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ABSTRACT

MYOCARDIAL CONTRACTIUTY IN FETAL SHEEP EXPOSED TO

LONG-TERM HYPOXIA AT HIGH ALTITUDE: ACTIVATOR CALCIUM

AND BETA-ADRENERGIC RECEPTOR FUNCTION

by

Vaughn A. Browne

We studied myocaidial contractility in fetal sheep exposed to ~112 d^s of hypceda at

high-altitude (3,820 m). We recorded left and right ventricular wet weight, and

measured the inotropic tespaises to extracellular calcium [Ca^^]^ (0.2-10 mM), ryanodine

(10"^-10"^ M), isoproterenol (10"^-10"^ M), and forskolin (0.01-10 ̂ iM) in isometrically

contracting papillary muscles. In additiai, we quantified dihydropyridine (DHPR),

ryanodine (RyR), and p-adrenergic receptor densities, and measured basal and stimulated

intracellular cAMP levels. In hypoxic fetuses, left ventricular wet weight was unchanged,

but right ventricular weight was ~20% lower than controls. Curves describing the

force-[Ca^^]o relationship were left-shifted, and the top plateaus were decreased by -35%

in both left and right ventricles. Ryanodine (10"^ M) reduced maximum active tension

(T„J to -25-40% of baseline values, indicating that the sarcoplasmic leticulum was the

chief source of activator calcium. DHPR number did not change, but RyR density and

the RyR:DHPR ratios in both ventricles were higher in l9q)CKic fetuses. At the highest

concentration of isoproterenol (10 |iM), maximum active tension was -32% and -20%

lower than controls in hypoxic left and right ventricles, respectively. The contractile

response to forskolin was severely attenuated in both hypoxic ventricles, p-receptor



density was unchanged in the left ventricle, but increased by 55% in the hypoxic right

ventricle. was not different from controls in either ventricle. Basal cAMP levels were

not different from controls, but isoproterenol-stimulated and forskolin-stimulated

cAMP levels were 1.4 to 2-fold higher than controls in both hypoxic ventricles.

In summary, there was no ventricular hypertrophy, and hypoxia decreased

contractility, possibly by reducing the availability of activator calcium. The blunted

contractile responses to isoproterenol and forskolin were not related to down-regulation

of the p-adrenergic receptors or adenylate cydase. We speculate that the changes in the

inotropic responsiveness to both caldum and P-agonists are linked by a common, as yet

unexplored, mechanism, possibly involving decreased A-kinase activity or increased

phosphatase activity. The e:q)ected changes in the phosphorylation state of several key

effector proteins, that would, theoretically, occur in that scenario, are consistent with the

observations in study.
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CHAPTER ONE

INTRODUCTION

The mammalian fetus grows and develops in an environment characterized by low

oxygen tension (POj). Despite increases in maternal blood volume, cardiac output, and

uterine blood flow during pregnancy, which optimize the delivery of oxygen to the fetus

via the placenta, fetal arterial POj equals 25-30 Torr (26), a value similar to that observed

in climbers at the summit of Mt Everest (46). Paradoxically, fetal oxygen consumption is

~2 times that of the adult (29), a consequence of higher metabolic rate. For example, in

the ovine fetus, metabolic rate is ~35 kcal-min ̂ -kg"^ compared to ~20 kcalmin^ kg"^ in

resting nonpregnant adults (17). Several adaptations allow the mammalian fetus to

sustain organ growth and differentiation in the face of its physiologic hypoxia. Fetal

hemoglobin has a higher affinity for oxygen than maternal hemoglobin (7,16, 26), and

hematocrit is higher in fetuses, so that the total oxygen carrying capacity is 10%-20%

greater than in the adult (26). However, fetal oxygen reserve is only enough to meet its

high metabolic demands for 1-2 min. To compensate, fetal cardiac output per milliliter

of ojq'gen consumed is approximately 2.5 times higher than in the adult, so that fetal

tissues are perfused at a higher rate (18,41). Umbilical blood flow and placental ojq/gen

exchange are exquisitely dependent on fetal cardiac output and its distribution (26). Thus,

high cardiac output must be maintained to prevent fetal oxygen tensions from falling

below critical levels.

The regulation of fetal cardiac performance and blood flow distribution has been the

subject of intense study over the past twenty five years. The four determinants of cardiac



performance, heart rate, preload, afterload and contractility have been well characterized

in the fetal lamb. Several investigators have shown that high heart rate (5, 6, 37, 36),

which tends to be the same among mammals of different species (33), is critical in

maintaining fetal cardiac output and adequate oxygen delivery. Other investigators (14,

15^ 43j 44) have shown that when stroke volume is related to mean atrial filling pressure,

the fetal heart operates near the plateau of its ventricular function curve, thus appearing

to have litde reserve for increasing its output. When stroke volume was related to fetal

arterial pressure, the right ventricle was more adversely affected by increases in arterial

pressure than the left ventricle (43, 44). Several studies in chronically instmmented fetal

lambs in utero (4,42), and in isolated muscle (2,4,32) have demonstrated that

contractility increases with fetal age, particularly during the last week before birth and

the first week of neonatal life (4).

Since the first measurements of fetal cardiac output in utero (38), investigators have

had particular interest in how fetal cardiac performance adapts to the stress of maternal

hypoxia, maternal arterial oxygen tension being a key determinant of placental oxygen

exchange (13,26,27). In response to acute hypoxia, fetal heart rate decreases (12,28,45),

arterial pressure increases (12,28,45), and blood flow is redistributed to the brain, heart,

and adrenals at the expense of blood flow to other organs (12,28, 35, 40). In addition,

plasma concentrations of several hormones increase, including catecholamines,

vasopressin, renin, and erythropoietin (11,24,30,39), and ACTH and cortisol (9,10).

When hypoxia persists for up to 48 h, the redistribution of blood flow is maintained,

although heart rate and arterial pressure return to normal values (8). Surprisingly, fetal



cardiac output is either unchanged or sHghtly decreased during acute hjpoxia (12,28,

35).

Until recently comparatively little was known about how the fetus adapts to

Img-term t^crna. Ptolonged hypoxia is associated with increased perinatal morbidity

and mortality (25,31), growth retardation (31), and low birth weight (25,34). Our lab

evaluated the effects of long-term high-altitude hypoxia on ovine fetal right (RV) and

left (LV) ventricular performance in vim (1,19,20,21,22). In studies of fetal cardiac

function during 2-weeks of hypoxia (1,20), the RV and LV operated near the plateau of

their function curves with litde preload reserve in both normoxic and hypoxic fetuses.

After 3 days of hypoxia, RV output deaeased by 30% and remained decreased after 14

days. After 7 days of hypoxia, LV output decreased by 21% and remained deaeased

(~38%) after 14 days. Sensitivity to afterload decreased markedly in the RV after 14 days,

but was unchanged in the LV. In another study (21), hypoxia was maintained during

days 30-134 of gestation. Both fetal ventricles operated near the plateau of their function

curves with little preload reserve in both normoxic and hypoxic fetuses. However, the

plateau of the right ventricular function curve was significantly lower (~35%) in hypoxic

fetuses. Left ventricular output was not significantly reduced (~85% of controls). Stroke

volume was reduced by -38% and -20% in the hypoxic right and left ventricles,

respectively. As seen previously, sensitivity to afterload was decreased in the right ventricle

of hypoxic fetuses, but was utichanged in the left ventricle.

Hypoxia significantly increased systemic arterial pressure (afterload) in all studies (1,

19,20,21). However, the increased arterial pressures could only account for -25% of the

reduction in RV output. Heart weight did not change significantly and there was no



evidence of ventricular hypertrophy (21). Blood flow to the heart increased (19) so that

oxj^en delivery to the heart was maintained despite the decrease in arterial P02- Because

heart rate did not difier between normoxic and hypoxic fetuses (1,20,21,22), it is

unlikely that the reduction in cardiac performance was due to a reduction in diastolic

fiUmg time (3, 5), or to rate related changes in inotropy (force-frequency relationship) (2,

23). Furthermore, the similarity in heart rate suggests that the mechanisms that control

fetal heart rate were not altered by long-term hypoxia. Recently, our lab demonstrated

that the chronotropic response to isoproterenol was preserved in fetuses exposed to long-

term hypoxia (22). However, the inaease in cardiac output was smaller in the hypoxic

group, indicating a decrease in the positive inotropic response to isoproterenol.

Because the reduction in cardiac performance observed in hypoadc fetuses could not be

completely explained by changes in preload, afterload, or heart rate, we hypothesized that

myocardial contractility may be decreased during long-term hypoxia. The purpose of this

study was to investigate contractility in isolated cardiac muscle taken from normoxic and

chronically hypoxic fetuses during the last week of fetal life. Contractility increases with

fetal age, particularly during the last week before birth and the first week of neonatal life

(4). We reasoned that if long-term hypo^da alters myocardial contractility, the changes

would most likely be apparent during the last week of fetal life when inotropic state

increases.
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Abstract

We studied myocardial contractility in fetal sheep from ewes exposed to ~112 days of

hypoxia at high-altitude (3,820 m). We measured the inotropic response to extracellular

calcium [Ca^1<, (0.2-10 mM) and ryanodine (lO'^MO"^ M) in isometrically contracting

papillary muscles, and quantified dihydropyridine (DHPR) and ryanodine (RyR)

receptors. In hypoxic fetuses, curves describing the force-[Ca^ relationship were

left-shifted, and the top plateaus were decreased by ~35% in both left and right ventricles.

In normoxic and hypoxic fetuses, ryanodine (10"^ M) reduced maximum active tension

(T^) to ~25-40% of baseline values, indicating that the sarcoplasmic reticulum was the

chief source of activator calcium, and that calcium influx alone was not sufiicient to

activate a contraction of normal amplitude. Hypoxia resulted in a lower in the right

ventricle and lower idT/dt,^,,, in the left ventricle following ryanodine. DHPR number

did not change, but RyR number in the right venttide, and the RyR DHPR ratios in

both ventrides were higher in hypoxic fetuses. We conclude that hypoxia decreases

contractility, possibly by redudng the availability of activator caldum. Further studies are

needed to directly measure the caldum current and intraceUular calcium transient, and to

examine myofilament protein and ATPase activity.

