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About the Teaching and Learning of Differentiability for Piecewise Functions in Science
Degrees’ First-Year Calculus Courses
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ABSTRACT: In this work, we present an issue we have observed over the last several years in the first year of
Spanish science degrees’ (such as mathematics, physics or engineering) calculus courses. It is related to the study
of differentiability of piecewise one real variable real functions at a point. We have analyzed how students study
the differentiability of piecewise functions at a point, explaining the students’ work and reasoning and commenting
about the common misunderstandings we have found. Then, we have researched about how to help the students
in their learning process related to this calculus concept, and we have also used several activities or ways to work:
student meeting groups to talk about their worries and misunderstandings, mathematical definitions, explanations
and theory and also working out specific examples.
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1 Introduction
Nowadays, the concept of differentiability is something that the Spanish students usually learn in the last grades of
high school and go deeper into it in the first year of different science degrees (for example, mathematics, physics or
engineering degrees). The importance of learning this concept well and also using it appropriately in many fields
of science is paramount. That’s why it is included in the obligatory high school syllabi and also in many calculus
or general mathematic courses of different college degrees.

Differentiability could be considered one of the concepts, among others, that is generally studied or applied to
simpler or more basic functions in high school. But then, when students arrive to university and have to use and
apply it to a general type of more peculiar or complex functions, where any kind of function could be considered,
the confusion arises. This is because in Spanish high schools precise definitions, theorems and mathematical
reasonings are not worked on in depth nor precisely1. Those are the things that give us the strength and knowledge
to face the difficulties and solve the problems based on pure mathematics.

After several years of experience teaching in the first year of mathematics, physics and engineering degrees,
we have realized that there are some affirmations or results that are used in high school that are not really true
in general. That is, there are some affirmations that might not be true for every element of a set; for example,
functions, matrixes or numbers. So, when we teach in first-year courses, we know that we have to open our minds,
be patient and do a lot of work clarifying and helping students unlearn in order to better establish the main concepts
of the topics that they have already learnt a bit in high school.

We think that the main reason for using these affirmations that only work for some specific elements of a set
in high school is to simplify the mathematics and the work required. And it could be, to have more time to teach
other topics that are in the syllabus of the corresponding course.

On the other hand, there is another matter that causes difficulties to freshman year students on their way to
understanding and work out the exercises or problems we deal with in the first year of calculus courses in college.
As we already anticipated a bit a few paragraphs before, the way mathematics is taught in general in Spanish high
schools is usually not in a very deep way nor very precise mathematically. In different meetings we have had with
these students and also based on what we have observed in their calculus’ reasonings and work, we have concluded
the following. In Spanish high schools, it is very common to not teach or work with the exact definitions of different
concepts (for example, the derivative of a function), mathematical language, notation or reasoning and not even
a bit of theory behind the concepts they study in each chapter of the corresponding syllabus. When the students
arrive to university and receive a calculus course where the concepts are defined more precisely and corresponding
theoretical results are taught, some of them with their proofs, they receive a big shock. The change of approach to
teaching and working out mathematical concepts (from a more mechanical way, in the high school, to a bit more
theoretical or profound way, in the university) is not easy for them. In the university, the students find difficulties
to reason and write more detailed explanations for the steps they are working out in the problems using the theory
taught in the calculus course. This problem is usually very common in different countries and several research
articles that deal with it can be found in the literature, see for example [Bre], [BGMLT] or [GL].

There are mainly two things that we want to analyze and show in this research work. First, the misunder-
standing we have found in the students’ reasoning when studying the differentiability for piecewise one variable
functions. Secondly, the way we have worked to understand and improve this misunderstanding in collaboration
with the students.

As far as we know, there has not been any similar research that has been done in the recent last years. But we
can find some interesting research related to calculus courses in the university and also the teaching and learning
of the concepts of derivative and differentiability. For example, in [DCVM] we can find some didactic strategies
to guide the teaching and learning process of the derivative concept for real functions of one real variable. On
the other hand, in [Jut1] and [Jut2] we can see some research about how the students understand continuity and
differentiability in calculus courses and also the students’ choices of representations and their strategies to justify
their reasonings. More precisely, in [BGMLT], [FT], [Ort] and [Tal2] we can find different research, opinions and
thoughts related to the difficulties in teaching and learning the concepts related to differentiability, such as limits,
notations and the concept and meaning of the derivative.

