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ABSTRACT 

In the current dissertation work, the preferential concentration and deposition of heavy solid particles in a 

downward, fully developed turbulent square duct flow are studied using large eddy simulations.  A second-order 

accurate, finite-volume based fractional step scheme, based on an unstructured Cartesian mesh, is used to integrate 

the unsteady, incompressible, three-dimensional Navier-Stokes equations.  An algebraic multigrid solver is used to 

solve the Poisson equation resulting from the fractional step method.  The subgrid stresses are modeled with a 

dynamic subgrid kinetic energy model.  The particle equation of motion includes drag, lift and gravity forces and is 

integrated using the fourth-order accurate Runge-Kutta method.  The Reynolds number for the square duct is 360, 

based on average friction velocity and duct width.  The grid used is 80×80×128 in the two wall-normal and 

streamwise directions, respectively. 

The preferential concentration of particles is studied assuming that the particles do not modify the 

turbulence and that particle-particle collisions are insignificant.  The continuous and the dispersed phases are treated 

using Eulerian and Lagrangian approaches, respectively.  Four cross-sectional locations representative of the time -

mean secondary flow patterns and six particle response times were chosen to study the effect of location and particle 

inertia on preferential concentration.  Variation of vorticity magnitude, swirling strength, strain-rate, and ∇u:∇u, 

and their probability distribution functions(PDF), with particle response time and location is shown to demonstrate 

preferential concentration.  Particles are seen to accumulate in regions of high ∇u:∇u and strain-rate and in regions 

of low swirling strength.  In general, particles accumulate in regions of low vorticity magnitude.  However, near the 

wall, large particles accumulate in regions of high vorticity magnitude.  In addition, instantaneous contours of the 

above statistics and scatter plots of particle positions in a near-wall plane are presented to illustrate preferential 

concentration.  

Deposition of particles in a square duct is the focus of the second set of simulations.  Ten particle response 

times are studied.  Simulations are carried out using one-way coupling as well as select cases using two- and four-

way coupling.  A particle -particle collision algorithm has been developed.  PDFs of deposition location, average 

streamwise and wall-normal deposition velocities, and deposition rates are presented.   
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Chapter 1. Introduction 

Computational fluid dynamics (CFD) has evolved as a widely used approach for the design of engineering 

equipment involving fluid flow, heat transfer, combustion and particle dynamics.  Computational fluid dynamics 

involves the numerical solution of the partial-differential equations governing fluid flow, known as the Navier-

Stokes equations.  When the flow becomes turbulent, length scales of a wide range develop in the flow.  It is this 

range of scales that presents one of the biggest problems in CFD.  In order to solve the equations in a domain which 

contains both large and small scales, the computational grid must be fine enough to resolve the smallest scales.  It is 

easy to see that the computational grid can become extremely large, thus requiring an enormous amount of 

computing time.  To deal with this problem, several methods of solving the governing equations have been 

developed over the years, with each method having its own level of accuracy and level of detail provided by the 

solution.  The most accurate and detailed solutions come from Direct Numerical Simulation (DNS).  In DNS, all 

scales of motion are resolved and the equations are solved without empiricism.  This is considered an "exact" 

method, since the only errors are from the numerical method itself.  However, DNS requires vast amounts of 

computing time and resources which makes it impractical for all but the simplest flows.   

The most widely used approach is known as Reynolds averaging, or Reynolds Averaged Navier-Stokes 

(RANS) methods, where the flow variables are decomposed into mean and fluctuating components and additional 

equations are developed for the kinetic energy and dissipation.  This approach is heavily empirical since numerous 

constants appear in the modeled equations that must be tuned for every flow.  A large amount of research in the past 

three decades concerning modeling of the Reynolds-stresses through algebraic and differential models has revealed 

the difficulty (and impossibility) of developing universally accurate models that can represent a wide spectrum of 

flows.  The popular k-ε (Launder and Spalding 1972; Bardina, Huang, and Coakley 1997; Menter 1994; Thangam 

and Speziale 1992), Reynolds-stress models (Launder, Reece, and Rodi 1975), and nonlinear k-ε models (Speziale 

1987) have had limited success in predicting important quantities such as heat transfer, combustion, and particle 

transport.  The principal difficulty has been the representation of the large-scales of turbulence in a universal way 

across many engineering flows (Moin 1998).  Thus, predictions from Reynolds-averaged models have only limited 

accuracy and can best be used for scoping new designs in a comparative sense without complete reliance on the 

quantitative accuracy of their performance.  The advantage of such simulations, however, is that the required 

computational resources are very small, and considering current advances in computing hardware, very inexpensive. 

All current commercial CFD codes (such as FLUENT, CFX, STAR-CD, etc) rely on variations of this method.  

Often, the engineer does not have the knowledge, time or training to determine the proper choice of models and 

constants which appear in the vast array of RANS techniques. This leads to an inaccurate calculation which may be 

significantly far from the true solution.   

In recent years, great strides have been made in computing hardware, architecture and software.  While 

single processor speeds have significantly increased since the early days of turbulence modeling, new paradigms of 

computing based on parallel processing have matured.  These combined with advances in parallel numerical 

algorithms that are robust and scalable provide enormous opportunities for large scale scientific computing.  In the 

last decade, therefore, a new simulation approach for turbulent flows has evolved.  The technique, called Large Eddy 
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Simulation (LES), is based on the premise of simulating the dynamics of the large-scale energy containing 

turbulence structures and modeling the small scales of turbulence (Lesieur and Metais 1996).  Such small scales 

may be assumed to be isotropic, and universal across a variety of turbulent flows.  Unlike DNS, LES is not restricted 

to simplistic flows.  LES would therefore seem to be the best choice for studying complex turbulent flows since it 

requires less empiricism than RANS methods, yet can still reproduce the large-scale transient structures which 

dominate many engineering processes like mixing and particle transport.   

A deeper understanding of particle transport can lead to more cost-effective paint coatings, better treatment 

of the inhalation of biological spores in lung branches, and improved designs of industrial clean rooms.  Therefore it 

is important to have a sound understanding of this phenomenon.  Computational fluid dynamics has become an 

important tool for studying particle dispersion in turbulent flows due to the ease with which quantities may be 

measured which often prove difficult, if not impossible, to measure experimentally.  Attempts to predict particle-

laden turbulent flows have resulted in computational techniques which can typically be classified as either Eulerian 

or Lagrangian.  Eulerian methods envision the dispersed phase as a cloud and equations governing its momentum 

and continuity are derived and solved much like the carrier phase.  In the Lagrangian method, individual particle 

trajectories are computed by solving the particle equation of motion.  A recent review of computational methods for 

particle-laden flows is given by Loth (2000). 

In geometries such as channels and pipes, multiple homogeneous directions exist which provide a large 

sample size when averaging statistics.  However, in more complex geometries such as a square duct, only one 

homogeneous direction exists.  This facilitates the need for long averaging times which increases the need for 

efficient solvers.  In a square duct, secondary flows are known to exist which are directed towards the corners along 

the corner bisectors, and towards the center along the wall bisectors.  Momentum and scalar quantities are convected 

along these flows towards the corners and back along the bounding walls.  As a result, the contours of streamwise 

velocity are distorted such that they distort as shown in Fig. 1.1.  These secondary flows, also known as Prandtl’s 

second kind, are caused by gradients in the Reynolds stresses.  The time mean secondary flows, shown in Fig. 1.2, 

are symmetric about an nπ/2 rotation, where n is any integer.  The instantaneous secondary flows, show in Fig. 1.3, 

are stronger and more complex.  The square duct also has many practical engineering applications such as heat 

exchangers, ventilation, and turbomachinery (inlets and nozzles).  The square duct is also of fundamental interest 

since it is more complex than channel or pipe flow.  Improved turbulence models could be developed from a deeper 

understanding of the complex three-dimensionality of the square duct problem.  Particle transport in a square duct 

represents many important engineering applications.  Direct applications would include dust transport in ventilation 

systems and droplet transport in evaporators.  Understanding how these particles, or droplets, are transported and 

deposited could lead to improved designs of heat exchanger equipment and better treatment of the inhalation of such 

toxins as anthrax.  Typically, particle transport is studied in isotropic turbulence or in channel/pipe flow.  However, 

it is of more direct engineering interest to understand particle transport in a square duct for the above reasons.   

1.1 Problem Description 
In this research work, both experimental and computational results are reported.  The experimental portion 

of this thesis deals with Phase-Doppler Interferometry measurements of dispersed two-phase flow in the header of 
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an evaporator.  The header geometry is a square duct, and represents an application where dispersed two-phase flow 

is of importance.  The characterization of the refrigerant (R134a) spray provides the first set of data on R134a 

droplets formed from a pressure swirl atomizer.  These data will provide HVAC researchers information on such 

topics as evaporation.  The computational focus of this thesis involves particle transport in the fully-developed 

turbulent incompressible flow through a straight duct of square cross-section which was simulated using the Large 

Eddy Simulation (LES) technique.  Preferential concentration of particles and particle deposition were examined 

through the Lagrangian particle tracking method.  Previous particle-laden internal flows have focused on relatively 

simple geometries such as channels and pipes.  Secondary flows are formed in a square duct which may drastically 

influence the particle dispersion.  This work will examine the effect of secondary flows on particle transport.  To the 

author’s knowledge, no previous work on particle-laden square duct flow has been reported. 

1.2 Outline of the Thesis 
The following seven chapters describe the various aspects of this dissertation.  Given the tragic 

circumstances surrounding the shift in research directions during this dissertation, the experimental data collected in 

the early stages of the research is being presented as a motivation for the computational studies by demonstrating an 

application where dispersed two-phase flow improves heat exchanger performance.  This experimental phase-

Doppler study on refrigerant flow is presented in Chapter 2 as a self-contained study.  A literature review of the 

previous work in LES modeling, experimental and computational studies of wall bounded flows, and gas-particle 

flows, is presented in Chapter 3.  The governing equations for LES and particle transport are given in Chapter 4, 

along with the numerical methods used to solve them.  Chapter 5 presents the results of the preferential 

concentration simulations.  Chapter 6 presents the results of the particle deposition simulations.  A summary of this 

dissertation and recommendations for future work are given in Chapter 7.   
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Chapter 2. Motivation 

In this chapter, an experimental study of dispersed two-phase refrigerant flow is presented.  Droplet sizes, 

velocities, and their spatial distributions are reported.  Also, a novel method for improving flow distribution in 

evaporators is reported.  Since the focus of this thesis is computational, this chapter is arranged such that it is self-

contained; all other portions of this thesis may be ignored by the reader interested in only the experimental aspect of 

this work.  This section also serves as a motivation for the computations in future chapters, as this section 

demonstrates an application of dispersed two-phase flow in a square duct. 

2.1 Background 
The heating, ventilation, and air conditioning (HVAC) community has been plagued with the problem of 

maldistribution of two-phase refrigerant flow in headers of evaporators.  The problem is complex as it involves such 

factors as orientation of the header, header shape, mass flow rate, quality, refrigerant properties, etc.  Previous 

attempts to correct the problem have relied either on simplified models, placement of baffles, flow constrictions or 

other geometry-specific remedies   (Cabuk and Modi 1989; Kim, Choi, and Cho 1995; Chisolm and Wanniarachchi 

1992; Wang and Peizhen 1989).  However, given the wide range of operating conditions for HVAC systems, 

particularly in automotive applications, these methods generally fail to produce uniform distribution for the entire 

range of operating conditions.  Unequal distribution of the two-phase flow can lead to significant losses in the 

efficiency of heat exchangers. 

Early modeling of flow distribution was performed by Bajura (1971) and Bajura and Jones (1976).  They 

used simple integral momentum approaches to construct general models for flow distribution in manifolds.  An one-

dimensional finite difference model was developed by Datta and Majumdar (1982) for predicting two-phase flow 

distribution in parallel, reverse and mixed flow manifolds.  A two-dimensional model was developed by de Moura 

(1990) based on the two-fluid concept.  Only qualitative agreement with experimental measurements of flow 

distribution was achieved in the above studies.  Jones and Galliera (1998) used standard and RNG k-e models in 

Fluent to benchmark their integral model for flow distribution.  They achieved good agreement between the two 

approaches and note that the integral model approach has a tremendous advantage in terms of computational speed. 

The pipeflow downstream of a generic header was examined with Laser Doppler Velocimetry by Yeh and 

Mattingly (1995).  As in most studies involving header flow, they considered water as the working fluid instead of 

refrigerant.  Their velocity data indicate that the header initially produces a highly swirled flow that varies with 

Reynolds number and roughness conditions.  It should be noted that their results are only valid for one header shape.  

In an attempt to find an optimum header shape, Samson, Stark, and Grote (1988) developed a fan-header concept to 

evenly distribute an air/water mixture to within 16% of the ideal distribution. 

A study on air/water distribution in an adiabatic plate heat exchanger was performed by Rong, Kawaji, and 

Burgers (1995).  They found that the flow distribution was greatly affected by the inlet quality and mass flow rate.  

Vertical upward flow was found to be more uniformly distributed compared to vertical downward flow.  Custom 

blockages were designed and installed which were shown to improve distribution. 

The approach taken in this work is to use a pressure swirl atomizer to create a mist flow inside the header in 

which the droplets will follow the large-scale vapor motion, thereby uniformly feeding each branch in the header.  
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Refrigerant will be used rather than air/water since the density ratios of air/water and refrigerant vapor/liquid differ 

by an order of magnitude.  Also, air/water will not capture the rapid evaporation, or "flashing", present after 

expansion.  To the author’s knowledge, no similar attempts have ever been previously made by the HVAC 

community towards reducing maldistribution.  Also to the author’s knowledge, there is limited, if any, refrigerant 

droplet size data available from atomizers.  Therefore, this work serves two roles.  First, to present an application 

where an aerosol-type flow can enhance heat exchanger equipment.  This  method of flow distribution is both simple 

and effective, making it ideal for implementation in existing evaporators.  Second, this work will also help 

characterize the spray found in such a device.   These data will be beneficial to designers who are concerned with 

the evaporation characteristics of such a mist-flow when a heat load is applied in an evaporator, as well as to help 

construct models for such sprays in evaporators.  

2.2 Experimental Setup 
The present test setup consists of a refrigeration loop, shown in Fig. 2.2.1, which includes the header and 

Delavan’s WDB8-30 full-cone atomizer.   This nozzle had a 30° spray angle and 0.81 mm exit orifice diameter and 

was used for all droplet measurements presented in this work.  Single-phase R-134a liquid is injected via a pressure 

swirl atomizer, which also serves as the expansion device, into the header.  The header is made of transparent walls 

of clear PVC to allow optical measurements.  The header dimensions are 1"x1"x12" with five equally spaced 3/8" 

NPT exit ports along the bottom of the header.  A single component Aerometrics Phase/Doppler Particle Analyzer 

(PDPA) identical to the one used in Drallmeier and Peters (1994) is used to measure the droplet size and axial 

(horizontal) velocity at various downstream positions along the centerline of the header.  See Table 2.2.1 for the 

PDPA settings.  Refrigerant flow rates of 1, 2 and 3 g/s were used.  Higher flow rates were not considered because 

of film formation on the walls of the header which prevented the PDPA measurements.   

Each of the five branches contained a separation cylinder.  The liquid flow rates through each branch were 

determined by collecting the liquid in the cylinder for a given time.  The vapor flow rate in each branch was 

determined by switching a three-way valve group to feed a test branch containing a vapor flow meter.  This allowed 

the vapor flow rate in each branch to be determined one branch at a time.  To ensure that both the test branch and the 

recycling branch had the same pressure drop for a given flow rate, valves were added to each branch and adjusted 

until the pressure drops were balanced for a given flow rate.  The total flow rate, as determined from the sums of the 

liquid and vapor flow rates, was compared to the measurement from a mass flow meter placed before the nozzle and 

good agreement was found.  This method of determining the distribution was found to be superior to interrogating 

the region above each exit port with the PDPA and integrating a mass flux over the port area to get a branch flow 

rate, which leads to a distribution if all ports are sampled.  A significant error in this approach to find the distribution 

with the PDPA is that much of the liquid travels to the ports in films along the walls of the header, or in pools along 

the bottom of the header.  This film flow rate is not measurable with the PDPA, therefore, the distribution given by 

the PDPA is far from the true distribution.  For this reason, the collection cylinders and vapor flow meter were used 

to find distributions.   The droplet size measurements taken with the PDPA are used to judge the homogeneity of the 

flow inside the header, not as a direct measure of the flow distribution in the exit ports.  However, it is logical to 

assume that a homogeneous mis t inside the header is beneficial to flow distribution.  In addition, a real heat 
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exchanger will have a thermal load.  The SMD data presented here provides valuable information regarding the 

evaporation characteristics of the droplets inside the header.  The data may also be used in constructing or validating 

computational models of the refrigerant sprays.     

The thermodynamic quality was varied from 0% to 15% in this work.  The quality was controlled by 

adjusting the liquid temperature with a heater before the nozzle.  An isenthalpic process was assumed across the 

nozzle.  By knowing the pressure and temperature of the subcooled liquid before the nozzle, and the pressure in the 

header after the nozzle, the quality in the header can be calculated with any standard thermodynamic refrigerant 

table or software.  The header was assumed to be adiabatic.  A needle valve placed upstream from the nozzle is used 

for fine adjustment of the mass flow rate.  This method of determining the quality was compared to the value 

obtained from the sums of the total flow rates of liquid and vapor through all exit branches and excellent agreement 

was found.  

The range of operating conditions is shown in Table 2.2.2, along with the uncertainties in the 

measurements.  The pressure uncertainty is 0.17% of the full-scale reading.  The thermocouples were calibrated in 

an ice bath, and the uncertainty listed is an average fluctuation about the mean which was determined by examining 

the time signal data.  The uncertainty listed for the phase-Doppler size measurement is based on monodisperse 

droplet flows, comparison to other techniques, and data repeatability (given in the Aerometrics manual).  The 

velocity uncertainty is based on standard laser Doppler velocimeter measurements. 

2.3 Experimental Results 
For a given condition, the droplet Sauter mean diameter (SMD) was measured along the centerline of the 

header.  The centerline SMD is used as a representative size of the droplets for the given condition.  Measurements 

along a vertical cross section proved to be unreliable as the PDPA validation rate quickly dropped as the probe 

volume was moved near the walls due to liquid pools and films on the walls.  Typical validation rates along the 

centerline ranged from roughly 80% to 90%, while validation rates near walls were less than 50% and therefore not 

used.  To ensure correct statistics, typically 10,000 drops were sampled at each location, with no less than 5,000 

drops sampled in more challenging measurement conditions.  Mass flow rates of 1, 2 and 3 g/s are shown along with 

qualities from 0% to 15%.  However, for the 1 g/s case, shown in Fig. 2.3.1, only 7% quality was obtainable since 

insufficient pressure drop was created by the nozzle.  There are two important trends worth noting.  First, the droplet 

SMD is found to decrease with increasing thermodynamic quality in the header.  This is partly due to the refrigerant 

undergoing a rapid, violent evaporation (called “flashing”) when the liquid is sprayed into a cavity which is below 

its saturation pressure, as is the case here.  The second trend is the decrease in centerline SMD with increasing 

distance downstream of the nozzle.  Due to gravity, the bigger droplets will settle out of the core of the spray and 

drain into the exit ports, thus leaving only the smaller drops downstream on the centerline.  It is important to note 

that for 0% quality, the centerline SMD appears to increase with increasing distance downstream of the nozzle.  This 

seemingly opposite trend is because that although the probe volume is along the centerline of the header, low 

momentum jets, such as this 0% quality 1 g/s case, are quickly influenced by gravity and slope downward causing 

the edge of the jet to be measured as the probe volume is traversed downstream.  Drallmeier et al. (1994) have 

shown that these types of atomizers concentrate the largest droplets at the outer edge of the jet.  It is these larger 
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droplets at the outer edge of the jet that are being measured for this 0% quality case which is why the SMD appears 

to increase along the centerline for this case.  Typical velocities measured inside the header were on the order of 1 

m/s, confirming that larger droplets can indeed deviate from their initial trajectories causing this seemingly peculiar 

trend.  

The same nozzle is used in Figs. 2.3.2 and 2.3.3, but the flow rate has been increased to 2 and 3 g/s, 

respectively.  The same trends hold as before, however, additional features begin to become apparent.  Notice that 

for saturated liquid (0% quality) the average SMD along the centerline is decreasing with increasing flow rate.  The 

opposite holds true for nonzero quality.  For the qualities tested that were greater than zero, the average centerline 

SMD was found to increase with increasing flow rate.   

The axial variation of the droplet number density along the centerline is shown in Fig. 2.3.4 for 2 g/s and 

10% quality.  It can be seen that the number density increases for distances up to roughly 90 mm from the inlet, then 

drops off as the distance downstream of the nozzle increases.  There are several factors causing this trend.  The 

number density measurements are dominated by the behavior of the small droplets.  Near the nozzle, two factors can 

be attributed to the increasing droplet number density.  First, vapor entrainment can cause smaller droplets to be 

drawn into the center of the spray thereby increasing the measured number density.  Second, due to gravity, the 

spray sheath (where number densities are typically higher) could be drawn into the probe volume as an axial traverse 

is being made.  Far from the nozzle, all droplets are being lost to the walls of the header and to the exit branches as 

the spray expands – thus explaining the decrease in number density far from the inlet.   

