell able to migrate to necrotic areas to remove cellular debris

(43,44). However, in the process, these activated cells contribute to secondary brain

injury by releasing a variety of pro-inflammatory mediators including cytokines, reactive

oxygen species, complement factors, free radical species and nitric oxide, which

contribute to cell death, ultimately creating a vicious perpetuating cycle (24).



Mounting evidence suggests that infiltrating peripheral immune cells may be

necessary for the activation of microglia, thereby exacerbating neurodegeneration after

ischemia. In an in vitro study, microglia when co-cultured with T-cells, become activated

thereby releasing an inflammatory cytokine (14). In an in vivo study, removal of a

population of infiltrating macrophages, neutrophils, B cells, and T cells by splenectomy

appeared to reduce microglia activation and dramatically reduce brain damage (2).

Systemic inhibition of monocyte/macrophage or neutrophil populations hais also shown to

reduce cerebral infarct volume after ischemic injury (16,17,78). However, the exact

mechanism by which peripheral immune cells activate and/or propagate the local

inflammatory response and enhance neuronal death remains to be determined.

Astrocytes

Astrocytes which are the predominant glial cell type in the central nervous system

(CNS), have been shown to produce inflammatory mediators in a variety of brain injures

including HI (61,62). Inflammatory cytokines have been associated with neonatal HI

brain damage, and later development of cerebral palsy (19,24). Specifically, elevated

levels of interleukin (IL)-6 in cerebrospinal fluid of asphyxiated newboms have been

correlated with an increased degree of brain damage and poor neurological outcome (58).

Additionally, more recent evidence has implicated IL-15 as playing a leading role in

neuroinfiammation in the injured immature rat brain (51). Importantly, astrocytes are the

main source of both IL-6 and IL-15 in CNS injury and inflammation (24,29).

Astrocytes may also influence the local inflammatory response through their

communicative partnership with neighboring cells (31). Under pathological conditions,

astrocytes play a critical role in the activation of microglia (55,67), and by-products of



reactive astrocytes such as tumor necrosis factor-alpha (TNF-a) and IL-6 arc associated

with ncuronal demise after HI (72). On the other hand, astrocytes are also a source of

trophic factors, such as granulocyte-colony stimulating factor (G-CSF) (22), and are

responsible for regulating neurotransmitter and ion concentrations, removing debris, and

maintaining an optimal environment for ncuronal function (5). Impairment of astrocyte

function during HI is thought to influence neuron viability (72). Therefore, it is important

to identify key molecular mediators responsible for initiating astrocyte signaling

pathways involved in worsening brain injury, without eliminating the protective function

of these cells.

Neurons

Once thought to be passive bystanders in neuroinflammation, neurons are now

known to be playing more of an active role. As such, neurons can be a source of

inflammatory mediators including complement, COX-2 and cytokines after HI (25,68).

Neurons can express COX-2 at low levels under normal conditions; however, under

pathological conditions, COX-2 is upregulated in response to mitogens, inflammatory

mediators, and hormones (38). Induction of COX-2 expression in neurons is also driven

by physiological synaptic activity (73) and acute paradigms of excitoxicity (1), whereby

promoting local inflammatory reactions and injury to themselves (23,53,54). Moreover,

neurons contribute to the production of pro-inflammatory mediators that can alter

vascular permeability and regional blood flow, and enhance chemotactic activity and

thereby promote leukocyte migration (3).

Once peripheral leukoeytes and monocytes enter the brain parenchyma their

actions appear to be multifaceted (77). Certain immrme cell subpopulations may directly

8



elicit neuronal death via contact-dependent mechanisms (28) or release molecular

mediators that activate resident cells, thus promoting further brain injury (4,11). In line

with this concept, recent studies have shown that T-lymphocyte-deficient mice

demonstrate attenuated brain injury and neurological deficits after experimental stroke

(37,76). To make matters more complex, regulatory T-lymphocytes have been shown to

have a protective role in the brain after stroke (45). Immune cells have been also

implicated in the generation of new neurons and improvement of spatial learning and

memory performance in neurodegenerative disease (7,79,80).



Figure 2. Neuroinflammatory Cascade After Brain Injury. Downstream cyclooxygenase-
2 (COX-2) effectors from infiltrating peripheral immune cells activate astrocytes and
microglia, which in turn, release cytokines, chemokines, reactive oxygen and nitrogen
species (ROS and RNS, respectively) and complement factors. These inflammatory
mediators can further activate resident brain cells, thereby amplifying neuroinflammatory
signals and neuronal cell death. Excessive exposure to inflammatory mediators
compromises astrocyte functions leading to downregulation of glutamate transporters,
impaired glutamate re-uptake, elevated glutamate release, and decreased neurotrophic
factor (i.e., granulocyte-colony stimulating factor [G-CSF]) release, all of which can lead
to neuronal cell death. Neuronal release of cytokines, complement factors, and COX-2
can lead to autocrine or paracrine-mediated neuronal death.

11



Neuro-Glial Interactions

Astrocytes are viewed as an active participant in synaptic transmission and

processing of information - a departure from the old dogma in which astrocytes were

identified as merely physical supporters for neighboring neurons (5). Moreover, opening

of gap-junctional communication channels links dying astroc3des in the ischemic core

with penumbral cells (46). Therefore, astrocytes might compromise juxtaposed cells

found in salvageable tissue that otherwise may have survived.

Studies have suggested that inflammatory mediators might be the driving force

for altering astrocyte fimction and thereby impacting neuron-glial signaling. For example,

astrocytes undergo IL-lb-induced elevations in intracellular calcium which may enhance

glia-to-neuron signaling, leading to a reduction in neuron survival (9). Pro-inflammatory

cjdokines may also be responsible for impairing astrocyte energy metabolism thereby

jeopardizing neuronal vulnerability (5). Thus it is reasonable to conceptualize that

targeting cytokines may lead to a profound modulation of astrocyte function and improve

neuronal survivability in this mechanism.

Central Role of COX-2

Cyclooxygenase is a rate limiting enzyme responsible for catalyzing the synthesis

of prostaglandins from arachidonic acid (66). Cyclooxygenase possesses two catalytic

sites: a COX active site responsible for the conversion of arachidonic acid into the

endoperoxide, PGG2; and a peroxidase active site responsible for the rapid conversion of

PGG2 into another endoperoxide, PGH2 (10). PGH2 is further processed to form

prostaglandins, prostacyclin, and thromboxane A2. To date, two COX isoforms have been

identified. COX-1 is constitutively expressed in the brain and its by-products are thought

12



to contribute to normal physiological function (74). COX-2 is also constitutively

expressed in the brain (neurons, astrocytes, microglia, and endothelia), but can be

inducible under pathological conditions (74). In the brain, COX-2 acts as a key mediator

^ of inflammation, orchestrating a wide spectrum of brain injuries including excitotoxic

brain injury, cerebral ischemia, traumatic brain injury, and neurodegenerative disorders

(52). COX-2 can propagate the neuroinflammatory response and contribute to tissue

damage through the production of toxic prostanoids and reactive oxygen species (38).

COX-3 has also been reported in brain tissue (15), but is a splice variant of COX-1 with

unknown function (41).

COX-2 Orchestrates hnmunologic Responses After HI

COX-2, a well-established mediator of adult brain injury (38), is emerging as a

key player in neuroinflammation after hypoxic-ischemic brain damage in the neonate

(25). Peripheral immune cells such as T-lymphocytes, B-cells, and Natural Killer cells

have the capability to up-regulate COX-2 expression when activated (13). However,

immune cell infiltration into the brain parenchyma is thought to also play a beneficial role

through the production of neurotrophic factors (47). Activated monocytes, macrophages,

and neutrophils are the peripheral cell source for the neurotrophic factor, G-CSF.

Peripherally produced G-CSF can also enter the brain by crossing the intact blood-brain

barrier and binding to its receptor on neurons and glial cells (57,59). In the brain, G-CSF

has been shown to protect neurons and trigger neurogenesis (21). However, excessive

and/or prolonged activation of inflammatory mediators can decrease neurotrophic support

and neurogenesis in brain areas responsible for behavior and cognition (6,8,71). Studies

suggest COX-2 may mediate suppression of G-CSF, since inhibition of COX-2 was able

13



to increase G-CSF production (35,36). This down-regulation of neurotrophic factors

contributes to secondary brain injury and cell death, after a bypoxic-iscbemic insult (69).

Emerging Therapeutic Modalities Targeting Inflammation

There are various therapeutic modalities that have attempted to modulate the

neuroinflammation that results from HI brain injury in neonates. These treatment options

have targeted various stages in the inflammatory cascade including COX-2 inhibition as

well as investigated the use of growth factors such as G-CSF. In the following

paragraphs, we will review these emerging therapeutic modalities and explore the various

research that have been conducted between 1970 and 2010 using relevant literature from

the National Library of Medicine and National Institute of Health Database

(www.pubmed.gov).

COX-2 Inhibition

To date, many studies have investigated the anti-inflammatory properties of

COX-2 inhibition and the benefits with improving neurologic outcomes after various

adult brain injuries. Yet smprisingly, only one study to date has investigated the use of

COX-2 inhibition on neonatal HI brain injury. The study led by Fathali et al. used

postnatal day ten rat pups to assess the effects of NS398, a known selective COX-2

inhibitor, on various neurologic outcomes after right eommon carotid artery occlusion

followed by 2 hours of hypoxia (25). The authors first described that COX-2 inhibition

limited morphologic damage, improved long-term functional deficits, reversed somatic

growth retardation, and lowered mortality rates after a hypoxic-ischemic injury in

neonatal rats. Noteworthy, COX-2 inhibition significantly reduced the expression of IL-6,

14



a pro-inflammatory cytokine, and in tum, reduced the infiltration of inflammatory cells

such as macrophages and neutrophils, which suggests that the increased survivability and

neuroprotection provided by COX-2 may be mediated by a reduction in

neuroinflammation (25).

G-CSF Administration

G-CSF is a 20 kDa protein belonging to the c5dokine family of growth factors. It

is responsible for stimulating die proliferation, survival, and maturation of cells

committed to the neutrophilic granulocyte lineage by binding to specific G-CSF receptors

(65). In addition to its role in neutropenia, G-CSF has shown to be neuroprotective in

various brain injury models through direct apoptotic inhibition, inflammatory cell

modulation, and/or trophic effects on neuronal cells.

One of the first studies to investigate the anti-inflammatory properties of G-CSF

was conducted in 1992 by Gorgen et al. who looked at the role of G-CSF in gram

negative septic rodents (30). The study showed that G-CSF could interfere with TNF-a

production through a negative feedback signal. Later in 2005, both Gibson and Komie-

Kobayashi would also demonstrate the anti-inflammatory role of G-CSF by showing that

treatment could modulate the inflammatory response after injury (27,42). Specifically,

Komie-Kobayashi demonstrated G-CSF's ability to suppress inducible nitric oxide

synthase (iNOS) production and decrease activation of microglial cells expressing iNOS

- according to Western blot and immunohistochemistry analysis. Gibson on the other

hand, found that G-CSF treatment only suppressed the up-regulation of IL-IB mRNA and

had no effect on TNF-a and iNOS mRNA expression. Additionally, in models of
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peripheral mfection, G-CSF-induced JAK-STAT signaling was found to reduce TNF-a,

interleukin (IL)-1B, IL-2, IL-6, andIL-8 and elevate IL-16 receptor antagonists (34).

In terms of its neurotrophic capabilities, various studies have confirmed G-CSF as

an essential neurotrophic factor, noting its ability to stimulate the release of stem cells

from the bone marrow, promoting both neural repair and neural plasticity (65). A study

led by Shjoi et al. in Circulation (2004) found that ischemic stroke rats treated with G-

CSF, could mobilize autdlogous hematopoietic stem cells into circulation, enhance their

translocation into ischemic brain, and significantly improve lesion repair (64).

Additionally, in rat ischemic models, peripherally administered G-CSF was found to

enhance structural repair and function by increasing the number of newly generated

neurons in both healthy and ischemic subjects (60).

In neonatal HI, only two studies can be found on PubMed using the search criteria

"G-CSF and neonatal hypoxia ischemia". Unfortunately, none of the studies looked at the

role of G-CSF as an anti-inflammatory agent. Instead, the focus of attention was on the

role of G-CSF in apoptosis. The first study led by Yata et al., (2007) found that five

SOug/kg G-CSF post-treatment injections over four days could reduce apoptotic neuron

loss while increasing the expression of pro-survival signals (75). Specifically, the

investigators found that the anti-apoptotic protein Bcl-2 declined with injury and reversed

after treatment while the pro-apoptotic protein, Bax, increased following HI injury and

again, was reversed following G-CSF treatment. This is in line with another study

conducted by Kim et al., (2008) which found similar neuroprotective outcomes following

a single injection of 50ug/kg G-CSF after injury (40).

16



Specific Aims

The interplay between infiltrating immune cells and brain resident cells during the

inflammatory response is dynamic and complex; in that neuro-immune crosstalk, by way

of specific molecular mediators, is responsible for both neurodestructive as well as

neuroprotective outcomes. Therefore, the neuroinflammatory response to neonatal CNS

insult may not comprise a uni-dimensional progression from ischemia to impairment, but

rather multiple processes of endogenous repair mechanisms are also initiated after injury.

We, therefore, propose identifying and suppressing the actions of molecular mediators

believed to be responsible for causation of signaling pathways that lead to a worsened

outcome and enhancing neurotrophic mediators responsible for recovery after a hypoxic-

ischemic insult. Herein, we tested the hypothesis that COX-2 mediates mechanisms of

brain injury and that G-CSF exerts structural and functional protection after neonatal HI.

The following specific aims are proposed to address our hypothesis (Figure 2).

Specific Aim 1 is to determine the optimal dosage and broad efficacy of COX-2

inhibition after HI brain injury. Our specific hypothesis is that multiple treatments of low-

dose or high-dose COX-2 inhibitor, over the first few days following HI brain insult, will

reduce brain damage, and improve long-term functional deficits, and somatic and

systemic organ growth.

Specific Aim 2 is to characterize the COX-2-dependent mechanisms involved in

brain-immune interactions after HI brain injury. Our specific hypothesis is that COX-2,

from spleen-derived immune cells, enhances neuroinflammation via IL-15 expression by

astrocytes. Elevated IL-15 inhibits the pro-survival protein PI3K in neurons, thereby

leading to caspase-3 activation and cell death. Interventions such as splenectomy.

17



pharmacological inhibition of COX-2, a neutralizing antibody for IL-15, or a gene

silencer for natural killer cells are expected to provide neuroprotection against HI injury.

Specific Aim 3 is to determine the optimal regimen and broad efficacy of G-CSF

administration after HI brain injury. Our specific hypothesis is that multiple treatments

with the neurotrophic factor G-CSF, will improve long-term behavioral and

neuropathological recovery after HI.

