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Abstract  

The phenomenon of dual transmission, or the ability of neurons to release more than one 

neurotransmitter, has become increasingly recognized as a fundamental mechanism of neuron 

communication within the nervous system. The release of multiple transmitters from a single 

neuron can generate diverse non-linear and novel consequences in downstream circuits, adding a 

layer of complexity to both the mechanisms that neurons use to communicate and the functional 

outputs of neurons. In this dissertation I characterize a set of dual transmitting neurons that 

express octopamine (the invertebrate norepinephrine analog) and glutamate and examine the 

functional implications of octopamine/glutamate dual transmission using two behaviors 

(aggression and courtship) as a readout. In chapter II, our collaborators and I characterize the 

expression patterns of octopamine - and -adrenergic-like receptors using MiMIC-converted 

Gal4 lines. We demonstrate that octopamine receptors are widely expressed within 

octopaminergic neurons and identify subsets of octopamine receptor expressing neurons that also 

express the glutamate receptor GluRIA. These findings suggest that octopamine/glutamate dual 

transmitting neurons can use octopamine and/or glutamate autoreceptors to promote or inhibit 

neurotransmitter release. In chapter III, I examined within VPM4, a single octopamine/glutamate 

dual transmitting neuron. I characterize VPM4 as an octopamine/glutamate dual transmitting 

neuron that expresses the glutamate autoreceptor mGluR and the octopamine autoreceptor 

OA2R. I determine that both mGluR and OA2R are required to constrain high-level 

aggressive behavior, but not mid-level aggressive behavior. Additionally, I identify a role for 

octopamine release from VPM4 in inhibiting courtship and determine that OA2R expression is 

required octopamine-mediated courtship inhibition. These findings suggest a mechanism by 

which dual transmitting neurons may modulate their own activity to inhibit the release of 

neurotransmitters to downstream circuits. 
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Introduction 

 

Dual transmission 

 

History and principles of dual transmission 

The assertion known as “Dale’s Principle” (named for English physiologist Sir Henry Dale) 

states, in its most common formulation, that all synapses of any given neuron release the same 

set of transmitters (Eccles et al. 1954)⁠. At the time Dale formulated his principle in 1934, only 

two neurotransmitters were known: acetylcholine and norepinephrine (Dale 1935)⁠. However, as 

the diverse suite of neurotransmitters, neuromodulators, and neuropeptides began to be 

appreciated within the nervous system, the question was asked as to whether this diverse suite 

could also be reflected within single neurons (Eccles 1976; Burnstock 1976, 2004; Hökfelt et al. 

1977; Svensson et al. 2019)⁠. Indeed, even Dale himself recognized the possibility that neurons 

could express and release more than one transmitter (Dale 1935)⁠. This possibility was ultimately 

recognized as the phenomenon of dual transmission, by which neurons are able to release more 

than one neurotransmitter, neuromodulator, or neuropeptide (Burnstock 2004; Vaaga et al. 2014; 

Trudeau and El Mestikawy 2018; Svensson et al. 2019)⁠. 

 

The first colocalization experiments identifying mammalian nerve cells that did not conform to 

Dale’s Principle were performed by Hokfelt et al⁠. Hokfelt’s studies identified of the neuropeptide 

somatostatin and the biogenic amine norepinephrine within sympathetic nerves of the guinea pig 

(Hökfelt et al. 1977)⁠. However, in order to be classified as a transmitter, a neuronal substance 

must both be released from the neuron and detected by postsynaptic receptors, which must 

subsequently lead to a postsynaptic response (Kandel et al. 2012)⁠. Co-immunolabeling does not 

necessarily indicate co-transmission, as both substances may not be released or have functional 

effects on postsynaptic targets (Burnstock 2004; Breedlove and Watson 2013)⁠. 

 

The existence of colocalized neurotransmitters within single neurons raised the question of 

whether multiple neurotransmitters were stored in neurons to save space or whether the release 

of multiple neurotransmitters from a neuron served to expand a neuron’s functionality (Jaim-

Etcheverry and Zieher 1973; Brownstein et al. 1974; Cottrell 1976)⁠. Carefully-controlled early 
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studies in coexpressing neurons described the release of multiple neurotransmitters from small 

neuronal subsets as critical in regulating the pacemaker complexes required for autosomal 

behaviors such as the gastric mill in the crustacean stomatogastric ganglion and the pyloric 

rhythm in the vertebrate gut (Katz and Harris-Warrick 1990; Blitz and Nusbaum 1999; Nusbaum 

et al. 2001; Hökfelt et al. 2002; Burnstock 2004). Significantly, these early studies identified key 

mechanisms, such as the release of alternate transmitters in response to stronger excitation and 

the trafficking of different transmitters to distinct downstream targets, that expanded the 

functionality of neurons (Harris-Warrick et al. 1995; Blitz and Nusbaum 1999; Swensen and 

Marder 2000)⁠. Such studies confirmed that coexpression of multiple transmitters in a single 

neuron serves a functional purpose and paved the way for the study of dual transmission, or the 

ability of a neuron to release multiple neurotransmitters, neuromodulators, and/or neuropeptides 

(Burnstock 2004; Vaaga et al. 2014; Trudeau and El Mestikawy 2018; Svensson et al. 2019; 

Okaty et al. 2019)⁠. 

 

Functional implications of dual transmission 

While early studies of dual transmission focused on describing the colocalization of  

neurotransmitters, neuromodulators, and neuropeptides, in neuronal subsets, current research 

focuses on describing the mechanisms of dual transmission in the central nervous system 

(Burnstock 1976; Osborne 1983; Kupfermann 1991; Lundberg 1996)⁠. Far from being only a 

means of compacting neuronal circuitry, there is now ample evidence that dual transmission can 

serve a variety of functional roles across the central and peripheral nervous system (Burnstock 

2004; Trudeau 2004; El Mestikawy et al. 2011; Vaaga et al. 2014; Trudeau and El Mestikawy 

2018; Svensson et al. 2019)⁠. The functional outcome of dual transmission adds a layer of 

complexity to neuron communication, expanding a neuron’s signaling capabilities by enabling it 

to modulate the spatial and temporal aspects of neurotransmitter release, enhance packaging of 

transmitters in synaptic vesicles to modulate signal strength, and even regulate its own activity 

via negative feedback (Vaaga et al. 2014; Svensson et al. 2019)⁠. 

 

Three classes of dual transmitting neurons have been convincingly demonstrated: those that 

release two fast small-molecule neurotransmitters (i.e. glutamate, GABA, acetylcholine, and 

histamine), those that release a fast small-molecule neurotransmitter and a monoamine (i.e. 
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noradrenaline/octopamine, serotonin, or dopamine) and those that release a small-molecule 

neurotransmitter (i.e. either a fast neurotransmitter or a monoamine) and a neuropeptide (Vaaga 

et al. 2014)⁠. Within these classes of dual transmitting neurons, intrinsic differences in vesicular 

loading, localization, and release between neurotransmitters, neuromodulators, and 

neuropeptides allows dual transmitting neurons a great degree of control over transmitter release 

at the presynaptic level (Nässel 2018)⁠. Additionally, postsynaptic expression of one or more 

different receptors that can distinguish between, amplify, or inhibit transmitter release from dual 

transmitting neurons grants an additional layer of control over any postsynaptic response 

(Nusbaum et al. 2001; Svensson et al. 2019)⁠. 

 

In the presynaptic neuron, small-molecule neurotransmitters are packaged into clear synaptic 

vesicles (SVs), which localize to the presynaptic active zone and are released in response to a 

single action potential (Hökfelt et al. 2003; Svensson et al. 2019)⁠. In contrast, neuropeptides are 

exclusively stored within large dense-core vesicles (LDCVs), which can localize to either the 

active zone, the soma, or the dendrites and are usually released in response to multiple, 

prolonged action potentials, though the release mechanisms for LDCVs are still poorly 

understood (Hökfelt et al. 2003; Grygoruk et al. 2010; Bulgari et al. 2018; Nässel 2018; Tao et 

al. 2019)⁠. Monoamines can be packaged into either SVs or LDCVs, which grants them 

versatility as potential co-transmitters with either small-molecule neurotransmitters or 

neuropeptides (Svensson et al. 2019; Zhang et al. 2019)⁠. Packaging of co-transmitters in SVs 

versus LDCVs influences the localization and sensitivity of neurotransmitter release and thus 

provides spatial and temporal control over specific neurotransmitters (Hökfelt et al. 2003; Vaaga 

et al. 2014; Svensson et al. 2019)⁠. Additionally, postsynaptic responses to specific 

neurotransmitters can be modulated by receptor expression within the postsynaptic neuron 

(Sengupta et al. 2017)⁠. The release of fast small-molecule neurotransmitters from a presynaptic 

neuron activates ligand-gated ion channels on a postsynaptic neuron which act on a scale of 

milliseconds, while the release of monoamines and neuropeptides activate G-protein coupled 

receptors (GPCRs), which act on a scale of seconds to minutes (Kandel et al. 2012; Svensson et 

al. 2019)⁠. By expressing (or not expressing) receptors that respond to different neurotransmitters 

within different postsynaptic terminals, postsynaptic neurons are able to mediate both fast and 



 4 

slow responses to dual transmitting neurons (Nusbaum et al. 2001; Vaaga et al. 2014; Sengupta 

et al. 2017)⁠.  

 

The differences between neurotransmitters, neuromodulators, and neuropeptides described above 

allow dual transmitting neurons and their postsynaptic partners much more precise control over 

their outputs and inputs, respectively. They also indicate functional mechanisms of dual 

transmission by which individual neurotransmitters are packaged into the same SVs or LDCVs 

and released together (i.e. both transmitters are released at the same time and in the same 

location) (Zhang et al. 2019)⁠, packaged into either SVs or LDCVs and released in response to 

different signal strengths (i.e. both neurotransmitters are released in the same location but not 

necessarily at the same time) (Pagani et al. 2019)⁠, or packaged into either SVs or LDCVs and 

trafficked to different areas within the neuron (i.e. both neurotransmitters are released at the 

same time but not necessarily in the same location) (Silm et al. 2019)⁠. These dual transmission 

mechanisms can generally be grouped into two categories: co-release (Figure 1A) and co-

transmission (Figure 1B).  
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Co-release 

Co-release is defined as the simultaneous release of two small-molecule transmitters from the 

same vesicle (Trudeau and El Mestikawy 2018)⁠.  Co-released transmitters are transported and 

stored within the same vesicle and are released onto the same downstream target in response to 

the same stimulus (Figure 1A). Functionally, co-release can serve to produce varying degrees of 

postsynaptic response based on the distribution of postsynaptic receptors for either 

neurotransmitter (Nässel 2018; Brewer et al. 2019)⁠. A postsynaptic neuron might also express 

only one receptor, leading to detection of one co-released neurotransmitter but not the other 

(Nusbaum et al. 2001)⁠. An example of this occurs in two sets of downstream partners of 

glycine/GABA inhibitory interneurons in the cerebellar granular layer (Dugué et al. 2005)⁠. While 

both sets form synapses downstream of the inhibitory interneurons, one set of downstream 

neurons, the granule cells express only GABAA receptors while the other, the unipolar brush 

cells, express only glycine receptors. Thus, co-release provides a means for targeted signaling to 

postsynaptic neurons based on parsimonious expression of downstream receptors. 

 

Figure 1 Mechanisms of Dual Transmission (A) During co-release, individual 

neurotransmitters are packaged into the same vesicles and released together. (B) During co-

transmission, individual neurotransmitters are packaged into different vesicles that are either 

released from the same location in response to different signal strengths or trafficked to and 

released from different locations. Image from Vaaga C. E., M. Borisovska, and G. L. 

Westbrook, 2014 Dual-transmitter neurons: functional implications of co-release and co-

transmission. Curr. Opin. Neurobiol. 29: 25–32. https://doi.org/10.1016/j.conb.2014.04.010 
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Co-release could also produce both fast-acting responses (mediated by postsynaptic ion 

channels) and slow-acting responses (mediated by postsynaptic GPCRs) simultaneously 

(Nusbaum et al. 2001; Vaaga et al. 2014; Sengupta et al. 2017; Svensson et al. 2019)⁠. This has 

been observed in the dopamine midbrain, where dopaminergic neurons of the ventral tegmental 

area express VGLUT2 and are able to emit fast glutamatergic excitatory postsynaptic currents in 

response to stimulation (Silm et al. 2019)⁠. Functional effects of co-release of fast and slow 

transmitters include motivational salience, maintenance of internal states, and reward learning 

(Mingote et al. 2017, 2019; Hutchison et al. 2018; Alcedo and Prahlad 2020)⁠.  

 

Another possible interpretation of co-release (though not a mutually exclusive one) is that the 

loading of an auxillary neurotransmitter into an SV enhances SV packaging of the primary 

transmitter, a process known as vesicular synergy (El Mestikawy et al. 2011; Münster-

Wandowski et al. 2016; Okaty et al. 2019)⁠. In this interpretation, release of the auxillary 

neurotransmitter may serve a secondary role to transmit a downstream signal, but the presence of 

the auxillary neurotransmitter in SVs serves principally to enhance the signal strength of the 

primary transporter through increased vesicle quanta (El Mestikawy et al. 2011; Trudeau and El 

Mestikawy 2018; Okaty et al. 2019)⁠. This increase in loading efficacy is due to the reliance of 

vesicular neurotransmitter transporters on the vesicular ATPase, which creates an 

electrochemical gradient (ΔμH+) and increases the acidity of SVs (ΔpH) by pumping in protons,  

resulting in an electric potential (ΔΨ) against the cytosol (Münster-Wandowski et al. 2016; 

Aguilar et al. 2017)⁠. Changes in ΔpH and/or ΔΨ subsequently allow for increased activity of the 

vesicular neurotransmitter transporter, depending on its substrate. VAChT (acetylcholine) and 

VMAT (dopamine, serotonin, noradrenaline/octopamine) activity requires a high ΔpH, while 

VGLUT (glutamate) and VNUT (ATP) require high ΔΨ (El Mestikawy et al. 2011; Münster-

Wandowski et al. 2016)⁠. Since ΔμH+ = ΔpH + ΔΨ, a transporter whose activity lowers ΔΨ by 

raising ΔpH can enhance the loading of the neurotransmitter associated with the ΔpH-dependent 

transporter. Vesicular synergy was in fact first described between the high ΔΨ VNUT and the 

high ΔpH VAChT and has subsequently been demonstrated between high ΔΨ and high ΔpH 

transporters, though the most frequent combination involve an isoform of VGLUT and 

VAChT/VMAT (Münster-Wandowski et al. 2016)⁠.  
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Co-transmission 

While co-release is characterized by a lack of spatial or temporal synchronicity between two 

neurotransmitters due to their presence in the same vesicle, co-transmission is characterized by 

the separation of transmitter release either spatially or temporally (Vaaga et al. 2017; Trudeau 

and El Mestikawy 2018)⁠. Thus, co-transmission gives neurons the ability to modulate transmitter 

release as more than just a response to a single action potential. Functionally, co-release could 

occur as a result of transmitters being packaged within separate SVs/LDCVs within the same 

terminal (resulting in temporal segregation of release) (Vaaga et al. 2014; Svensson et al. 2019; 

Silm et al. 2019)⁠, or from separately packaged transmitters trafficked to separate terminals or 

released through volume transmission (resulting in spatial segregation) (Blitz and Nusbaum 

1999; Hökfelt et al. 2003; Vaaga et al. 2014)⁠. 

 

Co-transmission allows dual transmitting neurons to encode different responses in response to 

the strength of signal input, particularly in the case of neurons that transmit both fast-acting and 

slow-acting substances (Figure 1B). One example of differential release based on signal strength 

occurs in the interneurons of the spinal cord dorsal horn, which gate both nociceptive (pain) and 

pruritoceptive (itch) responses (Pagani et al. 2019)⁠. While the physical sensations of pain and 

itch are superficially similar, the timescales and localization of pain and itch differ significantly, 

and thus evoke vastly different behavioral responses (Liu et al. 2010; Lagerström et al. 2011)⁠. 

Pagani et al show that spinal dorsal horn neurons are able to mediate between pain versus itch as 

a consequence of differential release sensitivity between glutamate and gastrin-releasing peptide 

(GRP) from GRP-glutamate neurons in response to signal input strength (Pagani et al. 2019)⁠. 

Pain is a hyperlocalized sensation that occurs on quick timescales. As such, pain is mediated by 

the spinal dorsal horn through the release of glutamate onto ionotropic receptors in response to 

single action potential pulses (Liu et al. 2010; Lagerström et al. 2011)⁠. In contrast, itch is a 

diffuse sensation that occurs on a relatively slower time scale, often in response to a continual 

stimulus. Burst firing onto spinal dorsal horn neurons is sufficient to induce both glutamate 

release from SVs and volume transmission of GRP from LDCVs, which evokes an itch response. 

The difference in transmitter release between pain and itch thus demonstrates co-transmission 

between transmitters with different release thresholds. 
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Co-transmission can also result from dual transmitting neurons segregating the release of 

neurotransmitters by transporting them to different locations within the neuron, allowing each 

transmitter to exert its function separately (Figure 1B). One of the most carefully-controlled 

studies of spatial segregation to date has been of the modulatory proctolin neuron (MPN) in the 

stomatogastric ganglion of the crab Cancer borealis (Blitz and Nusbaum 1999)⁠. MPN is a single 

dual transmitting neuron that expresses the neuropeptide proctolin and the inhibitory fast small-

molecule neurotransmitter GABA. MPG releases proctolin onto the stomatogastric ganglion to 

promote gastric mill rhythm and GABA onto the commissural ganglia to suppress gastric mill 

rhythm. Blitz et al pharmacologically inhibited GABA release from the MPN and observed no 

activity in the commisural ganglia upon MPN stimulation, even though commissural ganglia 

neurons express proctolin receptors. This was an elegant and early demonstration of spatially 

segregated co-transmission in invertebrates. In mammalian neurons, separation of vesicles has 

been directly observed through immunohistochemistry for neuropeptide Y (NPY), VMAT2, and 

VAChT in cultured sympathetic ganglionic neurons, finding distinctly co-localized NPY/VMAT2 

and VAChT/VMAT2 terminals (Vega et al. 2010)⁠. Spatial segregation has also been observed in 

vivo through immunohistochemistry experiments between VAChT and methionine enkephalin in 

rat superior cervical ganglion neurons (Vega et al. 2016)⁠ and by structured illumination 

microscopy between VGLUT2 and VMAT2 in mouse midbrain dopamine neurons (Silm et al. 

2019)⁠. Spatial segregation of glutamate and acetylcholine has been demonstrated to increase in 

rat superior cervical ganglion neurons in response to external factors such as stress, hypertension, 

and aging suggesting a role for spatial segregation in mediating differential transmitter release in 

response to environmental factors (Merino-Jiménez et al. 2018)⁠. 

