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Abstract 

Three-dimensional simulations of four louver-tube junction geometries are performed to investigate the 

effect on louver and tube friction and heat transfer characteristics. Three Reynolds numbers, 300, 600 and 1100, 

based on bulk velocity and louver pitch are calculated. Strong three-dimensionality exists in the flow structure in the 

region where the angled louver transitions to a flat landing adjoining the tube surface, whereas the flow on the 

angled louver far from the tube surface is essentially two-dimensional. Due to the small spatial extent of the 

transition region, its overall impact on louver heat transfer is limited, but the strong flow acceleration on the louver 

top surface augments the heat transfer coefficient on the tube surface by over 50%.  In spite of the augmentation, the 

presence of the tube lowers the overall Nusselt number of the heat exchanger by over 30 %. Comparisons with 

correlations derived from experiments on full heat exchanger cores show that computational modeling of a small 

subsystem can be used reliably to extract performance data for the full heat exchanger. 

 



 iv 

Nomenclature 

∗
HD  Hydraulic diameter of equivalent duct 

Fd* Flow depth 

Fp non-dimensional fin pitch (Fp*/Lp*) 

Lp* dimensional louver pitch (characteristic length scale) 

Nu Nusselt number, ?
)T/(Tq''L

Nu
*
ref

*
s

**
p −

=
 

Pr Prandtl number 
∗q''  specified heat flux 

Re Reynolds number (ub*Lp*/ν) 

pLRe
 Reynolds number (

ν/∗∗
pc LV

) 

hDRe
 Reynolds number ( ν/∗∗

HDVc ) 
∗

sT
 louver or tube surface temperature 

*
refT

 reference temperature, integrated mixed mean. 

t non-dimensional time 

ub* bulk velocity 
∗
cV  Maximum mean flow velocity 

Greek symbols 

γ mean temperature gradient in the streamwise direction 

κ thermal conductivity 

ν kinematic viscosity 

θ fluctuating non-dimensional temperature about the mean. Also louver angle. 

Superscripts 

* dimensional quantities 
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1. Introduction 

Flat tube corrugated multilouvered fins are used in many compact heat exchanger applications to enhance 

the air-side heat transfer performance. Louvers reduce the average thermal boundary-layer thickness by interrupting 

its growth and by enhancing mixing through large-scale instabilities, hence increasing the average heat transfer 

coefficient. Previous experimental and numerical studies have established that the heat transfer in multilouvered fins 

is influenced by three factors: a) duct versus louver directed flow [1,2]; b) thermal wake interference [3]; c) flow 

instabilities and transport of coherent vorticity in the vicinity of the louver surface [4].  These three mechanisms 

have mostly been studied with a louver-centric view, i.e, heat transfer enhancement on a nominally two-dimensional 

louver, with the assumption that louvers contribute a significant portion to the overall heat transfer surface. For the 

most part this assumption is well justified. However, in exchangers with large fin pitches and small fin heights or 

tube pitch, the tube surface can contribute substantially to the total heat transfer. For example for a fin pitch of 1.5-

2.0 times the louver pitch, and a tube pitch of 5 louver pitches, the tube surface area contributes between 30 to 40 

percent of the total heat transfer area. This, coupled with the fact that the tube is the primary heat transfer surface 

with the largest potential for heat transfer, requires that attention be paid to the heat transfer from the tube surface.  

Our specific geometry of interest is a flat tube multilouvered exchanger with corrugated rectangular 

channels. In order to gain some insight into what influences tube heat transfer, in this study we focus our attention 

on the region of the louver near the junction with the tube surface. In this region, along the height of the fin, the 

louver transitions from an angle θ to 0 degrees into a flat landing adjoining the tube surface as shown in Fig. 1(d)1.  