Index terms: extracellular caldum, inotropy, ryanodine, dihydropyridine receptor,

PN200-110
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Introduction

The ability of the heart to pump blood depends on four main factors: preload,

afterload, heart rate, and contractility or, equivalently, inotropic state. In previous

experiments, our lab evaluated the effects of long-term high-altitude hypoxia on ovine

fetal right (RV) and left (LV) ventricular performance in vivo (2,18,19,20). In studies

of fetal cardiac function during two weeks of hypoxia beginning at 125 days of gestation

(2,19), the RV and LV operated near the plateau of their function curves with little

preload reserve in both normoxic and hypoxic fetuses. RV output decreased by 30% after

3 days of hypoxia, but LV output decreased only after 14 days of hypoxia by 21%. In

another series of experiments of exposure to hypoxia during days 30-134 of gestation

(20), both fetal ventricles operated near the plateau of their function curves with littie

preload reserve in both normoxic and hypoxic fetuses. The plateau of the right ventricular

function curve was significantly lower (~35%) in hypoxic fetuses; however, left ventricular

output was not significantly reduced (~85% of controls).

Because the reduction in cardiac performance observed in hypoxic fetuses could not be

completely explained by changes in ventricular weights, preload, afterload, or heart rate

(2,3,4,18,19,20,23), we hypothesized that myocardial contractility maybe decreased

during long-term hypoxia. The purpose of this study was to investigate contractility in

isolated cardiac muscle taken from normoxic and chronically hypoxic fetuses during the

last week of fetal life. Contractility increases with fetal age, particularly during the last

week before birth and the first week of neonatal life (5). We reasoned that if long-term

hypoxia alters myocardial contractility, the changes would most likely be apparent during

the last week of fetal life when inotropic state increases.
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On the level, cardiac contractility depends mainly on the amount of activator

calcium that reaches the myofilaments, the amount of contractile protein, its calcium

affinity, ATPase activity, and the rate of actin-myosin cross-bridge cycling. The

inotropic response to changes in extracellular calcium is an important measure of

contractility because calcium is central to excitation-contraction coupling and

extracellular calcium is the main source of activator calcium in the immature mammalian

heart (10,17,28,38). The cardiac sarcoplasmic reticulum and the T-tubule systems are

comparatively well developed in the late-term sheep fetus (33,34), suggesting that the

SR may provide a significant firaction of the activator calcium. In this study, we

characterized the relationship between extracellular calcium and cardiac contractile force,

and determined the extent to which steady-state contractile activity was dependent on

ryanodine sensitive calcium (SR) stores. In addition, we determined whether changes in

the inotropic response to calcium was related to number of dihydropyridine and

ryanodine receptors.

Methods

We obtained 32 time-dated pregnant ewes of a mixed western breed fi:om a single

supplier (Nebeker Ranch, Lancaster, CA) and randomly separated them into control and

long-term hypoxic groups. The control group (n=16) remained at Nebeker Ranch

(altitude -760 m) until 138-142 days gestation. At 30 days gestation, we transported the

long-term hypoxic group (n=16) to the Barcroft Laboratory, White Mountain Research

Station (WMRS, Bishop, CA; altitude 3,820 m, barometric pressure -480 Torr) where

they remained until 138-142 days gestation. At both locations, the ewes were kept in a
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sheltered pen, and were provided alfalfa pellets, mineral supplements, and clean water ad

libitum. We transported (~7h trip) animals from either group to our laboratory at Loma

T .inHa University where either they underwent immediate study or, in the case of hypojdc

ewes awaiting study, a nonocdusive tracheal catheter was surgically implanted (14) so

that Nj gas could be administered to reestablish hypoxemia immediately after arrival at

our laboratory. Experiments were scheduled so that fetuses were 142 d gestation on the

experimental day. On the experimental day, the ewes were sedated intravenously with

thiamylal (10 mg/kg), intubated, and kept under deep surgical anesthesia (Halothane 5%

in Oj), while we delivered the fetuses through a midline laparotomy. Within 30 seconds,

we removed the fetal hearts via midline thoracotomy and placed them in warm (39 °C),

heparinized, low-caldum (0.2 mM Ca^) Tyrode solution continuously bubbled with

95% 02-5% CO2.

Tissue Preparation

Contractileforce in isolated muscle. For the contractile studies, we exdsed four thin

papillary musde strips (0.3-1.1 mm diameter) or trabeculae carnae (0.3-0.6 mm diameter)

from the fetal left (LV) and right (RV) ventricles then tied a loop of fine suture to each

end. One end of the musde was attached to a hook, whose position could be varied to

adjust tension, and the other to a stainless steel wire attached to an isometric force

transducer (Grass Inst., model FT03, Quincy, MA). The musdes were placed in a

water-jacketed 10 ml bath (Radnoti Glass, Monrovia, OA), stretched to their just-taut

length, stimulated electrically (as described below), and allowed to equilibrate for ~1 h in

warm (39±0.1 °C) Tyrode solution continuously bubbled with 95% ©2-5% CO2. Under

these conditions, typical values for PO2 and PCO2 in the bath were ~550 and ~32 Torr,
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respectively. The Tyrode solution contiiined (in mM): 2.0 CaCl2,140 NaCl,

20 NaHCOa, 6 KCl, 1 MgClj, 10 glucose, and 5 HEPES (N-2-Hydroxyethyl

piperazine-N'-2-ethanesulfonic acid), pH 7.40±0.02. When the muscle response

stabilized (30-40 min.), we gradually stretched the muscles to the length at which active

tension was maximal, Lj^, and maintained that length for the duration of the

experiment. Typically, between 2-3 grams of preload were required to achieve L^. At

the end of the experiment, while the muscle was still stretched to we measured

muscle diameter optically using an eyepiece reticle with graduations of 0.1 mm. The

average of four measurements taken at equal intervals along the length of the muscle was

used as the diameter. To calculate cross-sectional area, we assmned cylindrical geometry.

A pair of platinum electrodes for field stimulation was incorporated into the muscle

holder. We stimulated the muscles with a 7 ms square-wave pulse at 0.8 Hz (Grass Inst.,

model S/88). In preliminary experiments, we determined that 0.8-1 Hz was an optimal

rate of stimulation, which allowed diastolic tension to return to resting levels well before

the onset of the next contraction and produced stable contractions with a minimum of

mndown. Any muscle that had an unusually high threshold voltage (>10 V in our

system) at baseline, demonstrated a spontaneous increase in resting tension (i.e.

contracture) at any time during the e3q)eriment, showed rapid mn-down (>5% after Ih),

or contracted intermittently was excluded from the study.

We recorded each contraction on an eight-channel polj^raph (Gould Electronics

model RS3800, Cleveland, OH). Simultaneously, we used the microcomputer program

for real time data acquisition (RTD) developed in our laboratory to sample the analog

signals at a rate of 512 Hz. The calibrated digital values were evaluated by the contraction
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pattern recognition algorithms in RTD to determine maximum active tension g)»

time from onset to peak tension (sec), duration of contraction (sec), and maximum rates

of rise {+dT/dt^^, g-sec'^) and fall g-sec ̂ ) in tension. Relaxation time was

calculated on-line as the difference between duration of contraction and time to peak

tension. The resulting values were stored on magnetic hard disk for later analysis.

Dihydropyridine and ryanodine receptor assays. For the radioligand binding assays, we

cut sections (~2 cm square) from the right and left ventricular free walls, rinsed them in

heparinized Tyrode solution, blotted them with cotton gauze pads to remove excess fluid,

then froze them in liquid nitrogen. We stored the tissue in sealed vials at -70 °C until

assay.

Experimental Protocol

Contractile force and extracellular calcium. After the muscles were equilibrated (~1 h),

we replaced the perfrisate with Tyrode solution containing 0.2 mM Ca^^, then added

calri^im chloride (400 mM stock in 5 mM HEPES) in a series of small aliquots to

construct a cumulative dose-response curve between 0.2 mM and 10.0 mM. We allowed

the muscles to stabilize after each addition of CaCl2 (5-10 minutes), and at the plateau of

each new steady-state recorded 20 contractions for later analysis. As we increased [Ca^"^],,

above 6-8 mM, the muscles became refractory to stimulation. Although we increased

stimulus voltage, we could not increase calcium concentration beyond 10 mM without

developing contracture in most muscles. Thus, only the data collected between 0.2 mM

and 10 mM were used in the data analysis as outlined below.

Contractile force and the sarcoplasmic reticulum as a source of activator calcium. We

selected a separate set of muscles, and after the ~1 h equilibration, recorded baseline
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control values to which all subsecjuent measurenients were compared. Thus, each muscle

served as its own control. We then added small aliquots of ryanodine (Calbiochem),

which interferes selectively and irreversibly with the release of calcium from the

sarcoplasmic reticulum (7,27, 32), to constmct a cumulative dose-response curve between

10"^° to 10"^ M. We allowed the muscles to equilibrate after each addition of ryanodine

(~20 minutes), and at the plateau of each new steady-state recorded 20 contractions for

later analysis.

Ligand Binding Assays. On the assay day, we homogenized 1-2 grams of tissue in

0.25 M sucrose, 20 mM Tris, pH 7.4 with a Polytron (Brinkman Instmments,

Westbury, NY). The homogenizing buffer also contained a cocktail of protease

inhibitors: 76.8 nM aprotinin, 0.83 mM benzamidine, 1 mM iodoacetamide, 1.1 mM

leupeptin, 0.7 mM pepstatin-A, and 0.23 mM PMSF (phenylmethylsulfonyl fluoride).

The homogenate was spun for 45 minutes at 110,000 g (50,000 rpm) in an

ultracentrifuge (Beckman Instruments Model L3-50) equipped with a Ti-50 rotor;

temperature was maintained at 4 °C. We decanted the supernatant, and resuspended the

peUet in buffer containing 50 mM Tris, pH 7.4 and the protease inhibitor cocktail for

use in the binding assays. [^H] (+)-PN200-110 and [^H] Ryanodine (New England

Nuclear) were used to estimate the number of dihydropyridine receptors (DHPR) and

SR Ca^'^-release channels (RyR) present in the fetal heart, respectively. Resuspended

pellet protein was adjusted to a concentration of 0.3 mg/ml in a final volume of 300 (il.

For DHPR, specific binding was carried out in the presence of 0.01-10 nM

pH] (+)-PN200-110, 50 |iM nifedipine, 25 mM Tris, 150 mM KCl, 10 mM HEPES,

2 mM MgClj, 0.2 mM CaClj at pH 7.4. Triplicate samples were incubated at room
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temperature for 90 minutes in the dark. Membranes were rinsed three times with 3 ml

ice-cold 10 mM Na-HEPES, pH 7.4, and collected by vacuum filtration on Whatman

GF/C filters (Whatman Biosystems Ltd., UK). For RyR, specific binding was carried out

in the presence of 1-200 nM [^H] Ryanodine, 33 |iM cold ryanodine, 25 mM Tris, 1 M

NaCl, 5 mM AMP, 20 mM HEPES, 0.5 mM CaClj, pH 7.4. Duplicate samples were

incubated at 37 °C for 90 minutes. Membranes were rinsed three times with 3 ml

distilled water and collected by vacuum filtration on Whatman GF/C filters. The filters

from both binding assays were placed in scintillation vials containing 6 ml Beckman

Ready Protein+ scintillation cocktail, and radioactivity was measured in a Beckman

Liquid Scintillation Counter. Protein was determined by the Lowiy method (26).