To more clearly display the trends of the droplet size along the centerline of the header, several histograms 

showing the droplet and velocity distributions at various downstream locations are shown.  This will help show the 

nature of the droplets present in the spray as well as verify that no truncation of the diameter distribution occurred 

through the PDPA processing.  The case shown in Figs. 2.3.5-2.3.8 is 2 g/s and 10% quality, which is close to the 

middle of the entire test matrix.  Four downstream positions are shown in Figs. 2.3.5-2.3.8, at 60, 80, 100 and 120 

mm downstream, respectively.  Since the intensity of the scattered light is proportional to the drop's cross section, 

smaller drops will only scatter enough detectable light when they pass through the center of the measurement 

volume where the laser beam intensity is highest.   This makes the effective measurement volume for small drops 

less than the measurement volume for larger drops.  The PDPA software corrects for this bias and generates a 

corrected count.  The size histograms shown represent the corrected count.  The droplet size ranges are seen to 

become more tightly grouped as the distance downstream increases.  This confirms the earlier statement that the 

larger droplets settle out of the core of the spray far from the nozzle.  The trend of decreasing droplet size with 

increasing distance downstream can also be seen. 

Horizontal axial velocity distributions are shown to illustrate typical droplet velocities encountered in the 

header.  The velocities measured were on the order of 1 m/s, with a decrease in velocity downstream of the nozzle as 

the jet spreads.  It was not possible to obtain measurements near the nozzle exit as the spray was found to be too 

dense to obtain reliable phase-Doppler measurements.  The velocity vs size scatter plots indicate that the average 

velocity at a point is not a strong function of the droplet size.   
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To illustrate the effectiveness of the atomizer approach in reducing maldistribution, a typical case is 

presented to compare the distribution trends between the atomizer approach and the conventional method of using 

an expansion valve and 3/8" pipe inlet.  The case shown is 15 g/s and 10% quality, which represents a higher flow 

rate than the PDPA results shown.  This is because the flow rates illustrated in the PDPA data were optically thin 

enough to allow the PDPA measurements, but these flow rates are lower than what are typically encountered in 

industry.  Since industrial applications will be the target of the maldistribution reduction via the atomizer approach, 

the distribution results should reflect industrial operation conditions.  However, as mentioned earlier, these higher 

flow rates did not permit phase-Doppler measurements.  For this reason, the PDPA is used to illustrate the spray 

dynamics at lower flow rates, while the distribution results are measured at higher, more realistic flow rates.   

Figures 2.3.9 and 2.3.10 display the liquid distribution results for the pipe inlet and atomizer inlet, respectively.  It is 

clear that in the pipe inlet case, the first branch receives roughly half of the total liquid flow, while the last two 

branches receive little or no liquid which would lead to dry-out in these tubes and significantly reduce the heat 

exchanger performance.  When the atomizer is used for the same condition, it can be seen in Fig. 2.3.10 that all exit 

ports receive liquid and the distribution is more uniform than the pipe inlet case.  For evaporators, liquid distribution 

is the main focus of concern, much more so than vapor distribution.  It was found that for the flow rates tested, the 

vapor distribution was highly uniform and not altered significantly by the choice of inlet to the evaporator, and is 

therefore not shown.   

2.4 Experimental Conclusions 
A novel method for improving the flow distribution in headers of evaporators has been presented which 

involves using an atomizer as the expansion device which creates a mist-type flow to more uniformly distribute the 

refrigerant among the exit ports.  Phase-Doppler Particle Analyzer measurements were taken along the centerline of 

the header for various conditions to determine typical size droplets generated with these types of nozzles.  The main 

trends indicate that the SMD increases with increasing flow rate for nonzero qualities and the SMD decreases 

downstream of the nozzle.  Distribution results indicate that the atomizer approach does indeed provide a more 

uniform distribution to the exit ports. 
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Chapter 3. Literature Review 

In this chapter, previous work on LES models, square duct flows, other wall-bounded flows, and gas-

particle flows is presented.  The discussion is limited to incompressible flows.  In Section 3.1, the vast array of LES 

models is reviewed.  In Section 3.2, the focus is on square duct flow.  In Section 3.3, other wa ll-bounded flows are 

reviewed, with an emphasis on computational works.  In Section 3.4, gas-particle flows (experimental and 

computational) are reviewed. 

3.1 Large Eddy Simulation Models 
LES models have evolved over the last few decades to include a wide range of methodologies.  This section 

will discuss the key features in the vast array of today's LES modeling efforts.  The Smagorinsky model has been the 

most widely used of all LES models.  It is simple to program and consumes little additional CPU time, which is 

perhaps why it remains popular even today.  However, several researchers have pointed out fundamental problems 

with the Smagorinsky model which has led to the development of many other models, such as the dynamic 

Smagorinsky model, scale similarity model, mixed model, and a class of SGS kinetic energy models.  Each of these 

models will be discussed in this section.  It is not possible to discuss all aspects of LES, for example, the ideal LES 

formulation as given in Langford (2000) and Volker (2000).  This thesis will focus on methods that do not require 

DNS data a priori.  

Without question, the Smagorinsky model has been the most widely used model in LES.  This model 

assumes the following form for the eddy viscosity: 

ijijT SSl 22=ν  (3.1.1) 

where l  is a length scale commonly chosen to be that suggested by Piomelli, Ferziger, and Moin (1987) and is given 

by: 

( )[ ]{ } ( ) 3/12/13/exp1 zyxS AyCl ∆∆∆−−= ++
 (3.1.2) 

where CS is Smagorinsky's constant, A+ is a constant commonly chosen to be 26, y+ is the nondimensional distance 

from the wall ( ν=+ /u tyy ) and ∆x, ∆y, and ∆z are filter widths in the x, y and z directions, respectively, and uτ  is 

the friction velocity.  Sij is the strain-rate tensor.  In this case, the exponential decaying function in (3.1.2) is known 

as a wall function, which effectively reduces the eddy viscosity near a wall.  In isotropic turbulence, the damping 

factor is removed from (3.1.2).  One drawback of the Smagorinsky model, and most SGS models in general, is that 

no information about the unresolved scales is gained.  By developing a transport equation for the SGS kinetic 

energy, one can estimate how much energy is in the unresolved scales as well as use this energy to construct a model 

for the eddy viscosity.  This will be discussed later.  

Some of the early subgrid-scale comparisons were done by Clark, Ferziger, and Reynolds (1979).   This 

work was among the first to acknowledge the deficiency of eddy viscosity models.  Decaying isotropic grid 

turbulence was simu lated using fourth-order finite difference schemes in space and a third-order predictor-corrector 

method in time on a 643 grid.  Four models were considered, all of the eddy viscosity type: the traditional 
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Smagorinsky model, a vorticity model, a kinetic energy model, and a model which assumes constant eddy viscosity.  

Their conclusion was that no eddy viscosity model can do much better than the Smagorinsky model.  However, they 

note that these results may not apply to complex flows, such as wall-bounded flows.   

The limitations of the Smagorinsky model are more clearly identified in Piomelli et al. (1991).  The concept 

of backscatter is used to justify their conclusion.  In turbulence, energy may be transferred from the large scales to 

the small scales, where it is dissipated.  However, it is also possible for the small scales to supply energy to the large 

scales, which is the so-called backscatter.  They argue that since the Smagorinsky model is purely dissipative, it 

cannot capture the physical effects of backscatter.   By filtering DNS data on turbulent channel flow, several filters 

(Gaussian, box, and cutoff filters) were examined and it was found that roughly 50% of all points experience 

backscatter, regardless of the filter used.  Therefore, they conclude that any accurate SGS model would incorporate 

backscatter effects. 

In an attempt to correct the inherent shortcomings of the Smagorinsky model, Germano et al. (1991) 

developed a dynamic eddy viscosity model.  This model allows backscatter, as well as predicts the correct near-wall 

behavior.  The model takes advantage of a mathematical identity which can be expressed as follows.  Consider 

expressing the resolved turbulent stress in the following manner: 

ijijjijiij Tuuuu τ−=−=L  (3.1.3) 

where the SGS stress at the grid level is denoted τij while the SGS stress at a second test filter, larger than the grid 

filter, is denoted Tij.  Now if Mij and mij are models for the anisotropic parts of Tij and τij then the eddy viscosity 

model may be expressed as: 

ijijkkij SSCm 22
3
1
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The tilde represents the test filter case.  Substituting (3.1.4) and (3.1.5) into (3.1.3) gives the following: 






 ∆−∆−= ijijijijij SSSSSSCS
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ijL  (3.1.7) 

At this point, C=C(x,y,z,t) and can be obtained from the previous equations.  However, to prevent C from becoming 

indeterminate, it can be assumed that C = C(y,t) for periodic channel flow, which is studied in Germano et al. 

(1991), with y being the wall normal direction.  Therefore, it is necessary to average over planes parallel to the 

walls.  This gives the following: 
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The dynamic eddy viscosity, or the so-called dynamic Smagorinsky, model is then given by: 
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This summarizes the dynamic Smagorinsky model, which has been the most widely used dynamic model in 

recent work.  Moin (1998) points out that the reason this model is so widely used is that it vanishes in regions of 

smooth, or laminar, flow as well as has correct behavior near the wall and states that this model is perhaps the only 

model to be applied successfully to such a wide range of applications.  However, there is a potential shortcoming of 

this model.  Consider the averaging done by Germano et al. (1991).  In many flows, there is no homogeneous 

direction to average over.  In this case, the above approach fails unless a different averaging approach is taken.  

Meneveau, Lund, and Cabot (1996) have developed a Lagrangian time averaging procedure which does not require 

a homogeneous direction.  A new variable is then introduced, the Lagrangian time scale over which averaging takes 

place.  The time scale is chosen such that the model becomes purely dissipative, which guarantees numerical 

stability.  Their results indicate a 10% increase in CPU time compared with the spatially averaged method.  By 

averaging backwards in time over particle trajectories, they achieve as good or better results in isotropic turbulence 

and fully developed channel flow when compared to the spatially averaged method.  For a more statistical look at 

the dynamic Smagorinsky model, see Germano (1996). 

In order to circumvent the shortcomings of Germano's original dynamic model which required a 

homogeneous direction, Ghosal et al. (1995) have presented a dynamic localization model based on Germano's 

original work.  In flows with no homogeneous direction, an integral equation for C is developed based on a 

constraint that C must remain positive.  In order to allow backscatter of energy, a SGS kinetic energy model is 

incorporated into their procedure.  In this case, C is allowed to have either positive or negative values and the eddy 

viscosity is based on the SGS kinetic energy, k.  Realizability conditions are discussed for their model and they 

apply their model to isotropic turbulence and a backward facing step.  Good agreement is obtained for both cases. 

Liu, Meneveau, and Katz (1995) have measured the far-field of a jet using 2-D PIV and then performed a 

priori tests of several subgrid models.  They confirmed the poor correlation between the real stresses and those 

given by the Smagorinsky model.  By using a mixed model, they achieved better correlation.  Their reasoning 

behind the success of the mixed model is that the fluctuations of the eddy viscosity term are small compared to the 

similarity term plus the eddy viscosity term dissipates energy since it is well correlated with the strain-rate tensor, 

something the similarity term does not handle well.  

A comprehensive summary of LES models may be found in Lesieur and Metais (1996).  The Smagorinsky 

model is stated to be too dissipative in the near wall region to allow the growth of viscous instabilities.  The dynamic 

model is reviewed along with a class of spectral models , such as Kraichanan's spectral eddy viscosity model.  In 
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physical space, the structure-function model is stated to be the mimic of a spectral model.  A 3-D variation of the 

structure-function model is discussed where the eddy viscosity is weighted such that it is only significant in regions 

of space where the flow contains elements of three dimensionality.  Bardina's scale-similarity model is reviewed 

along with the mixed model.  A class of quasi-DNS, or no model LES, approaches where the numerical dissipation 

arising from upwinding are discussed.   

A review of six LES models may be found in Vreman, Geurts, and Kuerten (1997).  The weakly 

compressible temporal mixing layer is used as the test case, and the six models considered are: Smagorinsky, 

similarity, gradient, dynamic Smagorinsky, dynamic mixed, and dynamic Clark model.  An a priori test is done with 

filtered DNS data and the following parameters are evaluated: the evolution of the total kinetic energy, backscatter, 

turbulent and molecular dissipation, and the Fourier energy spectra.  Their no-model LES is shown to give better 

predictions of the total kinetic energy than the Smagorinsky model, with the dynamic mixed model giving the 

closest results to the filtered DNS kinetic energy data.  The Smagorinsky and its dynamic version are shown to not 

produce any backscatter, and the gradient model artificially removes any backscatter with a limiter concept.  None 

of the models reproduce the filtered DNS levels of backscatter.  Some a posteriori testing is also done in this paper.  

In all tests, the Smagorinsky model was given a "bad" rating, with their scale consisting of bad, reasonable, good, 

and very good.  As expected, the dynamic models they considered scored the highest ratings.   

An excellent review of the work in scale-invariance modeling may be found in Meneveau and Katz (2000).  

A detailed look at a priori and a posteriori studies is provided along with various methods of separating the large 

scales from the small scales with techniques such as orthonormal basis functions.  The Smagorinsky model along 

with its limitations are discussed in detail.  The dynamic Smagorinsky model is reviewed favorably.  Bardina's 

similarity model is discussed, along with its mixed model variation.  Other less traditional models such as kinetic 

energy models and gradient models are also briefly reviewed.  Testing of LES models based on comparison between 

real and modeled stresses is considered by reviewing the work on optimal LES approaches.   

While still an eddy viscosity model, Schumann (1975) employs the use of the SGS kinetic energy, ksgs, to 

find the eddy viscosity rather than relying on a Smagorinsky approach.  He considers channels and annuli, but the 

key feature in this paper is his kinetic energy model.  The eddy viscosity is split into two parts, the locally isotropic 

and inhomogeneous parts.  A transport equation is developed for the SGS kinetic energy, k, which includes 

convection, production, dissipation, viscous gross scale dissipation and diffusion.  One unique approach is that the 

strain-rate tensor in the production term is based on the fluctuating velocities rather than the total velocities.  This 

ensures zero production in the case of laminar flow.  Some empiricism is required in order to set the constants in his 

model, and satisfactory agreement was obtained using the new SGS model.   

Schmidt and Schumann (1989) continue the work of Schumann's model by investigating the convective 

boundary layer.  No effort is made to split the SGS stresses as Schumann had originally done.  Instead, a single 

refined transport equation for the SGS kinetic energy is developed which includes buoyancy.  To ensure non-

negative values of k, the second-order upwind scheme MPDATA of Smolarkiewicz is used.  Much emphasis is 

placed on their second-order closure model for their kinetic energy equation.  Fair agreement is obtained when 

comparing with experimental atmospheric data.   
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The issue of subgrid length scales has been addressed by Schumann (1991).  Three length scales are 

considered.  The first is the simplest with the length scale, l, equal to the minimum of the local grid width or the 

product of a constant and the distance from the surface.  Second, he considers a Deardorff-type model which is the 

same as the first except now l is the minimum of the first model or a buoyancy length scale.  Lastly, he considers a 

stability limited vertical scalar diffusion model.  He finds that the results for scalar dispersion are only weakly 

sensitive to the length scale chosen.  Schumann then accepts the first-order closure model for his SGS kinetic energy 

equation instead of his second-order model in the previous work.  He cites realizability problems which are absent 

from the first-order model as the reason for its choice and produces results which show little quantitative difference 

between the two models.  When examining the maximum scalar concentration on a coarse grid, an 18% difference is 

found between the different length scale choices. 

In the class of SGS kinetic energy models, one of the simplest to understand is that of Yoshizawa (1982).  

Using a statistical viewpoint, he derives a subgrid model that states the total derivative of the SGS kinetic energy is 

equal to production minus dissipation. Or, in mathematical terms: 
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where ∆ is the local grid scale.  He assumes that the triple velocity correlation and the pressure-velocity correlation 

vanish to the first order.  He also states that production and dissipation dominate in channel and pipe flows.  No 

simulations are carried out in this paper. 

It is only natural that a dynamic version of the SGS kinetic energy model would be developed.  Kim and 

Menon (1995) propose the dynamic SGS kinetic energy model and compare it to DNS, Germano's dynamic model, 

and a previous dynamic k-equation model.  They consider averaging their dynamic model in a local cube, but argue 

that this is not what a true dynamic model should entail.  Instead of averaging just for the sake of numerical stability, 

they propose a dynamic method which requires no averaging.  A method similar to the way Germano set up his two 

filter system is formulated and calculations are performed for Taylor-Green vortex flow.  A non-staggered grid with 

second-order time accuracy and fifth-order (convective terms) and sixth-order (viscous terms) spatial accuracy is 

used.  Agreement with DNS is found to be better than the other models tested, even the celebrated dynamic 

Smagorinsky model.  In addition, lower computational costs are experienced when compared to the previous 

dynamic k-equation model.   By performing the simulations on two different grids, they confirm that the grid 

resolution was not the deciding factor.  The quantities they considered include the flatness factor, the time evolution 

of the model coefficients for the various models, skewness factor, and production and dissipation rates of the SGS 

kinetic energy.   

In another effort to evaluate the various subgrid models, Menon, Yeung, and Kim (1996) conduct a 

comparison of many models, including the scale similarity, Smagorinsky, kinetic energy, dynamic kinetic energy, 

and dynamic eddy viscosity model.  They use a priori tests to determine the local subgrid stresses and energy 

transfer in isotropic turbulence.  They find that the scale similarity model loses correlation with a decrease in the 

grid resolution when compared to the behavior of the kinetic energy model.  With an increase in Reynolds number, 
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the dynamic k-equation model performed better than the dynamic Smagorinsky model.  The dynamic models also 

performed well even on coarse grids, and much better than the fixed coefficient models. 

The dynamic subgrid kinetic energy, given in detail in Kim and Menon (1997), can be summarized as 

follows.  The transport equation for the subgrid kinetic energy, ksgs, is given as 
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where the eddy viscosity, νT, is given by 

1/2
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and the dissipation rate, ε, is given by 
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where ∆  is the grid scale and Cε and Cτ  are dynamically determined.  The resolved strain-rate tensor, S , is 

expressed as  
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and its magnitude is defined as 

ijijSS2=S  (3.1.15) 

Let the “hat” notation symbolize the application of the test filter to a quantity and the “overbar” notation symbolize 

application of the grid filter.  The Leonard stress tensor is then defined as 

jijiij ûûuuL −=  (3.1.16) 

The kinetic energy at the test filter level can be found from the trace of (3.1.16) 
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2
1

k −=  (3.1.17) 

The dissipation at the test filter level is expressed as  
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Through a similarity assumption between the subgrid stress tensor and the Leonard stress tensor, one can arrive at 

the following equation 

kkijij
1/2
testtij Ld

3
1

Ŝk?̂2CL +−=  (3.1.19) 

The least-square method of Lilly (1992) is then used to obtain a formula for Cτ  
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where 

ij
1/2
testij Ŝk?̂s −=  (3.1.21) 

By invoking a similarity assumption between the dissipation at the test filter and grid filter level, an equation for the 

dissipation at the test filter level is given as 

?̂

k
Ce

3/2
test

test ε=  (3.1.22) 

One may now calculate Cτ  and Cε.  This model was used in the bulk of this dissertation.  These constants have been 

constrained to be positive in this dissertation. 

There are two aspects of LES which remain in debate.  They are the choice of the filter and the choice of 

the subgrid model.  The various filters will now be discussed.  There are several filters available for LES, such as the 

spectral cutt-off filter, Gaussian filters, and top-hat filters.  There is implicit filtering in any finite difference/finite 

volume formulation since length scales smaller than the grid width cannot be resolved.  This is known as box or top-

hat filtering in finite-difference formulations, and sharp cut-off filters in spectral representations.  Some researchers 

state that the filtering length scale should not be dependent on the grid resolution, therefore, they suggest applying 

an explicit filter (called "prefiltering") such as the Gaussian filter.  The argument against that is prefiltering removes 

information that has already been resolved and therefore is computationally expensive.  The three filters just 

discussed have the following representations in physical and spectral space: 
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Spectral sharp cut-off filter: 
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Top-hat filter: 
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Due to its simplicity and robustness, top-hat filtering remains popular for finite-volume simulations.  It is typically 

implemented through implicit grid filtering. 
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3.2 Square Duct Flow 
There are a number of previous studies on turbulent flow in geometries such as isotropic turbulence, 

channels and pipes (Yeung and Pope 1989; Kim, Moin, and Moser 1987; Eggels et al. 1994).  However, only a few 

studies on internal flows with only one homogeneous direction have been conducted.  Perhaps the first observation 

of mean secondary flows in a rectangular duct were made by Nikuradse (1930).  He observed that mean streamwise 

contours bulged towards the corners, a feature not seen in circular ducts or laminar flow in rectangular ducts.  The 

secondary velocities are usually only 1-3% of the streamwise bulk velocity in magnitude, but can significantly alter 

such things as heat and mass transfer near the walls.  Prandtl (1952) termed these flows as secondary flows of the 

second type (the first type arises due to streamwise curvature).  Turbulent fluctuation were suspected as the cause of 

these flows.  He argued that velocity fluctuations tangential to streamwise velocity contours in regions of contour 

curvature cause a transverse mean flow to arise which is directed towards the corners. 

Brundrett and Baines (1964) experimentally measured the velocity field and Reynolds stresses in a square 

duct.  They found that the streamwise vorticity in fully-developed flow is primarily produced by the gradients in the 

normal Reynolds stresses.  Since the streamwise vorticity is strongly correlated to the secondary flows, they suggest 

that the secondary flows are caused by the gradients in the Reynolds stresses.  In the range of Reynolds numbers that 

they examined (Re = 20000 to 83000), no qualitative difference was observed in the secondary flows other than 

secondary flows tend to penetrate deeper into the corners with an increase in the Reynolds number.   

Demuren and Rodi (1984) performed calculations of flow in straight, non-circular ducts and reviewed the 

various algebraic stress models.  They developed algebraic expressions for the Reynolds stresses by simplifying 

earlier models and retaining the gradients of the secondary velocities.  Mean flow and turbulence quantities were 

found to be predicted well, but the secondary velocities were found to be under-predicted.  Bradshaw (1987) points 

out that the main challenge is the behavior of the pressure-strain term in the Reynolds-stress transport equations.  He 

suggests that if models based on these equations fail to reproduce the decline in shear-stress magnitude in boundary 

layers with cross-flow, then it will be unlikely that any future similar model will do any better.  Kajishima and 

Miyake (1992) discuss the eddy viscosity models for a square duct.  They state that the secondary flows are 

produced as a result of the imbalance between the gradient of the turbulence stress and the corresponding pressure in 

near-corner regions.  This mandates careful treatment of the near wall region.    