The proposed work will: 1) introduce novel therapeutic modalities for attenuating

the morphological and neurological consequences of neonatal HI; 2) establish on a

molecular level the mechanistic basis by which peripheral immune cells interact with

resident brain cells and thereby propagate the neuroinflanunatory response and worsen

brain injury; 3) provide a basis for the clinical implication for targeting key inflammatory

pathways as an effective therapeutic option with long-temi benefits after a hypoxic-

ischemic brain injury.
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Figure 3. Schematic of Specific Aims. Aim 1 (pprple arrow) will examine the short- and
long-term effects of cyclooxygenase-2 inhibition after HI. Aim 2 (black arrow) will
determine the COX-2 mediated mechanisms and the cell types involved in neuro-immune
crosstalk. Aim 3 (blue arrow) will examine the long-term behavioral and morphological
effects of G-CSF treatment.
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Abstract

The development of brain inflammation largely contributes to neonatal brain

injury that may lead to a lifetime of neurologic deficits. The present study was designed

to investigate whether inhibition of cyclooxygenase-2 (COX-2), a critical component of

the inflammatory pathway, is neuroprotective in a neonatal rat model of cerebral

hj'poxia^ischemia (HI). DESIGN: Laboratory investigation. SETTING: University

research laboratory. Neonatal HI was induced in postnatal day-10 Sprague-Dawley rats

by ligation of the right common carotid artery followed by two hours of hypoxia (8% O2).

The pups in treatment groups were administered lOmg/kg (low dose) or 30mg/kg (high

dose) of a known selective COX-2 inhibitor (NS398). Animals were euthanized at three

time points: 72hrs, 2wks, or 6wks. Inflammation outcomes were assessed at 72hrs; brain

damage was assessed at 2- and 6wks along with other organs (heart, spleen). Detailed

neurobehavioral examination was performed at 6wks. Pharmacological inhibition of

COX-2 markedly increased survivability within the first 72hrs compared to untreated rats

(100% vs. 72%). Low- and high-dose NS398 significantly attenuated the loss of brain and

body weights observed after HI. Neurobehavioral outcomes were significantly improved

in some parameters with low dose treatment; while, high dose treatment consistently

improved all neurological deficits, hnmunohistochemical results showed a marked

decrease in macrophage, microglial, and neutrophil abundance in ipsilateral brain of

NS398 treated group along with a reduction in interleukin-6 expression. Selective COX-2

inhibition protected neonatal rats against death, progression of brain injury, growth

retardation, and neurobehavioral deficits after a hypoxic-ischemic insult.
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Introduction

A hypoxic-ischemic insult to neonates results not only in brain damage, but is also

associated with increased mortality and somatic growth retardation (1,2). There is no

effective treatment for neonatal hypoxia-ischemia (HI). Long-term effects of HI for the

survivors may include motor disability, cognitive dysfunction, and problems in learning

and behavior (3). The inflammatory response is particularly detrimental in the immature

brain, serving a key component in the progression of neonatal encephalopathy (4).

Cyclooxygenase-2 (COX-2), the inducible form of the enzyme and a key mediator

of inflammation, is critical in different forms of brain injury such as exeitdtoxic brain

injury, cerebral ischemia, traumatic brain injury, and neurodegenerative disorders (5).

Cerebrospinal fluid concentrations of prostaglandins (PG) such as PGE2 and PGI2, which

are downstream effectors of COX-2 enzyme, have been reported to be significantly

higher in children with perinatal hypoxia (6). Moreover, pharmacological inhibition of

COX-2 has been shown to be beneficial in brain and spinal cord-related injuries in adults

(7, 8). To date, no study has examined the effects of COX-2 inhibition against neonatal

Hl-induced brain injury.

Accordingly, we hypothesized that inhibition of COX-2-induced-inflammation

will reduce brain injury; improve neurological outcomes, and somatic and systemic organ

growth following HI in neonates. We examined the lasting effects of COX-2 inhibition

using two different doses of a selective COX-2 inhibitor, NS398, in a well established

neonatal HI model in rats. We also confirmed the presence of COX-2 in neuronal cells

and used the pro-inflammatory cytokine, interleukin-6 (IL-6), as an endpoint for

inflammation.
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Materials and Methods

Animal Groups and Operative Procedure

This study was in accordance with the National Institutes of Health guidelines for

the treatment of animals and was approved by the Institutional Animal Care and Use

Committee at Loma Linda University. Timed pregnant Sprague-Dawley rats were housed

with food and water available ad libitum. Postnatal day-10 pups were randomly assigned

to the following groups; sham, HI [Vehicle], HI+10mg/kgNS398 [NS-10], or

Hl+SOmg/kg NS398 [NS-30]. Each litter consisted of all groups. Pups were placed on a

surgical table maintained at 37®C and anesthetized by inhalation with isoflurane (3% in

mixed air and oxygen). Hl-groups had right common carotid artery permanently ligated.

After l.ShOurs (hrs) of recovery, pups were placed in a glass jar (submerged in a water

bath maintained at 37''C) perfused with 8% oxygen for 2hrs. Rats were euthanized under

general anesthesia [ketamine (80mg/kg)/xylazme (lOmg/kg)] by decapitation at 72hrs, 2-

and 6weeks (wks) post-HI.

Treatment Method

Some pups were treated intraperitoneally with a COX-2 inhibitor (NS398) at

either lOmg/kg or 30mg/kg dosage (Cayman Chemical, Ann Arbor, MI) diluted in 10%

dimethylsulfoxide (DMSO) and saline. Treatment consisted of six injections (1, 6, 24, 36,

48, and 60hrs) after hypoxia. Vehicle pups followed same injection regimen and

methodology, but administered 10% DMSO in saline.
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Evaluation of Brain Damage

Hemispheric weight loss has been used as the primary variable to estimate brain

damage in this animal model (9). At 2- and 6wks, the brain was removed, without prior

perfusion, and the hemispheres were separated by a midline incision and weired on a

high-precision balance (sensitivity ±0.001 g).

Measurement of Organ Weight

After removal of brain, the spleen and heart were isolated and detached from

surrounding tissue and vessels and weighed at the 6wk interval.

Assessment of Neurobehavioral Deficits

Rats were tested at 6wks and scored accordingly: 0 for immediate and correct

placement; 1 for delayed and/or incomplete placement; 2 for no placement. Scores

corresponded to raw values: 0 = raw value of 100; 1 = raw value of 50; 2 = raw value of

0. Methodology was as previously described (10) for the first six tests:

1. Postural Reflex: Assessed upper body posture and symmetry in forelimb

extension (11). Rat was held by tail and lowered to 10cm above table top.

2. Proprioceptive Limb Placing: Rat's head was tilted 45° upwards to avoid visual

and tactile contact with table. Dorsum of paw was pushed against table edge to

stimulate limb muscles and joints for forelimb placement onto table top.

3. Backpressure Towards Edge: Rat was moved from behind toward table edge

for assessment of forward limb placement.
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4. Lateral Pressure Towards Edge: Rat was moved from ipsilateral or

contralateral side toward table edge for assessment of lateral and forward limb

placement.

5. Forelimb Placement: Rat was held facing table edge with visual and tactile

(whisker) contact with table, and assessed for forward limb placement onto

table top.

6. Lateral Limb Placement: Rat was held parallel to table edge with tactile

contact, and assessed for lateral limb abduction onto table top.

7. T-Maze: Assessed short-term or working memory (12). Rat was placed in the

stem (40x10cm) of maze and allowed to explore until an arm (46x10cm) of

maze was chosen. The sequence (10 trials) of left and right arm choices was

expressed as rate of spontaneous alternation (0%=no alternation,

100%=altemation at each trial).

8. Foot-fault: Assessed placement dysfunction of forepaws and motor

coordination, and is reliable in differentiating between ischemic and normal

rats (11,13). Rat was placed onto an elevated wire grid floor (20x40cm) for 2

minutes. Foot-faults were when a complete paw fell through openings.

Immvmohistochemistry with DAB Staining

Animals (n=5/group) were perfused with O.IM phosphate buffered saline (PBS)

and fixed with 10% paraformaldehyde (formalin) diluted in PBS, via trans-cardiac

approach 72hrs post-insult. The sectioned brain volume (5mm) encompassed dorsal

hippocampus. Every fifth section of the tissue block was collected, and from this set, 6

random, non-adjacent sections were stained and then observed. Special care was taken to
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analyze sections from the same levels of sectioning in different animals. Antigen retrieval

was done on slices (lOgm) by microwave irradiation in O.IM sodium citrate (pH=6) for

10 minutes. Diaminobenzidine (DAB) staining method (ABC Staining Kit, Santa Cruz

Biotech, Santa Cruz, CA) was implemented as previously described (14) for detection of

COX-2 expression in the ipsilateral cortex and CAl region of hippocampus. Antibodies

included goat anti-COX-2 (1:100) and donkey anti-goat secondary antibody (1:200). All

antibodies were obtained from Santa Cruz Biotech (Santa Cruz, CA), unless otherwise

stated. Controls for non-specific immunobistocbemical staining were done with omission

of the primary antibodies.

Westem Blotting of COX-2

Animals (n=5/group) were perfused (O.IM PBS) at 72brs post-HI. Ipsilateral

hemisphere was isolated then snap-frozen and kept at -80°C until analysis. Samples in

(300mg/mL) extraction buffer (50mM Tris-HCl buffer [pH 7.4] with ISOmM NaCl, 1%

Nomide P40, 0.1% sodium dodecyl sulfate (SDS), 0.1% deoxycholic acid, and 1%

PMSF) and 1% protease inhibitor were homogenized with a tissue homogenizer for a

total of 60 seconds (20x 3 sec pulses). The homogenate was eentrifuged (15000 g for 20

min), the supernatant of the extract was collected, and the concentration of the protein

samples was determined by Bradford assay (BioRad, Hercules, CA). All procedures were

performed at 4°C. 40pg sample of extracted protein with 2x loading buffer (62.5 mM

Tris-HCl [pH 6.8], 2% SDS, 25% glycerol, 0.01% Bromophenol Blue, and 5% p-

mercaptoethanol) were subjected to electrophoresis on 10% polyacrylamide SDS gel

(BioRad, Hercules, CA). Procedures were as previously described (15). Primary

antibodies were goat anti-COX-2 and rabbit anti-P-aetin. Incubation with donkey anti-
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goat and donkey anti-rabbit secondary antibodies was done, respectively. Bands were

detected by chemiluminescent kit (Amersham Bioscience, Piscataway, NJ) on X-ray film

(Kodak, Rochester, NY). Optical density was determined using NIH Image J software

and expressed relative to P-actin then to sham group.

Triple Fluorescent Labeling

Cerebral tissue was perfused (O.IM PBS), fixed (10% formalin), and sectioned

(5mm volume) at 72hrs for use in triple-fluorescent labeling. Primary antibodies were

goat anti-COX-2 (1:50), rabbit anti-IL-6 (1:50) with mouse anti-NeuN (1:100; Millipore

Corp., Billerica, MA). Tissue slices (10pm) were blocked with 5% donkey serum in PBS

at room temperature for 2hrs. Slices were incubated overnight at 4'^C, followed with

respective donkey secondary antibodies conjugated with fluorescent dyes for 2hrs at

room temperature in the dark, as previously described (16). Between incubations, three

washes of 5min were performed at room temperature with 0.01 M PBS (pH 7.4).

Controls for non-specific immunofluorescence staining were done with omission of the

primary antibodies. To test for tissue autofluorescence, some sections were processed

without the secondary antibodies. The ipsilateral cortex and CAl region of hippocampus

(n=5/group) were analyzed using a fluorescent microscope with digital camera

(OLYMPUS BX51, Melville, NY).

Inflammatory Cell Infiltration

Animals (n=5/group) were perfused (O.IM PBS) at 72hrs post-HI. Ipsilateral

hemisphere was isolated then snap-fi-ozen and kept at -80°C until analysis of interleukin-6

(IL-6) concentration by ELISA technique (Invitrogen Corp., Carlsbad, CA) and
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expressed as picogram per milligram protein. Samples in (300mg/mL) extraction buffer

(50mM Tris-HCl buffer [pH 7.4] with 0.6M NaCl, 0.2% Triton X-100, lOpl aprotinin,

Ipg/mL leupeptin, and ImM PMSF) and 1% protease inhibitor were homogenized, the

supernatant of the extract was collected, and the protein samples were assayed in

duplicate. Cerebral tissue was perfused (O.IM PBS), fixed (10% formalin), and sectioned

(5mm volume) for detection of inflammatory cell infiltration into ipsilateral cortex

(n=5/group). Rabbit anti-Ibal (1:100; Wako Chemicals USA Inc., Richmond, VA),

mouse anti-CD68 (1:100; Millipore Corp., Billerica, MA), or goat anti-MPO (1:100)

primary antibodies (Abeam Inc., Cambridge, MA) were added to sections (10pm).

Incubation methodology was same as in triple-fluorescent labeling. An estimation of the

amount of positive cells were defined as being low (<10 postive cells/per high power

visual field) or high (>10 positive cells/per high power visual field). As with all staining,

differences in levels of infiltrating cell markers were noted between groups by an

experimenter blinded to the treatment group of each section/slide observed.

Data Analysis

Data was expressed as mean ± SEM. One-way ANOVA and Tukey test were used

to determine significance in differences between means. Neurological scores were

analyzed using Means of Dunn Method (except T-Maze and Foot-fault tests); mortality

rates using chi square test; and assays using Dunnett's post hoc test with vehicle

designated as control. Significance was accepted at p < .05.
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Results

NS398 Protects Against HI-Related Lethality

Treatment with NS398 completely abolished the mortality evidenced in the

untreated group (0% vs. 28.12%). While nine vehicle pups died within the first 72hrs

following hypoxia; none of the NS398-treated pups died at any time during the

experiment, indicating that survival was specifically related to COX-2 inhibition. No

sham-operated pups died.

Cyclooxygenase-2 Blockade Maintains Body Weight After HI

Growth retardation is evident in both patients and experimental studies as a result

of hypoxia-ischemia (2, 17). Accordingly, somatic growth retardation was apparent in

vehicle rats at 2-, 3-, and 6wks (Figure 4) compared to sham. NS-30 significantly

improved body weight at the 6wk time-point. Drastic differences in fur texture and

appearance were detected as early as 2wks between treated and untreated rats (Figure 5).

NS398 Provides Neuroproteetion by Maintaining Brain Weight at Two Time Intervals

Hemispheric weight loss is an established estimate of brain damage in this animal

model (9). Severe brain atrophy, marked by a reduction in right to left hemispheric

weight ratio, was seen in vehicle rats at 2- and 6wks post-HI (Figure 6). Blockade of

COX-2 protected rats at both time-points.

NS398 Prevents HI-Related Systemic Organ Atrophy

A reduction in spleen size following middle cerebral artery occlusion (MCAO)

model of stroke (18) is correlated with the extent of brain damage (19). Our experiments

supported this observation in the HI neonatal model; with vehicle having a reduced
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spleen to body weight ratio (Figure 7). Treatment groups demonstrated a trend towards

maintaining spleen weight; however, no statistical significance was reached. Heart to

body weight ratio decreased in vehicle pups and was attenuated by NS-10 (Figure 7).