In preliminary experiments (data not shown) we determined that the conditions

outiined above were optimal for binding. In particular, pH] (+)-PN200-110 binding

required high potassium concentrations (150 mM KCl), suggesting that membrane

depolarization was important for binding. Binding in the presence of 145 mM NaCl

yielded inconsistent results. [^H] Ryanodine binding was sensitively dependent on

calcium concentration, with maximum binding occurred between 0.3-1 mM. Optimal

binding required 1 M NaCl, 5 mM AMP, and 0.5 mM CaClj.

Data Analysis

Contractile force and extracellular calcium. For each fetus, we averaged the 20

contractions recorded at each concentration of calcium, corrected the values for muscle

cross-sectional area, and plotted the results against log [Ca^^^J^. We fit the data to HiU

curves using the non-linear regression analysis algorithms in GraphPAD Prism

(GraphPAD Software, San Diego, CA). The resulting top plateau of each sigmoid curve
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was used as the calculated maximum response for that fetus. Pooled data from normojdc

and hypoxic groups were used to fit the curves displayed in Fig. 1, and to determine the

ECjo values in Table 1. To describe sensitivity, the response at each concentration of

calcium was expressed as a percentage of the individual calculated maxima. Pooled data

firom normoxic and hypoxic groups were then used to fit the curves displayed in Fig. 2,

and to determine the ECjo values in Table 1.

Contractile force and functional sarcoplasmic reticulum. Baseline values were

time-averaged and designated the 100% value (Table 2). For each fetus, the 20

contractions recorded at each concentration of ryanodine were averaged, es^ressed as a

percentage of the baseline value, and plotted against log [Ryanodine]. The resulting data

were fit to Hill curves using the non-linear regression analysis algorithms in Prism.

Pooled data from hypoxic and normoxic groups were then used to fit the curves displayed

in Fig. 3, and for the IC50 values listed in Table 3.

Dihydropyridine and ryanodine receptor assays. The radioactivity measured in duplicate

and triplicate samples was averaged to produce a single value for each concentration of

the radioligand. Raw counts were converted to femtomoles of receptor per milligram of

protein, and the resulting data were fit to a rectangular hyperbola using the non-linear

regression analysis algorithms in Prism. Pooled data from normoxic and hypoxic fetuses

were used to fit the curves displayed in Figures 4 and 5. The resulting and Kj, values

are reported in Table 4. The ryanodine receptor: dihydropjnridine receptor ratios (Table 5)

were determined by dividing the B^,,^ for [^H] Ryanodine by the B^,^ for

PH] (+)-PN200-110.
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Statistics

The dose-response curves for calcium and ryanodine, were analyzed in SPSS (SPSS Inc.,

Chicago, IL) using doubly multivariate repeated measures analysis of variance for a split-

plot design. In their respective analyses, calcium and ryanodine concentrations were

within-subjects factors with 12 and 8 levels, respectively. Ventricle was a within-subjects

factor with 2 levels (LV and RV), and oxygen was the between-subjects factor with 2

levels (hypoxia or normoxia). T^and ii/TM were the measures. EC50 (or IC50) values

were compared using Student's /-test. For the radioligand binding assays, and Kj,

values were compared using Student's /-test. For all comparisons, statistical significance

was set at P<0.05. Results were expressed as means ± SE.

Results

Ebctracellular calcium concentration and contractility

Under control conditions (2.0 mM Ca^O, T„ax» ±dT/dt„^, and the time course of

contraction were similar in normoxic and hypoxic fetuses. However, relaxation time was

prolonged significantly in the hypoxic left ventricle (332±11 msec vs. 280±13 msec). As

extracellular calcium concentration was varied between 0.2 mM-10 mM, contractile

force increased in a dose-dependent manner (Fig. 1). Resting (diastolic) tension

remained low, indicating that calcium uptake and extrusion mechanisms functioned

adequately. Chronic hypoxia significantly decreased the maamum inotropic response to

calcium. The magnitude of the effects were similar in both ventricles (~35% reduction)

with the exception of idT/dt^^jj in the LV which was reduced by ~70% (Fig. 20). When

the dose-response data were expressed as a percentage of the maximum response, the



22

Figure 1. Relationship between extracellular calcium concentration

([Ca^'lo) and maximum active tension (T„ax)» maximum rate of rise in

tension (+dT/dt^^), and maximum rate of relaxation (-dT/dt^,^) in the

left (Panels A-C) and right (Panels D-F) ventricles from normoxic (■)

and chronically hypoxic (□) fetuses.
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Figure 2. The force-extracellular calcium sensitivity curves for papillary

muscle from normoxic (B) and hypoxic (D) fetuses, expressed as a

percentage of the maximum response shown in figure 1. Maximum active

tension (T^g^j), maximum rate of rise in tension (+dT/dtjnax)>

maximum rate of relaxation (-dT/dt^^x)* The arrows indicate the points

at 3.1 mM calcium, the normal fetal serum calcium concentration
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ralrintn scnsitivity cuTvcs in hypoxic fetuses were significantly left-shifted when

compared to the corresponding curves for normoxic fetuses (Fig. 2). As a result, the ECjo

values (Table 1) were ~1.8-3.8 mM lower in hypoxic ventricles than in the

corresponding normoxic ventricles.

Calcium release from the SR

After the Ih equilibration period in normal Tyrode solution (2.0 mM Ca^O> baseline

contractile values were not significantly different between normoxic and hypoxic fetuses

(Table 2). As the ryanodine concentration was varied between 10"^° M-10"^ M,

contractile force decreased in a dose-dependent manner (Fig. 3). In normoxic fetuses, at

10"* ryanodine Tmax was reduced to ~45% of baseline values in both left and right

ventricles. ̂ dY:ldt^ was reduced to 30% and 8%, while -dTldt^ was reduced to 30%

and 12% in the left and right ventricle, respectively. Resting (diastolic) force remained

low and stable after treatment with ryanodine, indicating that cytoplasmic calcium

concentrations were not rising.

Qualitatively, the response to ryanodine in hypoxic fetuses was similar to that in

normoxic fetuses, indicating that the SR was the chief source of activator calcivun in

both groups (Fig. 3). However, in the right ventricle, hypoxia potentiated the ryanodine

effect on T„,^ but not on ±/mdt^ (Fig. 3D-F). In the left ventricle, hypoxia did not

change the T^^^ response, but potentiated the negative-inotropic effect of ryanodine on

±£CYIdt^^ (Fig. 3B, C). Hypoxia did slightly, but significantly, decrease the sensitivity of

both ventricles to ryanodine, as evidenced by the small increase in IC50 values (Table 3).
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Figures. The negative inotropic effect of ryanodine on

+dT/dt^3^, and -dT/dt^^ in papillary muscles from the left (Panels A-

C) and right (D-F) ventricles of normoxic (■) and hypoxic (□) fetuses.
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Quantificatioii of dihydropyridine and lyanodine receptors

Figures 4 <inrl 5 show specific binding of pH] (+)-PN200-110 and [^H] ryanodine,

respectively, as a function of ligand concentration. For both ligands, the data fit a single

class of high-affinity binding sites. The resulting and values are shown in Table

4. For [^H] (+)-PN200-110 binding (Fig. 4), was not different in either ventricle of

normoxic and hypoxic fetuses (Table 4), indicating that hypoxia did not reduce the

number of dihydropyridine receptors. In hypoxic fetuses, B^^^ for [^H] ryanodine was

significantly higher in both the left and right ventricles (Fig. 5 and Table 4). In addition,

the RyR:DHPR ratios were -23% and 25% higher in the hypoxic LV and RV,

respectively, than in normoxic controls (Table 4).

Discussion

Extracellular calcium and contractility

To determine maximum contractile force, we elevated extracellular calcium

concentration. Elevating [Ca^"^],, increases the influx of calcium (30), which, in turn,

increases the amount of calcium stored in and released from the sarcoplasmic reticulum

(13,39) and increases the calcium delivery of calcium to the myofilaments.

In normoxic fetuses, maximum contractility was -4 to 8-fold higher than baseline

levels (Fig. 1). This represents a significant inotropic reserve. Long-term hypoxia

decreased inotropic reserve in two ways. In hypoxic fetuses, maximum contractility

decreased by -35% in both left and right ventricles (Fig. 1). At the same time, the

force-[Ca^]<, curves were left-shifted (Figs. 1&2), so that their EC50 values were reduced



Figure 4. Specific binding of [^H] (+)-PN200-110 to homogenates

Tom the left (A) and right (B) ventricles of normoxic (■) and hypoxic

:□) fetuses.
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Figure 5. Specific binding of [^H] Ryanodine to homogenates from the

left (A) and right (B) ventricles of normoxic (■) and hypoxic (□) fetuses.
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(Table 1). As a result, when [Ca^],, was increased above 2.0 mM, contractility saturated

rapidly, increasing by only ~1.5 to 2-fold over baseline values. Because the force-[Ca^]o

curves were left-shifted and the top plateaus were lower, hypoxic fetuses had limited

inotropic reserve (Fig. 1). However, values for baseline contractile parameters in hypoxic

fetuses at 2.0 mM Ca^^ were not significantly different from those in normoxic fetuses

(Table 2). Thus, when baseline T^3x was expressed as a percent of the maximum

response, baseline contractility was ~20% of maximum in normoxic left and right

ventricles, but was ~55% and ~40% of maximum in the hypoxic left and right ventricles,

respectively, indicating reduced contractile reserve in the hypoxic hearts. Teitel, et al

(36)found a limited contractility reserve in 1 week old lambs compared to 1 month old

lambs, which they attributed to a high p-adrenergic state in the yoimger animals.

Because our studies were done in isolated muscles, P-adrenergic state was not a factor in

the lower contractility reserve in the hypoxic fetuses. Rather, the difference in reserve

would most likely be explained changes in Ca^^ delivery to the myofilaments, Ca^

sensitivity of the myofilaments, or cellular content of myofilaments. At present we do

not know which of these possibilities is responsible for the changes observed.