 

An interesting presynaptic mechanism that could occur as a result of either co-release or co-

transmission is autoreception, which could serve to enhance or attenuate the further release of 

neurotransmitter(s) through the activation of presynaptic GPCRs (Langer 2008; Niswender and 

Conn 2010; Vaaga et al. 2014, 2017; McKinney et al. 2020). While autoreception as a regulatory 

mechanism and the function of specific autoreceptors in transmitter release have been very well-

characterized (Swanson et al. 2005; Langer 2008, 2015; Brady and Conn 2008; Niswender and 

Conn 2010)⁠, the role of autoreception in regulating the activity of dual transmitting neurons is 

not well understood. However, one tantalizing study suggests a functional requirement for the 
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co-transmission of small-molecule neurotransmitters for the proper function of neuropeptide-

mediated autoreceptor activity (Choi et al. 2012)⁠. The lateral-ventral pacemaker neurons (LNVs) 

are a subset of Drosophila circadian clock neurons that express both Pigment Dispersing Factor 

(PDF) and its receptor, PDFR. Activation of PDFR in LNVs as a result of PDF release from LNVs 

is required for maintaining morning activity. However, when SV release in LNVs is disrupted by 

expression of tetanus toxin light chain, the maintenance of morning activity is disrupted even as 

PDF release and PDFR autoreception remains functional. This result indicates a role for PDFR-

mediated autoreception within LNVs in regulating co-transmission of PDF and small-molecule 

neurotransmitter(s), and suggests that autoreception is critical for the activity of key subsets of 

dual transmitting neurons. 

 

Glutamate and biogenic amines in dual transmission 

Glutamate is the major excitatory neurotransmitter in both vertebrate and invertebrate nervous 

systems (Kandel et al. 2012)⁠. Because of the prominent role of glutamate in transmitting 

excitatory signals, dual transmitting neurons expressing vesicular glutamate transporters 

(VGLUTs) are among the most well-studied (Bérubé-Carrière et al. 2009; Noh et al. 2010; Liu et 

al. 2010; Lagerström et al. 2011; Zhang et al. 2015; Fortin et al. 2019)⁠. There are three VGLUTs 

in the vertebrate nervous system, mainly differing in their distribution (El Mestikawy et al. 2011; 

Trudeau and El Mestikawy 2018)⁠. While the VGLUTs are expressed in a large number of neuron 

types, this section will focus exclusively on VGLUT expression in aminergic neurons. VGLUT 

expression within aminergic neurons varies based on the subpopulation of neurons and their 

developmental stage, but a glutamatergic phenotype within aminergic neurons is common 

(Mendez et al. 2008)⁠. It has been estimated that over 80% of dopamine neurons in the ventral 

tegmantal area and the substantia nigra pars compacta express VGLUT2 at some point in their 

development (Dal Bo et al. 2008; Steinkellner et al. 2018)⁠. Adrenergic neurons are just as likely 

to be glutamatergic, with over 80% of neurons in the C1, C2, C3, and A2 groups expressing 

VGLUT2 (Stornetta et al. 2002; DePuy et al. 2013)⁠. The co-expression of glutamate in 

dopamine and noradrenaline/octopamine neurons makes them extremely versatile, both because 

glutamate and monoamines can stimulate activity over short and long time periods, respectively 

(Vaaga et al. 2014; Zhang et al. 2019; Okaty et al. 2019; Mongia et al. 2019)⁠, and because 

monoamines can be transported into both SVs and LDCVs (Hökfelt et al. 2003; Grygoruk et al. 
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2010; Svensson et al. 2019)⁠. Thus, almost all of the co-release and co-transmission mechanisms 

described previously have been described in monoaminergic-glutamatergic neurons.  

 

The monoamine transporter VMAT2 and VGLUT2 are commonly found to colocalize within 

synaptic terminals, but whether monoamines and glutamate are co-released from these terminals 

or are co-transmitted from separate vesicles remains a subject of investigation (Trudeau and El 

Mestikawy 2018)⁠. Studies in cultured dopamine-glutamate midbrain neurons identified synaptic 

terminals containing only glutamate, as well as terminals containing both dopamine and 

glutamate, suggesting a certain degree of segregation between the transmitters. Determining 

transporter localization on SVs from monoaminergic-glutamatergic neurons has been 

inconclusive, with some studies reporting colocalization of VMAT2 and VGLUT2 (Hnasko et al. 

2010)⁠ and others reporting segregation of the transporters to distinct terminals (Zhang et al. 

2015; Fortin et al. 2019)⁠. Acidification of SVs in HEK 293 cells co-transfected with VMAT2 and 

VGLUT2 has been described, indicating vesicular synergy and suggesting co-release (Hnasko et 

al. 2010)⁠. Furthermore, Aguilar et al directly observed vesicle acidification in vivo using the 

fluorescent indicator FFN206 within Drosophila MB-MV1 VMAT/VGLUT neurons (Aguilar et 

al. 2017)⁠. These studies provide support for the existence of vesicular synergy and co-release in 

dual transmitting neurons. However, this investigation was limited to a dopamine-dense region 

of MB-MV1, and even then estimates for percentages of co-localization ranged from 2%-25% 

(Aguilar et al. 2017)⁠. Thus, the prevalence of vesicular synergy and co-release within aminergic-

glutamatergic co-releasing neurons as a whole remains an open question. 

 

Outside of co-release, co-transmission of monoamines and glutamate can also result in 

differential transmitter release based on signal strength, demonstrated in the serotonergic-

glutamatergic neurons of the basal amygdala (Sengupta et al. 2017)⁠. Low-frequency optogenetic 

stimulation of these neurons evoked release of glutamate, while high-frequency stimulation 

evoked release of serotonin. This result both demonstrates co-transmission of glutamate and 

serotonin in response to signal strength and indirectly suggests that monoamines and glutamate 

can be loaded into different vesicles within some neuronal subsets. 
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Differences in receptor expression in postsynaptic target neurons can lead to distinct responses to 

transmitters released from monoaminergic-glutamatergic neurons (Trudeau 2004; Kapoor et al. 

2016; Trudeau and El Mestikawy 2018; Okaty et al. 2019)⁠. For example, recent work 

characterizing dopamine-glutamate co-release from dual transmitting neurons in the dorsolateral 

striatum onto mGluR-expressing cholinergic interneurons reveals an important role for glutamate 

co-release in amplifying a postsynaptic response (Cai et al. 2021)⁠. Cai et al describe glutamate-

mediated signal amplification from dopamine-glutamate neurons in a mouse model of early 

Parkinson's. Dopamine release from dorsolateral striatal neurons to cholinergic interneurons 

(ChIs) results in D2 receptor-mediated silencing, while glutamate release to ChIs results in burst 

firing due to mGluR1 activation. Reduced DA release as a result of lesioning DA neurons led to 

reduced mGluR1 expression and altered activity in ChIs, which resulted in Parkinson’s-like 

symptoms. Dopamine denervation, rather than a reduction in presynaptic glutamate release, 

caused this reduced mGluR1-mediated activity in ChIs, as overexpression of mGluR1 in ChIs 

neurons rescue motor function in early Parkinson’s mice. This result reveals distinct roles for 

dopaminergic and glutamatergic release in regulating the actiuvity of ChIs and invites further 

study into the role of monoamine-glutamate dual transmission for neurological disease states. 

 

Octopamine 

 

Octopamine structure and synthesis 

Octopamine is a biogenic amine that serves as the invertebrate analog to vertebrate 

norepinephrine, with which it shares significant structural similarity (Farooqui 2012; Rillich and 

Stevenson 2015; Blenau et al. 2020)⁠. The structures of octopamine and norepinephrine differ 

only in that norepinephrine is a catecholamine, while the benzene ring of octopamine possesses 

only one hydroxyl group. While octopamine can exist as either an ortho-, meta-, or para-isomer 

(and each with a D(-) or L(+) enantiomer) (Danielson et al. 1977; Williams and Couch 1978; 

Ibrahim et al. 1985; Brown et al. 1988)⁠, the dominant endogenous neuroactive form in 

invertebrate nervous systems is (-)-p-octopamine (Starratt and Bodnaryk 1981; Farooqui 2012)⁠.  

Octopamine is synthesized from L-tyrosine via a two-step process. First, the α-carbon of L-

tyrosine is decarboxylated by tyrosine decarboxylase (TDC1 in non-neuronal cells and TDC2 in 

neurons) to form tyramine (Livingstone and Tempel 1983)⁠. The β-carbon of tyramine is 
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subsequently hydroxylated by tyramine-β-hydroxylase (TβH) (Monastirioti et al. 1996)⁠. The 

synthesis of octopamine allows for neurons to synthesize an endogenous ligand able to modulate 

a variety of processes and behaviors by way of its high-affinity for binding to octopamine 

receptors. 

 

Octopamine receptors 

Octopaminergic receptors (OARs) share structural similarities to their mammalian counterparts, 

the adrenergic receptors (Blenau et al. 2020)⁠. OARs are characterized by their high affinity for 

octopamine relative to other neurotransmitters (Yellman et al. 1997; Farooqui 2012; Blenau et al. 

2020)⁠, though in vitro activation of specific OARs in response to other monoamines has been 

described (Qi et al. 2017; Xie et al. 2018)⁠. All known OARs belong to the class A (rhodopsin-

like) G-protein coupled receptor family, possessing 7 α-helical transmembrane domains that 

contain the receptors’ ligand-binding sites (Evans and Maqueira 2005; Farooqui 2012; Wu et al. 

2014)⁠. As metabotropic receptors, OARs are able to transduce a signal over relatively long time 

periods in response to an agonist. Modern classification schemes divide OARs into three groups 

(Evans and Maqueira 2005; Farooqui 2012; Bayliss et al. 2013)⁠. The first two groups, the α-

adrenergic-like and the β-adrenergic-like receptors, exhibit high affinity for octopamine, while 

the third group, the octopamine-tyramine receptors, exhibit higher affinity for tyramine. The α-

adrenergic-like receptor group has two members: octopamine receptor in mushroom bodies 

(OAMB) and the α2-adrenergic-like receptor (OAα2R). OAMB is an ortholog to vertebarte α1-

adrenergic receptors and is involved in multiple behaviors including sleep, olfactory learning, 

aggression, gustation, and courtship (Crocker et al. 2010; Watanabe et al. 2017; Youn et al. 2018; 

Deng et al. 2019; Sabandal et al. 2020)⁠. Like α1-adrenergic receptors, OAMB associates with the 

Gq heterotrimeric protein and increases intracellular Ca2+ via the phospholipase C pathway upon 

activation, though the OAMB-K3 isoform stimulates an additional increase in cAMP (Han et al. 

1998; Balfanz et al. 2005; Farooqui 2012; Kim et al. 2013; Sujkowski et al. 2020)⁠. OAα2R is the 

most recently-described octopaminergic receptor and is of particular interest to this dissertation. 

OAα2R exhibits a high sequence similarity both to other invertebrate α2-receptor orthologues 

and vertebrate α2-adrenergic receptors, suggesting shared ancestry (Wu et al. 2014; Qi et al. 

2017; Blenau et al. 2020)⁠. Functional characterization of OAα2R has determined that the 

receptor shares a conserved role with vertebrate α-adrenergic receptors, as both act as inhibitory 
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receptors via reducing the activity of the adenylyl cyclase pathway. When expressed in 

mammalian cell lines, both Drosophila and Apis mellifera (honeybee) OAα2Rs attenuate cAMP 

synthesis in a dose-dependent manner upon administration of octopamine (Qi et al. 2017; Blenau 

et al. 2020)⁠. The β-adrenergic-like receptor group contains three members: OAβ1R, OAβ2R, and 

OAβ3R. Ligand binding to these receptors results in increased cAMP synthesis as a result of 

adenylyl cyclase pathway activation (Evans and Maqueira 2005; Farooqui 2012; Wu et al. 2012; 

Sujkowski et al. 2020)⁠. OAβ1R and OAβ2R also have been shown to serve a role in the 

plasticity of OAergic synapses, with OAβ1R activity serving as a negative regulator of synaptic 

bouton development and OAβ2R activity serving as a positive regulator (Koon et al. 2010; Koon 

and Budnik 2012)⁠. 

 

Glutamate 

 

Glutamate structure and synthesis 

Glutamate is the anion of glutamic acid that serves as the primary excitatory neurotransmitter in 

both vertebrate and invertebrate nervous systems (Meldrum 2000; Kandel et al. 2012)⁠. Within 

the central nervous system, neuroactive glutamate is synthesized from non-neuroactive 

glutamine through the glutamate-glutamine cycle (Bak et al. 2006)⁠. In this pathway, glutamate is 

released into the synaptic cleft by the presynaptic neuron and taken up by astrocytes via 

excitatory amino acid transporters (Malik and Willnow 2019)⁠. Once glutamate has been 

transported into an astrocyte, the carboxylic acid of carbon-5 is amidated via glutamine 

synthetase to form glutamine (Norenberg and Martinez-Hernandez 1979)⁠. This non-neuroactive 

glutamine is then released into the extracellular space via solute carrier family 38a member 3 and 

taken up by the synaptic terminal via solute carrier family 38a member 1 (Melone et al. 2004; 

Rubio-Aliaga and Wagner 2016)⁠. Within the synaptic terminal, the amide on carbon-5 of 

glutamine is carboxylized by the mitochondrial enzyme glutaminase, resulting in glutamate 

(Kvamme et al. 2001)⁠. The newly-synthesized glutamate is then repackaged into synaptic 

vesicles by VGLUTs (Daniels et al. 2006)⁠, where it is able to be released from synaptic vesicles 

and bind to postsynaptic glutamate receptors. 
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Glutamate receptors 

Glutamate receptors fall into two general categories: the ionotropic glutamate receptors (iGluRs) 

and the metabotropic glutamate receptors (mGluRs) (Reiner and Levitz 2018)⁠. The iGluRs are 

glutamate-gated ion channels that form heteromultimers as a result of interactions between iGluR 

subunit proteins (Traynelis et al. 2010)⁠. iGluRs can be further subdivided into two major classes: 

NMDA receptors and non-NMDA receptors (Traynelis et al. 2010; Willard and Koochekpour 

2013)⁠. Pharmacologically, NMDA receptors are characterized by their responsiveness to the 

agonist N-methyl-D-aspartate, while non-NMDA receptors exhibit no response (Meldrum 2000; 

Traynelis et al. 2010; Reiner and Levitz 2018)⁠. Structural characterization of NMDA receptors 

reveals a heteromeric receptor made up from the subunits GluN1, GluN2, and GluN3 (Salussolia 

et al. 2011)⁠. The receptor contains a large N-terminus, three transmembrane domains, a pore 

loop, and an intracellular C-terminus (Loftis and Janowsky 2003; Limapichat et al. 2012)⁠. 

Glutamate binding and glycine modulation results in neuronal depolarization and the initiation of 

an action potential due to an influx of Na+ and Ca2+ (Furukawa et al. 2005)⁠. NMDA receptor 

activity is essential for learning and memory (Loftis and Janowsky 2003; Furukawa et al. 2005)⁠ 

and for the maintenance of synaptic plasticity (Loftis and Janowsky 2003; Papathanou et al. 

2018)⁠, especially in conjunction with class I mGluRs (Zhang et al. 1999; Meldrum 2000)⁠. 

 

In vertebrates, the non-NMDA receptors can be classified further as AMPA receptors and kainate 

receptors (Zhang et al. 1999; Meldrum 2000)⁠. AMPA receptors mediate the majority of fast 

synaptic excitatory transmission (Platt 2007)⁠ and form heterotetramers from the subunits GRIA1, 

GRIA2, GRIA3, and GRIA4 (Shi et al. 1999; Song and Huganir 2002)⁠. AMPA receptors contain 

four transmembrane domains containing two loops that coalesce to form a pore (Hollmann et al. 

1994; Greger et al. 2007)⁠. Binding of glutamate results in quick opening and closing of an 

AMPA receptor, making it permeable to Na+ (Platt 2007)⁠. Kainate receptors are formed via the 

assembly of the subunits GRIK1, GRIK2, GRIK3, GRIK4, and GRIK5 into tetramers 

(Dingledine et al. 1999)⁠. Kainate receptors contain an extracellular ligand-binding site and three 

transmembrane domains (Meldrum 2000)⁠. They are similar to AMPA receptors in that glutamate 

binding results in permeability to Na+, but they act over a longer timescale (Castillo et al. 1997; 

Huettner 2003)⁠. 
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mGluRs are glutamate-activated GPCRs that form through the dimerization of mGluR subunit 

proteins (Niswender and Conn 2010; Moustaine et al. 2012; Levitz et al. 2016)⁠. mGluRs make 

up the class-C GPCR family, which are characterized by a large extracellular domain containing 

a Venus flytrap module and a cysteine-rich ligand-binding domain, along with the 7 α-helical 

transmembrane domains typical to GPCRs (Brauner-Osborne et al. 2006; Chun et al. 2012)⁠. 

Vertebrate mGluRs are subdivided into three groups based on sequence similarity, second-

messenger pathway, and pharmacological profile (Ji-Quan Wang and Anna-Liisa Brownell 

2007)⁠. While these three groups primarily function as subsequently described, specific 

exceptions to these functions have been identified. Group I mGluRs (consisting of mGluR1 and 

mGluR5) are excitatory Gq-coupled GPCRs that primarily localize to the postsynapse and act 

through the phospholipase C pathway to modulate the activity of Na+, K+, and Ca2+ channels 

(Swanson et al. 2005; Conn et al. 2009; Kumari et al. 2013)⁠. Group II (consisting of mGluR2 

and mGluR3) and Group III mGluRs (consisting of mGluR4, mGluR6, mGluR7, and mGluR8) 

primarily function as negative feedback autoreceptors that inhibit the cAMP-dependent pathway 

via the release of Gi/o protein that negatively regulates adenylyl cyclase activity (Shigemoto et al. 

1997; Brady and Conn 2008; Niswender and Conn 2010)⁠. This inhibition reduces neuron 

excitability and thus further release of glutamate.  

 

Glutamate in the Drosophila Brain 

While glutamate has been identified as the primary motor neurotransmitter in invertebrate 

nervous systems, it also serves a functional role in the central nervous system as well (Daniels et 

al. 2008)⁠. Drosophila glutamate receptors are expressed primarily in neurons, indicating a role 

for glutamate neurotransmission (Xia et al. 2005; Devaud et al. 2008)⁠. The Drosophila genome 

encodes 16 glutamate receptor subunits (Parmentier et al. 1996; Xia et al. 2005; Lee et al. 2009; 

Croset et al. 2010; Han et al. 2015)⁠. Of these genes, 15 encode iGluR subunits, while only a 

single gene encodes an mGluR subunit.  

 

The mGluR subunit dimerizes to form the single Drosophila mGluR, which shares structural and 

functional similarities to vertebrate group II mGluRs (Panneels et al. 2003; Eroglu et al. 2003; 

Bogdanik et al. 2004)⁠. When expressed in HEK 293 cells, mGluR suppressed adenylyl cyclase 

activity (Parmentier et al. 1996)⁠, indicating that like group II mGluRs it functions as a negative 



 16 

feedback receptor (Shigemoto et al. 1997; Swanson et al. 2005; Niswender and Conn 2010)⁠. 

mGluR is expressed widely throughout the Drosophila brain, where it is involved in circadian 

rhythm maintenance, courtship, olfactory learning, sleep modulation, and other behaviors 

(Hamasaka et al. 2007; Devaud et al. 2008; Schoenfeld et al. 2013; Collins et al. 2014; Andlauer 

et al. 2014; Guo et al. 2016; Ly et al. 2020)⁠. It is also expressed in presynaptic terminals at the 

NMJ, though its mechanistic role here is not clear (Zhang et al. 1999; Bogdanik et al. 2004)⁠. 

Application of mGluR agonists to the Drosophila NMJ was shown to enhance synaptic firing; 

however, this was attributed to mGluR-mediated activation of adenylyl cyclase, which is the 

opposite result of class II mGluR activation (Zhang et al. 1999)⁠. Studies of mGluR at the NMJ as 

well as more recent studies showing that ligand activation of mGluR mediates PI3K pathway 

activation (Chun-Jen Lin et al. 2011)⁠ suggest that mGluR has more diversity of function than 

group II mGluRs. Although its association with the Gi/o α-subunit and its structural similarity to 

vertebrate group II mGluRs suggests that it functions primarily as an inhibitory autoreceptor 

(Eroglu et al. 2003; Bogdanik et al. 2004; Devaud et al. 2008; Schoenfeld et al. 2013)⁠, it is likely 

that many pre- and postsynaptic functions that in vertebrates would be carried out by different 

classes of mGluRs are conserved in this single mGluR.  