Although NS-30 demonstrated a trend towards maintaining heart weight, no significance

was reached.
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Figure 4. Long-Term Effect of COX-2 Inhibition on Body Weight. Postnatal day-10 rats
were induced with a hypoxic-ischemic (HI) event: ligation of the right common carotid
artery and 2-hours of hypoxia (8% 02) [Vehicle], then treated with 6 intraperitoneal
injections (1, 6, 24, 36, 48, and 60-hours post-hypoxia) of a selective cyclooxygenase-2
(COX-2) i^ibitor at either lOmg/kg [NS-10] or 30mg/kg [NS-30] dosage. Sham animals
had same anesthesia and surgical procedure, except that the common carotid artery was
not ligated. Vehicle animals had a significantly lower mean body weight at 2-, 3- and 6-
weeks, compared to sham (*p < .05). NS-30 had long-term lasting effects as it maintained
body weight compared to vehicle 6-weeks after HI (#p < .05). Only mean body weights
of animals kept through the 6 week time-point are represented (n = 9/group).
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Figure 5. Photograph of Physical Appearance of Pups at 2-Weeks After HI Insult. A,
Differences in fur texture and appearance were detected between treated (T) and
untreated rats (U). B, Is a close-up picture demonstrating the somatic differences between
treated and untreated rats.
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Figure 6. Brain Atrophy 2- and 6-Weeks After HI Insult. NS-10 and NS-30 maintained
the gross morphology of the rat brains at 2- and 6-weeks post-HI. Right to left
hemispheric (RH:LH) weight ratio is representative of brain atrophy. At 2-weeks post-
insult, vehicle rats had a significantly reduced RH:LH ratio compared to sham (0.67 ± .05
vs. 1.00 ± .01). This was attenuated by NS-10 (0.88 ± .04) and NS-30 (0.93 ± .03). At 6-
weeks post-insult, vehicle rats had a significantly reduced RH:LH ratio compared to
sham (0.49 ± .04 vs. 1.00). This was attenuated by treatment (NS-10:0.78 ± .08; NS-
30:0.87 ± .06).
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Figure 7. Heart and Spleen Weight 6-Weeks After HI Insult. Vehicle rats had a
significantly reduced heart to body weight ratio (0.0037 ± .0001 vs. 0.0041 ± .0001) and
spleen to body weight ratio (0.0026 vs. 0.0030 ± .0001) as compared to sham. Treatment
increased the heart to body weight ratio (NS-10:0.0045 ± .0001; NS-30:0.0040 ± .0001)
and the spleen to body weight ratio (NS-10: 0.0029 ± .0002; NS-30: 0.0029 ± .0002). Data
represent mean ± SEM; *p < .05 versus sham, #p < .05 versus vehicle. Numbers in bars
indicate animals/group.
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NS398 Prevents Neurobehavior Deficits

Motor, cognitive, and behavioral deficits can be a consequence of perinatal stroke

and may last a lifetime (20). Numbers in parenthesis denote mean raw score (Figure 8).

Sham demonstrated a successful performance (91.67) in postural reflex test; treatment

(78.57) significantly improved the gross asymmetry in posture and extension of forelimbs

seen in vehicle rats (8.33). In proprioceptive limb placing test, vehicle was delayed or

unable to place forelimbs onto table top (25.0). NS-30 entirely ameliorated the deficit

(100.0). In back pressure towards edge test, vehicle was delayed or unable to place limbs

forward (25.0); in contrast, NS-30 rats showed immediate placement (92.86). In lateral

pressure towards edge test, sham (91.67) had immediate lateral and forward limb

placement. This response was delayed or not present in vehicle (25.0), but markedly

improved by NS-30 (85.71). In forelimb placement test, vehicle was delayed or unable to

place limbs forward when allowed visual and tactile contact (33.33); NS-30 corrected

performance (92.86). In lateral limb placement test, vehicle rats were unable to abduct

limbs (8.33), a deficit improved by NS-30 (71.3). In T-maze, untreated animals showed a

significant decline in memory (reduced %altemations) that was improved by NS-10 and

more so by NS-30. Treatment also significantly attenuated the increased number of foot

faults in brain injured rats.
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Figure 8. Dose-Dependent Effect of COX-2 Inhibition on Neurobehavior. A, Rats
received a raw score of 100 for immediate and correct placement; 50 for delayed and/or
incomplete placement; 0 for no placement (n = 9/group). Administration of NS-30
significantly improved all assessed behavior deficits; while, NS-10 significantly
improved deficits associated with the postural reflex test. Data represent *p < .05 versus
sham, #p < .05 versus vehiele. B, Vehicle rats alternated significantly less between the
two arms of the maze as compared to sham (18.52% ± 5.56 vs. 82.72% ± 2.69). Percent
alternations significantly rose with administration of NS-10 (53.09% ± 3.09) and more so
by NS-30 (81.48% ± 2.62). Data represent mean ± SEM; *p < .05 versus sham, #p < .05
versus vehicle, *p < 0.05 versus NS-10. C, Vehicle rats averaged the greatest number of
foot-faults (32.33 ± 3.49), while treatment significantly reduced the deficit (NS-10:12.29
± 1.70; NS-30:10.86 ± .86). Sham animals had an average of 10.67 ± 1.05 foot-faults.
Data represent mean ± SEM; *p < .05 versus sham, #p < .05 versus vehicle. Numbers in
bars indicate animals/group.
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NS398 Effectively Reduces Cyclooxygenase-2 Expression

Positive staining for COX-2 was detected by DAB stain (Figure 9). The negative

control showed no positive staining indicating that the primary antibody, and not non

specific immunohistochemical staining, was responsible for the positive signal. NS-30

qualitatively reduced post-HI COX-2 expression in both examined regions of the brain.

Higher magnification confirmed COX-2 localization in the cytoplasm of the cell. Western

blotting of COX-2 quantitatively supported significant differences between treated and

vehicle groups (Figure 10).

NS398 Reduces Cytokine Expression in the Brain

In the hippocampus (Figure 11) and cerebral cortex (Figure l2), there was strong

neuronal signal for COX-2 and IL-6 in vehicle. The opposite was seen in NS-30: marked

suppression of immunoreactive COX-2 and IL-6; while fluorescence was strong for

neurons.

COX-2 Inhibition Reduces Inflammatory Infiltration

IL-6 protein level was significantly increased in vehicle and substantially reduced

by NS-30 (Figure 13). Single-immunofluorescent labeling demonstrated a qualitative

increase in expression of microglia (Ibal), macrophages (CD68), and neutrophils (MPO)

after HI (Figure 14); COX-2 blockade reduced expression of these cell-types.
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Figure 9. Diaminobenzidin (DAB) Staining of COX-2 Expression in the Cerebral Cortex
and Hippocampus. DAB stain for COX-2 in ipsilateral cerebral cortex (D-F) and CAl
region of hippocampus (G-I) qualitatively appears less in sham (A,D,G) and NS-30
(C,F,I), as compared to vehicle (B,E,H). Six non-adjacent coronal sections per brain (n =
5/group) were analyzed.
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Figure 10. Western Blot Analysis of COX-2 Protein. A statistically significant reduction
in COX-2 expression in the ipsilateral hemisphere of NS-30 compared to vehicle (106.92
± 10.48 vs. 185.20 ± 19.54). Sham (120.88 ± 9.30) also had significantly less COX-2
expression than the vehicle group. Data represent *p < .05 versus sham, #p < .05 versus
vehicle. Numbers in bars indicate animals/group.
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Figure 11. Interaction of COX-2 and IL-6 in Neuronal Cells of the Hippocampus. Six
non-adjacent coronal sections per brain (n = 5/group) were analyzed. Immunoreactivity is
shown of COX-2, lL-6 and NeuN in ipsilateral CAl region of hippocampus. Vehicle (A-
H) demonstrated strong neuronal fluorescence for COX-2 and lL-6; NS-30 (1-L)
demonstrated strong fluorescence fot NeuN, but weak fluorescence for COX-2 and lL-6.
Sham animals are shown in subsets of (A-C).
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Figure 12. Interaction of COX-2 and IL-6 in Neuronal Cells of the Cerebral Cortex. Six
non-adjacent coronal sections per brain (n = 5/group) were analyzed. Immunoreactivity is
shown of COX-2, lL-6 and NeuN in ipsilateral cerebral cortex. Vehicle (A-H)
demonstrated a strong eo-localization of COX-2, lL-6, and NeuN. NS-30 (1-L) treatment
reduced signals of COX-2 and lL-6. Sham animals are shown in subsets of (A-C).
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Figure 13. Immunosorbent Analysis of IL-6 Protein. Analysis by ELISA technique
showed significant increase of IL-6 in the ipsilateral cerebral hemisphere of vehicle rats
as compared to sham (22.61pg/mg ± 4.60 vs. 4.54pg/mg ± .77). Treatment with NS-30
markedly reduced IL-6 concentration (7.42pg/mg ± 1.44). Data represent *p < .05 versus
sham, #p < .05 versus vehicle. Numbers in bars indicate animals/group.
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Figure 14. Immunofluorescent Photomicrographs of Microglial Activation, and
Macrophage and Neutrophil Expression in the Cerebral Cortex. Vehiele (A-F) pups
showed marked aetivation of niieroglia (Ibal; A and D), and infiltration of macrophages
(CD68; B and E) and neutrophils (MPO; C and F) in the ipsilateral eerebral cortex. NS-
30 qualitatively redueed expression of all three cell markers of inflammation (G-I). Sham
animals are shown in subsets of (A-C). Six non-adjaeent coronal sections per brain (n =
5/group) were analyzed. Brain slice in upper left eomer denotes the speeifie eortical area
the immunofluorescent pietures represent.
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Discussion

In the present study, we tested whether multiple treatments of low-dose or high-

dose COX-2 inhibitor, over Ihe first few days following brain insult, can reduce the

neurodevelopmental and/or somatic consequences of the injury. We showed for the first

time that COX-2 inhibition limited morphologic damage, improved long-term functional

deficits, reversed somatic growth retardation and lowered mortality rates after a hypoxic-

ischemic injury.

NS398 is a well known selective COX-2 inhibitor shown to have neuroprotective

effects in adult rat CNS injury models (7, 8). The dosage and treatment frequency (h.i.d)

of NS398 was adopted from cerebral ischemia studies in adult rats (7,21); however, the

high dose used in this study is slightly higher but comparable with that used in adult rat

models (10-20mg/kg). Both, NS-10 and NS-30 decreased the brain damage, as assessed

by brain weight, at both 2- and 6wks following brain injury. Trends suggested an

improvement in spleen weight following NS398 treatment, and significant improvement

in heart weight. Similarly, NS-30 consistently improved neurological deficits 6wks post-

insult. This was an important finding, considering past therapeutic modalities in

neonatology have resulted in unforeseen side effects (22,23). The partial protective

effects of NS-10 may be due to the developmental physiological status of the neonates.

Some clinical studies have shown that currently used COX-2 inhibitors such as celecoxib

are rapidly cleared (twice as fast) in children as compared to adults (24). Thus, the

pharmacokinetics of NS398 needs to be determined in neonatal experimental models.

High dose of NS398 also showed an improvement in body weight and other

somatic characteristics such as fur growth and quality. Clinical and experimental studies
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have shown that neonatal HI not only causes brain damage and neurological deficits but

also decreased somatic growth (2). The exact mechanism of how COX-2 inhibition

affects somatic growth after neonatal HI remains to be determined.

The anti-inflammatory properties of COX-2 inhibition attenuated brain injury

after neonatal HI. Over-expression of IL-6 in premature neonates is associated with

severe cerebral injury (25). Studies have shown an IL-6-mediated activation of microglia

around site of brain lesion; and a marked reduction of these effects in IL-6 deficient mice

(26). IL-6 is also associated with increased mortality, and is an independent predictor of

neurological deterioration following ischemic stroke (27,28). Inhibition of COX-2

significantly reduced the expression of IL-6; as well as showed a marked reduction in

infiltration of inflammatory cells such as macrophages and neutrophils and decreased

activation of microglia in the affected brain tissue. Thus, the neuroprotective effects and

increase in survivability demonstrated by COX-2 inhibition may be mediated by a

reduction in IL-6 and the subsequent inflammatory response.

Recently, selective COX-2 inhibitors have come under progressively intense

scrutiny due to an increased incidence of cardiovascular events among general

populations treated with COX-2 inhibitors. But, the evidence-at-large remains

contradictory and a host of studies both affirm and refute the putative cardiovascular

harms of COX-2 inhibitors, as reviewed by Salinas G, et al. Furthermore, the underlying

disease process and the type of cells involved may be pertinent factors in the overall

effect produced by inhibition of COX-2 (29,30). These selective inhibitors were

commonly prescribed as a chronic regimen for patients with inflammatory arthritis and

may thus produce entirely different effects when administered as acute regimens. Until
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more definitive evidence is available, strong judgments about the harm-to-benefit ratio of

GOX-2 inhibitors should be withheld, as these may pre-empt valuable research into

untapped benefits for the general population. As evidenced in this study, selective

inhibition of COX-2 may be effective at protecting the injured neonatal brain, and be a

promising therapeutic option as acute treatment after stroke with lasting beneficial

effects.
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The timeliness of the results presented in "Cyclooxygenase-2 inhibition provides

lasting protection against neonatal hypoxic-ischemic brain injury" by Fathali et al (1)

pertains to our current lack of treatments for improving functional deficits after acquired

brain injuries. Fathali and colleagues examine the relationships between perinatal

hypoxic/ischemic brain injury, C0X2 inhibition, and functional recovery, brain/body

morphometrics, and the inflammatory response induced after hypoxic brain injury in

neonatal rats. This work provides the basis for a better understanding of the molecular

effectors of neuroinflammation, and the effects of C0X2 inhibitors (coxibs) on those

effectors.

The results show an increase in C0X2 after brain injury that could be reversed by

early posthypoxia intervention with superanalgesic doses of the C0X2 inhibitor NS-398.

Consistent with other neuroprotection studies, this high-dose regimen reduced subacute

mortality from hypoxic/ischemic insult, stabilized chronic brain and body weight loss,

and improved ftmctional recovery in both neurologic and cognitive testing paradigms.

The evidence that prolonged elevations of COX2 expression and activity in the

brain is detrimental to outcomes is overwhelming reviewed in our earlier work (2). The

induction by and contribution of C0X2 to inflammation in the brain has been well

documented (3-5). However, there may be a case for an initial benefit of the acute COX2

response. In our brain injury studies, some data indicated (albeit indirectly) that acute

C0X2 activity may be beneficial (6). A few studies suggested prostaglandins may be

neuroprotective, but the preponderance of data show the opposite. The effects of

prostaglandin E2 in neural excitotoxicity models are limited to subacute reductions in

nuclear dye uptake; no protection was seen after 48 hrs (7). McCullough et al
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showed that the protective effects of prostaglandin E2 in primarily neuronal cell cultures

diminished significantly in cultured brain slices, likely because of the preservation of

astrocytic/neuronal interactions in organotypic cultures (8). Prostaglandin E2, likely via
/

the EP2 receptor, mediates reduced neuroinflammatory responses in cultured neurons, but

not in the presence of glia (8). Interestingly, one study has provided evidence that C0X2

prostaglandins, rather than reactive oxygen species, are responsible for C0X2-mediated

neurotoxicity (9). Importantly, the studies in which prostanoids (or their EP2 receptors)

are characterized as neuroprotective have never shown improvements in functional

outcomes.