One of the first LES studies of secondary flows in a square duct was performed by Madabhushi and Vanka 

(1991).  Using LES with a mixed spectral-finite difference code and the Smagorinsky model, they studied flow at 

Reynolds number 360 based on friction velocity and duct width.  Since it is necessary to correctly predict the near 

wall behavior, a 65x65x32 grid was used in the x, y and z directions, respectively, with stretching in the x and y 

directions (the two wall directions).  An interesting feature they found in the secondary flows is that the 

instantaneous secondary velocities can be as high as ten times the averaged values, which necessitated the use of a 

smaller time step than that predicted by using the mean velocities.  The secondary flows were found to convect 

mean flow momentum from the center of the duct to the corners.  This caused a bulging of the streamwise velocity 

contours towards the corners.  They attribute the lack of symmetry in their cross section contour plots to an 

insufficient averaging time.  Due to the large fluctuations previously mentioned, the 16 time units used to average 

the equations in their simulations was not enough, although the asymmetry is not so overwhelming that the results 
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are invalid.  Comparisons with experiments are made, although the experimental data is at much higher Reynolds 

numbers (60,000 to 250,000 compared to the LES of 5810 based on centerline velocity).  Therefore, only qualitative 

comparisons are made since the Reynolds number effects are not known for this flow.  Symmetry is found about 

each corner bisector, which is expected.  By examining the LES and experimental data, it is seen that the secondary 

flows penetrate deeper into the corner region with an increase in Reynolds number.  Turbulence statistics are 

measured and the turbulent kinetic energy is found to decrease with increasing Reynolds number.  Much like 

turbulent channel flow, streaky wall structures were found in the square duct.  The various terms of the vorticity 

equation are compared and the production due to the gradient of the difference in the normal Reynolds stresses and 

the production due to the gradient in the secondary Reynolds shear stress are found to dominate when compared to 

convection and diffusion.  For further reading, see Madabhushi (1993) and Madabhushi and Vanka (1993). 

Gavrilakis (1992) performed a DNS of turbulent flow in a square duct at Re = 4400, based on bulk velocity 

and hydraulic diameter.  His simulation involved 16.1 million grid points using finite difference methods.  

Turbulence statistics at the wall bisectors are compared to plane channel data and good agreement is found despite 

the presence of secondary flows in the square duct.  After averaging the mean secondary flows about the octants, an 

additional flow cell is found between the corner cell and the wall bisector.  This additional flow cell is relatively 

weak and not reported in experimental data.  The wall shear stress is influenced by the secondary flows.  The wall 

shear stress has a maximum at each wall mid-point as well as near the main secondary flow cells in the corners.  

Viscous diffusion of the vorticity was found to have a more significant role than secondary convection. 

Huser and Biringen (1993) performed a DNS of turbulent flow in a square duct at Re = 600, based on mean 

friction velocity and duct width.  Turbulence statistics along the wall bisector are compared with simpler flows and 

found to have excellent agreement.  Terms in the Reynolds averaged streamwise vorticity equation display the 

mechanism that produces secondary flows via the secondary Reynolds stresses.  Convection of streamwise velocity 

causes distorted isotachs that can only be caused by secondary flows.  Strong turbulence production was found near 

the wall bisector, with weak production at the corner bisector.  This produces positive and negative convection of 

the mean streamwise velocity at the respective locations, as they demonstrated by examining the terms in the 

Reynolds averaged streamwise velocity equation.  Dominant ejection structures are produced during a bursting event 

and are composed of two streamwise counter-rotating vortices.  Corners have reduced mean shear and prohibit 

ejections from occurring here, which allows a mean secondary flow from the core of the duct to the corner. 

Recently, Xu and Pollard (2001) performed simulations of turbulent flow in a square duct and a square 

annular duct. Using the Smagorinsky model with wall functions, they examined flow at Re = 200 based on the half 

hydraulic diameter and average friction velocity.  They note that even for a square duct, previous DNS studies do 

not agree for the mean streamwise velocity profile.  They explain the mechanisms responsible for the generation of 

the secondary flows by examining the anisotropy of the Reynolds stress distributions.  They develop a universal 

relation between the average streamwise velocity and the distance away from a concave corner along the corner 

bisector by using curve fitting techniques.  Secondary flows in the annular duct are shown to consist of a chain of 

counter-rotating vortex pairs around both the convex and concave corners in the annular square duct.     
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3.3 Non-Square Duct Wall Bounded Single Phase Flows 
Many researchers have examined wall bounded flows in geometries other than square ducts: a 

comprehensive review is beyond the scope of this thesis.  This section will focus on the major studies in recent 

years, with an emphasis on computations. 

Laser-Doppler Velocimetry measurements of the velocity distribution and reattachment length behind a 

backward facing step were performed by Armaly et al. (1983).  Results are reported for a range of Reynolds 

numbers of 70 < Re < 8000, which covers the laminar, transitional, and turbulent regimes.  Numerically, 2-D finite 

difference simulations were also performed with 45x45 nodes and are in close agreement with experiments up to a 

Reynolds number of 400.  Above Re = 400, they state the three-dimensionality of the experiment prevented the 2-D 

equations from accurately predicting the flow.  They report an additional recirculation region on the wall opposite 

the step, which they claim has not been presented before.  

A 3-D corner step experiment was the subject of work done by Stokes, Glauser, and Gatski (1998).  This is 

one of the logical next steps when considering a more complex flow than a traditional backward step which has been 

studied extensively.  3-D LDV is used to measure the mean flow velocities as well as the Reynolds normal and shear 

stresses and turbulent kinetic energy.  Secondary flows are observed within two stepheights of the streamwise step 

edge. A database of the first and second order statistics is formed for further comparison with turbulence modeling 

by other future researchers.  

Turbulent channel flow has been a topic of much research.  Tafti and Vanka (1990) have done a detailed 

LES of channel flow at a Reynolds number of 180 based on channel half-height and friction velocity.  Using a finite 

volume approach and staggered grid, they employed the Smagorinsky model to calculate the eddy viscosity.  A 

comparison with DNS data shows good agreement, with 5% error in the calculated friction factor with their coarse 

grid (32x64x32 cells).  Their fine grid (66x66x66 cells, with stretching) showed worse agreement in the means, but 

better agreement in turbulent statistics.  They suggest that perhaps the stretching in the wall direction decreased the 

accuracy of the calculation and state a uniform 66x66 cross section would have worked better.  Also, the use of an 

iterative multigrid approach in solving the pressure Poisson equations gave a significant speed up in the execution 

time.   

In another study of channel flow, Blackburn (1998) performed LES with the Smagorinsky model in 

conjunction with a van Driest-type wall damping function suggested by Piomelli.  This wa ll damping function 

essentially removes the Smagorinsky model near the wall.  With nearly 0.25 million nodes, the simulation met the 

grid spacing requirements suggested by Piomelli for resolving the near-wall layer.  A friction Reynolds number of 

651 is used for LES and compared with experimental results at a friction Reynolds number of 640.  Satisfactory 

agreement in the buffer layer is obtained, however, poor agreement near the wall is attributed to experimental error.  

Two other simulations are conducted as well, a no-model LES on the same grid and the  Smagorinsky model 

without a wall damping function.  The no-model approach gives correct near-wall behavior, but poor results in the 

outer region.  Without a damping function, the Smagorinsky model gives poor results in the mean flow throughout 

the domain.  When comparing the fluctuating velocities, they find that their LES with a wall function over predicts 

the streamwise rms velocity by roughly 20%.   
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A highly resolved channel flow DNS calculation was performed by Kim, Moin, and Moser (1987).  The 

numerical method consists of spectral method - Fourier series in both the spanwise and streamwise directions with 

Chebychev polynomials in the wall normal direction.  The Reynolds number based on friction velocity and channel 

half-height was 180.  It was found that although good agreement was obtained in the turbulence statistics, the 

Reynolds stresses were consistently lower than the experimental values, yet the computed vorticity near-wall 

fluctuations were higher than experimental results.  They suggest possible error in the experiment and renormalize 

the experimental data by a corrected shear velocity and obtain excellent agreement except with the calculated 

turbulence intensities, which still remain lower than the experimentally reported values.   

In complex geometries, it is often necessary to use unstructured grids to resolve the flow.  Simons and 

Pletcher (1998) consider isotropic turbulence and channel flow, using 3 SGS models for the isotropic case: the 

monotone integrated large eddy simulation (MILES) which does not use a specific model but rather the numerical 

dissipation as the eddy viscosity, the Smagorinsky model, and the dynamic model of Germano.  A tetrahedral and 

hexahedral finite volume formulation are used to construct the unstructured mesh.  Both methods gave good results 

for isotropic turbulence, however, difficulty was encountered which prevented the tetrahedral grid from being used 

in channel flow.  For channel flow, the Smagorinsky model was mo dified with a wall damping function and was the 

only SGS model considered for the channel simulation.  The rms quantities are slightly underpredicted for a 

Reynolds number of 2800 based on channel half-height and bulk velocity.  

Turbulent recirculating flows have been widely studied due to their complex eddy structure and 

engineering importance.  Zang, Street, and Koseff (1993) chose the lid-driven cavity to study with LES.  The 

dynamic mixed model was used in conjunction with a finite volume method to simu late Reynolds numbers of 3200, 

7500 and 10000.  A multigrid method is used to solve the Poisson equation, and the equations are discretized on a 

nonstaggered stretched grid.  Excellent agreement in the mean statistics is obtained when compared to experimental 

data.  The rms statistics also compare favorably along the centerplane, with slight underprediction near the top and 

downstream walls.  A derivation is given to show the proper way to compare experimentally measured Reynolds 

stresses, which contain contributions from large and small scales, to LES measured Reynolds stresses, which contain 

only large scales.   

Jordan and Ragab (1994) examine the lid-driven cavity with LES and DNS.  LES with the Smagorinsky 

model and van Driest damping is used for Re = 10000, whereas DNS is used for laminar flow at Re=5000.  Both 

techniques are compared at Re = 7500.  They examine the Taylor-Görtler-like (TGL) vortices formed in the 

spanwise plane.  They find that the TGL vortices break down at Re=10000 according to the LES predictions.  They 

claim that at Re = 5000, the flow is still laminar and the TGL vortices change rapidly in size, with 9 TGL vortex 

pairs along the cavity bottom.  But at Re = 10000, the turbulence begins to distort the vortex pairs.  Near the 

downstream secondary eddy (DSE), the DSE is found to feed fluid to the TGL pairs which also entrain more fluid 

from the primary recirculation vortex.    Upstream of the DSE, the TGL vortex pairs entrain fluid directly from the 

main recirculation region.  For a comp rehensive review of driven-cavity flows see Shankar et al. (2000).   

The backward step has been a critical benchmark for turbulence codes, and a detailed review of two-

equation models for backward steps is presented in Thangam and Speziale (1992).  They report two major sources of 
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errors in k-ε equations, the first being inadequate grid resolution and the second being improper modeling of the 

Reynolds stresses.  They state that a properly tuned two-equation k-ε model can give surprisingly accurate results, 

especially compared to previous one-equation models or the so-called zero-equation model.  For instance, when the 

standard k-ε model was modified to include anisotropic eddy viscosity, the reattachment point was found to be 

within 3% of experimental values, compared to 12% for models with three-layer wall functions.   

A 2-D highly resolved backward step calculation was performed by Thangam and Hur (1991).  The finite 

volume method is used with two versions of the k-ε equations, a standard and nonlinear model.  They find that even 

with fine resolution (166x73 and 332x146) the standard model is unable to predict the flow field and that nonlinear 

terms must be incorporated into the model to account for normal stress differences.  However, only 10% accuracy is 

obtained when compared to the experimental reattachment length, indicating that even the best k-ε model is still 

short of completely predicting the flow.   

The stability of backward step flow at Re = 800 was studied by Gresho et al. (1993).  Four 2-D codes were 

used: a finite element code with time marching for the unsteady equations, a finite element method for the steady 

equations and stability problem, a second-order finite difference method to solve the equations in streamfunction 

form, and a spectral method.  With each code, they concluded that the flow was both steady and stable for any size 

perturbation.  This study was undertaken due to the statement of other researchers who claimed the flow to be 

transient, but this work could find no so such transient features.  

Neto et al. (1993) used DNS and LES to simulate the vortices in backward facing step flow.  For LES, they 

choose a structure-function SGS model.  A finite volume code with a staggered grid is used.  White noise is imposed 

upon an inflow velocity field to simulate the turbulence.  Two cases were considered, a low step and high step case.  

The former was at Re = 38000 and the latter was at Re = 6000, based on step height and inlet free stream velocity.  

A fully developed outflow condition is imp osed at x/h ≈ 30.  They show that the coherent vortical structure of the 

flow is similar to a two-dimensional forced mixing layer which has main vortices shed after the step and then 

secondary longitudinal hairpin vortices between them.  Their structure-function LES is found to compare better with 

experiments than a Smagorinsky model or k-ε models.   

A DNS calculation of a backward facing step was performed by Le, Moin, and Kim (1997).  A staggered 

grid is used with a convective outflow condition.  They show that the effects of the outflow condition are confined to 

within one step height of the exit. They used a Reynolds number of 5100 based on step height and inlet free-stream 

velocity and they considered an expansion ratio of 1.2.  When studying the reattachment length, they found 

oscillatory behavior in its location.  They attribute this to a large-scale shear layer structure curling up behind the 

step and growing, then once it eventually detaches the reattachment length suddenly decreases as another structure 

begins to grow.  They also used four different methods to determine the reattachment length: the location of the first 

grid point away from the wall with zero mean streamwise velocity, the location of zero wall shear stress, the location 

of the mean d ividing streamline, and a p.d.f. method where the location is defined as where the flow has a 50% 

forward flow fraction.  They find that the first three methods are within 0.1% of each other, and only 2% from the 

p.d.f. approach.  They report a mean reattachment length of 6.28h.  They observe negative skin friction in the 

recirculation region, and positive skin friction in a secondary recirculation bubble near the step's lower corner (0.05 
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< x/h < 1.0).  Excellent agreement in the mean velocity is obtained when compared to experiments.  They also 

indicate that the flow has not fully recovered at a distance of x/h = 20.   

In an effort to reduce computational costs in resolving the near wall region, Nikitin et al. (2000) have 

proposed the concept of detached-eddy simulation (DES).  In DES, the near wall region is represented by a RANS 

model and the core region is modeled with LES.  Their DES model was applied in channel flow at various Reynolds 

numbers.  Using three different codes, which are in agreement with each other, they find that the skin friction 

coefficient is roughly 15% low.  Also, by varying the grid and Reynolds number, they experience trade-off problems 

with the accuracy of the viscous, modeled, and resolved shear stress. 

One reason that the second-order central differencing approach is popular is that it is energy conserving.  

However, an increase in accuracy would give less numerical dissipation and the effect of subgrid models would be 

more easily seen.  In a recent paper by Gullbrand (2000), a conservative fourth-order code is used in turbulent 

channel flow.  Data are compared to the results from a spectral DNS code and a second-order finite difference code.  

A staggered grid is used and the convective term is written in a skew-symmetric form to ensure conservation of 

kinetic energy.  A 128x128x128 grid is used and excellent agreement is obtained at Reτ=180 when comparing the 

mean and rms velocities.  Little difference is shown between the second and fourth-order codes.  Neither the fourth-

order or second-order code can match the spectra produced by the spectral code at high wavenumbers, which is 

expected due to the implicit top-hat filtering in any finite volume type code.  LES is used on a 69x49x48 grid with 

the dynamic Smagorinsky model at Reτ  = 395.  The mean velocity is predicted well, while the rms quantities are 

underpredicted in the wall and spanwise directions, and overpredicted in the streamwise directions.  Again, the 

spectra show that the high wavenumbers are contaminated from numerical errors.   

To enhance the code developed in this research work, CART3D, it would be of engineering importance to 

implement a cut-cell method which allows arbitrary geometries to be studied. The Cartesian method allows higher 

order spatial discretizations to be incorporated efficiently.  There are various methods of incorporating cut-cells into 

a Cartesian framework, as illustrated in Ye et al. (1999) and Johansen and Colella  (1998).  The method outlined in 

Gullbrand, Bai, and Fuchs (1998) will be considered here.  Consider the following example in Figure 3.3.1.  An 

arbitrary wall has been placed in a Cartesian grid.  To ensure the high order accuracy near the wall, the cut-cell 

approach in the reference above is outlined in the following manner.  Three cell types may be identified: an interior 

cell which does not intersect the wall, a cut-cell which is intersected by a wall, and a wall cell which remains totally 

outside the wall.  Higher order Lagrangian interpolation is used to find the dependant variables at cut cells and wall 

cells.  Extrapolation is sometimes necessary for wall cells.  To find the values of scalars at the wall which have a 

boundary condition of zero normal derivatives (such as species mass fraction), a line normal to the wall is drawn 

which passes through point P, the cell center of the cut-cell.  To interpolate the value at C, points P, B, A, D and E 

are used.  To determine the values of the scalar at point A, for example, the cell centers of interior cells are 

interpolated, in this case points Q, R, S and T.  Similarly for the other points along the normal.  One can obtain the 

values at point P by setting the normal derivative to zero at C in this manner.  Velocity components may be 

interpolated in a similar fashion by requiring no slip at the wall and interpolating to find desired interior values.  

This cut-cell method will allow any geometry to be modeled by the enhanced code. 
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3.4 Gas-Particle Flows 

3.4.1 Experiments 
Kulick, Fessler, and Eaton (1994) used LDV to study the interaction of particles and turbulence in channel 

flow.  Mass loadings of up to 80% were considered for 50 and 90 µm glass and 70 µm copper particles.  They found 

that the fluid turbulence was decreased by the particles, with more attenuation at larger Stokes numbers and less 

modification in the streamwise direction compared to the cross-stream directions.  They attribute this to the particles 

being unable to respond to the high frequency fluctuations in the cross-stream directions.  A greater degree of 

turbulence attenuation was found in channel flow when compared with isotropic turbulence.  The fluid mean 

velocity profiles were unmodified by the particles.      

The preferential concentration of heavy particles by turbulence has been studied experimentally in a 

channel flow by Fessler, Kulick, and Eaton (1994).  Photographs were taken by illuminating the flow with a laser 

sheet.  Several particle sizes were studied including 25, 50 and 90 µm glass, 70 µm copper, and 28 µm Lycopodium. 

Maximum preferential concentration of particles is found when the Stokes number based on the Kolmogorov time 

scale is approximately one.  They find that their experimental Stokes number prediction for maximum concentration 

is slightly higher than what is given computationally by other researchers.  They say this may be due to their using 

larger experimental grid spacing in their photographs when compared to the grid spacing in computations.   

Experimental PIV measurements of particle -laden channel flow were made by Paris and Eaton (1999).  

They used 150 µm glass particles which had a Stokes number of 97 based on the Kolmogorov time scale at the 

channel center plane.  At 25% mass loading, the lateral and longitudinal velocity correlation functions display a 

modification of the functions at large length scales when compared to the unladen case.  They also find a decrease in 

dissipation with higher mass loadings.  They claim this is due to a decrease in the turbulence level of the continuous 

phase with an increase in mass loading.  And since the dissipation must balance the turbulence production for a fully 

developed channel, the dissipation had to decrease with an increase in mass loading.  

The backward-facing step flow with particles was studied with LDV by Fessler and Eaton (1997).  They 

used particles having Stokes numbers from 0.5 to 7.4.  They found that large particles (St > 3) did not enter the 

recirculation zone.  The smallest particles did enter the recirculation zone and demonstrated that they follow the 

large-scale structures.  Within the shear layer, the fluid had higher wall normal fluctuations than the particles, yet the 

particles had higher streamwise fluctuations.  They say the latter is due to cross-stream mixing of particles, where 

particles of high inertia cross over into low speed regions of fluid.  This is supported by high Stokes number 

particles displaying even higher streamwise fluctuations.  They were able to find no consistent trend when the mass 

loading was varied.  They also seeded particles within the shear layer and showed that the particles concentrate in 

the high strain rate regions between vortices.    

An experimental study of turbulence modification by particles in a backward-facing step was performed by 

Fessler and Eaton (1999).  Three particle sizes were considered, 90 and 150 µm glass spheres and 70 µm copper 

spheres, with 3-40% mass loading.  LDV was used to measure all velocities in the study.  Since the Stokes number 

for all particles were larger than one, few particles were entrained into the recirculation region.  The gas phase mean 

velocity was not significantly changed by the presence of particles.  The particles tended to lag behind the fluid 
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velocity near the step, indicating a negative slip.  However, since the fluid must decelerate after expansion, the 

particles then exceeded the fluid velocity far downstream of the step.  No measurable change in the turbulence was 

seen with the 90 µm glass particles.  The other two particle classes did show turbulence modification for high mass 

loadings, especially above y/h > 1.  Turbulent fluctuations were reduced by as much as 35% for 40% mass loading 

of the 150 µm glass particles.   

Turbulence modification by particles in a water tank was studied experimentally by Parthasarathy and 

Faeth (1990a).  They used LDV to measure the particle velocity fluctuations as well as the one- and two-point 

correlations of fluid velocity fluctuations.  Glass particles of 0.5, 1 and 2 mm were used which represents a much 

larger particle size range than other researchers have used.  They found that the streamwise fluid velocity 

fluctuations were roughly twice that of the cross-stream direction fluctuations, indicating that the particle wakes 

were significant.  They also state that the velocity fluctuations can be correlated based on the rate of dissipation of 

particle energy in the fluid.    Parthasarathy and Faeth (1990b) also studied the turbulent dispersion of particles in 

water using LDV.  They compare the standard drag curve for a sphere to their experimentally observed drag, and 

find the two values are within 14% of each other.  This is partly due to the experimental particles containing a 

fraction that are slightly elliptic in shape, rather than spherical.  The particle velocity fluctuations were larger than 

the liquid velocity fluctuations for all test conditions.  Using probability density functions to stochastically simulate 

the particle motion, they suggest that the turbulent dispersion may be more accurately simulated via this approach 

than earlier methods which contain ad hoc elements which should be avoided.   