 

The Drosophila genome encodes two NMDA-like proteins, NMDAR1 and NMDAR2. These 

proteins are orthologs to NMDA receptor subunits and come together to form a heterotetrameric 

receptor (Ultsch et al. 1993; Völkner et al. 2000)⁠. Like vertebrate NMDARs, the Drosophila 

NMDAR allows for the passage of Na+ and Ca2+ ions into the neuron upon glutamate binding 

and are modulated by glycine (Xia and Chiang 2009; Chorna and Hasan 2012)⁠. Also like 

vertebrate NMDARs, the Drosophila NMDAR is required for learning and memory (Xia et al. 

2005)⁠. 

 

Although attempts have been made to classify the remaining Drosophila iGluR receptor subunits 

as AMPA or kainate (Benton et al. 2009; Croset et al. 2010)⁠, the pharmacological profiles of 

these receptors is distinct from vertebrate iGluRs and it is not clear whether they can be 

classified in the same way (Lee et al. 2009)⁠. To reflect this current debate, I will refer to the 

remaining Drosophila iGluRs simply as non-NMDA receptors. 
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GluRIIA, GluRIIB, GluRIIC, GluRIID, and GluRIIE are iGluR subunits that form non-

NMDARs at the neuromuscular junction (Qin et al. 2005; Han et al. 2015)⁠. These iGluRs are 

pharmacologically distinct in that they are able to respond to the quisqualate, but not AMPA or 

kainate (Han et al. 2015)⁠. They respond to glutamate release from motor neurons and are 

required for locomotor activity (Lee et al. 2009; Han et al. 2015)⁠. 

 

The remaining excitatory non-NMDA iGluR subunits are GluRIA, GluRIB, clumsy, CG11155, 

EKAR, Grik, and KaiR1D. GluRIA and GluRIB are iGluR subunits that are expressed in the 

CNS (Ultsch et al. 1993; Völkner et al. 2000)⁠, and have been compared to kainate and AMPA 

receptors, respectively, in some classification systems (Croset et al. 2010; Robinson et al. 2016; 

Li et al. 2016)⁠. clumsy, EKAR, Grik, and KaiR1D are all iGluRs that are expressed in the visual 

system and are essential for vision and detection of UV light (Karuppudurai et al. 2014; Hu et al. 

2015; Li et al. 2016)⁠. 

 

Glutamate-gated chloride channels are unique to invertebrates, though they share structural 

similarities with vertebrate glycine receptors (Wolstenholme 2012)⁠. Unlike most iGluRs which 

mediate excitatory synaptic transmission, these channels mediate inhibitory synaptic 

transmission by allowing Cl- ions to enter the neuron in response to glutamate ligand binding, 

hyperpolarizing the neuron (Molina-Obando et al. 2019)⁠. The Drosophila genome encodes one 

glutamate-gated chloride channel subunit (GluClα), which assemble to form homomeric 

channels (Cully et al. 1996)⁠. 

 

Drosophila as a model organism 

 

Major contributions of Drosophila to neuroscience research 

A major unsolved problem in neuroscience is determining the mechanisms through which 

decisions are made (Adolphs 2015)⁠. The fruit fly Drosophila melanogaster has proven a 

powerful model through which such complex questions can be addressed. Drosophila is a model 

organism in which a detailed partial connectome is available, allowing the pre- and postsynaptic 

connections of many neurons to be identified (Zheng et al. 2018)⁠. Drosophila exhibit complex 

yet stereotyped behaviors, allowing for the quantification of aggression, courtship, and other 
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behaviors (Certel and Kravitz 2012; Berman et al. 2014; Youn et al. 2018; Zhang et al. 2018)⁠. 

Drosophila analogs to mammalian neuropeptides and neuromodulators have been shown to 

influence aggressive behavior (Hoyer et al. 2008; Asahina et al. 2014; Zelikowsky et al. 2018)⁠. 

Furthermore, the existence and similarity of function of decision-making circuits has been 

demonstrated in both flies (Certel et al. 2010; Koganezawa et al. 2016)⁠ and vertebrates (Lin et 

al. 2011)⁠. By quantifying the frequency and intensity of aggressive behaviors in flies with 

specific receptor deficits in specific neurons, the circuits and neuronal mechanisms that constrain 

and promote aggression can be identified, with the results being applicable across systems. 

 

Drosophila aggression 

Aggression is an innate and evolutionarily-conserved behavior that animals use to gain access to 

food, mates, territory, and other resources. Aggressive behaviors expressed in ethological 

contexts are considered adaptive, as they increase an organism’s chances of survival (Cassidy et 

al. 2015; de Boer 2018; Rillich and Stevenson 2019; Covington et al. 2019; Kiyose et al. 2021)⁠. 

In both animals and humans, aggressive behaviors are considered pathological when they are 

exaggerated, persistent, or expressed out of context (Nelson and Trainor 2007; Blair 2016; de 

Boer 2018; Wolf et al. 2018)⁠.⁠ 

 

The occurrence of aggressive behaviors between vastly different organisms indicates a shared 

functionality in aggression circuitry (Nelson and Trainor 2007; Kennedy et al. 2014; Zelikowsky 

et al. 2018, 2019)⁠ Determining the circuit-level mechanisms that influence aggressive motivation 

in any nervous system would therefore provide insight into aggressive motivation. In vertebrates 

such as rats and primates, sensory information is received by the olfactory bulb and processed by 

neural circuits in the amygdala before being transmitted to regions that promote aggressive 

behavior, such as the hypothalamus and the bed nucleus of the stria terminalis (Nelson and 

Trainor 2007; Lin et al. 2011)⁠⁠. Insects have an analogous pathway, with sensory information 

taken in and processed by neural circuits in the antennal lobes and subesophageal ganglion, then 

transmitted to aggression-promoting regions such as the mushroom body and pars intercerebralis 

(Aso et al. 2014; Hartenstein et al. 2018)⁠. In any system, then, describing the circuit-level 

mechanisms that promote aggressive behavior requires identifying (i) the chemical messengers 

that transmit aggression-promoting information, (ii) the pre- and/or postsynaptic mechanisms 
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that control the transmission of aggression-promoting information, and (iii) the neuron(s) in 

which the constraint and release of aggression-promoting information occur. 

 

Aggressive behavior in insects has been a subject of popular fascination for over a millenium 

(Suga 2006)⁠ and a subject of scientific study since at least Darwin, who noted that the internal 

states that generate aggression might be homologous to those that generate aggression in humans 

(Darwin 1872)⁠. The ethological study of aggression in Drosophila began with Sturdevant in 

1915, who recorded “tussling” between Drosophila males (Sturtevant 1915)⁠. Many neural 

circuits and transmitters are involved in initiating and maintaining aggression, among them 

octopamine (Rillich and Stevenson 2015; Watanabe et al. 2017; Balsam and Stevenson 2020)⁠, 

tachykinin (Asahina et al. 2014; Zelikowsky et al. 2018)⁠, glutamate (Chowdhury et al. 2017; 

Sherer et al. 2020)⁠, and Gr32a gustatory receptors (Andrews et al. 2014)⁠. Male conspecifics, 

including the male-specific hormone z-7-tricosene, are also capable of promoting inter-male 

aggression (Andrews et al. 2014; Lin et al. 2015)⁠. Crucially, failure to recognize male 

conspecifics will result in male Drosophila exhibiting inter-male courtship in the context of an 

aggression assay, due to the fly being unable to recognize a male opponent (Certel et al. 2007; 

Gupta et al. 2017)⁠. The performance of inter-male courtship behavior rather than aggression thus 

provides insight into the decision-making processes that underlie the decision to initiate 

aggressive behavior (Certel et al. 2010)⁠. Of particular interest to this dissertation are the 

behaviors through which we quantify aggressive behavior. Mid-intensity aggressive behaviors 

consist of the lunge, in which a male fly rears up on his hind legs and snaps his forelegs down on 

his opponent (Kravitz and Fernández 2015)⁠, and the wing threat, in which a fly raises his wings 

at a 45º angle, assuming an aggressive posture (Duistermars et al. 2018)⁠. High-intensity 

aggressive behaviors consist of holding, a one-sided prolonged attack in which a male fly will 

grab onto his opponents wings (Davis et al. 2018)⁠, and boxing, an extended period of reciprocal 

shoving, lunging, and tussling (Penn et al. 2010)⁠.  

 

The earliest aggression assays involved placing male pairs in aggression chambers and manually 

quantifying their behavior over a set period of time (Certel and Kravitz 2012; Kravitz and 

Fernández 2015)⁠. As machine learning algorithms have grown more sophisticated, the means by 

which animal behavior is quantified have shifted from manual annotation to high-throughput, 
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automated approaches (Dankert et al. 2009; Kabra et al. 2013; Eyjolfsdottir et al. 2014)⁠. A 

significant portion of time during Aim 3 was spent developing an automated aggression analysis 

pipeline using freely-available and rigorously tested software, including CalTec FlyTracker 1.05 

which tracks the position of each male fly within a video (Dankert et al. 2009)⁠, and the Janelia 

Automated Animal Behavior Annotator (JAABA) which subsequently quantifies the behavior of 

the tracked male flies (Kabra et al. 2013)⁠. I also implemented the Divider assay, a recently 

published high-throughput assay that allows aggression to be automatically quantified in up to 12 

pairs of males at a time (Chowdhury et al. 2021)⁠.  

 

Significance  

This introduction has provided the necessary background information to inform an examination 

of dual transmission mechanisms within individual neurons and their functional behavioral 

outputs, from here onward assayed as aggression and courtship. Absent from this background 

information has been a hypothesis regarding how the mechanisms of dual transmission that 

promote or inhibit the release of specific neurotransmitters from neurons translate into the 

promotion or constraint of specific behavioral outputs in organisms. The neurons, 

neurotransmitters, and receptors that make up dual transmitting circuits have all been well 

characterized. However, the specific mechanisms that promote or inhibit transmitter release 

within individual dual transmitting neurons to promote or constrain specific behavioral outputs 

are not yet understood. It is this gap in knowledge that this dissertation will address. The first 

two chapters will elaborate on the release of OA and glutamate from OA/glutamate neurons in 

the Drosophila brain, a description of dual transmission mechanisms within these neurons, and 

how genetic manipulation of these mechanisms reveals a functional role for dual transmission in 

OA/glutamate neurons specifically and aggression and courtship behavioral output broadly. The 

third chapter will contain a report on my current investigations, which I am preparing for 

publication, on the presynaptic and postsynaptic mechanisms used by a single dual transmitting 

neuron and their functional implications. These chapters will expand upon our understanding of 

how monoaminergic and glutamatergic signaling from dual transmitting OA/glutamate neurons 

is able to produce complex behavioral outputs, such as courtship and aggression, and how 

individual neurons within the OA/glutamate subset are able to modulate these complex outputs 

through the mechanisms of dual transmission.  
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Abstract 

Neuromodulators such as monoamines are often expressed in neurons that also release at least one 

fast-acting neurotransmitter. The release of a combination of transmitters provides both “classical” and 

“modulatory” signals that could produce diverse and/or complementary effects in associated circuits. 

Here, we establish that the majority of Drosophila octopamine (OA) neurons are also glutamatergic 

and identify the individual contributions of each neurotransmitter on sex-specific behaviors. Males 

without OA display low levels of aggression and high levels of inter-male courtship. Males deficient 

for dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but 

without a concurrent increase in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT 

puncta differ in localization suggesting spatial differences in OA signaling. Our findings establish a 

previously undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples 

aggression from OA-dependent courtship-related behavior. These results indicate that dual 

neurotransmission can increase the efficacy of individual neurotransmitters while maintaining unique 

functions within a multi-functional social behavior neuronal network. 

 

Author Summary 

Neurons communicate with each other via electrical events and the release of chemical signals. An 

emerging challenge in understanding neuron communication is the realization that many neurons 

release more than one type of chemical signal or neurotransmitter. Here we ask how does the release 

of more than one neurotransmitter from a single neuron impact circuits that control behavior? We 

determined the monoamine octopamine and the classical transmitter glutamate are co-expressed in the 

Drosophila adult CNS. By manipulating the release of glutamate in OA-glutamate neurons, we 

demonstrated glutamate has both separable actions and complementary actions with OA on aggression 

and reproductive behaviors respectively. Aggression is a behavior that is highly conserved between 

organisms and present in many human disease states, including depression and Alzheimer’s disease. 

Our results show that aggressive behavior requires the release of both neurotransmitters in dual-

transmitting neurons and suggests within this set of neurons, glutamate may provide a new therapeutic 

target to modulate aggression in pathological conditions.   

 

 

Introduction 
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The classical view of information transfer for many decades was that each neuron released a single 

neurotransmitter, leading to the ‘one neuron, one transmitter’ hypothesis [1], formalized by John 

Eccles as Dale’s Principle [2]. Dale himself, however, recognized the possibility that neurons can 

release more than one molecule [3]  and indeed, research from multiple systems and neuronal 

populations have established that many if not most, neurons release more than one neurotransmitter [4-

7]. Dual neurotransmission has the potential to transform the way we consider the computation and 

transmission of information by neurons, circuits and networks. Presynaptically, the release of two 

neurotransmitters could impact information transfer by several mechanisms that are not mutually 

exclusive including; attenuating signals by modulating presynaptic autoreceptors, transmitting 

spatially distinct signals by segregating specific vesicle populations to different axon terminals, or 

conveying similar information through the release of both neurotransmitters from the same synaptic 

vesicle [8-11]. In addition, one vesicular neurotransmitter transporter can increase the packaging of the 

other neurotransmitter into the same synaptic vesicle (SV), a process called vesicular synergy [4, 12, 

13]. At post-synaptic targets, the release of two transmitters can enhance the strength of the same 

signal and/or convey unique signals through spatially-restricted receptor expression and second 

messenger cascades [7, 14]. While recent studies have provided insight into these phenomena at the 

cellular level [11, 12, 15, 16], the behavioral relevance of co-transmission in normal as well as 

pathological conditions is an area of considerable complexity and interest.  

 

The genetic tools of Drosophila provide the ability to genetically dissect the signaling properties of 

dual transmission on behavioral networks in general and upon the circuits that control aggression in 

particular. Aggression is an innate behavior that has evolved in the framework of defending or 

obtaining resources [17, 18]. Monoamines such as serotonin (5-HT), dopamine (DA), norepinephrine 

(NE) and octopamine (OA), the invertebrate homologue of NE, have powerful modulatory effects on 

aggression in systems ranging from insects and crustaceans to humans [19-23]. In humans, aggressive 

behavior can be expressed at extreme levels and out of context due to medical, neurologic and or 

psychiatric disorders including depression and schizophrenia [24-26]. Pharmacological agents that 

selectively manipulate monoamine signaling are used to treat anxiety and depression, yet these drugs 

are often ineffective, and in the case of serotonin/norepinephrine reuptake inhibitors (SNRIs) can 

induce side effects including increased aggression and impulsivity [25, 27-29].  
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At least two difficulties arise in targeting monoamines to achieve successful outcomes. First, 

monoamines can be released from synaptic vesicles (SVs) into the presynaptic cleft and by 

extrasynaptic release from large dense core vesicles (LDCVs) [30-33]. Thus, monoamines are 

recognized both as neurotransmitters and as neuromodulators that signal via diffusion [34, 35]. The 

second difficulty is that their effects are likely exerted through interactions with neuropeptides 

(neuropeptide Y and oxytocin are two examples) and with neurotransmitters including GABA and 

glutamate [5, 14, 36, 37]. Due in part to recent studies suggesting the expression of vesicular glutamate 

transporters (VGLUTs) can be altered by psychiatric medications [38-41] and the importance of 

dopamine neuron glutamate co-transmission on the schizophrenia resilience phenotype in mice [42], 

we generated new tools to identify and manipulate glutamate function in monoamine-expressing 

neurons. 

 

We found that the majority of OA neurons within the Drosophila nervous system also express the 

vesicular neurotransmitter transporter for glutamate (dVGlut). Functionally, glutamate (GLU) co-

expression could convey the same information by promoting the synaptic vesicle packing of OA or 

GLU may convey distinct information that is separate from the function of OA. In Drosophila, OA 

synthesis and release are essential for conserved social behaviors; males without OA display low levels 

of aggression and high levels of inter-male courtship [43-47]. We demonstrate that males deficient for 

dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but without 

a concurrent increase in inter-male courtship. These results indicate both OA and dVGLUT are 

required in dual-transmitting neurons to promote aggression. However, only OA is required for the 

suppression of inter-male courtship and thus the function of dVGLUT in OGNs is not limited to 

vesicular synergy.  

 

To ask if the separable effects of OA on courtship circuitry may be attributable to spatially distinct OA 

signals, we conditionally expressed a new epitope-tagged version of the Drosophila vesicular 

neurotransmitter transporter for monoamines (V5-tagged VMAT) in OGNs. While the majority of V5-

VMAT and dVGLUT expression colocalize, VMAT is detected in distinct puncta without dVGLUT 

suggesting the possibility of separable signal transmission. Together, these results demonstrate the 

complex behavior of aggression requires both dVGLUT and OA in dual-transmitting neurons and 
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suggests within monoamine neurons, GLU may provide a therapeutic target to modulate aggression in 

pathological conditions.   

 

Results 

dVGLUT is co-expressed in OA neurons  

The co-expression of vesicular neurotransmitter transporters has been primarily used to identify 

dual-transmitting neurons[48-52]. To examine glutamatergic transmitter expression, we generated 

a monoclonal dVGLUT antibody and validated its specificity using a new dVGlut allele, dVGlutSS1.  

In homozygous dVGlutSS1 progeny, dVGLUT protein is not detectable (SFig 1, Methods), thus 

demonstrating the specificity of the dVGLUT antibody. As dVGLUT expression is widespread and 

mainly found in synaptic terminals (SFig 1), we used the Gal4-UAS system to identify monoamine 

neurons that express GLU. In this study, we focused specifically on OA neurons that co-express 

dVGLUT (OA-glutamate neurons (OGNs)).  

 

Cell bodies of OGNs were visualized by a UAS-dsRed.NLS reporter under control of dVGlut-gal4 

(hereafter referred to as dVGlut>dsRed). OGNs were identified by antibodies to tyrosine 

decarboxylase 2 (TDC2) and tyramine -hydroxylase (T H) as OA is synthesized from the amino 

acid tyrosine via the  action of Tdc and T h in invertebrates [46]. OGNs from 10 dVGlut>dsRed 

Tdc2-labeled male brains were quantified by the multi-point ImageJ tool followed by manual 

verification of each optical section. Within the brain, OA neurons that co-express glutamate are 

found in the subesophageal zone (SEZ), the periesophageal neuropils (PENP), the anterior (ASMP) 

and posterior superior medial protocerebrum (PSMP), and the protocerebral bridge (Fig 1A-E). 

Co-expression occurs in each region of interest (Fig 1A-E). Th and dVGlut>dsRed co-localization 

(SFig 2) provides further support that glutamate is found in OA-expressing neurons.   