The changes in myocardial contractility and calcium sensitivity in om: study were

qualitatively similar to the changes reported during cardiac development in several

mammalian species. Several investigators (8,17,28) have shown that maximum force of

contraction is lower in the fetus than in the neonate, and both fetal and neonatal values

are less than those in the adult. In addition, the half-maximal (ECjo) for

+dT/dt^ (8,17,28), and the threshold for calcium-induced calcium release (12) were

both lower in adults than in fetuses or neonates of the same species. The investigators
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concluded that contractile force and the sensitivity to extracellular calcium are related to

raViiirn influx, sarcoplasmic reticulum function, and to myofibriUar content and ATPase

activity. Those conclusions are consistent with our hypotheses. Furthermore, it has been

shown that short-term hypoxia has direct effects on the contractile apparatus of the

intact heart (15), on action potential duration (9, 35), and on SR uptake and

content (1,35, 40). Further studies are needed to determine whether similar changes

occur with exposure to long-term high-altitude hypoxia.

Calcium release firom the SR

We treated a group of muscles with ryanodine (7,24,27,32) to determine whether

the extracellular calcium influx was sufficient to activate a contraction of normal

amplitude, and to estimate the fraction of steady-state contractile activity that depends on

calcium released by the sarcoplasmic reticulum. In adult sheep, ryanodine has been shown

to "lock" the SR calcium release channel in a fixed open state with low conductance (16,

25), thereby depleting the pool of releasable calcium. Several investigators have shown

that active tension, and ±dTldt^^ decline after treatment with ryanodine (7, 24, 27,29).

The extent of decline is thought to reflect the fraction of activator calciiun contributed

by the SR. Residual tension is thought to reflect the fraction of activator calcium that

can be supplied by the influx of extracellular calcium in the absence of a functional SR

Longitudinal studies of cardiac ultrastmctural development from early fetal life to

adulthood suggest that cardiac myocytes in the sheep fetus are morphologically and

morphometricaUy more mature than myocytes from the rat, dog, cat, and rabbit (33,34).

Smolich, 1987 (34) showed that cardiac myocytes in the sheep fetus have both

sarcolemmal invaginations, which are involved in the formation of T-tubules, and a
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meshwork of sarcoplasmic reticulum around the myofilaments by ~115 days gestation.

Given the development of M-bands (an indicator of myofibriUar maturation) before

birth (33), the presence of identifiable T-tubules and SR on electron micrographs (33,

34), and a high myofibriUar volume density (33), we hypothesized that the late-term fetal

sheep heart may depend on its SR to contribute a significant fraction of activator

calcium, and, therefore, would be quite sensitive to ryanodine.

Our results indicate that the fetal sheep heart is very sensitive to ryanodine (Fig. 3 and

Table 3), and that extraceUular calcium influx alone was not sufficient to activate a

contraction of normal amplitude. Despite low IC50 values (0.08~1.26 nJNd), fairly high

concentrations of ryanodine (-0.5-100 |iM) were needed to completely deplete the pool

of releasable calcium.

In normoxic fetuses, calcium influx during ryanodine provided enough activator

calcium to support a contraction whose was -40-45% of baseline values in both left

and right ventricle (Fig. 3). Values for ±dYldt^ were deaeased to between -8% and

-30% of baseUne values, suggesting that the rate at which calcium activated the

myofilaments, and the rate at which calcium was removed were markedly reduced during

ryanodine. Although we cannot state precisely how much activator calcium is released by

the SR in normoxic fetuses, it seems that a reasonable estimate is that at least -50-92%

of beat to beat calcium is supplied by the SR.

In hypoxic fetuses, residual after treatment with ryanodine was similar to that in

the normoxic left ventricle, -40% of baseline values (Fig. 3). However, in the hypoxic

right ventricle T^^was reduced to -25% of baseline values, a level significantly lower

than that in the normoxic right ventricle. The lower residual Tmax in the hypoxic right
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ventricle after treatment with ryanodine suggests that calcium release from and/or the

amount of calcium stored in the SR may also be reduced under hypoxic baseline

conditions.

Baseline contractility (Table 2) tended to be higher in hypoxic fetuses (a consequence

of the left-shifted force-[Ca^]o curves as discussed above). If myofilament sensitivity to

calcium were increased in hypoxic fetuses (resulting in the left-shifted force-[Ca^]o

curves), then the increased sensitivity may offset a smaller calcium influx and a smaller

calcium transient, so that the contraction amplitude (T^J may be normal or increased.
)

This interpretation is consistent with the observation that the force-[Ryanodine] curves

were slightly right-shifted in hypoxic fetuses (Fig. 3), giving rise to a small, but

statistically significant, increase in IC50 values (Table 3). This suggests that the

differences in the force-[Ga^^]t, relationship may be related to differences in both calcium

handling and myofilament sensitivity to calcium. Further studies are needed to more

deeply investigate these possibilities.

Some reports indicate that caldum-induced calcium release (CICR) is decreased

following global ischemia or anoxia (35). Others (31) have reported a decrease in Ca^

release from SR release channels following a reduction in pH, which may occur with

hypoxia. However, other investigators have reported that CICR is not decreased during

short-term hypoxia, but that the rate of calcium uptake into the SR and the amount of

calcium stored in the SR are markedly reduced (1,15, 40). The inhibition of the SR

calcium pump is thought to be a result of increased inorganic phosphate and ADP

concentrations, which also decrease myofilament sensitivity to calcium (21). This would

argue against our interpretation. However, after exposure to long-term hypoxia, no
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decrease in cardiac output was observed until 3 days after the onset of hypoaa (2,19). In

a study of cardiac myocyte adaptations to chronic hypoxia, Webster and Bishopric (37)

reported a decrease in contractility over a period of 3 days that paralleled a progressive fall

in cAMP. This su^ests that the mechanisms responsible for decreased cardiac ftmction

during long-term hypoxia may be different from those which are responsible for early

contractile failure in acute hypoxia and ischemia (1,15, 40), highlighting the need for

fiirther studies.

Dihydropyiidine and ryanodine receptors

It is widely accepted that (mainly) two groups of regulatory proteins control the entry

of activator calcium to the myoplasm. Voltage-gated, dihydropyridine-sensitive (L-type)

calcium channels (11,22,38) in the sarcolemma control the influx of extracellular

calcium, and the ryanodine receptor (16,25,32,38) controls the release of calcium stored

in the sarcopksmic reticulum. Thus, when is elevated, the resulting increase in

the calcium influx and intracellular calcium transient depends on the number of

dihydropyridine-sensitive calcium channels and ryanodine receptors, and their functional

state. We quantified both dihydropyridine and ryanodine receptors to determine whether

their numbers change with exposure to long-term hypoxia, and to provide further insight

into excitation-contraction coupling mechanisms in the late-term sheep fetus.

Om resvilts indicate that the number of dihydropyridine receptors does not change in

either ventricle following exposure to long-term hypoxia, but that the number of

ryanodine receptors in the right ventricle, and the RyR: DHPR ratios in both ventricles

increase. The values for pH] (+)-PN200-110 were somewhat higher than those

reported for other mammals (6,22,38), but the values agreed well with previous
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studies. The and values for [^H] lyanodine in our study were similar to values

reported previously (6,25,38). However, our values were much lower than the

9.7 pmol/mg protein reported for the adult sheep left ventricle (16). In that study,

Holmberg and Williams (16) used highly purified heavy SR vesicles collected from

discontinuous sucrose density gradients, whereas we used a comparatively crude

membrane preparation. They attributed the "unusually high level of ryanodine binding"

to the high ioitic strength of the 1 M KCl media used in their assay. We used 1 M NaCl

which yielded a similarly high ionic strength. The differences in B„^ values are probably

related to the level of purity, and possibly to maturational changes in the SR

Lew, Hryshko, and Bers (22) showed that the number of dihydropyridine receptors

in the rabbit heart correlated closely with the number of fimctional calcium channels. If

we assume a similar relationship in the sheep fetus, then our data suggest that the

number of fimctional calcium channels in the heart is not altered by exposure to

long-term hypoxia.

The increased number of ryanodine receptors in the right ventricle and RyR; DHPR
J

ratios in both ventricles of hypoxic fetuses correlate with increased responsiveness to

ryanodine (Figure 3). These two lines of evidence suggest that the SR and the contractile

apparatus are both well developed in fetuses exposed to long-term hypoxia.

Conclusion

Long-term hypoxia decreased the inotropic response to extracellular calcium but did

not change the number of sarcolemmal calcium channels. Dependence on ryanodine-

sensitive caldum stores increased in parallel with a greater number of ryanodine receptors
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in the right ventride and larger RyR: DHPR ratios in both ventrides, indicating that

the SR remained the chief source of activator calcium, and that hypoxia did not delay

maturation of E-C coupling mechanisms. Together, these observations suggest that

long-term hypoxia affects the functional state of key components of the contractile

apparatus, induding sarcolemmal caldum channels and ryanodine receptors. Further

studies are needed to assess the caldum current, intraceUular caldum transient, SR

caldum loading and Ca^^-ATPase activity, the amoimt of contractile protein, its calcium

affinity, and ATPase activity.
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Abstract

In fetal sheep, exposure to high-altitude (3,820 m) for ~110 days results in elevated

arterial pressure, reduced cardiac output, and a dissociation between the chronotropic and

inotropic responses to isoproterenol. In this study, we asked whether down-regulation of

the myocardial P-adrenergic receptor/adenylate cyclase system may, in part, be responsible

for the blunted inotropic response to isoproterenol. We recorded left and right ventricular

wet weight, and measured the contractile response to increasing doses of isoproterenol

and forskolin in papillary muscles ftom both ventricles. We estimated P-adrenergic

receptor density (B^J and ligand affinity (K^) using [^^I] iodocyanopindolol (ICYP),

and measured cyclic AMP levels before and after maximally stimulating doses of

isoproterenol and forskolin. Left ventricular wet weight was unchanged, but right

ventricular weight was ~20% lower than controls. At the highest concentration of

isoproterenol (10 pM), maximum active tension was ~32% and ~20% lower than controls

in hypoxic left and right ventricles, respectively. The contractile response to forskolin was

severely attenuated in both hypoxic ventricles. was unchanged in the left ventricle,

but increased by 55% in the hypoxic right ventricle. was not different from controls in

either ventricle. Basal cAMP levels were not different from controls, but

isoproterenol-stimulated and forskolin-stimulated cAMP levels were 1.4 to 2-fold higher

than controls in both hypoxic ventricles. In summary, there was no ventricular

hypertrophy, and the blunted contractile responses to isoproterenol and forskolin were

not related to down-regulation of the P-adrenergic receptors or adenylate cyclase. The
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results strongly suggest that hypoxia decreases A-kinase activity and/or the function of

key target effector proteins.