Cui and Tafti [5] numerically investigated the geometry in Fig. 1(d) at a Reynolds number of 1,100, based on louver 

pitch and bulk velocity.  They found that although the flow on the angled portion of the louver was nominally two-

dimensional with self-sustained flow oscillations characterized by spanwise vortices, the flow was strongly three-

dimensional and unsteady in the transition region. A highly unsteady vortex jet formed at the leading edge, which 

was sucked under the louver. The jet was complemented by a region of strong flow acceleration in the vicinity of the 

top louver surface.  Evidence was presented that the temporal evolution of the two was correlated, which had a 

significant impact on local heat transfer coefficients.  In spite of the high heat transfer in this region, the overall 

effect on mean louver heat transfer was found to be small because of the small spatial extent of the transition region.  

However, It was found that the strong acceleration near the junction with the flat landing had a significant effect on 

tube heat transfer.  

The objective of the present paper is to extend the previous three-dimensional unsteady simulations to 

study three Reynolds numbers, 1,100, 600 and 300.  In addition to the Reynolds number effect, simulations are 

carried out on four variations of the transitional louver geometry to study the effect of geometry. The heat transfer 

and friction results are presented separately for the louver and tube, and combined to estimate the overall effect. 

Comparisons are also made with existing louver-and-tube correlations in the literature. 

The paper is organized as follows: the numerical and computational method is presented in the next section, 

followed by the description of the louver geometries.  In the section on results, the general flow features, louver and 

                                                                 
1 The corrugated fin curvature near the tube wall is neglected. 
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tube friction and heat transfer characteristics are discussed. Finally comparisons are made with experimental 

correlations. This is  followed by concluding remarks. 

2. Numerical formulation 

We solve the non-dimensional, time-dependent, incompressible Navier-Stokes and energy equations in 

conservative form in generalized curvilinear coordinates.  The governing equations for momentum and energy are 

discretized with a conservative finite volume formulation using a second-order central difference scheme on a non-

staggered mesh.  The Cartesian velocities, pressure, and temperature are calculated and stored at the cell center, 

whereas contravariant fluxes are stored and calculated at the cell faces.  A projection method [6] is used for the time 

integration of the discretized continuity and momentum equations. 

The louvered fin geometry is approximated by an infinite array of louvers in both streamwise and cross-

stream directions, which results in a simpler system with periodic repetition of the basic unit.  Periodic boundary 

conditions for velocity, modified pressure and temperature are applied in the streamwise and cross-stream directions 

since the flow is assumed to be both hydrodynamically and thermally fully developed without any entrance or exit 

effects. No-slip, no-penetration boundary conditions for velocity and constant heat flux conditions are enforced on 

the louver and tube surface. 

More details of the numerical algorithm, treatment of the boundary conditions, verification and validation 

of the computer program and strategies for parallel computing can be found in Tafti et al. [7,8] and Cui and Tafti 

[5].  

3. Description of four louver geometries 

Four louver geometries are considered in this paper (see Fig. 1): (1) periodic louver; the louver is assumed 

periodic in the spanwise direction with no tube. This simulation isolates any intrinsic three-dimensional effects 

brought about by secondary three-dimensional instabilities [9]; (2) straight louver; the angled louver extends all the 

way to the tube; this serves as a baseline case to study the effect of louver geometry transition; (3) louver with 

transition without landing; the angled louver directly transitions to the tube surface; (4) louver with transition and 

flat landing, which has been studied in detail by Cui and Tafti [5] at Re=1100. Comparison of (3) and (4), highlights 

the role of the flat landing. 

For all four geometries, the unit computational domain has a dimension of 1 (normalized by louver pitch 

*
pL ) in streamwise (x) direction, fin pitch 1 (in this particular case, fin pitch 

*
pF  is same as 

*
pL ) in cross-stream (y) 

direction, and 2.5 in spanwise (z) direction along the fin height.  Along the spanwise direction in geometry 4 

(hereafter referred as transition with landing), the louver can be divided into three parts: angled louver (length, 

1.75), transition part (length,  0.5), and flat landing (length, 0.25).  A linear transition profile is prescribed between 

the angled louver and the flat landing with a small radii of curvature at the junction with the louver [10].  For 

geometry 3 (hereafter referred to as transition without landing), the angled louver part is extended to a length of 2.0, 

and the transition part is unchanged, but the flat landing between the transition and the tube surface is removed.  