By contrast, C0X2 inhibitors (e.g., 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-

methylsulphonyl)phenyl-2(5H)-furanone [DFU] and nimesulide) reduced inflammation

and cell death, and improved behavioral recovery even when administered hours after

brain injury (6, 10-12). These findings provide evidence that C0X2 inhibitors have an

extended window of opportunity to protect vulnerably brain tissue fi-om secondary

damage.

Furthermore, our studies suggest that coxibs do more than just reduce

prostaglandins and fi"ee radicals. C0X2 inhibition after brain injury causes arachidonic

acid shunting, increasing hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids

levels in the injured brain (6, 13). These cytochrome P450 epoxygenase metabolites of

arachidonic acid are prime candidates for neuroprotective eicosanoids.

Hydroxyeicosatetraenoic acids have been shown to block glutamatemediated

excitotoxicity in cultured neurons (14). Epoxyeicosatrienoic acids block activation of
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inflammatory gene induction and reduce adhesion molecule expression in endothelial

cells both in vitro and in vivo (15).

It is apparent from this study by Fathali et al (1) that there are minimal age-related

differences in the benefit of coxibs to the injured brain. The coxib related risks of adverse

cardiovascular events (16 -21) are containable, if not insignificant, in the perinatal

population. Thus, this work also represents a potential therapeutic approach after

perinatal hypoxia that could improve the quality of life for children and their families.

Yet, the lack of treatments to block C0X2 or its induction specifically after brain

injury is due, in my opinion, to a popular collective expectation in this country of a life

free from risk, rather than to any failings of researchers to provide proof-of-principle or

in BioPharma's considerable efforts to develop and make available helpful tools for this

indication. There are still critical questions that remain with regard to the coxibs'

mechanisms of action, or whether there is any gender dependence in their utility (or risk

of adverse effects).

But if the current beneficial use of thalidomide after decades of disuse (due,

admittedly, to its dreadful side effects on human fetuses) is any example, it will be a long

time before drugs like rofecoxib or parecoxib can be revived. Only a grassroots

consciousness-raising effort by professional and patient advocates can change the

repetition of a long, long wait for these potentially valuable agents in the treatment of

brain injuries.
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Abstract

Neuroimmune processes contribute to hypoxic-ischemic damage in the immature

brain and may play a key role in the progression of particular variants of neonatal

encephalopathy. The present study was designed to elucidate the mechanistic inter

relationship between astrocytes and neurons in response to infiltrating peripheral immune

cells after experimental neonatal hypoxia-ischemia (HI). Splenectomy was performed on

postnatal day-7 Sprague-Dawley rats 3 days prior to HI surgery; in which the right

common carotid artery was permanently ligated followed by 2 hours of hypoxia (8% O2).

Peripheral immune cells were found to largely contribute to cerebral infarct volume at 72

hours; body weight loss, brain and systemic organ atrophy, and neurobehavioral deficits

at 3 weeks. Quantitative analysis showed altered natural killer and T cell expression in

spleen and brain of ischemic animals. Elevations in cyclooxygenase-2 (COX-2)

expression by immune cells promoted interleukin-15 expression in astrocytes and

infiltration of inflammatory cells to site of injury; additionally, down-regulated the pro-

survival protein, PI3K, resulting in caspase-3 mediated neuronal death. Herein we

demonstrate with the use of pharmacological inhibitors/agonists and cell-tj'pe specific

siRNA that after neonatal HI, infiltrating peripheral immune cells may modulate

downstream targets of cell death and neuroinflammation by COX-2 regulated signals.
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Introduction

The inflammatory response, which is characterized, in part, by recruitment of

circulating immune cells, has been implicated as a core component of damage to the

immature brain following hypoxia-ischemia (HI) (1). Although many therapeutic

interventions have been explored to prevent and/or mitigate the inflammatory sequelae of

perinatal HI, few such interventions have proven clinically viable in the long run. One

explanation has been that the immunoinflammatory response is multifaceted, in that

activation of immune cells may have both detrimental and neuroprotective effects (2).

Increasing evidence suggests that a more integrative approach to therapy may resolve this

paradox (3,4). In theory, re-directing our attention from neuron-driven outcomes toward

the molecular mediators believed to orchestrate brain-immune cell interactions may prove

a more fruitful investigative approach in neonatal HI (5).

Cyclooxygenase-2 (COX-2), a well-established contributor to ischemic brain

injury (6,7), might serve as a prime candidate for such a molecular-mediated

investigation. In particular, COX-2 may mediate the mechanism by which activated

immune cells induce pro-inflammatory cjdokine production by astrocytes (8). Recent

data suggests that enhanced interleukin-15 (IL-15) expression in astrocytes is a major

propagator of inflammatory responses after central nervous system injury (9). Yet it still

remains to be determined whether astrocytes respond to GOX-2 effectors from infiltrating

immune cells by producing IL-15, which then further orchestrates the inflammatory

response and/or cell death in the immature brain.

Additionally, the degree of involvement from the innate immune system

correlates with the extent of neuronal damage in the post-ischemic tissue (2). Studies

77



suggest dysfunction of the phosphoinositide-3-kinase (PI3K)/Akt survival pathway in

triggering apoptotic cascades in the hrain (10). However, it is unknown whether down-

regulation of the PI3K pathway and subsequent neuronal death in Hl-injured rats occurs

in response to COX-2 from infiltrating immune cells.

From the ischemic stroke model comes an indication that progression of hrain

injury is mediated by immune cells originating in the spleen (11). We hypothesized that

neurological outcomes in stroked neonatal rats can be ameliorated by targeting splenic

immune cells and their modulatory functions mediated by COX-2. To elucidate the

possible impact of the systemic inflammatory response on astroglia-neuron signaling, we

removed the spleen, the largest pool of peripheral immune cells prior to HI and studied

the short- and long-term outcomes in the neonate. We also used a gain and loss of

function approach (pharmacological activation or inhibition, respectively) for COX-2, a

neutralizing antibody for IL-15, and a gene silencer for natural killer (NK) cells in both

splenectomized and non-splenectomized rats to verify the role of COX-2 in splenic

immune cell responses following HI. Here, we identify infiltrating splenic immune cells

as a major source of enhanced COX-2 expression in the ischemic brain, and implicate

COX-2 for causation of signaling pathways in astrocytes and neurons that lead to a

worsened outcome.

Materials and Methods

L  Surgical Procedures

The protocol detailing this study was approved by the Institutional Animal Care

and Use Committee at Loma Linda University. Timed pregnant Sprague-Dawley rats

(Harlan Labs) were obtained and housed in individual cages under a 12 h light/dark
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cycle, with food and water available ad libitum. Splenectomy, on postnatal day-7 pups,

entailed a skin incision at the upper left quadrant of the abdomen, exteriorization of the

spleen through the incision, and cauterization of the blood vessels. Un-splenectomized

groups had the abdominal cavity opened, the spleen isolated, and then re-closed.

Postnatal day-10 pups were placed on a surgical table maintained at and

anesthetized by inhalation wifti isoflurane. Briefly, HI surgery (7) entailed permanent

ligation of the right common carotid artery using 5-0 surgical silk, followed by 1.5 h of

recovery, then placement in a glass jar perfused for 2 h with 8% oxygen. Rats were

sacrificed under general anesthesia by decapitation at 3 h, 3 d or 3 w post-HI.

Pharmacological Manipulation

Some postnatal day-9 pups were treated intraperitoneally with 30mg/kg COX-2

inhibitor (NS398; Cayman Chemical), or intraventricularly with O.Olmg/kg COX-2

agonist (4-HNE; Cayman Chemical) or with Ipl NK cell (CD 161; Invitrogen) siRNA.

Others were treated intraventricularly with 1.5pl IL-15 neutralizing antibody (Santa Cruz

Biotech) 1 h pre-HI.

Measurement of Infarct Size

Brain tissue was collected after trans-cardial perflision with O.IM phosphate

buffered saline; and cut at 2-nim intervals into 5 coronal sections and incubated in 2%

2,3,5-triphenyltetrazolium chloride (TTC) for infarct volume measurement (35).
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Evaluation of Organ Damage

Cerebral hemispheres (separated hy a midline incision) of animals and spleen of

un-splenectomized animals was isolated then weighed on a high-precision balance

(sensitivity ± 0.001 g).

Neurological Assessment

Rats were placed onto an elevated wire grid floor (36 x 13 in) for 2 min; foot

faults were noted when a complete paw fell through the bars for assessment of motor

coordination (36). Rat were placed at the base (40 x 10cm) of the maze for each trial and

allowed to explore xmtil an arm (46 x 10 cm) of the maze was chosen for assessment of

short-term or working memory (37). Sequence of choices over 10 trials was expressed as

the rate of spontaneous altemation. Methodology was as previously described for:

Postural Reflex, Proprioceptive Limb Placing, Lateral Pressure Towards Edge, and

Lateral Limb Placing (7). Animals scored 100 for immediate and correct paw placement;

50 for delayed and/or incomplete placement; 0 for no placement.

Immunofluorescence Analysis

Every fifth section of brain and spleen tissue was collected. From this set, six non-

adjacent coronal sections (10pm) from the same levels of sectioning in different animals

were used for fluorescent labeling (7). Antibodies used; CD161 (1:100; Serotec Co.), ..

CD3 (1:100; Serotec Co.), COX-2 (1:100; Santa Cruz Biotech), IL-15 (1:100; Santa Cruz

Biotech.), GFAP (1:100; Millipore), cleaved caspase-3 (1:100; Cell Signaling), NeuN

(1:100; Millipore), Ibal (1:100; Wako Chemicals), CD68 (1:100; Millipore), or MPO

(1:100; Dako). The absolute number of positive cells per square millimeter was counted
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in three peri-infarct regions of the ipsilateral cerebral cortex (7) or in three marginal zone

areas immediately adjacent to the white pulp of the spleen.

Western Blot Analysis

Homogenates of ipsilateral cerebral hemispheres were processed (7) for analysis

using antibodies against: COX-2 (1:300), CD161 (1:200), CD3 (1:200), PI3K (1:300;

Santa Cruz Biotech), pro caspase-3 (1:1000; Cell Signaling), cleaved caspase-3 (1:1000),

or beta actin (1:1000, Santa Cruz Biotech). Incubation with respective secondary

antibodies was done. Optical density was determined using NIH Image J software and

expressed relative to beta actin.

RT-PCR Analysis of NK Cells

Total RNA was isolated fi-om the ipsilateral hemisphere with TRIZOL reagent

and cDNA prepared fi-om 1 pg of total RNA using Superscript First-Strand Synthesis

System for RT-PCR (Invitfogen) (38). The thermal cycle profile of 35 cycles for PCR

amplification (GAPDH: 22 cycles) by means of thermocycler (iCycler; BIO-RAD) was:

1) denaturing (1 min, 94°C); 2) annealing primers (1 min, 55°C); and 3) extending

primers (1.5 min, 72°C). A portion of 10 pi of PCR products was electrophoresed in 2%

agarose gel in Tris-borate-EDTA buffer. Densities of bands were determined by Bio-Rad

Quantity One graphic software, and were expressed relative to GAPDH bands.

Klrblb (CD161) (39):

Forward: 5'-GTTCTAGACTCGGCTGTGCTTGCCT-3'

Reverse: 5'-CTGAATTCTGGTAAAGTAATCGAGGTACG-3'

GAPDH (38):
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Forward: 5'-ACCACAGTCCATGCCATCAC-3'

Reverse: 5'-TCCACCACCCTGTTGCTGTA-3'

Assessment of Cell Death

I

Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling

(TUNEL) method was used according to manufacturer's instructions (Roche Diagnostics-

Applied Science). Sections were mounted with anti-fade mounting medium (Molecular

Probes) under glass cover-slips, and digital microphotographs were taken separately for

each stain and merged using Magnafire software (Optronics).

Data Analysis

Observers were blind to the actual animal groupings. Results were expressed as

mean ± SEM. One-way ANOVA Holm-Sidak correction were used to determine

significance in differences between means. Kruskal-Wallis ANOVA followed by Dunn's

test was used for neurobehavioral analysis. When only two groups were available for

comparison, the impaired Student's r-test was implemented. P < 0.05 was taken as

significant.

Results

Splenectomy Attenuates Hl-Induced Cerebral Infarct

The spleen contains the largest reservoir of immune cells (11). To detect whether

the spleen is the major source of peripheral immune cells that infiltrate the ischemic brain

and contribute to cerebral infarction after HI, we quantified primary (3 h post-HI) and

secondary (3 d post-HI) infarct volume of splenectomized and un-splenectomized rats
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Figure 15. Primary and Secondary Brain Injury Expressed as Percent Infarct Volume.
Infarct volumes at 3 hours and 72 hours in splenectomy (SPLN), intact spleen with
hypoxia-ischemia (INT+Hl), and splenectomy with HI (SPLN+Hl) rats. *P < 0.001
versus splenectomy, ̂P < 0.001 versus intact spleen + HI - 72hrs. Data represent mean ±
SEM. One-way ANOVA with Holm-Sidak correction. Numbers in bars indicate
animals/group.
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(Figure 15). Removal of the spleen prior to HI had no effect on primary infarct (6.19 ±

1.11 vs. 6.50 ± 0.77), but significantly reduced secondary infarct (10.45 ± 2.94 vs. 35.93

± 1.69). Splenectohiized animals with no brain injury are shown as a control.

Splenectomy Attenuates Hl-Induced Extended Brain Damage

In order to determine the role of the spleen in long-term Hl-related brain damage,

we used reductions in spleen size (12) and hemispheric weight (13) as parameters for

brain damage. Hl-injured rats had significant spleen and brain atrophy compared to sham

animals 3 w post-HI (Figure 16). Comparisons of right to left hemispheric weight showed

significant attenuation of brain loss in HI rats with prior splenectomy (0.85 ± .03 vs. 0.72

± .04). Brain weight ratios of splenectomized animals without brain injury were not

significantly different than sham (0.99 ± .01 vs. 0.98 ± .01).