 

In the adult ventral nervous system (VNS), the thoracic Tdc2+ neurons that innervate skeletal 

muscles express glutamate (SFig 3). In the abdominal ganglia, all but 2-3 Tdc2+ neurons express 

dVGlut (SFig 3) consistent with the previous finding of OA-glutamate co-expression in abdominal 

neurons [53]. After detecting no reporter expression from a Th-gal4 driver, dVGLUT cell body 

expression in OGNs was detected in brains from tdc2-gal4;UAS-dsRed adults (SFig 4). In total, 
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this analysis reveals that of the ~100 OA neurons in the Drosophila adult nervous system, about 

70% express dVGLUT. 

   

dVGLUT is not required for OA neuron identity 

To reduce glutamate function solely in OGNs, a UAS-driven inverted repeat transgene targeting 

dVGlut (UAS-dVGlut-RNAi) was expressed under control of the tdc2-gal4 driver (hereafter 

tdc2>dVGlut-RNAi) (Fig 2A,B). The effectiveness of this UAS-dVGlut-RNAi line has been verified 

at the transcript level through RT-qPCR ([12]and SFig 5) and functionally as the frequency of 

miniature excitatory postsynaptic potentials (mEPSP) were reduced by this dVGlut RNAi in 

presynaptic glutamatergic larval motor neurons [12]. As the loss of VGLUT2 in vertebrate 

dopamine-glutamate dual transmitting neurons impairs survival and differentiation in vitro [49, 

54], we examined OGNs in tdc2>dsRed>dVGlut-RNAi adults and did not observe obvious changes 

in OGN survival nor distribution (SFig 5). In addition, OGN neurotransmitter differentiation was 

retained as tdc2>dVGlut-RNAi>dsRed neurons express Tdc2 (SFig 5). Neurons labeled by this 

tdc2-gal4 whether in the brain or VNS are all Tdc2+ (SFig 6A,B) 

 

Reducing glutamate in OGNs decreases male aggression and inter-male courtship 

We and others previously demonstrated OA is required for two distinct social male behaviors; the 

promotion of aggression, and the inhibition of intermale courtship [43, 46, 55, 56]. To address 

whether dVGLUT performs a related or separable role in these OA-dependent behaviors, we 

quantified changes in aggression and intermale courtship. Fights between pairs of tdc2>dVGlut-

RNAi males, and transgenic controls were recorded and multiple agonistic parameters quantified 

including: latency to the first lunge, number of lunges, and number of agonistic wing threats (Fig 

2A, [57, 58]). As behavioral patterns are scored for 30 minutes after the first lunge, each male pair 

has the same amount of time to exhibit aggressive events or inter-male courtship (Fig 2B).  

 

Males with decreased dVGLUT in OGNs neurons exhibited a significant reduction in aggression 

as measured by lower numbers of lunges and wing threats, and an increase in the latency to initiate 

aggression (Fig 2D-F). These aggression deficits are the same as in males that lack OA [43, 46, 

47]. Importantly, the locomotor activity of tdc2>dVGlut-RNAi adults during the aggression assay 

did not differ from dVGlut-RNAi controls (SFig 7A). 
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Interactions between control male pairings within a fight can include low levels of intermale 

courtship as measured by unilateral wing extensions (UWE, the courtship song motor pattern). 

Males without OA exhibit high levels of inter-male courtship [43, 55, 56] and previously, we 

determined the function of three OA-FruM+ neurons is required to suppress intermale courtship 

[55]. If dVGLUT is only needed to enhance monoamine vesicular packaging and thus modulate 

OA function, we would expect males with reduced dVGlut levels to display the same behavioral 

deficits, i.e. high levels of inter-male courtship. However, tdc2>dVGlut-RNAi males did not exhibit 

inter-male courtship (Fig 2G). These results suggest; 1) dVGLUT is required in OGNs to promote 

aggression, and 2) dVGLUT is not required to suppress inter-male courtship.  

 

Aggression requires dVGLUT function in OA-GLU brain neurons  

In the adult, motor neurons innervating leg and wing muscles express glutamate [59]. Therefore, 

the observed behavioral deficits in tdc2>dVGlut-RNAi males may reflect impairments at the 

neuromuscular junction. To address this possibility, we spatially restricted expression of the 

dVGlut-RNAi transgene to the brain using the teashirt-lexA 8xlexAop2-IVS-Gal80 (hereafter 

tsh>Gal80) transgenic combination (Fig 2H). The tsh>Gal80 transgenic combination was effective 

at blocking Gal4-mediated transcription in the entire VNS including in OGNs that innervate 

muscles required for courtship and wing threat behaviors (SFig 8). 

 

With dVGlut function maintained in motor neurons, it was possible all aggressive behaviors would 

return to control levels. However, latency to initiate aggression remained longer in males with 

reduced dVGLUT in brain OGNs (tdc2>tsh>Gal80>dVGlut-RNAi) and lunge number remained 

lower when compared to controls (Fig 2I,J). Wing threat numbers were at levels lower than one 

control (Fig 2K) which likely reflects the incompleteness of dVGlut RNAi interference (see results 

in Fig 4G).  In contrast, providing dVGLUT function in OGN VNS neurons restored intermale 

courtship to control levels (Fig 2L). Although total behavioral events by experimental males 

(lunges, wing threats, intermale courtship) per minute decreased, overall activity did not (SFig 7) 

nor did male-female courtship (Fig 3). These results indicating GLU transport in brain OGNs is 

required to initiate aggression may reflect deficits in the detection of male pheromones as we 

previously described for OA. Specifically, aggression requires pheromonal information from 
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Gr32a-expressing chemosensory neurons located in the mouth to OA SEZ neurons [43] and the 

suppression of intermale courtship requires the function of three OA-FruM+ neurons located in the 

brain [55]. 

 

Finally, males with reduced dVGLUT in brain OGNs (tdc2>tsh>Gal80>dVGlut-RNAi) performed 

all measured male-female courtship parameters including latency to court, courtship index, latency 

to copulation and copulation success at levels indistinguishable from controls (Fig 3). Together, 

these results indicate dVGlut in OGNs is required in males both for aggression and courtship 

toward a female and at the behavioral level, the functional requirement for dVGLUT in OGN 

motor neurons vs. central brain neurons is spatially separable.  

 

Removal of glutamate in OGNs using the B3RT-vGlut conditional allele 

The experiments above used two different approaches to reduce neurotransmitter levels, but not 

eliminate dVGLUT. To completely remove glutamate transporter function in OGNs, a conditional 

allele of dVGlut, B3RT-dVGlut-LexA (hereafter B3RT-dVGlut), was developed via genome editing. 

Genome edits to the dVGlut locus included flanking the dVGlut coding exons with B3 

recombination target sites (B3RTs) [60] in the same orientation and inserting the coding sequences 

of the LexA transcription factor immediately downstream of the 3’ B3RT (Fig 4A). With B3RT-

dVGlut, glutamate function can be temporally and spatially controlled using Gal4 drivers of 

interest to express the B3 recombinase that in turn catalyzes the in vivo excision of DNA between 

the B3RTs (Fig 4B). Two outcomes result after B3 recombinase-mediated excision; 1) a dVGlut 

null allele is generated solely in the neurons of interest, and 2) a dVGlut-LexA driver is created that 

allows visualization of glutamatergic neurons when a LexAop reporter is present.  

 

To assess the functionality of dVGlut within the B3RT-dVGlut chromosome pre- and post-excision, 

the B3RT-dVGlut chromosome was crossed with the null allele, dVGlutSS1 (SFig 1). In the absence 

of a Gal4 driver, vGlutSS1/B3RT-vGlut progeny are fully viable and no LexAop-driven reporter 

gene expression is detected (Fig 4C). In contrast, when B3 recombinase (UAS-B3) is expressed in 

the nervous system by the pan-neuronal driver, n-syb-Gal4, dVGLUT expression is eliminated and 

vGlutSS1/B3RT-dVGlut;UAS-B3/n-syb-Gal4 progeny are inviable (data not shown). These results 

establish that the B3RT-dVGlut genome edits preserve dVGLUT function prior to excision, but 
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after excision, as expected with removal of the entire dVGLUT protein-coding sequence, a dVGlut 

null allele is generated.  

 

To verify the functionality of the B3RT-dVGlut chromosome in Tdc2+ neurons, we crossed tdc2-

gal4 with B3RT-dVGlut;UAS-B3. Following B3-mediated excision in Tdc2+ neurons, the resulting 

dVGlut-lexA driver is active in OGNs demonstrating the dVGlut coding region was removed. The 

excision of dVGlut and substitution with LexA in the adult nervous system was confirmed by co-

localization of nuclear markers (Fig 4D,D’). This result provides additional confirmation the 

majority of Tdc2+ neurons are glutamatergic. In addition, nuclear reporters were used to confirm 

the loss of dVGLUT does not obviously alter OGN differentiation (SFig 9).  

 

To completely remove dVGLUT function, we used the dVGlutSS1 null allele in combination with 

the B3RT-dVGlut conditional null allele. Due to the requirements for GLU in OA-GLU motor 

neurons, we crossed the tsh>Gal80 transgenes onto the B3RT-dVGlut chromosome. Males with 

homozygous null dVGlut mutations in brain OGNs were generated by driving B3 recombinase 

with tdc2-gal4 (dVGlutSS1/B3RT-dVGlut tsh>Gal80;UAS-B3/tdc2-gal4). As expected, the complete 

loss of GLU in brain OGNs reduced male aggression. Specifically, the latency to initiate 

aggression increased, and lunge numbers decreased (Fig 4E,F). Not unexpectedly, the complete 

elimination of dVGLUT function resulted in aggression deficits significantly worse when 

compared to the RNAi approach (Fig 4I) including now a reduction in wing threat number (Fig 

4G) which demonstrates an advantage in using the conditional null B3RT-dVGlut allele. Finally, 

and significantly, the number of inter-male wing extensions did not differ from controls (Fig 4H) 

nor from males with a reduction of dVGlut in brain OGNs (Fig 2K). In summation, the 

dVGlutSS1/B3RT-dVGlut null combination elegantly and independently validates the aggression 

phenotypes based on dVGlut RNAi-based reduction, demonstrates the applicability of a powerful 

new conditional genetic tool, and confirms that dVGLUT function in OGNs is not required to 

regulate intermale courtship. 

 

Reducing GLU by EAAT1 overexpression recapitulates the decrease in aggression  

At this point, GLU function within OGNs has been altered by reducing glutamate transport into 

synaptic vesicles. Whether the aggression phenotypes of OGN dVGLUT mutant males are due to 
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deficits in the concentration of GLU into synaptic vesicles, the packaging of OA, or a reduction of 

released GLU is not clear. After release, glutamate is rapidly removed from synapses by excitatory 

amino acid transporters (EAATs) [61, 62]. Therefore, to reduce GLU signaling after release, we 

increased expression of the only high-affinity glutamate transporter in Drosophila, EAAT1 (Fig 

5A) [63, 64]. 

 

EAAT1 is expressed in glia throughout the nervous system [64].  By examining 2-10 individual 

EAAT1-GFP clones in ~40 brains, we determined OGN neuronal cell bodies and arborizations are 

consistently enmeshed by EAAT1-expressing glia (Fig 5B-C). To reduce glutamate signaling after 

release, EAAT1 expression was increased via a transgene (EAAT1-gal4;UAS-EAAT1). While a loss 

of EAAT1 impairs larval movement [65], overexpression of EAAT1 has been used in adult long-

term memory formation assays which requires locomotion [66]. Similar to the dVGLUT loss-of-

function results above, the aggressive behavior of males with reduced GLU signaling by EAAT1 

overexpression (EAAT1-gal4;UAS-EAAT1) was altered in two parameters: the latency to initiate 

lunging increased and lunge number decreased (Fig 5D,E). Locomotor activity during the 

aggression assay did not differ (Fig 5F). Although future experiments will be needed to determine 

if the promotion of aggression requires dVGLUT packaging of OA in synaptic vesicles and OGN 

glutamate signaling to downstream targets, results from this section support the hypothesis that 

OGN-mediated aggression requires GLU.  

 

OA and Glu signal to a shared aggression-promoting circuit  

If Glu and OA convey signals to separable aggression-promoting circuits, a loss of both 

neurotransmitters would reduce aggression greater than the loss of either alone (Fig 6A). If, 

however, Glu and OA signal to a shared circuit or circuits that converge, a loss of both transmitters 

would reduce aggression to the same levels as the loss of one alone. To address this question, we 

incorporated the previously described null allele ThnM18 [67] and generated 

ThnM18;tdc2>dVGlut-RNAi males. Additive deficits did not occur when males without OA and 

dVGLUT in OGNs were compared to males lacking only OA (Fig 6B-D) indicating that both 

signals, at least partially, converge onto a shared aggression-promoting pathway.  
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ThnM18;tdc2>vGlut-RNAi males displayed levels of male-male courtship that are not significantly 

different from ThnM18 males (blue column, Fig 6E). This result further supports previously 

published data that OA is required to suppress intermale courtship [43, 55, 56]. Here, increased 

levels of inter-male courtship due to the absence of OA supersedes or relieves the lack of UWE due 

to a reduction in dVGlut function (Fig 2). At this point, it is possible the UWE phenotype occurs 

via OA-modulated circuitry that involves other neurotransmitters [56] or the actions of OA occur at 

spatially distinct locations. 

 

Spatial segregation of VMAT and dVGLUT within OGNs 

To compare localization of the two transporters within OGNs, we generated a conditionally 

expressible epitope-tagged version of VMAT, RSRT>STOP>RSRT-6XV5-VMAT, via genome 

editing. RSRT>STOP>RSRT-6XV5-VMAT has two insertions: 1) a STOP cassette between VMAT 

coding exons 5 and 6 and, 2) six in-frame tandem copies of a V5 epitope tag within exon 8 which 

is common to both VMAT-A and VMAT-B isoforms (Fig 7A).  The effectiveness of the STOP 

cassette is confirmed by the lack of V5 expression prior to STOP cassette excision by Gal4-driven 

R recombinase (SFig 11) and the effectiveness of the epitope multimerization strategy has also 

been determined [68]. The conditionality of the RSRT>STOP>RSRT-6XV5-VMAT allele permits 

visualization of VMAT in subsets of neurons at expression levels driven by the endogenous 

promoter. 

 

To focus on transporter distribution within OGNs, we expressed RSRT>STOP>RSRT-6XV5-VMAT 

under control of the split Gal4 combination of tdc2-Gal4-AD and dVGlut-Gal4-DBD (tdc2-

dVGlut-gal4) which drives expression in OGNs (Fig 7B, SFig 6C-F). V5-VMAT was visualized in 

tdc2-dVGlut-gal4; V5-VMAT UAS-R by an antibody to V5 and dVGLUT using mAb dVGLUT 

(SFig 10). Figure 7C illustrates that as expected, a large fraction of the V5-VMAT puncta in the AL 

or SEZ (SFig 11) either co-localize with dVGLUT or are in close proximity (arrowheads). High 

resolution images in Fig 7D, H, however, reveal V5-VMAT puncta without dVGLUT (arrows). As 

OA can be found in SVs as well as LDCVs [69, 70], we incorporated a synaptic marker (UAS-

Synaptotagmin (Syt):HA) and re-examined V5-VMAT and dVGLUT expression in the AL and SEZ 

(Fig 7F, SFig 11D). We found V5-VMAT puncta that either co-localize or are in close proximity to 

Syt:HA and dVGLUT (Fig 7F-J, SFig 11D-H). While the behavioral significance of potential OA 
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synaptic release on aggression circuitry remains to be determined, previous work has demonstrated 

amine-dependent behaviors can be altered by shifting the balance of OA release from SVs to 

LDCVs [70]. In addition, as mentioned above, we have previously shown that three OA-FruM+ 

neurons are required to suppress intermale courtship and recent work   has identified a small subset 

of OA receptor OAMB-expressing neurons that when silenced, decrease aggression and increase 

intermale courtship [56]. The SEZ areas of V5-VMAT and dVGLUT puncta highlighted in Figs. 7 

and 8 are consistent with projections made by OA-FruM+ neurons which are also OGNs (SFig 12) 

raising the possibility of distinct OA and GLU inputs to key downstream targets.  

 

Due to the large number of tdc2-dVGlut-gal4 neurons, we repeated the experiment using the OA-

specific MB113C-split-gal4 to drive V5-VMAT in ~2 OGNs (Fig 8A-B) [71]. Figure 8C illustrates 

that as expected, many V5-VMAT puncta in the SEZ either co-localize with dVGLUT or are in 

close proximity (arrowheads). High resolution images in Fig 8D, H, however, indicate small, but 

distinct regions that contain V5-VMAT puncta without dVGLUT (arrows). Within the areas of 

dVGLUT and V5-VMAT possible colocalization, this level of analysis does not indicate whether 

the two transporters segregate into adjacent but distinct puncta, nor are questions of transporter 

colocalization on the same vesicles addressed. Nevertheless, our results demonstrate that within 

OGNs, V5-VMAT and dVGLUT puncta can differ in localization suggesting the aggression vs. 

intermale courtship phenotype differences may be due to spatial differences in signaling by 

glutamate and octopamine.  

  

 

DISCUSSION 

Addressing the functional complexities of ‘‘one neuron, multiple transmitters’’ is critical to 

understanding how neuron communication, circuit computation, and behavior can be regulated by 

a single neuron. Over many decades, significant progress has been made elucidating the functional 

properties of neurons co-expressing neuropeptides and small molecule neurotransmitters, where 

the neuropeptide acts as a co-transmitter and modulates the action of the neurotransmitter [5, 6, 

72]. Only recently have studies begun to examine the functional significance of co-transmission by 

a fast-acting neurotransmitter and a slow-acting monoamine.  
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In this study, we demonstrated that OA neurons express dVGLUT and utilized a new genetic tool 

to remove dVGLUT in OA-glutamate neurons. Quantifying changes in the complex social 

behaviors of aggression and courtship revealed that dVGLUT in brain OGNs is required to 

promote aggressive behavior and a specific behavioral pattern, the lunge. In contrast, males 

deficient for dVGLUT function do not exhibit an increase in inter-male courtship. These results 

establish a previously undetermined role for dVGLUT in OA neurons located in the adult brain and 

reveal glutamate uncouples aggression from inter-male courtship. It has been suggested that 

classical neurotransmitters and monoamines present in the same neuron modulate each other’s 

packaging into synaptic vesicles or after release via autoreceptors [9, 49, 73-75]. For example,  a 

reduction of dVGLUT in DA-glutamate neurons resulted in decreased AMPH-stimulated 

hyperlocomotion in Drosophila and mice suggesting a key function of dVGLUT is the mediation 

of vesicular DA content [12, 49, 76]. In this study, the independent behavioral changes suggests 

enhancing the packaging of OA into vesicles is not the sole function of dVGLUT co-expression 

and suggests differences in signaling by OA from OGNs on courtship-related circuitry. 

 

Co-transmission can generate distinct circuit-level effects via multiple mechanisms. One 

mechanism includes spatial segregation; the release of two neurotransmitters or a neurotransmitter 

and monoamine from a single neuron occurring at different axon terminals or presynaptic zones. 

Recent studies examining this possible mechanism have described; (i) the release of GLU and DA 

from different synaptic vesicles in midbrain dopamine neurons[15, 77] and (ii) the presence of 

VMAT and VGLUT microdomains in a subset of rodent mesoaccumbens DA neurons[78]. In this 

study, we expressed a new conditionally expressed epitope-tagged version of VMAT in OGNs and 

visualized endogenous dVGLUT via antibody labeling. Within OGNs, the colocalization of VMAT 

and dVGLUT puncta was not complete suggesting the observed behavioral phenotype differences 

may be due to spatial differences in OA signaling.  