 3 

Geometry 2, referred to as a straight louver, has a spanwise extent of 2.5. Finally, geometry 1 is referred to as a 

periodic louver and has a spanwise extent of 2.5. 

In all cases, the thickness of the angled louver is 0.1 times the louver pitch with 25° louver angle.  For the 

last three geometries, symmetry boundary conditions are imposed at a distance of 2.5 from the tube surface along 

the fin height, assuming that the flow is sufficiently removed from the extrinsic three-dimensional effects of the tube 

wall region and is nominally two-dimensional.  This also assumes implicit ly that the fin height is 5.0 louver pitches. 

For the periodic louver, periodic boundary conditions are implemented in the spanwise direction since the flow is 

homogeneous along this direction. 

The computational domain surrounding each louver is resolved by 98x98x128 computational cells in the x-, 

y- and z- directions, respectively for the transitioning geometries. For the periodic and straight louver, 96 

computational cells are used in the z- direction along the fin height. A very fine, nearly orthogonal mesh, is used in 

the vicinity of the louver and tube surface, and in the transition region [5].  

4.  Results 

In each of the calculations, a mean pressure gradient of unity is imposed in the streamwise direction to 

drive the flow.  As the calculation proceeds, the flow rate, in response to the frictional and pressure drag losses in 

the calculation domain, adjusts to the mean pressure gradient and reaches a stationary (or steady state, in the case of 

low Reynolds number steady flow). Time signals of flow variables are recorded and a stationary flow is assumed 

when a near constant mean value or a quasi-periodic fluctuation in time is observed.  Fig. 2 shows the temporal 

evolution of the spatially averaged Nusselt number for four louver geometries at a nominal Reynolds number of 

1,100.  It is clear that all flows have adjusted to the mean pressure gradient and reached a statistically stationary 

state.  Similar plots at nominal bulk Reynolds number of 600 and 300 also show that the flow has reached a 

stationary or steady state. 

To characterize the heat transfer, we define a local instantaneous Nusselt number over the louver surface 

based on the louver pitch as 

?
)T/(TqL

Nu refs
*''*

p
∗∗ −

=   

In terms of non-dimensional quantities the above can be re-written as 

refs ??
Nu

−
= 1

  

where s? 2 is the modified non-dimensional surface temperature and ref?  is the reference modified non-

dimensional bulk temperature, which is defined as : 

                                                                 
2 ),,,(),,,( tzyxxTtzyxT in θγ ++= , where γ is the mean temperature gradient. 
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∫∫∫= dV?
V
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The surface-averaged Nusselt number is obtained by integration over the louver surface as: 

∫∫

∫∫
−

=
O ref

O

)dS?(?

dS
Nu   

where Ω  denotes the louver surface.  A similar procedure is used to calculate the Nu number on the tube surface. 

The Colburn j factor as a measure of heat transfer is calculated as: 

4.0PrRe

Nu
j =  

The Fanning friction coefficient is calculated as: 

2

1
24

2
1 2
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h
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∗

∗
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∗
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where 
∗
hD  is the hydraulic diameter, 

∗∆p is the prescribed pressure drop across the calculation domain (unity non-

dimensional value in present calculations), and 
∗

cV  is the calculated maximum mean velocity. 

4.1  General Flow Features  
In the study of the louver with transition and flat landing [5], it is shown that flow on the angled louver 

portion is characterized by periodic spanwise vortex shedding at the Reynolds number of 1,100.  The spanwise 

vortices are nominally two-dimensional in nature with weak three-dimensionality across the fin height.  The time 

signal at a location above the top louver surface exhibits a nearly periodic pattern, and the frequency spectrum 

shows a clear peak at 1.8 (non-dimensionalized by bulk velocity and louver pitch), which corresponds to the 

frequency of the spanwise vortex shedding.  At this Reynolds number of 1,100, all four louver geometries exhibit 

the same vortex shedding characteristic frequency.  Although there is considerable geometry variation near the tube 

surface, its effects on the flow field on the louver away from the tube is minimal.  Because of these similarities at the 

angled louver part, nearly identical flow and heat transfer behavior is expected for the four louver geometries. Any 

observable differences would come from the area near the tube surface.  