Splenectomy Improves Short- and Long-Term Body Weight After HI

Body weight gain post-HI is an indicator of general well-being (14). Accordingly,

we measured body weight gain over the first 3 d after HI insult and found Hl-injured rats

with an intact spleen gained less weight during the acute phase as compared to their

splenectomized counterparts (Figure 17). Next, weekly body weights were taken to

determine if these somatic differences had lasting effects (Figure 18). The HI rats with an

intact spleen were unable to catch up to the weight of sham rats for the entirety of the

study; while splenic removal prior to HI insult maintained the weight of the animals at all

weekly time-intervals.
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Figure 16. Long-Term HI-Related Brain Damage Assessed by Spleen and Brain
Weights, (a) Spleen to body weight ratio of sham and intact spleen with HI rats at 3
weeks. P < 0.05 versus sham (b) Right to left hemispheric (RH:LH) weight ratio
representing brain atrophy at 3 weeks. *P < 0.001 versus sham, *P < 0.001 versus intact
spleen + HI. Data represent mean ± SEM. Unpaired Student's Mest (a); one-way
ANOVA with Holm-Sidak correction (b). Numbers in bars indicate animals/group.
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Figure 17. Acute Body Weight Gain. Daily body weight gain of animals during the first
3 days after HI insult. *P < 0.001 versus sham, *P < 0.001 versus intact spleen + HI. Data
represent mean ± SEM. One-way ANOVA with Holm-Sidak correction.
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Figure 18. Weekly Mean Body Weight. Weekly mean body weight of animals over 3
weeks. Week 1: *P < 0.01 versus sham, ̂  < 0.01 versus intact spleen + HI; Week 2 and
3: P < 0.001 versus sham, ̂P < 0.001 versus intact spleen + HI. Data represent mean ±
SEM. One-way ANOVA with Holm-Sidak correction.
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Splenectomy Improves Hl-Induced Neurological Behavior Deficits

- Lifetime consequences of perinatal HI may include motor, cognitive, and

behavioral deficits (15). Several fimctional tests were used to evaluate the spleen's role

on long-term neurological behavior (Figure 19). When the spleen was intact, an ischemic

event resulted in a significant decline in motor coordination (Foot-fault: 33.33 ± 2.39),

memory (T-maze: 34.57% ± 4.70), and sensory function (Proprioceptive Limb Placing:

22.22 ± 8.78); while, prior removal of the spleen improved these outcomes (19.99 ± 2.77,

70.37% ± 3.21, and 83.33 ± 11.79, respectively). Additionally, HI rats with an intact

spleen demonstrated significant asymmetry in posture and extension of forelimbs

(Postural Reflex: 50.00), and reduced ability for correct placement of limbs (Lateral

Pressure: 22.78 ± 8.78; Lateral Limb Placing: 38.89 ± 13.89). Although splenectomy

prior to HI appeared to improve these deficits (77.78 ± 8.78, 66.67 ± 11.79, 77.78 ± 8.78,

respectively), significance was not reached.
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Figure 19. Neurological Behavior 3 Weeks After HI Insult. 'P < 0.05 versus sham, **P <
0.01, P < 0.001, P < 0.05 versus intact sple(
Kruskal-Wallis ANOVA with Dunn's correction.

0.01, P < 0.001, P < 0.05 versus intact spleen + HI. Data represent mean ± SEM.
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Cerebral Ischemia Alters Expression of Immune Cells in Spleen and Brain

Leukocytes are major effectors of damage after cerebral ischemia (16,17).

However, the contributions of peripheral immune cells to the ischemic neonatal brain are

unclear (18); and due to the vast differences in immune response between neonates and

adults, much of the insight obtained from adult studies cannot be inferred to be the same

in the immature brain (19). Accordingly, we sought to determine the leukocyte subsets

possibly released by the spleen (Figure 20) and found there to be a signifieant reduction

in immunoreactive-NK (1923 ± 175 cells/mm^ vs. 5381 ± 244 cells/mm^) and T (3010 ±

202 cells/mm vs. 4326 ±233 cells/mm ) cells after HI compared to sham. The same

trends between groups were also observed after quantitative analysis (NK: 65.02 ± 12.78

vs. 101.50 ± 2.10; T: 65.43 ± 5.24 vs. 100.00 ± 5.31). Next, we verified whether the

spleen is a major source of invading leukocytes in the post-ischemic brain (Figure 21).

Results indicated rats with an intact spleen had increased NK (186.67 ± 29.52 cells/mm^

vs. 28.00 ± 12.52 cells/mm^) and T (93.33 ± 11.81 cells/mm^ vs. 23.33 ± 8.61 eells/mm^)

cells after HI compared to sham; while prior splenectomy significantly reduced these cell

populations (NK cells: 14.00 ± 6.26 cells/mm^; T cell: 42.00 ± 6.26 cells/mm^).
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Figure 20. Natural Killer (NK) and T Cell Populations in Spleen Tissue, (a) NK and T
immunoreactive cells from sectioned spleen tissue between dotted lines of sham and
intact spleen with HI (INT+HI) rats. Scale bar, 60 pm. (b) Absolute number of NK and T
cells per square millimeter region in three marginal zone areas of the spleen immediately
adjacent to the white pulp (n = 6/group). NK: **? < 0.001 versus sham, T: *P < 0.01
versus sham, (c) Splenic tissue probed for NK (CD161) and T (CDS) cell expression,
relative to beta actin, on western blots. NK (n = 4/group): *P < 0.05 versus sham, T (n =
5/group): P < 0 .01 versus sham. Data represent mean ± SEM; Unpaired Student's t-test.
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Figure 21. Natural ICiller (NK) and T Cell Populations in Brain Tissue, (a)
Immunofluorescent evaluation of NK and T cell populations in ipsilateral cerebral cortex
(within dotted region) of sham, INT+Hl, and splenectomy with HI (SPLN+HI) rats. Scale
bar, 300 pm (panels I,K) or 30 pm (panels J,L). (b) Absolute number of NK and T cells
per square millimeter (n = 6/group). *P < 0.001 versus sham, *P < 0.001 versus intact
spleen + HI. Data represent mean ± SEM; one-way ANOVA with Holm-Sidak
correction.
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Splenic Immune Cells May be a Major Source of COX-2 in HI Brain

COX-2 is a major effeeter of ischemic cerebral injury (6,7). Therefore, we sought

to determine the contribution of the spleen on COX-2 expression in the Hl-injured brain

(Figure 22). Results showed that COX-2 expression was elevated in HI rats with an intact

spleen, hut significantly suppressed by prior splenectomy. To verify the efficacy of the

inhibitor (NS398) and agonist (4-HNE) used in our experimental studies for suppressing

and upregulating COX-2, respectively; the pharmacological agents were administered to

Hl-induced rats with or without a spleen. NS398 to HI rats with an intact spleen

significantly reduced COX-2 density compared to their untreated counterpart; hut, there

was no significance between NS398-treated or -untreated HI rats with prior splenectomy.

4-HNE significantly enhanced COX-2 expression in Hl-injured groups, although less so

in splenectomized rats.

"\

COX-2 May Contribute to Hl-Induced Body Weight Reduction

To elucidate whether the low body weights of HI rats with an intact spleen were

COX-2-mediated, rats were administered NS398 or 4-HNE on postnatal day-9 followed

one day later by sham- or Hl-surgery. We found NS398 maintained body weights after

HI (Figure 23, left-side); while 4-HNE groups showed a trend for lower body weights

(Figure 23, right-side).
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Figure 22. Western Blot Analysis of COX-2 Protein. COX-2 protein levels relative to
beta actin in the ipsilateral hemisphere of rats. Comparisons made after administration of
COX-2 inhibitor (NS398) or agonist (4-HNE) (n = 5/group; interventions: n = 4/group).
*P = O.Ol, **P < 0.01, ***P < 0.001. Data represent mean ± SEM; one-way ANOVA wiA
Holm-Sidak correction.
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Figure 23. Mean Body Weight of Pups Administered COX-2 Inhibitor (NS398) or
Agonist (4-HNE). Daily mean body weight of rats administered NS398 (left-side of
figure) or 4-HNE (right-side of figure) on postnatal day 9 followed by HI insult on day

«]c ^

10. Individual body weights were compared for statistical analysis. P < 0.05, P < 0.01.
Data represent mean ± SEM; one-way ANOVA with Holm-Sidak correction.
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COX-2 Co-Localizes With Immune Cell Subsets After HI

To determine whether the immune cell subsets infiltrating the isehemie brain were

involved in expressing COX-2, double-immunofiuorescence was performed on brain

sections for comparison of splenectomized and un-splenectomized Hl-injured rats (Figure

24). Results showed elevated COX-2-expressing NK and T cells in brains of HI rats with

an intact spleen (79.33 ± 13.36 and 56.00 ± 7.23 cells/mm^, respectively) eompared to

sham (32.67 ±13.36 and 14.00 ± 6.26 eells/mm^, respectively). Splenectomy prior to HI

significantly reduced NK/COX-2 (14.00 ± 6.26 eells/mm^) and T/COX-2 (28.00 ± 7.23

cells/mm^) populations. Since NK cells appeared to be the majority in the isehemie

tissue, NK siRNA was administered to verify its role on COX-2 expression. The efficacy

of the siRNA was provided by RT-PCR (Figure 25) and further analysis demonstrated

equal COX-2 levels between isehemie and non-ischemic groups (Figure 26).
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Figure 24. Quantification of COX-2 Immunoreactive Natural Killer (NK) or T Cells.
Immunohistochemical analysis of ipsilateral cerebral cortex double-stained with
antibodies against NK cells and COX-2 or T cells and COX-2. Scale bar, 30 )am.
Absolute number of NK and T cells co-expressing COX-2 per square millimeter (n =
6/group). P < 0.01 versus sham, *P < 0.01 versus intact spleen + HI. Data represent mean
± SEM; one-way ANOVA with Holm-Sidak correction.
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Figure 25. RT-PCR Analysis of Natural Killer Cell (CD161) mRNA. NK cell mRNA
expression levels in rats pre-treated with scrambled RNA or NK (GDI61) small
interfering (si) RNA (n = 6/group). *P < 0.001. Data represent mean ± SEM; one-way
ANOVA with Holm-Sidak correction.
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Figure 26. Western Blot Analysis of COX-2 Protein in Pups Administered Natural Killer
Cell (GDI61) siRNA. COX-2 protein levels relative to beta actin in the ipsilateral
hemisphere of rats pre-treated with CD 161 siRNA (n = 4/group). Data represent mean ±
SEM; one-way ANOVA with Holm-Sidak correction.
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COX-2 May Promote IL-15 Expression by Astrocytes

By-products of reactive astrocytes play a key role in regulating the extent of the

immxme response (20). Therefore, we sought to elucidate whether peripheral immune

cells propagate the neuroinflammatory response by inducing expression of the pro-

inflammatory eytokine IL-15 in astrocytes (Figure 27). Isehemie cortical areas of rats

with an intact spleen revealed elevated IL-lS-immunoreactive astrocytes, but a marked

reduction was evident in splenectomized animals. Next we verified whether these

differences were COX-2-mediated, and found suppressed IL-15 immunoreactivity in

NS398-treated HI animals. While 4-HNE enhanced IL-15-expressing astrocytes, co-

loealization was substantially less in HI rats with prior splenectomy. To determine the

role of IL-15 in Hl-induced damage, we evaluated infarct volume (Figure 28) and body

weights (Figure 29) of rats after administration of IL-15 neutralizing antibody and found

significant improvements in both parameters.
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Figure 27. Quantification of Interluekin-15 (IL-15) Inununoreactive Astrocytes. (a)
Inununofluorescent evaluation of IL-15 expression by astrocytes (GFAP). Comparisons
made after administration of COX-2 inhibitor (NS398) or agonist (4-HNE). Scale bar,
300 pm (panel C) or 30 pm (subset panel C and others), (b) Absolute number of
astrocytes co-expressing IL-15 per square millimeter (n = 6/group). *P < 0.05, **P <
0.001. Data represent mean ± SEM; one-way ANOVA with Holm-Sidak correction.
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Figure 29. Daily Weight Gain of Pups Administered Interleukin-15 (IL-15) Neutralizing
Antibody Prior to HI. Daily body weight gain, during first 3 days post-HI, of rats
administered IL-15 neutralizing antibody. Data represent mean ± SEM; One-way
ANOVA with Hohn-Sidak correction. *P < 0.001 versus intact spleen + HI.
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COX-2 May Mediate the Local Inflammatory Response

Microglia, macrophage, and neutrophil numbers in the ischemic hemisphere are

greatest 3 d post-stroke (2). To determine the role of peripheral immune cells in

propagating inflammatory cell infiltration and microglia activation at the site of injury;

single-immunofluorescent staining in the ipsilateral cerebral cortex were done for

markers of microglia, macrophages, and neutrophils. We found Hl-induced rats with an

intact spleen showed elevated expression of these inflammatory cells, while prior

splenectomy suppressed this outcome (Figure 30). NS398 to Hl-injured rats with an

intact spleen also reduced inflammatory cell abundance. On the other hand, 4-HNE

significantly increased neuroinflammation although in splenectomized rats there were

still less activated microglia and macrophages.
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Figure 30. COX-2 Mediated Inflammatory Cell Abundance in tbe Cerebral Cortex, (a)
Immunofluorescent evaluation of microglia (Ibal) activation, and expression of
macrophages (CD68) and neutrophils (MPO) in cerebral cortex of rats. Comparisons
made after administration of COX-2 inhibitor (NS398) or agonist (4-HNE). Scale bar,
300 pm. (panel C) or 30 pm (subset panel C and others), (b) Absolute number of
microglia, macrophage, and neutrophil abundance per square millimeter (n = 6/grbup).
Data represent mean ± SEM; One-way ANOVA with Holm^Sidak correction. *P < 0.001.
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COX-2 May Promote Cell Death Pathway

To determine whether infiltrating immune cells in the injured brain exert

detrimental effects by down-regulating specific pro-survival cellular signals, the

expression of PI3K was measured and, found to be significantly reduced in Hl-injured

animals with an intact spleen compared to those with prior splenectomy (Figure 31). NK

cells may be responsible for these differences as PI3K levels were equal between groups

after NK cell siRNA administration. Next, we determined whether IL-15 regulates PI3K

expression and found that IL-15 inhibition normalized PI3K levels for Hl-injured rats

with an intact spleen. To then investigate the molecular mechanism by which decreased

PI3K may have an apoptotic effect, we quantified pro- and cleaved-caspase 3 levels. We

found that Hl-injured rats with splenectomy had higher levels of pro-caspase-3 and lower

levels of the activated form of the protein compared to those with intact spleen (Figure

32). Moreover, we found that NS398 to HI rats with an intact spleen decreased the

expression of activated caspase-3 while the reverse was shown with 4-HNE.
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Figure 31. Western Blot Analysis of PI3K Protein. Phosphoinositide-S-kinase (PI3K)
protein levels relative to beta actin in the ipsilateral hemisphere of rats. Comparisons
made after administration of NK cell siRNA (si) or IL-15 neutralizing antibody (A) (n =
5/group; interventions: n = 4/group). Data represent mean ± SEM; one-way ANOVA
with Holm-Sidak correction. **P <0.01
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Figure 32. Western Blot Analysis of Pro- and Cleaved-Caspase 3. Pro-caspase 3 and
cleaved caspase 3 protein levels relative to beta actin in the ipsilateral hemisphere of rats.
Comparisons made after administration of COX-2 inhibitor (NS398; NS) or agonist (4-
HNE; HN) (n = 5/group; interventions: n = 4/group). Data represent mean ± SEM; one
way ANOVA with Holm-Sidak correction. *P < 0.05, **P < 0.01, ***P < 0.001.
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Splenectomy Attenuates Caspase-Mediated Neuronal Death