An axisymmetric round jet laden with 55 µm glass particles was studied with LDV and flow visualization 

by Longmire and Eaton (1992).  They find that for light mass loadings, the structure of the jet is very similar to a 

single-phase jet.  Vortex ring structures dominate the near-field of the jet and persist in jets with mass loadings up to 

0.65.  They conclude that dispersion is dominated by convection rather than diffusion.  Preferential concentration of 

particles is seen near the vortex ring structures.  The particles tend to collect in the "saddle" regions between 

vortices.   

Crowe et al. (1995) have observed that in the wake of a bluff body, particles tend to accumulate along the 

edges of vortex structures.  They term this phenomenon “focusing”, analogous to the preferential concentration 

which is the topic of this work.  Particles with a Stokes number (St) of unity are found to exhibit the maximum 

focusing.  However, they only studied Stokes numbers of 0.01, 1.0, and 100, which do not accurately resolve the 

trend around St = 1, where the focusing effect is maximum.   

In a mixing layer, Tageldin and Cetegen (1997) experimentally observed size-selective dispersion of 

droplets.  They found rapid entrainment of small droplets and found a much slower entrainment of large droplets due 

to Stokes number effects.  This confirms the findings of Lazaro and Lasheras (1992a, 1992b) who also mention that 

the particle concentration field is related to the streaky nature of the large-scale structures.    

3.4.2 Computations 
DNS was used by Squires and Eaton (1990) to understand the modification of isotropic turbulence by 

particles.  It was found that particles collect in regions of low vorticity and high strain rate.  The range of Stokes 

numbers was from 0.075 to 1.5, based on the longitudinal integral length scale and square root of 1/3 of the kinetic 
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energy.  Extremely light particles were found to demonstrate less preferential concentration, and extremely heavy 

particles exhibited no preferentia l concentration since they did not respond to flow fluctuations.  The energy and 

dissipation spectra at high wavenumbers were found to increase with the addition of particles.  They state that the 

heavy particles tend to modify the turbulence more homogeneously than the small particles do.  With an increase in 

mass loading, the smaller particles reduced their trend of preferential concentration in low vorticity regions, while 

particles with larger time constants increased the tendency to collect in low vorticity regions.   

Particle dispersion in isotropic turbulence was studied with DNS by Squires and Eaton (1991a).  Particle 

dispersion was seen to decrease significantly in the presence of an external body force.  This reduction was found to 

be greater in directions normal to the particle drift compared to directions parallel to the drift.  Good agreement with 

experiments was obtained.  The particle inertia was found to increase the eddy diffusivity of particles, with between 

2 to 16% increases seen over that of the fluid.   

DNS was used to track the trajectories of 106 particles in the work of Squires and Eaton (1991b).  Isotropic 

turbulence was considered and the computational grid contained 643 points.  Stokes numbers of 0.075, 0.15, and 

0.52 were considered.  Particles were shown to collect in regions of low vorticity and high strain rate, with the most 

severe preferential concentration taking place for St=0.15.  This suggests that instead of enhancing mixing, 

turbulence may inhibit the mixing of particles.  They support this by stating that instantaneous number densities 

were seen as much as 25 times the mean value.   

Using DNS, Elghobashi and Truesdell (1992) studied the dispersion of particles in decaying isotropic 

turbulence.  They include viscous and pressure drag forces, force due to fluid pressure gradient, an added mass 

inertial force, Basset force, and gravity.  A second-order staggered finite difference code with 963 grid points is 

used.  Three particle classes are studied (corn, glass, copper).  To allow time for the particles to adjust to the 

turbulence and remove any error with the initial particle conditions, the mean-square relative velocity is used as a 

measure to decide when the particles became independent of their initial injection.  They compare the mean-square 

displacement of the particles to experiments and obtain good agreement.  The velocity frequency spectra of the 

particles without considering gravity shows that at low wavenumbers, the turbulence energy of the particles is 

greater than that of the surrounding fluid.  They show that in the gravity direction, the dominant forces are buoyancy 

and drag.  

The modification of turbulence due to the presence of small solid particles is studied via DNS by 

Elghobashi and Truesdell (1993).  They find that the particles augment the turbulence energy at high wavenumbers.  

An increase in the dissipation rate is seen when particles are present which indicates a faster transfer of energy from 

the large scales to the small scales.  The energy also decays faster with particles than without particles.  An 

anisotropic transfer of energy to the small scales is seen when gravity is included.  The two-way coupling effects are 

found to be larger at higher volume fractions.   

Considering only the drag force on the particles, Boivin, Simonin, and Squires (1998) used DNS to 

simulate particle laden isotropic turbulence on a 963 grid.  They neglect particle-particle collisions and gravitational 

settling.  It is found that the particles dissipate more kinetic energy as the mass loading increases, while at the same 

time being independent of the particle relaxation time.  They also state that the particles transfer energy from the 
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large scales of motion back to the small scales of motion, thereby modifying the turbulence.  They point out that in 

two-way coupling, it may not be appropriate to describe the coupling in terms of the small-scale variable since the 

turbulence is distorted across the entire spectrum.  They say that higher Reynolds numbers must be considered 

before that conclusion can be drawn. 

Boivin, Simonin, and Squires (2000) considered LES of gas-particle isotropic turbulence using a priori 

testing of several SGS models, including the Smagorinsky model, scale-similarity, dynamic Smagorinsky, and 

dynamic mixed model.  The dynamic mixed model accurately predicted the p.d.f. of the subgrid dissipation in the a 

priori study.  Some a posteriori testing was done with the dynamic mixed model.  They show that the dynamic 

mixed model correctly predicts the spectra, with particles transferring energy to the high wavenumbers.  They point 

out that in LES, the SGS model may be less important since some of the dissipation is handled through fluid-particle 

interaction particularly at high mass loadings.   

Uijttewaal and Oliemans (1996) examined particle dispersion and deposition in vertical pipes.  They used 

both LES and DNS to study friction Reynolds numbers of 360, 1000, and 2100 and a range of dimensionless particle 

relaxation times from 5 to 104.  They find that the deposit ion coefficient scales with the turbulence integral time 

scale.  The wall impact velocity is seen to peak around τp
+ = 200.  They state that the use of larger particles is 

questionable as it leads to large particle Reynolds numbers which are not appropriate when using the Saffman lift 

force.  To more accurately represent the dispersion of small particles, they suggest taking into account the effects of 

the subgrid turbulence on the particle motion, a suggestion that we employ by adding subgrid fluctuations 

(calculated from a dynamic subgrid kinetic energy model) to the fluid velocity at the particle positions.   

Brooke, Hanratty, and McLaughlin (1994) looked at the free-flight mixing and deposition of aerosol 

particles using DNS in channel flow.  They find that particles deposit in one of two ways: diffusion to the wall and 

free flight towards the wall.  The latter is seen to be the dominant mechanism.  Free flight of a particle is assumed to 

begin when the velocity of a particle and fluid element are equal at a location.  They mention that particles do get 

trapped at the wall, and if a long enough time passes, they may deposit due to diffusion.  But they point out it is 

more likely that they will be ejected from the near wall layer, and then travel back to the wall in free flight and 

deposit in that manner.   

Large Eddy Simulation was used by Wang and Squires (1996a) to study particle laden channel flow at 

Reτ=180 and 644.  Neglecting particle-particle collisions, they used the dynamic eddy viscosity model and included 

drag and gravitational forces.  By only considering one-way coupling, the carrier phase was not modified by the 

particles.  They include a SGS kinetic energy equation and add the SGS fluctuations to the particle velocity and 

show that the SGS fluctuations contribute to less than 1% change in the particle rms fluctuations.  Three particle 

types are considered: 28 µm Lycopodium, 50 µm glass and 70 µm copper.  They followed the trajectories of 

250,000 particles to obtain the particle statistics.  This number of particles was shown to be sufficient for resolving 

the statistics.  Near the wall, the Lycopodium particles closely match the mean carrier flow, with a slight lag since 

the particles tend to collect in low speed streaks.  The glass and copper particles are seen to have higher velocities 

than the fluid, which agrees with experimental data at Reτ=180.  However, at Reτ  = 644, there are significant 

differences in the LES and previous experimental data.  The experiments show the particles matching the fluid 
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velocity at y+>10, while the LES shows the particles leading the flow throughout the domain.  Also, the particle 

velocities are experimentally shown to increase near the wall at this higher Reynolds number, something LES does 

not predict.  This could be due to the poor near wall resolution of LES.  The rms quantities compare well at 

Reτ=180, and good agreement is obtained at y+>10 for Reτ  = 644.  Again, the near-wall region shows poor 

agreement at this higher Reynolds number.  However, even some past DNS calculations show poor agreement in 

particle statistics near the wall, indicating that perhaps the wall collision model is in error (elastic collisions were 

assumed).  The LES simulations reproduced the preferential concentration of particles by turbulence near the wall 

and near the centerline. 

Particle deposition in channel flow was studied with LES by Wang and Squires (1996b).  This study used 

the dynamic model of Germano in conjunction with a one-way coupling approach.  Reynolds numbers of 180 and 

1000 were examined, based on channel half-width and friction velocity.  They assumed that particle deposition 

occurred whenever a particle was within one radius of the wall.  The initial particle velocities were equal to the local 

fluid velocity and 20,000 particles were randomly placed in the channel for each time constant.  They include a 

shear-lift force which is shown to be small in comparison to the drag.  The streamwise velocity slip ratio is found to 

be larger than the wall normal slip ratio.  The ma ximum particle concentration is found near the wall.  When the 

results are compared with DNS, the particles with the largest relaxation times are found to compare the best.  This is 

because LES accurately simulates the large-scales, and the largest particles are most likely to be influenced by the 

large-scales.  To account for not resolving the small-scales, Schumann's model is used to add a SGS fluctuation to 

the particle.  They find almost no effect of this fluctuation on large particles (τ+ = 6), with small particles (τ+ = 2) 

being affected by as much as 30% in the ratio of wall-normal component of averaged fluid velocity for depositing 

particles to wall-normal turbulence intensity.  It is also found that the lift force increases the particle deposition.   

DNS of particle deposition in a channel with a free slip surface was examined by van Haarlem, Boersma, 

and Nieuwstadt (1998).  They studied two particle classes, τp
+ = 5 and 15, and used 200,000 particles for each class.  

One-way coupling was assumed.  For τp
+ = 5, deposition rates are higher for the free slip channel than the no-slip 

channel.  But for τp
+ = 15, trend is reversed.  For either case, τp

+ = 15 had higher deposition rates than τp
+ = 5.   They 

find that particles which deposit were brought to the wall by fluctuations which originated far from the wall, 

confirming the free flight study done by Brooke, Hanratty, and McLaughlin (1994).   

Zhang and Ahmadi (2000) examined aerosol particle transport and deposition in channels.  A 16×64×64 

grid without a subgrid model is used for the simulations.  Their particle equation of motion includes lift, drag, 

gravity and Brownian diffusion.  Brownian diffusion is shown to be important for particles smaller than 0.1 µm.  

8192 particles were used in their simulations to evaluate statistics.  For horizontal ducts, they found that gravity 

increases deposition by sedimentation on the lower wall.  For vertical ducts, when gravity was in the flow direction, 

deposition rates were higher since when gravity is in the flow direction the lift force will act towards the walls.   

The dispersion of small, dense particles in a planar shear layer between two fluids of different density and 

viscosity was the subject in Soteriou and Yang (1999).  The Lagrangian transport element method (TEM) is used to 

obtain the numerical solution.  They vary the Stokes number to arrive at the following conclusions: at small Stokes 

numbers the particles follow the flow and are dispersed in proportion to the growth of the shear layer, at moderate 
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Stokes numbers the particles disperse beyond the shear region, and at large Stokes numbers the particles are 

unaffected with minimal dispersion.  By varying the viscosity ratio, the trend of particle dispersion with Stokes 

number still held, only the values at which different behaviors were observed shifted.  The magnitude of the 

dispersion was found to decrease with an increase in the viscosity ratio of the two fluids.  Dispersion was found to 

decrease with any amount of variable density for the moderate Stokes number particles.  Small particles were found 

to have an increase in dispersion with increasing density ratio.   

DNS and LES of particle motion was done by Armenio, Piomelli, and and Fiorotto (1999) to study the 

effect of SGS velocity fluctuations in channel flow at Reτ=175.  Two subgrid models were used, the Smagorinsky 

model and its dynamic formulation.  The DNS data were filtered to remove the small scales and study the effect of 

filtering on particle dispersion.  This removed any modeling errors since the filtering was done a posteriori.  They 

found that the dispersion is not strongly dependent on small-scale motion.  Two grids were considered for LES, 

48x48x97 and 64x64x97.  They found that the Lagrangian statistics were very sensitive to the modeling errors.  The 

fine grid LES dispersion statistics compared to within 8% of the DNS results.  The Smagorinsky model gave poor 

estimations of the statistics.  They conclude that a fine grid with an accurate SGS model can give good particle 

statistics.  

A discrete vortex model was used by Chung and Troutt (1988) to study particle dispersion in an 

axisymmetric jet.  They state that the Stokes number is the crucial parameter in determining particle dispersion in a 

jet.  They say that for Stokes numbers on the order of one may be dispersed faster than the fluid.  Small Stokes 

numbers were found to disperse at the fluid dispersion rate.  Large particles were found to disperse less than the 

fluid dispersion rate.  The jet mean and fluctuating velocities compared well with experiments.   

DNS was used to simulate particle dispersion in a mixing layer by Ling et al. (1998).  They show that the 

streamwise large-scale structures develop from initial perturbations and the unstable wavelength in the spanwise 

direction is  shown to be roughly two-thirds of the unstable wavelength in the streamwise direction.  They claim the 

particle dispersion in the three-dimensional mixing layer is dominated by two-dimensional structures.  Particles with 

Stokes numbers of order one are shown to preferentially concentrate at the perimeter of the large-scale structures.   

Yang et al. (2000) performed experiments in a plane wake to determine the particle dispersion properties.  

Knowing that the vortex structures can highly concentrate particles, they use laser pulsed imaging to visualize glass 

beads in the wake of a blunt trailing edge.  They use two sizes of particles, 10 and 30 µm, with air as the continuous 

phase.  They find that particles with Stokes number of order one (St = 1.44 ± 44%) have the largest dispersion in the 

cross stream direction, even significantly greater than small Stokes number particles (St = 0.15 ± 44%) which 

essentially follow the flow fluctuations.  The uncertainty in the Stokes number arises from a range of ±20% standard 

deviation in the diameter.  This trend in dispersion is in agreement with past studies, both numerical and 

experimental.   

It is known that particles in isotropic turbulence preferentially accumulate in regions of low vorticity and 

high strain-rate (Squires and Eaton 1991b).  Ferry and Balachandar (2001) examined channel flow and showed that 

other fluid statistics, such as the swirling strength, λi, and maximum strain, σu, provide a better indication of the 

preferential concentration of particles.  They demonstrated that particles collect in regions of low λi and high σu. The 
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swirling strength, which is the magnitude of the imaginary part of the complex conjugate eigenvalue pair of the fluid 

velocity gradient tensor, has been used to identify vortices (Zhou et al. 1998; Adrian, Balachandar, and Liu 2001).  

The swirling strength is zero at locations where the eigenvalues of ∇u are all real.  A positive value of λi  

corresponds to a local dominance of rotation-rate over strain-rate (Adrian et al. 2001).  Vorticity can arise from 

either swirling or shear.  However, it is the swirl that has a greater centrifugal effect on particles than shear and 

hence swirling strength is a better choice than vorticity for preferential concentration studies.  The maximum strain, 

σu, is the minimal eigenvalue of the strain-rate tensor.  Other quantities which are useful in identifying regions of 

preferential concentration of particles include ∇u:∇u and enstrophy (Druzhinin and Elghobashi 1998). 

To fully appreciate the meaning of ∇u:∇u, one must examine its derivation.  Consider an Eulerian 

formulation of the particle velocity field.  To first order, if one neglects body forces, the particle velocity field, up, 

may be expressed as a function of the fluid velocity field, u, and particle response time, t p, as follows 
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It is clear from (3.4.2.2) that particles will accumulate where ∇u:∇u is positive.   

Recently, Vance and Squires (2002) studied the parallel implementation of a Eulerian-Lagrangian two-

phase flow model.  They considered one-way coupling with collisions in a turbulent channel flow.  The particle 

equation of motion included drag and gravity.  Subgrid fluctuations are neglected when interpolating the fluid 

velocity to a particle position.  Their collision detection algorithm achieves nearly perfect parallel speedup whereas 

their fluid calculation lags in parallel performance due to its inability to efficiently run on parallel machines.  They 

test their method on machines with up to 32 processors.  Even with parallel processing, the bulk of the total 

calculation time resides in the detection of particle -particle collisions.  Their algorithm divides the domain into 

partitions and a particle is allowed to collide with any particle in the 27 neighbor cells surrounding the particle.  

They state that this is sufficient to detect all binary collisions within a time step.  They discuss how to partition the 

domain to reduce communication costs between processors during the particle transport calculation. 

Turbulence modulation in a rotating channel flow was studied using DNS by Pan, Tanaka, and Tsuji 

(2002).  They find that for large particles, the inclusion of particle-particle collisions yields higher turbulent kinetic 

energy compared to the case of no collisions.  Near the center of the duct, the collisions augment the turbulence 

energy at low wave numbers.  Near the walls, the entire spectrum is augmented due to collisions.  A hard-sphere 

model was used when considering collisions.  They showed that turbulence kinetic energy may be transferred from 

the streamwise direction to the other directions through collisions in a rotating channel.   

The behavior of small particles in the wall region of a horizontal channel was studied using DNS by 

Pedinotti, Mariotti, and Banerjee (1992).  One-way coupling was assumed in their simulations.  More uniform 
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distributions were found for particles with very small and very large time constants.  When the dimensionless time 

constant was approximately 3 (based on the friction velocity and kinematic viscosity), the maximum preferential 

concentration was observed.  This was examined by studying the presence of particles in low speed streaks.  

Qualitative agreement with experiments is seen, but due to the higher Reynolds number of the experiments, a direct 

conclusion about the differences cannot be made.   

Wang and James (1999) use an Eddy Interaction Model (EIM) to simulate gas-particle channel flow.  EIM 

reconstructs the instantaneous flow field from the mean flow field and assumes that it is comprised of eddies whose 

lifetimes and length scales can be figured from the mean quantities.  Standard two-equation turbulence models are 

used to provide this information, therefore the reconstructed fluctuations are isotropic, which is a drawback of the 

method in highly anisotropic regions such as near walls.  They attempt to correct this flaw by incorporating damping 

functions into the EIM, and achieve improved results when compared to the standard EIM.  Deposition velocities are 

in good agreement with experiments, except for small particles which they attribute to the lack of a lift force in their 

calculations.   

Wang et al. (1997) study the effect of the lift force on particle deposition velocity in turbulent flow using 

LES.  They state that the Saffman formula overpredicts the deposition velocity when compared to experiments.  

They develop an “optimum” lift force which they state is the most accurate to expression to date.  This optimum 

force is three times smaller than the Saffman force.  They find that the optimum force makes the deposition velocity 

less dependant upon the particle relaxation time.  However, they also note that neglecting the lift force completely 

gives even better results when compared to the experiments. 
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Chapter 4. Governing Equations and Numerical Methods 

In this chapter, the governing equations and the associated numerical methods used in this research for the 

LES calculations of fully-developed turbulent flow through a duct of square cross-section are discussed.  In Section 

4.1, the governing equations for the fluid and particles are discussed along with the filtering procedure.  In Section 

4.2, the numerical methods used to solve the governing equations for the fluid flow and particle transport are 

described.  In Section 4.3, the algorithm for interparticle collisions is described.  In Section 4.4, the code validation 

results are presented. 

4.1 Governing Equations for the Large Eddy Simulations 
In the current study, the Navier-Stokes equations for incompressible, three-dimensional flow are solved in 

Cartesian coordinates. The governing equations in their non-dimensional form are: 
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The velocity and length scales used to non-dimensionalize the above equations are the friction velocity, uτ , and 

square duct width, d, respectively.  The time scale then becomes d/uτ .  Since one-way coupling is being considered, 

there is no particle force term in the momentum equation.  The term f on the right hand side of (4.1.2) represents the 

sum of the forces exerted by the fluid on the particles (drag and lift) and is the effect of two-way coupling.  This 

term is zero for one-way coupling simulations.  The effect of particles on the fluid are included in the Navier-Stokes 

equations as point forces acting at the particle centers.  Since the particle locations do not necessarily coincide with 

the fluid velocity grid locations, f must be calculated at the fluid velocity positions. 

In our calculations, a given particle contributes to a finite stencil of fluid grid points surrounding the 

particle.  This approach requires the calculation of fluid velocities at the particle position.  This involves 

interpolation of the surrounding fluid velocities to a given particle location, known as forward interpolation.  Second 

degree Lagrange polynomials are used for interpolation, which involve 27 surrounding fluid grid points.  Once f at a 

particle location has been calculated, it is interpolated back to the 27 surrounding grid points, called backward 

interpolation.  This is done using the same Lagrange weighting functions that were calculated using forward 

interpolation.  Sundaram and Collins (1996) have shown that forward and backward interpolations should be 

symmetric for accurate numerical representation of the overall (fluid + particle) energy balance equation.     