At Reynolds number of 600, the flow unsteadiness becomes much weaker at the angled louver part.  The 

time signals do not show a periodic pattern, and vortex shedding only occurs in an occasional manner, and there is 

no clear characteristic frequency. At Reynolds number of 300, the flow is completely steady and remains attached 

on the louver surface and there is no evidence of vortex shedding for all louver geometries. These results are in 

agreement with a previous two-dimensional investigation on the onset of instabilities for developing flo w in a louver 

bank [4]. 

To facilitate our understanding of the unsteady nature of the flow and the associated vorticity dynamics, the 

∇u [11] vortex identification technique is used.  This frame-invariant method identifies vortical structures as regions 
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of large vorticity, where rotation dominates over strain to cause the rate-of-deformation tensor ∇u (velocity gradient 

tensor) to have complex eigenvalues (one real and two conjugate complex eigenvalues).  The complex eigenvalues 

imply that the local streamline pattern is closed or spiral, thus correctly eliminating near-wall shear layers. This 

methodology can also be separately applied in the x-, y-, or z- planes in order to identify streamwise, cross-flow, and 

spanwise vortices [9], respectively.  The strength of the vortex is measured in terms of the imaginary part of the 

eigenvalue of the velocity gradient tensor and is denoted by λi.  The strength of its three subsets, streamwise, cross-

flow, and spanwise vortices is measured in terms of the imaginary part of the eigenvalue of the velocity gradient on 

the x-, y-, and z- planes, respectively, and is denoted by λi,x, λi,y, and λi,z, respectively. 

Fig. 3(a-d) shows the volume-averaged vortical strength λi,x,y,z distribution along the fin height at an 

arbitrary instant at Reynolds number of 1,1003.  Only the volumes with non-zero eigenvalues are included in the 

volume averaging.  For the periodic case (Fig. 3-a), the lines for streamwise (λi,x) and cross-flow (λi,y) vorticity are 

identically zero throughout the louver height.  The only contribution to the total vorticity is from the spanwise 

vorticity (λi,z).  Hence at Re=1,100, for the given louver geometry, the flow is strictly two -dimensional and intrinsic 

three-dimensional secondary instabilities have not developed4. For the straight louver, (Fig. 3-b), the spanwise 

vorticity dominates. However, there are small components of both streamwise (λi,x) and cross-stream (λi,y) vorticity 

present along the louver height. This implies that the three-dimensionality introduced by the presence of the tube 

wall permeates into the flow away from the wall and introduces weak three-dimensionality in a nominally two-

dimensional flow. The spanwise vorticity (λi,z) is damp ed considerably by the viscous presence of the wall which is 

felt up to one louver pitch away from it, implying very thick boundary layers on the tube wall. Approaching the tube 

surface, there is a noticeable but slight increase for both streamwise (λi,x) and cross-flow (λi,y) vorticity as the 

spanwise and total vorticity decrease.  

For the louver with transition and flat landing (Fig. 3-d), on the angled louver, λi essentially maintains a 

constant value, with a dominant contribution from spanwise vorticity. However, in the transition region the flow is 

strongly three-dimensional.  λi increases, with increasing contributions from streamwise and cross-stream vorticity, 

with a drop in contributions from spanwise vorticity. λi reaches a maximum in the center of the transition region and 

then decreases as the louver approaches the flat landing and the tube surface.  The strong three-dimensionality at the 

transition region is related to the flow acceleration on the top surface and the vortex jet under the bottom louver 

surface at the transition region, which is described in detail in Cui and Tafti [5].  For transition without landing (Fig. 

3-c), it is seen that the three-dimensionality at the transition region is weakened compared to transition with landing 

although the flow acceleration near the top louver surface and the vortex jet under the louver bottom surface at the 

transition region still exist.  In the presence of the flat landing the acceleration on the top surface and the vortex jet 

feed off the streamwise flow along the flat landing. In the absence of the flat landing, when the louver transitions 

directly on to the tube surface, there is reduced access to fluid. 