An immunofluorescent study was done to examine whether neuronal cells were

involved in the caspase-mediated pathways induced by infiltrating immune cells. We

fmmd elevated cleaved caspase-3-expressing neurons in HI rats with an intact spleen as

compared to splenectomized rats (Figure 33). TUNEL analysis was done to determine

whether the effects on cell death were limited to neurons (Figure 34). Results showed that

HI rats with an intact spleen abundantly expressed TUNEL-positive cells localized in the

nucleus of neuronal cells and not astrocytes, thereby further supporting our proposed

mechanism for astrocyte-neuron dynamics in response to immxme cells after HI (Figure

35).
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Figure 33. Quantification of Cleaved-Caspase 3 Immimoreactive Neuronal Cells.
Immunofluorescence stain for cleaved caspase-3 (clvd casp-3) in neurons (NeuN) of the
ipsilateral cerebral cortex. Scale bar, 300 pm (panel C) or 30 pm (subset panel C and
others). Absolute number of neurons co-expressing cleaved caspase-3 per square
millimeter (n = 6/group). Data represent mean ± SEM; one-way ANOVA with Holm-
Sidak correction. ***P < 0.001.
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Figure 34. TUNEL-Positive Cells in the Cerebral Cortex After HI Insult. Terminal
deoxynueleotidyltransferase-mediated dUTP-biotin nick-end labeling (TUNEL) with
markers for neurons (NeuN) and astrocytes (GFAP) (n = 6/group). Scale bar, 300 pm
(panel D) or 30 pm (subset panel D and others).
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Figure 35. Proposed Mechanism with Sites of Intervention.
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Discussion

In this study we characterize the mechanistic interaction between the components

of the glia-neuron unit in response to immigrating peripheral immune cells after a

hypoxic-ischemic insult in the neonatal rat. Our major new finding is that spleen-derived

immune cells serve as principal mediators of infarct growth, long-term brain atrophy,

somatic restriction, and ftanctional deterioration following neonatal HI; and propose an

underlying mechanism by which infiltrating immune cells may cause these

neuropathological outcomes.

We evidenced marked reductions in infarct volume in Hl-injured animals with

prior splenectomy as compared to animals with an intact spleen. Since the operative

variable was splenectomy, our data in a compelling way links HI inflammatory responses

to splenic immune cell population. Previous reports indicated that inflammatory

responses are a core component in the sequelae of neonatal HI, comprising a significant

portion of secondary brain injury (21). In this study we demonstrate that the magnitude of

mflammatory response in the ischemic immature brain may be proportional to the extent

of peripheral immune cell invasion and suggest that these cells employ COX-2 to

modulate astrocyte-neuron signaling and the extent of injury.

More specifically, we have found that the influx of COX-2 expressing immune

cells enhances astrocytic IL-15 production and caspase-3-mediated neuronal death, which

in sum may propagate brain damage. While various brain cells can produce COX-2,

splenic cells appear to be a crucial source as splenectomy dramatically reduced COX-2

expression in the ischemic brain. Of the many spleen-derived immune cells that may be

involved in COX-2 production, we focused on NK cells which are a component of the
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innate immune system, and T cells which are typically part of the adaptive immune

system. Indeed our findings suggest a substantial involvement of NK cells in the

production of COX-2 after HI; however to verify this, a gene silencer against NK cells

was administered. Results demonstrated that knocking down CD161 of NK cells restored

baseline levels of COX-2 in brain injured animals with an intact spleen, further

suggesting NK cells may be a key spleen-derived cell type involved in COX-2 production

and the progression of brain damage.

Inflammation in the central nervous system, a major component of brain damage,

is maintained by cytokine cascades triggered by reactive astrocytes and microglia

(22,23). Recent evidence implicates IL-15 as a significant activator of resting microglia

after LPS stimulation, with astrocytes being a major source of IL-15 (9). In line with

these findings, we observed an increase in IL-15 expression by astrocytes, as well as

increases in neutrophil and macrophage abundance and microglia activation in brain

injured animals. On the other hand, splenic removal prior to Hl-insult markedly

attenuated these associated changes. This led us to believe that down-stream COX-2

effectors from splenic immune cells may be potent stimulators of IL-15 production by

binding to E-prostanoid receptors, which are present on astrocytes (24). In fact,

pharmacological blockade of COX-2 afforded the same reductions in IL-15 mediated

inflammatory propagation, as did splenectomy in the Hl-injured rats. These COX-2

regulated signaling patterns were further supported when opposite effects (enhanced IL-

15 and inflammatory propagation) were seen in Hl-injured rats with administration of 4-

HNE, a COX-2 agonist. It is important to note that 4-HNE can induce COX-2 mRNA and

protein expression in many different cell types (25,26). This may explain the 4-HNE
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induced elevation in COX-2 expression, inereases in astroeytic IL-15 expression and

inflammatory cell infiltration in the ischemic hemisphere, irrespeetive of splenectomy.

Although, other lymphocyte-exclusive by-produets, such as interleukin-2 (IL-2),

have also been shown to stimulate IL-15 production (27), experimental studies using IL-

2-deficient mice have reported no ehanges in immune function (28). Previous studies

showed that IL-15 plays a major role in inflammatory infiltration and activation of NK

cells (29,30). Concordantly, our study shows that COX-2 bloekade, which results in

reduced IL-15 brain expj-ession, also decreases infiltration of inflammatory cells.

Splenectomy, by eliminating a large source of COX-2 formed by invading NK immune

cells, may reduce IL-15 expression and the subsequent inflammatory response thereby

reducing brain injury and improving functional performance.

Modulation of COX-2 is important not only for regulation of neuroinflammation,

but chronieally elevated levels of IL-15 may also lead to neuronal death (9).

Consequently, we found that inhibition of IL-15 in the ischemic brain lead to increased

PI3K levels. Moreover, eo-culture studies incubated with COX inhibitors suppress glial-

mediated paracrine damage to neurons (24). In line with these studies, we found that a

reduction in COX-2-expressing NK cells correlated to increased PI3K levels and

decreased eleaved caspase-3 expression in neurons. Furthermore, the Hl-induced

elevations in cell death appear to be neuron-limited and not include astrocytes. This

supports our notion that astrocytes are aetively participating in production of down

stream effectors that induce neurodegeneration. Future studies are needed to determine

the exact mechanism of COX-2-mediated increases in cell death proteins after HI,

including IL-15 binding to the IL-15/PI3K neuronal complex (27).
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In the present study we confirm that the secondary brain injury in the Hl-induced

neonate includes apoptosis (31) and activation of local inflammation (32) both of which

may be triggered by spleen-derived NK cells. Depletion of splenic immune cells through

splenectomy led to a lasting and robust improvement across most neurobehavioral tasks.

However, it cannot be ruled out that the splenectomy-induced neuroprotection afforded 3

w post-Hl may, in fact, not be a direct effect of there being less COX-2 producing

immune cells to infiltrate the ischemic brain in the acute stage of HI. At later stages,

studies have shown that adaptive immune responses promote production of neurotrophic

factors involved in remodeling the post-ischemic brain (33). Therefore, a possible

explanation for the long-term benefits in our study could be that immunologic cells

involved in enhancing brain plasticity within weeks after HI may have migrated from

other lymphoid organs in the absence of the spleen (34). Nevertheless, this amelioration

of long-term outcomes provides the basis for the clinical relevance of this study.

In summary, we have demonstrated that the spleen appears to be a major source of

peripheral immunologic cells that infiltrate and exacerbate brain damage through their

interactions with astrocytes and neurons. Consequently, a depletion of splenic cells offers

lasting protection against Hl-induced neonatal brain injury. We also identified a

previously unrecognized COX-2-dependent link between splenic immune cells and

signaling pathways controlling cellular inflammatory targets and neuronal death after

neonatal HI. We believe that the findings of this study provide mechanistic basis for

potential novel modalities ameliorating long-term outcomes of neonatal hypoxia-

ischemia.

138



References

1. Alvarez-Diaz A, Hilario E, de Cerio FG, Valls-i-Soler A, Alvarez-Diaz FJ.
Hypoxic-isehemic injury in the immature brain—key vascular and cellular players.
Neonatology 2007; 91:211-US

I. Gelderblom M. et al. Temporal and Spatial Dynamics of Cerebral Immune Cell
Accumulation in Stroke. Stroke 2009; 40:1849-1857

3. Cuiin Y, Ritz MF, Andriantsitohaina R. Cellular mechanisms of the protective
effect of polyphenols on the neurovascular unit in strokes. Cardiovasc Hematol
Agents Med Chem 2006; 4:277-288

4. Lo EH. Experimental models, neurovascular mechanisms and translational issues
in stroke research. Br JPharmacol 2008; 153:S396-405

5. del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal
cerebral ischemia. 2009; 158:972-982

6. Zhou P, Qian L, Chou T, ladecola C. Neuroprotection by PGE2 receptor EPl
inhibition involves the PTEN/AKT pathway. Neurobiol Dis 2008; 29:543-551

7. Fathali N, et al. Cyclooxygenase-2 inhibition provides lasting protection against
neonatal hypoxic-ischemic brain injury. Crit Care Med 2010; 38:572-578

8. Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain
hypersensitivity. Curr Opin Anaesthesiol 1008; 21:570-579

9. Gomez-Nicola D, Valle-Argos B, Pita-Thomas DW, Nieto-Sampedro M.
Interleukin 15 expression in the CNS: blockade of its activity prevents glial
activation after an inflammatory injury. G/ia 2008; 56:494-505

10. Zhao H, Sapolsky RM, Steinberg GK. Phosphoinositide-3-kinase/akt survival
signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol
2006; 34:249-270

II. Ajmo CT, et al. The spleen contributes to stroke-induced neurodegeneration. J
Neurosci Res 2008; 86:2227-2234

12. Vendrame M, et al. Cord blood rescues stroke-induced changes in splenocjde
phenotype and function. Exp Neurol 2006; 199:191 -200

13. Andine P, et al. Evaluation of brain damage in a rat model of neonatal hypoxic-
ischemia. J Neurosci Methods 1990; 35:253-260

14. Carty ML, Wixey JA, Colditz PB, Buller KM. Post-insult minocycline treatment
attenuates hypoxia-ischemia-induced neuroinflammation and white matter injury

139



in the neonatal rat: a comparison of two different dose regimens. IntJDev
Neurosci 2008; 26:477-485

15. Balduini W, De Angelis V, Mazzoni E, Cimino M. Simvastatin protects against
long-lasting behavioral and morphological consequences of neonatal
hypoxic/ischemic brain injury. StrokelOOV, 32:2185-2191

16. Gee JM, Kalil A, Shea C, Becker KJ. Lymphocytes: potential mediators of
postischemic injury and neuroprotection. Stroke 2007; 38:783-788

17. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J
Neuroimmunol 2001; 184:53-68

18. Leonardo CC, Hall AA, Collier LA, Gottschall PE, Pennypacker KR. Inhibition
of Gelatinase Activity Reduces Neural Injury in an Ex-Vivo Model of Hypoxia-
Ischemia. Neuroscience 2009; 160:755-766

19. Strunk T, et al. Erythropoietin inhibits cjdokine production of neonatal and adult
leukocytes. Acta Paediatr 2008; 97:16-20

20. Dong Y, Benveniste EN. Immune function of astrocytes. Glia 2001; 36:180-190

21. Hedtjam M, Mallard C, Hagberg H. Inflammatory gene profiling in the
developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metah 2004;
24:1333-1351

22. Bauer J, Rauschka H, Lassmann H. Inflammation in the nervous system: the
human perspective. Glia 2001; 36:235-243

23. Schroeter M, lander S. T-cell cytokines in injury-induced neural damage and
repair. Neuromolecular Med 2005;7:183-195

24. Shie FS, Montine KS, Breyer RM, Montine TJ. Microglial EP2 is critical to
neurotoxicity from activated cerebral innate immunity. Glia 2005; 52:70-77

25. Kakishita H, Hattori Y. Vascular smooth muscle cell activation and growth by 4-
hydroxynonenal. Life Sci 2001; 69:689-697

26. Kumagai T, et al. A lipid peroxidation-derived inflammatory mediator:
identification of 4-hydroxy-2-nonenal as a potential inducer of cyclooxygenase-2
in macrophages. JBiol Ghent 2004; 279:48389-48396

27. Hanisch UK, Quirion R. Interleukin-2 as a neuroregulatory cytokine. Brain Res
Brain Res Rev 1995; 21:246-284

28. Kundig TM, et al. Immune responses in interleukin-2-deficient mice. Science
1993;262:1059-1061

140



29. Carson WE, et al. Interleukin (IL) 15 is a novel cytokine that activates human
natural killer cells via components of the IL-2 receptor. JExp Med 1994;
180:1395-1403

30. Diab A, Cohen AD, Alpdogan O, Perales MA. IL-15: targeting CD8+ T cells for
immunotherapy. 2005; 7:23-35

31. Beilharz EJ, Williams CE, Dragunow M, Sirimanne ES, Gluckman PD.
Mechanisms of delayed cell death following hypoxic-ischemic injury in the
immature rat: evidence for apoptosis during selective neuronal loss. Brain Res
Mol Brain Res 1995; 29:1-14

32. Inder TE, Volpe JJ. Mechanisms of perinatal brain injury. Semin Neonatol 2000;
5:3-16

33. Linker R, Gold R, Luhder F. Function of neurotrophic factors beyond the nervous
system: inflammation and autoimmune demyelination. Crit Rev Immunol 2009;
29:43-68

34. Davis lA, Knight KA, Rouse BT. The spleen and organized lymph nodes are not
essential for the development of gut-induced mucosal immune responses in
lymphotoxin-alpha deficient mice. Clin Immunollmmunopathol 1998; 89:150-
159

35. Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of
sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemie
stroke in rats. Stroke 2010; 41:368-374

36. Yager JY, Wright S, Armstrong EA, Jahraus CM, Saucier DM. The influence of
aging on recovery following ischemie brain damage. Behav Brain Res 2006;
173:171-180

37. Hughes RN. The value of spontaneous altemation behavior (SAB) as a test of
retention in pharmacological investigations of memory. Neurosci Biobehav Rev
2004;28:497-505

38. Kusaka I, et al. Role of ATI receptors and NAD(P)H oxidase in diabetes-
aggravated ischemie brain injury. Am JPhysiol Heart Circ Physiol 2004;
286:H2442-H2451

39. Kveherg L, et al. Two major groups of rat NKR-Pl receptors can he distinguished
based on chromosomal localization, phylogenetic analysis and Clr ligand binding.
Eur. J. Immunol. 2009; 39:541-551