If one were to filter the Navier-Stokes equations such that only the large scales of motion were simulated 

and the effects of the small scales were replaced with a model, one would arrive at the fundamental principle of 

Large Eddy Simulation (LES). The filtered variable χ = χ – χ ', where χ ' is the unresolved portion of the variable, is 

defined by: 
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In wave space, the equivalent form of the filtered variable is: 
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where Gi(xi  - xi') and Gi(ki) is the filter function which satisfies 
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After one filters the Navier-Stokes equations, the filtered form becomes the following: 
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Let the last three terms in the convective derivative be defined as the sub-grid stresses, Qij: 
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The sub-grid scale (SGS) stresses should be consistent upon contraction (i=j).  A new variable τij and a modified 

pressure P are defined as follows: 
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Commonly, an eddy viscosity model is chosen to represent the SGS stresses in terms of an eddy viscosity, also 

called turbulent viscosity, as follows: 
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where ijS is the strain rate tensor and νT is the eddy viscosity.  There are many methods of calculating the eddy 

viscosity, and those models will be discussed in the next section. 

There are several filters available for LES, such as the spectral cut-off filter, Gaussian filters, and top-hat 

filters.  The top-hat filter has been chosen for all spatial directions in this work.  After substitution, the momentum 

equation becomes the following: 
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The particle equation of motion is given in detail by Maxey and Riley (1983).  The form used in this work may be 

expressed as follows: 
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where v is the particle velocity vector, mp is the particle mass, g is gravitational acceleration, and τp is the particle 

response time given by: 
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where dp is the particle diameter, ρp is the particle density, ρ is the fluid density, and Cd is the drag coefficient given 

by: 
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where Rep is the particle Reynolds number given by: 
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4.2 Numerical Procedure for the Large Eddy Simulations 
The numerical method used to solve the equations involves a collocated finite-volume technique.  To solve 

the equations, a fractional-step procedure is used to decouple the continuity and momentum equations.  The 

discretized Navier-Stokes equation may be expressed as the following: 
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In the first step, an intermediate velocity field u( , which does not satisfy continuity, is calculated by neglecting the 

pressure gradient terms in the momentum equations.  Hi is given by the following: 
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The intermediate velocity field can be found from the following equation: 
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In the next step, the intermediate velocity field is corrected by solving for the pressure field at the next time step.  

The correct velocity field 
1n

iu +
should satisfy the conservation of mass: 
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Subtracting equations (4.2.3) from (4.2.1) gives the following expression: 
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If the right hand side of equation (4.2.5) is expressed in terms of the gradient of a single scalar quantity Φ: 
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A Poisson equation for Φ can be obtained by applying the divergence operator to equation (4.2.6) and using 

equation (4.2.4) to give: 
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Equations (4.2.3) and (4.2.7) are solved along with (4.2.6) to obtain the velocity field at the next time step.  A 

Gauss-Siedel iterative solver is used for the momentum equations. 

The particle equation of motion is solved using a fourth-order Runge-Kutta scheme.  Consider the first-

order ODE 

y)f(x,
dx
dy

=  (4.2.9) 

The formula for 4th order Runge-Kutta approximation to the above ODE is  
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where 
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Collisions are examined first and then the particles are advanced using the Runge-Kutta scheme.  Particle deposition 

is considered to occur when a particle makes contact with a wall.  The particle logic has been implemented such that 

it is consistent with the unstructured domain and periodic directions have been accounted for in the transport logic.   

4.3 Particle Collisions 
A majority of the numerical simulations of dispersed two-phase flows have been limited to “dilute” 

suspensions, where interparticle collisions are neglected. The inclusion of interparticle collisions, however, becomes 

important when the volume fraction of the dispersed phase is O(10-4) or greater (Sundaram and Collins 1999; 

Yamamoto et al. 2001). The particle collision algorithms available in the literature range from a simple yet fast 

“retroactive” method, that is prone to underestimating number of particle collisions, to an accurate yet 

computationally intensive “proactive” method (Sundaram and Collins 1996).   In the present work, a new collision 

algorithm that lies in between the purely retroactive and proactive methods while incorporating the advantages of 

both methods is developed. The proposed method is more accurate than the purely retroactive method but 

computationally less intensive compared to the proactive method.  

The simplest method to incorporate particle-particle collisions is a purely retroactive method.  The 

retroactive method checks for particle positions at the end of a time step, and if two particles are found to overlap in 

position, a collision is recorded and the velocities are updated based on the conservation of momentum for the two 

colliding particles. The advantage of this method is that it is the least computationally intensive of available 

methods.  However, there are disadvantages.  Collisions during a time step are missed if two particles collide and 

completely interpenetrate. It has been shown that such cases can be a significant fraction of the total number of 

collisions (Sundaram and Collins 1996). The retroactive method remains popular because of computational 

economy.  However, if a significant fraction of collisions is being missed, then it would be necessary to incorporate 

other methods that can detect the missed collisions. 

The most accurate method for detecting collisions is  a fully proactive method (Sundaram and Collins 

1996).  In this method, collisions are detected as follows.  An initial list of probable collisions is generated, which 

contains all colliding pairs based on their trajectories during a given time step.  These pairs are then sorted in an 

ascending order of the time for collision.  The earliest collision in the list is carried out, and its time, tc, is recorded.  

All particles are then advanced to time tc, and a new list of collision pairs is generated based upon the updated 

particle positions and velocities. The earliest collision in the new list is then carried out and a new time tc is recorded 

to which the remaining particles are advanced.  In this procedure, a colliding particle pair influences the subsequent 

collisions between other particles. Thus, new collisions which may not occur otherwise can take place and collisions 

already scheduled in the older list can be removed. This is because a new list is generated after each collision. This 
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approach is accurate from the viewpoint of purely geometric collisions but the hydrodynamic effects of approaching 

particles are ignored.  The disadvantage of this procedure is that the computational cost can become prohibitive if 

there are a large number of collisions. 

The collision algorithm proposed in this work lies in between the retroactive and proactive methods in 

terms of accuracy of collision-rate capture and computational work. In a sense, it combines and improves upon the 

methods adopted in previous works (Yamamoto et al. 2001; Sundaram and Collins 1996; Chen et al. 1998; Hopkins 

and Louge 1991). In the retroactive method proposed in Chen et al. (1998), the flow domain was divided into slices, 

but the maintenance of a list of colliding pairs of particles is dispensed with in the interest of computational 

efficiency. The disadvantages of this approach are that spurious collisions that would never occur in reality may be 

captured and also, multiple collisions of a single particle within the same time step may be recorded. In the proposed 

algorithm, both the partition of the flow domain and the maintenance of a particle list are retained. The particle list 

ensures the accurate order of collisions, which would not be possible otherwise. In addition, spurious multiple 

collisions of a single particle are also eliminated as the particles that undergo collisions within a time step are 

removed altogether from the collision list.  The current algorithm is also more accurate than the retroactive method 

since collisions in which particles interpenetrate and crossover are captured. Compared to the proactive method, the 

current algorithm is computationally less expensive as the list of colliding particle pairs is generated only once and 

all the collisions in that list are carried out in the ascending order of their collision time with the exception of those 

that involve particles that have already undergone collisions in earlier pairs. Thus, we save considerable 

computational time when compared to the proactive method but attain improved accuracy with respect to the 

retroactive method. Next, the details of the algorithm are presented. For completeness, some of the details which are 

available in the above references will be repeated.  

We consider only binary collisions in this work.  Consider two particles as shown in   Fig. 4.3.1.  It is 

assumed that the particles have constant velocity during the time step, so the effect of collisions becomes a purely 

geometric consideration once the initial particle positions and velocities are known.  Let us consider the reference 

frame, x′-y′, whose origin is fixed on one of the two potentially colliding particles, P2.  The relative velocity and 

position vectors of the two particles, wn and rn, are given as: 

wn = V1n – V2n (4.3.1) 

rn = X1n – X2n (4.3.2) 

where V1n , V2n and X1n, X2n are the velocities and positions respectively of particles P1 and P2 in the laboratory 

reference frame at the end of the n th time step.  The vectors wn and rn, whose magnitudes are denoted by wn and rn 

respectively, define the plane that the y ′-axis lies in.   

As shown in Fig. 4.3.1, the closest possible approach distance, sm, between the centers of the two particles 

can be easily expressed as  

sm = rn sin θ (4.3.3) 

where the angle θ can be found from: 
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The instance of closest approach, tm, can be given by 
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n
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where tn is the time at the end of the n th time step. 

The time of closest approach does not necessarily fall within the current time step.  One must check for two 

factors: first, that tm falls within the current time step, and second, that the minimum distance sm is such that the 

particles just touch.  The first constraint, i.e. tm < tn+∆t, is strict only for point masses.  For particles of finite 

diameter, t m may exceed (tn+∆t), due to particle overlap, and they may still collide within the current time step.  

Hence, the distance constraint can be expressed as  
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where d1 and d2 are the diameters of particles P1 and P2.  The relative position vector as a function of time is given as 
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whose magnitude can be expressed as 
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To find the time at which the minimum distance occurs, we have 
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This leads to the following equation 
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The minimum separation is then given as 

)r(ts mm =  (4.3.11) 

The time of contact, tc, needs to be found, since tm can exceed tc if the particles are overlapping.  To find the time of 

contact, tc, the following equation is used 

0d)r(t 12c =−  (4.3.12) 

where d12 = (d1+d2)/2. 
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This equation has two roots, given by 
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As mentioned in Chen et al. (1998), for colliding particles, both roots of equation (4.3.13) must be real 

which can be shown by considering the following equation 

?)sinrd(wdwrw)( 22
n

2
12

2
n

2
12

2
n

2
n

2
n

2
nn −=+−⋅wr  (4.3.15) 

The right hand side of (4.3.15) must be positive for a collision to take place.  Therefore, both roots of (4.3.13) must 

be real.  It is obvious which root to choose when (4.3.13) is rewritten as the following 
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In general, tc < tm.  The plus sign in (4.3.16) is chosen to account for this fact, since 0nn ≤⋅ wr  necessarily for 

colliding particles.  The particle positions are then updated using the following equation 

nncnc )tt( VXX −+=  (4.3.17) 

The post collision properties can be computed by applying the law of conservation of momentum for the 

two colliding particles as follows: 

2f21f12i21i1 mmmm VVVV +=+  (4.3.18) 

where the subscripts “i” and “f” denote the velocities before and after the collision, respectively.  Let P denote the 

impulse of collision exerted by particle 2 on particle 1: 

)m()m( i22fi11f VVVVP −−=−=  (4.3.19) 

It has been assumed that particles 1 and 2 have identical mass.  If e is defined as the coefficient of restitution 

(perfectly elastic collisions, e = 1, are assumed in this work), P can be obtained by examining the incomplete 

restitution of the normal component of the relative velocity using the following equation at the instant of collision: 
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By using (4.3.19) and (4.3.20), along with the definition of the relative velocity, it follows that: 
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The velocities of particles 1 and 2 are now calculated with (4.3.19).   
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The above method describes how to account for the collision of two particles. However, in a system with 

potentially multiple collisions, an algorithm is required to determine which collisions actually occur under the 

temporal and spatial constraints imposed by the problem. As mentioned before, there are several ways to do this. 

The simplest is to use a purely retroactive method (Yamamoto et al. 2001; Sundaram and Collins 1996) which saves 

CPU time but can underestimate the number of collisions by as much as twenty percent.  A fully proactive method 

(Sundaram and Collins 1996) will accurately (from a geometric standpoint) capture all collisions, but is often 

computationally expensive since the collision algorithm is inherently an O(Np
2) operation, where Np is the number 

of particles in the domain.  The approach described in this work aims to capture the collisions missed by a purely 

retroactive method at a computational cost smaller than the proactive method and also to eliminate spurious multiple 

collisions of a particle in a given time step.   

The current method is as follows. First, all the initial particle positions and velocities are determined.  The 

flow domain is then partitioned into sections in which collisions will be considered.  The size of the partitions is 

selected to be large enough to capture all likely collisions, yet small enough to reduce the search operation for 

colliding pairs. Chen et al. (1998) provide a criterion on the partition widths which says that they should be greater 

than twice the maximum distance two particles, in that partition, travel relative to each other over a given time step. 

In our calculations, the flow domain is partitioned into 16 × 16 × 16 uniform sections. A partition includes several 

grid nodes in each direction and satisfies the above criterion. In a given partition, all collision pairs are identified 

using equations (4.3.1)-(4.3.16).  Next, the pairs are ordered by their time of contact.  The first collision in the 

ordered list (say, between particles p and q) for the partition is carried out by advancing the particles p and q to their 

point of impact by using the velocities at the n th time step.  The post collision properties are found as outlined above 

in equations (4.3.17)-(4.3.21), and then the particle pair is advanced for the remainder of the time step.  The collision 

list is then modified as follows: any future collision pair that contains particles p or q is not allowed to occur in the 

current time step.  By removing particles p and q from future collisions in the given time step, any erroneous 

multiple collisions of a particle within the same time step are eliminated.  The next pair in the list is then allowed to 

collide, and they are then removed from future collisions within the current time step.  This process is repeated until 

there are no more particles left in the collision list.  The inclusion of this collision algorithm required approximately 

two and a half times more CPU time than a simulation without collisions.  This approach in treating collisions 

represents an improvement over the purely retroactive method.  For example, consider the manner in which the 

retroactive algorithm detects collisions.  Typically, only particle overlap at the end of a time step is used as the 

criterion for collision.  Thus, if three particles are overlapping, three collision pairs are identified and carried out 

without regard to which pair actually collided first.  Clearly, this is not physical.   

4.4 Validation of the Scheme 
Validation of the scheme was accomplished through channel flow simulations.  Periodic flow in a channel 

of dimensions 4πδ x 2δ x 2πδ in the streamwise, wall-normal and spanwise directions, respectively, was carried out 

for Reτ  = 180 and 590, based on friction velocity and channel half-height.  The results were compared to the work of 

Kim, Moin, and Moser (1987) and Moser, Kim, and Mansour (1999), respectively.  Several subgrid models were 

evaluated.  The models used include the dynamic subgrid kinetic energy model (Kim and Menon 1997), the static 
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coefficient subgrid kinetic energy model (Horiuti 1985) with a wall-damping function, and the so-called “no model” 

LES whereby the simulation is functioning as a coarse grid DNS.  The grid used was 100x100x50 in the streamwise, 

wall-normal and spanwise directions, respectively.  The same grid was used for both Reynolds numbers.  A 2.5% 

geometric progression stretch is applied to the grid in the wall-normal direction.  Due to the difference between the 

formulations of the dynamic model and the static model, the grid spacing does not work out to be the same.    In the 

dynamic model, a coarse grid is generated which has half the number of nodes in each direction when compared to 

the fine grid.  The stretching is applied to the coarse grid.  The fine grid is generated by dividing each coarse grid 

cell into 8 equal fine grid cells.  Although the total number of nodes is the same for all channel flow simulations, the 

manner in which the dynamic model operates lends itself to a slightly different grid structure.  Since no stretching is 

applied to the streamwise and spanwise directions, the spacing is the same in these directions regardless of the 

model.  Only the wall-direction is altered.  If one applies no grid stretching (as was done in some simulations 

reported in this code validation section), the dynamic model formulation used in this work will naturally lend itself 

to a uniform grid.  See Fig. 4.4.1 for a two-dimensional schematic of the dynamic model grid logic.   

4.4.1 Channel Flow, Reτ  = 180 Results 
The first simulations were done at Reτ  = 180 and compared to Kim, Moin, and Moser (1987).  The statistics 

are averaged in time and the homogeneous directions.  As a general rule, statistics were averaged for 10 time units.  

Longer averaging times had little or no effect on changing the statistics.  The mean velocity profiles are shown in 

Fig. 4.4.1.1.  Four cases are compared to the DNS data: the no-model, the Horiuti model, the dynamic k model on a 

uniform grid, and the dynamic model on a stretched grid.  In the near-wall region, all the cases compare well with 

the DNS data, with the Horiuti and no-model runs coming closest to matching the near-wall data.  Near the channel 

centerline, all models over predict the DNS data.  The Horiuti model is seen to overpredict the DNS by more than 

10%, with the dynamic model on a stretched grid only overpredicting the DNS by less than 2%.     

In reporting the rms predictions of the various models, two values are reported for each of the kinetic 

energy subgrid models.  The resolved rms value is the value computed directly from the velocity fluctuations.  The 

total rms reported adds the subgrid fluctuation isotropically to the resolved quantity.  This equates to adding 

sgsk
3
2

to each rms quantity.  This gives a “true” measure of the total fluctuations since the resolved and subgrid 

scales are being taken into account and should represent the DNS data better.  However, it will be seen that this is 

not necessarily the case. 

The streamwise rms results are shown in Fig. 4.4.1.2.  It is clear that the resolved urms predicted by the 

dynamic k model on a stretched grid best predicts the DNS data, followed closely by the no-model case.  However, 

once the subgrid fluctuations are added, the models are overpredicting the DNS by as much as 30% at the peak of 

the profile.  This means that the models are predicting excessive subgrid energy.  It should be noted that all finite-

volume top-hat filter LES results are grid dependent.  One can easily improve the results by increasing the grid 

resolution and eventually one will approach the DNS solution.  However, this is not practical and one must choose a 

grid resolution much coarser than the DNS simulation.   
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The wall-normal rms results show in Fig. 4.4.1.3 that the no-model case best predicts the DNS data.  Both 

the resolved rms values from the k models underpredict the DNS data, as they should since it is the total rms value 

which should compare well with the DNS data.  However, once the subgrid fluctuations are added, it is seen that the 

models overshoot the DNS by roughly 35% at the peak of the profile.  The lack of smoothness in the total rms 

velocity predicted by the dynamic model is a result of its prediction of the sgs k, which is non-smooth near the wall.  

This is due to the method in which the grid is created, as two daughter cells of a coarse grid cell will have the same 

size, therefore no grid stretching between daughter cells, which decreases the resolution near the wall and thus 

decreases the performance of the model.  Ideally, one would generate a stretch for the fine grid cells which perfectly 

coincides with the coarse grid.  However, this is prohibitive especially for complex geometries.   

The spanwise rms velocity is shown in Fig. 4.4.1.4.  It is seen that both k models’ resolved quantities 

underpredict the DNS data as they should.  However, the total rms values overpredict the DNS data by roughly 33% 

near the peak of the profile.  The no-model case also overpredicts the DNS, but to a lesser degree of approximately 

20%. 

The Reynold’s stress term v'u' is shown in Fig. 4.4.1.5.  It is seen that the no-model case best predicts the 

DNS data, followed closely by the Horiuti model.  The dynamic k model underpredicts the maximum magnitude of 

the term by roughly 28%.   

The value of the subgrid kinetic energy predicted by each model is shown in Fig. 4.4.1.6.  It is clear that the 

dynamic model predicts roughly twice as much sgs k as the Horiuti model.  The non-smooth near wall behavior of 

the dynamic model’s prediction for the sgs k has already been explained.  The sgs k correctly goes to zero near the 

wall for both models.   

The turbulent eddy viscosity predicted by the dynamic model on a stretched grid is shown in Fig. 4.4.1.7.  

The jagged nature of this viscosity is due to the nature of the grid used in the dynamic model formulation, as each 

daughter cell of a coarse grid cell are assigned the same constants for the production and dissipation terms, 

respectively.  In reality, there is no physical reason why two daughter cells should have the same values for the 

constants since the flowfield is different at these different locations.  However, this issue is once again argued by 

claiming that the difference is negligible as the grid is refined and the two daughter cells approach each other in 

space.   

The value of the coefficient for the production term in the dynamic model is shown in Fig. 4.4.1.8.  It is 

seen that the advantage of the dynamic model is that no wall model is needed to generate correct near-wall behavior 

of the coefficient.  The model automatically damps the production term at the wall.  This is a tremendous advantage 

when the square duct geometry is considered later, as the wall models are unknown for the square duct geometry, 

and poorly understood even for simple geometries like channels.  Horiuti’s model claims this coefficient is a 

constant 0.05, which is roughly the mean value given by the dynamic model.  So it is clear that the dynamic model is 

behaving as expected.  The coefficient for the dissipation term in the dynamic model is shown in Fig. 4.4.1.9.  The 

constant coefficient models suggest a value of 1 to 1.5, which falls within the range given by the dynamic model. 
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4.4.2 Channel Flow, Reτ  = 590 Results 
The grid is held fixed and the Reynolds number is increased to 590 for the next comparisons.  The DNS 

data by Moser, Kim, and Mansour (1999) is used as the baseline for comparison.  When examining the mean 

velocity profile, shown in Fig. 4.4.2.1, it is clear that the Horituti model better predicts the DNS data.  However, the 

qualitative trends, such as inflection points, in the DNS profile are not captured at this Reynolds number.  The 

dynamic model captures the near wall region better than the Horituti model, yet near the centerline the dynamic 

model overpredicts the DNS data by roughly 20%.   

The streamwise rms velocity profiles are shown in Fig. 4.4.2.2.  It is seen that none of the simulations 

capture the location of the peak or the magnitude of urms accurately.  Once the subgrid fluctuations are added, the 

dynamic model overpredicts the rms velocity by roughly 100%.  The Reynolds number is clearly much too large to 

be simulated by only 0.5 million nodes in this LES. 

The wall-normal rms velocity profiles are shown in Fig. 4.4.2.3.  A more positive outcome may be seen in 

this plot.  The k models correctly underpredict the DNS data when the resolved rms quantity is considered.  By 

adding the subgrid fluctuation, the peak shifts closer to the location of the peak in the DNS data, however, the 

magnitude is then overpredicted by 30% and 80% for the Horiuti and dynamic k models, respectively. 

The spanwise rms velocity profiles are shown in Fig. 4.4.2.4.  The Horiuti model correctly underpredicts 

the DNS data when the resolved rms velocity is considered.  All other forms of the rms velocity overpredict the 

DNS data, with the dynamic k model overpredicting the peak by roughly 100%.   