                                                                 
3 To obtain the distribution, the volume averaging is performed in domains defined by decompositions used for 
parallel computation along the fin height. 
4 The nominally 2-D flow was perturbed by 3-D disturbances to seed any intrinsic three-dimensional secondary 
instabilities, but the perturbations were not self-sustaining. 
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4.2  Pressure and Friction Drag on Louver and Tube 
Fig. 4(a-d) plots the fractional variation of mean form and friction drag per unit length along the fin height 

or spanwise direction at a nominal Re = 1,1005.  For all four geometries, at the angled louver portion, the form drag 

dominates the friction drag and is almost unchanged throughout the angled louver.  This is best exemplified by the 

two-dimensional flow over the periodic louver in Fig. 4(a), in which the form drag contributes 80 % to the overall 

pressure loss. For transition with landing (Fig. 4-d), and transition without landing (Fig. 4-c), the magnitude of 

pressure and friction drag is similar at the angled louver part.  For the straight louver, although the form drag loss is 

four times the friction losses away from the tube surface, which is similar to other geometries, the contribution to 

total losses is dominated by the presence of the tube. Both frictional and form losses increase substantially in the 

vicinity of the tube surface because of viscous effects. As the flow approaches the tube, it slows down, and the flow 

angle reduces substantially, which leads to the increased contribution to form drag. For the transitioning geometries 

in Fig. 4(c) and (d), the trends are completely different. In the transition region, the form drag increases slightly and 

eventually vanishes at the flat landing. On the other hand, the friction drag increases sharply in the transition region 

and reaches its highest value near the flat landing due to the accelerating flow in that region before decreasing again 

on the flat landing.  Similar, albeit weaker, distributions at the transition region is found for the transitioning 

geometry without the landing (Fig. 4-c). 

Fig. 5(a-c) plots the mean drag force distribution as a function of the fin height for the transition with 

landing geometry at three Reynolds numbers: 1,100, 600, and 300.  As the Reynolds number decreases, the 

contribution of pressure drag decreases while that of friction drag increases at the angled louver part.  At a nominal 

Reynolds number of 300, the two drag forces are nearly equal.  The distribution at the transition region and flat 

landing follow the same trend as the Reynolds number decreases.  Overall the changes in Reynolds number do not 

change the salient features of the drag distribution throughout the louver.  This is also true for the other three louver 

geometries.  

Fig. 6 plots the fractional contribution of friction losses on the tube surface to the total losses. For all three 

geometries, the contribution of the tube to overall losses is less than 8 percent of the total for this geometry. The 

louvers with transition exhibit a higher contribution because of the increased shear stress on the tube surface as a 

result of the accelerating flow near it. 

4.3  Time-averaged Heat Transfer Coefficient 
Fig. 7(a-d) plots the time mean thermal field (modified temperature, θ) on the top surface of the louver. 

Because the heat flux is fixed on the louver and tube surface, a high surface temperature implies low heat transfer. In 

all cases, at a nominal Re =1100, the shear layer at the leading edge of the louver separates and s heds vortices. Very 

near the leading edge, the heat transfer coefficients are high, but decrease in the recirculation zone which forms 

downstream of the leading edge. In the reattachment region, at half the louver length, the vorticity generated by the 

separated shear layer increases the heat transfer coefficient by increased mixing. For the periodic geometry, in the 

absence of any three-dimensionality, the surface temperature does not show any variations in the z-direction.  For 

                                                                 
5 The form and friction drag are plotted as a fraction of the total losses. Since the mean pressure gradient is fixed at 
unity, the integrated area under the curves should add up to approximately 2.5, the pressure loss expressed as a force 
on the computational domain. 
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the straight louver, thick thermal boundary layers with high temperatures and low heat transfer coefficients exist in 

the vicinity of the tube. For transition with landing, in the transition region, the low temperature/high heat transfer 

region on the top surface near the flat landing is caused by unsteady flow acceleration in the vicinity of the louver 

surface.  The flow acceleration still exists without the flat landing, but it results in weaker augmentation on the 

louver surface.  