Index terms: myocardial contractility, isoproterenol, forskolin, iodocyanopindolol
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Introduction

During chronic hypoxia in adults (1,14,20,21), cardiac output is reduced even

though circulating levels of catecholamines remain elevated. Previous studies have

suggested that increased parasympathetic activity (12), enhanced inactivation of

catecholamines (20), and down-regulation of P-adrenergic receptors and adenylate

cyclase (2,15,32) aU play a role in the blimted response to p-stimulation. Several studies

indicate that left and right ventricular p-receptors and adenylate cyclase activity are

differentially regulated by chronic hypoxia. For example, in adult rats exposed to

high-altitude, P-adrenergic receptor density decreased in the left ventricle after 3 wk (15)

and remained decreased after 5 wk (32). In the right ventricle, P-receptor density was

unchanged after 3 wk (15), but was decreased by ~50% after 5 wk (32). Basal and

isoproterenol-stimulated adenylate cyclase activity were significantly reduced in the

hypertrophied right ventricle (15), but not the left ventricle. Similar findings have been

reported in newborn sheep made chronically hypoxic with right ventricular outflow tract

obstmction, and a right to left shunt (2,31, 9). Teitel et al. (31) showed a dissociation

between the chronotropic and inotropic responses to elevated catecholamine levels.

P-adrenergic receptor density and isoproterenol-stimulated adenylate qrclase activity (2)

were decreased in the left ventricle, but were unchanged in the hypertrophied right

ventricle. The authors suggested that in newborn lambs, hypoxia down-regulates

P-receptors, while pressure overload up-regulates P-receptors, and causes ventricular

hypertrophy. Using the same model, Doshi et al. (1991) (9) showed that the density and

affinity of atrial P-adrenergic and muscarinic receptors were unchanged, suggesting that
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during chronic hypoaa atrial and ventricular p-receptors are dififerentiaUy regulated,

resulting in different chronotropic and inotropic responses.

In fetal sheep exposed to long-term high-altitude hypoxia (16,17,18), baseline

cardiac output was significantly reduced, owing mainly to a ~35% reduction in right

ventricular output When isoproterenol was infused in utero (18), arterial pressure fell

significantly in both normoxic and hypoxic fetuses, and heart rate increased to a similar

extent in both groups. Right ventricular oulput increased by ~35% in both groups, but

left ventricular output increased by only ~15% in hypoxic fetuses compared to ~40% in

normoxic controls, indicating a marked reduction in the left ventricular inotropic

response to isoproterenol, and a dissociation between the chronotropic and inotropic

responses.

In our model of chronic hypoxia, unlike the newborn lamb, plasma catecholamine

levels were not elevated (13), and both left and right ventricles were exposed to the same

levels of hypoxia and increased arterial pressure. However, the differences in fetal left and

right ventricular afterload sensitivity and performance (24,25), led us to hypothesize that

hypoxia may differentially regulate ventricular P-receptors and adenykte cyclase in fetuses

in a manner similar to that reported for the newbom lamb (2, 9). Such changes would

have important implications for the transition from intrauterine to extrauterine life. In

this study, we extended our previous observations in utero (16,17,18) to isolated papillary

muscles from fetuses that were not surgically manipulated prior to study. We determined:

(a) whether hypoxia resulted in left or right ventricular hypertrophy, (b) whether the

inotropic response to isoproterenol and forskolin in isometrically contracting papillary

muscle was altered by hypoxia, (c) whether the deaeased inotropic response to
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isoproterenol in the left ventricle in utero is related to down-regulation of the

P-adrenei^c receptor/adenylate (ydase system, (d) whether hypoxia difterentially

regulates left and right ventricular P-receptors, and (e) whether changes in p-receptor

density and cyclic AMP levels might explain the decreased cardiac performance.

Methods

Seventy-eight time-dated pregnant ewes of a mixed western breed were obtained

from Nebeker Ranch (Lancaster, CA) and randomly separated into control and

long-term hypoxic groups. The control group (n=35) remained at Nebeker Ranch

(altitude ~760 m) until 138-142 days gestation. At 30 daj^ gestation, the long-term

hypoxic group (n=43) was transported to Barcroft Laboratory, White Mountain

Research Station (WMRS, Bishop, CA; altitude 3,820 m, barometric pressure

~480 Torr) where they remained until 138-142 days gestation. At both locations, the

ewes were kept in a sheltered pen, and were provided with alfalfa pellets, mineral

supplements, and clean water ad libitum. On the experimental day, the ewes were

transported to our laboratory at Loma Linda University where they either underwent

immediate study or, in the case of hypojdc ewes awaiting study, a nonocclusive tracheal

catheter was surgically implanted so that Nj gas could be administered to reestablish

hypoxemia immediately after arrival at our laboratory. Ebcperiments were scheduled so

that fetuses were 142 d gestation on the experimental day. The ewes were sedated

intravenously Avith thiamylal (10 mg/kg), intubated, and kept under deep surgical

anesthesia (Halothane™ 5% in oxygen), while we delivered the fetuses through a midline

laparotomy. The fetal hearts were removed via midline thoracotomy and placed



55

immediately in warm (39 °C), heparinized, low-calcium (0.2 mM Ca^) Tyrode solution

continuously bubbled with 95% 02-5% COj for contractile studies or in ice-cold Tris

buffer for the P-adrenergic receptor assay.

Whole heart and ventricular weights

The fetal heart was dissected free of the great vessels, and wet weights were recorded

for the whole heart, and the left, and right ventricular free walls (Table 5). To determine

percent dry weight, small sections of left and right ventricular free wall (1-3 g) were

weighed, dried at -250 °C for 5 days, then reweighed. The resulting dry weights were

expressed as a percentage of the wet weight.

Contractile force

Tisstie preparation. The detailed method of muscle preparation and stimulation has

been previously desaibed (6). Briefly, four thin papillary muscle strips (0.3-1.1 mm

diameter) or trabeculae camae (0.3-0.6 mm diameter) were excised from the fetal left

(LV) and right (RV) ventricles. The muscles were stretched to their just-taut length,

suspended in warm (39+0.1 °C), oxygenated (95% ©2-5% CO2) Tyrode solution, and

electrically stimulated at 1 Hz. Each contraction was recorded on an eight-channel

polygraph (Gould Electronics, Cleveland, OH). Simultaneously, maximum active

tension (T^^^J g)» maximum rates of rise g-sec"^) and fall {-cTY/dt^^,

g-sec"0 in tension were measured with a microcomputer (6, 8).

Isoproterenol-stimulated contractile response. After the muscles had equilibrated (-1 h),

we recorded baseline control values, then measured the responses to cumulative doses of

isoproterenol (10'^° to 10"' M), a non-selective P-adrenergic receptor agonist. The stock
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solution was taken directly from 5 ml ampuls of injectable isoproterenol hydrochloride

(0.2 mg/ml Elkins-Sinn, Inc. Cherry Hills, NJ). After each addition of isoproterenol, we

allowed the muscles to stabilize (~2 min), and at the plateau of each new steady-state

recorded 20 contractions for later analysis. In preliminary ea^eriments, increasing the

mcivimiim concentration of isoproterenol from 10"^ M to 10"^ M did not result in any

additional increase in contractility. Contractile force consistently reached a new plateau

within ~60-90 sec after adding isoproterenol, and remained stable for up to 15 minutes

in both normoxic (n=10) and hypoxic (n=10) fetuses. Some muscle strips developed rapid

(~3 Hz), spontaneous, phasic contractions of reduced amplitude when isoproterenol

concentration was increased above ~0.3 |iM. Those muscles were excluded from the

study. All experiments were conducted in the dark to protect isoproterenol from

photolytic degradation.

In preliminary experiments, 10 pM propranolol was added to the bath medium after

the muscles had equilibrated to determine whether endogenous catecholamines affected

baseline and ±dTldt^^ After a 20 minute incubation, there was no significant

change in baseline values in both normoxic and hypoxic fetuses. However, 10 pM

propranolol completely blocked the contractile response to isoproterenol in both groups.

Forskolin-stimulated contractile response. In a second set of muscles, we measured the

responses to cumulative doses of forskolin (10 ® to 10"^ M), a direct activator of adenylate

cydase. Forskolin (5 mg vial, Calbiochem) was dissolved in 180 pi dimethyl sulfoxide

(DMSO) and diluted with distilled water to make a 2.5 mM stock solution in 6%

DMSO. After each addition of forskolin, we allowed the musdes to stabilize (~15

minutes), and at the plateau of each new steady-state recorded 20 contractions for later
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analysis. In prelinunary e3q)eriments, increasing the maximum forskolin concentration

from 10 |lM to 200 |J.M did not result in any additional increase in contractile force.

|3-adrenergic receptor assay

i^pradmately 1 gram each of the left and right ventricular ftee walls was placed in

ice-cold buffer containing 20 mM Tris (Tris[l^dioKymetlyl]aminomethane), 250 mM

sucrose and 1 mM dithiothieitol (DTT), pH 7.4, then homogenized with a Polytron

(Brinkman Instruments,Westbury NY).The homogenate was spun at 110,000g

(50,000 rpm) for 45 minutes at 4 °C in an ultracentrifuge equipped with aTi-50 rotor

(Beckman Instruments model L3-50). The pellet fraction was lesuspended in buffer

containing 50 mM Tris, pH 7.4, then stored at -70 °C in sealed cryogenic vials. Samples

were stored for no more than two months before assj^t

On the assjy djy 5 ml of ftozen sample was resuspended in 10 ml ice-cold 50 mM

Tris buffer^ then homogenized thoroughly with a glass mortar and pestle before being

passed through two Ijyers of gauze to remove ceUukr debris. The homogenate was

diluted with an equal volume of ass^ buffer (2X stock) to a final protein concentration

of 1-2 mg/ml.The resulting membrane suspension contained 50 mM Tris, 4 mM

MgClj, and 1 mM ascorbic add, pH 7.4, to which was added a cocktail of protease

inhibitors in a final concentration of: 76.8 nM aprotinin, 0.83 mM benzamidine, 1 mM

iodoacetamide, 1.1 ̂ iM leupeptin,0.7 |iM pepstatin-A, and 0.23 mM PMSF

(pherylmetl^'^kulfonyl fluoride). [^^I] (-)Iodocyanopindolol (ICYP) (New England

Nudear) was used to estimate the density of left and right ventricular P-adrenergic

receptors. The assjy was performed in triplicate in tubes containing 240 p,l of diluted

membranes and 10 ̂ll of increasing concentrations of the radioligand (1-1,000 pM).
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Non-specific binding was determined by adding 10 |il of (-)isopK)teienol (200 |iM stock)

to one set of assjy tubes. Following a 1 hr incubation in the dark at 30 °C, the

membranes were collected by vacuum filtraticai on glass fiber filter circles G4 (Fisher
/

Scientific), and rinsed three times with 5 ml of ice-cold 50 mM Tris, and 4 mM MgClj,

pH 7.4, to remove unbound radiolabel. When the filters were dry they were placed in

12x75 polyedylene tubes, and the radioactivity was measured in a gamma counter

(Packard Autogamma model 5650). The remaining membrane suspension was analyzed

for protein by the Lowry method(19).