To achieve our purposes, we have divided our article as follows. First, in Section 2, we will remember the
definitions of continuity, differentiability and C 1 class of functions and remark about them. In Section 3, we will
present the piecewise functions where we want to study differentiability and explain how many students do this
kind of exercises. Later, in the same section, we will explain the main error or misunderstanding we find in the

1This situation seems to be common in other countries too, and many researchers have a similar opinion, see for example [BGMLT], [Mor],
[SS] or [Tal1].
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students’ reasoning and also give some theoretical foundations to understand better the mathematics behind this
issue. We will finish this section by working out a piecewise function’s continuity, differentiability and C 1 class
property analysis completely and in detail.

Section 4 has been dedicated to explaining our experience finding the best manner in which to help the students
in their learning process. We have explained the procedure we have followed and also the results we have seen.
Finally, in Section 5, we have summarized the observations and conclusions we have reached after this useful and
enriching research. We have also proposed five exercises where the students can practice the study of continuity,
differentiability and C 1 class of functions (by themselves or with the help of their teachers or professors).

2 Definitions of continuity, differentiability and C 1 class of functions

In this section, we will remember the definitions of continuity, differentiability and C 1 class of functions.

Definition 2.1 (Continuity at a point). Let f : DĂ RÝÑ R be a function which domain is D and let x “ a be a
point in D. f is said to be continuous at x“ a if lim

xÑa
f pxq exists and

lim
xÑa

f pxq “ f paq.

We will also remember the discontinuity types.

Definition 2.2 (Discontinuity types).

1. If the function has equal finite lateral limits at a point x“ a but f paq doesn’t exist or is not equal to the lateral
limits, then, the discontinuity is called removable discontinuity.

2. If the lateral limits at a point x “ a are finite but not equal, one of the lateral limits is finite and the other is
infinite or both lateral limits are infinite, then, the discontinuity is called of the first kind.

3. If at least one of the lateral limits doesn’t exist at a point x“ a, then, the discontinuity is called of the second
kind or essential.

Remark 2.3. Here, we remember that if a limit is equal to infinity, it is considered that it doesn’t exist.

Definition 2.4 (Differentiability at a point). Let f : DĂ RÝÑ R be a function which domain is D and let x “ a
be a point in D. f is said to be differentiable in x“ a if the following limit exists,

lim
hÑ0

f pa`hq´ f paq
h

.

In that case, we will define the derivative of f at the point x“ a and denote it by f 1paq as that limit.

Remark 2.5. The limit of the above definition could be replaced by this one,

lim
xÑa

f pxq´ f paq
x´a

.

The quotient in this limit is also called Newton’s quotient.

There is another definition we will need in order to explain and develop our ideas in this article, and one that
Spanish high-school students usually don’t learn in their mathematics courses. The C 1 class of functions set we
will define now is usually included in the first or second year college calculus courses’ syllabus.

Definition 2.6 (C 1 class at a point). Let f : DĂ RÝÑ R be a function which domain is D and let x “ a be a
point in D. f is said to be of differentiability class C 1 at x“ a if it is differentiable in x“ a and if its derivative is
continuous at the same point.
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3 How some students analyze the differentiability of piecewise functions
The first time Spanish high-school students learn about differentiability is in 11th grade (in Spain we call it primero
de bachiller)2. As far as we know, in high school, students learn that they have to use the definition to study the
differentiability of a function at a point, above all if it’s an uncertain point. The problem or issue we want to
analyze here is when the students want to study the differentiability of a piecewise function at a changing point.
That is, imaging that we have the following piecewise function, for example,

f pxq “

#

f1pxq, x P D,

f2pxq, x R D,

where D is a subset of R. We will suppose that f is continuous in BD (the boundary of D), f1 is differentiable
in 8D (the open set of D) and f2 is differentiable in 8Dc (the open set of the complement of D).

When the students arrive to the first year of science degrees and want to analyze the differentiability of only
one function at a point, they use the definition of differentiability. But, when they want to analyze these kind of
piecewise functions, many students show in their work that instead of using the differentiability definition, they
use the continuity of the derivative of the function f . That is, they calculate the derivative of f in this way,

f 1pxq “

#

f 11pxq, x P 8D,

f 12pxq, x P 8Dc.

And then, if a P BD, they study the continuity of f 1 at x“ a following these arguments:

1) If lim
xÑa`

f 11pxq and lim
xÑa´

f 12pxq exist and are equal, then, f is differentiable at x“ a and f 1paq “ lim
xÑa`

f 11pxq “

lim
xÑa´

f 12pxq.

2) If lim
xÑa`

f 11pxq or lim
xÑa´

f 12pxq don’t exist or both exist but are not equal, then, f is not differentiable at x“ a.

So, this is the argument that is behind the students’ above reasoning, respectively:

1) If f 1 is continuous at x“ a, then, f will be differentiable at x“ a.