 

A second mechanism by which co-transmission may generate unique functional properties relies 

on activating distinct postsynaptic receptors. In Drosophila, recent work has identified a small 

population of male-specific neurons that express the alpha-like adrenergic receptor, OAMB, as 

aggression-promoting circuit-level neuronal targets of OA modulation independent of any effect on 

arousal[56] and separately knockdown of the Rdl GABAa receptor in a specific doublesex+ 
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population stimulated male aggression [79]. Future experiments identifying downstream targets 

that express both glutamate and octopamine receptors would be informative, as well as using 

additional split-Gal4 lines to determine if segregation of transporters is a hallmark of the majority 

of OGNs. Finally, a third possible mechanism is Glu may be co-released from OGNs and act on 

autoreceptors to regulate presynaptic OA release (reviewed in [75]).  

 

Deciphering the signaling complexity that allows neural networks to integrate external stimuli with 

internal states to generate context-appropriate social behavior is a challenging endeavor. 

Neuromodulators including monoamines are released to signal changes in an animal’s environment 

and positively or negatively reinforce network output. In invertebrates, a role for OA in responding 

to external chemosensory cues as well as promoting aggression has been well-established [43, 47, 

56, 80-83]. In terms of identifying specific aggression circuit-components that utilize OA, previous 

results determined OA neurons directly receive male-specific pheromone information [43] and the 

aSP2 neurons serve as a hub through which OA can bias output from a multi-functional social 

behavior network towards aggression[56]. The ability of OA to bias behavioral decisions based on 

positive and negative reinforcement was also recently described for food odors [84].  In 

vertebrates, it has been proposed that DA-GLU cotransmission in the NAc medial shell might 

facilitate behavioral switching [85].  Our finding that the majority of OA neurons are 

glutamatergic, suggests that the complex social behavior of aggression may rely on small subsets 

of neurons that both signal the rapid temporal coding of critical external stimuli as well as the 

frequency coding of such stimuli resulting in the enhancement of this behavioral network. One 

implication of our finding regarding the separable OA-dependent inhibition of inter-male courtship 

is the possibility of identifying specific synapses or axon terminals that when activated gate two 

different behavioral outcomes. A second implication is that aggressive behavior in other systems 

may be modified by targeting GLU function in monoamine neurons.  

  

Finally, monoamine-expressing neurons play key roles in human behavior including aggression 

and illnesses that have an aggressive component such as depression, addiction, anxiety, and 

Alzheimer’s [86, 87]. While progress is being made in addressing the functional complexities of 

dual transmission, the possible pathological implications of glutamate co-release by monoamine 

neurons remains virtually unknown. Analyzing the synaptic vesicle and release properties of 
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monoamine-glutamate neurons could offer new possibilities for therapeutic interventions aimed at 

controlling out-of-context aggression. 
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Methods 

Drosophila Husbandry and Stocks: All flies were reared on standard cornmeal-based fly food. 

Unless noted otherwise, during developmental and post-eclosion, flies were raised at 25oC, ~50% 

humidity and a 12:12hr light-dark cycle (1400+200 lx white fluorescent light) in humidity and 

temperature-controlled incubators. A list of stocks can be found in Supplementary Information.   

 

Aggression Assays: Male pupae were isolated and aged individually in 16 x 100mm borosilicate glass 

tubes containing 1.5ml of standard food medium as previously described [88]. A dab of white or blue 

acrylic paint was applied to the thorax of two-day old males under CO2 anesthesia for identification 

purposes. Flies were returned to their respective isolation tubes for a period of at least 24 hours to 

allow recovery. For aggression testing, pairs of 3-5 day old, socially naïve adult males were placed in 
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12-well polystyrene plates (VWR #82050-930) as described previously [43]. All assays were run at 

25oC and ~45-50% humidity levels.  

 

Scoring and Statistics: All aggression was assayed within first two hours of lights ON time 

(Zeitgeber hours 0-2) and scored manually using iMovie version 8.0.6. Total number of lunges, wing 

threats, and unilateral wing extensions were scored for a period of 30 minutes after the first lunge 

according to the criteria established previously [43, 88]. The time between the aspiration of the flies 

into the chamber and the first lunge was used for calculating the latency to lunge. Male-male courtship 

was the number of unilateral wing extensions (singing) followed by abdomen bends or repeated wing 

extensions. All graphs were generated with Graphpad Prism and Adobe Illustrator CS6. For data that 

did not meet parametric assumptions, Kruskal-Wallis Test with Dunn’s multiple comparison was used 

unless otherwise specified. A standard unpaired t-test was performed in the case of only two 

comparisons and a modified chi-square test to compare copulation success.  

 

Activity levels: Activity levels were measured by tracking the flies in each assay using the OpenCV 

module in the Python programming language to analyze the video and then output XY-coordinate and 

distance data. The distance traveled was calculated for each fly by determining the starting location 

followed by the second location after a 250-ms time interval and then taking the sum of the distance 

traveled in each interval. To calculate pixels moved per second, the distance data was divided by the 

total time spent tracking.  

 

Immunohistochemistry: Adult male dissected brains were fixed in 4% paraformaldehyde (Electron 

Microscopy Sciences) for 25 minutes and labeled using a modification of protocols previously 

described [55]. The following primary antibodies were used: anti-bruchpilot (mAb nc82, 1:30, 

Developmental Studies Hybridoma Bank), monoclonal rabbit anti-GFP (1:200, Molecular Probes), rat 

anti-HA 3F10 (1:100, Roche), mAb dVGLUT (1:15), anti-T H (1:400, [89]), rat anti-V5 (1:200, 

Biorbyt), and rabbit anti-TDC2 (1:100, Covalab). Secondary antibodies conjugated to Alexa 488, 

Alexa 594, or Alexa 647 (Molecular Probes) were used at a concentration of 1:200. Labeled brains 

were mounted in Vectashield (Vector Labs, #H1000). Images were collected on an Olympus Fluoview 

FV1000 laser scanning confocal mounted on an inverted IX81 microscope and processed using ImageJ 

(NIH) and Adobe Photoshop (Adobe, CA).  
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qPCR: Total RNA from ~40 heads using Direct-zol RNA Miniprep Pluskit (Zymo Research)and 

treated with DNase I per the manufacturer’s protocol. RNA concentrations were measured with a ND-

1000 nanodrop spectrometer. Reverse transcription was accomplished using iScript cDNA Synthesis 

kit (Bio-Rad Laboratories). RT-PCR was performed using 300 ng cDNA added to iTaq Universal 

SYBR Green Supermix (Bio-Rad Laboratories) and primers in a 20 µL reaction volume. All samples 

were run in triplicate using a Stratagene Mx3005P qPCR System(Agilent Technologies). Expression of 

ribosomal protein 49 (Rp49) was used as the reference control to normalize expression between 

genotypes. Expression levels were determined using the ΔΔCT method and results from control (UAS-

dVGlut-RNAi/+) and experimental (nsyb-Gal4/UAS-dVGlut-RNAi) groups were normalized relative to 

a transgenic control (nsyb-Gal4/+). The following primers were used: Rp49 Forward: 50-

CATCCGCCCAGCATACAG-3’ Rp49 Reverse: 5’-CCATTTGTGCGACAGCTTAG-3’ dVGlut 

Forward: 5’-GCACGGTCATGTGGTGATTTG-3’ dVGlut Reverse: 5’-

CCAGAAACGCCAGATACCATGG-3’. Primer designs for all Rp49 and dVGlut primers used have 

been described previously [12]. 

 

Construction of 20XUAS-His2A-GFP, 13XLexAop2-His2B-mCherry and 20XUAS-R: The 

20XUAS-His2A-GFP, 13XLexAop2-His2B-mCherry, and 20XUAS-R expression clones were 

assembled using Gateway MultiSite LR reactions as previously described[90] and as indicated in 

Supplementary Table 2.  The L1-20XUAS-DSCP-L4 and L1-13XLexAop2-DSCP-L4 entry clones 

contain 20 copies of UAS and 13 copies of LexAop2 upstream of the Drosophila synthetic core 

promoter (DSCP) [91], respectively.  The R4-His2A-R3 and R4-His2B-R3 entry clones were generated 

as previously described [90] using genomic DNA as templates.  The L3-GFP-L2 entry clone was 

generated from template pJFRC165[60] except the PEST sequence is omitted.  The L3-GFP-L2 and 

L3-mCherry-HA-L2 entry clones were previously described [92]. The L1-20XUAS-DSCP-R5 entry 

clone was previously described [90]. The pDESTp10aw destination vector was previously 

described[93]. Injections were performed by Bestgene, Inc.        

  

Construction of UAS-B3:  B3 recombinase derived from pJFRC157 [60] was PCR amplified using 

primers designed to add the syn21 translational enhancer sequence [94] and remove the PEST domain.  

The verified PCR product was cloned into pENTR (Invtrogen) and subsequently transferred to 
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pBID20xUAS, a derivative of the pBID vector [95] with 20 copies of the UAS binding sequence. 

Injection of UAS-B3 was performed by Genetivision into landing site VK31. 

 

Generation of B3RT-vGlut: The B3RT-dVGlut-LexA chromosome was generated via CRISPR/Cas9 

genome editing.  Both guide RNAs were incorporated into pCFD4 using previously described methods 

[96] to produce the double guide RNA plasmid pCFD4-vGlut1.  The donor plasmid B3RT-dVGlut-

LexA used the pHSG298 backbone (Takara Bio) and was generated using NEBuilder HiFi (New 

England Biolabs).  The complete annotated sequence of B3RT-dVGlut-LexA is shown in 

Supplementary Information.  pCFD4-vGlut1/B3RT-dVGlut-LexA injections were performed by 

Bestgene, Inc.   

 

To assess the functionality of dVGlut on the B3RT-dVGlut chromosome pre- and post-excision, the 

B3RT-dVGlut chromosome was crossed with the homozygous lethal dVGlut null allele, dVGlutSS1 

in the presence and absence of the pan-neuronal driver n-syb-Gal4. In the absence of a Gal4 driver, 

dVGlutSS1/B3RT-dVGlut progeny are fully viable and no LexAop-driven reporter gene expression is 

detected (Fig 2). When B3 recombinase (UAS-B3) is expressed in the nervous system by n-syb-

Gal4, dVGlutSS1/B3RT-dVGlut;UAS-B3/n-syb-Gal4 progeny are inviable, therefore after excision, 

as expected with removal of the entire dVGlut protein-coding sequence, a dVGlut null allele 

results.  

      

Generation of dVGlutSS1: The dVGlutSS1 allele was generated by CRISPR/Cas9 genome editing with 

the same guide RNAs used to generate B3RT-dVGlut LexA. dVGlutSS1 was identified based on failed 

complementation with the existing dVGlut2 allele[97].  Sequencing of PCR products from this allele 

indicated a deletion of 2442bp that includes dVGlut amino acids 53-523.  Genomic DNA sequence at 

the breakpoints of the dVGlutSS1 allele are indicated with the deleted region in bold:    

GGACCAGGCGGCGGCCACGC......AACCTCCGGCCGAGGAGCAA. 

 

Generation of the RSRT-STOP-RSRT-6XV5-vMAT chromosome: RSRT-STOP-RSRT-6XV5-vMAT 

was generated via CRISPR/Cas9 genome editing.  Both upstream guide RNAs were incorporated into 

pCFD4-vMAT1 and both downstream guide RNAs were incorporated into pCFD4-vMAT2 as 

previously described [96].  The RSRT-STOP-RSRT-6XV5-vMAT donor plasmid used the pHSG298 
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backbone (Takara Bio) and was generated using NEBuilder HiFi (New England Biolabs).  The 

complete annotated sequence of RSRT-STOP-RSRT-6XV5-vMAT is shown in Supplementary 

Information.  pCFD4-vMAT1/pCFD4-vMAT2/RSRT-STOP-RSRT-6XV5-vMAT injections into the nos-

Cas9 strain TH_attP2[98] were performed by Bestgene, Inc.   

 

The R and B3 recombinases from yeast recognize sequence-specific recombination target sites, RSRTs 

and B3RTs, respectively [60].  These recombinases are highly efficient and highly specific as they 

exhibit virtually no cross-reactivity with each other’s recombinase target sites.  When pairs of 

recombinase target sites are in the same orientation, as is the case for both B3RT-vGlut-LexA and 

RSRT-STOP-RSRT-6XV5-vMAT, the recombinases catalyze excision of the intervening DNA and leave 

behind a single recombinase target site. 

 

dVGlut Antibody: Drosophila anti-dVGLUT mouse monoclonal antibodies (10D6G) were generated 

(Life Technologies Europe) using the C-terminal peptide sequence TQGQMPSYDPQGYQQQ of 

dVGLUT coupled to KLH. 
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Figures 

 

Fig 1.  OA neurons co-express glutamate. 

(A) OA-glutamate co-expression in a dVGlut>dsRed male brain labeled with anti-Tdc2 (green). 

Anti-brp (nc82, blue) labels the neuropil. Scale bar = 10 µm. (B-B’) Dorsal (B) and ventral (B’) 

confocal sections of neurons co-expressing OA and dVGlut in the SEZ. Non-dVGlut positive 

neurons are indicated (B inset, arrowhead). (B”) Quantification of OGN SEZ co-expression. (C-

C’) OGNs in the PENP and quantification. (D-D’) dVGlut>dsRed neurons expressing Tdc2 in the 

ASMP and quantification. (E-E’) Neurons co-expressing OA and glutamate in the PSMP and 

quantification. Scale bar = 20 µm for panels B-E.  
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Fig 2.  Male aggression requires dVGLUT function in OGNs.  

(A) dVGLUT reduction in OGNs through RNAi. (B) Behaviors for control and experimental male 

pairs were scored for thirty minutes beginning with the first lunge. (C) Schematic illustrating the 

brain and VNS OGNs. (D) Latency to lunge increased in tdc2>dVGlut-RNAi males (all statistical 

tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001). (E) tdc2>dVGlut-RNAi males displayed a decrease in the average number of 

lunges. (F) Wing threats were reduced in tdc2-dVGlut-RNAi males. (G) tdc2-dVGlut-RNAi males 

did not exhibit inter-male courtship (unilateral wing extensions = UWE). (H) Schematic 

illustrating the addition of tsh>Gal80 limits dVGLUT reduction to brain OGNs. (I) Latency to 
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lunge by tdc2-gal4/tsh>Gal80;UAS-dVGlut-RNAi males is significantly longer than controls. (J) 

Lunge number by tdc2-gal4/tsh>Gal80;UAS-dVGlut-RNAi males decreases as compared to 

controls. (K) Wing threat number was rescued to UAS-dVGlut-RNAi control levels. (L) Male-male 

UWE was rescued to control levels. N values for each genotype, panels D, I. Error bars denote 

s.e.m. 

 

 

Fig 3. dVGLUT function is required in VNS OGNs for male-female courtship.  
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(A) Male (arrow) to female courtship. (B) Schematic illustrating the addition of tsh>Gal80 limits 

dVGLUT reduction to brain OGNs. (C-F) All parameters of male to female courtship were rescued 

by restoring glutamate function to OGNs within the VNC. (C) The latency to initiate courtship 

towards a female returned to control levels in males with reduced dVGLUT in brain OGNs. (D) 

The courtship index was restored to control levels in tdc2-gal4/tsh>Gal80;dVGlut-RNAi males. 

(E) tdc2-gal4/tsh>Gal80;dVGlut-RNAi males exhibited the same latency to copulation as controls. 

(F) The copulation success of males with a dVGLUT reduction in brain OGNs was not 

significantly different from controls. N values for each genotype located on panel A. All statistical 

tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 
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Fig 4.  B3-mediated elimination of dVGLUT in OGNs reduces male aggression.  

(A,B) Schematic of the B3RT-dVGlut-LexA conditional allele. B3RTs flank dVGlut coding exons 

(A) and excise the entire dVGlut coding sequence in a specific subset of neurons upon expression 

of the B3 recombinase (B). After excision, a dVGlut null loss-of-function allele and dVGlut-LexA 

driver is created (B). (C) Control brain demonstrating without a source of Gal4-driven B3 

recombinase, excision and therefore LexA expression does not occur. (D-D’) tdc2-gal4 driven B3 
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recombinase-mediated excision effectively removes dVGlut resulting in B3RT-LexA-driven 

mCherry expression is in the majority of OA neurons (yellow). As expected, a few Tdc2+ neurons 

do not express dVGLUT (arrowhead, green). LexAop reporter expression that does not also show 

UAS expression may be observed as a result of excisions that occurred during development in 

former Tdc2+ neurons. (E) Latency to lunge increased in males lacking dVGLUT function (B3RT-

dVGlut tsh>Gal80/dVGlutSS1;UAS-B3) in OGNs. (F) Males without dVGLUT function lunged 

significantly less when compared to controls. (G) Wing threat number decreased in experimental 

males. (H) No significant differences in male-male courtship. (I) Aggression is significantly 

reduced by the complete loss of dVGLUT in OGNs as compared to the RNAi-based dVGLUT 

reduction. All statistical tests are Kruskal-Wallis with Dunn’s multiple comparisons test, (*p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. Error bars denote s.e.m. N values for each genotype, panel 

E. 

 

 

Fig 5. Reducing glutamate function through EAAT1 overexpression decreases male aggression 

(A) Glutamate function was reduced by increasing EAAT1 expression in EAAT1-expressing glia. 
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(B, C) GFP-expressing EAAT1 glia (hs-flp; EAAT1-gal4/UAS>stop>CD8:GFP) enwrap Tdc2+ 

neuron cell bodies (arrowhead) and endings (arrow). Higher magnification of dashed box in C. 

Scale bar = 30 um. (D) The latency to lunge by EAAT1>Eaat1 males was increased as compared to 

controls. (E) A decrease in lunge number was exhibited by EAAT1>Eaat1 males as compared to 

controls. (F) Locomotor activity during the aggression assay did not differ. All statistical tests are 

Kruskal-Wallis with Dunn’s multiple comparisons tests. N values for each genotype are in panel D. 

 

 

Fig 6.  OA and Glu signal to a shared aggression-promoting circuit  

(A) OGNs could signal to separate aggression-promoting circuits (resulting in aggression deficits 

greater than the single mutant) or to a shared or converged circuit. (B-E) dVGlut was reduced in 

OGNs of TβhM18 males (TβhM18;tdc2>dVGlut-RNAi). (C) Latency to lunge increased in 

TβhM18;tdc2>dVGlut-RNAi males compared to the transgenic control but not TβhM18 males. (D) 

Lunge number by males with reduced dVGLUT and lacking OA was not significantly different 

than TβhM18 males. (E) TβhM18;tdc2>dVGlut-RNAi males displayed lower wing threat numbers 

compared to the transgenic control but not TβhM18 males. (F) Males with reduced dVGLUT and 
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lacking OA (blue column) displayed an increase in inter-male courtship at levels higher than the 

control but not significantly different from TβhM18 mutants (green column). All statistical tests are 

Kruskal-Wallis with Dunn’s multiple comparisons test, (*p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. Error bars denote s.e.m. 

 

 

Fig 7. Spatial segregation of VMAT and dVGLUT within OGNs 

(A) Schematic of the RSRT>STOP>RSRT-6XV5-VMAT conditional allele. RSRTs flank a STOP 

cassette inserted between VMAT coding exon 5 and 6. Upon Gal4-driven expression of the R 

recombinase enzyme, the STOP cassette is excised and V5-tagged VMAT expression under control 

of the endogenous promoter is expressed. (B) Representative brain showing V5-VMAT expression 

in OGNs after excision by tdc2-dVGlut-gal4 driven R recombinase. The brain is labeled with anti-

V5 (magenta) and mAb dVGLUT (green in panels C,D). Scale bar is 30 µm. (C) Higher 

magnification of the antennal lobe region showing dVGLUT expression (green) with V5-VMAT 

(magenta). Scale bar is 10 µm. (D) The region in the dashed box in C showing puncta with 

dVGLUT and V5-VMAT colocalization (arrowheads) and puncta with only V5-VMAT (arrows). 