Cyclic AMP determination

Isoproterenol-stimulated cAMPproduction. After a 1 h equilibration in Tyrode

solution (see above), actively contracting papillary muscles or trabeculae carnae from

normoxic (n=35) and hypoxic fetuses (n=43) were treated with a single bolus of 2 pM

isoproterenol hydrochloride. When the contractile response reached its maximum (~45-

60 sec), the muscles were rapidly frozen by immersion in liquid nitrogen. Untreated left

and right ventricular muscle strips from each fetus were also frozen as controls. The

frozen muscles were placed in labeled aluminum foil pouches and stored at -70 °C in

sealed cryogenic vials until assay. In 10 fetuses from each group, we recorded 20

contractions at basehne and after stimulation with isoproterenol in an attempt to

correlate contractility with cAMP levels.

Forskolin-stimulated cAMPproduction. After the dose-response curve to forskolin

had been constructed (see above), the muscles were rapidly frozen by immersion in liquid

nitrogen, then stored at -70 °C in sealed cryogenic vials for later determination of

steady-state cyclic AMP levels. In separate experiments, a second group of muscles were
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treated with a single bolus of 10 |iM forskolin, the maximum concentration used in the

dose-response study. When the contractile response reached a new plateau (~10 min),

the muscles were rapidly frozen by immersion in liquid nitrogen and stored as described

above.

Cyclic AMP assay On the first assjy da^ the frozen muscle strips were transferred

directly from the -70 °C freezer to a Dewar flask filled with liquid nitrogen. Individual

muscle strips were remolded fiom the liquid nitrogen, then immediately homogenized in

1 ml ice-cold 6% trichloroacetic add (TCA) with a glass mortar and pestle. The mortar

and pestles were rinsed twice with 1 ml ice-cold 6% TCA, and the pooled 3 ml volume

was centrifuged at 2,000g for 15 minutes at 4 "C.The pellet fracticxi was used for protein

determinatim by the Lowry method (19).The supernatant was washed four times with

5 ml water-saturated diethyl ether, then lyophilized (Savant Speedvac Condenser model

S VC-200H) overnight at 60 "C. On assjy djy-2, the dried extract was resuspended in

1 ml of the 0.05 M acetate buffer provided in Amersham^ cAMP [^^I] assjy system (dual

range) kit. Tissue levels of cAMP were determined using the non-acetylation assjy

according to the method described in the Amersham kit. A total of 332 muscle strips

from 35 normcodc and 43 ̂podc animals were processed.

Data Analysis

Wbok heart and ventricular weights. Individual fetal left and right ventricular data

were pooled to calculate normosdc and hypoxic group means.

Contractile force. Baseline values recorded at the end of the 1 h equilibration were

time-averaged and designated the control value (100%). For each fetus, the 20

contractions recorded at each concentration of isoproterenol and forskolin were averaged.
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e3q)ressed as a percentage of the baseline control value, then plotted against log [agonist].

The data were fit to Hill curves using the non-linear regression analysis algorithms in

GraphPAD Prism® (GraphPAD™ Software, San Diego, CA). Pooled data from

normoxic and hypoxic groups were used to fit the curves displayed in Figs. 1 and 3, and to

determine the EC50 values in Tables 3 and 4.

The 20 contractions recorded after stimulating the muscles with 2 pM isoproterenol

were averaged and expressed as a percent of the baseline control value. The resulting

individual fetal data were pooled to calculate normoxic and hypoxic group means.

^-adrener^c receptor and cAMP assays. The radioactivity measured in triplicate

samples was averaged to produce a single value for each concentration of the radioligand.

Raw cotmts were converted to femtomoles of P-receptor or cAMP per milligram of

protein, and, for ICYP, the resulting data were fit to a rectangular hyperbola using

the non-linear regression analysis algorithms in Prism®. Pooled data from normoxic and

hypoxic fetuses were used to fit the curves, and to calculate and values, which are

reported in Fig. 9 and Table 9. Similar results were obtained whether group data were

curve fit or if curve fit parameters from individual fetuses were averaged.

Statistics

The dose-response curves for isoproterenol and forskolin, and the cAMP data were

analyzed in SPSS® (SPSS Inc., Chicago, IL) using doubly multivariate repeated

measures analysis of variance for a split-plot design. For all three analyses, ventricle was a

within-subjects factor with 2 levels (LV and RV), and oxygen was the between-subjects

factor with 2 levels (hypoxia or normoxia). In their respective analyses, isoproterenol and
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forskolin concentrations were within-subjects factors with 21 and 6 levels, respectively.

and ±^ldt were the measures. In the analysis of the cAMP data, the drug used to

stimulate cAMP production was a within-subjects factor with three levels: baseline

control (no dmg), 2 pM isoproterenol, and 10 pM forskolin. Because the raw cAMP

data were not normally distributed, logiQ-transformed data were analyzed. Eight hypoxic

and three normoxic fetuses were excluded from the repeated measures analysis because of

missir^ data. Student's Mest was used to compare normoxic and hypoac group means

for whole heart and ventricular weights, the EC50 values for isoproterenol and forskolin,

the bolus of 2 pM isoproterenol, and the and values for [^^^1] ICYP. For all

comparisons, statistical significance was set at P<0.05. Results were e^qpressed as

means ± SE.

Results

Whole heart and ventricular wet weights

Whole heart and left ventricular wet weights were unchanged by long-term hypoxia;

right ventricular wet weight was decreased by ~20% in hypoxic fetuses (Table 5). Dry

weight was slightly increased in the left ventricle but not in the right ventricle of hypoxic

fetuses.

Contractile response to isoproterenol

At the end of the 1 h equilibration period, , ±dTldt^, and the time course of

contraction were similar in normoxic and hypoxic fetuses. Isoproterenol increased

contractile force in a dose-dependent manner in both normoxic and hypoxic fetuses (Fig.

6). In normoxic fetuses, and increased ~3 to 4-fold in both left and right
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ventricles, and -dYldt^ increased ~7-fold in the left ventricle versus ~3-fold in the right

ventricle (Fig. 6 and Table 6). The hypoxic left and right ventricles were less responsive

to isoproterenol. In the hypoxic left ventricle, the maximum responses were reduced by

~32%, ~28%, and ~66% for T„^, , and -dY/dt^^, respectively (Fig. 6 and

Table 6). In the hypoxic right ventricle, aU three measures of contractility were decreased

by ~20%.

The isoproterenol dose-response curves in hypoxic fetuses were left-shifted when

compared to the corresponding curves for normoxic fetuses (Fig. 6). As a result, the

concentration of isoproterenol at which the contractile responses were half-maximal

(EC50) was significantly lower in hypoxic fetuses (Table 7). In the hypoxic left ventricle,

EC50 values were ~18 times lower for T„^ and -tdYldt^, and ~55 times lower for

-dTYtdt^ than in the normoxic left ventricle. In the hypoxic right ventricle, the ECjq

values for all three measures of contractility were ~3 times lower than in the normoxic

right ventricle. The normoxic left ventricle was significantly less sensitive to isoproterenol

than the normoxic right ventricle, as indicated by the ~6 to 18-fold difference in their

EC50 values (Table 7). In contrast, the hypoxic left and right ventricles did not differ in

their sensitivities to isoproterenol, suggesting that hypoxia alters the normal differential

sensitivity to P-adrenergic agonists.

When a single bolus of 2 p.M isoproterenol was used to stimulate the muscles (for

later cAMP determinatiais), the contractile response was significantly reduced in both

the hypcodc left and right ventricles (Fig 7).T^^ and ■iuTTIdt^^ were reduced by ~30%

and ~48%, respectively in the hypcsdc left ventricle. Similarly T^^ and +dTldt^^ were

reduced by ~30% in the lypoidc right ventricle but -dTIdt^^ was unchanged. Together,



I^igure 6. The contractile response to increasing concentrations of
soproterenol in papillary muscles from the left (Panels A, B, C) and

ight (Panels D, E, F) ventricles of normoxic (■) and chronically hypoxic
□) fetuses. Maximum active tension (T^^^), maximum rate of rise in
ension (+dT/dtn,^), and maximum rate of relaxation (-dT/dt^^). N=10
htuses in each group.
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these two experiments indicate that the positive inotropic sesponse to isopioterenol is

decreased in both hypoxic ventricles, suggesting altered P-adrenergic receptor function.

Contractile response to forskolin

Forskolin increased contractility in a dose-dependent manner in normoxic fetuses

(Fig. 8). In both the left and right ventricles, increased ~2 to 4-fold

over baseline values. The left ventricle was more sensitive to forskolin than the right

ventricle as indicated by the lower EC50 values in Table 8. In hypoxic fetuses, the

contractile response to forskolin was severely blunted, even when the forskolin

concentration was increased to 200 |iM (data not shown). Because the response was not

sigmoidal, meaningful maximmn response and EC50 values could not be determined.

Quantification of P-adrenergic receptors

For both normoxic (n=18) and hypoxic (n=16) fetuses, [^^®I] (-)Iodo<yanopindolol

(ICYP) bound to a single class of high-affinity binding sites (data not shown). The

resulting and values are shown in Table 9. In normoxic fetuses, p-adrenergic

receptor density (B^^) was ~33% higher in the left ventricle than in the right ventricle.

In hypoxic fetuses, there was no difference in P-receptor density between left and right

ventricles. Exposure to long-term hypoxia did not change P-receptor density in the left

ventricle. However, there was a ~55% increase in P-receptor density in the hypoxic right

ventricle, indicating hypoxic up-regulation of right ventricular P-receptors. There was no

difference in ligand affinity (Kp) between left and right ventricles, or between normoxic

and hypoxic fetuses.
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"igure 8. The contractile response to increasing concentrations of
brskolin in papillary muscles from the left (Panels A, B, C) and right

Panels D, E, F) ventricles of normoxic (■) and chronically hypoxic (□)
etuses. N=8 fetuses in each group. Maximum active tension (T^ax)>
naximum rate of rise in tension (+dT/dt„^), and maximum rate of
elaxation (-dT/dt^ax)-
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Cyclic AMP levels

Fig. 10 shows the results from the cAMP assays. Basal unstimulated cAMP levels

were not significantly different in normoxic and hypojdc fetuses, or between left and

right ventricles. When 2 }xM isoproterenol was used to activate P-receptor-coupled

adenylate cyclase, cAMP concentration increased significantly in both normoxic and

hypoxic fetuses. There were no significant differences between left and right ventricles in

either gjroup. However, the increases in cAMP were ~1.8 fold and ~1.4-fold higher in

hypojdc left and right ventricles, respectively, than in the corresponding normoxic

ventricle (Fig. 5). When adenylate cyclase was directly activated with 10 pM forskolin, a

fiimilar pattern emerged. Forskolin-stimulated (yclic AMP levels were ~5-fold higher

than basal unstimulated levels in hypoxic fetuses, but only ~3-fold higher than basal

unstimulated levels in normoxic fetuses (Fig. 5). There were no significant differences

between left and right ventricles in either group.