141



CHAPTER FOUR

LONG-TERM EVALUATION OF GRANULOCYTE-COLONY STIMULATING

FACTOR ON HYPOXIC-ISCHEMIC BRAIN DAMAGE IN INFANT RATS

Nancy Fathali^, Tim Lekic^, Jiping Tang^ and John H. Zhang^'^'"^

Departments of ̂Pathology and Human Anatomy, ̂Physiology, ̂Anesthesiology, and
"^eurosurgery, Loma Linda University, Loma Linda, CA, USA

Published: Intensive Care Medicine, In Press

142



Abstract

Hypoxia-ischemia (HI), as a major cause of fetal brain damage, has long-lasting

neurologieal implications. Therefore, therapeutic interventions that attenuate the

neuropathological outcome of HI while also improving the neuroflinetional outcome are

of paramount elinieal importance. The aim of this study was to investigate the long-term

functional and protective actions of granulocyte-colony stimulating factor (G-CSF)

treatment in an experimental model of cerebral HI. Postnatal day-7 Sprague-Dawley rats

were subjected to HI surgery whieh entailed ligation of the right common carotid artery

followed by 2 hours of hypoxia (8% O2). Treatment consisted of subcutaneous injection

of G-CSF at 1 hour after hypoxia followed by an additional one injeetion per day for 5

days (6 total injections) or for 10 days (11 total injections). Animals were euthanized 5

weeks post-insult for extensive evaluation of neurological deficits and assessment of

brain, spleen, heart, and liver damage. G-CSF treatment promoted somatic growth, and

prevented brain atrophy and imder-development of the heart. Moreover, reflexes, limb

plaeing, muscle strength, motor coordination, short-term memory, and exploratory

behavior were all significantly improved by both G-CSF dosing regimens. Long-term

neuroprotection afforded by G-CSF in both morphologieal and functional parameters

after a hypoxic-ischemie event in the neonate provides a rationale for exploring elinieal

translation.
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Introduction

Neonatal hypoxia-ischemia (HI) is a major cause of long-term neurological

disturbances, such as behavioral alterations and motor deficits including cerebral palsy,

mental retardation, and epilepsy [1,2]. In spite of advancements in obstetric and neonatal

intensive care, HI brain damage with severe neurological sequelae remains an important

clinical problem [3]. Therefore, the efficacy of potential neuroprotective treatments on

long-term functional brain recovery is of significant translational importance.

Granulocyte-colony stimulating factor (G-CSE), a neurotropic factor involved in

proliferation, differentiation, and fimctional integration of neural cells [4], is a

neuroprotective agent in a wide spectrum of experimental models of neurological disease

[5-11]. Protection ranges from reductions in infarct size during the acute phase to

attenuation of long-term fimctional neurological deficits [12,13]. Promotion of

neurogenesis and angiogenesis are processes by which G-CSF exerts beneficial effects on

adult post-stroke recovery [14-16]; however, due to the vast differences in the

pathophysiology of immature and adult brains, data gathered from adult studies do not

necessarily infer synonymous outcomes in neonatal medicine. Therefore, the effects of

G-CSF treatment on cerebral infarct volume at 2 weeks (w) [17] and cerebral atrophy at 3

w [6] after HI have previously been explored. Although no study as of date has examined

whether these G-CSF-induced morphological benefits translate into improvements to

sensorimotor deficits and memory 5w after neonatal HI; and whether there is an additive

benefit against long-term brain and systemic organ atrophy provided with additional

administration of G-CSF.
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Accordingly, we hypothesized that G-CSF has lasting neuroprotective actions hy

improving both morphological and behavioral endpoints after Hl-injury in neonatal rats.

We used two different dosing regimens to implicate the neurotrophic capabilities of G-

CSF to be responsible for the structural preservation and improved functional outcome.

Materials and Methods

Animal Groups and Surgical Procedure

This study was in accordance with the National Institutes of Health guidelines for

the treatment of animals and was approved hy the Institutional Animal Care and Use

Committee at Loma Linda University. Postnatal day-7 Sprague-Dawley rats were

randomly assigned to the following groups: sham, HI [Vehicle], HI + G-CSF daily for 5

days [G-CSF(5d)], or HI + G-CSF daily for 10 days [G-CSF(lOd)]. Hl-groups were

anesthetized with 3% isoflurane and had the right common carotid artery permanently

ligated followed hy 1.5 hours (h) of recovery. Afterwards, pups were placed in a glass jar

(submerged in a water bath maintained at BV^C) perfused with 8% 02/92% N2 for 2 h.

Sham rats had the common carotid artery exposed, hut not ligated. All rats were

sacrificed 5 w after HI surgery under general anesthesia [ketamine (80mg/kg)/xylazine

(lOmg/kg)] by decapitation.

Treatment Method

Some pups were treated suhcutaneously with G-CSF (Amgen Inc., Thousand

Oaks, CA) at 50pg/kg dosage diluted in saline. Treatment was injected at 1 h after

hj'poxia followed hy an additional one injection per day for 5 days (6 total injections) or
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for 10 days (11 total injections). Vehicle pups received subcutaneous injections of saline

following the same regimen.

Evaluation of Brain Damage and Systemic Organ Weight

The HI animal model results in brain damage exclusive to the ipsilateral side [18,

19]; commonly assessed by hemispheric brain weight loss which is highly correlated to

histological loss of brain tissue [20,21]. Brain tissue (sham = 5; vehicle =13; G-CSF

(5d) = 12; G-CSF (lOd) = 13) was removed and the hemispheres were separated by a

midline incision and weighed on a high-precision balance (sensitivity ± 0.001 g). Data

was expressed as a ratio of ipsilateral (right) to contralateral (left) hemispheric weights.

The heart, spleen, and liver were also isolated and weighed. Data for systemic organs was

expressed as a ratio of organ weight to body weight.

Assessment of Neurobehavioral Deficits

The behavior of the rats was blindly evaluated using 8 sensorimotor (postural

reflex, back pressure, lateral pressure, proprioceptive limb placing, lateral placement,

forelimb placement, foot-fault, and rotarod) tests [2,20]; and a test (T-maze) to ascertain

short-term or working memory, as well as complex cortical fimction [22,23].

Methodology was as previously described for the first 6 sensorimotor tests [2] and scored

accordingly: 0 for immediate and correct placement; 1 for delayed and/or incomplete

placement; 2 for no placement. Scores corresponded to raw values: 0 score =100; 1 score

= 50; 2 score = 0. In the foot-fault test, the rat was placed on a horizontal grid floor (36 x

13 in, square size 3x3 cm, wire diameter 0.4 cm) for a duration of 2 min. A foot-fault

was noted when a paw fell throtigh an opening in the grid floor. In the rotarod test, rats
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were placed on a rotating treadmill (diameter 14 cm) initially at rest (stationary) for a

maximum of 1 min. In the second round of testing, the treadmill was set in motion at a

constant speed of 5 rotations per minute (rpm) for a maximum of 1 min. Finally in the

third round of testing, the treadmill was set in motion at an accelerated speed of 5-40 rpm

for a maximum of 2 min. Each animal had 2 trials/round of testing. The time spent by the

animal on the rotarod during each round was noted. In the T-maze test, rats were placed

at the base of the T-maze (stem 40 x 10 cm, arm 46 x 10 cm) and allowed to explore until

an arm of the maze was chosen. Each animal was given 10 trials and the sequence of

right and left arm choices were expressed as the percent of spontaneous alternation.

Data Analysis

Data was expressed as mean i SEM. Using a commercially available software

(Sigma Stat 3.0.1, Aspire Software, Ashbum, VA), one-way ANOVA and Tukey test

were implemented to determine significance in differences between groups. Kruskal-

Wallis ANOVA followed by Dunn's test was used for neurobehavioral analysis.

Significance was accepted at p < 0.05.

Results

G-CSF Promotes Physical Development

Hl-induced somatic growth retardation starting from 1 d after insult is a common

finding in animal experiments [3,24]. Representative pictures demonstrate the significant

differences in physical development between rats injected with vehicle or G-CSF, at the

completion of 5 day dosing regimen or 10 day dosing regimen (Figure 36). Vehicle rats

gained significantly less weight than sham after 1 w following HI (7.73 ± 0.42 vs. 13.38
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± 0.42; Figure 37); an effect attenuated by both G-CSF treatment regimens (5d: 10.71 ±

0.53; lOd: 10.49 ± 0.62). After 3 w following HI, G-CSF(5d) continued to improve
V

weight gain as compared to vehicle (66.54 ± 1.85 vs. 58.87 ± 1.89). Vehicle pups

however did catch up in weight since the amount of weight gained over the entirety of the

study was not significantly less than that of sham rats (125.01 ± 3.30 vs. 136.12 ± 7.40).

On the other hand, rats treated with 5 days of G-CSF (143.39 ± 3.58) gained significantly

more weight over 5 w as compared to vehicle rats, but did not differ from those treated

for 10 days with G-CSF (136.09 ± 4.60).
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Figure 36. Photographs of Physical Appearance of Pups at the Completion of Treatment.
There are marked differences in physical development at the completion of 5 d of G-CSF
treatment (G-5d) or 10 d of G-CSF treatment (G-lOd), as compared to vehicle.
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Figure 37. Effect of G-CSF Treatment on Weekly Mean Body Weight Gain. Vehicle rats
gained significantly less weight at 1 week and 3 weeks post-HI, but appeared to catch up
to weight of sham rats after 5 weeks. Both treatment regimens improved weight gain at
the 1 week time point; however the G-CSF(5d) rats gained an average weight
significantly greater than vehicle rats at all tested intervals. Data represent mean ± SEM;
*p < 0.05 versus sham, #p < 0.05 versus vehicle.
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G-CSF Maintains Brain and Systemic Organ Weight

Neonatal encephalopathy involves multiple organs and not just the brain [25,26];

therefore, effects of treatment interventions should be explored across multiple organ

systems [27]. Hl-injury resulted in significant brain atrophy of the lesioned hemisphere

(19.60 ± 3.09%); remarkably, treatment with G-CSF (5d: 8.70 ± 2.18%; lOd: 9.70 ±

2.39%) demonstrated less damage to the brain tissue 5 w post-insult (Figure 38).

Although vehicle rats appeared to have a smaller heart compared to sham, statistical

significance was not reached (Figure 39). When compared to G-CSF(5d)-treated rats,

vehicle rats had a 16.11% reduction in heart to body ratio. Although G-CSF(5d)

treatment appeared to additionally improve spleen and liver weights, no statistical
V

differences were detected between groups.
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Figure 38. Brain Atrophy 5-Weeks After HI Insult. Significant loss of right-to-left
hemispheric (RH:LH) weight ratio is evident in vehicle rats and improved by G-CSF(5d)
and G-CSF(lOd). Data represent mean ± SEM; *p < 0.05 versus sham, #p < 0.05 versus
vehicle.

155



sham Vehicle &-CSF(5d| Sham Vehicle &CSF{5d) &CSF(10d)&CSF(10d

k

/

I  I Sham

Vehicle

6-CSF|5d)

I2SZ9 avCSF(ldd)

'  » Sham 80

L_l y e hic le o
Bggggg d-cs F (M} f

G-<^SFf10d) Of

a 6

Q 4

2

Heart Liver

156



Figure 39. Heart, Spleen, and Liver Weights 5-Weeks After HI Insult. G-CSF(5d)
significantly improved heart-to-body weight ratio as compared to vehicle. Representative
pictures of organs. Data represent mean ± SEM; #p < 0.05 versus vehicle.
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G-CSF Ameliorates Hl-Induced Functional Deficits

In all behavior tests, vehicle rats performed significantly worse than sham. This

showed consistency in inducing severe damage across all tested brain regions. Numbers

in parenthesis represent mean raw score. In the postural reflex test, the contralateral

forelimb of the vehicle rats was completely flexed (16.67 ± 6.29); while treatment with

G-CSF(5d) and G-CSF(lOd) significantly improved this deficit (5d: 72.22 ± 8.78; lOd:

66.67 ± 8.33; Figure 40). In the remaining 5 placement tests, the vehicle rats averaged a

raw score ranging from 20.00 ± 6.55 to 43.33 ± 4.54; this meant vehicle rats were

consistently unresponsive in these tasks. Although the G-CSF(1 Od) significantly

improved these deficits across tasks, G-CSF(5d) did so in all but the proprioceptive limb

placing test. Rats subjected to HI displayed significantly reduced sensorimotor

)

coordination as assessed using the foot-fault test compared to sham (34.20 ± 2.27 vs. 12.4

± 1.57). Both G-CSF treatment for 5 d (21.11 ± 1.76) and 10 d (17.56 ± 0.99)

significantly attenuated the Hl-induced deficits. Vehicle rats also displayed a significant

reduction in muscle strength and motor coordination compared to sham (32.57 ± 3.45 vs.

50.24 ± 2.54), as assessed by the rotarod test. Treatment with G-CSF (5d: 50.49 ± 2.94;

lOd: 58.02 ± 1.04) improved the latency to fall period when the treadmill was stationary.

When set at constant velocity, G-CSF (5d: 54.39 ± 2.38; lOd: 59.49 ± 0.51) significantly
I

improved the Hl-induced (40.57 ±4.14) deficits. During acceleration of the treadmill,

animals fi-om both G-CSF regimens (5d: 56.81 ±4.10; lOd: 65.83 ± 4.11) again

performed significantly better than vehicle (32.44 ± 2.46). In the T-maze, vehicle rats

demonstrated a significant reduction in exploratory behavior and short-term memory as

compared to sham (33.33% ± 3.07 vs. 73.33% ± 2.72). These deficits were significantly
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improved by both G-CSF regimens (5d: 56.79% ± 4.32; lOd: 61.73% ± 1.95); however,

there was a difference in performance between G-CSF(5d) rats and sham.

159



T
i
m
e
 (
s
e
c
o
n
d
s
)

R
a
w
 S
c
o
r
e

0
\
o

W m
.

o 3 C
D

m
-
:

;i
ii

o
 
m

2
.
 s
r

■m
M

:.

o o 1®
.

W
''

o

ll
ll

ll
ll

ll
lh

^
o

 o

o
 o

C
D

 
C

D

-j
fc

 
c
n

m
ii
ii

ii
ii
N

*

P
e

rc
e

n
t A

lt
e

rn
a

ti
o

n
s
 (

%
) O

l

m C
A

H
 ^

%

■i
f\ 

■■■
■'*■

' 
■:<

!>:
■-

■ S
T

CD
 C

D 
3

■i 
=

«
:

-O
!

2?
 ®

sb
l h

i

SS
 ®

a
>

ni
v.

vE
S'

■
M

-M
.