Temperature contours on the lower surface are shown in Fig. 8(a-d).  For the periodic louver the heat 

transfer coefficient is a maximum at the leading edge and decreases thereafter till near the trailing edge where it 

increases again. A high temperature/low heat transfer region formed in the transition region in Fig. 8(c -d) result 

from the presence of the vortex jet. The jet is detached from the louver surface and a stagnant recirculating region is 

formed underneath the jet. Similar to the top surface, thick boundary layer near the tube surface exists for the 

straight louver on the bottom surface.  Comparing temperature contours for both the transitional geometries on the 

top and bottom louver surfaces in the vicinity of the tube clearly shows the effect of flow acceleration on tube heat 

transfer. Temperature contours have lower values in the immediate vicinity of the tube on the top louver surface than 

on the bottom surface.  

In Fig. 9(a-b), the average (time and spatial) Nusselt number on the louver, and tube surface is plotted 

separately. In Fig. 9(a), the periodic and straight louver exhibit the same Nusselt numbers. The presence of transition 

and the flat landing is detrimental to louver heat transfer. Since an angled louver always exhibits higher heat transfer 

than a flat plate, solely from the geometrical viewpoint, the presence of a transition region and a flat landing will 

result in lower heat transfer coefficients averaged across the fin height. The presence of the tube surface can further 

lower the average heat transfer coefficient on the louver. These effects can either be countered or reinforced further 

by other non-linear effects as observed (unsteady flow acceleration on louver top surface and vortex jet on bottom 

surface, separation) in the current study. The results indicate that the flow acceleration on the louver surface is not 

sufficient to counter the geometry effects of the louver straightening out. Hence, for best heat transfer on the louver, 

the transition region and flat landing should be kept as small as possible. 

Contrary to this observation, the enhancement provided by the transition and flat landing on the tube 

surface is quite strong.  The tube Nusselt number is lowest for the straight louver because there is nothing that can 

break the thick thermal boundary layer that forms on the tube surface. With the transitional louver, the unsteady 

flow acceleration on the top surface and to some extent the vortex jet under the louver, help to dilute the thermal 

boundary layer on the tube and increase heat transfer. Between the two transitional geometries, the presence of the 

small landing is quite favorable to heat transfer augmentation on the tube and a total augmentation between 75-

100% is obtained when compared to the straight louver.  

4.4  Overall Friction and Heat Transfer Coefficient for Flat Tube Louvered Heat Exchanger 
In this section, the overall heat transfer and friction factors for an equivalent duct of aspect ratio 5, bounded 

by louvered fins and the tube surface are presented. These are compared to theoretical flow results for fully 

developed laminar flow in ducts. Fig. 10-a compares the calculated friction coefficient ( f), and Fig. 10-b plots the 

equivalent Nusselt number ( hDNu ) versus hDRe .  
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The friction coefficient increases by a factor between 5 and 8 when compared to a fully-developed laminar 

flow in a duct of aspect ratio 5. On the other hand the Nusselt number is augmented by factors varying from 2.5 to 4. 

The tube surface results in approximately a 30% reduction in the overall Nusselt numb er. Hence, for small tube 

pitches and large fin pitches, tube surface heat transfer becomes critical to the performance of the heat exchanger. 

Between the three geometries, the louver with transition and flat landing exhibits the lowest friction coefficient, 

whereas the friction coefficient is highest in the absence of the flat landing. The former result is consistent with the 

fact that pressure losses are dominated by form drag, which is reduced substantially in the transition region and 

vanishes at the flat landing.  

Finally we provide a comparison between the calculated results and previous experimental work. Both the 

calculated friction coefficient and Colburn j-factor are compared to relevant correlations available in the literature. 