Discussion

Whole heart and ventricular weights

Several investigators have reported right ventricular hypertrophy following e:!q)osure

to chronic hypoxia in adult (15, 32) and newborn (2) mammals. We found that right

ventricular hypertrophy did not occur in fetal sheep exposed to long-term hypoxia.

Instead, the mass of the right ventricular free wall decreased by ~20% without any

compensatory change in the left ventricle. The decrease in right ventricular free wall

mass may, in part, help to explain the reduced right ventricular performance previously

reported by our laboratory (16,17,18). Differences in the period of hypoxic exposure, and
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the morphology and composition of the fetal myocardium vs. the newborn myocardium

may accoimt for the differences between our results and those of Bernstein et al. (2). In

their study, newborn lambs were exposed to 2 wk of hypoxia beginning during the first

and second weeks of postnatal life; our fetuses were exposed to hypoxia during days 30-

142 of gestation, a period during which myocardial cells are actively dividing (5,29,30).

During the last week of fetal life and the first week of neonatal life, mitotic activity tapers

off and myoq^e hypertrophy, especially in the left ventricle, becomes the dominant

mechanism for myocardial growth (5,29, 30). In rats, chronic hypoxia during fetal life

results in marked hyperplasia and delayed transition fiom hyperplastic to hypertrophic

growth in the right ventricle but not in the left ventricle (22). Whether a similar

mechanism may be at work in chronically hypoxic fetal sheep is not knovra.

Contractile responses to isoproterenol and forskolin

In the intact heart, changes in cardiac performance mqr be related to changes in

preload, afterload, heart rate; or inotropic state. By studying papillary muscle that is

electronically paced and contracting isometricaUy we can directly assess changes in

inotropy without the confounding influences of caidicvascular reflexes. The inotropic

responses to P-adrenergic receptor agonists are mediated by a cascade of enqrmatic

reactions which culminate in the phosphorylation of key proteins that are important for

excitation-contraction coupling. Sarcolemmal P-receptors are coupled to aderylate

qclase by the guanine nucleotide proteins (G-proteins) and Q. Activatiai of the

P-receptorHj-protein-aderylate qclase complex results in increased cAMP production,

and increased cAMP-dependent protein kinase (A-kinase) activity A-kinases

phosfiiorylate key
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rhannffis in the saicolemma and saicoplasmic ieticulum,phospholamban,

ttoponin-I, and C-protein. Phosphorylation of calcium channels in the saicolemma and

saicoplasmic reticulum increase both the influx of extracellular calcium and the release of

calcium stored in the saicoplasmic reticulum. The resulting increased delivery of calcium

to the myofilaments is chiefly responsible for the increase in contractile force.

Phosphorylation of phospholamban increases the rate of calcium reuptake by the

saicoplasmic reticulum Ca^-ATPase pump, while the phosjiiorylation of troponin-I and

C-piotein decreases myofilament sensitivity for mpplasmic calcium. The increased SR

ralHiirp uptake and decreased myofilament sensitivity for calcium are chiefly responsible

for the more rapid decline in the calcium transient and the increased rate of relaxaticai.

Changes in responsiveness and sensitivity to P-agonists could, in theory occur as a result

of changes at ary level in the signal transduction pathwty beginning at the P-receptor

and ending at the effector proteins. In this study we explored the inotropic

responsiveness and sensitivity to a P-receptor agonist, isoproterenol, and a direct activator

of aderylate cyclase^ forskolin. In addition, we measured the density of P-adrenergic

receptors, and determined the levels of cAMP following stimulation with isoproterenol

and forskolin.

In adult and newborn mammals, several investigators have shown that prolonged

e3q)osure to elevated catecholamine levels during acute (26) and chronic hypoxia (1,2,12,

15,18,21), heart failure (4,11), and pressure overload (2,28,32), results in a marked

decrease in myocardial responsiveness to P-stimulation. This may, in part, be explained by

down-regulation of surface p-receptors (2,9,15,32) and decreased adenylate cydase

activity (2,15,32,33). Recently, we reported (18) a marked decrease in the left
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ventricular inotropic response to isoproterenol in fetal sheep exposed to long-term

high-altitude hypoxia. In this study, we hypothesized that the reduced inotropic response

to isoproterenol in vivo may be due to down-regulation of the P-adrenergic

receptor/adenylate cydase system.

There were several important findings in this study First, isoproterenol was a potent

positive inotropic agent in both normoxic and Opcode fetuses. However, in the l^oxic

left and right ventricles, the inotropic response to isoproterenol was markedly attenuated

(Figs. 6 & 7 and Table 6), but sensitivity was greatly increased (Table 7). The changes

were more pronounced in the hypcedc left ventrid^ particularly for -cTTIdt^^. inotropic

responsiveness decreased by 66%, but sensitivity increased 55-fold. These results agree

with the decreased left ventricular inotropic response to isoproterenol in vivo (18).

Howevei^ unlike the results in this study the right ventricular response in vivo was not

different fmm normotic controls. This inconsistency may be the result of a key difference

in methodology In this study afterload remained constant (isometric contraction), but

arterial pressure feU significantly during the isoproterenol infusion in vivo, thereby

reducing afterload and improving stroke volume. Because the right ventricle is quite

sensitive to changes in afterload (17,24,25), the reduction in arterial pressure may have

been sufficient to ccmpensate for an underlying decrease in responsiveness to

isoproterenol.

The pattern of the inotropic response to isoproterenol in hypcedc fetuses is similar to

the inotropic response to extracellular caldum previously reported (6). In both studies,

inotropic responsiveness was maikedly attenuated, but sensitivity was greatly increased. In

both studies, the changes were of a similar magnitude^ and were more pronounced in the
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left ventricle particularly for -dT/dt^,^ (see Table 1 and Figs. 18c2 in ref 6). Because the

inotropic response to isoproterenol depends on calcium delivery reuptak^ and changes in

myofilament sensitivity to calcium, we l^othesize that the changes in the inotropic

response to calcium and isoproterenol in lyposdc fetuses are linked by a common, as yet

imexplored, mechanism.

A second finding was that forskolin had a potent positive inotropic effect on the

normcBdc fetal heart. Overall, the magnitude of the contractile response was similar to

that observed for isoproterenol. Howeveii isoproterenol was a potent inotrope when

maximal inotropic response and drug sensitivity were compared (see Figs. 1-3 and Tables

2-4). In addition, the respaise to isoproterenol reached a new plateau within 60-90 sec,

while the response to forskolin required ~10 min to reach a new steady-state. The

difference in the rate of activation rnjy in part, be explained by the fact that isoproterenol

binds to surface receptors while forskolin has to diftuse across the cell membrane to

activate aderykte cydase. These results agree with previous observations on the relative

potencies of isoproterenol, isoprenaline^ and forskolin in human (3) and rat (10) hearts.

In hypcxic fetuses, the inotropic re^onse to forskolin was even more severely

attenuated than the inotropic response to isoproterenol (Fig. 8). In several hypoxic

fetuses, contractility decreased below baseline values (Fig. 8), suggesting that forskolin

may have been toxic, especially in the right ventricle. Alternatively forskolin activates all

aderylate cydases, while isoproterenol activates oily the subset of aderylate cydases that

are coupled to the P-adrenergic receptor and to the contractile response (3,10,27). Thus,

the contractile responses to isoproterenol and forskolin could, in theory, differ

considerably depending on the activity of A-kinase, and the phosphorylation states of
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membrane and myofilament effector proteins. In fact, in the isolated perfused rat heart,

England and Shahid, 1987 (10) showed that isoprenaline was a more potent inotrope

than forskolin on a molar basis, and that A-kinase activity, phosphorylase a content, and

the levels of phosphorylated troponin-I and C-protein were much higher after

stimulation with isoprenaline than with forskolin, even though forskolin-stimulated

cAMP levels were much higher than isoprenaline-stimulated cAMP levels. They

concluded that much of the cAMP produced by stimulation with forskolin was

unavailable to the A-kinases that are involved in the contractile response because of

compartmentation. It is not clear why these differences may be more apparent in hypoxic

fetuses than in normoxic fetuses. We speculate that A-kinase activity and or the

phosphorylation states of target effector proteins, and hence their physiological activity,

may be reduced following exposure to long-term high-altitude hypoxia.

P-adrenergic receptor density and agonist affinity

The third major finding in this study was that long-term high-altitude hypoxia did

not result in down-regulation of ovine fetal mpcardial P-adrenergic receptors. Instead,

there was a 55% increase in right ventricular P-adrenergic receptor density in lypoxic

fetuses, but no change in the left ventricle. In addition, there were no changes in the

affinity for [^^I]-iodocyanopindolol in either ventricle. In normoxic fetuses, the for

[^I] ICYP in our study was higher than that previously reported for late-term fetuses (7,

23), but lower than that reported for normoxic newborn lambs (2). In our study

normoxic fetal left and right ventricular P-receptor density were ~45% and ~55%,

respectively of that reported for the 2-3 wk old newborn, suggesting that there is an

age-related increase in P-receptor density during the early neaiatal period. Hypoxic fetal
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left and right ventricular P-ieceptor density were similar to that reported for chronically

hypcodc newborn lambs (2). Our results indicate that the attenuated inotropic response to

isoproterenol was not due to down-iegulation of left and right ventricular P-adienergic

receptors. It is possible that down-regulation did not occur because catecholamine levels

were chronically elevated in l^osdc fetuses (13). Alternatively in chronically lypordc

newborn lambs, Bernstein et al. 1990 (2) showed that P-ieceptor density decreased in the

left ventricle (exposed to hyporda alaie) but did not change in the right ventricle

(eqrosed to l^^oxia and pressure overload). They suggested that the up-regulating effects

of pressure overload hypertrophy on the right ventricle compensated for the

down-regulating effects of hypceda and chronically elevated catecholamine levels. In the

fetus, both left and right ventricles were exposed to the combined effects of hypoxia and

increased arterial pressure. Because the fetal right ventricle is more sensitive to afterload

(16,17,24,25), the elevated arterial pressure mjy have had more of an up-regulating

effect on P-receptor density in the right ventricle than in the left ventricle.