(E) Schematic showing the regions of the brain that are depicted in C and F. (F) Antennal lobe 
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region of a representative brain with a synaptic marker incorporated (UAS-synaptotagmin;HA, 

tdc2-dVGlut split gal4/UAS-R RSRT-STOP-RSRT-6XV5-vMAT). The brain is labeled with anti-HA 

(blue), anti-V5 (magenta), and mAb dVGLUT (green). Scale bar is 20 µm. (G-J”’) Higher 

magnification of the SEZ region of the AL in F showing dVGLUT expression (green), V5-VMAT 

(red), and Syt:HA (blue). Arrowheads indicate puncta with dVGLUT, V5-VMAT and Syt:HA and 

arrows indicate puncta with only V5-VMAT and Syt:HA. The stack for panels C and D contains 

two optical sections at 0.45 µm. Stacks for panels G-J contain 7 optical sections at 0.5 µm. 

 

Fig 8. Spatial segregation of VMAT and dVGLUT within two OGNs 

(A-A’) Representative brain showing V5-VMAT expression in two OGNs after excision by 

MB113C-split-gal4 driven R recombinase. The brain is labeled with anti-V5 (magenta) and mAb 

dVGLUT (green). Scale bar is 50 µm. The inlet in A which is from a separate brain demonstrates 

this OA neuron driver also expresses dVGLUT (green). (B-E) Higher magnification of the SEZ 

boxed region in A’. Arrowheads point to puncta with V5-VMAT and dVGLUT, arrows indicate 

V5-VMAT only puncta. Scale bar is 10 µm. (C-E) The regions in the dashed boxes in B showing 

puncta with dVGLUT and V5-VMAT colocalization (arrowheads) and puncta with only V5-VMAT 
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(arrows). Panels B-E contain stacks of four optical sections at 0.45 µm. Scale bar for panels C-E is 

5 µm. 

 

Supporting Information 

 

Supplementary Fig 1. 

Verification of mAb dVGLUT specificity using the null dVGlutSS1 allele. (A) dVGLUT expression 

detected by mAb dVGLUT in a heterozygous yw, dVGlutSS1/+ late stage embryo. (B) dVGLUT 

expression is not detectable by mAb dVGLUT in a homozygous yw, dVGlutSS1/ dVGlutSS1 late 

stage embryo. 
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Supplementary Fig 2.  

Multiple optical sections from dVGlut>dsRed male brains labeled with anti-Tβh.  (A-B) Although 

the Tβh shows weaker immunoreactivity than the anti-Tdc2 antibody, Tβh is mainly detected in 

dVGlut>dsRed neurons at dorsal and ventral positions (A’, A”, B’ and B”). Scale bar = 20 µm. 
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Supplementary Fig 3.  

(A-A’) Schematic showing the regions (boxes) of the VNS imaged in panels B and C.  (D-E) A 

male dVGlut>dsRed adult VNS labeled with anti-Tdc2. The majority of dVGLUT+ neurons within 

the thoracic VNS (D) and abdominal VNS (E) express Tdc2 with a few exceptions (arrows). Scale 

bar = 10 µm. 
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Supplementary Fig 4. 

(A) Schematic showing the regions imaged in panels B and C (colored boxes). (B-C) The majority 

of OA neurons within the PENP (B) and SEZ (C) regions co-express dVGLUT as visualized in a 

male tdc2>dsRed adult brain labeled with anti-dVGLUT. Scale bar = 10 µm. 
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Supplementary Fig 5. 

(A) dVGlut transcript levels were decreased in n-syb-gal4>dVGLUT-RNAi males as compared to 

the n-syb-gal4 control (n=3; p<0.01). (B-C) Representative images of ventral sections of the SEZ 

from a tdc2-gal4>dVGLUT-RNAi;UAS-dsRed male brain labeled with anti-Tdc2. OGN 

differentiation as measured by Tdc2 expression is not altered by a reduction of dVGLUT. Scale bar 

= 10 µm. (D-E) Dorsal sections of the SEZ, PENP and protocerebral bridge region from the same 



 

84 

brain as in B. There are no obvious changes in ventral OGN survival and differentiation as 

measured by Tdc2 expression. Scale bar = 20 µm. 

 

 

Supplementary Fig 6. 

(A) Verification that each tdc2>GFP neuron in the brain and VNS is Tdc2+. The stack for panel A 

contains 30 optical sections at 1.0 µm. Scale bar = 20 µm. (B) The stack for panel B contains 34 

optical sections at 1.0 µm. Scale bar = 20 µm. (C) Verification that each tdc2-dVGlut-split>GFP 

neuron is Tdc2+. The stack for panels C-E contains 56 optical sections at 0.5 µm. Scale bar = 20 

µm. 
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Supplementary Fig 7.  

(A) The activity levels of controls and tdc2>dVGlut-RNAi males did not differ during the 

aggression assay as measured by pixels moved/second. (B) Total behavioral events (lunges, wing 

threats, inter-male courtship) per minute was calculated. The average number of behavioral events 

per minute exhibited by experimental males (tdc2>tsh>Gal80>dVGlut-RNAi) was lower than 

controls (**p<0.01) 
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Supplementary Fig 8.  

(A) The VNS of a tdc2>mtd:HA male, note the Tdc2+ cell bodies. (B) The addition of tsh>Gal80 

blocked the Gal4-mediated expression of mtd:HA in the majority of Tdc2+ VNS neurons 

(tdc2/tsh>Gal80;dsRed). Axonal projections from brain Tdc2+ neurons are visualized in the VNS. 

(C) Significantly less Tdc2+ VNS neurons are detected in tdc2/tsh>Gal80;dsRed vs. tdc2>dsRed 

males. (Mann Whitney, P=0.001). (D) The addition of tsh>Gal80 does not alter brain tdc2-gal4 

reporter driven expression.  
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Supplementary Fig 9. 

Neuron survival or distribution is not altered by the complete loss of dVGLUT in OGNs (A-B) 

Representative images of dorsal and ventral optical sections of the SEZ region from tdc2-

gal4;B3RT-dVGlut/dVGLUTSS1;UAS-B3 lexAop-His2B-mCherry UAS-His2A-GFP males. OGNs 

are visualized by the mCherry reporter and white co-colocalization in the merged channel. Scale 

bar = 20 µm. 
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Supplementary Fig 10.  

RSRT>stop>6xV5-VMAT is not expressed without Gal4-mediated excision of the stop cassette. 

(A-A’) In the presence of a Gal4 driver (tdc2-Gal4-AD dVGlut-Gal4-DBD) to drive R recombinase 

(UAS-R) expression, the stop cassette of RSRT>stop>6XV5-VMAT is excised and V5-VMAT 

(magenta) is expressed and visualized by anti-V5. dVGLUT (green) is visualized by mAb 

dVGLUT. (B-B’) Without the presence of a Gal4 driver, dVGLUT expression is apparent while 

expression from RSRT>stop>6XV5-VMAT is not detected by anti-V5. Scale bar = 30 μm. 
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Supplementary Fig 11.  

(A) Higher magnification of the SEZ region showing V5-VMAT expression in OGNs after 

excision by tdc2-dVGlut-gal4 driven R recombinase. The brain is labeled with anti-V5 (magenta) 

and mAb dVGLUT (green). Scale bar = 15 μm. (B-B”) Higher magnification of the SEZ region of 

the region in the dashed box in panel B. Arrowheads indicate puncta with dVGLUT and V5-VMAT 

colocalization. Arrows indicate puncta with only V5-VMAT (arrows). (C) Schematic indicating the 

location of the SEZ region.  (D) SEZ region of a representative brain with a synaptic marker 

incorporated (UAS-synaptotagmin;HA, tdc2-dVGlut-gal4/UAS-R RSRT-STOP-RSRT-6XV5-vMAT). 

The brain is labeled with anti-HA (blue), anti-V5 (magenta), and mAb dVGLUT (green). Scale bar 

= 20 μm. (E) Higher magnification of the SEZ region in D. Scale bar = 10 μm. (F-H) Regions of 

interest from E showing puncta with dVGLUT, V5-VMAT and Syt:HA. The stack for panel B 

contains two optical sections at 0.45 µm. Six optical sections at 0.45 µm were stacked in panels E-

H.  

 



 

90 

 

Supplementary Figure 12. 

OGNs include the three OA-FruM+ neurons. (A-C) Brains from tdc2-dVGlut-split-

gal4/UAS>stop>CD8:GFP;fru-flp males demonstrate OA-FruM+ neurons are also dVGlut+. (D) 

No OGNs in the VNS are FruM+ although as expected the OGN-FruM+ neurons project into the 
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VNS. Scale bar = 20 µm. (E-G) OGN-FruM+ neurons (arrow) were also identified in dVGlut-

gal4/UAS>stop>CD8:GFP;fru-flp male brains labeled with anti-Tdc2 (magenta). Scale bar = 20 

µm. 

 

Supplementary Table 1. Identified OGNs based on OA neuron nomenclature. 

 

 

Supplementary Table 2. Cloning components used for the construction of the 20XUAS-His2A-

GFP and 13XLexAop2-His2B-mCherry lines.   
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In collaboration with the Stowers lab, we determined that the majority of OA neurons co-express 

glutamate and that both OA and glutamate release from OGNs is required for aggressive behavior. 

The dual transmission of OA and glutamate suggests several potential pre- and postsynaptic 

mechanisms through which responses to transmitter release from OGNs could be controlled. In our 

continued collaboration, I worked with Dr. Hannah McKinney to characterize the expression 

pattern of OA and Glu Gal4 lines generated by the Stowers lab, resulting in a publication in the 

Journal of Comparative Neurology. In this study, we examined the expression of 5 OA receptors 

and 1 glutamate receptor and determined both that OA receptors are widely expressed within OA 

neurons and that OA and glutamate receptors can be co-expressed. These results suggest that dual 

transmitting neurons are able to promote or inhibit transmitter release through autoreceptor 

activity. They also suggest that downstream synaptic partners can selectively receive signals from 

dual transmitting neurons via postsynaptic receptor expression. 
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Abstract

Octopamine, the invertebrate analog of norepinephrine, is known to modulate a large

variety of behaviors in Drosophila including feeding initiation, locomotion, aggression,

and courtship, among many others. Significantly less is known about the identity of

the neurons that receive octopamine input and how they mediate octopamine-

regulated behaviors. Here, we characterize adult neuronal expression of MiMIC-

converted Trojan-Gal4 lines for each of the five Drosophila octopamine receptors.

Broad neuronal expression was observed for all five octopamine receptors, yet dis-

tinct differences among them were also apparent. Use of immunostaining for the

octopamine neurotransmitter synthesis enzyme Tdc2, along with a novel genome-

edited conditional Tdc2-LexA driver, revealed all five octopamine receptors express in

Tdc2/ octopamine neurons to varying degrees. This suggests autoreception may be

an important circuit mechanism by which octopamine modulates behavior.

K EY W O R D S

autoreception, Drosophila, octopamine, octopamine receptor, RRID:AB_221568,

RRID:AB_2340686, RRID:AB_2340850, RRID:AB_2536611, RRID:AB_2633280,

RRID:AB_2814891, RRID:BDSC_27392, RRID:BDSC_42119, RRID:BDSC_43050, RRID:

BDSC_57940, RRID:BDSC_59133, RRID:BDSC_60312, RRID:BDSC_60313, RRID:

BDSC_67636, RRID:BDSC_68264

1 | IN TRODUCTION

The vertebrate adrenergic system is integral to countless behavioral

and physiological processes, including stress response (Snyder &

Silberman, 2019), metabolic maintenance (Ciccarelli, Sorriento,

Coscioni, Iaccarino, & Santulli, 2016), and neuropsychiatric diseases

(Langer, 2015; Sallee, Connor, & Newcorn, 2013). Adrenergic signaling

occurs via the release of adrenaline (epinephrine) and noradrenaline

(norepinephrine). Both adrenaline and noradrenaline exert their various

effects by binding to G-protein coupled receptors (GPCRs). These

receptors are classified as either α-adrenergic or β-adrenergic and trig-

ger numerous downstream signaling events, including the activation of

protein kinases and increased gene transcription, through the second

messengers cyclic AMP (cAMP) and calcium (Ca2+) (Ciccarelli et al.,

2016; Cole & Sood, 2012; Santulli & Iaccarino, 2013; Vaniotis et al.,

2011). In addition to the complexity of downstream signaling, the loca-

tion of adrenergic receptors is multifaceted with receptors located pre-

synaptically as well as postsynaptically (Langer & Angel, 1991). While

many studies in recent decades have examined the role of post-

synaptic adrenergic receptors, the impact of presynaptic receptors, or

autoreceptors, on circuits that regulate behavior and as targets for drug

discovery remains poorly examined.

Drosophila melanogaster offers several advantages to investigating

adrenergic receptor localization and function including a sophisticated

genetic toolbox, a simpler nervous system, and a reduced number of

neurotransmitter receptors as compared to vertebrates. In Drosophila,
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Aim 3: Is the regulation of neurotransmitter release by presynaptic mechanisms critical to 

constraining aggression? 

 

Introduction 

 

Aggression is an innate and evolutionarily-conserved behavior that animals use to gain access to 

food, mates, territory, and other resources. Aggressive behaviors expressed in ethological 

contexts are considered adaptive, as they increase an organism’s chances of survival (Cassidy et 

al. 2015; de Boer 2018; Covington et al. 2019; Rillich et al. 2019; Kiyose et al. 2021). However, 

aggressive behaviors that are exaggerated, persistent, and/or expressed out of context can 

decrease an organism’s chances of survival and reduce overall fitness (Nelson and Trainor 2007; 

Blair 2016; de Boer 2018; Wolf et al. 2018). Mechanisms that constrain aggression-promoting 

signals are thus a requirement for any organism, and the nervous system must provide such 

constraints. One such mechanism is to control the release of neurotransmitters, neuromodulators 

or neuropeptides from the individual presynapse (Swanson et al. 2005; Brady and Conn 2008; 

Niswender and Conn 2010; Holm and Markham 2012; Langer 2015). Such regulation either 

attenuates or enhances the amount or duration of each signaling molecule (Niswender and Conn 

2010). To accomplish release regulation, neurons express autoreceptors.  

 

An autoreceptor is a presynaptic receptor that responds to a neurotransmitter released from the 

same nerve cell in which it is expressed (Meltzer 1980; Hedqvist and Gustafsson 1981; Langer 

2008, 2015). Autoreceptors regulate the presynaptic concentration of neurotransmitters by 

inhibiting transmitter release and synthesis, thereby reducing synaptic transmission (Langer 

2008; Albert 2012). Although the responses of autoreceptors to different agonists and antagonists 

have been studied for decades, how presynaptic autoreceptors function to regulate neuron 

activity that drive behavior, the ultimate readout of circuit activity, is still poorly understood. 

Here, we examine the effects of increasing neurotransmitter release on aggression circuitry by 

reducing adrenergic and glutamatergic autoreceptor expression in a single OAergic neuron 

(VPM4). Our results demonstrate that control of neurotransmitter release by autoreception is 

critical for the regulation of high-intensity aggression. 
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One of the most well-studied classes of autoreceptors is the α2-adrenergic receptors (Starke 

2001; Votava et al. 2008; Holm and Markham 2012; Rinne et al. 2013; Langer 2015; Qi et al. 

2017; Devoto et al. 2019). In vertebrates, α2-adrenergic receptors are divided into three 

homologous classes: α2A-, α2B-, and α2C-adrenergic receptors (Bylund et al. 1994; Saunders and 

Limbird 1999). α2-adrenergic receptors are members of the Gi-coupled inhibitory class of G-

protein coupled receptors (GPCRs), are expressed in different regions of the vertebrate CNS, and 

expressed pre- and post-synaptically (Saunders and Limbird 1999; Haller and Kruk 2006). When 

localized to the presynapse, α2-adrenergic receptors release Gi protein upon their activation, 

which inhibits adenylyl cyclase activity (Saunders and Limbird 1999). This inhibition of the 

cAMP-dependent pathway serves as a negative feedback mechanism to inhibit further release of 

noradrenaline (NA) (Drouin et al. 2017). α2-adrenergic receptor function has been implicated in 

neurological disorders, with agonists being used to treat attention deficit hyperactivity disorder 

(Kamisaki et al. 1992; Connor and Rubin 2010) and antagonists being used to treat major 

depressive disorder (Watanabe et al. 2012), schizophrenia (Frånberg et al. 2012), bipolar disorder 

(Frye et al. 1998), and dementia (Rinne et al. 2013). However, it remains unclear (and at times 

contradictory) how α2-adrenergic receptor activity relates to pathological behavior (Gregg and 

Siegel 2001; Votava et al. 2008) due to the difficulty of separating the effects of presynaptic and 

postsynaptic α2-adrenergic receptor activation via pharmacological agents (Nelson and Trainor 

2007). This research limitation can be overcome in vivo with the comprehensive genetic toolkit 

available in Drosophila.  

 

Octopamine (OA), the invertebrate analog of NA, activates functionally conserved adrenergic 

receptors (Yellman et al. 1997; Evans and Maqueira 2005; Farooqui 2012; Qi et al. 2017). An 

ortholog of vertebrate α2-adrenergic receptors (OAα2R) was recently described and shown to 

function in the inhibition of cAMP via inhibiting adenylyl cyclase (Qi et al. 2017), a novel role 

for OA. In conjunction with our collaborators, we recently determined OAα2R to be widely 

expressed in OAergic neurons in the Drosophila CNS (McKinney et al. 2020), suggesting that 

autoreception is an important presynaptic regulatory mechanism in OAergic neurons. The α2-

like-adrenergic family was unknown in invertebrates (Evans and Maqueira 2005; Farooqui 2012; 

Bayliss et al. 2013) until the first α2 family member was isolated from Chilo suppressalis (Wu et 

al. 2014), and the Drosophila OAα2R was the second α2 member to be characterized (Qi et al. 
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2017; Blenau et al. 2020). Thus, these experiments present an exciting opportunity to examine 

the functional effects of α2 autoreceptor activity at single-neuron resolution in vivo. 

 

Glutamatergic autoreception occurs through the activation of metabotropic glutamate receptors 

(mGluRs) (Shigemoto et al. 1997; Swanson et al. 2005). mGluRs are glutamate-activated 

GPCRs that form through the dimerization of mGluR subunit proteins (Niswender and Conn 

2010; Moustaine et al. 2012; Levitz et al. 2016). Vertebrate mGluRs are subdivided into three 

groups based on sequence similarity, second-messenger pathway, and pharmacological profile 

(Ji-Quan Wang and Anna-Liisa Brownell 2007). Group I mGluRs (consisting of mGluR1 and 

mGluR5) are excitatory Gq-coupled that localize to the postsynapse (Swanson et al. 2005; Conn 

et al. 2009; Kumari et al. 2013). Group II (consisting of mGluR2 and mGluR3) and Group III 

mGluRs (consisting of mGluR4, mGluR6, mGluR7, and mGluR8) function as negative feedback 

autoreceptors that inhibit the cAMP-dependent pathway via the release of Gi/o protein that 

negatively regulates adenylyl cyclase activity (Shigemoto et al. 1997; Brady and Conn 2008; 

Niswender and Conn 2010). This inhibition reduces neuron excitability and thus further release 

of glutamate. In vertebrates, mGluRs have been implicated in neurological disorders such as 

general anxiety disorder (Swanson et al. 2005), Alzheimer’s (Niswender and Conn 2010), and 

schizophrenia (Conn et al. 2009). Despite their apparent clinical importance, the challenge of 

synthesizing and administering receptor-specific pharmacological agents to differentially activate 

a highly-conserved glutamate-binding domain has made determining the roles of specific 

mGluRs in disease difficult (Conn et al. 2009).  