This is provided to validate that computer models of a subsystem of the full heat-exchanger can provide results 

which compare favorably with experiments on full cores. The friction coefficient is compared to the correlation of 

Chang et al. [12], (referred to as CHLW) and the j-factor to the correlation by Chang and Wang [13] (referred to as 

CH), and also to that of Sunden and Svantesson [14] (referred to as SS). The SS correlation is specific to flat tube 

arrangements with corrugated louvers in rectangular channels, whereas both the f- and j- correlations are more 

general in nature and include a wide range of multilouvered geometries [12]. The following geometrical values are 

used in the correlations: fin pitch = 1(all lengths normalized by louver pitch), θ = 25 degrees, fin thickness = 0.1, fin 

height = tube pitch = 5, tube depth = 15, louver length = 4.5, major tube diameter = 16, and louver height as 0.5sinθ. 

Fig. 11(a -b) plot the f- and j- factor. Also plotted are upper and lower bounds of the experimental data from 

which the CHLW and CW correlations are derived. The calculated f- factor is higher than predicted by the 

correlation, but falls within the upper bounds of the experimental data. We also note that the current calculations are 

relevant to the type C geometry in Chang and Wang [13], which generally exhibits a higher friction coefficient than 

the other types of multilouvered geometries. Similarly, the calculated j-factors for the transitioning louver fall within 

the experimental bounds of the CW correlation but are lower than the SS correlation. 

5. Conclusions 

In this paper, we study the flow and heat transfer in four three-dimensional geometries (Fig. 1) of a flat tube 

corrugated multilouvered fins at three nominal Reynolds numbers: 1,100, 600, and 300.  The four geometries vary in 

the configuration of the fin at the junction with the tube face. They range from completely neglecting the effect of 

the tube surface to including the realistic transition of the angled louver into a flat landing adjoining the tube face. 

The objective is to study the impact of this region on louver as well as tube heat transfer coefficients.  

The results show that away from the tube surface, the flow is nominally two-dimensional with weak three-

dimensionality. For louvers that flatten out into a flat landing, conditions are created for highly three-dimensional 

and unsteady flow phenomena. Flow in the transition region is characterized by unsteady acceleration on the louver 

                                                                 
6 Tube depth is used in the same context as flow depth. In our calculations, the flow depth is infinity. So a typical 
value of 15 is used. Similarly, the calculations do not simulate flow around the tube, so a value of 1.0 is assumed as 
the major tube diameter. In any case, for flat tubes, the contribution to pressure loss from the frontal area of the tube 
is negligible. 
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top surface and a vortex jet under the louver bottom surface.  The flow acceleration has a large impact on louver 

heat transfer locally. However, its impact is minimal on the averaged heat transfer coefficient over the whole louver. 

It is concluded that for best louver heat transfer performance, the transition and flat landing should be kept as small 

as possible. On the other hand, the flow acceleration generated by the transitioning louver has a large impact on tube 

heat transfer and increases it by 50-75% over a straight louver, which does not transition to the tube surface.  

Overall, it is found that the low heat transfer on the tube surface, decreases the overall heat transfer 

capacity of the heat exchanger by over 30 %. Hence, augmenting heat transfer on the tube surface is critical in small 

tube pitch, high fin pitch, multilouvered geometries. On the other hand, there is a minimal contribution (<8%) of 

tube frictional losses to total pressure losses.  

The agreement of calculated results with correlations derived from full core experiments validates that 

realistic three-dimensional computational modeling of a small subsystem is a viable and effective tool in generating 

performance data for heat exchangers. 
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List of Figures 

Figure 1. Computational domain for four louver geometries: (a) periodic louver; (b) straight louver; (c) transition 
without landing; (d) transition with landing.  Shaded areas are the louver and tube surface. 

Figure 2. Temporal evolution of the spatially averaged Nusselt number for four louver geometries at Reynolds 
number of 1,100.  All flows have adjusted to the mean pressure gradient and reached a statistically 
stationary state.  Similar plots for louvers at Reynolds number of 600 and 300 also show that flow has 
reached a stationary state. 