Cyclic AMP levels

The fourth major finding in our study was that both isoproterenol-stinrulated and

forskolin-stimulated cAMP levels were significantly higher in l^oodc fetuses, but basal

unstimulated cAMP levels did not differ from normoxic controls. However^ the inotropic

responses to isoproterenol and forskolin were significantly higher in normoxic fetuses.

Together, these results have several important implicatiais. First, these data show that

the attenuated inotropic responses to isoproterenol and forskolin were not the result of

decreased responsiveness at the level of aderylate cydase. Secondly the coupling between

surface P-receptors and aderylate cyclase was not altered by long-term l^ooda. These
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results strongly suggest that hypoxia acts downstream of second-messenger production in

the signal transduction cascade coupled to P-adrenergic receptors. Thus, A-kinase,

sarcolemmal L-type Ca^^ channels, the ryanodine receptor, phosfAiolamban,tropaiin-I,

and C-protein are aU possible sites for the effects of hypoxia. In addition, Ig^oxia could,

theoretically act at the level of the myofilaments changing the amount of contractile

protein, its calcium affinity AT Pase activity and the rate of cross-bridge qcling.

Previously we showed that in hypoxic fetuses the inotropic respoise to extracellular

calcium was markedly attenuated, but the density of sarcolemmal calcium channels did

not change^ and the density of ryanodine receptors increased (6). In addition, the l^codc

ventricles were more responsive to ryanodine. Thus, we speculated that hypoxia may

decrease the calcium current and/or the amount of calcium stored in and released by the

sarcoplasmic reticulum, thereby attenuating the inotropic respoise to both calcium and

isoproterenol. A reduction in the calcium ament might also help to explain the increased

production of cAMP in hypoxic fetuses. Yu et al., 1993 (34) showed that the increased

influx of calcium via L-type calcium channels in response to isoproterenol or forskolin

negatively regulated cAMP levels by feedback inhibition on aderykte cydase. When

extracellular calcium coucentration was lowered, or after treatment with calcium channel

blockers, the cAMP elevating effect of isoproterenol and forskolin was increased. Further

studies are needed to explore the calcium current, and its possible effects on aderylate

cyclase activity in fetal sheep exposed to long-term high-altitude hypcoda.

Forskolin-stimulated cAMP levels were significantly higher than

isoproterenol-stimulated cAMP levels in both normoxic and hypoxic fetuses. However,

the inotropic response to isoproterenol was greater^ particularly in hypoxic fetuses. These
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lesvilts aie consistent with the observations of England and Shahid, 1987 (10) discussed

above^ and suggest that cAMP mjy be canpartmentalized in the ovine fetal heart.

Furthermore our data suggest that although long-term lypceda increased aderylate

qd-ase activit); proportionately less of the forskolin-stimulated cAMP was available to

A-kinases coupled to the ccaitractile response in hypcodc fetuses than in normoxic fetuses.

This suggests that there are other cAMP dependent pathwsys whose activity m^ have

been up-regulated by exposure to long-term l^oxia.

Differential regulation of left and right ventricles

In normoxic fetuses, there was differential sensitivity to P-stimulation in the left and

right ventricles. The right ventricle was significantly more sensitive to isoproterenol, as

indicated by the lower EC50 values for ail three measures of contractility (Table 7), even

though P-receptor density was ~25% lower than in the left ventricle (Fig. 9 and Table 9).

At the same time, the right ventricle was less sensitive to forskolin, as indicated by the

higher EC50 values for all three measures of contractility (Table 8). Because

isoproterenol-stimulated and forskolin-stimulated cAMP levels, and the maximum

inotropic respaise to forskolin (Fig. 8) were not different between the left and right

ventricles, it is likely that the difference in sensitivity exists at the level of A-ldnase and/or

the effector proteins.

At a maximally stimulating dose of isoproterenol, -dT/dt^ was ~2.4 times higher in

the left ventricle, but T^^^ and I were not significantly different between the

two ventricles (Fig. 6 and Table 6). It is not dear why the maximum rate of relaxation

{-dTldt^ was higher in the left ventride. Physiologically, the rate of relaxation is

related to the phosphorylation states of troponin-I and C-protein, and phospholamban.
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It is possible, therefore, that A-kinase activity may be differentially regulated in the left

and right ventricles. Faster rates of relaxation decrease wall tension thereby reducing

metabolic demand. The higher rate of relaxation in the left ventricle may, therefore,

represent a physiological adaptation by which the term fetal heart is readied for the

transition from intrauterine to extrauterine life.

In typcodc fetuses, there were no differences in the inotiopic responsiveness or

sensitivity to isoproterenol between the left and right ventricles. However, the total

number of P-receptors was higher in the left ventricular free wall (~85 pmol vs. 73

pmol), even though the density (Fig. 9 and Table 9) was somewhat higher in the right

ventricle. In addition, both isoproterenol-stimulated and forskolin-stimulated cAMP

levels were significantly higher (P<0.01) in the hypoxic left ventricle (Fig. 10), indicating

differential regulation of adenylate cyclase.

Conclusion

There is marked attenuation of the positive inotropic responses to isoproterenol and

forskolin, and a significant increase in sensitivity to isoproterenol in fetal sheep exposed to

high-altitude during days 30-142 of gestation. The decrease in inotropic responsiveness

to P-stimulation is not due to down-regulation of myocardial P-adrenergic receptors, or

to decreased adenylate cyclase activity. Our results strongly suggest that hypoxia acts

down-stream of the second messenger, cAMP, possibly by decreasing A-kinase activity

and/or the functional states of key effector proteins, including the sarcolemmal L-type

calcium channel, the ryanodine receptor, troponin-I, C-protein, and phospholamban.

The changes in inotropy and cAMP levels are consistent with our previous report (6)
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which suggested that calcium influx and/or storage and release from the sarcoplasmic

reticuliun may be decreased. Alternatively, phosphodiesterase activity and phosphatase

activity may be altered by long-term hypoxia. These changes may represent

cardioprotective adaptations which limit metabolic demand by reducing contractility.

Further studies are needed to examine phosphodiesterase, A-ldnase and phosphatase

activities, the function of key effector proteins, and to directly assess the calcium current

and intraceUular calcium transient.
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CHAPTER FOUR

SUMMARY OF MAJOR FINDINGS

This project is part of an ongoing series of investigations focused on the mechanisms

by which the mammalian fetus adapts to long-term intrauterine hypoxia. It builds on the

work of many investigators, who, in the last 25 years, have described the mechanisms by

which cardiac performance is regulated in fetal sheep. Recent studies in our laboratory

explored the roles of preload, afterload, and heart rate in utero in the regulation of cardiac

output in chronically hypoxic fetal sheep. This project examines the role of contractility,

as a determinant of cardiac performance, and provides insight into the mechanisms by

which fetal myocardial contractility is regulated during long-term high-altitude hypoxia.

Specifically, it provides insight into two pathways that are central to the control and

regulation of excitation-contraction coupling: calcium sensitivity and handling, and

P-adrenergic receptor fimction.

The major findings are summarized below:

1. Long-term high-altitude hypojda decreased the inotropic responsiveness to

extracellular calcium, but did not change the number of sarcolemmal calcium

channels, suggesting that hypoxia may, instead, alter the functional state of the

calcium channel, thereby, decreasing the calcium current, , and reducing the

delivery of calcium to the myofilaments. Because calcium handling requires a

significant fraction of the cell's energy budget (~25%), reduced calcium availability

may represent an adaptation which lowers metabolic demand in the face of

chronically reduced arterial oxygen tension.
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2. The force-eactraceUiilar calcium relationship was shifted to the left, suggesting that

sensitivity to calcium was increased at one or more critical steps in the

excitation-contraction coupling cascade. If calcium delivery to the myofilaments is

decreased, as speculated, increased sensitivity to calcium may compensate for reduced

r^lriiitn availability, particularly at physiological semm calcium concentrations.

3. The sarcoplasmic reticulvim was the main source of activator calcium in late-term

fetal sheep. Exposure to chronic hypoxia increased the functional responsiveness to

ryanodine, indicating that the sarcoplasmic reticulum remained the chief source of

activator calcium. In addition, the number of ryanodine receptors, and the ryanodine

receptondihydropyridine receptor ratio increased significantly in both ventricles,

indicating that hypoxia did not delay the maturation of two components critical for

calcium-induced calcium release: sarcolemmal calcium charmels and ryanodine

receptors. Hypoxia, may, however, affect the functional state of these channels.

4. In both ventricles, sensitivity to isoproterenol increased significantly, but there was

marked attenuation of the positive inotropic responses to isoproterenol and forskolin.

5. The decreased inotropic responsiveness to P-stimulation was not due to

down-regulation of myocardial P-adrenergic receptors, or to decreased cAMP levels,

suggesting that adenylate cyclase activity was not decreased. However, a marked

reduction in phosphodiesterase activity could produce the same pattern of changes in

cAMP levels.
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6. In normoxic fetuses, P-adrenergic receptor density was significantly higher in the left

ventricle than in the right ventricle, indicating differential regulation of P-receptors.

7. Our results strongly suggest that hypoxia acts down-stream of cAMP in the signal

transduction cascade, possibly by decreasing A-kinase activity, or increasing

phosphatase activity.

Speculation

The changes observed in intracellular cAMP levels, and the inotropic responses to

calcium, ryanodine, isoproterenol, and forskolin may be explained by a scenario in which

long-term hypojda alters A-kinase, phosphodiesterase, and/or phosphatase activities, thus

reducing the phosphorylation states of several key proteins. These proposed changes may

affect the functional states of the sarcolemmal L-type calcium channel, the ryanodine

receptor, troponin-I, C-protein, and phospholamban. Theoretically, and calcium

release from the sarcoplasmic reticulum would be reduced, thereby decreasing the delivery

of calcium to the myofilaments, and, therefore, reducing the amplitude of contractions.

At the same time, myofilament sensitivity for calcium would, theoretically, increase, a

consequence of decreased phosphorylation of troponin-I, thereby shifting the force-Ca^"^

relationship to the left, and slowing the rate of dissociation of calcium from troponin-C.

This, together with the reduced phosphorylation state of phospholamban, would slow

the rate of relaxation. In addition, the reduced phosphorylation state of phospholamban

and the reduction in calcium influx may result in decreased SR calcium loading,

thereby decreasing the amount of calcium available for release from the sarcoplasmic
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reticulum. Adenylate q^dase activity, which is negatively modulated by the caldum

current, would, in theory, increase, resulting in higher intracellular cAMP levels. These

changes may represent cardioprotective adaptations which limit metabolic demand by

redudng contractility. Further studies are needed to test these hypotheses.
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