2) If f 1 is not continuous at x“ a, then, f will not be differentiable at x“ a.

Reviewing the theory of continuity, differentiability and C 1 class of functions and formulating some theorems
in the next section, we will see that the above first argument is correct but not the second one.

3.1 What is the error in the students’ work?

We will start remembering the main theory and results3 that relate continuity to differentiability.

Theorem 3.1. If f : DĂ RÝÑ R is differentiable at a point a P D, then, f is continuous at a as well.

After seeing this theorem, we will know that all differentiable functions at a point will be continuous at the
same point. Moreover, we can also conclude the contrapositive of what the theorem assures, if a function is not
continuous at a point, then, it will not be differentiable at the same point.

On the other hand, looking at the definitions we gave before, in Section 2, we can recognize that what the
students want to study by doing their procedure is if a function is of C 1 class. Although they are not really
conscious of this, because in most of the science degrees’ first-year calculus courses, the students don’t even know
what C 1 functions are or their relation to differentiability.

So, looking at the definitions of continuity, differentiability and C 1 class functions at a point, we observe that
this relation holds,

C 1 Ĺ tdifferentiable functionsu Ĺ tcontinuous functionsu. (3.1)

2We have to mention that, sometimes, we have found students that didn’t learn it in high school or hardly worked with the definition. This
will cause more disadvantages and difficulties in the learning process of a course like Calculus in College.

3In order to not extend too long or get too technical, as that is not the purpose of this work, we will skip the proofs of the results we see
here. However, if the reader is interested in them, the proofs and technical details can be found in [Abb], [Bur] and [Spi], for example.
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Therefore, when students do what we explained before, as they are analyzing if a function is of C 1 class at a
point, due to relation (3.1), if the result is positive, they are not making any error. Because if a function is C 1 at a
point, it will also be differentiable at the same point. But the problem comes when they study if a function is C 1 at
a point and the result is negative. What happens if a function is not C 1 at a point, will it be differentiable or not?
That is the key or the main mathematical and learning problem we want to show in this article. We think that when
we ask or explain the students this question, we are forcing them to an area of blind spot in their knowledge. As
they previously haven’t needed or haven’t studied the basic analysis theory of this topic, they feel like they don’t
have foundations to base their arguments on. So, this could be a point where a reeducation could start to happen
little by little.

Next, we will see two interesting and significant results in order to understand better what we are dealing with
in this article (they could be found in [Bur]). In Proposition 3.2, we will see what mathematical result we can
obtain with the students’ procedure. On the other hand, in Proposition 3.3, we will see what the characteristic of
the functions that are differentiable at a point but are not of C 1 class at that point is, that is, their derivative is not
continuous at that point. These are the kind of functions that cause the students’ procedure to fail or escape their
understanding in that area of blind spot we have mentioned before.

Proposition 3.2. Let f : I Ă RÝÑ R be a function where I “ ra,a`δ q or I “ pa´δ ,as, δ ą 0 and a P R. If f is
continuous in the interval I, f is differentiable in I´tau and lim

xÑa`
f 1pxq or lim

xÑa´
f 1pxq exist, then, f is differentiable

from the right or from the left and that derivative is f 1pa`q “ lim
xÑa`

f 1pxq or f 1pa´q “ lim
xÑa`

f 1pxq.

Proposition 3.3. Let f : I ĂRÝÑR be a function. If f is differentiable in I, then, the only possible discontinuities
of f 1 have to be essential discontinuities.

As we can see in (3.1), there are functions that are differentiable but are not in C 1 class, that is, their derivative
is not continuous. We can find several functions of this type, for example, we will analyze the next one completely
working it out step by step.
Example 1.

f pxq “

#

x3 ¨ cos
´

1
x2

¯

, x‰ 0,

0, x“ 0.

We will study the continuity in R of the above f function, then, the differentiability in R and, lastly, C 1 class
in R. First, we observe that the domain of f is R.

a) Continuity in R.

f is a piecewise function. In Rzt0u, x ÞÑ cosp1{x2q is a composition of continuous functions and x ÞÑ
x3 cosp1{x2q is a product of two continuous functions. So, f will be continuous in Rzt0u.
We will now analyze what happens when x “ 0. For that purpose, we will calculate the limit when x tends
to 0.

lim
xÑ0

x3 ¨ cos
ˆ

1
x2

˙

“ 0 ¨ pboundedq “ 0.

Thus, as f p0q “ 0 and lim
xÑ0

f pxq “ 0, lim
xÑ0

f pxq “ f p0q and f is continuous at x“ 0. Therefore, f is continuous

in all R.

b) Differentiability in R.