T
m

-
1

 ̂

ii
i

ID
o

 o

o
 
o

C
D

 
C

D

<
 C

D

r
r
 

ft
»

i
 I
 M

l-
j 

tX
"

O
l

W
^y

M
::}

'V
W

V
V

V
V

V
V

V
V

i^
 :t

fe

>
o

fy
x
y
y
y
w

y
y
5

<
^
—

1
5*

1: □

u
y

a
>
3 C

A
o 3

'
3 t

N
u

m
b

e
r 
o

f 
F

o
o

t-
fa

u
it
s

o S
T

O
 O

 <
 C

D

O
 O

 
r
r
 

fi»
C

D
 

C
D

 
X

 - 
3

H
 5

W
s

c
»

-:
>

a
u

O
i;



Figure 40. Functional Outcome at 5-Weeks After HI Insult. Sensorimotor tests: 100 for
immediate and correct placement; 50 for delayed and/or incomplete placement; 0 for no
placement. Vehicle rats did significantly worse than sham in all tests: postural reflex,
back pressure, lateral pressure, proprioceptive limb placing (P. limb placing), lateral
placement, and forelimb placement. G-CSF(5d) improved deficits in all but those
associated with the P. limb placing test; while G-CSF(lOd) corrected all tested deficits.
Vehicle rats had a greater number of foot-faults during the 2 min testing interval; while,
both treatment regimens attenuated these deficits. In the Rotarod test, vehicle rats
performed significantly worse under all testing conditions: stationary, constant velocity
(5 rpm) and accelerating (5-40 rpm). In the T-Maze test, vehicle and G-CSF(5d) rats
alternated significantly less between the two arms of the maze as compared to sham;
however, G-CSF(5d) and G-CSF (lOd) performed significantly better at this task than
vehicle. Data represent mean ± SEM; *p < .05 versus sham, #p < .05 versus vehicle.
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Discussion

This study demonstrates the long-term efficacy of G-CSF administration on

behavioral and neuropathological recovery in an established rat model of neonatal HI

injxuy. To our knowledge, our data is the first to demonstrate the effect of multiple

treatments of G-CSF on Hl-induced sensorimotor and memory impairment. The

importance of the present findings may be highlighted by: 1) the elucidation of a

beneficial treatment regimen with long-term, brain and system organ protection; 2) the

significant improvement in neurological function across a battery of tests, which renders

these results important for the treatment of neonatal encephalopathy in the clinical

setting.

Experimental stroke studies have found treatment with G-CSF to be well tolerated

without major side effects [28]; of which, may include, mild to moderate hone and/or

musculoskeletal pain, anemia, thrombocytopenia, and injection site reactions [29].

Nevertheless, the safety profile of G-CSF appears to be fairly innocuous, even after years

of administration to patients with severe neutropenia [29]. In experimental neonatal HI, a

single dose of G-CSF immediately after hypoxia is neuroprotective 2 w following insult

[17]; while multiple doses confer morphological benefits up to 3 w [6]. Based on these

findings, evidence that neuronal damage likely develops over a period of time [30], and

that neuroreparative processes may need stimulation after 24 h when the inflammatory

responses have declined [31], we chose to administer multiple doses of G-CSF over 5

days or 10 days following HI. The efficacy of the treatment regimen was determined by

its ability to improve physical development, protect brain tissue, and improve long-term

functional outcome.
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Fetal growth retardation is a Hl-related outcome, and can be used as an indicator

of general well-being [17]. From the body weight data, it is evident that G-CSF treatment

significantly improves physical development during the critical period following brain

injury. Whilst both treatment protocols initially promoted weight gain after HI, the rats

treated with G-CSF(5d) gained significantly more weight at the end of 5 w compared to

their vehicle-administered counterpart. Moreover, previous studies have shown that low

body weight is accompanied by a decreased heart weight [32] - an effect we found to be

counteracted by G-CSF(5d). An explanation has been that slow growing pups have a

significantly lower number of cardiomyocytes, as well as qualitative changes of the

subcellular structures [32]. Other systemic organs affected by fetal growth retardation are

the spleen and liver; possibly due to oxygen deprivation and inadequate macro- and

micronutrients during fetal life resulting fi*om the preferential blood flow to vital organs

such as the brain and heart [33]. However, our results show that these acute affects do not

have long-term implications, and that the neonatal rat compensates as there were no

differences found between groups when comparing spleen and liver weights.

Although no significant differences were found between groups, the G-CSF(5d)

treated animals appeared to have a larger body, heart, spleen, and liver weights compared

to those in the sham group. This finding may spark concern about unintentional organ

hypertrophy upon prolonged treatment with growth factors. In fact, spleen enlargements

have been reported during repetitive G-CSF administration - a likely result of G-CSF-

induced extramedullary hematopoiesis [34]. However, the observed trend toward organ

hypertrophy in the 5 day treated group may be entirely incidental since more prolonged

treatment (i.e, 10 day) did not demonstrate the same trend. Aside fi-om promoting weight
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gain, G-CSF treatment also protected brain integrity in the neonate. Both G-CSF(5d) and

G-CSF(lOd) prevented the long-term loss of brain tissue. The anti-apoptotic [6], anti-

inflammatory [35], and excitoprotective [36] properties of G-CSF maybe responsible for

the long-term attenuation in brain damage; however the exact mechanism is yet unclear.

Preservation of structural integrity by G-CSF treatment resulted in improved

motor performance. Brain regions, such as the sensorimotor cortex and hippocampus, are

critical for the maintenance of sensorimotor function and are adversely affected by HI

insult [37]. Accordingly, damage to these vulnerable brain regions severely affected

functional performance of vehicle rats. Conversely, G-CSF-induced morphological

protection manifested into muscle strength, motor coordination, reflexes, limb placing,

short-term memory, and exploratory behavior similar to that of control animals. The

recovery processes that are activated and/or amplified by G-CSF, and thereby exert

beneficial effects on post-HI recovery are yet to be elucidated.

G-CSF is an attractive candidate as a therapeutic modality for the human neonate,

and may be expanded as treatment to other clinical fields that share common

pathophysiological features, such as neonatal stroke, global cerebral ischemia, and

neonatal hemorrhagic brain injury. In the clinical setting, G-CSF has been administered

to neutropenic neonates with sepsis once daily for 3-5 days. Based on this, and the

positive results we obtained fi-om 5 day treatment with G-CSF, the most relevant time

period of treatment in the human might be a 5 day dosing regimen. Our experimental

study (i.e, use of a clinically-relevant animal model, multiple treatment regimens, and

neurobehavioral assessment) provides a foundation for exploring clinical translation.

However, we anticipate the need for a dose response study, as well as a more
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comprehensive evaluation of safety [38] before moving G-CSF to the clinical setting as

treatment against neonatal hypoxic-ischemic brain damage.

Overall, the findings from the present study provide new insight to the therapeutic

repertoire of G-CSF. Specifically, that treatment with G-CSF attenuates long-term brain
I

damage and spares the functional integrity responsible for behavior after neonatal

hypoxia-ischemia.
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Discussion

The data presented here suggests targeting of key components of the

neuroinflammatory response confers neuroprotection after a hypoxic-ischemic insult.

Specifically, we found: 1) Inhibition of COX-2 attenuates the Hl-induced consequences

by reducing brain damage, and improving long-term functional deficits, and somatic and

systemic organ growth; 2) Splenic immune cells to be the major source of COX-2 in the

ischemic brain; and that COX-2 modulates downstream targets of neuroinflammation and

cell death in astrocjlies and neurons, respectively; 3) Short-term administration of the

neurotrophic factor, G-CSF, improves long-term behavioral and neuropathological

recovery after a hypoxic-ischemic insult.

Neuroprotective Effects of COX-2 Inhibition

To replicate the clinical features seen in human infants after asphyxia, we used a

well-established rodent model that combines unilateral carotid artery ligation with

exposure to 2 hours of hypoxia (1). This model has been very informative for

understanding the underlying mechanisms of brain injury from peri-natal hypoxia, and

for the testing of potential neuroprotective agents (2). A hypoxic-ischemic insult is

associated with increased mortality and somatic growth retardation in both patients and

experimental studies (3,4,5). In accordance to these findings, we found a higher incidence

of mortality and lower body weight in HI injured rats. In contrast, 100% of animals that

were treated with a COX-2 inhibitor survived the injury and were able to maintain their

body weights to that of control animals. Aside from these Hl-induced consequences,

interruption of placental blood flow can affect cerebral and systemic function (6,7);

therefore, potential treatment modalities should address not only cerebral protection but
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rather involve multiple organ systems. As such, we foimd that animals that had

experienced a HI insult had significant brain and systemic organ tissue loss compared to

that of control. This effect was counteracted when animals were treated with a COX-

inhibitor. Moreover, attenuation of brain atrophy by blockade of COX-2 appeared to also

result in improved motor, cognitive, and behavioral function 6 weeks after HI injury. This

long-term assessment of treated animals was a particularly important finding considering

past therapeutic modalities in neonatology have resulted in unforeseen side-effects (8,9).

These results suggest that inhibition of COX-2 may provide major benefits for brain and

systemic orgau integrity, neurobehavioral deficits, and survival after neonatal HI.

Collectively, these data provide a foundation for an investigation of COX-2-dependent

mechanisms in neonatal hypoxic-ischemic brain injury.

COX-2-Dependent Mechanisms in Brain-Immune Interactions

Having established that COX-2 is a mediator of brain damage after a hypoxic-

ischemie event, we sought to determine whether it plays a role in brain-immune cell

interactions. First, to elucidate the possible impact of the systemic inflammatory response

on astroglia-neuron signaling, we removed the spleen, the largest pool of peripheral

immune cells prior to HI and studied the short- and long-term outcomes in the neonate.

Next, we sought to determine whether COX-2 mediates the mechanism by which

activated immune cells induce pro-inflammatory cjdokine production by astrocytes (16).

This is especially important since recent data suggests that enhanced interleukin-15 (IL-

15) expression in astrocytes is a major propagator of inflammatory responses after central

nervous system injury (17). In addition, the degree of involvement from the innate

immune system has been shown to correlate with the extent of neuronal damage in the
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post-ischemic tissue (18). Moreover, studies suggest dysfunction of the phosphoinositide-

3-kinase (PI3K)/Akt survival pathway to be responsible for triggering apoptotic cascades

in the brain (19). However, it was still unknown whether down-regulation of the PI3K

pathway and subsequent neuronal death in Hl-injured rats occurs in response to COX-2

from infiltrating immune cells. Therefore, we used a gain and loss of function approach

(pharmacological activation or inhibition, respectively) for COX-2, a neutralizing

antibody for IL-15, and a gene silencer for natural killer (NK) cells in both

splenectomized and non-splenectomized rats to verify the role of COX-2 in splenic

immune cell responses following HI.

Our major new finding was that spleen-derived immune cells serve as a major

source of COX-2 in the ischemic brain, and are principal mediators of infarct growth,

long-term brain atrophy, somatic restriction, and functional deterioration following

neonatal HI. More specifically, we found that the influx of COX-2 expressing immune

cells enhances astrocytic IL-15 production and caspase-3-mediated neuronal death, which

in sum propagates brain damage. In line with other studies, our data confirms that the

secondary brain injury in the Hl-induced neonate includes apoptosis (20) and activation

of local inflammation (21) both of which may be triggered by spleen-derived immune

cells. We believe that the findings of this study provide mechanistic basis for potential

novel modalities ameliorating long-term outcomes of neonatal hypoxia-ischemia.

Long-Term Behavioral and Morphological Effects of G-CSF Treatment

Excessive and/or prolonged activation of inflammatory mediators can decrease

neurotrophic support and neurogenesis in brain areas responsible for behavior and

cognition (10,11). For example, LPS-induced cognitive impairment and elevated levels of
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TNFa and IL-1 are associated with decreased hippocampal expression of brain-derived

neurotrophic factor and reduced neurogenesis (12). Blockade of IL-1 receptor, the use of

IL-1 receptor knock-out mice, or transplantation of IL-1 receptor antagonist secreting

neural precursor cells can prevent the effects on behavior, cognition, neurotrophic factors,

and neurogenesis (10,11,13). In line with these findings, studies have shown that

selective inhibition of GOX-2 can increase G-CSF production (14,15), therefore, we

sought to determine the direct effect of G-CSF administration on Hl-induced long-term

behavioral and neuropathological outcome. We found that animals that had experienced a

hypoxic-ischemic insult had severe brain atrophy. Additionally, these animals

demonstrated reflexes, limb placing, muscle strength, motor coordination, short-term

memory, and exploratory behavior that were significantly worse than control animals. In

contrast, Hl-injured animals that were treated with G-CSF showed less brain tissue loss

and scored similarly to the control animals; thereby, implicating the neurotrophic

capabilities of G-CSF to be responsible for the structural preservation and improved

fimctional outcome.

Summary

In summary, the emerging landscape of neuroinflammation reveals highly

complex interactions involving neurons, glia, and peripheral immxme cells in the neonatal

brain injured by HI. The mechanism of these multidirectional communications and their

specific involvement in brain injury began to unveil only recently. It is however

important to further dissect molecular orchestrators of these interaction in order to devise

novel therapeutics with increased likelihood of success in clinical trials. Recent studies

demonstrated a critical involvement of COX-2 in brain inflammation after HI and implied
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the use of COX inhibitors in treatment for neonatal encephalopathy in the clinical setting.

While COX-2 appears as a major neuroinflammatory mediator after HI, G-CSF can

negatively modulate inflammatory responses in the immature brain. Interestingly, COX-2

can also mitigate G-CSF action and thereby can compromise neuronal survivability in the

brain. Collectively, these finding suggest that COX-2 inhibitors and exogenous G-CSF

are promising treatment modalities on which to rely.

Perspective

Based on the results obtained so far it is also reasonable to anticipate that COX-2

plays a major role in mediating neuro-glial interactions as well as in orchestrating

immunological cell response in Hl-induced brain injury. Further studies of this matter are

warranted.

In the adult stroke model, splenectomy prior to cerebral ischemia reduced brain

injury by elimination of the largest pool of immunological cells in the system.

Consequently, it positively verified the involvement of peripheral immune cells in the

mechanism of brain injury progression after stroke. Considering that all clinical trials

with anti-flammatory agents against stroke failed, these latest findings may point towards

the reassessment as to whether anti-inflanimatory therapies for stroke can reduce the

peripheral immune system's involvement. These new evaluation criteria would also stand

true for numerous candidate treatments of neonatal HI currently tested in neuroscience

labs, including G-CSF. In addition, it would be worthwhile to develop

immunomodulatory therapies aimed at switching immune response after HI to Thi cells.

A significant progress in this field should not come as a surprise quite soon considering

latest studies employing "beneficial" subtypes of T cells (Th2 /Ths) to support
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neuroprotection and/or regeneration. However, the existing studies of neuro-glial-

immune interactions have been conducted almost exclusively in adult stroke models. In

addition, few relevant studies of neonatal HI included unsexed animals. Thus the

peripheral immune involvement in neonatal HI awaits further investigations, considering

distinct characteristics of the developing brain and immunologic immaturity of the

neonate. In conclusion, there is a need to decipher molecular circuitry of neuro-glial-

immune communications in the hypoxic-ischemic neonatal brain with gender specific

investigations. It is believed that targeting master mediators of these interactions may

pave the way to the first successful clinical trial with therapeutic agents that combat

neuroinfiammation after neonatal HI.
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