The Reynold’s stress term v'u' is shown in Fig. 4.4.2.5.  The dynamic k model predicts the DNS data the 

closest.  The Horiuti model underpredicts the maximum magnitude of the term as well as gives the peak farther from 

the wall compared to both the DNS and dynamic k model.   

The value of the subgrid kinetic energy predicted by each model is shown in Fig. 4.4.2.6.  It is clear that the 

dynamic model predicts roughly twice as much sgs k as the Horiuti model.  The non-smooth near wall behavior of 

the dynamic model’s prediction for the sgs k has already been explained.  The sgs k correctly goes to zero near the 

wall for both models.   

The turbulent eddy viscosity predicted by the dynamic model on a stretched grid is shown in Fig. 4.4.2.7.  

The jagged nature of this viscosity is due to the nature of the grid used in the dynamic model formulation, as 

explained before.  However, as the grid is refined, this trend decreases.  Also, the eddy viscosity in a mean sense 

never appears in the calculation.  Only the instantaneous values enter into the momentum equation.     

The value of the coefficient for the production term in the dynamic model is shown in Fig. 4.4.2.8.  It is 

seen that the advantage of the dynamic model is that no wall model is needed to generate correct near-wall behavior 

of the coefficient.  The model automatically damps the production term at the wall.  This is an advantage when the 

square duct geometry is considered later, as the wall models are unknown for the square duct geometry, and poorly 

understood even for simple geometries like channels.  Horiuti’s model claims this coefficient to be a constant of 

0.05, which is roughly the mean value given by the dynamic model.  So it is clear that the dynamic model is 

behaving as expected.  The coefficient for the dissipation term in the dynamic model is shown in Fig. 4.4.2.9.  The 

constant coefficient models suggest a value of 1 to 1.5, which falls within the range given by the dynamic model.  It 

is interesting to note that both constants have decreased in magnitude when compared to the Reτ  = 180 case.   
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4.4.3 Summary of Code Validation 
It has been shown that LES can be an accurate tool in turbulence simulations if careful consideration is 

given to the grid, the subgrid model, and the Reynolds number.  Since particle transport will be a major part of this 

thesis, the added information of the subgrid energy will be valuable in predicting accurate particle trajectories which 

is why the dynamic k model is chosen over the so-called “no-model” LES.  The Horiuti model is not considered an 

accurate choice for the square duct since it requires a wall-damping function, which not known precisely for the 

square duct.   
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Chapter 5. Preferential Concentration Results 

The governing equations were solved on an 80×80×128 grid with 2.5 geometric progression grid stretching 

in the two wall directions.  The flow domain was δ× δ×2πδ.  The grid distributions in the x and y directions (the two 

wall directions) were identical.  The simulation was performed at a Reynolds number of 360, based on average 

friction velocity and duct width.  The minimum and maximum grid spacings in the wall directions were 3.5232 and 

5.6324 wall units, respectively.  The first node away from the wall was at 1.7616 wall units.  The streamwise grid 

spacing was held fixed at 17.6714 wall units.  See Table 5.1 for complete grid information in the cross-section.  The 

grid is symmetric about the mid-plane.  The dimensionless time step was 0.0001.     

The choice of initial conditions does not influence the final solution, although it has an effect on the length 

of integration time needed to reach a stationary state.  A restart file from a single phase square duct simulation was 

used as the initial conditions for this study.  That restart file was generated after applying an initial divergence free 

perturbation to a parabolic velocity profile.  The simulation utilized just under 1 GB of memory.  The vast majority 

of CPU time on the fluid calculation was spent on the multigrid solver for the pressure Possion equation. 

The fluid flow calculation was compared to the DNS data of Madabhushi (1993), who studied flow at Reτ  = 

260, and to LES data of Madabhushi and Vanka (1991), who studied flow at Reτ  = 360.  Good agreement is seen in 

Fig. 5.0.1 where the mean streamwise velocity at the wall bisector is compared to past studies.  Mean fluid statistics 

were averaged for more than 60 time units.  This unusually long averaging time was necessary to achieve symmetry 

in contours of fluid statistics since the square duct has only one homogeneous direction to average across.   

In the cross-section of a square duct, one may identify different regions of flow patterns.  We have chosen 

four such locations in this work, all identifiable from a time -mean sense (see Fig. 5.0.2).  Due to the finite resolution 

of the grid, the nearest node to each desired location was chosen.  The locations are as follows: the center of the duct 

where the secondary flows are minimal (x+=177.2, y+=177.2), the near-wall region (x+=177.2, y+=19.8), the center 

of the time-mean secondary flow vortices (x+=76.7, y+=31.2), and the saddle region between the secondary flow 

vortices (x+=59.5, y+=59.5).  An area of 20.25 square wall units about each point was used to collect particle 

statistics.  Note that these locations are only significant in a time-mean sense, and are used only for the preferential 

concentration portion of this dissertation.  These locations are also arbitrary, no significant meaning is associated 

with the coordinates of any points other than convenience.   

To obtain the PDFs, the fluid statistic is interpolated to the particle positions, then averaged in time and 

over the number of particles sampled in the thin tube in the streamwise direction for a given cross-sectional location.  

This gives a conditional PDF of the fluid statistic since the quantity is only sampled at particle positions in the thin 

streamwise tube.  The fluid PDF is averaged over all grid points within the thin tube.  Only three values of τp
+ are 

shown for clarity in the PDFs (τp
+ = 0.25, 1, and 8), along with the PDF of the (unladen) fluid statistic.  The mean 

values of the statistics shown were obtained in a similar fashion.  See Table 5.2 for the particle parameters studied 

for the preferential concentration simulations. 

For each different response time, trajectories of 200,000 particles are computed.  Elastic collisions with the 

wall are assumed.  The particles are initially randomly positioned in the domain with initial velocities equal to the 
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local fluid velocity and are evolved for at least 10 particle response times (based on the largest τp) to allow the 

particles to lose any initial inertial effects.  Statistics are then averaged for at least 19 particle response times 

(statistics were averaged over 604 particle response times for the smallest particles).  Statistics were averaged in the 

homogeneous direction as well as in symmetric planes in the cross section when appropriate.  Since it is only by 

chance that a particle is located at a fluid grid point, second order Lagrange polynomials were used to interpolate the 

fluid quantities to a particle position.  This involved 27 fluid quantities (such as u, v, w and ksgs) surrounding the 

particle.   

In order to visually display the preferential concentration of particles, a different series of simulations were 

conducted where 100,000 particles per response time were distributed randomly in a thin volume defined by 7.05 ≤ 

y+ ≤ 10.66.  The particle equation of motion was then integrated for 2.7 particle response times for τp
+ = 8, and 86.4 

particle response times for τp
+ = 0.25, where τp

+ is the particle response time in wall units and is also a Stokes 

number.  Scatter plots of instantaneous particle positions were then generated.   

5.1 Visualization of Preferential Concentration in a Near-Wall Plane 
In this section, we present the particle scatter plots along with near wall contours of fluid statistics to 

visually illustrate the preferential concentration phenomenon.  Following this illustration, we present variation of 

〈ω〉, 〈λi〉, 〈σu〉, and 〈∇u:∇u〉, and their probability dis tribution functions with τp
+ and cross-sectional location.  The 

notation “〈〉” denotes averaging in the homogeneous direction, time and appropriate symmetric cross-sectional 

points.   

For clarification, the meaning of the above statistics will be mentioned again in this section.  The swirling 

strength, λi, which is the magnitude of the imaginary part of the complex conjugate eigenvalue pair of the fluid 

velocity gradient tensor, has been used to identify vortices (Zhou et al. 1998; Adrian, Balachandar, and Liu 2001).  

The swirling strength is zero at locations where the eigenvalues of ∇u are all real.  A positive value of λi  

corresponds to a local dominance of rotation-rate over strain-rate (Adrian et al. 2001).  Vorticity can arise from 

either swirling or shear.  However, it is the swirl that has a greater centrifugal effect on particles than shear and 

hence swirling strength is a better choice than vorticity for preferential concentration studies.  The maximum strain, 

σu, is the minimal eigenvalue of the strain-rate tensor.  To fully appreciate the meaning of ∇u:∇u, one must examine 

its derivation.  Consider an Eulerian formulation of the particle velocity field.  To first order, if one neglects body 

forces, the particle velocity field, up, may be expressed as a function of the fluid velocity field, u, and particle 

response time, tp, as follows 
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It is clear from (5.1.2) that particles will accumulate where ∇u:∇u is positive.   

To study preferential concentration in experiments, typically one would take a snapshot of particle 

positions and overlay the velocity vector plots obtained from, say, particle image velocimetry (PIV).  One can do 

similar studies using computations, although doing so in the cross-section of the square duct provides little 

information unless very high volume fractions are studied so that one may clearly identify patterns in the scatter 

plots.  For one-way coupling studies, typically the volume fraction is low, so taking a cross-sectional snapshot 

reveals little information due to the small sample size of particles in a given cross-section.  Another approach is to 

place a large number of particles in a selected region and evolve the particles for a few particle response times, and 

observe their locations with respect to local fluid statistics.  By placing particles in a plane parallel to the wall, the 

number of particles in the plane will remain relatively constant over a few response times, allowing more definite 

conclusions to be made on preferential concentration at near-wall turbulent structures.  This approach was used for 

three particle Stokes numbers in this work (τp
+ = 0.25, 1, and 8).  Since this is the first work on particle transport in a 

square duct, the results of the simulations in this section are intended to first give the reader an understanding of the 

nature of particle dispersion in a square duct before moving on to more sophisticated methods of measuring the 

preferential concentration. 

To visually demonstrate the preferential concentration of particles in a square duct, scatter plots of particle 

positions along with instantaneous contours of streamwise velocity, vorticity magnitude, swirling strength, strain-

rate, and ∇u:∇u are shown in Figs. 5.1.1-5.1.8.  Although only qualitative, clear trends may be observed by 

comparing the contour plots of the above statistics to the particle scatter plots.  The particle scatter plots for a square 

duct are seen to be more complex than what other researchers have shown for channel flow (Zhang and Ahmadi 

2000).  The secondary flows, especially those near the corners, attenuate the streaky chains of particles reported in 

the case of a channel flow.  In a square duct, patches of particles along with chains are formed and aligned 

preferentially with the surrounding fluid statistics. 

Low speed streaks are known to contain locally high concentrations of particles (Wang and Squires 1996b).  

By comparing Fig. 5.1.4 to the scatter plots, we see that there is strong correlation between the low speed streaks 

and particle positions.  Uniquely shaped “holes” in the particle scatter plots align remarkably well with the patches 

of high speed streamwise flow.  The trend is most obvious for τp
+ = 1, which will be shown later to be near the 

Stokes number which obtains maximum preferential concentration.  When examining the contours of vorticity 

magnitude, ω, shown in Fig. 5.1.5, it is clear that there is a correlation between vorticity and particle location.  The 

contours of swirling strength, shown in Fig. 5.1.6, are more difficult to correlate to the scatter plots with visual 

inspection alone.  The same can be said of the contours of s u and ∇u:∇u, shown in Figs. 5.1.7 and 5.1.8, 

respectively.  Statistical methods are clearly required to obtain any conclusions about preferential concentration 

trends using the above fluid statistics.  However, it is beneficial to see the complex nature of these structures before 

moving on to statistical analysis of these quantities. 

Being the first study to display statistics such as λi, s u, and ∇u:∇u in a square duct, it is insightful to 

display contours of these statistics in several near wall planes to qualify how these statistics behave throughout the 
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duct.  Instantaneous contours are presented for y+ = 1.76, 35.09, and 177.18, in Figs. 5.1.9-5.1.11 for λi, s u, and 

∇u:∇u, respectively.  The cross-sectional contours of the same statistics are shown in Figs. 5.1.12-5.1.14.   

5.2 Effect of vorticity magnitude 
It has been shown by previous researchers that particles accumulate in regions of low vorticity (Squires and 

Eaton 1991b).  Typically, when it is stated that particles collect in low vorticity regions, the conclusion is drawn 

upon evidence from simulations of flows with little or no time-mean shear, such as isotropic turbulence.  However, 

vorticity can arise from either rotation or shear.  Consider laminar plane Couette flow.  This flow has no rotational 

aspect, yet exhibits vorticity due to the shear stress at the walls.  It is typically thought that only the rotational aspect 

of vorticity lends itself to the preferential concentration of particles.  Near walls, where vorticity is high due to shear, 

it is not likely that vorticity remains a strong measure of preferential concentration.  Enstrophy, which is the square 

of the vorticity, would be similarly misinterpreted near a wall.  It is for this reason that the swirling strength, 〈λi〉, is 

a good measure of preferential concentration rather than vorticity.  To corroborate this statement, the vorticity 

magnitude will now be examined to demonstrate that near a wall, the vorticity (and hence enstrophy) is not a good 

measure of preferential concentration of particles in flows with high shear.   

Due to the large variation of vorticity magnitude in the duct cross-section, it is necessary to use a separate 

plot for each location to clearly see the trends.  In the near wall region (Fig. 5.2.1) small particles align themselves 

closely with the low vorticity regions, which are located between vortical structures near the wall.  As τp
+ increases, 

the value of 〈ω〉 at the particle positions also increases at this location.  Note that in the near wall region, the levels 

of vorticity are highest when compared with other locations.  The vortex center region, shown in Fig. 5.2.2, also 

indicates that small particles align themselves most closely with low vorticity regions.  Again, as τp
+ increases, the 

value of 〈ω〉 at the particle positions is seen to increase. This indicates that large particles accumulate in regions of 

high vorticity also for the vortex center location.  Upon examining the saddle region in Fig. 5.2.3, we see that 

particles with τp
+= 1 experience the lowest local vorticity.  Note however, the total variation in 〈ω〉 in the saddle 

region is roughly an order of magnitude smaller than the value closer to the wall.  At the duct center region, the 

variation in vorticity is small, hence the trend is not clear (Fig. 5.2.4).  This is expected since the duct center is a 

region of low vorticity and vortical structures are not dominant here.   

Upon examining the PDF of vorticity magnitude at the near wall location, shown in Fig. 5.2.5, it is seen 

that, in contrast to observations in isotropic turbulence, larger particles do indeed collect in regions of high vorticity.  

The PDFs of the smaller particles are shifted to values of lower vorticity than the fluid PDF, indicating that the small 

particles are accumulating preferentially in low vorticity regions.  At the vortex center region, shown in Fig. 5.2.6, it 

is again seen that large particles are able to accumulate in locations of high 〈ω〉.  Smaller particles are again found to 

align themselves with low vorticity regions at this location.  In the saddle region in Fig. 5.2.7, we see that all 

particles are collecting in regions of low vorticity regardless of Stokes number.  This is also true in the duct center 

region, seen in Fig. 5.2.8.   The duct center will behave more like isotropic turbulence due to the relatively large 

distance from the walls compared to other locations, and hence at the duct center we see the trends confirming what 

others have found in isotropic turbulence – that particles collect in regions of low vorticity.  However, this statement 
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clearly does not hold true near a wall.  Therefore, for regions of flow which experience strong shear, vorticity is not 

an appropriate measure of preferential concentration of particles.  This was clearly shown by examining the PDFs of 

the vorticity for large particles in the near wall region. 

5.3 Effect of swirling strength 
Since the swirling strength is a measure of vorticity, it is expected that particles will accumulate in regions 

of low swirling strength.  Ferry and Balachandar (2001) have verified this in channel flow.  Unlike 〈 ω〉, 〈λi〉 accounts 

only for regions of vorticity which have the nature of a core (Adrian et al. 2001).  Therefore, it is expected that 〈λi〉 

be a more appropriate measure of preferential concentration in areas of flow which contain distributed shear.  It is of 

interest to know how preferential concentration varies with swirling strength in the cross-section of a square duct.  

Shown in Fig. 5.3.1 is the variation of 〈λi〉 with τp
+ and the cross-sectional location.  It is seen that for the near wall 

and vortex center locations, as τp
+ increases particles accumulate in regions of decreasing 〈λi〉 before passing through 

a minimum, after which the trend is reversed.  This minimum occurs at τp
+ = 4.  These trends in the mean values 

agree with the trends found in channel flow by Ferry and Balachandar (2001).  Due to the coherent vortical 

structures found in the near wall region where turbulence is generated, it is seen that this area contains particles 

experiencing the highest levels of swirling strength.  As the distance from the wall increases, the swirling strength 

becomes small.  For the saddle region, it is seen that the trend in 〈λi〉 with τp
+ is less apparent.  At the duct center, we 

see little variation in the swirling strength with τp
+.   

By examining the PDFs of swirling strength for the various locations, we can expand upon the trends s een 

in the plots of the mean values.  In the near wall region, we can see in Fig. 5.3.2 that particles indeed accumulate in 

regions of low swirling strength, with the trend more pronounced for large particles.  As in the previous PDFs, only 

three particle Stokes numbers are shown for clarity.  Unlike the PDFs of vorticity near the wall in the previous 

section, we see particles aligning themselves with low 〈 λi〉 for all particle Stokes numbers.  This trend confirms 

earlier statements that the swirling strength, not vorticity, is the more appropriate measure of preferential 

concentration when considering rotational aspects of the fluid.  At the vortex center location, shown in Fig. 5.3.3, 

particles are clearly seen to accumulate in regions of low 〈λi〉, with identical trends as shown in Fig. 5.3.2 at the near 

wall location.  As the distance from the wall increases, the saddle region, shown in Fig. 5.3.4, still displays the same 

trend of particles accumulating in regions of low 〈 λi〉, but to a lesser degree.  Also, as the location is moved further 

from the wall to the saddle region, the influence of τp
+ on the PDFs is relatively weak.  In the center of the duct, 

shown in Fig. 5.3.5, the particles tend to more closely match the fluid PDF with only slight preferential 

concentration of large particles.  This suggests that the distance from the wall has a significant influence on the 

degree of preferential concentration of particles.  Due to the consistent trends seen in the PDFs of λi, we can state 

that λi is a more appropriate choice than vorticity for studies of preferential concentration. 

5.4 Effect of strain-rate 
It has been shown by previous researchers that particle collect in regions of high strain-rate (Squires and 

Eaton 1991b).  Ferry and Balachandar (2001) have shown that σu is a good measure of preferential concentration in 

channel flow.   Shown in Fig. 5.4.1 is the variation of 〈 σu〉 with τp
+ and the cross-sectional location.  It is seen that 
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for the near-wall, vortex center and saddle locations, as τp
+ increases particles accumulate in regions of increasingly 

negative 〈σu〉 (which indicates compressional strain) before passing through a maximum compressional strain, after 

which this trend is reversed.  This maximum occurs within the range 2 ≤ τp
+ ≤ 4.  From the mean values, it can be 

seen that particles in the vortex center region accumulate in areas of fluid with the highest strain-rate of the locations 

sampled.  The particle Stokes number in the vortex center region which aligns itself with the highest magnitude of 

〈σu〉 is τp
+ = 4.  However, in the near wall region, which experiences the least strain of the locations sampled, the 

particle Stokes number which experiences the highest local strain-rate is τp
+ = 2.  The saddle region also indicates 

that particles with τp
+ = 2 align themselves with the highest magnitude of local strain-rate.  This suggests that the 

preferential concentration is not only a function of distance from the wall, but also a function of τp
+.  In the duct 

center, no clear trend can be seen.   

By examining the PDFs of 〈σu〉, it can be seen that particles tend to collect in regions of higher 

compressional strain (negative strain) when compared to the fluid PDF.  For the near wall region, shown in Fig. 

5.4.2, particles clearly align themselves along areas of higher compressional strain.  This trend is more apparent for 

larger Stokes numbers.  This is also the case in the vortex center region, shown in Fig. 5.4.3.  Particles with small 

Stokes numbers are seen to exhibit less departure from the fluid PDF, indicating that small particles are dispersed 

more than large particles.  However, for the saddle region, shown in Fig. 5.4.4, this trend is less apparent.  Particles 

are still seen to move towards areas of high compressional strain, but to a lesser degree.  In the duct center, 

displayed in Fig. 5.4.5, the trend is much less pronounced and no definite conclusion may be made for this location.   

5.5 Effect of ∇u:∇u 

The final quantity we examine is ∇u:∇u, which can also be expressed as 
22

OS − , where S and O  are 

the strain-rate and rotational components of the velocity gradient tensor, respectively.  As mentioned earlier, positive 

values of ∇u:∇u indicate an accumulation of particles at a location.  Shown in Fig. 5.5.1 is the variation of 〈∇u:∇u〉 

with τp
+ and the cross-sectional location.  It is seen that for the near-wall and vortex center locations, as τp

+ increases 

particles accumulate in regions of increasing 〈∇u:∇u〉 before passing through a maximum, after which this trend is 

reversed.  This maximum occurs within the range 2 ≤ τp
+ ≤ 4.  In the near wall region, particles tend to have the 

maximum preferential concentration indicated by the largest values of 〈∇u:∇u〉.  Maxey (1987) has shown that 

heavy particles accumulate in regions of high ∇u:∇u.  As expected, the duct center shows little variation in 〈∇u:∇u〉 

with particle Stokes number.  This is because there are relatively low fluid gradients in this region.  It is the 

proximity to the wall that has greater effect on the level of preferential concentration than the time-mean flow 

pattern.  For example, the vortex center region is the second closest to the wall among the locations examined in this 

work, and accordingly exhibits the second highest level of preferentia l concentration.  In theory, for very large or 

very small particles, the mean value of ∇u:∇u at particle positions should be equal to the mean fluid value of 

∇u:∇u, which goes to zero.  However, particles of intermediate size tend to accumulate in areas of high ∇u:∇u.  