In Rzt0u, x ÞÑ cosp1{x2q is a composition of two differentiable functions and x ÞÑ x3 cosp1{x2q is a multipli-
cation of two differentiable functions. So, f will be differentiable when x‰ 0.

We will now analyze what happens when x “ 0. For that purpose, we will use Definition 2.4 and calculate
the following limit,

lim
hÑ0

f p0`hq´ f p0q
h

“ lim
hÑ0

h3 cos
´

1
h2

¯

´0

h
“ lim

hÑ0
h2 cos

ˆ

1
h2

˙

“0 ¨ pboundedq “ 0.

Therefore, f is differentiable at x“ 0 and its derivative is f 1p0q “ 0.
We can now conclude that f is differentiable in R.
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c) C 1 in R.

First, remember by Definition 2.6, that, as we have already proved that f is differentiable in R, if we want
to know if f is of C 1 class, we will have to study the continuity of f 1.

Using the derivative rules and the information we obtained in the previous part, we obtain that

f 1pxq “

#

3x2 ¨ cos
´

1
x2

¯

`2sin
´

1
x2

¯

, x‰ 0,

0, x“ 0.

We can observe that, when x‰ 0, f 1 is continuous because it is built by composition of continuous functions
and the sum and multiplication of continuous functions. Hence, f 1 is continuous when x‰ 0.
Now, we will study what happens at x“ 0. Let we calculate the limit of f 1 at x“ 0,

lim
xÑ0

3x2 ¨ cos
ˆ

1
x2

˙

`2sin
ˆ

1
x2

˙

“ 0 ¨ pboundedq`E.

Therefore, the above limit doesn’t exist and f 1 is not continuous at x“ 0. Thus, f is not of C 1 class at x“ 0.

With this example, we have confirmed that we can’t write an equal in the following relation

C 1 Ĺ tdifferentiable functionsu,

and that C 1 is a proper subset of differentiable functions.
If we had followed the students incorrect procedure, as f 1 is not continuous at x“ 0, we would have concluded

that f is not differentiable at x“ 0, and we would be wrong.
We can also see how our f function’s graphic is in the r´0.5,0.5s interval, for example.

���� ��

-0.4 -0.2 0.2 0.4
x

-0.05

0.05

y

And this is f 1 function’s graphic in the same interval.

���� ��

-0.4 -0.2 0.2 0.4
x

-2

-1

1

2

y
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In the latter graphic, we can intuit that there is an essential discontinuity for f 1 at the point x “ 0. We have
proved that analytically before, but, as we mentioned in Proposition 3.3, we already knew that if a function is
differentiable at a point (in this case at x“ 0) and if f 1 is not continuous at that point, then, the discontinuity must
be essential. And that’s what we can observe in the above graphic of f 1.

4 Our experience finding the way to help the students in their learning
process

In this school year (2020-2021), as a way to involve the students themselves in their educational process, we have
organized different meetings with them in order to talk about their learning process and what the difficulties they
find in the calculus course are. In some of these meetings we have talked about the concept of differentiability.
The ideas, worries and results the students have expressed have been included in Sections 1 and 3 of this article
and also in the next paragraphs.

In our university, the freshman year calculus course is a complete year course, from September to May, and we
usually do a midterm exam in January. Below, in Figure 1, we have collected the results from an exercise related
to studying differentiability of piecewise functions that we have tested students on in this midterm exam during the
last three school years (2018-2019, 2019-2020 and 2020-2021). We have considered four result options to evaluate
and compare the students’ work we are interested in: to do the corresponding exercise correctly, to do it wrong, to
not answer that exercise or to not do the complete exam (the exam consist of several exercises, each one related to
each chapter of the course).

2018-2019 2019-2020 2020-2021

0

20

40

60

St
ud

en
ts

correct wrong doesn’t answer doesn’t do the exam

Figure 1: Results of the midterm exam.

In the 2018-2019 school year, we hardly had time to talk with the students calmly and thoroughly about the
study of differentiability of piecewise functions nor about the difficulty they usually have with it. So, when the
midterm exam arrived, we can see in the results of Figure 1 that many students did the corresponding exercise
wrong or didn’t even answer it. During the 2019-2020 school year we realized about the students’ problem and
tried to explain it better in the exercise classes, highlighting the mistake the students usually make in this type of
exercises. In the above bar chart we can appreciate the students’ improvement in their results. This school year
(2020-2021) we caught the problem early and tried to talk with the students more about it, making them aware of
it (the clear improvements in the results can be seen in Figure 1). Apart from explaining the concept better, we also
did these two activities:
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(i) Before explaining differentiability very deeply in class and without mentioning anything about the main
problem they usually have, in November, we sent them Example 1 as an exercise for homework. We asked
them to do that exercise with the ideas they had from high school. We can observe the results in the next
bar chart, Figure 2, and see that many students made their common error or another type of mistake when
working out the exercise4.