Figure 3. Instantaneous volume-averaged vortical strength distribution along the fin height at Reynolds number 
of 1,100 at an arbitrary instant for (a) periodic louver; (b) straight louver; (c) transition without 
landing; (d) transition with landing. 

Figure 4. Mean drag force distribution along the fin height as a fraction of the total losses: (a) periodic louver; 
(b) straight louver; (c) transition without landing; (d) transition with landing at Reynolds number of 
1,100. 

Figure 5. Mean drag force distribution along the fin height as a fraction of the total losses for transition with 
landing at Reynolds number of (a) 1,100; (b) 600; (c) 300. 

Figure 6. Fractional contribution of friction on tube surface to overall pressure loss. 

Figure 7. Mean thermal field distribution on the louver top surface at Reynolds number of 1,100 for (a) periodic; 
(b) straight louver; (c) transition without landing; (d) transition with landing. 

Figure 8. Mean thermal field distribution on the louver bottom surface at Reynolds number of 1,100 for (a) 
periodic; (b) straight louver; (c) transition without landing; (d) transition with landing. 

Figure 9. Average Nusselt number versus the Reynolds number. (a) On the louver surface; (b) On the tube 
surface. 

Figure 10. (a) Friction coefficient, f for equivalent louvered duct; (b) Nusselt number for equivalent louvered 
duct. Diamond: straight louver; delta: transition no landing; square, transition with landing. Empty 
symbols: Nusselt number based on louver surface; filled symbols: Nusselt number based on louver and 
tube surface.  

Figure 11. Comparison of calculated f- and j- factors with available correlations. Vertical lines establish limits of 
experimental data from which the CHLW and CH correlations are constructed. 
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Figure 1. Computational domain for four louver geometries: (a) periodic louver; (b) straight louver; (c) transition 
without landing; (d) transition with landing.  Shaded areas are the louver and tube surface. 
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Figure 2. Temporal evolution of the spatially averaged Nusselt number for four louver geometries at Reynolds 
number of 1,100.  All flows have adjusted to the mean pressure gradient and reached a statistically 
stationary state.  Similar plots for louvers at Reynolds number of 600 and 300 also show that flow has 
reached a stationary state. 
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            (c)  transition without landing                              (d)  transition with landing 

 

Figure 3. Instantaneous volume-averaged vortical strength distribution along the fin height at Reynolds number 
of 1,100 at an arbitrary instant for (a) periodic louver; (b) straight louver; (c) transition without 
landing; (d) transition with landing. 
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               (c)  transition without landing                              (d)  transition with landing 

 

Figure 4. Mean drag force distribution along the fin height as a fraction of the total losses: (a) periodic louver; 
(b) straight louver; (c) transition without landing; (d) transition with landing at Reynolds number of 
1,100. 
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                     (a)  Re = 1,100                                                       (b)  Re = 600 
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(c) Re = 300 

Figure 5. Mean drag force distribution along the fin height as a fraction of the total losses for transition with 
landing at Reynolds number of (a) 1,100; (b) 600; (c) 300. 
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Figure 6. Fractional contribution of friction on tube surface to overall pressure loss. 
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Figure 7. Mean thermal field distribution on the louver top surface at Reynolds number of 1,100 for (a) periodic; 
(b) straight louver; (c) transition without landing; (d) transition with landing. 
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Figure 8. Mean thermal field distribution on the louver bottom surface at Reynolds number of 1,100 for (a) 
periodic; (b) straight louver; (c) transition without landing; (d) transition with landing. 
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(b) 

Figure 9. Average Nusselt number versus the Reynolds number. (a) On the louver surface; (b) On the tube 
surface. 
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(b) 

Figure 10. (a) Friction coefficient, f for equivalent louvered duct; (b) Nusselt number for equivalent louvered 
duct. Diamond: straight louver; delta: transition no landing; square, transition with landing. Empty 
symbols: Nusselt number based on louver surface; filled symbols: Nusselt number based on louver and 
tube surface.  
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(b) 

Figure 11. Comparison of calculated f- and j- factors with available correlations. Vertical lines establish limits of 
experimental data from which the CHLW and CH correlations were constructed. 