This can be seen more clearly in the PDFs at the various locations.   
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Figure 5.5.2 displays the PDFs of 〈∇u:∇u〉 in the near wall region for three particle Stokes numbers along 

with the fluid PDF.  It is clear that the PDF of 〈∇u:∇u〉 at particle locations is shifted towards more positive values 

of 〈∇u:∇u〉, with a greater shift for larger particles.   In Figs. 5.5.3 and 5.5.4, similar trends are seen for 〈∇u:∇u〉 at 

the vortex center and saddle regions, respectively.  However, in Fig. 5.5.5, which is the PDF of 〈∇u:∇u〉 for the 

center of the duct, we see the least preferential concentration indicated by very slight departure of the particle PDFs 

from the fluid PDF.  This was evident in Fig. 5.5.1 as well.  This confirms that the preferential concentration of 

particles is dependent upon the distance from the wall.  As we move away from the wall, the streaky turbulent 

structures of ∇u:∇u, along which particles tend to accumulate, become weaker, if present at all.  This argument 

holds true for the statistics shown in the previous sections, as the center of the duct is found to have relatively weak 

preferential accumulation of particles based on all statistics used in this work. 
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Chapter 6. Deposition Results 

A parametric study of the effects of varying particle response time, τp
+, on wall-deposition has been 

performed.  In addition to the one-way coupled simulations (no particle feedback effects on the fluid), the effects of 

two-way coupling (the inclusion of particle feedback effects) and particle collisions on deposition have been 

investigated.  Particle volume fractions as high as 10-3 were chosen to study the effects of two-way coupling and 

particle collisions on deposition.  The probability distribution functions (PDFs) of the particle deposition location, 

the average streamwise and wall-normal deposition velocities, and deposition rates as a function of τp
+ are presented.  

The mean fluid statistics are averaged for more than 60 dimensionless time units.  Further, the deposition statistics 

are averaged in time (34 time units for the τp
+ = 0.072 particles and 8 time units for the τp

+ = 256.32 particles), in the 

homogeneous streamwise direction, and over the four duct walls (due to a π/2 rotation symmetry about the duct axis 

in the cross-sectional plane).  Due to the higher deposition rates for large particles, less averaging time was needed 

to achieve smooth PDFs for large particles compared to small particles.  One-way coupling results will be presented 

first, followed by a discussion of the effects of two-way and four-way coupling.  The current computed deposition 

rates are also compared to previous experimental data in a circular pipe.   

See Table 6.1 for particle parameters studied in the deposition simulations.  The fluid simulation 

parameters are the same as in Chapter 5, except the time step has been increased to 0.0005.  Particles are assumed to 

deposit when they are within one radius from a wall.  The particles are initially randomly positioned in the domain 

with initial velocities equal to the local fluid velocity.   

6.1 One-way coupling 

6.1.1 Wall-Normal Deposition Velocity 
The deposition velocities in the wall-normal and the streamwise directions are of interest in studying the 

erosion of the duct walls.  In a channel or a pipe flow, the deposit ion velocity is a constant over the wall due to the 

spatial averaging in the two homogeneous directions parallel to the wall.  However, in a square duct, due to the 

inhomogeneous nature of the cross-sectional plane, the deposition velocities will vary over the duct walls, with a π/2 

rotational symmetry about the duct axis in the cross-sectional plane.  In this section we discuss the particle 

deposition velocities as a function of particle Stokes number, τp
+.  Two-way coupling effects and interparticle 

collisions are not considered in this section. 

Results have been presented for ten values of τp
+, corresponding to two values of particle to fluid density 

ratios (ρp/ρf  = 1000 and 8900) and five diameters for each density ratio.  The various parameters correspond to 

simulations 1-10 in Table 6.1.  Presented in Fig. 6.1.1.1 are the wall-normal deposition velocities for the various τp
+ 

corresponding to ρp/ρf  = 1000.  Here, we see several interesting trends in the wall-normal deposition velocities as a 

function of deposition location.  First, as the Stokes number is increased from 0.072 to 1.8, the wall normal 

deposition velocity does not change significantly.  However, further increase in τp
+ from 1.8 to 28.8 leads to a 

substantial increase in the wall normal deposition velocity across the duct width.  Also, we clearly see that the 

deposition velocity varies across the duct width.  We see the lowest deposition velocity at the corners of the duct 

(deposition location = 0 and 1 in Fig. 6.1.1.1), and it increases progressively as we move away from the corners.  
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The term “deposition location” is analogous to either x/ δ or y/δ due to the π/2 rotational symmetry in the cross-

sectional plane about the duct axis.  For τp
+ = 28.8, we also see secondary peaks in the deposition velocity at roughly 

10% to 15% of the duct width from the corner.  For all particle response times, we see the maximum deposition 

velocity at the center of the duct wall.    This is due to the relatively large streamwise velocity gradients in the wall-

normal direction at this location compared to the corners (which can be seen in Fig. 1.1 from the contours of 

streamwise velocity).  This causes a larger lift force (directed towards the wall) and thus, an increased wall-normal 

deposition velocity.  The wall-normal deposition velocities for the τp
+ corresponding to ρp/ρf  = 8900 are shown in 

Fig. 6.1.1.2.  The wall-normal deposition velocity is seen to increase with τp
+ for the range of response times 

examined.  The two cases with the smallest τp
+ have nearly identical wall-normal deposition velocities.  The non-

uniform velocity profile across the duct width is again apparent.   

6.1.2 Streamwise Deposition Velocity 
The streamwise deposition velocity is a good measure of the slip between the particles and the fluid in the 

near wall region since the fluid velocity goes to zero there.  We can see in Figs. 6.1.2.1 and 6.1.2.2 that the less 

inertial particles deposit on the wall with lower streamwise velocities.  This is because they respond better than the 

more inertial particles to fluid deceleration as we approach the wall.  In Fig. 6.1.2.1, for a higher τp
+ = 7.2, we see 

that the particles tend to noticeably retain streamwise momentum after passing through the near-wall shear layer.  

Further, the non-uniform pro files demonstrate the effect of secondary flows.  The streamwise velocity contours, 

shown in Fig. 1.1, bulge towards the corners indicating higher fluid momentum due to secondary flows in these 

regions.  Thus, the particles in the bulges can acquire higher streamwise momentum when compared to other cross-

sectional locations.  As a result, the deposition velocity is seen to exhibit a wavy pattern with a maximum at the 

center of the duct wall (where the streamwise velocity is highest for a given y+ compared to other locations), and 

two secondary peaks.  For ρp/ρf  = 8900, shown in Fig. 8, we see similar trends.  In Fig. 6.1.2.2, as τp
+ is increased to 

256.32, we see a progressive increase in the streamwise deposition velocities.  Also, it is clear that as τp
+ increases, 

particles are less responsive to the near wall fluid no-slip condition resulting in higher deposition velocities.   

6.1.3 Deposition Location 
The particle deposition location is not an issue of concern for pipes and channels due to the homogeneous 

nature of the two directions parallel to the walls in these geometries.  For a square duct, due to the additional 

inhomogeneous wall-normal direction, the deposition pattern is more complex.  By examining the PDFs of the 

deposition location for ρp/ρf  = 1000 and the corresponding values of τp
+, shown in Fig. 6.1.3.1, we can identify 

several trends.  First, deposition is always seen to be more likely near the center of the duct wall for all particle 

Stokes numbers examined.  For the particles with τp
+ = 0.072 and 0.45, we see a very small fraction of particles 

depositing near the duct corners.  As τp
+ is increased, deposition near the corners is higher and the particles tend to 

deposit more uniformly across the duct width.  For ρp/ρf  = 8900, the pdf’s of the deposition location show similar 

trends (Fig. 6.1.3.2).  The increasing uniformity in particle deposition across the duct width with particle response 

time can be clearly observed in Fig. 6.1.3.2.  However, even for the largest particles, deposition is  still least likely in 

the corners.  The maximum deposition near the center of the duct walls can be explained by examining the 
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secondary flow patterns in Fig. 1.2.  Near the duct corners, the secondary flows are aligned such that they will sweep 

particles in this region towards the center of the duct walls, where the particles remain and deposit. 

6.1.4 Deposition Rates 
Deposition rates are important in applications such as droplet impingement on a heat exchanger surface, 

dust deposition on surfaces in clean rooms, etc.  Deposition rates will be higher for a square duct than for channel 

flow. This is because of the alignment of the secondary flow structures that are more likely to transport particles to a 

wall.  In Figs. 6.1.4.1 and 6.1.4.2, we plot the numb er of deposited particles, Nd, normalized by the number of initial 

particles, Ni, as a function of time for the one-way coupled simulations for ρp/ρf  = 1000 and 8900, respectively.  It is 

clear that the larger τp
+ particles travel to the wall at a faster rate.  This trend agrees with what other researchers have 

found for pipe and channel flow (Wang and Squires 1996a; McCoy and Hanratty 1977). 

The particle deposition rate can be expressed as the following (Wang and Squires 1996a): 

N/V
/A/tN

V dt
d =  (6.1.4.1) 

where Ndt  is the number of deposited particles during time t ,  A  is the area of deposition, N is the number of particles 

at the beginning of the deposition sampling time, and V is the volume of the domain.  The deposition rate can also be 

calculated from the slope of the linear portion of the curves in Figs. 6.1.4.1 and 6.1.4.2.  In Fig. 6.1.4.3, we plot the 

deposition rates normalized by the average friction velocity and compare them with the empirical correlations 

developed by McCoy and Hanratty (1977) for pipe flow.  The trends are similar to those seen in pipe flow.  

However, for τp
+ = 0.072 particles, the deposition rates in a square duct are seen to be up to two orders of magnitude 

higher than in a pipe flow.  It is interesting to note that for large particles, the correlation of McCoy and Hanratty 

(1977) agrees well with the square duct deposition rates.  This is because the largest particles are not as sensitive to 

the secondary flows and thus more closely match pipe flow results. 

6.2 Effects of Two-Way Coupling and Particle Collisions 

6.2.1 Low volume fraction (φv ≤ 10-4) 
At low particle volume fractions, φv, as for the present simulations with φv ≤ 10-4, it is expected that particle 

feedback effects or collisions will not play a major role.  However, the locally high volume fraction of particles due 

to preferential concentration may warrant the inclusion of the above effects.  Hence, four-way coupled (two-way 

coupling plus collisions) simulations were also carried out for three particle representative Stokes numbers (τp
+ = 

1.8, 28.8, and 256.32).   

By examining the wall-normal deposition velocity, shown in Fig. 6.2.1.1, we see that four-way coupling 

does not appreciably change the deposition velocities for τp
+ = 1.8.  This is expected since the volume fraction for 

this case is very low (φv  = 1.4×10-6).  For the τp
+ = 28.8 particles, even at higher φv (6.67×10-5), we again see little 

difference in the wall-normal deposition velocity when four-way coupling is considered.  However, for the τp
+ = 

256.32 particles, we see a significant increase in the wall-normal deposition velocity when four-way coupling is 

considered.  As will be shown later, this effect is largely attributed to the inclusion of particle collisions. 
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The streamwise deposition velocities are shown in Fig. 6.2.1.2 for both one-way and four-way coupled 

cases.  For all particle Stokes numbers reported, there is no significant difference in the one-way and four-way 

coupling cases for the volume fractions considered (φv ≤ 6.67×10-5).  For  τp
+ = 1.8, the one-way and four-way plots 

are nearly indistinguishable.   

In Fig. 6.2.1.3, we examine the effects of four-way coupling on the deposition location for φv ≤ 6.67×10-5.  

No significant difference can be seen for any of the Stokes numbers examined.  This indicates that neither collisions 

nor particle feedback effects alter the deposition location of particles for volume fractions of the order of 6.67×10-5 

or less.   

Shown in Fig. 6.2.1.4 is the number of deposited particles (normalized by the number of initial particles) as 

a function of time.  In all the cases examined at φv ≤ 6.67×10-5, four-way coupling increased the deposition rates.  

Similar trends are seen in Fig. 6.1.4.3.  Although the difference is not drastic between one-way and four-way 

coupled results, the trend of increased deposition rates as a result of four-way coupling is apparent. 

Thus, the results obtained with inclusion of two -way coupling and collisions for cases with φv ≤ 6.67×10-5 

show that the one-way coupling results were accurate and that it was reasonable to neglect collisions and particle 

feedback effects.  Due to the small differences in the results for one-way and four-way coupled cases (for most 

quantities examined), we feel that the one-way coupling approach is sufficient for square duct studies involving 

volume fractions less than 6.67×10-5. 

6.2.2 Higher volume fractions (φv = 10-3) 
To better understand the effects of particle feedback and collisions, one must increase the volume fraction 

to a level where they are likely to be dominant.  Therefore, one set of simulations with both two-way and four-way 

coupling was done for τp
+ = 256.32 with an initial volume fraction of 10-3, which corresponds to 1.5 million 

particles.  In this set of simulations, any significant difference between the two-way and four-way coupling results 

can be attributed to particle-particle collisions.   

The wall-normal deposition velocity is shown in Fig. 6.2.2.1.  Previous one-way and four-way coupled 

results with 100,000 initial particles (φv = 6.67×10-5) are included for comparison.  When the volume fraction is 

increased to 10-3 and only two-way coupling is considered, we see slightly higher wall-normal deposition velocities 

when compared with results at φv = 6.67×10-5.  This indicates that the particle feedback effect leads to a marginal 

increase in wall-normal deposition velocities.  However, when four-way coupling at φv = 10-3 is examined, we see 

striking differences in the results.  It is observed that the maximum wall-normal deposition velocity now occurs near 

the corners.  The deposition velocity is increased by a factor greater than two due to collisions.  This clearly 

indicates that the inclusion of particle -particle collisions can significantly alter the results of wall-normal deposition 

velocities at relatively high volume fractions.  

The streamwise deposition velocity is shown in Fig. 6.2.2.2.  With two-way coupling, the increase in 

volume fraction is clearly seen to decrease the streamwise deposition velocities.  For φv  = 10-3, inclusion of particle 

collisions is seen to decrease the deposition velocity even further.  Higher volume fractions are also seen to increase 

the non-uniformity across the duct walls for the streamwise deposition velocities. 
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The PDFs of the deposition location are shown in Fig. 6.2.2.3.  Two-way coupling is seen to marginally 

augment the non-uniform deposition pattern when compared to the one-way coupled results at φv = 6.67×10-5.  The 

effects of collisions on deposition location, which can be seen by comparing two-way and four-way coupling results 

for φv  = 10-3, are not significant.  We can conclude that collisions do not alter the deposition location significantly 

even for volume fractions up to 10-3.    

Shown in Fig. 6.2.2.4 is the time history of the deposition.  The number of deposited particles is normalized 

by the number of initial particles so that results may be directly compared to results in the earlier sections of this 

work.  It is seen that collisions increase deposition rates.  The deposition rates for φv = 10-3, normalized by the 

average friction velocity, are plotted in Fig. 6.1.4.3 along with the low volume fraction results.  The same trends as 

for the low volume fraction cases are observed.   
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Chapter 7. Conclusions and Recommendations 

7.1 Conclusions 
Turbulent particle-laden flow in a straight duct of square cross-section has been examined using the Large 

Eddy Simulation (LES) technique.  The unsteady, three-dimensional Navier-Stokes equations for an incompressible 

flow of constant viscosity have been solved numerically in conjunction with the Lagrangian particle equation of 

motion.  Time-dependent numerical simulation of square duct flow is a challenging task due to the presence of only 

one homogeneous direction.  The simulations are more computationally expensive since statistics are two-

dimensional, not one-dimensional as in periodic pipe or channel flow.  Also, the integration time for a square duct 

must be longer due to the reduced sample size for statistical averaging.  Thus, only low Reynolds number cases were 

considered for this research effort.   

In the LES simulation, the filtered Navier-Stokes equations have been solved using finite volume methods 

on a collocated grid.  A fractional step method has been used to decouple the pressure from the momentum 

equations.  Top-hat filtering, implemented through implicit grid filtering, has been used.  The subgrid scale stresses 

have been modeled using a dynamic kinetic energy model as proposed by Kim and Menon (1997).  The governing 

equations were discretized in space using second-order central differencing.  The convective terms were treated 

using the Adams -Bashforth scheme, and the diffusion terms were handled with the Crank-Nicolson scheme. The 

pressure-Poisson equation, resulting from the Harlow-Welch fractional step method, was solved using an algebraic 

multigrid method.  The simulations were performed at a Reynolds number of 360 based on duct width and average 

friction velocity.  The grid used was 80×80×128 in the two wall-normal and streamwise directions, respectively. 

The code has been verified in turbulent periodic channel flow at Reτ  = 180 and 590, based on the channel 

half-height and friction velocity.  Better agreement is seen at Reτ  = 180 than Reτ  = 590.  The grid was held fixed at 

100×100×50 in the streamwise, wall-normal, and spanwise directions, respectively.  For Reτ  = 180, four cases are 

compared to the DNS data: the no-model, the Horiuti model, the dynamic k model on a uniform grid, and the 

dynamic model on a stretched grid.  In the near-wall region, all the cases compare well with the DNS data, with the 

Horiuti and no-model runs coming closest to matching the near-wall data.  Near the channel centerline, all models 

over predict the DNS data.  The Horiuti model is seen to overpredict the DNS by more than 10%, with the dynamic 

model on a stretched grid only overpredicting the DNS by less than 2%.    The resolved streamwise rms velocity 

predicted by the dynamic k model on a stretched grid best predicts the DNS data, followed closely by the no-model 

case.  However, once the subgrid fluctuations are added, the models are overpredicting the DNS by as much as 30% 

at the peak of the profile.  This means that the models are predicting excessive subgrid energy.  It should be noted 

that all finite-volu me top-hat filter LES results are grid dependent.  One can improve the results by increasing the 

grid resolution and eventually one will approach the DNS solution.  However, this is not practical and one must 

choose a grid resolution much coarser than the DNS simulation.  The wall-normal rms velocity results show that the 

no-model case best predicts the DNS data.  Both the resolved rms values from the k models underpredict the DNS 

data, as they should since it is the total rms value which should compare well with the DNS data.  However, once the 

subgrid fluctuations are added, it is seen that the models overshoot the DNS by roughly 35% at the peak of the 

profile.  The lack of smoothness in the total rms velocity predicted by the dynamic model is a result of its prediction 
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of the sgs k, which is non-smooth near the wall.  This is due to the method in which the grid is created, as two 

daughter cells of a coarse grid cell will have the same size, therefore no grid stretching between daughter cells, 

which decreases the resolution near the wall and thus decreases the performance of the model.  Ideally, one would 

generate a stretch for the fine grid cells which perfectly coincides with the coarse grid.  However, this is prohibitive 

especially for complex geometries.  It is seen that both k models’ resolved spanwise rms velocities under-predict the 

DNS data as they should.  However, the total spanwise rms values over-predict the DNS data by roughly 33% near 

the peak of the profile.  The no-model case also overpredicts the DNS, but to a lesser degree of approximately 20%.  

The Reynolds stress term v'u'  is seen to be best predicted by the no-model LES, followed closely by the Horiuti 

model.  The dynamic k model underpredicts the maximum magnitude of the term by roughly 28%.  The dynamic 

model predicts roughly twice as much sgs k as the Horiuti model.  The sgs k correctly goes to zero near the wall for 

both models.  It is seen that the advantage of the dynamic model is that no wall model is needed to generate correct 

near-wall behavior of the model coefficients.  The model automatically damps the production term at the wall.  This 

is a tremendous advantage when the square duct geometry is considered, as the wall models are unknown for the 

square duct geometry, and poorly understood even for simple geometries like channels.   

The grid is held fixed and the Reynolds number is increased to 590 for the next comparisons.  The DNS 

data by Moser, Kim, and Mansour (1999) is used as the baseline for comparison.  The Horituti model better predicts 

the mean velocity DNS data.  However, the qualitative trends, such as inflection points, in the DNS profile are not 

captured at this Reynolds number.  The dynamic model captures the near wall region better than the Horituti model, 

yet near the centerline the dynamic model overpredicts the DNS data by roughly 20%.  It is seen that none of the 

simulations capture the location of the peak or the magnitude of urms accurately.  Once the subgrid fluctuations are 

added, the dynamic model overpredicts the rms velocity by roughly 100%.  The Reynolds number is clearly much 

too large to be simulated by only 0.5 million nodes in this LES.  A more positive outcome may be seen in the vrms 

results.  The k models correctly underpredict the vrms DNS data when the resolved rms quantity is considered.  By 

adding the subgrid fluctuation, the peak shifts closer to the location of the peak in the DNS data, however, the 

magnitude is then overpredicted by 30% and 80% for the Horiuti and dynamic k models, respectively.  The Horiuti 

model correctly underpredicts the wrms DNS data when the resolved rms velocity is considered.  All other forms of 

the rms velocity overpredict the DNS data, with the dynamic k model overpredicting the peak by roughly 100%.   

The preferential concentration of heavy particles in turbulent square duct flow was studied using large eddy 

simulations.  Six particle classes (τp
+ = 0.25, 0.5, 1, 2, 4, and 8) and four locations in the cross-section were 

examined.  Particles are seen to accumulate in regions of high ∇u:∇u and compressional strain and regions of low 

swirling strength. The trends are more pronounced for large particles with Stokes numbers of 2 and 4.  Of the four 

locations studied, the location that exhibited the most pronounced preferential accumulation was the near wall 

region (x+=182.8, y+=19.8).  The vortex center region, which was the second closest to the walls of the locations 

examined, exhibited the second highest level of preferential concentration of particles.  The duct center, being the 

further location from the walls, showed relatively weak preferential accumulation of particles.  From this it is clear 

that preferential accumulation of particles is predominantly a near wall effect for internal flows in complex 

geometries.   
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The vorticity magnitude displays several trends worth noting.  Near the wall and in the vortex center 

regions, large particles are seen to accumulate in regions of high vorticity whereas small particles are seen to 

accumulate in regions of low vorticity.  In the saddle region and duct center, all particles are seen to accumulate in 

regions of low vorticity.  This is due to the vorticity being corrupted by the strong shear near the walls, which causes 

the vorticity to become a less sensitive measure of the preferential concentration.  Therefore, swirling strength, not 

vorticity, is a more appropriate measure of preferential concentration of particles in regions which contain high 

shear.   