The bad results obtained in November’s column of Figure 2 are also the reflection and consequence of
the mathematical difficulties and misunderstandings that the students bring to the university, those that we
mentioned in Section 1.

(ii) We started having meetings5 every fifteen days in order to talk about their learning process and their main
difficulties in the first months of the calculus course. We have talked about many interesting things related to
their education, and we continue doing it. We think that giving the students this possibility to express their
ideas and feelings, has made them more conscious, more aware of what they do when working out a math
problem, more confident with the professors and also among themselves.

We can see clearly in the next bar chart, Figure 2, the difference between the results when doing activity
(i) in November’s columns and the results obtained after working as in (ii) in January’s columns. A significant
improvement has being obtained, and we think that the students feel more confident and sure about their learning
process now.

November January

0

20

40

60

St
ud

en
ts

correct wrong doesn’t answer doesn’t do the exam

Figure 2: Results of 2020-2021 school year: November’s homework and January’s midterm exam.

5 Observations, conclusions and suggested work for students
Apart from taking the problem with time and bringing the students’ attention to their typical error, we have learnt
several things, above all with the activity (ii) we explained in Section 4. Our experience this school year has taught
us that creating groups to talk with the students about their difficulties in learning this concept and in general in
the calculus course has been a tremendous help for everyone. We have observed that asking the students what they
think and making them responsible for their learning process is a good way to learn this kind of concepts. Because

4As this test or homework was only one exercise about differentiability of piecewise functions, the students that didn’t do the exercise were
the same as the students that didn’t do the exam.

5The original idea for this kind of meetings could come, among others, from Celestine Freinet, [Fre1] and [Fre2], who was a French
pedagogue and teacher. In his work these meetings were called as assemblies.
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we give them the possibility to express the feelings and thoughts they have when they face these learning difficulties
or misunderstandings. This makes them more connected to everything, such as their education, themselves, their
classmates and professors. We can say also that we have seen and felt the students better and more comfortable
and involved in their education. Moreover, this big improvement has been also reflected in their academic results.

We think that a good way to introduce the students to the understanding of a further study of piecewise func-
tions’ differentiability is to explain it like in Example 1. First, working out the problem as they usually do with the
knowledge they bring from high school and analyzing the mistake they make. And then, doing it correctly with
the differentiability definition.

We also include some exercises below, with the help of [Ban], in order for the students to practice by themselves
and consolidate the learning of this issue. There, the students can practice the study of continuity, differentiability
and C 1 class of functions. Below the statement of each exercise, its solution can be found.

Exercise 1. Given the following function, study its continuity, differentiability and C 1 class in R.

f pxq “

#

x2 ¨ sin
` 1

x

˘

, x‰ 0,
0, x“ 0.

(Solution: f is continuous and differentiable in R, but it is not of C 1 class at x“ 0.)

Exercise 2. Given the following function, study its continuity, differentiability and C 1 class in R (qą 0 and pą 1).

f pxq “

#

xp ¨ sin
` 1

xq

˘

, x‰ 0,
0, x“ 0.

(Solution: If 0ă qă p´1, f is continuous, differentiable and of C 1 class in R. If 0ă p´1ď q, f is continuous
and differentiable in R, but it is not of C 1 class at x“ 0.)

Exercise 3. Given the following function, study its continuity, differentiability and C 1 class in R.

f pxq “

#

x2 ¨ p1´ xq2 sin
´

1
πxp1´xq

¯

, x P p0,1q,

0, else.

(Solution: f is continuous and differentiable in R, but it is not of C 1 class at x“ 0 and at x“ 1.)

Exercise 4. Given the following function, study its continuity, differentiability and C 1 class in R.

f pxq “

#

sinx ¨ sin
` 1

sinx

˘

, x‰ 0,
0, x“ 0.

(Solution: f is continuous in R but not differentiable at x“ 0. Therefore, by (3.1), f is not of C 1 class at x“ 0.)

Exercise 5. Given the following function, study its continuity, differentiability and C 1 class in R.

f pxq “

#

x ¨
“

1` 1
3 sinplogx2q

‰

, x‰ 0,
0, x“ 0.

(Solution: f is continuous in R but not differentiable at x“ 0. Therefore, by (3.1), f is not of C 1 class at x“ 0.)
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