 

The single Drosophila mGluR (mGluR) is an ortholog of group II mGluRs (Eroglu et al. 2003; 

Bogdanik et al. 2004; Devaud et al. 2008). Due to the prominent role for glutamate as an 

excitatory neurotransmitter in both the invertebrate CNS and peripheral nervous system (PNS), 

mGluR is widely expressed in many types of neurons. (Devaud et al. 2008; Schoenfeld et al. 

2013) mGluR is  found in the periactive zone of the larval NMJ, where it modulates frequency-

dependent glutamate release (Bogdanik et al. 2004). In the adult brain, mGluR is expressed and 

required in Kenyon cells for olfactory learning (Andlauer et al. 2014) and in the CNS generally 

for social behaviors, such as courtship (Schoenfeld et al. 2013). Despite its widespread 

expression throughout the Drosophila brain, mGluR is expressed in <10 octopamine-glutamate 
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dual-transmitting neurons (OGNs) (Kuchenbrod, Sherer, and Certel, unpublished data). This 

sparse expression suggests an important role for mGluR in regulating glutamate release within 

individual OGNs. 

 

The VPM4 neuron in the adult Drosophila brain provides an excellent model with which to 

examine the functional effects of mGluR- and α2-mediated autoreception. VPM4 was originally 

described as a cluster of ~5 OAergic neurons (Busch et al. 2009), but subsequent studies have 

identified it as a single neuron (Burke et al. 2012; Hoopfer 2016; Youn et al. 2018; Sayin et al. 

2019). VPM4 is located in the subesophageal zone (SEZ) of the adult Drosophila brain, a region 

which plays a role in processing sensory information (Andrews et al. 2014; Hartenstein et al. 

2018). VPM4 has previously been shown to promote feeding behavior by switching behavior 

from tracking to feeding via mushroom body output neuron inhibition and extending the 

proboscis in response to sugar (Youn et al. 2018; Sayin et al. 2019). More recent work has 

characterized VPM4 as expressing vesicular transporters for both monoamines and glutamate, 

with both transporters localized together in the majority of synaptic endings (Sherer et al. 2020). 

The major role that VPM4 plays in processing and relaying information to critical behavioral 

circuits via multiple transmitters suggests the existence of presynaptic mechanisms that serve to 

carefully control transmitter release. Indeed, uncommon for OA neurons, VPM4 expresses 

autoreceptors for OA and glutamate, namely both the α2 adrenergic-like receptor (OAα2R) and 

the single Drosophila metabotropic glutamate receptor (mGluR).  

 

In this study, we test the hypothesis that negative-feedback autoreceptors constrain aggression-

promoting signals from OGNs using a single OGN, VPM4, which we have previously identified 

as an OGN regulator in the transmission of aggression-promoting information (Sherer et al. 

2020). We demonstrate expression of OAα2R and mGluR in VPM4 and examine the role of 

these autoreceptors in constraining mid-intensity and high-intensity aggressive behaviors. RNAi-

mediated knockdown of either OAα2R or mGluR in males results in a significant increase in the 

number of boxing and holding bouts (high-intensity aggressive behavior) without changing the 

number of lunges (medium-intensity aggressive behavior) performed. Moreover, RNAi reduction 

of either the rate-limiting enzyme in OA synthesis TβH (i.e., decreasing OA release) or OAα2R 

(i.e., increasing OA release) demonstrate a secondary role for OA release from VPM4 in 
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inhibiting inter-male courtship and suggest the involvement of VPM4 within multiple decision-

making circuits. Taken together, these experiments determine that mGluR- and OAα2R-mediated 

autoreception is a presynaptic mechanism in VPM4 that constrains the transmission of 

aggression-promoting signals and offers Group II mGluRs and α2 adrenergic autoreceptors as 

potential targets in the treatment of high-intensity aggression. 

 

Results 

 

VPM4 expresses both octopamine and glutamate  

Autoreceptors that are able to attenuate or enhance transmitter release as a result of neuron 

activity have been proposed as a presynaptic mechanism that would expand the functionality of 

individual dual-transmitting neurons by allowing them greater control over neurotransmitter 

release (Figure 1A) (Burnstock 2004; De-Miguel et al. 2015; Shin et al. 2018; Nässel 2018; 

Trudeau and El Mestikawy 2018; Svensson et al. 2019; Nässel and Zandawala 2019). To test the 

hypothesis that presynaptic mechanisms in OGNs play a role in constraining aggression, we 

characterized a ventral paired median OA neuron, VPM4, as an autoreceptor-expressing OGN. 

Previous studies have identified VPM4 as an OAergic neuron that extends arborizations to higher 

brain regions that mediate gustatory behaviors such as the subesophagheal ganglion, the 

periesophageal neuropil, and the -lobe of the mushroom body (Busch et al. 2009; Burke et al. 

2012; Youn et al. 2018; Sayin et al. 2019). We used the Janelia split-Gal4 driver MB113C 

(hereafter VPM4-gal4) to identify and manipulate the VPM4 neuron. Here we report that VPM4 

is also glutamatergic and expresses the OA autoreceptor OAα2R and the glutamate autoreceptor 

mGluR. 
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Figure 2 Description and Characterization of a Single OGN (A) Individual OGNs can use 

several mechanisms to expand their signaling capabilities, including segregating OA and 

glutamate in different vesicles within the same terminal (green and blue circles) and inhibiting 

transmitter release through OA (green) or glutamate (blue) autoreceptors.  Signaling can be 

further refined downstream through expression of OA receptors (black) and/or glutamate-gated 

ion channels (blue) at the postsynapse. (B) Fluorescent labeling of VPM4, a single OA neuron, 

using VPM4-gal4. The cell body of VPM4 is localized to the SEZ and the neuron extends 

arborizations throughout the Drosophila brain. (C-C’’) VPM4 consistently co-expresses 

dVGLUT, confirming its status as an OGN. Scale bar represents 5 m. (Note: the image shown 

in Figure 1B is also shown in Figures 2A, 3A, and 4A). 

 

Expression of a vesicular glutamate transporter (VGLUT) has been used to demonstrate 

glutamate expression within dual-transmitting neurons (Zhang et al. 2015; Aguilar et al. 2017; 

Pagani et al. 2019; Okaty et al. 2019; Mingote et al. 2019). To examine glutamate expression in 

VPM4, we used a dVGlut monoclonal antibody that has been previously characterized (Banerjee 

et al. 2021). VPM4 was visualized by a UAS-6xGFP reporter (VPM4>GFP) (Figure 1B). We 

identified colocalization between dGVLUT and VPM4>GFP (Figure 1C-C’’), consistent with 

our previous finding that a majority of OA neurons in the SEZ co-express glutamate.  
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Reducing mGluR in VPM4 increases high-intensity aggression 

Within neuronal subsets, small numbers of neurons exist that are required to modulate specific 

behaviors (Hoopfer et al. 2015; Duistermars et al. 2018; Palavicino-Maggio et al. 2019). Even 

within the ~100 neuron OAergic system, small neuronal subsets have been shown to be required 

for crucial behaviors (Certel et al. 2007; Zhou et al. 2008; Machado et al. 2017; Youn et al. 

2018; Claßen and Scholz 2018; Masuzzo et al. 2019). The Drosophila mGluR is an ortholog to 

vertebrate group II mGluRs, which localize to glutamatergic synapses and constrain glutamate 

release (Panneels et al. 2003; Eroglu et al. 2003; Bogdanik et al. 2004). Within OGNs, mGluR 

expression is limited to <10 neurons, suggesting an important role for a mechanism to constrain 

glutamatergic transmission within mGluR-expressing OGNs. We reasoned that, due to this 

sparseness of expression, glutamatergic output from mGluR-expressing OGNs would be critical 

to their function and examined VPM4 for mGluR expression using VPM4>GFP and a 

monoclonal antibody specific to the Drosophila mGluR (Figure 2A) that has been previously 

characterized (Panneels et al. 2003). We identified colocalization between VPM4>GFP and 

mGluR (Figure 2B-B’’), indicating expression of a glutamate autoreceptor in VPM4. 
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Figure 3 Expression of mGluR in VPM4 is required to constrain high-intensity aggression 

(A) Fluorescent labeling of VPM4 using VPM-gal4. (B-B’’) VPM4 expresses the Drosophila 

glutamate autoreceptor mGluR. Scale bar represents 5 m. (C) The number of lunges performed 

by VPM4-mGluRRNAi males does not differ significantly from controls (all significance tests are 

Kruskal-Wallis with Dunn’s multiple comparison test except where noted, ns = no significance). 

(D) The number of boxing bouts performed by VPM4-mGluRRNAi males is significantly higher 

compared to controls (***p < 0.001, ****p < 0.0001). (E) The number of holding bouts 

performed by VPM4-mGluRRNAi males is significantly higher compared to controls (*p < 0.05, 

**p < 0.01). (F) A significantly higher percentage of VPM4-mGluRRNAi pairs (85%) exhibit high-

intensity aggression compared to control pairs (46%, 39%) (*p < 0.05) 
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Our lab recently demonstrated that glutamatergic release is required for aggressive behavior 

(Sherer et al. 2020). Determining if mGluR-mediated inhibition of glutamate release alters the 

transmission of aggression-promoting signals would further indicate the importance of glutamate 

release from OGNs to promote aggression. We reduced expression of mGluR in VPM4 using 

VPM4-gal4-driven UAS inverted repeat transgene targeting mGluR (VPM4>UAS-mGluRRNAi). 

VPM4>mGluRRNAi males and transgenic controls were recorded and multiple agonistic 

parameters quantified including the number of lunges, the number of holding bouts, and the 

number of boxing bouts. As behavioral patterns are scored only after the first lunge occurs, each 

male pair has the same amount of time to exhibit aggressive behavior. Certel lab undergraduate 

researchers Samantha Chong and Raegan Hauschildt were instrumental in quantifying boxing, 

holding, and courtship data for this study. VPM4>mGluRRNAi male pairs exhibited no change in 

the number of lunges performed compared to transgenic controls (Figure 2C). However, VPM4-

mGluRRNAi males displayed a significant increase in the number of holding bouts (Figure 2D) and 

boxing bouts (Figure 2E) as compared to controls. Furthermore, nearly 100% of fights between 

VPM4-mGluRRNAi males included two or more bouts of holding or boxing as compared to control 

pairs, which exhibited  50% (Figure 2F). These results indicate mGluR is required within 

VPM4 neurons to inhibit glutamate release and constrain high-intensity aggression. 

 

Reducing OAα2R in VPM4 increases high-intensity aggression 

The recently-identified Drosophila OAα2R is an ortholog to vertebrate α2-adrenergic receptors, 

which localize to NA synapses and constrain NA release (Drouin et al. 2017; Devoto et al. 

2019). Both α2-adrenergic receptors and OAα2R attenuate neurotransmitter release by inhibiting 

cAMP synthesis (Saunders and Limbird 1999; Qi et al. 2017), thus acting as inhibitory 

autoreceptors. Along with our collaborators, we determined that OAα2R is widely expressed 

throughout OA neurons, suggesting that OAα2R activation attenuates octopamine signaling from 

OGNs (McKinney et al. 2020). We examined VPM4 for OAα2R expression using VPM4>GFP 

and a UAS-nucRFP reporter under control of OAα2R-lexA (OAα2R>nucRFP) (Figure 3A). 

Colocalization between the soma of VPM4>GFP and the nuclei of OAα2R>nucRFP occurs, 

indicating OAα2R expression in VPM4 (Figure 3B-B’’). 
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Figure 4 Expression of OAα2R in VPM4 is required to constrain high-intensity aggression 

(A) Fluorescent labeling of VPM4 using VPM-gal4. (B-B’’) VPM4 expresses the Drosophila OA 

autoreceptor OAα2R. Scale bar represents 20 m. (C) The number of lunges performed by 

VPM4>OAα2RRNAi males does not differ significantly from controls (ns = no significance). (D) 

The number of boxing bouts performed by VPM4>OAα2RRNAi males is significantly higher 

compared to controls (***p < 0.001). (E) The number of holding bouts performed by 

VPM4>OAα2RRNAi males is significantly higher compared to controls (**p < 0.01, ***p < 

0.001). (F) A significantly higher percentage of VPM4>OAα2RRNAi pairs (100%) exhibit high-

intensity aggression compared to control pairs (46%, 50%) (*p < 0.05, **p < 0.01). 

 

Our lab and others have determined OA release is required to promote male aggression and 

inhibit inter-male courtship. We hypothesized that like mGluR, OAα2R-mediated inhibition of 
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OA release from VPM4 would provide a presynaptic mechanism for regulating aggression and 

courtship and would serve to constrain aggressive behavior. We reduced expression of OAα2R in 

VPM4 using a VPM4-gal4-driven inverted repeat transgene targeting OAα2R 

(VPM4>OAα2RRNAi) and quantified agonistic behavior. As in VPM4>mGluRRNAi flies, male 

VPM4>OAα2RRNAi pairs exhibited no change in the numbers of lunges performed (Figure 3C) 

but exhibited a significant increase in the number of holding bouts (Figure 3D) and boxing bouts 

(Figure 3E). We also observed a significant increase in the percentage of highly-aggressive 

VPM4>OAα2RRNAi male pairs compared to controls (Figure 3F). These results indicate a role for 

OAα2R activity within VPM4 in constraining high-intensity aggression by inhibiting the release 

of OA. 

 

 

Figure 5 OA signaling is required from VPM4 to inhibit inter-male courtship (A) 

Fluorescent labeling of VPM4 using VPM-gal4. (B-B’’) VPM4 expresses the Drosophila OA 

autoreceptor OAα2R. Scale bar represents 20 m. (C) The number of inter-male courtship 

behaviors performed by VPM4>TβHRNAi males is significantly higher compared to controls (**p 

< 0.01, ***p < 0.001). (D) The number of inter-male courtship behaviors performed by 

VPM4>OAα2RRNAi males does not differ significantly from controls (ns = no significance). 

 

Based on studies using classical mutants to eliminate OA, it is known that OA is required to 

inhibit inter-male courtship within an aggression assay (Certel et al. 2007, 2010; Andrews et al. 

2014). To verify that OA is required from the VPM4 neuron itself to inhibit inter-male courtship, 

we reduced OA function by expressing the rate-limiting enzyme for OA, tyramine β-hydroxylase 

(TβH) using a VPM4-driven inverted repeat transgene targeting TβH (VPM4>TβHRNAi) and 

quantified inter-male courtship behaviors as unilateral wing extensions (UWE, or “singing”) 
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followed by additional courtship behaviors (licking, abdomen bends, repeated wing extensions, 

etc.). Inter-male courtship is usually observed among wild-type male pairs (albeit at low levels) 

at the beginning of fights, presumably while males are identifying the sex of the second fly in the 

chamber (Gupta et al. 2017). As expected, we observed a significant increase in inter-male 

courtship between VPM4>TβHRNAi males relative to transgenic controls (Figure 4C). This result 

indicates a role for OA signaling from VPM4 in attenuating courtship circuits. Since decreasing 

OA signaling resulted in an increase in courtship, we reasoned that increasing OA release by 

reducing OAα2R-mediated negative feedback would lead to a decrease in courtship (i.e. that 

reducing OAα2R expression in VPM4 would have the opposite effect of reducing TβH 

expression). When we quantified inter-male courtship in the VPM4>OAα2RRNAi males described 

previously, we observed a recapitulation of the wild-type inter-male courtship phenotype (Figure 

4D), indicating that OAα2R-mediated inhibition of OA release from VPM4 is important for 

constraining courtship behaviors. 

 

VPM4 synaptically connects to MBON11 and receives OA input 

VPM4 extends arborizations to higher brain regions such as the subesophagheal ganglion, the 

periesophageal neuropil, and the γ-lobe of the mushroom body (Busch et al. 2009; Burke et al. 

2012; Youn et al. 2018; Sayin et al. 2019). Using a recently-published EM connectome of a 

partial female adult Drosophila brain (Zheng et al. 2018), we examined VPM4 innervation to 

identify potential downstream neurons that might be part of an aggression circuit. We identified a 

mushroom body output neuron, MBON11, as a potential downstream partner due to the 

relatively high number of synaptic contacts formed (MBON11 is the neuron with the fourth-

highest number of post-synapses with VPM4) (Sayin et al. 2019) and its location in the γ-lobe of 

the mushroom body, a region which has previously been shown to modulate arousal threshold, 

olfactory learning, and salience-based decision making (McGuire et al. 2001; Zhang et al. 2007; 

Aso et al. 2014; Vogt et al. 2014; Awata et al. 2019). 
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Figure 6 MBON11 expresses the glutamate-gated ion channel subunit NMDAR2 (A) 

Fluorescent labeling of MBON11, a neuron directly downstream of VPM4, using MBON11-gal4. 

(B-B’’) MBON11 expresses the Drosophila NMDA receptor subunit NMDAR2. Scale bar 

represents 50 m. (C) The latency to lunge does not differ significantly between 

MBON11>NMDAR2RNAi males and controls (ns = no significance). (D) The number of lunges 

performed by MBON11>NMDAR2RNAi males is significantly lower than MBON11-gal4 controls 

but not UAS-NMDAR2RNAi controls (***p < 0.001, ns = no significance). 

 

Based on our previous results indicating the importance of OA and glutamate release from 

VPM4, we reasoned that neurons downstream to VPM4 would express OA and/or glutamate 

receptors to receive this signal. Our collaborators performed a screen for glutamate receptors 

using the Janelia split-Gal4 driver MB112C (hereafter MBON11-gal4), to identify and 

manipulate MBON11, and lexA lines for glutamate receptor subunits (GluR-lexA). MBON11-

gal4 and GluR-lexA-driven nuclear reporters were used to visualize expression patterns (Figure 

5A). We identified expression of the NMDA receptor subunit NMDAR2 in MBON11 (Figure 

5B-B’’), suggesting that expression of NMDA receptors is a postsynaptic mechanism by which 

MBON11 receives glutamatergic signals. To determine the role of MBON11 NMDARs in 

aggression, we reduced expression of NMDAR2 in MBON11 using an MBON11-gal4-driven 

inverted repeat transgene targeting NMDAR2 (MBON11>NMDAR2RNAi) and quantified the 

latency to lunge (the amount of time it takes for a pair to initiate aggressive behavior) (Figure 

5C) and the number of lunges performed by MBON11>NMDAR2RNAi male pairs and transgenic 

control male pairs (Figure 5D). While these experiments are still ongoing, existing statistical 

significance between MBON11>NMDAR2RNAi the and the transgenic MBON11-gal4 control 

suggests that NMDAR2 expression in MBON11 is required for aggressive behavior. 
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Figure 7 MBON11 responds to OA signaling (A) OAMB-Tango expressed using MBON11-

gal4. GFP expression is mediated through OA binding to the OAMB-Tango construct, indicating 

a response to an OA signal. (B) The latency to lunge does not differ significantly between 

MBON11>OA2RRNAi males and controls (Mann-Whitney test, ns = no significance). (C) The 

number of lunges performed by MBON11>OA2RRNAi males does not differ significantly from 

MBON11-gal4 controls (Mann-Whitney test, ns = no significance). 