Contours of near wall statistics along with near wall part icle position scatter plots confirm the trends seen 

in the PDFs.  Particles are seen to accumulate in low speed streaks near the wall, which is similar to what has been 

seen by previous researchers in channel flow, for example, see Zhang and Ahmadi (2000).   Particle scatter plots 

reveal that the particles form concentration patterns near the wall which are more complex than what is seen in 

simpler geometries such as channel flow. 

The deposition of heavy solid particles in a fully developed turbulent square duct flow was studied using 

large eddy simulations.  Ten particle Stokes numbers, corresponding to two density ratios (ρp/ρf = 1000 and 8900) 

and five particle diameters (dp/δ × 106 = 100, 250, 500, 1000 and 2000), were studied.  Two particle number 

densities were examined, corresponding to 105 and 1.5×106 particles initially in the domain.  In addition to one-way 

coupling, two-way, and four-way coupling effects were also considered.   

In general, the wall-normal deposition velocity is seen to increase with Stokes number.  For one-way 

coupling, the maximum wall-normal deposition velocity occurs near the center of the duct wall.  However, collisions 

cause the maximum wall-normal deposition velocity to occur near the corners.   

The streamwise deposition velocity is seen to increase with τp
+.  Secondary flows are found to cause a non-

uniform pattern in the velocity profile across the duct width.  The streamwise deposition velocity is seen to be 

highest near the center of the duct wall for all particle response t imes examined.  Two-way coupling and collision 

effects decrease the streamwise deposition velocity. 

Deposition is seen to be least likely in the duct corners, and most likely in the duct center.  As the Stokes 

number is increased, the deposition pattern becomes more uniform across the duct width.  Two-way coupling effects 

tend to cause an augmentation of the wavy deposition pattern.  At low volume fractions, inclusion of two-way 

coupling and particle collisions did not significantly alter the deposition trends.  As a result, the one-way coupled 

approach is sufficient for volume fractions less than 10-4. 

Deposition rates are computed and compared to experimental data in pipe flow.  The same qualitative 

trends as for pipe flow are seen.  However, the square duct exhibits up to two orders of magnitude higher deposition 

rates for small particles.  Large particles are seen to more closely match the pipe flow data.  Two-way and four-way 

coupling enhance the deposition rates.   

7.2 Recommendations for Future Work 
Some suggestions for future work are as follows.  Direct Numerical Simulations could be performed for the 

same problem to verify the LES results obtained in this work.  The method used by Madabhushi (1993) would be the 

natural choice to use for DNS as it is pseudo-spectral and would outperform the finite-volume method used in this 
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thesis.   A comparison of subgrid models in a square duct would also be of interest for LES modeling of wall-

bounded flows.  With parallel processing becoming more accessible, higher Reynolds numbers could be examined if 

one implemented a parallel algebraic multigrid solver to solve the pressure-Poisson equation arising from the 

fractional step method used in this work.  Such solvers are currently available from Lawrence Livermore National 

Labs – Center for Applied Scientific Computing (LLNL-CASC).  Their solver, called Boomer AMG, has 

successfully solved linear problems on over 1,000 processors.  Such a solver could greatly enhance the code used in 

this dissertation.  Additionally, several recent advancements in cache optimization of AMG solvers has been 

performed by numerous authors.  Even on single processors, speedup factors greater than 5 have been observed, 

which would again greatly enhance the performance of the code used in this work.  It is also interesting to study the 

particle statistics such as mean and RMS particle velocities and compare them with a future experiment.  Horizontal 

square duct flow would also represent a future study with many practical applications, as gravity would now cause 

preferential deposition on the walls normal to the gravitational acceleration vector.  This directly leads to studying 

particle transport in a square duct at an arbitrary angle of inclination.  This author plans to study preferential 

concentration of bubbles in a square duct in the very near future as an extension of this work.    Eulerian methods 

could be used to study higher volume fractions of particles, and also compared to experiments.  Many engineering 

applications involve flow in non-circular ducts of trapezoidal cross-section, as in machined grooves in MEMS 

devices.  An LES study could reveal the shape of secondary flows in such ducts, which has not been examined to the 

author’s knowledge.  Particle transport in these ducts would also be of importance. 
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Tables 

Table 2.2.1:  PDPA Parameters 

Laser Wavelength (nm) 632.8 
Diameter of Laser Beam (mm) 0.68 
Transmitter Focal Length (mm) 495 

Receiver Focal Length (mm) 495 
Receiver Aperture (microns) 100 

Location of Receiver 30° off-axis, forward scatter 
Sampling Rate of Processor 50,000 Hz maximum  

Beam Separation (mm) 34 
Fringe Spacing (microns) 9.21 

Number of Fringes  63 
Probe Area (cm2) 0.00062 to 0.0024 

Index of Refraction of Liquid Refrigerant 1.23 
Accuracy of Size Measurements  ± 5% 

Accuracy of Velocity Measurements ± 1% 
 

Table 2.2.2:  Experimental Conditions 

Pressure Before Nozzle (kPa) 748 to 1213 ± 6 
Temperature Before Nozzle (K) 298.4 to 320.1 ± 0.05 

Pressure In Header (kPa) 728 to 774 ± 6 
Mass Flow Rate (g/s) 1 to 3 ± 0.05 

Quality In Header 0 to 0.15 ± 0.005 
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Table 5.1:  Grid Spacing in Cross Section of Square Duct 

y y+ ∆y ∆y+ 

4.8934E-03 1.7616E+00 9.7868E-03 3.5232E+00 
1.4680E-02 5.2849E+00 9.7868E-03 3.5232E+00 
2.4589E-02 8.8521E+00 1.0031E-02 3.6113E+00 
3.4621E-02 1.2463E+01 1.0031E-02 3.6113E+00 
4.4778E-02 1.6120E+01 1.0282E-02 3.7016E+00 
5.5060E-02 1.9822E+01 1.0282E-02 3.7016E+00 
6.5471E-02 2.3569E+01 1.0539E-02 3.7941E+00 
7.6010E-02 2.7364E+01 1.0539E-02 3.7941E+00 
8.6681E-02 3.1205E+01 1.0803E-02 3.8890E+00 
9.7484E-02 3.5094E+01 1.0803E-02 3.8890E+00 
1.0842E-01 3.9032E+01 1.1073E-02 3.9862E+00 
1.1949E-01 4.3018E+01 1.1073E-02 3.9862E+00 
1.3071E-01 4.7054E+01 1.1350E-02 4.0859E+00 
1.4206E-01 5.1140E+01 1.1350E-02 4.0859E+00 
1.5355E-01 5.5277E+01 1.1633E-02 4.1880E+00 
1.6518E-01 5.9465E+01 1.1633E-02 4.1880E+00 
1.7696E-01 6.3705E+01 1.1924E-02 4.2927E+00 
1.8888E-01 6.7998E+01 1.1924E-02 4.2927E+00 
2.0096E-01 7.2344E+01 1.2222E-02 4.4000E+00 
2.1318E-01 7.6744E+01 1.2222E-02 4.4000E+00 
2.2555E-01 8.1199E+01 1.2528E-02 4.5100E+00 
2.3808E-01 8.5710E+01 1.2528E-02 4.5100E+00 
2.5077E-01 9.0276E+01 1.2841E-02 4.6228E+00 
2.6361E-01 9.4899E+01 1.2841E-02 4.6228E+00 
2.7661E-01 9.9579E+01 1.3162E-02 4.7384E+00 
2.8977E-01 1.0432E+02 1.3162E-02 4.7384E+00 
3.0310E-01 1.0912E+02 1.3491E-02 4.8568E+00 
3.1659E-01 1.1397E+02 1.3491E-02 4.8568E+00 
3.3025E-01 1.1889E+02 1.3828E-02 4.9782E+00 
3.4408E-01 1.2387E+02 1.3828E-02 4.9782E+00 
3.5808E-01 1.2891E+02 1.4174E-02 5.1027E+00 
3.7225E-01 1.3401E+02 1.4174E-02 5.1027E+00 
3.8660E-01 1.3918E+02 1.4529E-02 5.2303E+00 
4.0113E-01 1.4441E+02 1.4529E-02 5.2303E+00 
4.1584E-01 1.4970E+02 1.4892E-02 5.3610E+00 
4.3073E-01 1.5506E+02 1.4892E-02 5.3610E+00 
4.4581E-01 1.6049E+02 1.5264E-02 5.4951E+00 
4.6108E-01 1.6599E+02 1.5264E-02 5.4951E+00 
4.7653E-01 1.7155E+02 1.5646E-02 5.6324E+00 
4.9218E-01 1.7718E+02 1.5646E-02 5.6324E+00 
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Table 5.2:  Particle Properties for Preferential Concentration Studies 

τp
+ τp/(δ/uτ ) x 104 dp/δ x 106 ρp/ρ f 

0.25 6.9444 117.85 2500 
0.5 13.889 166.67 2500 
1 27.778 235.70 2500 
2 55.556 333.33 2500 
4 111.11 471.40 2500 
8 222.22 666.67 2500 

 

Table 6.1:  Particle Properties for Deposition Simulations 

Simulation ρp/ρ f dp/δ d+ τp/(δ/uτ ) τp
+ φv Coupling type 

1 1000 0.0001 0.036 0.0002 0.072 8.33×10-9 One-way 
2 1000 0.00025 0.09 0.0013 0.45 1.30×10-7 One-way 

3 1000 0.0005 0.18 0.005 1.8 1.04×10-6 One-way 
4 1000 0.001 0.36 0.02 7.2 8.33×10-6 One-way 
5 1000 0.002 0.72 0.08 28.8 6.67×10-5 One-way 
6 8900 0.0001 0.036 0.0018 0.6408 8.33×10-9 One-way 
7 8900 0.00025 0.09 0.0111 4.005 1.30×10-7 One-way 
8 8900 0.0005 0.18 0.0445 16.02 1.04×10-6 One-way 
9 8900 0.001 0.36 0.178 64.08 8.33×10-6 One-way 
10 8900 0.002 0.72 0.712 256.32 6.67×10-5 One-way 
11 1000 0.0005 0.18 0.005 1.8 1.04×10-6 Four-way 
12 1000 0.002 0.72 0.08 28.8 6.67×10-5 Four-way 
13 8900 0.002 0.72 0.712 256.32 6.67×10-5 Four-way 
14 8900 0.002 0.72 0.712 256.32 10-3 Two-way 
15 8900 0.002 0.72 0.712 256.32 10-3 Four-way 
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Figure 1.1:  Contours of Mean Streamwise Velocity 
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Figure 1.2:  Mean Secondary Flows in a Square Duct 
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Figure 1.3:  Instantaneous Secondary Flows in a Square Duct 
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Figure 2.2.1:  Experimental Setup 
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Figure 2.3.1:  Centerline Droplet Measurements for 1 g/s 
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Figure 2.3.2:  Centerline Droplet Measurements for 2 g/s 



 65 

 

X X X X
X

X

X

Distance from Inlet (mm)

SM
D

(m
ic

ro
ns

)

0 50 100 150
0

25

50

75

100

125

150

175

200

0%
5%
10%
15%X

Thermodynamic quality
after expansion

  

Figure 2.3.3:  Centerline Droplet Measurements for 3 g/s 
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Figure 2.3.4:  Centerline Number Density Measurements for 2 g/s, 10% Quality 
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Figure 2.3.5:  Size and Velocity Distributions at 60 mm Downstream, 2 g/s, 10% Quality 
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Figure 2.3.6:  Size and Velocity Distributions at 80 mm Downstream, 2 g/s, 10% Quality 
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Figure 2.3.7:  Size and Velocity Distributions at 100 mm Downstream, 2 g/s, 10% Quality 
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Figure 2.3.8:  Size and Velocity Distributions at 120 mm Downstream, 2 g/s, 10% Quality 
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Figure 2.3.9:  Distribution Results for 15 g/s, 10% Quality with 3/8" Pipe Inlet 
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Figure 2.3.10:  Distribution Results for 15 g/s, 10% Quality with Atomizer Inlet 
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Figure 3.3.1:  Example of Wall Boundary in Cut-Cell Logic  

 

Figure 4.3.1:  Schematic of Colliding Particles 
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Figure 4.4.1:  Dynamic Model Grid Logic, 2-Dimensional 
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Figure 4.4.1.1:   Mean Velocity Profiles, Channel Flow, Reτ  = 180 
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Figure 4.4.1.2:  urms, Channel Flow, Reτ=180 
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Figure 4.4.1.3:   vrms, Channel Flow, Reτ=180 
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Figure 4.4.1.4:  wrms, Channel Flow, Reτ=180 
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Figure 4.4.1.5:  u′v′, Channel Flow, Reτ=180 
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Figure 4.4.1.6:  Mean sgs k, Channel Flow, Reτ=180 
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Figure 4.4.1.7:  Mean νT, Channel Flow, Reτ=180 
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Figure 4.4.1.8:  Mean Cτ , Channel Flow, Reτ=180 
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Figure 4.4.1.9:  Mean Cε, Channel Flow, Reτ=180 
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Figure 4.4.2.1:  Mean Velocity Profiles, Channel Flow, Reτ  = 590 
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Figure 4.4.2.2:  urms, Channel Flow, Reτ  = 590 
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Figure 4.4.2.3:  vrms, Channel Flow, Reτ  = 590 
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Figure 4.4.2.4:  wrms, Channel Flow, Reτ  = 590 
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Figure 4.4.2.5:  u′v′, Channel Flow, Reτ=590 
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Figure 4.4.2.6:  sgsk, Channel Flow, Reτ=590 
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Figure 4.4.2.7:  Mean νT, Channel Flow, Reτ=590 
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Figure 4.4.2.8:  Mean Cτ , Channel Flow, Reτ=590 
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Figure 4.4.2.9:  Mean Cε, Channel Flow, Reτ=590 
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Figure 5.0.1:  Comparison of Mean Streamwise Velocity at x = 0.5 
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Figure 5.0.2:  Sampling Positions in Square Duct Cross-Section 

 

Figure 5.1.1:  Instantaneous Scatter Plot of Particle Positions for τp
+ = 0.25, 7.05 ≤ y+ ≤ 10.66 

 

 

Figure 5.1.2:  Instantaneous Scatter Plot of Particle Positions for τp
+ = 1.0, 7.05 ≤ y+ ≤ 10.66 
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Figure 5.1.3:  Instantaneous Scatter Plot of Particle Positions for τp
+ = 8.0, 7.05 ≤ y+ ≤ 10.66 

 

Figure 5.1.4:  Instantaneous Contours of Streamwise Velocity at y+=8.85 

 

Figure 5.1.5:  Instantaneous Contours of ? at y+=8.85 

 

Figure 5.1.6:  Instantaneous Contours of λi at y+=8.85 

  

Figure 5.1.7:  Instantaneous Contours of σu at y+=8.85 
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Figure 5.1.8:  Instantaneous Contours of ∇u:∇u at y+=8.85 
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(c) 

Figure 5.1.9:  Contours of λi at y+ = (a) 1.76, (b) 35.09, (c) 177.18 
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Figure 5.1.10:  Contours of σu at y+ = (a) 1.76, (b) 35.09, (c) 177.18 
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Figure 5.1.11:  Contours of ∇u:∇u at y+ = (a) 1.76, (b) 35.09, (c) 177.18 
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Figure 5.1.12:  Instantaneous Cross-Sectional Contours of λi
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Figure 5.1.13:  Instantaneous Cross-Sectional Contours of σu
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Figure 5.1.14:  Instantaneous Cross-Sectional Contours of ∇u:∇u 
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Figure 5.2.1:  Mean Values of ω in the Near Wall Region (x+=177.2, y+=19.8) 



 89 

 

τ+

<ω
>

2 4 6 8

85

86

87

88

89

90

91

vortex center

p   

Figure 5.2.2:  Mean Values of ω in the Vortex Center Region (x+=76.7, y+=31.2) 
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Figure 5.2.3:  Mean Values of ω in the Saddle Region (x+=59.5, y+=59.5) 



 90 

 

τ+

<ω
>

2 4 6 8

25.2

25.3

25.4

25.5

25.6

25.7

25.8

center

p   

Figure 5.2.4:  Mean Values of ω in the Duct Center Region (x+=177.2, y+=177.2) 
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Figure 5.2.5:  PDFs of ω in the Near Wall Region (x+=177.2, y+=19.8) 
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Figure 5.2.6:  PDFs of ω in the Vortex Center Region (x+=76.7, y+=31.2) 
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Figure 5.2.7:  PDFs of ω in the Saddle Region (x+=59.5, y+=59.5) 
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Figure 5.2.8:  PDFs of ω in the Duct Center Region (x+=177.2, y+=177.2) 
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Figure 5.3.1:  Mean Values of λi 
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Figure 5.3.2:  PDFs of λi in the Near Wall Region (x+=177.2, y+=19.8) 
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Figure 5.3.3:  PDFs of λi in the Vortex Center Region (x+=76.7, y+=31.2) 
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Figure 5.3.4:  PDFs of λi in the Saddle Region (x+=59.5, y+=59.5) 
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Figure 5.3.5:  PDFs of λi in the Duct Center Region (x+=177.2, y+=177.2) 
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Figure 5.4.1:  Mean Values of σu 
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Figure 5.4.2:  PDFs of σu in the Near Wall Region (x+=177.2, y+=19.8) 
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Figure 5.4.3:  PDFs of σu in the Vortex Center Region (x+=76.7, y+=31.2) 
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Figure 5.4.4:  PDFs of σu in the Saddle Region (x+=59.5, y+=59.5) 
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Figure 5.4.5:  PDFs of σu in the Duct Center Region (x+=177.2, y+=177.2) 
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Figure 5.5.1:  Mean Values of ∇u:∇u 
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Figure 5.5.2:  PDFs of ∇u:∇u in the Near Wall Region (x+=177.2, y+=19.8) 
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Figure 5.5.3:  PDFs of ∇u:∇u in the Vortex Center Region (x+=76.7, y+=31.2) 
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Figure 5.3.4:  PDFs of ∇u:∇u in the Saddle Region (x+=59.5, y+=59.5) 
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Figure 5.5.5:  PDFs of ∇u:∇u in the Duct Center Region (x+=177.2, y+=177.2) 
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Figure 6.1.1.1:  Wall-Normal Deposition Velocity, ρp/ρf = 1000, One-way Coupling 

Deposition Location

W
al

l-
N

or
m

al
D

ep
os

iti
on

V
el

oc
ity

0 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

0.6

dp/δ = 1.0x10-4, ρp /ρf = 890 0, τp
+ = 0 .640 8

dp/δ = 2.5x10-4, ρp /ρf = 890 0, τp
+ = 4 .005

dp/δ = 5.0x10-4, ρp /ρf = 890 0, τp
+ = 1 6.02

dp/δ = 1.0x10-3, ρp /ρf = 890 0, τp
+ = 6 4.08

dp/δ = 2.0x10-3, ρp /ρf = 890 0, τp
+ = 2 56.3 2

 

Figure 6.1.1.2:  Wall-Normal Deposition Velocity, ρp/ρf = 8900, One-way Coupling 
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Figure 6.1.2.1:  Streamwise Deposition Velocity, ρp/ρf = 1000, One-way Coupling 
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Figure 6.1.2.2:  Streamwise Deposition Velocity, ρp/ρf = 8900, One-way Coupling 
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Figure 6.1.3.1:  PDFs of Deposition Location, ρp/ρf = 1000, One-way Coupling 
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Figure 6.1.3.2:  PDFs of Deposition Location, ρp/ρf = 8900, One-way Coupling 
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Figure 6.1.4.1:  Time History of Particle Deposition, ρp/ρf = 1000, One-way Coupling 
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Figure 6.1.4.2:  Time History of Particle Deposition, ρp/ρf = 8900, One-way Coupling 
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Figure 6.1.4.3:  Deposition Rates Compared with Experimental Pipe Flow Data 

Deposition Location

W
al

l-
N

or
m

al
D

ep
os

iti
on

V
el

oc
ity

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

d
p
/δ = 2.0x10-3, ρ

p
/ρ

f
= 8900, τ

p
+ = 256.32, one way coupling, φ

v
= 6.67x10-5

dp/δ = 2.0x10-3, ρp/ρf = 8900, τp
+ = 256.32, four way coupling, φv = 6.67x10-5

d
p
/δ = 2.0x10-3, ρ

p
/ρ

f
= 1000, τ

p
+ = 28.8, one way coupling, φ

v
= 6.67x10-5

dp/δ = 2.0x10-3, ρp/ρf = 1000, τp
+ = 28.8, four way coupling, φv = 6.67x10-5

d
p
/δ = 5.0x10-4, ρ

p
/ρ

f
= 1000, τ

p
+ = 1.8, one way coupling, φ

v
= 1.04x10-6

dp/δ = 5.0x10-4, ρp/ρf = 1000, τp
+ = 1.8, four way coupling, φv = 1.04x10-6

 

Figure 6.2.2.1:  Wall-Normal Deposition Velocity, Four-way Coupling, 105 Initial Particles 
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Figure 6.2.1.2:  Streamwise Deposition Velocity, Four-way Coupling, 105 Initial Particles 
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Figure 6.2.1.3:  PDFs of Deposition Location, Four-way Coupling, 105 Initial Particles 
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Figure 6.2.1.4:  Time History of Particle Deposition, Four-way Coupling, 105 Initial Particles 
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Figure 6.2.2.1:  Wall-Normal Deposition Velocity, Two- and Four-way Coupling, Volume Fraction = 10-3 
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Figure 6.2.2.2:  Streamwise Deposition Velocity, Two- and Four-way Coupling, Volume Fraction = 10-3 
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Figure 6.2.2.3:  PDFs of Deposition Location, Two - and Four-way Coupling, Volume Fraction = 10-3 
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Figure 6.2.2.4:  Time History of Particle Deposition, Two- and Four-way Coupling, Volume Fraction = 10-3 
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