 

To determine whether MBON11 receives OAergic input, we expressed a UAS-driven transgene 

encoding an OA-responsive variant of the Tango assay (Barnea et al. 2008) under control of 

MBON11-gal4 (MBON11>OAMB-Tango). Briefly, OAMB-Tango is expressed in neuron(s) of 

interest under control of a GAL4 and subsequently drives lexA-mediated expression of a lexAop-

controlled reporter upon OA binding (Inagaki et al. 2012). We detected expression of our 

MBON11>OAMB-Tango-mediated GFP reporter (Figure 6A), indicating that MBON11 receives 

OA input. An RNAi-mediated screen for OA receptors in MBON11 is currently ongoing to 

identify which receptor(s) are expressed by MBON11 to receive this OA input and their 

contributions to aggression (Figure 6B-C). 

 

Discussion 

The functional outcome of dual transmission adds a layer of complexity to neuron 

communication, expanding a neuron’s signaling capabilities by enabling it to modulate the 

spatial and temporal aspects of neurotransmitter release, enhance packaging of transmitters in 

synaptic vesicles to modulate signal strength, and even regulate its own activity via negative 

feedback (Starke 2001; Burnstock 2004; El Mestikawy et al. 2011; Vaaga et al. 2014; Trudeau 

and El Mestikawy 2018; Svensson et al. 2019). However, little is known about how neurons 
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themselves manage this additional complexity, and investigating the mechanisms within neurons 

that control transmitter release provides an opportunity to both better understand how neurons 

transmit signals and provides new targets for regulating behavior. In this study, we identified 

autoreception as a critical presynaptic mechanism to constrain aggression by inhibiting 

transmitter release from a dual transmitting neuron. We determined that the OAergic neuron 

VPM4 also expresses glutamate, identified expression of the glutamate autoreceptor mGluR in 

VPM4, and describe a functional role for glutamate release by determining that mGluR is 

required for constraining holding and boxing but not lunging. Furthermore, we determined that 

the OA autoreceptor OAα2R is also required in VPM4 to constrain holding and boxing and show 

that OA release from VPM4 is required to inhibit courtship. Lastly, we determine that a neuron 

directly downstream of VPM4, MBON11, expresses both OA and glutamate receptors, 

suggesting a postsynaptic mechanism to control signaling. 

 

Our data show the same effects on holding and boxing when either mGluR is reduced (leading to 

increased glutamate release) or OAα2R is reduced (leading to increased OA release) in VPM4, 

and that decreased OA release from VPM4 results in increased courtship. Two important findings 

emerge from these results. First, they provide an additional functional role for dual transmission 

in the nervous system by identifying behaviors constrained by autoreceptor-mediated inhibition 

of two transmitters released from a single neuron. Secondly, these results indicate that high-

intensity aggressive behaviors can be separated from both mid-intensity aggressive behaviors 

(lunges) and mutually-exclusive sexually dimorphic behaviors (courtship) by modifying 

neurotransmitter release from a single neuron, suggesting the existence of neuronal circuits that 

control different behaviors.  

 

The fact that a holding/boxing phenotype is observed when either mGluR or OAα2R is reduced 

suggests that OA and glutamate release from VPM4 act in a synergistic manner. How would two 

neurotransmitters work to constrain a single behavior? One possibility is that the release of one 

transmitter might enhance the release of the other. If OA and glutamate release from VPM4 

functions in this way, we would expect to see the same increase in holding/boxing if either 

mGluR or OAα2R was reduced (i.e. if the negative feedback mechanism for either transmitter 

was disrupted). Such a role would fit in the Glutamate Amplifies Noradrenergic Effects (GANE) 
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model (Mather et al. 2016). In this model, increased glutamate release that spills over into 

depolarized noradrenergic terminals evokes increased noradrenaline release. Typically, 

noradrenaline is released constantly at low-to-moderate levels (Berridge et al. 2012; Sara and 

Bouret 2012). This continuous low level is sufficient to activate high-affinity α2 receptors, which 

inhibit release of higher levels of noradrenaline (Mather et al. 2016). Glutamate spillover onto 

noradrenergic terminals causes high levels of norepinephrine release that are able to overcome 

the inhibitory effects of α2 receptors. In this way, glutamatergic neurons can increase local NA 

release from separate NA terminals. However, there is no reason GANE couldn’t also occur in 

individual NA/glutamate terminals. If both transmitters were released from the same neuron, 

GANE would lead to multiple excitotoxic positive feedback loops, and thus we would expect the 

release of both transmitters in that neuron to be tightly controlled. Glutamate release from 

noradrenergic neurons might thus be a mechanism used by OGNs to locally enhance OA release, 

and expression of autoreceptors for both glutamate and OA would be a mechanism for OGNs to 

inhibit unrestrained positive feedback loops. This tight control over transmitter release would 

ultimately allow OGNs to mediate between their fast-excitatory and neuromodulatory effects in 

response to weak and strong stimuli, respectively. Another possibility that cannot be ruled out is 

that OAα2R and mGluR act independently within VPM4 to constrain high-intensity aggression. 

In this case, the holding/boxing pheonotype resulting from reducing expression of both 

autoreceptors simultaneously would be greater than the phenotype from reducing either 

autoreceptor alone. Future experiments in which expression of both mGluR and OAα2R are 

simultaneously reduced will distinguish between these possibilities. 

 

Recent work has focused on identifying modules of just a few neurons that mediate specific 

behaviors (Youn et al. 2018; Carreira-Rosario et al. 2018; Duistermars et al. 2018; Awata et al. 

2019; Masuzzo et al. 2019; Sayin et al. 2019). Our results demonstrate a role for VPM4 in 

regulating both courtship and high-intensity aggression. How might a single neuron mediate a 

switch between such mutually exclusive behaviors? Koganezawa et al proposed a multilayered 

inhibitory network that mediates a switch from courtship behavior to aggression. In this model, 

courtship behavior is the result of inhibitory circuits that suppress aggression centers, while 

aggressive behavior is initiated by activation of aggression centers as a result of the inactivation 

of these inhibitory circuits in response to male conspecifics (Koganezawa et al. 2016)⁠. Our data 
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supports a similar decision-making principle, in which OA release from VPM4 functions as a 

behavioral switch between mutually-exclusive sex-specific behaviors. Our lab and others have 

demonstrated that OA release is required to promote aggression and to inhibit courtship. Our 

results show that decreased OA release from VPM4 as a result of decreased OA synthesis and 

inhibitory OAα2R activity results in increased courtship, while increased OA release in response 

to decreased OAα2R activity mediates a switch from courtship to aggression. In this way, OA 

release levels allow downstream circuitry to distinguish between mutually exclusive OA-

dependent behaviors in response to OA signal strength.  

 

While this study is focused on the presynaptic mechanisms that constrain neurotransmitter 

release, it also has broader implications for the evolution of these mechanisms in organisms. 

Why would a neuron involved in feeding also regulate both aggression and courtship? OA 

signaling and aminergic signaling broadly is a requirement for appetitive learning (in which 

reward signaling is imbued with motivational salience) (Burke et al. 2012; Wu et al. 2013; 

Benelli et al. 2015; Sayin et al. 2019), although VPM4 alone is not sufficient for reward 

conditioning (Burke et al. 2012)⁠. While a single neuron is unsurprisingly not the only factor 

involved in reward memory formation, VPM4 is responsible for controlling significant behaviors 

relating to motivational state. Transmitter release from VPM4 is sufficient to inhibit odor seeking 

and promote feeding behavior by enhancing the responses of sensory neurons (Youn et al. 2018; 

Sayin et al. 2019)⁠. The coupling of food source evaluation to increased motivation for aggression 

via a single neuronal signal would provide an advantage in making any quick fight-or-flight 

decision. It might also provide advantages in mating decisions. Andrews et al show that 

gustatory neurons form synaptic connections to OA neurons in the SEZ (such as VPM4) and 

define an aggression-promoting circuit in which the male-specific hormone (z)-7-tricosene is 

detected by gustatory neurons and relayed to OA neurons (Andrews et al. 2014)⁠. While these 

pheromones are generally found on the cuticle of adult flies and detected via close proximity 

(Fan et al. 2013; Kravitz and Fernández 2015; Kim et al. 2017), it has also been shown that male 

flies place (z)-7-tricosene on valuable food sources both to stake a territorial claim and to 

encourage female oviposition (Lin et al. 2015)⁠. Activation of a gustatory neuron that can both 

allow an organism to determine the value of a resource and detect a threat to resource access 

which would jeopardize both its prolonged survival and its ability to pass on its genes would be 
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expected to generate intense aggressive motivation. Our results advance an understanding of how 

the controlled release of neuromodulatory substances from neurons can allow organisms to 

respond appropriately to stimuli from a dynamic social environment. 

 

Materials and Methods 

Drosophila Husbandry and Stocks 

The following strains were used in this study: Canton-S (BDSC 64349), MB113C (BDSC 

68264), MB112C (BDSC 68263) OAα2R-lexA (BDSC 52743), 20x-UAS-6xGFP (Steve Stowers), 

13xlexAop2-CD8::GFP (BDSC 32205), lexAop-nucRFP (Steve Stowers), UAS-OAMB-Tango 

(BDSC 68235), UAS-mGluRIR (BDSC 34872), UAS-OAα2RIR (BDSC 50678), UAS-TβHIR 

(BDSC 27667), UAS-NMDAR2IR (BDSC 40846). All flies were reared on standard cornmeal-

based fly food (Toivonen et al. 2007). Unless noted otherwise, during development and post-

eclosion, flies were raised at 25°C, ~50% humidity and a 12:12hr light-dark cycle (1400±200 lx 

white fluorescent light) in humidity- and temperature-controlled incubators. 

 

Aggression Assays 

Male pupae were isolated and aged individually in 16x100mm borosilicate glass tubes containing 

~1.5 mL of standard food medium as previously described (Certel and Kravitz 2012). For 

aggression assays, pairs of 3–7 day old, socially naïve adult males were aspirated into divided 

behavior chambers and left for a period of at least 24 hours to allow for recovery from 

anesthetization as described previously (Chowdhury et al. 2021). All assays were run at 25 ± 1 

°C and ≥ 45% humidity. 

 

Scoring and Statistics 

All aggression was assayed within the first thirty minutes of lights ON time (Zeitgeber hours 0–

0.5) and scored in MATLAB (MathWorks). Video data were collected using HMX-F80 

camcorders (Samsung). Behavior chambers assembled on clear agarose with a yeast/sucrose-

based food top were placed on top of an LED light pad (AGPtek). Fly movements were tracked 

using CalTech FlyTracker 1.0.5 (Eyrún Eyjólfsdóttir & Pietro Perona, Caltech, available for 

download at http://www.vision.caltech.edu/Tools/FlyTracker/) and lunges were subsequently 

quantified using the Janelia Automatic Animal Behavior Annotator (JAABA) (Kabra et al. 2013). 

http://www.vision.caltech.edu/Tools/FlyTracker/
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The lunge classifier (Certel_lungeClassifier.jab) was designed in JAABA (referencing human-

scored data) and used to detect lunges from individual flies. Annotated frames were 

postprocessed in JAABA with the internal post-processing filter set at 0.06, a value that provided 

the best signal-to-noise ratio a posteriori for lunge classification. An additional post-processing 

filter was applied in MATLAB using JAABA postprocessed files in combination with tracking 

data to eliminate misclassified lunges detected at a distance of two or more fly body lengths. 

Total number of lunges, wing threats, and unilateral wing extensions were scored for a period of 

30 minutes after the first lunge using a custom MATLAB script (analysis.m). The time between 

the beginning of the video recording and the first lunge was used for calculating the latency to 

lunge. Inter-male courtship was defined as the number of unilateral wing extensions (singing) 

followed by additional courtship behaviors (licking, abdomen bends, repeated wing extensions, 

etc.) (Yamamoto and Koganezawa 2013). Holding and boxing were scored for a period of 10 

minutes after the first lunge as described previously (Penn et al. 2010; Davis et al. 2018). All 

graphs were generated with Prism (GraphPad Software) and Adobe Illustrator CS6 (Adobe). For 

data that did not meet parametric assumptions, a Kruskal-Wallis test with Dunn’s multiple 

comparison was used unless otherwise specified. A Mann-Whitney test was performed in the 

case of only two comparisons. 

 

Immunohistochemistry 

Adult male brains were dissected and fixed in 4% paraformaldehyde (Electron Microscopy 

Sciences) for 30 minutes and labeled using a modification of protocols previously described 

(Certel and Johnson 1996). After repeated PBT washes (1X phosphate-buffered saline, 1% Triton 

X-100) at room temperature, blocking solution (1X phosphate-buffered saline, 2% normal goat 

serum, 2%w/v bovine serum albumin, 1% Triton X-100) was applied and primary antibodies 

were left to incubate overnight. Secondary antibodies were applied the next day after repeated 

washes in blocking solution. The following primary and secondary antibodies were used: anti-

bruchpilot (mAb nc82, 1:40, Developmental Studies Hybridoma Bank developed under the 

auspices of the NICHD and maintained by the Department of Biology, University of Iowa (Iowa 

City, IA).), monoclonal rabbit anti-GFP (1:350, Molecular Probes), mAb dVGLUT (1:10) 

(Sherer et al. 2020), and mAB mGluR (1:400) (Eroglu et al. 2003). Secondary antibodies 

conjugated to Alexa 488, Alexa 594, or Alexa 647 (Molecular Probes) were used at a 



 

134 

concentration of 1:200. Labeled brains were mounted in Vectashield (Vector Labs, #H1000). 

Images were collected on a Zeiss LSM780 laser scanning confocal mounted on an inverted Axio 

Observer microscope and processed using ImageJ (NIH) and Adobe Photoshop (Adobe). 
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Discussion 

To understand how neurotransmission is controlled within individual neurons, how neuronal 

control of transmitter release impacts circuit activity, and/or how circuit activity alters behavior 

of the unique functional capabilities of dual transmission must be included (Nusbaum et al. 

2001; Burnstock 2004; Nässel 2018; Trudeau and El Mestikawy 2018; Svensson et al. 2019)⁠. 

While significant progress has been made characterizing both the neurotransmitters, 

neuromodulators, and neuropeptides that colocalize within individual neurons and the 

mechanisms of co-release and co-transmission (Hökfelt et al. 2003; Vaaga et al. 2014)⁠, the 

functional properties at the cellular level of dual transmitting neurons that result in changes to 

behavior in the organism are not understood. 

The experiments in Aim 1 demonstrated that OA neurons express dVGLUT and utilized a new 

genetic tool to remove dVGLUT in OA-glutamate neurons (Sherer et al. 2020)⁠. We quantified 

changes in aggressive behaviors resulting from a loss of dVGLUT and determined that dVGLUT 

in brain OGNs is required to promote male aggression. When encountering another fly, males 

determine its sex via pheromonal information, and subsequently decide to fight or court. 

Previous work has shown that OA neurons are critical in facilitating this decision (Certel et al. 

2010; Andrews et al. 2014)⁠, raising the question of whether dVGLUT is required from OGNs for 

courtship. Males lacking dVGLUT did not exhibit an increase in unilateral wing extensions, 

indicating that dVGLUT is not required in the decision to court. These results establish a 

previously undetermined role for dVGLUT in brain OA neurons and reveal glutamate uncouples 

aggression from inter-male courtship. Secondly, we used MiMIC Trojan-Gal4 lines to 

characterize expression of the alpha and beta OA receptors and identified possible OA and 

glutamate autoreceptors within OA neurons (McKinney et al. 2020)⁠. Lastly, we demonstrate 

expression of OAα2R and DmGluRA in VPM4 and examine the role of these autoreceptors in 

constraining mid-intensity and high-intensity aggressive behaviors. RNAi-mediated knockdown 

of either OAα2R or DmGluRA in males results in a significant increase in the number of boxing 

and holding bouts (high-intensity aggressive behavior) without changing the number of lunges 

(medium-intensity aggressive behavior) performed. Moreover, RNAi reduction of either the rate-

limiting enzyme in OA synthesis TβH (i.e., decreasing OA release) or OAα2R (i.e., increasing 
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OA release) demonstrate a secondary role for OA release from VPM4 in inhibiting inter-male 

courtship and suggest the involvement of VPM4 within multiple decision-making circuits.       

Our results demonstrated that dual transmission within OGNs is a significant factor in the 

behavioral outputs that occur as a result of dual transmission of fast-acting glutamate and a slow-

acting monoamine. Several studies have suggested that the expression of glutamate in 

monoaminergic neurons serves only to modulate the quantal level of the monoamine in SVs (El 

Mestikawy et al. 2011; Münster-Wandowski et al. 2016; Aguilar et al. 2017)⁠. In this 

interpretation, glutamate release from OA neurons would not serve to alter behavior, and a lack 

of glutamate in OA neurons would only reduce the strength of aminergic signaling. In contrast to 

these studies, we have demonstrated a functional role for glutamate release from OA neurons. 

We have determined that the release of both OA and glutamate are required from OGNs for 

aggressive behavior. Notably, we also identified a functional role for glutamate in uncoupling 

OA-dependent promotion of aggression and OA-dependent inhibition of courtship. Our lab and 

others have demonstrated that OA release is required to promote aggression and inhibit courtship 

(Hoyer et al. 2008; Certel et al. 2010; Andrews et al. 2014)⁠. If the only role of glutamate in 

OGNs were to enhance OA release, we would have expected to see an increase in courtship 

when dVGLUT was reduced only in brain neurons equal to the increase in courtship when both 

OA and dVGLUT were reduced. However, we saw wild-type levels of courtship when VGLUT 

expression was reduced in brain neurons, indicating that OA was still capable of being loaded 

into vesicles and released despite the lack of vesicular synergy. Furthermore, we saw no further 

increase in courtship between males lacking both OA and VGLUT relative to males lacking only 

OA, indicating that only OA release functions to inhibit courtship. These changes in courtship 

suggest differences in signaling between OA and glutamate from OGNs on courtship-related 

circuitry (likely through spatial segregation) and indicate that regardless of any vesicular synergy 

within OGNs, dVGLUT co-expression serves a functional role in promoting aggression.  

In vertebrates, it has been proposed that co-transmission from dopamine-glutamate neurons in 

the nucleus accumbens medial shell might facilitate shifts in behavioral responses (Mingote et al. 

2017, 2019)⁠ This behavioral switching was attributed to differences in postsynaptic neurons. Our 

work with glutamate and OA autoreceptors in VPM4 suggests a possible presynaptic mechanism 

for shifts between mutually-exclusive behaviors. Our data show that decreased OA release from 



 

147 

VPM4 results in increased courtship, and that increased OA release due to the loss of 

autoreceptor-facilitated negative feedback results in increased aggression. This result 

demonstrates a switch between two mutually-exclusive behaviors mediated by a single 

autoreceptor that is able to inhibit OA release. An interesting investigation might involve 

examining whether specific autoreceptors are uniformly present at all synaptic boutons by using 

antibodies specific to autoreceptors or conditionally-expressed, fluorescently labeled 

autoreceptor genetic tools (as in Aim 1). Many studies have indicated that postsynaptic neurons 

can modulate their responses to transmitter release through selective expression of receptors 

(Dugué et al. 2005; Kapoor et al. 2016; Nässel 2018; Brewer et al. 2019; Cai et al. 2021)⁠. Could 

presynaptic neurons modulate their local transmitter outputs in the same way via selective 

trafficking of inhibitory autoreceptors to presynaptic terminals? Such a specialized mechanism 

would provide further explanation of how dual transmitting neurons are able to elicit diverse 

responses and would provide insight into how the neuronal mechanisms that constrain and 

promote aggressive behavior might be (dys)regulated. 
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